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1 Introduction 

Durable, reliable infrastructure is vital for local, state, and national economic growth and 

development. As the economy grows, so too do the demands placed on existing infrastructure, 

notably on roads and bridges. To keep up with the ever-increasing demand, new, durable, rapidly 

erected bridges are needed. Increasingly, these bridges utilize new materials and construction 

techniques to improve durability, reduce construction costs, and speed erection. To respond to this 

need, the University of Maine developed a novel, fiber reinforced polymer (FRP) tub girder 

(referred to as a “CT girder”) for use in new bridge construction as an alternative to conventional 

steel and prestressed concrete structural members (Dagher et al. 2019; Davids et al 2022a, 2022b; 

Davids & Schanck 2022). CT girders have been identified as a promising technology to support 

sustainable and durable infrastructure development, as they are comparatively light and overcome 

many of the challenges associated with precast NEXT beam concrete structures by reducing 

shipping costs and camber variability caused by prestressing. Commercialization of this 

technology is underway, with the evaluation of the first CT girder bridge constructed for regular 

traffic, the Hampden Grist Mill Bridge (HGMB) completed (Davids and Schanck 2022), two more 

bridges to be completed this year, and other bridges in the design or pre-construction stage. 

To more fully characterize the CT girder’s behavior and to advance its acceptance and 

implementation in future bridge projects, two specific aspects of behavior and design must be 

addressed. First, a more complete picture of the CT girder system’s web material shear strength 

must be established by experimental testing. Although previous testing has verified the models 

and assumptions used in flexural design (Davids et al. 2022a, 2022b, Diba & Hepler, 2019), no 

such testing has been successfully performed with regards to shear strength. Of particular 

importance, CT girder webs’ composite fabric architecture and sandwich foam core design make 

strength estimation by conventional test methods challenging, leading to uncertainty in the level 

of conservatism in shear design. Web buckling capacity is also difficult to estimate with 

conventional calculations and tools available to most engineers. This project more accurately 

quantifies both web shear strength and buckling resistance through the shear testing of typical 

foam-core webs used in CT girders and via finite-element analysis. 

Second, uniform procedures and recommendations for design must be created and ultimately 

accepted as a design code. This will both ensure consistency of future designs and provide 

engineers with the guidance required to assess the use of the CT girder for different applications. 

To this end, a basic design guide modeled after a typical American Association of State Highway 

and Transportation Officials (AASHTO) guide specifications has been drafted. This guide 

addresses design for load effects on CT girders such as moment and shear, as well as girder-deck 

connection and control of deflections. Importantly, appendices are also provided with detailed 

examples for design of CT girders using this guide. The intention is for this guide to serve as the 

basis for a future, official design guide for CT girder structures that can be developed under a 

university-industry partnership. 
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This final report consists of two primary sections. Section 2 details the experimental program 

run to better quantify web shear strength and puts the results of the tests in the context of CT bridge 

girders analysis and design. Section 3 contains the draft design guide. Included are results of 3D 

FE simulations of web buckling in the form of easily used design nomographs. Details of the FE 

simulations are provided in an Appendix. 
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2 FRP Foam-Core Web Shear Testing and Analysis 

2.1 Introduction 

The webs of a CT girder are assumed to provide the vast majority of its resistance to bending 

shear, and to maintain adequate distance between the lower flange and deck to develop adequate 

bending strength. For this reason an accurate prediction of the webs’ shear strength and resistance 

to shear buckling is crucial to a safe and efficient CT girder design. CT girder webs are designed 

as a sandwich of thin glass fiber reinforced polymer (FRP) composite face sheets on either side of 

a thick foam core. The face sheets provide the web with in-plane strength, while the core separates 

the face sheets to increase resistance to out-of-plane movement and web buckling. However, the 

complex fabric architecture of the face sheets and the interaction between the face sheets and core 

make shear strength and buckling predictions challenging or impossible using conventional 

analytical techniques. To overcome these challenges, samples of CT girder webs were tested 

experimentally and numerically assessed to better understand their behavior. 

Investigation of the shear characteristics of CT girder webs proceeded in two phases to 

approach shear strength and buckling resistance, respectively. First, representative panel 

specimens of CT girder webs were constructed and tested per ASTM D8067/D8067M-17 (2017) 

to evaluate their shear strengths and compare with the web shear strength used previously for 

design by AIT Bridges (2019). After this, representative numerical models were created and 

analyzed using the finite element (FE) method to evaluate their shear buckling resistance and help 

develop methods for shear buckling design. 

2.2 Experimental Web Shear Testing 

2.2.1 Testing Details 

To establish an accurate estimate of available CT girder web shear strength, a series of 

representative specimens was manufactured and tested. These tests were based upon ASTM test 

method D8067/D8067M-17 (2017), which will hereafter be referred to as a “picture frame test”. 

A representative picture frame specimen can be seen mounted in a modified fixture manufactured 

for this testing in Figure 1. A diamond-shaped specimen is clamped between the bars of the fixture, 

which are connected to one another by pins allowing free rotation. Tension is applied to the top 

and bottom pins which, due to the fixture’s geometry, is transferred diagonally to the specimen 

along its edges. This creates a state of stress within the specimen approaching perfect pure shear, 

allowing straightforward calculation of shear strength upon specimen failure and shear modulus 

(provided shear strain is measured). 
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Figure 1: Picture Frame Specimen in Fixture 

Preliminary analyses of the picture frame fixture established its maximum tensile capacity 

to equal 30 kip, and so specimens were designed to fail at or below this load with a factor of safety 

equal to 2. Simplified analysis of the webs making up the first, in-situ CT girder bridge (Schanck 

& Davids, 2021) suggested resistances in significant excess of this, and so rather than using the 

precise layup of that bridge’s webs, representative specimens were designed using the 10 ksi shear 

strength assumed in the original bridge design (AIT, 209). These formed the test matrix shown in 

Table 1, in which both the number of laminae making up each face sheet and the thickness of the 

foam core were varied to give four distinct specimen variations. Six specimens were manufactured 

from each variation, for a total of 24 specimens, although a total of 22 were tested. Large plates 

utilizing the fiber architectures and sandwich layups described in Table 1 were manufactured by 

the vacuum infusion process by AIT Bridges. Specimens were cut from these plates by water-

jetting, with attachment holes drilled by CNC. As will be explained below, later specimens were 

also provided with doubler plates adhered to their exterior edges to strengthen them against bearing 

failure around attachment holes. These were manufactured from 0.125 in. G10 fiberglass sheet and 

attached with PLEXUS MA300 methacylate adhesive. A specimen outfitted with doublers can be 

seen in Figure 2.  
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Table 1: Specimen Test Matrix 

Specimen Code Number of Plies per Face Sheet Core Thickness (in.) 

F2-C75 2 0.75 

F2-C150 2 1.50 

F4-C75 4 0.75 

F4-C150 4 1.50 

 

 

Figure 2: Specimen Outfitted with Doubler Plates 

Specimens were tested in one of two Instron servo-hydraulic actuators depending on 

availability: a 55-kip capacity actuator mounted in a separate reaction frame, and a self-reacting 

110-kip capacity actuator. These both used integrated load cells and linear variable differential 

transformers to record load and position data over the course of each test at a sampling rate of 2 

Hz. In addition, each specimen was prepared with a stochastic, high-contrast speckle pattern for 

measurement by ARAMIS digital image correlation (DIC) (GOM, 2019) at a sampling rate of 1 

Hz. This system automatically takes stereoscopic photographs of the specimen during testing and 

tracks the relative displacement of speckles between each stage. Using this system, full-field, 3-

dimensional displacement and strain data were captured over the course of testing.  

Numerous difficulties experienced over the course of testing required significant alterations 

to be made to the test fixture, the specimens, and the overall acceptance of test results. On multiple 

occasions during testing, the hardened steel pin at the top corner of the picture frame fixture 

fractured, requiring replacement and modification to the fixture itself to reduce bending stresses 

on the pin. Additionally, the tight tolerances to which the fixture were originally manufactured 
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caused significant difficulty in assembly and disassembly. This also caused frequent binding of 

the specimen clamping screws, requiring frequent drilling of sheared screws and rethreading of 

holes. To alleviate these difficulties, many of the fixture’s parts were re-machined to relax 

tolerances and threaded holes were drilled to their respective clearance sizes, with clamping 

provided by nuts and washers on the fixture’s exterior. 

When fixture damage did not cause tests to be terminated, premature failure tended to limit 

the maximum loads applied to specimens, preventing determination of their full shear strength. 

During many tests, the bearing stress at the specimen mounting holes provided by mounting screws 

exceeded the face sheets’ bearing strength, leading to bearing failure, with screws being pulled 

through the specimen. Damage from this type of failure can be seen in Figure 3. This was partially 

alleviated with the addition of the pre-manufactured FRP doubler plates but persisted through 

testing of the thinner (2-layer face sheet) specimens. It should be noted that the 4-layer face sheet 

specimens did not experience bearing failure, but were limited by the 30 kip capacity of the test 

fixture. 

 

Figure 3: Damage from Bearing Failure 
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2.2.2 Results 

Twenty-two of the original twenty-four specimens were tested using the method described 

above. Two specimens, both parts of the F4C150 series, were omitted from testing as all other 

members of the series were tested to the fixture’s maximum load without failure, and a different 

outcome was deemed unlikely. Table 2 presents the failure mode and maximum load for each 

specimen tested. Additionally, the maximum shear stress experienced by each specimen is 

provided, which was calculated per ASTM D8067 (2017) as Equation 2.2.2-1 

 
𝜏𝑚𝑎𝑥 =

0.707 ∗ 𝑃𝑚𝑎𝑥
2 ∗ 𝑡𝑓 ∗ 𝐿

 (2.2.2-1) 

where 𝑃𝑚𝑎𝑥 is the maximum recorded load during a test, 𝑡𝑓 is the nominal thickness of one face 

sheet, and 𝐿 is the inside distance between fixture bars. 
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Table 2: Picture Frame Shear Test Results 

2-Lamina Face Sheets 

Specimen Failure Mode Doubler Plate Maximum Load 

(kips) 

(kip) 

Maximum Shear 

Stress (ksi) 

F2C75-01 Bearing No 17.6 13.6 

F2C75-02 DNF No 23.3 17.9 

F2C75-03 Bearing No 23.3 17.9 

F2C75-04 DNF Yes 30.0 23.1 

F2C75-05 Bearing Yes 25.9 19.9 

F2C75-06 Bearing Yes 23.7 18.3 

F2C150-01 Bearing No 23.3 17.9 

F2C150-02 Bearing Yes 26.1 20.1 

F2C150-03 Bearing Yes 24.9 19.2 

F2C150-04 Bearing Yes 22.9 17.6 

F2C150-05 Bearing Yes 23.3 17.9 

F2C150-06 Bearing Yes 23.2 17.9 

  Average 24.0 18.4 

  COV 11.9 % 

4-Lamina Face Sheets 

Specimen Failure Mode Doubler Plate Maximum Load 

(kips) 

(kip) 

Maximum Shear 

Stress (ksi) 

F4C75-01 DNF Yes 30.8 11.9 

F4C75-02 DNF Yes 30.0 11.6 

F4C75-03 DNF Yes 30.0 11.6 

F4C75-04 DNF Yes 30.0 11.6 

F4C75-05 DNF Yes 29.9 11.5 

F4C75-06 DNF Yes 30.0 11.6 

F4C150-01 NT - - - 

F4C150-02 DNF Yes 30.0 11.6 

F4C150-03 NT - - - 

F4C150-04 DNF Yes 30.0 11.6 

F4C150-05 DNF Yes 30.0 11.6 

F4C150-06 DNF Yes 30.0 11.6 

  Average 30.1 11.6 

  COV 0.86 % 

*DNF = Did not fail, NT = Not tested 
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Figure 4 presents load-displacement data recorded during testing of one member of each 

series of specimens. The load-displacement behavior of other specimens are similar. As is 

immediately apparent, specimens with the same face sheet thickness tended to behave very 

similarly to one another. For the thinner face sheet specimens, initial stiffness was comparatively 

low. At a load of between 15 and 18 kip, both experienced a slight drop in stiffness (presumably 

due to the initiation of bearing failure) leading to a maximum load between 22 and 24 kip and 

subsequent nonlinearity with damage progression. The thicker face sheet specimens were 

characterized by a higher initial stiffness wherein (after a small, initial nonlinear phase) 

displacement increased linearly with load up to the maximum allowable load of 30 kip. As load 

was thereafter released, displacement fell linearly with a stiffness similar to, but slightly higher 

than that of the upward path. 

 

Figure 4: Load-Displacement for Each Specimen Series 

As mentioned before, strain and out-of-plane displacement of each specimen under loading 

were measured using ARAMIS DIC (GOM, 2019). This allowed the normal and shear strain fields 

across the face sheet to be fully characterized, as well as any out-of-plane displacement indicating 

buckling. Additionally, these data were used to calculate average normal and shear strains across 

the face sheet. Figure 5, and Figures 6 and 7 present the measured out-of-plane displacement and 

calculated full-field strains for Specimen F2C75-02 at maximum load, respectively, while Figures 

9 and 10 present average strains for the same specimen throughout the entire test. Plots similar to 

Figures 9 and 10 for each specimen can be found in Appendix A.  
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Figure 5: Specimen F2C75-02 - DIC Measured Out-of-Plane Displacement 

 

Figure 6: Specimen F2C75-02 - DIC Calculated Normal Strain in x Direction 

 

y 

x 
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Figure 7: Specimen F2C75-02 - DIC Calculated Normal Strain in y Direction 

 

Figure 8: Specimen F2C75-02 - DIC Calculated Shear Strain 

y 

x 

y 

x 
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Figure 9: Specimen F2C75-02 - DIC Calculated Normal Strains 

 

Figure 10: Specimen F2C75-02 - DIC Calculated Shear Strain 

2.2.3 Discussion 

Due to the numerous difficulties and oversights encountered and mentioned above, the 

testing performed here was unable to produce the desired failure modes (shear failure or buckling) 

and so no conclusions can be drawn regarding the specimens’ actual, full strength. Although this 
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limits the conclusions that can be drawn, the results do provide useful information. First, the 

maximum shear stresses achieved for the thin face sheet are roughly consistent with the shear 

strengths found in previous studies. Table 3 lists the average glass FRP sandwich shear strengths 

found in three previous studies using the picture frame test and the constituent specimen materials, 

and compares them to the minimum and average peak shear stresses found for the thinner 

specimens from this study. As can be seen, the values found here are consistent with previous 

experience. Although true shear strengths could not be achieved, this positive comparison coupled 

with the fact that failure occurred in bearing, not shear, and justifies establishing a typical lower 

bound for mean shear strength of 18 ksi for design. It is important, however, to emphasize that this 

shear strength is based on results for what are believed to be essentially a defect-free material. 

Further, geometric imperfections and buckling could significantly reduce this value. Therefore, as 

is the case with any resistance used in design, appropriate reduction factors must also be applied 

to this strength, such as statistical, strength and environmental factors to achieve a conservative, 

uniform level of reliability. 

Table 3: Comparison with Previous Studies 

Study Specimen Material Reported Shear 

Strength (ksi) Face Sheet Core 

Oludare & Toubia (2019) E-Glass/Vinyl Ester PVC Foam 15.7 

Stoll & Johnston (2016) E-Glass/Epoxy PVC Foam 17.3 

Morgenthaler et al. (2005) E-Glass/Epoxy PVC Foam 17.7 

Present Study E-Glass/Vinyl Ester PVC Foam 13.6 (Min), 18.4 

(Average)  

The load-displacement data presented in Figure 4 reveals some notable, additional behavior 

of the specimens relative to each other and more broadly. As would be expected, the specimens 

with thicker face sheets exhibited a stiffer response to loading than those with the thinner face 

sheets. However, the load-displacement response of specimens with the same face sheet but 

different core thickness was essentially identical in both cases. Between FxC75 and FxC150 

specimens, the thickness of core is doubled, but the specimens’ behavior remains essentially 

unchanged. This confirms the common assumption that, for sandwich structures the core does not 

contribute at all to the resistance of in-plane shear. 

