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Chapter 1:Introduction and Background 

The United States relies on a vast network of bridges to maintain economic stability and 

transportation efficiency. Most of these structures utilize concrete bridge decks due to their 

ability to withstand heavy loads and harsh environmental conditions. However, the longevity 

of these structures is significantly compromised by the degradation of their internal 

components, primarily the steel reinforcement. 

1-1- Project Motivation 

The primary motivation for this project is the economic and structural crisis caused by 

the corrosion of steel reinforcement. In cold climates, such as the Northeast United States, 

the frequent use of de-icing salts (magnesium chloride, calcium chloride, and sodium 

chloride) introduces chloride ions into the concrete. These ions penetrate the porous concrete 

matrix, reaching the steel rebar and destroying its protective passive layer. 

The resulting corrosion leads to: 

 Structural Damage: Rust occupies a larger volume than the original steel, creating 

internal expansive pressure that causes concrete cracking, spalling, and delamination. 

 High Maintenance Costs: As of the early 21st century, the annual direct cost of 

corrosion for highway bridges in the U.S. was estimated at approximately $10 

billion. 

 Safety Risks: Deteriorating bridge decks reduce the safe load-carrying capacity of 

the infrastructure and necessitate frequent, disruptive repairs. 

Traditional mitigation strategies, such as cathodic protection or epoxy coatings, have 

provided only temporary relief. Therefore, there is an urgent need for a "Steel-Free" bridge 

deck system. By replacing corrosion-prone steel with Glass Fiber-Reinforced Polymer 

(GFRP) rebars and enhancing the concrete matrix with Basalt Fibers, this research aims 

to develop a system that is inherently immune to chloride-induced corrosion. This hybrid 

approach not only promises a longer service life for bridge infrastructure but also seeks to 

overcome the brittle failure mechanisms typically associated with FRP-reinforced structures. 
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1-2- Research, Objectives, and Tasks 

The primary objective of this research is to develop and characterize a corrosion-resistant, 

"steel-free" concrete system that maintains structural integrity and ductility comparable to 

traditional reinforced concrete. To achieve this, the study investigates the synergy between 

a high-performance Basalt Fiber-Reinforced Concrete (BFRC) matrix and Glass Fiber-

Reinforced Polymer (GFRP) internal reinforcement. 

1.2.1 Research Objectives 

The specific goals of this investigation are to: 

1. Optimize Mix Design: Determine the ideal volumetric fraction of basalt fibers that 

enhances mechanical properties (flexural and compressive strength) without 

compromising the workability required for field placement. 

2. Mitigate Brittle Failure: Leverage the crack-bridging capabilities of basalt fibers to 

improve the post-cracking behavior and ductility of GFRP-reinforced sections, 

which are inherently brittle. 

3. Evaluate Durability Factors: Analyze the impact of fiber reinforcement on drying 

shrinkage to assess long-term volumetric stability. 

4. Validate Structural Performance: Conduct large-scale testing to compare the load-

deflection behavior of BFRC beams against traditional plain concrete sections 

reinforced with GFRP. 

1.2.2 Research Tasks 

To meet these objectives, the project was organized into the following systematic tasks: 

 Task 1: Material Characterization (Phase 1) 

o Develop 11 unique mix designs using two aggregate sizes (3/4" and 3/8"). 

o Vary basalt fiber content from 0% to 1.2% by volume. 

o Perform slump tests to quantify workability and determine the "homogeneity 

threshold." 

o Conduct three-point bending, compression, and 28-day shrinkage tests. 

 Task 2: Structural Beam Testing (Phase 2) 

www.tidc-utc.org 
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o Design beam specimens using AASHTO LRFD specifications for GFRP-

reinforced concrete. 

o Manufacture 4" x 4" x 54" beams with varying rebar counts (1-bar vs. 2-bar 

systems) and optimized fiber content. 

o Execute four-point bending tests using an Instron load frame to measure peak 

load, mid-span deflection, and toughness. 

 Task 3: Analysis and Modeling 

o Compare Phase 1 and Phase 2 data to identify synergistic effects. 

o Perform moment-curvature analysis to predict the load-deflection behavior 

of the hybrid system. 

o Formulate recommendations for the application of BFRC in bridge deck 

construction. 