The displacements measured and strains calculated using DIC confirm that the specimens 

behave as expected under load. The relatively uniform out-of-plane displacements shown in Figure 

5 confirm that the specimen does not experience shear buckling under the applied loads. The strains 

calculated and presented in Figures 6 through 10 present a fairly uniform state of strain and indicate 

that the specimen is undergoing near-pure shear. In the measured orientation, the “x” and “y” 

strains are close to equal to one another in magnitude and opposite in sign, and the shear strain is 

relatively negligible. This indicates that the normal strains are principal strains and the specimen 
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is oriented at its principal angle. If rotated 45 degrees, the specimen would be oriented to maximize 

shear strain – thus the specimen is in a state of near-pure shear. 

2.3 Finite Element Simulation of Web Shear Testing 

To build on the insight gained through experimental testing, a series of finite element (FE) 

models were created and analyzed. Two types of analyses were performed: stress analyses and 

Eigenvalue buckling analyses. The stress analyses were meant to directly replicate the 

experimental tests performed and reported upon above. The results of these analyses, when 

compared with actual test results, were intended to reveal additional insight into the specimens’ 

behavior that could not easily be ascertained from the test results alone. The buckling analyses 

were performed to investigate the specimens’ share buckling behavior, as well as to inform the 

design of future CT girder web sections. It must be emphasized that buckling analyses were only 

performed for models of the 12 in. by 12 in. test specimens and buckling loads can be expected to 

decrease for deeper girder webs. 

2.3.1 Model Description and Development  

Modeling and analysis were performed within the commercial FE software, ABAQUS 

(2019) due to its availability and capabilities. To increase the overall accuracy of predictions, the 

specimens’ face sheets and core were modeled discretely rather than having properties smeared 

unto a single shell or solid section. Face sheets were modeled using S8R quadratic, reduced 

integration shell elements with eight nodes and six degrees of freedom per node. These elements 

were assigned a “composite layup” material definition, which integrates plane-stress layer 

constitutive behavior and laminar orientation through the element’s thickness. Rather than 

modeling the biaxial laminae directly, two layers of unidirectional glass were modeled with lamina 

oriented at ±45°. The core was modeled with C3D20R quadratic continuum elements with twenty 

nodes and three degrees of freedom per node. These elements were assigned orthotropic 

constitutive behavior based on the material properties of the core material. However, this was done 

only to specify a shear modulus that was independent of the elastic modulus and Poisson’s ratio, 

with no actual directional dependence on properties. The material properties used are provided in 

Table 4. The face sheets were attached to the core by kinematic constraints. 

Table 4: Material Properties 

Material 
𝐸1 

(ksi) 

𝐸2 

(ksi) 

𝐸3 

(ksi) 
𝜐12 𝜐13 𝜐23 

𝐺12 

(ksi) 

𝐺13 

(ksi) 

𝐺23 

(ksi) 

Laminae 

(Vectorply, 2015) 
5340 1620 - 0.27 - - 770 770 770 

Core (Airtex, 2020) 16.0 16.0 16.0 0.30 0.30 0.30 3.19 3.19 3.19 
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To determine an appropriate level of discretization, a convergence study was performed. 

This study varied the number of elements making up each component (face sheets and core) while 

tracking maximum displacement magnitude under the specified loading and boundary conditions 

for stress analyses as described below. The results of this study can be seen in Figure 11. The final 

discretization uses 1132 elements for each face sheet and 2000 elements for the core, for a total of 

4264 elements per model. A meshed model can be seen in Figure 12. It should be noted that 

because the face sheets use shell elements, they do not appear to be separated from the core 

elements. The models were analyzed under both monotonic static loads and under Eigenvalue 

buckling. As these analyses required separate considerations for loading and boundary conditions, 

these will be discussed separately. 

 

Figure 11: Discretization Convergence Study 
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Figure 12: Meshed Panel Model 

2.3.2 Stress Analysis 

The stress analysis models’ loading and boundary conditions were assigned to accurately 

mimic the conditions of testing, while also remaining computationally tractable. Rather than 

applying these directly, reference nodes were created at the specimens’ upper and lower corners 

to which loads and boundary conditions were applied. The reference nodes at the specimens’ 

bottom corners were fixed against all displacements and rotations, while the reference nodes at the 

specimens’ top corners were fixed against all rotations and displacements except those in the 

direction of loading. Concentrated loads were applied to the top reference nodes in their free 

directions such that their vector sum was equivalent to loading during testing. Loads and restraint 

from boundary conditions were transferred to the specimens by kinematically constraining the 

degrees of freedom of the face sheets along the attachment lines to those of the reference nodes. 

These models were analyzed using a standard Newton-Raphson iterative solver. 

The results of analyses can be compared with data collected during testing of the actual 

specimens. This not only can provide insight into the specimens’ behavior, but also allow 

evaluation of the models’ accuracy. Figures 13 through 16 present the predicted out-of-plane 

deflection, maximum in-plane principal strain, minimum in-plane principal strain, and shear strain 

for the model of specimen F2C75-02. These can be both qualitatively and quantitatively compared 

with Figures 5-8 respectively. Note that the results shown in Figures 13 through 16 should be 

rotated 45 degrees clockwise to match the testing configuration. Figure 13 shows the model’s 

predicted out-of-plane displacement. Qualitatively, this appears similar to the measured 

displacement shown in Figure 5, with highest displacement occurring along the line-of-action of 

loading. However, where Figure 5 indicates a displacement of around 0.15 in., the model predicts 
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displacements between 0.00025 and 0.0006 in. (effectively no out-of-plane displacement). This 

may indicate that the model predicts too stiff a response in the out-of-plane direction from the core 

material. This does not seem to affect the stress models’ other predictions, but should be considered 

when examining the results of buckling analyses. 

 

Figure 13: F2C75-02 FE Predicted Out-of-Plane Displacement 

Figures 14 through 16 show predicted maximum in-plane principal strain, minimum in-

plane principal strain, and shear strain, respectively, and can be compared directly with Figures 6, 

7, and 8. Again, these strain fields compare well qualitatively. However, they also compare 

relatively well quantitatively. The predicted principal strains at the model’s center node are ±4560 

µε with a shear strain of 0.00 rad, whereas the real specimen’s calculated strains in the y and x 

directions were around ±3700 µε with a shear strain of -0.0008 rad. This shows that the model’s 

prediction of face sheet stiffness is reasonably accurate if somewhat low. Table 5 presents similar 

comparisons of measured and predicted out-of-plane displacement and in-plane strains for other 

specimens which show the same general trends with the exception of a few outliers. 
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Figure 14: F2C75-02 FE Predicted Maximum in-Plane Principal Strain 

  

Figure 15: F2C75-02 FE Predicted Minimum in-Plane Principal Strain 
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Figure 16: F2C75-02 FE Predicted Shear Strain 
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Table 5: Comparison of Test Specimens and FE Model Results 

Specimen 

Out-of-Plane 

Displacement 

(in.) 

Maximum 

Principal Strain 

(µε) 

Minimum 

Principal Strain 

(µε) 

Shear Strain 

(rad*10-4) 

Test FE Test FE Test FE Test FE 

F2C75-01 0.011 0.0003 2750 3450 -2680 -3450 0.70 0.000 

F2C75-02 -0.150 0.0004 3480 4560 -3740 -4560 6.28 -0.000 

F2C75-03 -0.079 0.0004 3560 4560 -3320 -4560 0.52 -0.000 

F2C75-04 -0.079 0.0006 5440 5880 -5110 -5880 -1.22 -0.002 

F2C75-05 -0.070 0.0005 3820 5070 -3750 -5070 3.84 -0.001 

F2C75-06 -0.122 0.0004 4070 4640 -3370 -4640 1.92 -0.001 

F2C150-01 -0.031 0.0006 3400 4490 -4080 -4490 -4.53 0.002 

F2C150-02 -0.041 0.0006 4540 5030 -4330 -5030 -3.14 0.002 

F2C150-03 0.003 0.0006 4530 4800 -3820 -4800 0.698 -0.002 

F2C150-04 0.040 0.0006 3970 4420 -3800 -4420 0.872 0.000 

F2C150-05 0.018 0.0006 7130 4480 -1240 -4480 -28.6 -0.002 

F2C150-06 0.045 0.0006 3250 4480 -3310 -4480 2.97 -0.002 

F4C75-01 0.018 0.0002 2120 3030 -1810 -3030 3.45 -0.004 

F4C75-02 0.060 0.0002 3160 2950 -3020 -2950 -3.84 -0.010 

F4C75-03 0.010 0.0002 2750 2950 -2630 -2950 -0.873 -0.010 

F4C75-04 0.041 0.0002 2820 2950 -2950 -2950 -1.22 -0.010 

F4C75-05 0.027 0.0002 2880 2940 -2720 -2940 -2.62 0.010 

F4C75-06 0.031 0.0002 2860 2950 -2770 -2950 -2.62 -0.010 

F4C150-02 0.010 0.0003 2670 2920 -2670 -2920 0.00 -0.006 

F4C150-04 -0.036 0.0003 2780 2920 -2390 -2920 1.05 -0.006 

F4C150-05 0.049 0.0003 3160 2920 -2860 -2920 -2.09 -0.006 

F4C150-06 0.060 0.0003 2360 2920 -2240 -2920 0.349 -0.006 

 

2.3.3 Buckling Analysis 

The models analyzed for shear buckling were similar to the stress analysis models in 

constitutive behavior and kinematic constraint of face sheets and core, and discretization. 

However, several changes were made to the model formulation to facilitate analysis and extraction 

of buckling load and modes. First, the geometry of the models was altered slightly by removing a 

small amount of material from each of the edges. This allowed loads and boundary conditions to 
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be applied directly to the face sheets along the attachment lines rather than by kinematic constraint 

to reference nodes. All face sheet edges were restrained from out-of-plane displacement, and the 

central node of each face sheet was restrained against rotation about the axis normal to the plane 

of the face sheet. Additionally, the bottom and left-hand edges of the face sheets were restrained 

against displacement in the horizontal and vertical directions, respectively. A unit shear stress 

resultant load was applied to the top and right-hand edges. This, in combination with the 

displacement boundary conditions, applied pure shear conditions. The models were solved using 

a subspace algorithm Eigensolver, with the critical shear buckling load-per-unit-thickness taken as 

twice the resulting Eigenvalue to account for the fact that unit loads were applied separately to 

each face sheet. 

Models with composite and sandwich layups mimicking the four types of specimen tested 

experimentally were analyzed, with resulting critical buckling load-per-unit-thickness, 𝑁𝑥𝑦,𝑐𝑟 

given in Table 6, along with the corresponding critical buckling loads, 𝑃𝑐𝑟 and critical buckling 

shear stresses, 𝜏𝑐𝑟. Additionally, it is noted whether the predicted buckling mode was a global 

mode or a local wrinkling mode. Examples of these buckling modes are shown in Figure 17. As 

can be seen, increases in core thickness tended to increase critical buckling load and stress, whereas 

increases in face sheet thickness tended to increase critical buckling load but decrease critical 

buckling stress. This implies that, as the thickness of the face sheets increases, the core’s ability to 

restrain face sheet buckling decreases due to a reduced relative stiffness. 

Table 6: Base Buckling Analysis Results 

Model 𝑁𝑥𝑦,𝑐𝑟 (kip/in) 𝑃𝑐𝑟 (kip) 𝜏𝑐𝑟 (ksi) Mode Type 

F2C75 3.19 51.9 33.3 Global 

F2C150 4.32 70.3 45.0 Local 

F4C75 4.45 72.5 23.2 Global 

F4C150 7.15 116.3 37.2 Global 
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Figure 17: Examples of Shear Buckling Mode (Left: Global, Right: Local/Wrinkling) 

To further investigate the results given in Table 6, two additional studies were performed 

in which core and face sheet thickness were again varied, but with a larger range and finer 

granularity of samples. With the exception of these variables, the models were left unchanged from 

before. Figure 18 presents the variation in critical buckling shear stress with core thickness 

between 0.5 in. and 1.7 in., keeping a constant 2-lamina face sheet. As can be seen, critical shear 

buckling stress increases with core thickness following a roughly bilinear function with a transition 

region between. Variation in critical buckling load and critical buckling load-per-unit-thickness 

follow the same trend. Interestingly, this transition region (occurring for a core thickness between 

1.0 in. and 1.2 in.) corresponds to a transition between global and local buckling modes and 

includes some mixed modes as well. This suggests that, keeping the face sheet constant, there is a 

point at which a sandwich’s shear buckling mode will become a local, wrinkling mode, after which 

an increase in core thickness does not lead to significant additional buckling resistance. 
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Figure 18: Variation of Critical Shear Stress with Core Thickness 

The second shear buckling study was performed as the inverse of the first, with a constant 

0.75 in. core and increasing numbers of face sheet laminae. The variation in critical buckling shear 

stress with increasing face sheet laminae (increasing face sheet thickness) is shown in Figure 19. 

This shows that for a constant core thickness, there exists a number of face sheets (in this case 5) 

for which critical shear stress is minimized. However, as seen in Figure 20, this trend is not carried 

through with critical shear stress resultant and critical load. As can be seen here, shear stress 

resultant increases with number of face sheet laminae and is minimized for zero, as expected. It is 

interesting to note from Figure 20 that the shear stress resultant curve appears to be a smooth 

function, except for the sandwich with a single layer laminate. This is also the only model analyzed 

in this study which resulted in a wrinkling mode rather than a global buckling mode. This suggests 

that for a constant core thickness, there is a minimum number of face sheet laminae to ensure a 

global shear buckling mode. 
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Figure 19: Variation in Critical Shear Stress with Face Sheet Thickness 

 

Figure 20: Variation in Critical Shear Stress Resultant with Face Sheet Thickness 

 As a final investigation of shear buckling, the FE models simulated initial geometric 

imperfections and the reduction in critical shear buckling loads were examined. As the presence 

and form of geometric imperfections in actual members and structures is inherently variable, it is 

prohibitively impractical to investigate every possible form that these imperfections may take. To 
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introduce a reasonable worst-case, models were created which incorporated single and double 

initial curvature with amplitude equal to the maximum allowable out-of-flatness for pultruded FRP 

plates taken equal to 0.096 in. (ASTM, 2015). A model of each test specimen type was created 

with both single and double curvature imperfections (as seen in Figure 21) and analyzed with 

loads, boundary conditions, and mesh similar to previous analyses. Table 7 presents the critical 

shear buckling loads, stress resultants, and stresses from these analyses as well as the modality.  

 

Figure 21: Simulated Geometric Imperfections (Left: Single Curvature, Right: Double Curvature) 

Table 7: Buckling Analysis Results with Included Imperfections 

Model 𝑁𝑥𝑦,𝑐𝑟 (kip/in) 𝑃𝑐𝑟 (kip) 𝜏𝑐𝑟 (ksi) Mode Type 

Curvature Single Double Single Double Single Double Single Double 

F2C75 2.85 

 

2.60 48.5 44.1 29.7 27.1 G G 

F2C150 4.04 3.36 68.5 57.1 42.0 35.0 M L 

F4C75 3.90 3.75 66.2 63.6 20.3 19.5 G G 

F4C150 6.32 5.96 107.3 101.2 32.9 31.1 G G 

*G = Global Mode, M = Mixed Mode, L = Local Mode 

 As can be seen by comparing the results shown in Table 7 with those in Table 6 (and 

between one another in 7), the inclusion of additional imperfections tended to reduce the critical 

shear buckling load by a decreasing amount. This is consistent with expected behavior in which 

initial geometric imperfections tend to significantly decrease a structure’s critical buckling load. 
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Interestingly, the mode shapes of imperfect models and general modality were similar to the 

perfect models as seen in Figure 22. The only non-globally buckled model was again the model of 

F2C150, which displayed a mixed and local buckling mode for the single and double curvature 

imperfect models, respectively. 

 

Figure 22: Buckling Models of Models with Imperfections (Left: Global, Center: Local, Right: Mixed) 

 Two additional types of imperfection common in composites manufactured by wet layup 

and resin infusion were investigated to assess their effects on sandwich panel buckling. These were 

a local loss of adhesion between the face sheets and core (a delamination) and a localized lack of 

full fiber wet-out (a “dry-spot”). These were investigated separately to isolate their effects but are 

likely to occur simultaneously within an actual sandwich. To incorporate a delamination, the 

kinematic constraints coupling the degrees of freedom of the face sheet and core in the local defect 

area were relaxed, allowing face sheet and core to displace independently. Similarly, to incorporate 

a dry spot, the elastic properties of the face sheet in the defect area were taken as effectively nil. 

As a preliminary investigation, and as no specific defect data were available on which to base 

analyses, defects were taken as square patches at the center of face sheets, with side-lengths of 

increasing 1 in. increments. Analyses were conducted for each specimen size and assuming a 

defect on one face sheet and on both face sheets. 

 Figures 23 and 24 present the effect of delamination on critical shear buckling stress 

resultant for each sandwich type assuming a defect on one and both face sheets. As can be seen, 

delaminations tended to decrease critical shear buckling resultant in every case, with the largest 

decreases occurring for delaminations between 1 and 3 in. As delamination sizes continued to 

increase, critical shear buckling stress resultants tended toward constant values, the shear stress 

resultants of the face sheets themselves devoid of support from the core. Interestingly, very little 

difference exists between the predicted buckling of the models with one face sheet delamination 
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and two delaminations. This may result from the fact that these buckling modes tended to be 

localized, with little interaction between the face sheets. 

 

Figure 23: Effect of One-Side Delamination on Critical Shear Buckling Stress Resultant 

 

Figure 24: Effect of One-Side Delamination on Critical Shear Buckling Stress Resultant 
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Figures 25 and 26 present the effects of face sheet dry spots on critical shear buckling stress 

resultant. As expected, localized lack of stiffness led to decreases in buckling stress, with larger 

defect zones leading to larger decreases in buckling. However, the effect tended to be less severe 

than the effect of delaminations as seen in Figures 23 and 24. Additionally, and in contrast to 

delamination, a dry spot occurring on both face sheets tended to have a much more severely 

detrimental effect on critical buckling stress resultant than on a single face sheet. It is possible that 

this results from the fact that the constraint between face sheets and core remains intact, allowing 

more complex interaction between the face sheets than in the case of delamination. 

 

Figure 25: Effect of One-Side Delamination on Critical Shear Buckling Stress Resultant 
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Figure 26: Effect of One-Side Delamination on Critical Shear Buckling Stress Resultant 

 

2.4 Finite Element Simulation of Full CT-Girder Bridge Shear Response 

The experiments and analyses described to this point were performed to better characterize 

the strength of CT girder webs in shear thus improving the accuracy of the predicted shear 

resistance used in their design. The efficiency of designs can be further improved by accurately 

predicting to shear demand on CT girder webs, especially live-load shear demand. Currently, the 

shear demand placed on CT girder bridges is determined based on general AASHTO design 

provisions (2017), which use empirical distribution factors (DFs) to distribute live-load shear to 

individual girders. Use of these DFs leads to inherently conservative predictions for the 

superstructure types for which they were designed, with the conservatism of predictions for CT 

girder superstructures in question. More accurate predictions of live-load distribution can be 

achieved through analysis of 3D FE models of full bridges, regardless of superstructure type. To 

assess the predictions of shear demand placed on CT girder bridges using AASHTO DFs, a detailed 

FE model of the HGMB the first CT girder bridge designed and constructed, was analyzed under 

design shear loads, with the resulting web shear stresses compared to predictions using 

conventional beam-line analysis and AASHTO DFs. 

2.4.1 Model and Analysis Details 

Modeling and analysis of the HGMB FE model were again performed with ABAQUS 

(2019). Development was described extensively in a previous report (Schanck & Davids, 2021) 
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and so will not be further described here, with the exception of details specific to these analyses. 

Figure 27 presents an image of the final, meshed model with specific bridge components noted. 

 

Figure 27: Meshed HGMB FE Model 

 The model was loaded to mimic AASHTO HL-93 shear loading (2017). This included a 

uniform lane load and HL-93 truck in each lane. Each of these loads was applied as a uniform 

patch pressure load, to produce maximum shear load in the center girder. To capture the highest 

estimated live-load shear stresses, ten load cases were investigated with the trucks’ back wheels 

positioned between 0.5 girder depths and 5.0 girder depths from the backwall in 0.5 depth 

increments. The loads applied to the model’s wearing surface and producing the largest shear 

stresses (at one girder depth from the backwall, determined as explained below) can be seen in 

Figure 28. Load factors were not applied to the loads as the geometric and material linearity of 

the analysis (as explained below) allowed loads to be factored and superimposed afterward. 

However, an impact factor of 33% was added to the truck loads. 

 

Figure 28: Application of HL-93 Shear Load (Left: Lane, Right: Truck) 
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 In its initial implementation (Schanck & Davids, 2021) the HGMB FE model employed a 

two-step solution process wherein dead and live-load effects were determined sequentially. This 

allowed geometric nonlinearity to be incorporated as the solution did not rely on superposition. 

However, this did not allow the effects of staged construction to be taken into account. For this 

analysis, it was important that the shear stresses locked into the CT girder before deck curing 

were considered. Therefore, the FE model was used for live-load effects only and geometric 

nonlinearity was not considered. Dead-load shear stresses, both before and after the concrete 

deck had cured were determined by elementary mechanics, assuming girders to be loaded by 

material within a tributary area. This also allowed service-level and strength-level loading to be 

considered with a single set of analyses by multiplying results by appropriate load factors. 

2.4.2 Results 

To determine the controlling live-load shear stresses predicted under each of the 

investigated load cases, stresses through the girder were recovered at ten positions along the span, 

again between 0.5 girder depths and 5.0 girder depths from the backwall in 0.5 depth increments. 

However, due to the girder’s fiber orientation, the shear stress in local coordinates was determined 

through plane-stress stress transformation, as described by Equation 2.4.2-1. 

 
{

𝜎11
𝜎22
𝜏12
} = [𝑇]−1 {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} (2.4.2-1) 

Here, 𝜎𝑖𝑖 is a normal stress, 𝜏𝑖𝑗 is a shear stress, 𝑇 is a transformation matrix based on the web’s 

outermost fiber orientation, and the subscripts 𝑥 and 𝑦 and 1 and 2 denote the global and local 

coordinate systems, respectively. 𝜏𝑥𝑦 represents the live-load shear stress in global coordinates, 

the quantity of interest. Applying Eq. 2 to the stresses recovered at each of the ten sections for each 

of the ten load cases, it was found that the maximum shear stresses in the webs were predicted to 

occur at 0.5 girder depths from the backwall under the load-case with trucks positioned 1 girder 

depth from the backwall. Dead-load shear stresses were determined though the girder at the heights 

corresponding to web nodal locations using Equation 2.4.2-2: 

 
𝜏(𝑦) =

𝑉𝑄(𝑦)

𝐼𝑡(𝑦)
 (2.4.2-2) 

where 𝜏(𝑦) is the shear stress at a height 𝑦 from the bottom of the section, 𝑉 is the shear load at 

one girder depth from the backwall due to structural (DC) or nonstructural (DW) dead load, 𝑄(𝑦) 

is the first moment of area about the composite neutral axis at a height 𝑦 (before or after concrete 

cure as required), 𝐼 is the moment of inertia of the section (again, before or after concrete cure as 

required), and 𝑡(𝑦) is the width of the section at a height 𝑦 from the section’s base. For service-

level loading, these shear stresses were taken as is and summed for the total service shear stress, 

and for strength-level loading, were multiplied by appropriate load-factors and then summed. 

Dead, live, and combined shear stresses through the height of the web determined through the 
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combination of strength-of-materials and FE analysis are presented in Figures 29, 30, and 31, 

respectively. 

 

Figure 29: Dead-Load Shear Stress Distribution 

 

Figure 30: Live-Load Shear Stress Distribution 
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Figure 31: Total Load Shear Stress Distribution 

2.4.3 Comparison with Conventional Analysis 

The results of FE analysis of HL-93 shear stresses on the HGMB can be directly compared 

with those found using conventional analysis by AASHTO (2017) to assess their relative 

conservatism. Dead-load shear stresses were taken equal to those found in the previous analysis, 

and live-load shear stresses were found again using Eq. 3, with 𝑉 taken as the live-load shear force 

produced by HL-93 loading at one girder depth from the backwall multiplied by the appropriate 

DF. This DF, was taken as 1.10 as calculated in the bridge’s original design (AIT, 2019) and based 

on Table 4.6.2.2.3c of AASHTO LRFD (2017) with an included skew correction factor. Combined 

shear stresses for service and strength-level loading were taken as the sum of dead and live-load 

stresses, and the sum of dead and live-load stresses multiplied by appropriate load factors, 

respectively. These live-load and combined stresses are plotted through the depth of the girder, 

along with the stresses determined before using FE analyses in Figures 32 and 33, respectively. 

Table 8 presents the maximum live-load and total shear stresses under service and strength 

conditions predicted by both methods. It is immediately clear from the results presented that 

conventional analysis leads to highly conservative predictions in comparison with FE analysis. 

Using the more accurate prediction of live-load shear distribution and shear stress distribution 

available from 3D FE analysis leads to reductions in predicted maximum live-load shear stress of 

74% and maximum total shear stress of 57% respectively relative to predictions using AASHTO 

DFs (2017) and strength-of-materials shear stress distribution.  
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Figure 32: Comparison of Live-Load Shear Stress Distribution 

 

Figure 33: Comparison of Total Load Shear Stress Distribution 
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Table 8: Comparison of Predicted Maximum Shear Stress 

Analysis Method Load Level Shear Stress (ksi) 

Live – Load Total Load 

𝑉𝑄

𝐼𝑡
 

Service I 4.52 5.71 

Strength I 7.91 9.45 

FE Service I 1.18 2.55 

Strength I 2.07 3.86 

 

Because the FE analyses were able to take the full, three-dimensional behavior of the bridge 

into account, a more accurate prediction of live-load shear distribution was incorporated into shear 

stress predictions than is provided by AASHTO shear load DFs (2017). This, along with the 

simplifying assumptions made when using Eq. 3 to predict shear stress in conventional analysis, 

combine to produce the significant differences in predicted maximum shear stress presented in 

Table 8. 

To explore this further, girder end reactions predicted by the model were used to compute 

bridge-specific live-load distribution factors for comparison with the AASHTO-specified 

distribution factors used for design of the HGMB. Doing this for each of the analyses (i.e. with the 

trucks positioned at each of the ten points along the span), the most severe interior girder shear DF 

was found to equal 0.490, 55% smaller than the value used for the design of the HGMB (AIT,2019) 

as specified by AASHTO (2017). This suggests that conservative shear load distribution 

contributes around 75% of the difference between conventional and FE analysis of the HGMB 

under shear loading with the remainder likely contributed by the simplifying assumptions inherent 

in the use of Eq. 3 and transformed section analysis. 

2.5 Conclusions, Implications, and Future Work 

This study examined and addressed CT girder web shear strength in three phases, namely 

experimental investigation, numerical simulation of the results of experimental testing, and 

expanded numerical analysis into stability and full-scale structures. Owing to a number of 

unforeseen complications and oversights, the primary goal of characterizing CT web shear strength 

was not fully realized. Despite this however, the results of this investigation lead to a variety of 

conclusions which hold important implications for future development and implementation of CT 

girder bridges. 

Due to the limitations of the ASTM D8067/D8097M-17 (2017) picture frame testing fixture 

used for experimental testing, as well as their susceptibility to bearing failure, none of the picture 

frame shear specimens were able to be loaded to their full shear rupture or shear buckling capacity. 

It is therefore not appropriate or possible for conclusions to be drawn from this study regarding 

the actual, full strength of CT girder webs. However, importantly, the results of this testing are 
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internally consistent. With the exception of the first specimen tested (F2C75-01), each of the 

thinner specimens were tested to a shear greater than 18 ksi without exhibiting signs of significant 

shear damage. This value of 18 ksi can therefore serve as a reasonable lower bound to the web 

shear strength. Additionally, all of the thicker specimens were able to withstand the maximum 

allowable load on the test fixture, at which point they were under a state of shear stress greater 

than the shear strength assumed during design of the HGMB (AIT, 2019) without sign of distress. 

It can therefore be concluded that, from a material strength standpoint, the shear design of the 

HGMB is conservative as its maximum shear stress limit (before application of statistical and 

environmental reduction factors) was exceeded by every specimen. One caveat is that the HGMB 

girder webs are much deeper than the dimensions of the test specimen, and web buckling must 

also be considered in design. 

Again from the inability to reach a state of shear failure during experimental tests, limited 

conclusions can be drawn from the results of stress FE simulation of the picture frame shear tests. 

However, by comparing the specimens’ strain fields calculated from measured DIC data with the 

calculated strain fields from FE analysis, it can be concluded that the picture frame test itself 

produces a near-pure state of shear and so the results of future testing can be considered high-

quality. The FE models were designed to be inherently flawless, under a state of pure shear, and 

used nominal material properties for constitutive behavior. Despite these simplifications, their 

predictions matched testing results reasonably well. This then implies that the picture frame test 

itself produces reliable and useful data despite the presence of these complicating factors. 

FE buckling simulations of the picture frame specimens revealed various components of CT 

girder web shear buckling behavior that may have broad implications for design. First, and perhaps 

most applicably in the near-term, comparison of results of testing and shear buckling simulation 

suggest that shear buckling is a moderate concern but can be addressed through conservative 

design. Of the analyses used, the minimum critical shear buckling stress was around 22 ksi, 22% 

greater than the 18 ksi lower-bound shear strength suggested above. However, the analyses were 

performed for models with perfect geometry, boundary conditions, and loading, and so the 

behavior of actual structures may be different. Additionally, as mentioned above, comparison of 

predicted and measured out-of-plane displacement indicates an imperfect characterization of the 

core, which also affects results. A conservative design basis with adequate safety and reliability 

factors can address his uncertainty, significantly reducing its effect. Second, the analyses 

performed show that both the core and face sheets of a sandwich play important roles in web shear 

buckling behavior. The thickness of the face sheet appears to have greater control over the critical 

shear buckling stress, whereas the thickness of the core seems to control the mode (global or local 

buckling). Therefore, in the design of CT girder webs, the effects of both the face sheets and core 

must be considered. Finally, as with any elastic buckling analysis, careful consideration should be 

given to geometric imperfections and defects as was demonstrated by analyzing models with 

imperfect curvature, delamination, and dry spots. These and other deviations have been shown to 

affect buckling behavior, reducing critical loads significantly. 
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Analysis of the HGMB under shear loading suggests that the analytical design of the structure 

is conservative, especially concerning shear load distribution and maximum predicted shear stress. 

It is evident from the analyses performed here that, at least for the HGMB, the shear distribution 

factors used in design (AIT, 2019) are inaccurate for CT girder bridges, leading to conservative 

design loads. However, once those loads are distributed to individual girders, the stress distribution 

predicted by elementary strength-of-materials (Eq. 2.4.2-2) is reasonably accurate, as evidenced 

by the similar shapes of curves seen in Figures 32 and 33 and the much smaller role the simplifying 

assumptions of Eq. 3 played in the difference between maximum predicted shear stresses. It can 

therefore be concluded that, with the introduction of more accurate shear distribution factors, the 

current beamline and strength-of-materials approach to design will yield reasonably accurate 

design shear stresses. 

Based on the results of this investigation, future research on the following topics would be 

valuable: 

 Additional picture frame specimens should be manufactured and tested to failure in shear. 

These specimens should have doublers adhered to both sides of both face sheets to preclude 

bearing failure or otherwise strengthened edges, and a new picture frame test fixture with 

a higher maximum capacity and looser fitment tolerances should be designed and 

manufactured for this testing. 

 FE simulations should be conducted of the aforementioned additional tests for comparison 

and to gain additional behavioral insight 

 Details of typical specimen defects should be cataloged, and these specific defects modeled 

to determine their effects on critical shear buckling stresses. 

 Girder-scale tests should be conducted to assess the shear capacity of a full girder web. 

 A full CT-girder bridge should be tested under high shear load to calibrate additional full-

bridge FE models for the purposes of developing empirical shear distribution factors. 