1-3- Report Overview 

This report is organized into five primary chapters that document the research progression 

from initial material development to full-scale structural testing of a steel-free bridge deck 

system. The structure of the report is as follows: 

 Chapter 1: Introduction and Background establishes the motivation for the study, 

focusing on the $10 billion annual cost of bridge corrosion in the United States. It 

defines the research objectives, the specific tasks required to validate a non-corrosive 

alternative, and the scope of the two-phase experimental program. 

 Chapter 2: Literature Review provides a comprehensive look at the durability 

crisis of reinforced concrete, focusing on chemical degradation like carbonation and 

chloride-induced corrosion. It further explores the material science of Fiber-

Reinforced Polymer (FRP) and Fiber-Reinforced Concrete (FRC), establishing the 

theoretical synergy between basalt fibers and GFRP rebars. 

 Chapter 3: Methodology details the experimental procedures for both Phase 1 

(Material Optimization) and Phase 2 (Structural Testing). This chapter covers the 

www.tidc-utc.org 
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standardized mixing protocols adapted from MaineDOT, specimen fabrication 

techniques—including the heat-treatment process for bending GFRP rebars—and the 

configurations for the three-point and four-point bending tests. 

 Chapter 4: Results and Discussion presents the data collected from the 

experimental phases. It analyzes fresh concrete properties such as slump and 

workability, mechanical performance metrics including flexural toughness and 

compressive strength, and the structural load-deflection behavior of the hybrid beam 

systems. 

 Chapter 5: Conclusions and Recommendations summarizes the key findings of 

the study, such as the 0.5% fiber volumetric threshold and the 272% increase in 

flexural strength for reinforced FRC. It concludes with practical recommendations 

for future field implementation and identifies areas for further research in fatigue and 

durability engineering. 

www.tidc-utc.org 
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Chapter 2:Literature Review 

2-1- The Durability Crisis of Reinforced Concrete 

The primary challenge facing bridge infrastructure in cold climates is the degradation of 

concrete durability. While concrete is an excellent load-bearing material, its porous nature 

and low tensile strength make it susceptible to environmental factors that lead to premature 

failure. 

2-1-1- Chemical and Environmental Degradation 

Research identifies several key mechanisms that compromise the integrity of bridge decks: 

• Alkali-Silica Reaction (ASR): This chemical reaction occurs between the hydroxyl 

ions in the cement paste and the silica in certain aggregates, forming a gel that expands upon 

moisture absorption, leading to internal cracking (Figueira et al., 2019). 

• Freeze-Thaw Cycling: In regions like the Northeast U.S., water infiltrates concrete 

pores. As temperatures drop, the water expands by roughly 9%, creating internal hydraulic 

pressures that cause micro-cracking and surface scaling (Luo et al., 2017). 

• Carbonation: Carbon dioxide (CO₂) from the atmosphere reacts with calcium 

hydroxide to form calcium carbonate, lowering the concrete’s pH. This acidity destroys the 

passive protective layer around steel reinforcement, initiating corrosion (Papadakis et al., 

1991). 

2-1-2- Chloride-Induced Corrosion 

The most critical threat in cold climates is the ingress of chloride ions from de-icing salts. 

These salts penetrate the concrete and reach the steel rebar, causing a volume expansion of 

up to six times the original metal as rust forms. This expansive pressure causes delamination 

and spalling. With the direct cost of bridge corrosion estimated at $10 billion annually, the 

shift toward non-corrosive alternatives has become a structural necessity (Yunovich & 

Thompson, 2003). 

www.tidc-utc.org 
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2-2- Fiber-Reinforced Polymer (FRP) Reinforcement 

FRP rebars, particularly Glass Fiber-Reinforced Polymer (GFRP), represent a significant 

technological shift from traditional steel. 

2-2-1- Material Characteristics 

FRP composites consist of high-strength fibers embedded in a polymer matrix. GFRP is 

widely utilized due to its high tensile strength (86–90 ksi) and absolute resistance to chloride-

induced corrosion (Einde et al., 2003). Unlike steel, which is ductile and exhibits a yield 

point, GFRP is linear-elastic until failure. 

2-2-2- Structural Applications and Limitations 

Studies have shown that GFRP-reinforced decks perform well under standard truck loads, 

often with tensile strains representing less than 0.19% of their ultimate capacity 

(Benmokrane et al., 2006). However, because GFRP cannot undergo plastic deformation, 

structures must be designed as over-reinforced. This ensures the concrete crushes before the 

rebar snaps, providing some visual warning of failure. 

2-3- Fiber-Reinforced Concrete (FRC) 

The integration of fibers into the concrete matrix (FRC) aims to improve the material's 

inherent weaknesses—specifically its low tensile strength and brittle failure mode. 

2-3-1- Role of Basalt Fibers (Minibars) 

Basalt fibers are an environmentally sustainable alternative to steel or synthetic fibers. They 

provide high resistance to acid and salt corrosion. 

• Pre-Cracking: Fibers act as fillers, increasing initial compressive and tensile strength 

(Alaskar et al., 2021). 

• Post-Cracking (Toughness): Basalt "minibars" bridge cracks as they form, 

preventing rapid propagation. Jalasutram et al. (2016) noted that a 2.0% volumetric fraction 

www.tidc-utc.org 
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of basalt fibers could increase flexural toughness by nearly three times compared to plain 

concrete. 

2-3-2- Synergy Between FRC and GFRP 

A critical area of research is the combination of FRC and GFRP rebars. Recent studies 

suggest that the "crack-bridging" of fibers complements the brittle nature of GFRP. For 

instance, Meda et al. (2019) found that adding GFRP rebars to an FRC system increased 

peak load by 63% and reduced crack widths by 60%. This hybrid approach creates a "Steel-

Free" system that is both corrosion-resistant and sufficiently ductile for bridge applications. 
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Chapter 3:Methodology 

3-1- Materials 

The development of a steel-free bridge deck requires a careful selection of non-corrosive 

components. The materials used in this study include a modified concrete matrix and 

advanced polymer reinforcements. 

3-1-1- Concrete Mix Components 

The base concrete mix was adapted from a design used in the Veranda Street Bridge project 

in Portland, Maine. It consists of: 

 Cement: Type 1L Portland-limestone cement (ASTM C595). 

 Water-to-Cement Ratio: Constant at 0.45. 

 Chemical Admixtures: Master Glenium 7500 (superplasticizer) to maintain 

workability and Master Air AE2000 for freeze-thaw resistance. 

 Aggregates: Two sizes of coarse aggregates were tested: 3/4-inch (angular) and 3/8-

inch (rounded). 

Table 1. Coarse Aggregates Sieve Analysis 

Sieve % Passing Limits MDOT 

1" 100.00% 100% 100.00% 

3/4" 98.76% 90-100% 97.00% 

1/2" 68.16% - 54.00% 

3/8" 36.57% 20-55% 32.00% 

#4 2.49% 0-10% 8.00% 

#8 0.50% 0-5% 4.00% 

Table 2. Fine Aggregate Sieve Analysis 

www.tidc-utc.org 
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Sieve % Passing Limits MDOT 

1" 100.00% 100% 100.00% 

3/4" 98.76% 90-100% 97.00% 

1/2" 68.16% - 54.00% 

3/8" 36.57% 20-55% 32.00% 

#4 2.49% 0-10% 8.00% 

#8 0.50% 0-5% 4.00% 

Figure 1.Sieve Analysis Verification for Coarse Aggregates 

Figure 2. Sieve Analysis Verification for Fine Aggregates 
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3-1-2- Basalt Fibers (Minibars) 

The study utilized basalt "minibars" as secondary reinforcement. Unlike bundled dispersion 

fibers, minibars are designed to enhance post-cracking toughness by bridging cracks across 

the concrete matrix. 

Table 3. Mix design 

Materials 

Cement 

(lb/yd3) 

3/4" Coarse 

(lb/yd3) 

3/8" Coarse 

(lb/yd3) 

Fine (lb/yd3) 

Masterair 

AE200 (oz/yd3) 

MasterGlenium 

7500 (oz/yd3) 