 Results of the above-mentioned tests and analyses should be implemented within 

subsequent editions of a CT girder design guide specification. 
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3 CT Girder Design Specification 

3.1 Introduction 

The purpose of this section is to provide basic guidance on the structural analysis and design 

of composite tub (CT) girders consisting of open-section hybrid fiber reinforced composite (FRP) 

girders that are composite with reinforced concrete decks for bridge applications. This section is 

modeled after design guides from the American Association of State Transportation Officials 

(AASHTO), which are referenced throughout for both load and resistance guidance. The design 

guidance and procedures contained within this section include: 

 Determination of elastic properties of FRP composite components 

 Appropriate limit states and corresponding load and resistance factors 

 Determination of girder moment capacity 

 Determination of girder shear capacity 

 Shear connector design 

 Limitation of deflections 

It should be noted that since the CT girder system is still in active development (see for instance 

Davids et al. 2022a, Davids et al. 2022b, Davids & Schanck 2022, Guzzi 2019, Schanck 2021), 

the provisions in this document should be considered preliminary and subject to change based on 

additional research and development. Additionally, while some design topics have been well 

characterized, leading to in-depth design procedures, others are less certain and so the guidance 

provided requires greater levels of scrutiny and judgement by the engineer of record. 

3.2 FRP-Concrete Composite Tub Girders 

3.2.1 Scope 

This section contains provisions for the design of simply supported CT girders for use as the 

main structural components of a bridge. The provisions apply for CT girders that are made 

composite with normal-weight cast-in-place or precast concrete decks having compressive 

strengths 𝑓′
𝑐
 between 2.5 ksi and 10.0 ksi. 

3.2.2 Definitions and Notation 

𝐴𝑏𝑓 = cross-sectional area of the bottom flange (in.2) 

𝐴𝑠𝑐 = cross-sectional area of a single stud connector in bearing connection (in.2) 

𝐴𝑣𝑓 = area of clamping studs in a friction connection (in.2) 

𝑏𝑐 = effective width of the deck over the CT girder (in.) 
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𝑏𝑖 = width of a discretized layer of a composite section (in.) 

𝑏𝑡 = width of individual top flange (in.) 

𝐶 = compressive force resultant from concrete (kip) 

𝐶𝐸 = environmental reduction factor 

𝑐 = composite section neutral axis depth (in.) 

𝑐𝑐𝑓 = cohesion factor between concrete and FRP 

𝐷 = height of composite section (in.) 

𝑑 = height of non-composite section (in.) 

𝑑𝑠 = shear stud diameter (in.2) 

𝑑𝐴 = differential area over which an infinitesimal stress,  𝜎𝑖 acts (in.2) 

𝐸𝑐 = elastic modulus of concrete (ksi) 

𝐸𝑏𝑓 = longitudinal elastic modulus of bottom flange laminate (ksi) 

𝐸𝑡𝑓 = longitudinal elastic modulus of top flange laminate (ksi) 

𝐸𝑤 = longitudinal elastic modulus of web laminate (ksi) 

𝐸1 = elastic modulus of FRP lamina in longitudinal direction (ksi) 

𝐸2 = elastic modulus of FRP lamina in transverse direction (ksi) 

𝑓′
𝑐
= 28-day specified compressive strength of concrete (ksi) 

𝑓𝑐𝑡 = stress at the top of the deck (ksi) 

𝑓𝑐𝑏 = stress at the bottom of the deck (ksi) 

𝑓𝑡𝑏 = FRP top flange bearing strength (ksi) 

𝑓𝑢 = minimum specified tensile strength of a stud connector (ksi) 

𝑓𝑣𝑟 = shear strength of the resin making up the connection ridges (ksi) 

𝑓𝑦 = yield strength of clamping studs (ksi) 
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𝑓1𝑐 = 
design compressive strength of FRP lamina in longitudinal direction considering 

reductions for service environment (ksi) 

𝑓1𝑐
∗ = 

compressive strength of FRP lamina in longitudinal direction for product 

certification as reported by manufacturers (ksi) 

𝑓1𝑡 = 
design tensile strength of FRP lamina in longitudinal direction considering 

reductions for service environment (ksi) 

𝑓1𝑡
∗ = 

tensile strength of FRP lamina in longitudinal direction for product certification as 

reported by manufacturers (ksi) 

𝑓1𝑡𝑏𝑓 = 
tensile strength of FRP lamina making up CT girder bottom flange in longitudinal 

direction for product certification as reported by manufacturers (ksi) 

𝑓1𝑡𝑤 = 
tensile strength of FRP lamina making up CT girder web in longitudinal direction 

for product certification as reported by manufacturers (ksi) 

𝑓2𝑐 = 
design compressive strength of FRP lamina in transverse direction considering 

reductions for service environment (ksi) 

𝑓2𝑐
∗ = 

compressive strength of FRP lamina in transverse direction for product 

certification as reported by manufacturers (ksi) 

𝑓2𝑡 = 
design tensile strength of FRP lamina in transverse direction considering 

reductions for service environment (ksi) 

𝑓2𝑡
∗ = 

tensile strength of FRP lamina in transverse direction for product certification as 

reported by manufacturers (ksi) 

𝑓6 = 
design in-plane shear strength of FRP lamina considering reductions for service 

environment (ksi) 

𝑓6
∗ = 

in-plane shear strength of FRP lamina for product certification as reported by 

manufacturers (ksi) 

𝑓6𝑤 = design ultimate shear stress of the webs (ksi) 

𝐺6 = in-plane shear modulus of FRP lamina (ksi) 

ℎ𝑤𝑒𝑏 = web height (in) 

𝐼𝐶 = moment of inertia (second moment of area) of the composite CT girder (in.4) 

𝐼𝑁𝐶 = 
moment of inertia (second moment of area) of the non-composite FRP section 

(in.4) 
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𝐾1 = fraction of concrete strength available to resist interface shear 

𝐾2 = limiting shear stress (ksi) 

𝐿𝑣𝑖 = spacing of intermediate clamping studs (in.) 

𝑀𝑛 = nominal flexural resistance (kip-in.) 

𝑀1 = 
nominal flexural resistance of a composite section based on concrete crushing 

(kip-in.) 

𝑀2 = 
nominal flexural resistance of a composite section based on bottom flange rupture 

(kip-in.) 

𝑀𝑛
𝐶 = nominal flexural resistance of the composite section (kip-in.) 

𝑀𝑟 = design flexural resistance (kip-in.) 

𝑀𝑢 = ultimate flexural load (kip-in.) 

𝑀+ = 
nominal flexural resistance of portion of non-composite CT girder under tensile 

stress (kip-in.) 

𝑀− = 
nominal flexural resistance of portion of non-composite CT girder under 

compressive stress (kip-in.) 

𝑁𝑥𝑦𝑐𝑟 critical shear buckling shear stress resultant (kip/in.) 

𝑛 = 
total number of shear studs spaced at 𝑠, number of layers into which a composite 

section is discretized 

𝑛𝑏𝑓 = modular ratio of bottom flange  

𝑛𝑡𝑓 = modular ratio of top flange  

𝑃𝑐 = permanent net compressive force normal to shear plane (kip) 

𝑄𝑛 = nominal horizontal shear resistance (kip) 

𝑄𝑟 = design horizontal shear resistance (kip) 

𝑄𝑖𝑛𝑡 = 
first moment of area of the composite CT girder section about its neutral axis 

evaluated at the top of the web (in3) 

𝑄1 = nominal horizontal shear resistance – concrete crushing (kip) 

𝑄2 = nominal horizontal shear resistance – stud tensile failure (kip) 
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𝑄3 = nominal horizontal shear resistance – FRP bearing failure (kip) 

𝑅 = residual (unbalanced) force in composite section (kip) 

𝑠 = shear stud spacing (in.) 

𝑠𝑟 = shear ridge spacing (in.) 

𝑇 = tensile resultant from bottom flange (kip) 

𝑡𝑏𝑓 = thickness of bottom flange laminate (in.) 

𝑡𝑐 = thickness of the deck above the CT girder (in.) 

𝑡𝑐𝑜𝑟𝑒 = thickness of web’s core material (in.) 

𝑡𝑡𝑓 = thickness of top flange laminate (in.) 

𝑡𝑤𝑒𝑏 = thickness of web (in.) 

𝑡𝑤−𝑓𝑠 = thickness of the web, less the thickness of any sandwich core material (in.) 

𝑉𝑛 = nominal shear resistance (kip) 

𝑉𝑟 = design shear resistance (kip) 

𝑉𝑢 = ultimate shear load, (kip) 

𝑣𝑛 = nominal shear flow resistance (kip/in.) 

𝑣𝑟 = design shear flow resistance (kip/in.) 

𝑤𝑟 = width of shear ridges (in.) 

𝑦𝑖 = height of a discretized layer of composite section above the base (in.) 

𝑦̅𝑁𝐶 = neutral axis height of non-composite section (in.) 

𝑍𝑟 = fatigue resistance of a single shear stud (kip) 

𝛽1 = Whitney’s stress block ratio (5.7.2.2) 

𝛾6 = 
design ultimate in-plane shear strain of FRP lamina considering reductions for 

service environment (in./in.) 

𝛾6
∗ = 

ultimate in-plane shear strain of FRP lamina for product certification as reported 

by manufacturers (in./in.) 
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𝛿𝑦 = thickness of a discretized layer of composite section (in.) 

𝜀𝑐 = maximum strain in concrete prior to the onset of significant softening (in./in.) 

𝜀𝑐𝑡 = strain at the top of the deck (in./in.) 

𝜀𝑐𝑏 = strain at the bottom of the deck (in./in.) 

𝜀𝑓 = ultimate strain (in./in.) 

𝜀𝑖 = strain in a discretized layer of composite section (in./in.) 

𝜀𝑐𝑢 = concrete crushing strain (in./in.) 

𝜀0 = concrete compressive strain at peak compressive stress (in./in.) 

𝜀1𝑐 = 
design ultimate compressive strain of FRP lamina in longitudinal direction 

considering reductions for service environment (in./in.) 

𝜀1𝑐
∗ = 

ultimate compressive strain of FRP lamina in longitudinal direction for product 

certification as reported by manufacturers (in./in.) 

𝜀1𝑐𝑡𝑓 = 
ultimate compressive strain of top flange FRP laminate in longitudinal direction 

(in./in.) 

𝜀𝐷𝐶 = tensile strain due to factored, non-composite dead-loads (in./in.) 

𝜀1𝑡 = 
design ultimate tensile strain of FRP lamina in longitudinal direction considering 

reductions for service environment (in./in.) 

𝜀1𝑡
𝐶 = 

tensile strain in the bottom flange corresponding to failure due to moment acting 

on the composite section (in./in.) 

𝜀1𝑡
∗ = 

ultimate tensile strain of FRP lamina in longitudinal direction for product 

certification as reported by manufacturers (in./in.) 

𝜀1𝑡𝑏𝑓 = 
ultimate tensile strain of bottom flange FRP laminate in longitudinal direction 

(in./in.) 

𝜀2𝑐 = 
design ultimate compressive strain of FRP lamina in transverse direction 

considering reductions for service environment (in./in.) 

𝜀2𝑐
∗ = 

ultimate compressive strain of FRP lamina in transverse direction for product 

certification as reported by manufacturers (in./in.) 
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𝜀2𝑡 = 
design ultimate tensile strain of FRP lamina in transverse direction considering 

reductions for service environment (in./in.) 

𝜀2𝑡
∗ = 

ultimate tensile strain of FRP lamina in transverse direction for product 

certification as reported by manufacturers (in./in.) 

𝜅 = composite section curvature at failure (in.-1) 

𝜇 = friction factor between FRP ridges and concrete  

𝜎𝑖 = stress in a discretized layer of composite section (ksi) 

𝜙 = resistance factor 

𝜙𝑖 = 
resistance factor associated with flexural failure of an individual component of a 

composite section or assumed failure mode 

3.2.3 Limitations 

Seismic design is not addressed in this document. However, where applicable, it shall be 

considered as one of the loading cases. CT girders shall not be used as ductile earthquake resisting 

elements. These provisions are intended for the design of simply supported CT girders comprised 

of glass, carbon, aramid or other fiber reinforcements in a polymer matrix with sufficient durability 

and resistance to environmental stressors. 

3.2.4 Material Properties 

3.2.4.1 FRP Girder 

3.2.4.1.1 Material Ultimate Strengths and Strains 

The design ultimate tensile strength of any lamina from which a FRP tub girder is 

constructed in the longitudinal direction, 𝑓1𝑡, and transverse direction, 𝑓2𝑡 shall be taken as: 

𝑓1𝑡 = 𝐶𝐸𝑓1𝑡
∗  (3.2.4.1.1-1) 

𝑓2𝑡 = 𝐶𝐸𝑓2𝑡
∗  (3.2.4.1.1-2) 

The design ultimate compressive strength of any lamina from which a FRP tub girder is 

constructed in the longitudinal direction, 𝑓1𝑐, and transverse direction, 𝑓2𝑐 shall be taken as: 

𝑓1𝑐 = 𝐶𝐸𝑓1𝑐
∗  (3.2.4.1.1-3) 

𝑓2𝑐 = 𝐶𝐸𝑓2𝑐
∗  (3.2.4.1.1-4) 
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The design ultimate shear strength of any lamina from which a FRP tub girder is 

constructed, 𝑓6, shall be taken as: 

𝑓6 = 𝐶𝐸𝑓6
∗ (3.2.4.1.1-5) 

The design ultimate tensile strain of any lamina from which a FRP tub girder is constructed 

in the longitudinal direction, 𝜀1𝑡, and transverse direction, 𝜀2𝑡 shall be taken as: 

𝜀1𝑡 = 𝐶𝐸𝜀1𝑡
∗  (3.2.4.1.1-6) 

𝜀2𝑡 = 𝐶𝐸𝜀2𝑡
∗  (3.2.4.1.1-7) 

The design ultimate compressive strain of lamina from which a FRP tub girder is 

constructed in the longitudinal direction, 𝜀1𝑐, and transverse direction, 𝜀2𝑐 shall be taken as: 

𝜀1𝑐 = 𝐶𝐸𝜀1𝑐
∗  (3.2.4.1.1-8) 

𝜀2𝑐 = 𝐶𝐸𝜀2𝑐
∗  (3.2.4.1.1-9) 

The design ultimate shear strain of lamina from which a FRP tub girder is constructed, 𝛾6, 

shall be taken as: 

𝛾6 = 𝐶𝐸𝛾6
∗ (3.2.4.1.1-10) 

In Equations 2.4.1.1-1 through 2.4.1.1-10, 𝐶𝐸 shall be taken as 0.85 for a carbon-based 

FRP, 0.65 for glass, and 0.75 for aramid. 

The quantities𝑓1𝑡
∗ , 𝑓2𝑡

∗ , 𝑓1𝑐
∗ , 𝑓2𝑐

∗ , 𝑓6
∗, 𝜀1𝑡

∗ , 𝜀2𝑡
∗ , 𝜀1𝑐

∗ , 𝜀2𝑐
∗ ,  and 𝛾6

∗ are the ultimate tensile strengths 

and strains in the longitudinal and transverse directions, the ultimate compressive strengths and 

strains in the longitudinal and transverse directions, and ultimate shear strengths and strains for 

product certification as reported by the manufacturer, accounting for statistical reliability. In 

hybrid girders, where different types of fibers are used, different values of 𝐶𝐸 shall be used for 

the corresponding materials. These values shall be confirmed or updated based on the results of 

coupon-level testing of witness panel samples manufactured concurrently with CT girders. 

3.2.4.1.2 Modulus of Elasticity 

The FRP tub girder material shall be treated as linearly elastic in tension, compression, and 

shear. The modulus of elasticity in the longitudinal direction, 𝐸1, and the modulus of elasticity in 

the transverse direction, 𝐸2, shall be calculated as: 

𝐸1 = 𝑓1𝑡 𝜀1𝑡⁄  (3.2.4.1.2-1) 

𝐸2 = 𝑓2𝑡 𝜀2𝑡⁄  (3.2.4.1.2-2) 

and the shear modulus, 𝐺6, shall be calculated as: 
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𝐺6 = 𝑓6 𝛾6⁄  (3.2.4.1.2-3) 

3.2.5 Distribution of Live Load to Girders 

For the design of new structures and analysis of existing structures, vehicular live-load 

effects shall be distributed to individual girders by live-load distribution factors following 

AASHTO LRFD Section 4.6.2, calculated by: 

 The approximate method of Section 4.6.2.2, assuming CT girders to behave as concrete 

box girders (type “c” sections in Table 4.6.2.2.1-1) in Tables 4.6.2.2.2b-1, 4.6.2.2.2d-1, 

4.6.2.2.2e-1, 4.6.2.2.3a-1, 4.6.2.2.3b-1, and 4.6.2.2.3c-1, subject to corresponding limits 

of applicability  

 Results of detailed, three-dimensional finite element analysis 

 Other approved structural analysis techniques such as the grillage method which 

adequately capture lateral load distribution 

3.2.6 Limit States 

3.2.6.1 Service Limit State 

Under service loads, CT members shall be analyzed as linearly elastic structures. Checks 

to be performed at the service limit state shall be related to and limited by deformations as specified 

in Article 2.11 for CT girders under flexure. The loads to be considered in this analysis shall be as 

defined in Section 3 of AASHTO LRFD. 

3.2.6.2 Fatigue and Creep Rupture Limit State 

The maximum longitudinal tensile stress in portions of a CT girder consisting of FRP under 

all sustained loads plus fatigue loading shall not exceed the following limits given by AASHTO 

LRFD CFFT (2012): 

 For carbon-based FRP: 0.55𝑓1𝑡 

 For glass-based FRP: 0.20𝑓1𝑡 

 For aramid-based FRP: 0.30𝑓1𝑡 

The loads to be considered in this analysis consist of all permanent loads, and the fatigue 

load as defined in Article 3.6.1.4 of AASHTO LRFD. The load factors for DC, DW, EV, and EH 

shall be 1.0 and the fatigue load factor shall be 1.0 with an impact allowance of 1.15. This check 

is made on the base cross-section, and the cyclic fatigue resistance in accordance with the 

AASHTO Fatigue I or II limit state shall also be assessed for specific details if deemed necessary 

by the engineer. 

3.2.6.3 Strength Limit State 

3.2.6.3.1 General 
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The strength limit states shall consider material strength and stability. Design resistance 

shall be the product of nominal resistance as determined in accordance with the applicable 

provisions of Articles 3.2.8, 3.2.9, and 3.2.10 unless another limit state is specifically identified, 

and the resistance factor as specified in Article 3.2.6.3.2. and AASHTO LRFD CFFT (2012). The 

loads to be considered in this analysis shall be as defined in Section 3 of AASHTO LRFD. 

3.2.6.3.2 Resistance Factors 

For CT girders in flexure the resistance factor 𝜙 shall be taken as 0.75 for FRP rupture, 

FRP compressive failure, and concrete crushing. 

For CT girders in shear the strength resistance factor 𝜙 shall be taken as 0.75. 

For CT girder webs subject to shear buckling, the resistance factor 𝜙 shall be taken as 0.35. 

For concrete crushing around shear studs due to horizontal shear, the resistance factor 𝜙 

shall be taken as 0.85. 

For steel shear studs in bearing carrying horizontal shear the resistance factor 𝜙 shall be 

taken as 0.75. 

For friction connections between the girder and deck that are subject to horizontal shear 

and that rely on interaction between purposely deformed surfaces, the resistance factor 𝜙 

shall be taken as 0.90. 

3.2.6.3.3 Stability 

 The structure consisting of CT girders as a whole and its components shall be designed to 

resist sliding, overturning, and uplift. Effects of load eccentricity shall be considered in the analysis 

and design. The girder shall be proportioned and/or braced to ensure stability during all phases of 

construction and while in service. 

3.2.6.4 Extreme Event Limit State 

 The structure consisting of CT girder members as a whole and its components shall be 

proportioned to resist collapse due to extreme events, specified in Table 3.4.1-1 of AASHTO 

LRFD, as may be appropriate to the site and application. 

3.2.7 Design Considerations 

3.2.7.1 General 

Components and connections shall be designed to resist load combinations as specified in 

Section 3 of AASHTO LRFD, at all stages during the life of the structure, including those during 

construction. Load factors shall be specified in Section 3 of AASHTO LRFD, with additional 

permanent load factors as defined in Article 3.2.6.2 for the fatigue and creep rupture limit state. 
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As specified in Section 4 of AASHTO LRFD, equilibrium and strain compatibility shall be 

maintained in the analysis. 

3.2.7.2 Effect of Imposed Deformation 

The effect of imposed deformation due to shrinkage, temperature change, creep and 

support movement shall be included as required by specific limit states defined in Section 3 of 

AASHTO LRFD. 

3.2.8 Design for Flexure 

3.2.8.1 General 

 The following assumptions may be used to determine the flexural resistance of CT girders 

at the limit states indicated: 

3.2.8.1.1 Assumptions for Service, Fatigue and Creep Rupture Limit States 

 CT girder stresses and deflections due to loads applied prior to the time at which the 

girder behaves compositely with the concrete deck are computed based only on the FRP 

girder section 

 CT girder stresses and deflections due to loads applied after the time at which the girder 

behaves compositely with the concrete deck are computed assuming full composite 

action between the CT girder and concrete deck 

 Longitudinal strains vary linearly over the depth of the section and are proportional to the 

distance from the neutral axis 

 The tensile strength of concrete is neglected 

3.2.8.1.2 Assumptions for Strength and Extreme Event Limit States 

 CT girder stresses and deflections due to loads applied prior to the time at which the 

girder behaves compositely with the concrete deck are computed based only on the FRP 

girder section 

 CT girder stresses and deflections due to loads applied after the time at which the girder 

behaves compositely with the concrete deck are computed assuming full composite 

action between the CT girder and concrete deck 

 Longitudinal strains vary linearly over the depth of the section and are proportional to the 

distance from the neutral axis 

 The tensile strength of concrete is neglected 

 Concrete experiences crushing at a compressive strain 𝜀𝑐𝑢 = 0.003 

 Tensile failure is defined by tensile rupture of the CT girder’s bottom flange under 

uniaxial longitudinal stresses. Compressive failure is defined by the crushing of the 

concrete under uniaxial longitudinal stresses. 

 The concrete stress-strain relationship proposed by Hognestad (1951), AASHTO (2012), 

or another representation of the concrete stress-strain relationship that has been 
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experimentally validated, is used when calculating the ultimate moment capacity based 

on equilibrium and strain compatibility. 

3.2.8.2 Non-Composite Flexural Resistance 

 Between placing of the concrete deck and its full cure or attachment to the girders, the deck 

and girders are assumed not to act compositely, with the weight of wet concrete being applied fully 

to the bare CT girders, and the section is assumed to be adequately proportioned and braced to 

prevent any local or global buckling. In this condition, the flexural resistance of the CT girder is 

taken as: 

𝑀𝑟 = min (𝜙𝑀+, 𝜙𝑀−) (3.2.8.2-1) 

where: 

𝑀+ =
𝐸𝑏𝑓𝜀1𝑡𝑏𝑓𝐼𝑁𝐶

𝑛𝑏𝑓𝑦̅𝑁𝐶
 (3.2.8.2-2) 

𝑀− =
𝐸𝑡𝑓𝜀1𝑐𝑡𝑓𝐼𝑁𝐶

𝑛𝑡𝑓(𝑑 − 𝑦̅𝑁𝐶)
 (3.2.8.2-3) 

where: 

𝐸𝑏𝑓 = 
effective bending modulus of the bottom 

flange (ksi) 

𝐸𝑡𝑓 = 
effective bending modulus of the bottom 

flange (ksi) 

𝜀1𝑡𝑏𝑓 = 
reduced ultimate tensile strain for the bottom 

flange 

𝜀1𝑐𝑡𝑓 = 
reduced ultimate compressive strain for the 

top flange 

𝑛𝑏𝑓 = modular ratio of the bottom flange 

𝑛𝑡𝑓 = modular ratio of the top flange 

𝐼𝑁𝐶  
transformed moment of inertia of the non-

composite section (in.4) 

𝑦̅𝑁𝐶 = 

height of the neutral axis (measured from the 

bottom of the section) of the non-composite 

section (in.) 
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𝑑 = 
depth of the non-composite CT girder section 

(in.) 

3.2.8.3 Composite Flexural Resistance 

 Once the CT girder’s deck is fully connected to the girder after sufficient concrete curing, 

the deck is assumed to act compositely with the girders. In general, the girder section can fail by 

either bottom flange tensile rupture or concrete crushing at the extreme fiber. However, flexural 

stresses in the girder due to girder self-weight and wet concrete acting on the non-composite 

section must be considered for bottom flange tensile rupture. The controlling failure mode will be 

the mode that corresponds to the lowest moment that can be carried by the composite section. 

In the case of tensile rupture, the tensile strain in the bottom flange corresponding to failure 

due to moment acting on the composite section, 𝜀1𝑡
𝐶 , is given by Equation 3.2.8.3-1. The nominal 

moment capacity of the composite section corresponding to the occurrence of 𝜀1𝑡
𝐶  is denoted by 

𝑀𝑛
𝐶 , and the Strength I moment limit state can then be expressed as shown in Equation 3.2.8.3-2. 

Factored temperature or shrinkage-induced strains may also be subtracted from 𝜀1𝑡 in Equation 

3.2.8.3-1 but are not shown here for clarity. 

𝜀1𝑡
𝐶 = 𝜀1𝑡 − 𝜀𝐷𝐶   (3.2.8.3-1) 

𝑀𝑟
𝐶 = 𝜙𝑀𝑛

𝐶 ≥ 𝛾𝐿𝐿𝑀𝐿𝐿+𝐼𝑀 + 𝛾𝐷𝐶𝑀𝐷𝐶 + 𝛾𝐷𝑊𝑀𝐷𝑊 (3.2.8.3-2) 

where: 

𝜙 = resistance factor for flexure 

𝜀1𝑡 = 
ultimate tensile strain reduced by 𝐶𝐸 and 

appropriate statistical reliability factors 

𝜀𝐷𝐶 = 

bottom flange strain caused by factored dead 

load moments acting on the non-composite 

section 

𝑀𝐷𝐶 = 

dead load moment of components and 

attachments acting on the composite section 

(kip-in.) 

𝑀𝐷𝑊 = 
dead load moment due to wearing surface 

acting on the composite section (kip-in.) 

𝑀𝐿𝐿+𝐼𝑀 = 
live load moment with impact acting on the 

composite section (kip-in.) 
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𝛾𝐿𝐿, 𝛾𝐷𝐶 , 𝛾𝐷𝑊 = load factors for appropriate loadings 

In contrast to tension failure, failure due to concrete crushing will be caused only by 

factored moments acting on the composite section. The flexural capacity of the composite CT 

girder can be determined by either the detailed or simplified methods presented here. 

3.2.8.4 Detailed Method for Computing Composite Flexural Resistance 

In the detailed method, the flexural capacity of the composite section is found by determining 

the smallest design moment at which any of its components experience flexural failure while 

rigorously accounting for the nonlinear stress-strain behavior of the concrete deck in compression. 

The assumption of plane sections is enforced. These determinations require the use of moment-

curvature analysis, an iterative procedure that locates the section neutral axis at failure by ensuring 

internal force equilibrium followed by the summation of the contributions of all components to the 

resisting moment. Details of this method as implemented assuming a Hognestad curve (Hognestad 

1951) for the concrete in compression are presented in Appendix B. Other concrete compressive 

stress-strain curves that are in agreement with experimental data may be used at the discretion of 

the engineer. 

3.2.8.5 Composite Flexural Resistance – Simplified Analysis 

Assumptions:  

- Webs and top flange carry no longitudinal stress 

- Bottom flange carries tensile stress uniformly 

- Deck carries compressive stress (no tension) assuming a rectangular distribution if section fails 

by concrete crushing, or linearly varying stresses if section fails by bottom flange rupture 

The linearly varying stress distribution used in the case of bottom flange rupture 

conservatively approximates the parabolic distribution of concrete in compression as described by 

Equation 3.2.8.5.2-3, which only requires the determination of stresses at the top and bottom of 

the deck. This parabolic distribution is given by AASHTO (2012), which references Desayi and 

Krishnan (1964) and Todeschini et al (1964). 

The section’s moment capacity is determined as the smaller of 𝑀𝑛1 and 𝑀𝑛2, the capacities 

calculated assuming failure by concrete crushing and bottom flange rupture, respectively. 

3.2.8.6 Failure by Concrete Crushing 

For this check, the section is assumed to fail due to concrete crushing with an extreme 

compression fiber strain equal to 0.003 with additional strain capacity available in the bottom 

flange prior to rupture. Using plane section assumptions, the depth of the neutral axis at concrete 

crushing, 𝑐, is determined by solving: 
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0.85𝑓′𝑐𝑏𝑐𝛽1𝑐
2 + 0.003𝐴𝑏𝑓𝐸𝑏𝑓𝑐 − 0.003𝐴𝑏𝑓𝐸𝑏𝑓 (𝐷 −

𝑡𝑏𝑓

2
) = 0 (3.2.8.5.1-1) 

 

where: 

𝑏𝑐 = 
effective width of the deck over the CT girder 

(in.) 

𝐴𝑏𝑓 = cross-sectional area of the bottom flange (in.2) 

𝛽1 = Whitney’s stress block ratio (5.7.2.2) 

Once determined, 𝑐 is used to calculate moment capacity as: 

𝑀1 = 𝐴𝑏𝑓𝐸𝑏𝑓𝜀𝑏𝑓 (𝐷 −
𝑡𝑏𝑓 + 𝛽1𝑐

2
) (3.2.8.5.1-2) 

where: 

𝜀𝑏𝑓 = 0.003 ∗
𝐷 − 𝑐 −

𝑡𝑏𝑓
2⁄

𝑐
 

strain in the center of the bottom flange at 

concrete crushing 

3.2.8.6.1 Failure by Bottom Flange Rupture 

For this check, the section is assumed to fail due to bottom flange rupture with an extreme 

tension fiber strain equal to 𝜀1𝑡
∗ , the ultimate tensile strain of the bottom flange’s main longitudinal 

reinforcement, with additional strain capacity available in the deck prior to concrete crushing. 

Using plane section assumptions, the depth of the neutral axis at bottom flange rupture, 𝑐, 

is determined iteratively until internal force equilibrium is achieved. For a given estimate of 𝑐, the 

strains at the top and bottom of the deck are calculated, respectively, as: 

𝜀𝑐𝑡 =
𝜀1𝑡
𝐶 𝑐

𝐷 − 𝑐
 (3.2.8.5.2-1) 

𝜀𝑐𝑏 =
𝜀1𝑡
𝐶 (𝑐 − 𝑡𝑐)

𝐷 − 𝑐
 (3.2.8.5.2-2) 

where: 

𝑡𝑐 = 
thickness of the deck above the CT girder 

(in.) 
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The general expression for the corresponding stresses at the top and bottom of the deck is 

found are given in Equation 3.2.8.5.2-3, although for the case where 𝜀𝑐𝑏 is tensile, the lower part 

of the deck is in tension and 𝑓𝑐𝑏 = 0: 

𝑓𝑐𝑡,𝑐𝑏 =
1.8𝑓′𝑐

𝜀𝑐𝑡,𝑐𝑏
𝜀0⁄

1 + (
𝜀𝑐𝑡,𝑐𝑏

𝜀0⁄ )
2 (3.2.8.5.2-3) 

where the concrete strain corresponding to peak compressive stress is expressed as: 

𝜀0 = 1.71
𝑓′𝑐
𝐸𝑐

 (3.2.8.5.2-4) 

The compressive force resultant provided by the concrete is then determined as: 

𝐶 =
1

2
𝑓𝑐𝑡𝑐𝑏𝑐, 𝑐 ≤ 𝑡𝑐 (3.2.8.5.2-5a) 

𝐶 =
1

2
𝑏𝑐𝑡𝑐(𝑓𝑐𝑡 + 𝑓𝑐𝑏), 𝑐 > 𝑡𝑐 (3.2.8.5.2-5b) 

The value of C is compared with the tensile force resultant provided by the bottom flange, found 

as:  

𝑇 = 𝜀1𝑡
𝑎𝐶𝐸𝑏𝑓𝐴𝑏𝑓 (3.2.8.5.2-6) 

and 𝑐 updated until 𝑇 = 𝐶 within a reasonable tolerance. The moment capacity under this failure 

assumption is then found as: 

𝑀2 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 (𝐷 −

𝑡𝑏𝑓

2
−
𝑐

3
) , 𝑐 ≤ 𝑡𝑐 (3.2.8.5.2-7a) 

𝑀2 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 (𝐷 −

𝑡𝑏𝑓

2
−
𝑡𝑐(2𝑓𝑐𝑡 + 𝑓𝑐𝑏)

3(𝑓𝑐𝑡 + 𝑓𝑐𝑏)
) , 𝑐 > 𝑡𝑐 

 

(3.2.8.5.2-7b) 

After the composite moment under assumed failure of each component has been calculated, the 

controlling, available composite moment resistance of the section is found as  

𝑀𝑟
𝐶 = 𝜙𝑀𝑛

𝐶 = min (𝜙𝑀1, 𝜙𝑀2) (3.2.8.5.2-8) 
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3.2.9 Design for Shear 

3.2.9.1 General 

 The critical section for shear in a CT girder member shall be determined in accordance 

with the provisions of AASHTO LRFD for reinforced concrete members. 