1 

573 

1749 

-

1063 

1.75 

29.7 

2 

573 

1749 

-

1063 

1.75 

32.5 

3 

573 

1749 

-

1063 

1.75 

38.9 

4 

573 

1749 

-

1063 

1.75 

67.5 

5 

573 

1749 

-

1063 

1.75 

75.4 

6 

573 

1749 

-

1063 

1.75 

99.2 

7 

573 

-

1749 

1063 

1.75 

29.7 

8 

573 

-

1749 

1063 

1.75 

38.9 

9 

573 

-

1749 

1063 

1.75 

67.5 

10 

573 

-

1749 

1063 

1.75 

69.4 

11 

573 

-

1749 

1063 

1.75 

99.2 

Fibers (vol%) 0% 0.1% 0.2% 0.5% 1.0% 1.2% 0% 0.2% 0.5% 0.8% 1.2% 

3-1-3- GFRP Rebars 

For primary reinforcement in Phase 2, #4 Glass Fiber-Reinforced Polymer (GFRP) rebars 

were used. These bars are characterized by high tensile strength (approx. 90 ksi) but a lower 

modulus of elasticity compared to steel, requiring a specific design approach to manage 

deflection. 

Table 4. Material Properties 

Properties Values (Ksi) 

f'c 6 
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Ec 4700 

fu 90 

E_f 5900 

3-2- Test Setup & Process 

3-2-1- Specimen Fabrication and Casting Protocol 

The integrity of the experimental results relied on a rigorous and repeatable casting 

procedure. Specimens were fabricated in three distinct geometries to facilitate specific 

mechanical evaluations: 

 Flexural Specimens: 6" x 6" x 22" beams (Phase 1) and 4" x 4" x 54" beams (Phase 

2). 

 Compressive Specimens: 4" x 8" cylinders. 

 Shrinkage Specimens: 3" x 3" x 11.25" prisms with embedded shrinkage bolts. 

2.2.1 Standardized Mixing Procedure 

The mixing sequence was adapted from the Maine Department of Transportation (MDOT) 

protocols to ensure the homogeneity of the Basalt Fiber-Reinforced Concrete (BFRC). To 

prevent "balling" of fibers and to ensure full hydration, the following step-by-step laboratory 

protocol was established: 

1. Batch Limitation: Batch sizes were restricted to 50% of the mixer’s rated capacity 

to ensure high-shear mixing and uniform fiber distribution. 

2. Moisture Correction: Aggregate moisture content was measured immediately prior 

to mixing, and batch water was adjusted to maintain a precise w/c ratio of 0.45. 

3. Pre-Conditioning: The drum was "buttered" with a specialized slurry to prevent the 

loss of fines to the mixer blades. 

4. Sequential Addition: Aggregates and 50% of the water/air-entraining agent were 

mixed for 3 minutes, followed by a 3-minute rest. 

5. Chemical Activation: Cement and the remaining water, containing roughly 90% of 

the predicted superplasticizer, were added and mixed for an additional 3 minutes. 
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6. Workability Verification: A slump test was performed per ASTM C143. If the 3-

inch target was not met, superplasticizer was added in 0.1 oz increments. 

7. Fiber Integration: Basalt fibers were introduced while the mixer was operational. 

A final 2-minute mix and 1-minute rest were enforced to ensure the fibers were fully 

encapsulated by the cement paste. 

8. Time Constraints: All casting and vibration were completed within a 25-minute 

window from initial hydration to prevent the negative effects of premature setting. 

Figure 3. Different types of slumps. (Ferraris & de Larrard, 1998) 

This figure is vital to explain why the 0.5% fiber threshold was chosen based on the transition 

from "True" to "Shear" slump. 

3-2-2- Consolidation and Curing 

Upon casting, all specimens were placed on a vibration table for approximately 30 seconds. 

This step was critical for fiber-reinforced mixes to eliminate entrapped air and prevent fiber 

"clustering." Specimens were cured in a controlled environmental chamber (wet room) at 

98% humidity and a constant temperature. Demolding occurred at 24 hours, with testing 

performed at 28 days for Phase 1 and 60+ days for Phase 2. 
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3-3- Phase 1: Material Performance Testing Setup 

To define the baseline properties of the BFRC, the following standardized test configurations 

were utilized: 

3-3-1- Flexural Strength (Three-Point Bending) 

Tests were conducted per ASTM C78 using a high-capacity Instron load frame. 

 Span: 19-inch clear span with 1.5-inch overhangs. 

 Loading Rate: A constant rate of 0.2 in/min was applied. 