 In lieu of the method specified here, the resistance of members in shear may be determined 

by satisfying the conditions of equilibrium and compatibility of strains and by using 

experimentally verified stress-strain relationships for FRP webs. 

3.2.9.2 Nominal Shear Resistance 

The section’s shear resistance is found assuming negligible contributions from the flanges 

and deck as: 

𝑉𝑟 = 𝜙𝑉𝑛 (3.2.9.2-1) 

𝑉𝑛 =
𝐼𝑐𝑡𝑤−𝑓𝑠𝑓6𝑤

𝑄𝑡
 (3.2.9.2-2) 

where: 

𝜙 = resistance factor for FRP in shear 

𝐼𝐶 = 
moment of inertia (second moment of area) of 

the composite girder section (in.4) 

𝑡𝑤−𝑓𝑠 = 
thickness of the webs, less the thickness of 

the sandwich core (in.) 

𝑓6𝑤 = reduced ultimate shear stress of the webs (ksi) 

𝑄𝑡 = 

first moment of area of the portion of the 

girder section above the location of maximum 

web shear stress taken about the girder neutral 

axis (in.3) 

This approach does not rigorously incorporate the fact that loads acting on the non-

composite section will produce shear stresses at a different location within the web based on non-

composite response, and the maximum shear stress acting on the non-composite section is 

therefore under-estimated. However, this is offset by the assumption that all shear stresses act on 

the composite section and therefore maximum stresses due to all phases of loading are assumed to 

be at the same location. 
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3.2.9.3 Web Shear Buckling 

 Slender CT girder webs can be subject to web shear buckling. Shear buckling itself is a 

complex phenomenon, which is further complicated by the orthotropic nature of FRP and the 

interaction between face sheets and the core in sandwich composites. For these reasons, and the 

highly case-dependent nature of the problem, a rational, closed form solution for web shear 

buckling is not available. Therefore, numerical techniques such as finite-element analysis must be 

used to rigorously assess web shear buckling. As an example, several web laminate architectures 

based on a typical 24.2 oz/yd2 biaxial, E-glass fabric were modeled and analyzed for eigenvalue 

shear buckling. Development of these models is detailed in Appendix C. The models assumed 

orthotropic, elastic response of the face sheets with moduli of 5340 ksi and 1650 ksi in the local 1 

(fiber) and 2 (normal to fiber) directions respectively. When the web face sheets are oriented at 

±45°, the resulting moduli are 2780 ksi in both the global x (girder span) and y (web depth) 

directions. The modulus of the isotropic, elastic foam core web was taken to be 15.9 ksi. The 

results of these analyses are presented in the figures below which cover a wide range of common 

web designs using these typical E-glass and foam core materials, with intermediate web heights 

available by interpolation. In these figures, the term “Face Sheet” refers to the thickness of a single 

face sheet 𝑡𝑠ℎ𝑒𝑒𝑡; a single girder web will therefore have two face sheets, and a CT girder will have 

a total of four face sheets. Other variables are defined below. 

𝑡𝑠ℎ𝑒𝑒𝑡 = thickness of single face sheet (in.) 

𝑡𝑐𝑜𝑟𝑒 = thickness of core material (in.) 

𝑡𝑤𝑒𝑏 = total web thickness (in.), or 2𝑡𝑠ℎ𝑒𝑒𝑡 + 𝑡𝑐𝑜𝑟𝑒 

𝑁𝑥𝑦−𝑐𝑟 = 
critical shear buckling stress resultant for a 

single web (kip/in.) 

ℎ𝑤𝑒𝑏 = web height (in.) 
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 Using the charts provided above (or similar charts produced by finite-element simulation 

for other girder dimensions and/or face sheet properties), the value of the shear stress resultant 

causing shear buckling is found and when multiplied by the web height, ℎ𝑤𝑒𝑏, gives the critical 

load causing shear buckling of a single web. Examples of the use of these charts to assess web 

buckling in design are provided in Appendix D. 

3.2.10 Shear Connectors 

3.2.10.1 General 

The FRP tub girder and reinforced concrete deck shall be made composite with bearing-

type shear studs or ridged friction connections that have been experimentally demonstrated to 

provide adequate fatigue and strength resistance as defined here. The ridged friction connection 

requires a deformed or rough upper surface on the tops of the girder top flanges. Other girder-deck 

shear connectors shall only be used if they have been experimentally demonstrated to provide 

adequate strength and fatigue resistance. 

3.2.10.2 Bearing Shear Connectors 

Where bearing-type stud shear connectors are used for girder-deck shear connection, they 

shall be designed for the limit states of fatigue and strength in accordance with section 6.10.10 of 

AASHTO LRFD. Stud spacing s will be constant along the entire girder span unless a more 
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sophisticated analysis that meets the standards of AASHTO LFRD is performed that justifies 

varying s along the girder span. 

3.2.10.2.1 Strength Limit State 

The design shear resistance of a single stud connector, 𝑄𝑟, at the strength limit state shall 

be taken as: 

𝑄𝑟 = 𝜙𝑄𝑛 (3.2.10.2.1-1) 

where: 

𝜙 = resistance factor for stud shear connectors 

𝑄𝑛 = 
nominal shear resistance of a single shear 

connector determined as specified below (kip) 

 

The nominal shear resistance of one stud connector, 𝑄𝑛, embedded in a concrete deck shall be 

taken as the minimum of 𝑄1, 𝑄2 and 𝑄3 as defined below. 

𝑄1 = 0.5𝐴𝑠𝑐√𝑓′𝑐𝐸𝑐 (3.2.10.2.1-2a) 

𝑄2 = 𝐴𝑠𝑐𝑓𝑢 (3.2.10.2.1-2b) 

𝑄3 = 𝑓𝑡𝑏𝑑𝑠𝑡𝑡𝑓 (3.2.10.2.1-2c) 

where: 

𝐴𝑠𝑐 = cross-sectional area of a stud connector (in.2) 

𝑓′𝑐 = 
specified 28-day compressive strength of the 

deck concrete (ksi) 

𝐸𝑐 = 

modulus of elasticity of the deck concrete 

determined as specified in Article 5.4.2.4 of 

AASHTO LRFD 

𝑓𝑢 = 
specified minimum tensile strength of a stud 

connector (ksi) 

𝑓𝑡𝑏 = 
bearing strength of the FRP making up the 

girder’s upper flanges (ksi) 
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𝑑𝑠 = diameter of a stud connector (in.) 

𝑡𝑡𝑓 = thickness of the girder’s upper flanges (in.) 

At the strength limit state, the design strength of the most heavily loaded shear stud shall equal or 

exceed the shear flow (including appropriate load factors) to which it is subjected. That is,  

𝑄𝑟 ≥
𝑉𝑢𝑄𝑖𝑛𝑡
𝑛𝐼𝑐

𝑠 (3.2.10.2.1-3) 

where: 

𝑛 = total number of shear studs spaced at 𝑠 

𝑉𝑢 = maximum factored shear load (kip) 

𝑄𝑖𝑛𝑡 = 

first moment of area of the concrete deck 

taken about the interface between the top 

flange and deck (in.3) 

𝐼𝑐 = 
moment of inertia (second moment of area) of 

the composite girder section (in.4) 

𝑠 = Shear stud spacing (in.) 

3.2.10.2.2 Fatigue Limit State 

 Only the Fatigue I load combination corresponding to infinite fatigue life shall be used. 

The shear stud grade and type shall have been experimentally demonstrated to possess adequate 

fatigue resistance (for example, see Davids et al. 2022a, where ASTM A490 fasteners with no 

threads in the shear plane were demonstrated to possess sufficient fatigue resistance in a bearing-

type connection). 

3.2.10.3 Ridged Friction Connections 

Where ridged friction-type connectors are used, they shall be designed under the strength 

limit state as a frictional interface shear transfer mechanism as described in section 5.7.4 of 

AASHTO LRFD. The upper surface of the girder flanges shall have surface deformations 

(typically ridges) with sufficient size and spacing to ensure interlock between the concrete deck 

and girders and strain compatibility at the girder-deck interface. As such, intermittent shear 

reinforcement in the form of shear studs at a spacing 𝐿𝑣𝑖 shall be provided to apply a clamping 

force between the girder ‘s upper flange and deck. 

3.2.10.3.1 Strength Limit State 

The design interface shear flow resistance, 𝑣𝑟, shall be taken as: 
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𝑣𝑟 = 𝜙𝑣𝑛 (3.2.10.3-1) 

where: 

𝜙 = resistance factor for interface shear transfer 

𝑣𝑛 = 
nominal interface shear flow resistance 

(kip/in.) 

The nominal shear flow resistance of the ridged connection shall be taken as: 

𝑣𝑛 = 𝑐𝑐𝑓𝑏𝑡 + 𝜇
𝐴𝑣𝑓𝑓𝑦 + 𝑃𝑐

𝐿𝑣𝑖
 (3.2.10.3-2) 

but shall not be taken greater than the least of: 

𝑣𝑛 ≤ 𝐾1𝑓
′
𝑐
𝑏𝑡 (3.2.10.3-3) 

𝑣𝑛 ≤ 𝐾2𝑏𝑡 (3.2.10.3-4) 

𝑣𝑛 ≤
𝑓𝑣𝑟𝑤𝑟𝑏𝑡
𝑠𝑟

 (3.2.10.3-5) 

where: 

𝑐𝑐𝑓 = 

cohesion factor between concrete and FRP, 

taken as zero unless determined by laboratory 

test 

𝑏𝑡 = width of the girder’s top flanges (in.) 

𝜇 = 
friction factor between FRP ridges and 

concrete, taken equal to one  

𝐴𝑣𝑓 = area of clamping studs within 𝐿𝑣𝑖 (in.2) 

𝑓𝑦 = 
yield strength of clamping studs, not to 

exceed 60 (ksi) 

𝑃𝑐 = 
permanent net compressive force normal to 

shear plane; if tensile, 𝑃𝑐 = 0 (kip) 

𝐾1 = 

fraction of concrete strength available to resist 

interface shear, specified in Article 5.7.4.3 of 

AASHTO LRFD  
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𝑓′𝑐 = 
specified 28-day compressive strength of the 

deck concrete (ksi) 

𝐾2 = 
limiting shear resistance, specified in Article 

5.7.4.3 of AASHTO LRFD (ksi) 

𝑓𝑣𝑟 = 
shear strength of the resin making up the 

connection ridges (ksi) 

𝑤𝑟 = width of shear ridges (in.) 

𝑠𝑟 = shear ridge spacing (in.) 

3.2.10.3.2 Fatigue Limit State 

The ridged friction-type connectors must be experimentally or analytically demonstrated 

to satisfy requirements of the Fatigue I limit state. 

3.2.11 Control of Deflections 

CT girder sections shall be designed with adequate stiffness to ensure deflections are less 

than maximum values set by the Owner. Typical deflection limits enforced by Owners are defined 

in AASHTO LRFD, Article 3.2.5.2.6, with the analysis method used conforming to the 

requirements of Section 4.4, and linearly elastic behavior (as outlined in AASHTO LRFD, Article 

4.5.2.2) assumed. 

Deflections can be decreased by increasing the effective flexural stiffness of the section 

through modification of its material properties, dimensions, or both as long as the section retains 

adequate strength and stability. Some possible alterations are: 

 Increasing the number of longitudinal, uniaxial laminae in the bottom flange 

 Using a higher percentage of stiffer laminae (for instance carbon laminae as opposed to 

glass laminae) in the bottom flange 

 Increasing the section’s depth by increasing the web’s depth, decreasing its splay angle, 

or both 

 Increasing the thickness of the deck slab 
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 Appendix A: Average Strain Plots 
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Appendix B: Description of Detailed Method for Flexural Analysis and 

Comparison with Simplified Method 

B.1 Detailed Method 

The detailed method for flexural analysis must consider the effects of staged construction, 

wherein strains due to the self-weight of the girder and wet concrete are permanently locked into 

the girder alone. To account for this, this locked-in strain is calculated as: 

𝜀𝐷𝐶 =
𝑀𝐷𝐶

𝐸𝑏𝑓𝑆𝑁𝐶
 (B.1-1) 

where: 

𝑀𝐷𝐶 = 
factored moment due to non-composite dead-

load (kip-in.) 

𝐸𝑏𝑓 = elastic modulus of the bottom flange (ksi) 

𝑆𝑁𝐶 = non-composite section modulus (in.3) 

 

For each component for which tensile or compressive failure due to flexure can occur 

(bottom flange, web just above the web-bottom flange fillet, and deck), determine ultimate 

strain, 𝜀𝑓. For tensile rupture of the bottom flange the ultimate strain available for to carry loads 

acting on the composite section is: 

𝜀1𝑡
𝐶 = 𝜀1𝑡 − 𝜀𝐷𝐶 (B.1-2) 

For crushing of the deck, the maximum usable concrete compressive strain 𝜀𝑐𝑢 = 0.003. 

Select a trial neutral axis depth, 𝑐, and use it to determine the section’s curvature at failure, 𝜅. For 

tensile rupture of the bottom flange: 

𝜅 =
𝜀𝑓

𝐷 − 𝑐
 (B.1-3a) 

for crushing of the deck: 

𝜅 =
𝜀𝑓

𝑐
 (B.1-3b) 
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where:  

𝐷 = total depth of the composite section (in.) 

𝑡𝑏𝑓 = thickness of the bottom flange (in.) 

Using plane section assumptions, determine the strain at every height 𝑦𝑖 above the bottom 

of the section. The section can be analyzed continuously, but it is more convenient to discretize 

the section into layers within which strain and stress are constant, where layers are denoted here 

by the subscript i. 

𝜀𝑖 = −𝜅(𝐷 − 𝑐 − 𝑦𝑖) (B.1-4) 

The corresponding stress is 𝜎𝑖. For 𝑦𝑖 falling within the bottom flange: 

𝜎𝑖 =
𝜀𝑖
𝐸𝑏𝑓

 (B.1-5a) 

for 𝑦𝑖 falling within the web: 

𝜎𝑖 =
𝜀𝑖
𝐸𝑤

 (B.1-5b) 

 

for 𝑦𝑖 falling within the top flange: 

𝜎𝑖 =
𝜀𝑖
𝐸𝑡𝑓

 (B.1-5c) 

For 𝑦𝑖 falling within the deck:  

𝜎𝑖 =

{
 
 

 
 𝑓′

𝑐
∗ (
2𝜀𝑖
𝜀𝑐
− (

𝜀𝑖
𝜀𝑐
)
2

) , 𝜀𝑖 ≤ 𝜀𝑐

𝑓′
𝑐
∗ (1 − 0.15 ∗

𝜀𝑖 − 𝜀𝑐
𝜀𝑢 − 𝜀𝑐

) , 𝜀𝑐 < 𝜀𝑖 ≤ 𝜀𝑢

0.95𝜀𝑢 ,     𝜀𝑖 > 𝜀𝑢

 (B.1-5d) 

where: 

𝐸𝑏𝑓 = 
effective bending modulus of the bottom 

flange (ksi) 

𝐸𝑤 = effective bending modulus of the web (ksi) 
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𝑓′
𝑐
= 

specified 28-day compressive strength of the 

concrete making up the deck (ksi) 

𝜀𝑐 = 1.8
𝑓′
𝑐

𝐸𝑐
 

maximum strain in concrete prior to the onset 

of significant softening 

𝐸𝑐 = 1820√𝑓′𝑐 elastic modulus of concrete (ksi) 

𝜀𝑢 = 0.003 crushing strain of concrete 

 

If analyzing the section continuously, find the residual force imbalance 𝑅 by integrating stresses 

through the section height: 

𝑅 = ∫ 𝜎𝑖𝑑𝐴
𝐷

0

 (B.1-6a) 

or if analyzing the section as discrete layers, by summing the force contribution from each layer 

through the section height: 

𝑅 =∑𝜎𝑖𝑏𝑖𝛿𝑦

𝑛

𝑖=1

 (B.1-6b) 

where: 

𝑑𝐴 = differential area over which the infinitesimal 

stress,  𝜎𝑖 acts (in.2) 

𝑛 = 
number layers into which the section is 

discretized 

𝑏𝑖 = width of the current layer (in.) 

𝛿𝑦 thickness of each layer (in.) 

Iteratively update the estimate of 𝑐 until the residual force imbalance is eliminated, ensuring 

internal force equilibrium. 

If analyzing the section continuously, integrate the stresses and their moment arms through 

the section height to find the section’s moment resistance for the given failure mode 

𝑀𝑟
𝐶 = 𝜙𝑀𝑛

𝐶 = 𝜙∫ 𝜎𝑖𝑦𝑖𝑑𝐴
𝐷

0

 (B.1-7a) 
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or if analyzing the section discretely, sum the force contribution from each layer multiplied by its 

distance from the section bottom 𝑦𝑖: 

𝑀𝑟
𝐶 = 𝜙𝑀𝑛

𝐶 = 𝜙∑𝜎𝑖𝑏𝑖𝑦𝑖𝛿𝑦

𝑛

𝑖=1

 (B.1-7b) 

The nominal moment capacity available to carry factored loads acting on the composite 

section, 𝜙𝑀𝑛
𝐶, will correspond to the moment causing either tensile rupture of the bottom flange at 

a strain of 𝜀1𝑡
𝐶  or crushing of the concrete deck at a compressive strain of  

𝜀𝑐𝑢 = 0.003, whichever occurs first.  
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B.2 Flexural Design Examples with Comparison to Simplified Method 

B.2.1 Example 1  

The CT girder cross-section shown below was designed for bottom flange tension control 

and was analyzed using the detailed method given above, and the simplified method detailed in 

Section 2.9.6. Factored non-composite dead-load moment at midspan of the 75 foot span 

𝛾𝐷𝐶𝑀𝐷𝐶 = 783 𝑘𝑖𝑝 − 𝑓𝑡. Factored moment applied to the composite section, 𝛾𝐿𝐿𝑀𝐿𝐿+𝐼𝑀 +

𝛾𝐷𝑊𝑀𝐷𝑊 = 2690 𝑓𝑡 − 𝑘𝑖𝑝. 

 

B.2.1.1 Detailed Method 

Using the detailed method as implemented with layered moment-curvature analysis as 

described in A.1, the section has a factored, available composite moment resistance 𝜙𝑀𝑛
𝐶 =4500 

kip-ft. Details are not provided here, as software specifically implementing moment-curvature 

analysis was developed to generate this moment capacity. For details and examples on the 

implementation of moment-curvature analysis, see, for instance, Davids et al. (2000), Davids 

(2001), Lou & Xiang (2006), Schanck and Davids (2020, 2021), Kwak & Kim (2002), Kara & 

Ashour (2013), among many others. 

B.2.1.2 Simplified Method 

As the section was designed for tension control using the detailed method, so concrete 

crushing should not control when using the simplified method. This is verified by examining the 

strain at the top of the concrete at tensile rupture as shown below. 
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𝜀1𝑡
𝐶 =

𝑓1𝑡
∗𝐶𝐸
𝐸1

−
𝑀𝐷𝐶

𝐸𝑏𝑓𝑆𝑁𝐶
=
145.8 𝑘𝑠𝑖 ∗ 0.85

14370 𝑘𝑠𝑖
−
783 𝑘𝑖𝑝 − 𝑓𝑡 ∗ 12 𝑖𝑛

𝑓𝑡

7415 𝑘𝑠𝑖 ∗ 922 𝑖𝑛3
= 7.25 ∗ 10−3 

𝐸𝑐 = 1820√𝑓′𝑐 = 1820√4 𝑘𝑠𝑖 = 3640 𝑘𝑠𝑖 

𝜀0 = 1.71
𝑓′𝑐
𝐸𝑐

= 1.71 ∗
4 𝑘𝑠𝑖

3640 𝑘𝑠𝑖
= 0.00188 

Begin with a guess for neutral axis depth – say 8 in. from the top of the section (at the bottom of 

the deck). 

𝑐 = 8 𝑖𝑛 

Calculate the strain at the top and bottom of the concrete slab 

𝜀𝑐𝑡 =
𝜀1𝑡
𝐶 ∗ 𝑐

𝐷 − 𝑐
=
7.25 ∗ 10−3 ∗ 8 𝑖𝑛

58𝑖𝑛 − 8 𝑖𝑛
= 0.0012 

𝜀𝑐𝑏 =
𝜀1𝑡
𝐶 ∗ (𝑐 − 𝑡𝑐)

𝐷 − 𝑐
=
5.09 ∗ 10−3 ∗ (8 𝑖𝑛 − 8𝑖 𝑛)

58 𝑖𝑛 − 8 𝑖𝑛
= 0 

and use these to determine the stress at the top and bottom of the slab 

𝑓𝑐𝑡 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑡

𝜀0⁄

1 + (
𝜀𝑐𝑡

𝜀0⁄ )
2 =

1.8 ∗ 4 𝑘𝑠𝑖 ∗ 0.0012 0.00188⁄

1 + (0.0012 0.00188⁄ )
2 = 3.22 𝑘𝑠𝑖 

𝑓𝑐𝑏 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑏

𝜀0⁄

1 + (
𝜀𝑐𝑏

𝜀0⁄ )
2 =

1.8 ∗ 4𝑘𝑠𝑖 ∗ 0 0.00188⁄

1 + (0 0.00188⁄ )
2 = 0 𝑘𝑠𝑖 

The current estimate of the neutral axis falls at the interface between the CT girder and the slab, 

so the compressive force is calculated as 

𝐶 =
1

2
𝑓𝑐𝑡𝑐𝑏𝑐 =

1

2
(3.22 𝑘𝑠𝑖)(8 𝑖𝑛)(97 𝑖𝑛) = 1248 𝑘𝑖𝑝 

The tensile force in the bottom flange is calculated as 

𝑇 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 = 5.09 ∗ 10−3 ∗ 7417 𝑘𝑠𝑖 ∗ 21.096 𝑖𝑛2 = 1134 𝑘𝑖𝑝 

The compressive force exceeds the tensile force. Therefore, the initial guess for neural axis depth 

is too low. Iterate with a lower neutral axis – say: 

𝑐 = 6 𝑖𝑛 
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Following the same procedure: 

𝜀𝑐𝑡 =
𝜀1𝑡
𝐶 ∗ 𝑐

𝐷 − 𝑐
=
5.09 ∗ 10−3 ∗ 9 𝑖𝑛

58 𝑖𝑛 − 9𝑖 𝑛
= 0.00084 

𝜀𝑐𝑏 =
𝜀1𝑡
𝐶 ∗ (𝑐 − 𝑡𝑐)

𝐷 − 𝑐
=
5.09 ∗ 10−3 ∗ (9 𝑖𝑛 − 8 𝑖𝑛)

58 𝑖𝑛 − 9 𝑖𝑛
= −2.79 ∗ 10−4 

𝑓𝑐𝑡 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑡

𝜀0⁄

1 + (
𝜀𝑐𝑡

𝜀0⁄ )
2 =

1.8 ∗ 4 𝑘𝑠𝑖 ∗ 0.00070 0.00188⁄

1 + (0.00070 0.00188⁄ )
2 = 2.67 𝑘𝑠𝑖 

𝑓𝑐𝑏 = 0𝑘𝑠𝑖 

(concrete is assumed to carry no tension) 

The neutral axis falls within the slab. Therefore,  

𝐶 =
1

2
𝑓𝑐𝑡𝑐𝑏𝑐 =

1

2
(2.05 𝑘𝑠𝑖)(6 𝑖𝑛)(97 𝑖𝑛) = 778𝑘𝑖𝑝 

The tensile force now exceeds the compressive force. Continue iterating by bisection: 

Iteration 𝑐 (in.) 𝜀𝑐𝑡 𝜀𝑐𝑏 
𝑓𝑐𝑡 

(ksi) 
𝑓𝑐𝑏 (ksi) 𝐶 (kip) 

𝑇 − 𝐶 

(kip) 

1 8 0.0012 0 3.21 0 1248 -114 

2 6 0.00084 -0.00028 2.67 0 778 356 

3 7 0.0010 -0.00014 2.98 0 1011 123 

4 7.5 0.0011 -0.00072 3.11 0 1130 4.61 

 

For a neutral axis depth of 7.5 in, the difference between tensile and compressive forces is 

acceptably small. Therefore, internal force equilibrium is achieved. Because the neutral axis depth 

is below the bottom of the slab, the moment capacity can now be calculated as: 

𝑀2 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 (𝐷 −

𝑡𝑏𝑓

2
−
𝑐

3
) 

= 7.25 ∗ 10−3 ∗ 7415 𝑘𝑠𝑖 ∗ 21.096𝑖𝑛2 ∗ (58 𝑖𝑛 −
1.1875𝑖 𝑛

2
−
7.5 𝑖𝑛

3
) 

= 62270 𝑘𝑖𝑝 − 𝑖𝑛 = 5190 𝑘𝑖𝑝 − 𝑓𝑡 
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Checking for compression control, 

0.85𝑓′
𝑐
𝑏𝑐𝛽1𝑐

2 + 0.003𝐴𝑏𝑓𝐸𝑏𝑓𝑐 − 0.003𝐴𝑏𝑓𝐸𝑏𝑓 (𝐷 −
𝑡𝑏𝑓

2
) = 0 

Solving, 

𝑐 = 9 𝑖𝑛 

𝜀𝑏𝑓 = 0.003 ∗
𝐷 − 𝑐 −

𝑡𝑏𝑓
2⁄

𝑐
 

= 0.003 ∗
58 𝑖𝑛 − 9 𝑖𝑛 − 1.1875 𝑖𝑛 2⁄

9 𝑖𝑛
= 0.0161 > 𝜀1𝑡

𝐶  

The section cannot be compression controlled as concrete cannot reach crushing strain before FRP 

rupture. 

𝜙𝑀𝑛
𝐶 = 0.75 ∗ 5190 𝑘𝑖𝑝 − 𝑓𝑡 = 3890 𝑘𝑖𝑝 − 𝑓𝑡 

This example demonstrates that the simplified method is straightforward and easy to 

implement by spreadsheet calculation and that both methods lead to adequate designs. However, 

implementation of the detailed method results in a 16% increase in design moment resistance for 

this section. 

  



   Page 101 of 118 

B.2.2 Example 2 

The CT girder cross-section shown below was designed for bottom flange tension control 

and was analyzed using the detailed method given above, and the simplified method detailed in 

Section 2.9.6. Factored non-composite dead-load moment at midspan of the 38 foot span 

𝛾𝐷𝐶𝑀𝐷𝐶 = 160 𝑘𝑖𝑝 − 𝑓𝑡. Factored moment applied to the composite section, 𝛾𝐿𝐿𝑀𝐿𝐿+𝐼𝑀 +

𝛾𝐷𝑊𝑀𝐷𝑊 = 950 𝑘𝑖𝑝 − 𝑓𝑡. 

 

B.2.2.1 Detailed Method 

Using the detailed method, the section has a factored, available composite moment 

resistance 𝜙𝑀𝑛𝑓
𝐶 =1390 kip-ft 

B.2.2.2 Simplified Method 

As the section was designed for tension control using the detailed method, concrete 

crushing will likely not control. This is verified by examining the strain at the top of the concrete 

at tensile rupture as shown below. 

𝜀1𝑡
𝐶 =

𝑓1𝑡
∗𝐶𝐸
𝐸1

−
𝑀𝐷𝐶

𝐸𝑏𝑓𝑆𝑁𝐶
=
145 𝑘𝑠𝑖 ∗ 0.85

13950 𝑘𝑠𝑖
−
160 𝑘𝑖𝑝 − 𝑓𝑡 ∗ 12 𝑖𝑛

𝑓𝑡

9920 𝑘𝑠𝑖 ∗ 169 𝑖𝑛3
= 7.75 ∗ 10−3 

𝐸𝑐 = 1820√𝑓′𝑐 = 1820√5 𝑘𝑠𝑖 = 4070𝑘𝑠𝑖 

𝜀0 = 1.71
𝑓′𝑐
𝐸𝑐

= 1.71 ∗
5 𝑘𝑠𝑖

4070 𝑘𝑠𝑖
= 0.00210 
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Begin with a guess for neutral axis depth – say 7.5 in. from the top of the section (at the bottom of 

the deck). 

𝑐 = 7.5 𝑖𝑛 

Calculate the strain at the top and bottom of the concrete slab 

𝜀𝑐𝑡 =
𝜀1𝑡
𝐶 ∗ 𝑐

𝐷 − 𝑐
=
7.75 ∗ 10−3 ∗ 7.5 𝑖𝑛

27.5𝑖 𝑛 − 7.5 𝑖𝑛
= 0.0029 

𝜀𝑐𝑏 =
𝜀1𝑡
𝐶 ∗ (𝑐 − 𝑡𝑐)

𝐷 − 𝑐
=
7.75 ∗ 10−3 ∗ (7.5𝑖𝑛 − 7.5𝑛)

27.5𝑖𝑛 − 7.5𝑖𝑛
= 0 

and use these to determine the stress at the top and bottom of the slab 

𝑓𝑐𝑡 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑡

𝜀0⁄

1 + (
𝜀𝑐𝑡

𝜀0⁄ )
2 =

1.8 ∗ 5 𝑘𝑠𝑖 ∗ 0.0029 0.0021⁄

1 + (0.0029 0.0021⁄ )
2 = 4.27 𝑘𝑠𝑖 

𝑓𝑐𝑏 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑏

𝜀0⁄

1 + (
𝜀𝑐𝑏

𝜀0⁄ )
2 =

1.8 ∗ 5𝑘𝑠𝑖 ∗ 0 0.0021⁄

1 + (0 0.0021⁄ )
2 = 0𝑘𝑠𝑖 

The current estimate of the neutral axis falls at the interface between the CT girder and the slab, 

so the compressive force is calculated as 

𝐶 =
1

2
𝑓𝑐𝑡𝑐𝑏𝑐 =

1

2
(4.27 𝑘𝑠𝑖)(7.5 𝑖𝑛)(66 𝑖𝑛) = 1057 𝑘𝑖𝑝 

The tensile force in the bottom flange is calculated as 

𝑇 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 = 7.75 ∗ 10−3 ∗ 9920 𝑘𝑠𝑖 ∗ 9.24 𝑖𝑛2 = 710 𝑘𝑖𝑝 

The compressive force exceeds the tensile force. Therefore, the initial guess for neural axis depth 

is too low. Iterate with a lower neutral axis – say: 

𝑐 = 4 𝑖𝑛 

Following the same procedure: 

𝜀𝑐𝑡 =
𝜀1𝑡
𝐶 ∗ 𝑐

𝐷 − 𝑐
=
7.75 ∗ 10−3 ∗ 4 𝑖𝑛

27.5 𝑖𝑛 − 4𝑖 𝑛
= 0.0013 

𝜀𝑐𝑏 =
𝜀1𝑡
𝐶 ∗ (𝑐 − 𝑡𝑐)

𝐷 − 𝑐
=
7.75 ∗ 10−3 ∗ (4 𝑖𝑛 − 7.5 𝑖𝑛)

27.5 𝑖𝑛 − 4 𝑖𝑛
= −0.0012 
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𝑓𝑐𝑡 =
1.8 ∗ 𝑓′

𝑐
∗
𝜀𝑐𝑡

𝜀0⁄

1 + (
𝜀𝑐𝑡

𝜀0⁄ )
2 =

1.8 ∗ 5 𝑘𝑠𝑖 ∗ 0.0013 0.0021⁄

1 + (0.0013 0.0021⁄ )
2 = 4.05 𝑘𝑠𝑖 

𝑓𝑐𝑏 = 0𝑘𝑠𝑖 

(concrete is assumed to carry no tension) 

The neutral axis falls within the slab. Therefore,  

𝐶 =
1

2
𝑓𝑐𝑡𝑐𝑏𝑐 =

1

2
(4.05 𝑘𝑠𝑖)(4𝑖 𝑛)(66 𝑖𝑛) = 535 𝑘𝑖𝑝 

The tensile force now exceeds the compressive force. Continue iterating by bisection: 

Iteration 𝑐 (in.) 𝜀𝑐𝑡 𝜀𝑐𝑏 𝑓𝑐𝑡 (ksi) 
𝑓𝑐𝑏 

(ksi) 
𝐶 (kip) 

𝑇 − 𝐶 

(kip) 

1 7.5 0.0029 0 4.27 0 1057 -347 

2 4 0.0013 -0.0012 4.05 0 535 175 

3 5.75 0.0020 -0.0006 4.50 0 853.62 -143 

4 4.88 0.0017 -0.0009 4.38 0 705 5.04 

 

For a neutral axis depth of 4.88 in., the difference between tensile and compressive forces is 

acceptably small. Therefore, internal force equilibrium is achieved. Because the neutral axis depth 

is below the bottom of the slab, the moment capacity can now be calculated as: 

𝑀2 = 𝜀1𝑡
𝐶 𝐸𝑏𝑓𝐴𝑏𝑓 (𝐷 −

𝑡𝑏𝑓

2
−
𝑐

3
) 

= 7.75 ∗ 10−3 ∗ 9920 𝑘𝑠𝑖 ∗ 9.24 𝑖𝑛2 ∗ (27.5 𝑖𝑛 −
0.84 𝑖𝑛

2
−
4.88 𝑖𝑛

3
) 

= 18080 𝑘𝑖𝑝 − 𝑖𝑛 = 1510 𝑘𝑖𝑝 − 𝑓𝑡 

Checking for compression control, 

0.85𝑓′
𝑐
𝑏𝑐𝛽1𝑐

2 + 0.003𝐴𝑏𝑓𝐸𝑏𝑓𝑐 − 0.003𝐴𝑏𝑓𝐸𝑏𝑓 (𝐷 −
𝑡𝑏𝑓

2
) = 0 

Solving, 

𝑐 = 5.18 𝑖𝑛 
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𝜀𝑏𝑓 = 0.003 ∗
𝐷 − 𝑐 −

𝑡𝑏𝑓
2⁄

𝑐
 

= 0.003 ∗
27.5 𝑖𝑛 − 5.18 𝑖𝑛 − 0.84 𝑖𝑛 2⁄

5.81 𝑖𝑛
= 0.0113 > 𝜀1𝑡

𝐶  

The section cannot be compression controlled as concrete cannot reach crushing strain before FRP 

rupture.  