 Objective: To determine the Modulus of Rupture (MOR) and the post-peak energy 

absorption (toughness) provided by varying fiber volumes. 

Figure 4. Flexure Test Setup (Three-Point) 

3-3-2- Compressive Strength and Modulus 

Testing was performed per ASTM C39. Specimens were capped with neoprene pads within 

steel bearing blocks to ensure uniform load distribution and to mitigate stress concentrations 

caused by minor surface irregularities. 

 Loading Rate: 20 to 50 psi/sec. 
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Figure 5. Compression Test Setup 

3-3-3- Drying Shrinkage Evaluation 

Following ASTM C157, longitudinal changes were measured using a length comparator and 

a 10-inch digital dial gage. Readings were taken daily for 30 days to quantify how basalt 

fibers restrict the volumetric contraction of the cement paste. 

3-4- Phase 2: Structural Beam Testing and Instrumentation 

The second phase transitioned from material samples to structural members, integrating 

GFRP rebars into the BFRC matrix. 

3-4-1- Primary Reinforcement Preparation 

#4 GFRP rebars were utilized. To ensure sufficient development length (Ld), the bars were 

bent using a controlled heat-treatment process. 
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 Bending Process: A heat gun was used to uniformly warm a 5-inch section of the 

bar. The bars were then bent around a 4-inch diameter mandrel to prevent "kinking" 

or fiber breakage. 

 Placement: Rebars were secured at an effective depth (d) of 2.5 inches (1.5-inch 

clear cover) using steel wire ties. 

Figure 6. Wood Mold (left) and PETG Rebars Before Bending (right) 

Figure 7. PETG Rebars Placed in Molds Prior to Casting 
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Figure 8. PETG Rebar Bend Profile 

3-4-2- Four-Point Bending Configuration 

A four-point bending setup was selected per ASTM C1609 to create a zone of constant 

maximum moment between the two loading points. This setup minimizes shear influence 

and allows for a clearer evaluation of the flexural synergy between the fibers and the GFRP 

rebars. 

 Support Structure: A W8x13 steel I-beam was used as a rigid base to eliminate 

support deflection. 

 Loading Fixture: A custom 1-inch thick steel spreader plate was designed to transfer 

the Instron’s load to the one-third points of the 48-inch span. 

 Instrumentation Suite: * String Potentiometers: Positioned at mid-span to record 

deflection. 

o Acoustic Emission (AE) Sensors: Attached to the beam surface to monitor 

the onset of internal micro-cracking and fiber pull-out. 

o Go-Pro Video: Used for visual crack propagation mapping. 

 
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Figure 9. Final Test Setup 

3-5- Quality Control and Calibration 

Before full-scale testing, a "Mock Test" was conducted on a 6" x 6" beam to calibrate the 

data acquisition system and fine-tune the AE sensor thresholds. This ensured that the 

transition from elastic behavior to concrete crushing was captured with high resolution. 

Figure 10. Mock Test Setup 
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Chapter 4:Results and Discussion 

4-1- Fresh Concrete Properties: Slump and Workability 

Workability is a critical factor for the field application of Fiber-Reinforced Concrete (FRC). 

For this study, a target slump of 3 inches was established to ensure that the mix could be 

effectively placed in bridge deck applications. 

Figure 11. Slump Test Results for Mix Designs 

As illustrated in Figure 11, the inclusion of basalt fibers significantly impacts the slump of 

the concrete. Key observations include: 

 The 0.5% Threshold: A "True Slump" of 3 inches was maintainable up to a fiber 

content of 0.5% volumetric fraction. Beyond this point, the mix became "fiber-

heavy," and additional superplasticizer resulted in a watery consistency without 

improving the actual slump. 

 Fiber Volume Impact: Comparing Mix 4 (0.5% fibers) to Mix 6 (1.2% fibers) 

revealed a 73% decrease in slump, indicating a severe loss of workability. 
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 Aggregate Morphology: On average, the 3/8-inch aggregate mixes showed a 22% 

higher slump than the 3/4-inch mixes. This is attributed to the rounded shape and 

smaller size of the 3/8-inch aggregates, which facilitate better movement of the 1.7-

inch long fibers within the matrix. 

4-2- Mechanical Performance (Phase 1) 

4-2-1- Three-Point Bending and Flexural Strength 

Three-point bending tests were conducted on 11 unique mix designs to analyze how fibers 

enhance the tensile capacity and toughness of the concrete. 

Figure 12. Load vs. Crosshead Displacement for 3/4-inch Aggregates 
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Figure 13. Load vs. Crosshead Displacement for 3/8-inch Aggregates 

The load-displacement curves in Figures 12 and 13 demonstrate that while the initial elastic 

slope remains similar across mixes, the peak load and post-peak behavior change drastically 

with fiber content: 

 Peak Strength: A clear trend of increased flexural strength was observed with higher 

fiber fractions. The highest capacity was reached at 1.0% fiber content, showing an 

average strength of 1011 psi—a 40% increase over the base concrete (678 psi). 

 Aggregate Impact: The angular 3/4-inch aggregates provided roughly 5% higher 

strength than the rounded 3/8-inch aggregates at lower fiber dosages. However, at 

the 1.2% dosage, the 3/8-inch mix outperformed the 3/4-inch mix due to better 

workability and fiber homogenization during casting. 
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Figure 14. Average Flexural Strength of Specimens 

4-2-2- Energy Absorption and Toughness 

A primary advantage of adding basalt fibers is the transition from brittle to ductile failure. 

This is quantified by evaluating Strain Energy (SE) in the pre-peak and post-peak regions. 

Figure 15.Pre-Peak Strain Energy 
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Figure 16.Post-Peak Strain Energy 

 Post-Peak Toughness: As seen in Figure 16, post-peak strain energy rose from 

nearly zero in plain concrete to 700 lbs-inch at 1.2% fiber content. This is due to the 

"crack-bridging" effect of the minibars, which maintain load-carrying capacity even 

after the concrete matrix has ruptured. 

 Variability: Larger error bars were noted at higher fiber contents (above 0.5%), 

suggesting that maintaining 100% homogeneity becomes difficult in highly dense 

fiber mixes. 

4-2-3- Shrinkage Resistance 

Shrinkage is a primary cause of early-age cracking in bridge decks. Figure 17 displays the 

28-day shrinkage strain results. 
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Figure 17. 28-day Shrinkage Test Data 

The results indicate that fibers serve as an internal constraint, reducing shrinkage strain by 

20% to 21% at 1.0% fiber content compared to the control. However, the improvement 

between 0.5% and 1.0% was marginal (2-5%), suggesting a law of diminishing returns for 

shrinkage mitigation. 

4-3- Compressive Strength Analysis 

Compressive tests (ASTM C39) were conducted to ensure the mix met the design 

requirement of 6 ksi. 
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Figure 18. Compression Test Data for Mix Designs 1-11 

 Strength Gain: Compressive capacity increased up to the 0.5% fiber content mark 

(39% increase for 3/4-inch aggregates). Beyond 0.5%, the strength plateaued, with 

only a 0.1% to 7.6% increase observed at the 1.2% dosage level. 

 Secondary Testing (Phase 2 Validation): A second set of cylinders was tested to 

validate the Phase 2 casting. 

Figure 19. Phase 1 and Phase 2 Compression Data Comparison 

 
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As shown in 19, specimens tested on the day of the flexure tests (60+ days) showed a 10.5% 

increase in strength over the 28-day results. This confirms that the mixing procedure 

remained consistent across different batching phases. 

4-4- Structural Response (Phase 2): GFRP-Reinforced Beams 

Phase 2 combined the optimized 0.5% BFRC mix with GFRP rebars in a four-point bending 

setup. 

4-4-1- Load-Deflection Behavior 

The load-deflection curves in Figure 20 highlight the synergy between the fiber-reinforced 

matrix and the primary GFRP reinforcement. 

Figure 20.Load Applied vs. Mid-span Deflection 

 Ductility and Peak Load: Plain concrete beams with one GFRP rebar peaked at a 

deflection of 0.97 inches. In contrast, the BFRC beams with one rebar peaked at 2.16 

inches, demonstrating exceptional ductility and energy absorption. 

 Crack Control: While GFRP-reinforced beams typically exhibit large, concentrated 

cracks, the inclusion of fibers resulted in multiple, smaller cracks distributed along 

the beam span. 

www.tidc-utc.org 

32 | P a g e 



                

                 

   
  

 

 

    

            

 

      

 

            

         

              

            

             

              

         

 

 

 

 

 

 

 

 

 

 

4-4-2- Comparative Flexural Strength 

The flexural strength for the hybrid system is summarized in Figure 21. 

Figure 21. Flexural Strength of Specimens 

 Reinforcement Impact: Adding 0.5% fibers to a 1-rebar system increased flexural 

strength by 63% compared to the plain concrete counterpart. 

 The "One vs. Two Rebar" Comparison: An essential finding was that the 0.5% 

Fiber + 1-Rebar specimen performed virtually identically (within 1%) to the Plain 

Concrete + 2-Rebar specimen in terms of strength, but with much higher deflection 

and ductility. This indicates that fibers can partially offset the need for higher rebar 

counts while improving the failure mode of the structure. 
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Chapter 5:Conclusions and Recommendations 

5-1- Summary of Findings 

This research successfully characterized 11 unique BFRC mix designs and validated their 

structural performance through large-scale beam testing. The investigation utilized a two-

phase methodology to balance material optimization with structural utility, adhering to 

AASHTO LRFD Bridge Design Guide Specifications. 

5-1-1- Phase 1: Material Optimization 

The initial phase confirmed that basalt fibers significantly enhance the mechanical properties 

of concrete, but introduce a critical workability threshold. 

 Workability Limit: A fiber content of 0.5% by volume was identified as the 

optimal threshold. Beyond this, slump values dropped by up to 73%, creating a 

"fiber-heavy" mix that is difficult to pump and consolidate. 

 Mechanical Gains: The 1.0% fiber content provided the highest flexural strength 

(1011 psi, a 40% increase over control) and a 39% increase in compressive 

capacity. 

 Aggregate Selection: Smaller, rounded 3/8-inch aggregates yielded 22% better 

workability and more consistent fiber distribution compared to larger angular 

aggregates. 

 Shrinkage Control: Fibers effectively acted as internal constraints, reducing 28-day 

shrinkage strain by 21%. 

5-1-2- Phase 2: Structural Synergy 

The combination of BFRC and GFRP primary reinforcement successfully mitigated the 

brittle failure modes typically associated with FRP materials. 

 Flexural Performance: A massive 272% increase in flexural strength was achieved 

by combining the 0.5% FRC mix with a 2-bar GFRP system compared to 

unreinforced FRC. 
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 Ductility and Energy Absorption: The most significant benefit was observed in 1-

bar systems, where fibers increased peak deflection from 0.97 inches to 2.16 inches. 

This shift represents a transition from sudden brittle failure to a more ductile, 

predictable response. 

 Design Efficiency: Notably, the 0.5% fiber + 1-bar specimen achieved nearly the 

same strength as a plain concrete + 2-bar specimen, suggesting that fibers can 

optimize reinforcement ratios while providing superior crack control. 

5-2- Conclusions 

The study demonstrates that a "Steel-Free" system is mechanically viable. The inclusion of 

basalt fibers bridges micro-cracks and maintains load-carrying capacity even after initial 

rupture, effectively overcoming the primary structural disadvantage of GFRP (brittleness). 

However, the increased deflection observed in GFRP systems remains higher than that of 

traditional steel. While the materials meet strength requirements, the lower stiffness of the 

GFRP bars used in this study suggests that serviceability limits (deflection control) must be 

a primary focus in future design iterations. 

5-3- Recommendations for Future Work 

To advance this technology toward commercial bridge deck applications, the following 

research paths are recommended: 

1. Workability Engineering: Investigate the use of high-range water reducers or 

various fiber aspect ratios to increase the 0.5% volumetric threshold, allowing for 

higher fiber densities without sacrificing pumpability. 

2. Fatigue and Cyclic Loading: Bridge decks undergo millions of load cycles. Testing 

the fatigue life of the BFRC-GFRP bond is essential to ensure long-term structural 

integrity. 

3. Durability in Harsh Environments: Conduct accelerated aging tests to evaluate the 

alkaline resistance of basalt fibers within the concrete matrix over a simulated 50-

year service life. 
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4. Codification and Stiffness: Engineer GFRP rebars with higher moduli of elasticity 

to align more closely with AASHTO stiffness requirements, thereby reducing the 

mid-span deflection levels observed in this study. 
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