𝜙𝑀𝑛𝑓
𝐶 = 0.75 ∗ 1510 𝑘𝑖𝑝 − 𝑓𝑡 = 1130 𝑘𝑖𝑝 − 𝑓𝑡 

As can be seen, both methods lead to adequate designs. However, the detailed method leads to a 

composite moment capacity 23% greater than the simplified method. 
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Appendix C: Shear Buckling Design Chart Development 

 

In creation of a guide specification for the design of hybrid FRP CT girders, web shear – 

in particular web shear buckling resistance – remains difficult to capture and describe. Due to the 

orthotropic nature of FRP and the inclusion of a foam core web, standard analytical solutions for 

shear buckling of isotropic plates are inadequate. Additionally, little experimental data are 

available on web buckling. Therefore, to establish a preliminary design basis, numerical simulation 

by finite element analysis is appropriate. This appendix documents the development of the models 

used to create empirical buckling curves for CT girder webs which, when combined with 

appropriate load and resistance design bases, can be used in design. 

To establish an accurate baseline from which more complex models could be developed, a 

basic model was first created for which analytical solutions exist and with which comparisons can 

be made. To this end, a simply supported, homogeneous plate with isotropic material properties, 

square plane dimensions, and a total thickness small enough to ensure plane stress assumptions 

would remain accurate was assessed. For such a plate, Timoshenko and Gere (1963) give an 

analytical equation for the critical shear buckling stress resultant: 

 
𝑁𝑥𝑦,𝑐𝑟 = 𝑘

𝜋2𝐷

𝑏2
 (B-1) 

In B-1, the coefficient 𝑘 captures the plate’s boundary conditions (taken here as 9.4 to account for 

the model’s simply supported conditions),  𝐷 is the plate’s flexural rigidity per unit length and 𝑏 

is its height. For the basic model created here (a simply supported plate with 12 in. square plane 

dimensions, a thickness of 0.1 in., elastic modulus of 29,000 ksi, and Poisson’s ratio of 0.3), B-1 

leads to a critical shear buckling stress resultant of 1.71 kip/in. 

The baseline model used to simulate this analytically comparable model used S8R, 

quadratic 8-node shell elements with 6 degrees of freedom per node and reduced integration. A 

relatively fine mesh, shown in Figure C1 on the left, was used, which incorporates 576 elements 

and 2,015 nodes. This discretization was determined by a mesh refinement study, the results of 

which can be seen in Figure C2. The nodes on the perimeter of the model were restrained from 

displacement in the direction normal to the plane of the plate itself to mimic simply supported 

boundaries, and global stability was ensured by restraining the plate’s central node against 

translation in the plane of the plate and rotation about the axis normal to the plate. Load was applied 

as a unit shear stress resultant to each of the plate’s edges. Using a subspace eigenproblem solver, 

the predicted shear buckling stress resultant equaled 1.68 k/in (for a 1.5% error), verifying the 

appropriateness and accuracy of the model. Figure C1 on the right presents the model’s predicted, 

buckled mode shape. 
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Figure C1: Initial, Isotropic Plate Model: (Left: Element Mesh; Right: Predicted Mode Shape) 

 

Figure C2: Steel Plate Model Mesh Refinement Study 

The first level of complexity added to the model was to use a pseudo-sandwich composite 

rather than a single plate. The original plate was split into three sections: a thicker “core” modeled 

discretely with C3D8R 8-node brick elements, and two “face-sheets” again modeled with S8R 

shell elements. A total of 10,800 elements with 48,739 nodes were used, determined by a mesh 

refinement study, the results of which can be seen in Figure C3. These elements were assigned the 
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same isotropic, homogeneous constitutive model as the previous single shell, and were connected 

to one another using kinematic constraints. The core was given a thickness of 0.08 in. and the face-

sheets a thickness of 0.01 in. each, giving a total thickness of 0.1 in. – the same as the initial model. 

This formed a sandwich composite, although one made from a single, isotropic material which 

would theoretically behave exactly the same as the uniform plate. The meshed model and predicted 

buckled shape can be seen in Figure C4. 

 

Figure C3: Steel Composite Model Mesh Refinement Study 
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Figure C4: Pseudo-Sandwich Model Predicted Buckled Mode Shape 

Loading and boundary conditions were applied to mimic the conditions of a sandwich web 

section part of a CT girder section. Simple support conditions were enforced by restraining out-

of-plane displacement both on the edges of the face sheets and the core. The central node of each 

face sheet was restrained against displacement in both in-plane directions and against rotation 

about the normal direction to maintain global stability. Loading was provided by unit shell edge 

loading on the outside edges of the face sheets. The core and face sheets were kinematically 

constrained to displace identically, effectively simulating a perfect adhesive bond between them. 

This modeling scheme with the converged discretization led to a predicted buckling shear stress 

resultant of 1.69 kip/in., a 1.8% error compared to the analytical solution. 

When the ability to match an analytical solution for shear buckling of isotropic plates and 

equivalent sandwiches was confirmed, a true FRP – foam core sandwich representing a CT girder 

sandwich web was modeled. Two initial models were produced which emulated thin specimens 

with 2-layer face sheets and 0.75 in. thick cores (F2C75) and thick specimens with 4-layer face 

sheets and 1.50 in. thick cores (F4C150). The cores were modeled as isotropic solids with elastic 

properties of an extruded polyurethane core with an elastic modulus of 15.9 ksi. The face sheets 

were assigned a composite layup of individual orthotropic 24.2 oz/yd2 biaxial woven E-glass 

lamina with elastic moduli of 5340 ksi and 1650 ksi in the 1 and 2 directions, respectively and 

individual thickness of 0.024 in. oriented at ±45°. It should be noted that each biaxial layer was 

modeled as two individual, half-thickness uniaxial layers offset by 90°. Plan dimensions were set 

to 12 in. by 12 in. Mesh refinement studies performed for both models (and presented in Figures 

C5 and C6) showed that an element size of around 0.375 in. (leading to a mesh density of 4096 

and 6144 for the thick and thin models respectively) produced converged predictions of buckling 

strength. 
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Figure C5: F2C75 Sandwich Mesh Refinement Study 

 

Figure C6: F4C150 Sandwich Mesh Refinement Study 

As a theoretical solution to the shear buckling strength of a foam core sandwich composite 

is not available, an alternative metric was needed by which the models could be verified. Therefore, 

rather than comparing with theoretical predictions of buckling, the models were used to predict the 

results of picture frame testing by Schanck et al (2021). To accomplish this, the models were re-
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solved using a standard Newton solver and were loaded with the maximum shear stress resultant 

applied during picture frame testing. Table C1 presents a comparison of measured and predicted 

in-plane strains for a test specimen identical to the F2C75 model. As can be seen, the predicted 

strains are reasonable compared to the measured strains considering the numerous simplifications 

inherent in the models. Additionally, the computed strains are larger than the measured strains. 

This could be due to the difference in real and assumed boundary conditions and the FRP face 

sheet modulus being higher than the value used in the simulations, suggesting that predicted shear 

buckling strengths will be conservative. 

Table C1: Comparison of Measured and Predicted Facesheet Strains 

Load Response X - Strain Y - Strain Shear Strain 

Measured -4.10e-3 3.50e-3 -5.00e-4 

Predicted -5.88e-3 5.94e-3 2.0e-7 

 

To further validate the models’ predictions, the results presented in two previous studies 

were recreated. In the first study by Oluwabusi and Toubia (2019), a series of FRP sandwich 

composites were tested using the picture frame method. During this series of tests, two specimens 

tested failed due to shear buckling at critical shear stress resultants of 2.13 kip/in. and 2.30 kip/in. 

respectively. Using the geometric and material parameters given by Oluwabusi and Toubia (2019) 

(12 in. x 12 in. specimens with transformed elastic moduli in the global longitudinal and transverse 

directions of 2050 ksi), the model presented here predicted buckling corresponding to a shear stress 

resultant of 2.16 kip/in., very close to the experimentally observed values. In the second study, 

Pandit et al. (2008) describe a purpose-made, shear deformable finite element for predicting the 

buckling strength of sandwich plates which, although accurate, is difficult to implement. They 

used this element to model and analyze the composite sandwich plate analyzed by Yuan and Dawe 

(2001) using a B-spline finite strip analysis. Pandit et al. (2008) predicted a shear buckling strength 

of a sandwich composite to be 0.645 kip/in., close to the 0.664 kip/in. from Yuan and Dawe’s 

(2001) finite strip analysis using an example modified from Pearce and Webber (1972). Recreating 

this, the present model was able to match precisely the 0.664 kip/in. buckling strength reported by 

Yuan and Dawe (2001). 

With the models’ validity reasonably confirmed, different parameters’ effects on shear 

buckling were investigated. It is well known that an increase in plate aspect ratio (the ratio of its 

length to its height) tends to decrease shear buckling load for isotropic plates. In addition, virtually 

all practical bridge designs with unstiffened webs use girders with web aspect ratios (length to 

width) exceeding 15. For this reason, a series of buckling analyses were performed on the F2C75 

and F4C150 models (with material and thickness properties as given before), with a plan height of 

12 in. and increasing aspect ratio from 1:1 to 1:16. The results of these analyses can be seen in 
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Figures C7 and C8 show that increases in aspect ratio caused decreases in buckling strength. The 

rate of decrease itself decreased with aspect ratio as well, with a constant buckling strength being 

approached in the limit. These results suggest that a relatively small aspect ratio (say 5) can 

characterize the shear buckling strength of sandwich composites of larger aspect ratio. This is 

fortunate as nearly all practical web designs for slab-on-girder bridges will tend to have aspect 

ratios greater than 5. 

 

Figure C7: F2C75 Aspect Ratio Study 
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Figure C8: F4C150 Sandwich Aspect Study 

With a minimum aspect ratio selected and held constant, other important sandwich web 

variables, namely web height, core thickness, and face-sheet thickness, were varied to create a 

series of nomographs quantifying web buckling capacity. These were created to aid in design of 

sandwich webs for shear buckling as, to date, neither analytical nor empirical expressions have 

been developed to accurately predict web shear buckling strength. These used the same material 

properties as noted above and so are not directly applicable to webs of other materials. However, 

they are typical of the sandwich webs used for CT girders designed and manufactured to date. For 

5 web heights, 7 face sheet thicknesses were analyzed, each with 12 different core thicknesses, 

leading to a total of 420 analyses. 

As these nomographs show, each of the tested parameters – web height, core thickness, and 

facesheet thickness affected the web’s shear stability. As expected, increases in facesheet and core 

thickness led to increases in critical buckling load, whereas increases in web depth led to decreases 

in buckling load. These nomographs are useful in design, especially when a web height has already 

been established. For a given web height, a core and facesheet thickness can be chosen to provide 

adequate material strength and buckling can be checked using the appropriate nomograph. For web 

heights between these nomographs, linear interpolation may be used with face sheet and core 

thickness held constant. 
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Appendix D: Shear Design Examples 

D.1 Example 1  

The CT girder from the first flexural design example is now designed for shear resistance. 

Factored maximum shear at the support of the 75 foot span 𝑉𝑢 = 256 𝑘𝑖𝑝.  

 

The web shear strength is found by applying the environmental degradation factor to the 

base-level shear strength: 

𝑓6 = 𝑓6
∗ ∗ 𝐶𝐸 = 10 𝑘𝑠𝑖 ∗ 0.65 = 6.5 𝑘𝑠𝑖 

 

Nominal shear resistance is then found as: 

𝑉𝑛 =
𝐼𝑐𝑡𝑤−𝑓𝑠𝑓6𝑤

𝑄𝑡
=
153300 𝑖𝑛4 ∗ 1.344 𝑖𝑛 ∗ 6.5 𝑘𝑠𝑖

3111 𝑖𝑛3
= 431 𝑘𝑖𝑝 

The factored shear resistance is therefore: 

𝑉𝑟 = 𝜙𝑉𝑛 = 0.75 ∗ 431 𝑘𝑖𝑝 = 323 𝑘𝑖𝑝 
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In addition to the section’s shear strength, its resistance to shear buckling must also be 

investigated. The most appropriate nomograph is that for a web height of 48 in. (the actual web 

height is 47.3 in., very close to 48 in.). The ratio of core thickness to web thickness 

is 1.5 𝑖𝑛 2.17 𝑖𝑛⁄ = 0.691, and the face sheet thickness is 
(2.17 𝑖𝑛 − 1.5 𝑖𝑛)

2⁄ = 0.335 𝑖𝑛: 

 

Reading from the nomograph, 𝑁𝑥𝑦−𝑐𝑟 = 12.0 𝑘𝑖𝑝/𝑖𝑛. The factored shear buckling resistance is 

therefore: 

𝑉𝑟 = 𝜙𝑁𝑥𝑦−𝑐𝑟 ∗ ℎ𝑤𝑒𝑏 ∗ 2 = 0.35 ∗ 12 
𝑘𝑖𝑝

𝑖𝑛
∗ 47.3 𝑖𝑛 ∗ 2 = 397 𝑘𝑖𝑝 

Shear strength controls the design but both failure modes exceed shear demand. The section is 

adequate in shear. 
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D.2 Example 2  

The CT girder from the second flexural design example is now designed for shear resistance. 

Factored non-composite maximum shear at the support of the 38 foot span 𝑉𝑢 = 136 𝑘𝑖𝑝.  

 

The web shear strength is found by applying the environmental degradation factor to the 

base-level shear strength: 

𝑓6 = 𝑓6
∗ ∗ 𝐶𝐸 = 10 𝑘𝑠𝑖 ∗ 0.65 = 6.5 𝑘𝑠𝑖 

 

Nominal shear resistance is then found as: 

𝑉𝑛 =
𝐼𝑐𝑡𝑤−𝑓𝑠𝑓6𝑤

𝑄𝑡
=
17200 𝑖𝑛4 ∗ 1.50 𝑖𝑛 ∗ 6.5 𝑘𝑠𝑖

890 𝑖𝑛3
= 188 𝑘𝑖𝑝 

The factored shear resistance is therefore: 

𝑉𝑟 = 𝜙𝑉𝑛 = 0.75 ∗ 188 𝑘𝑖𝑝 = 141 𝑘𝑖𝑝 

In addition to the section’s shear strength, its resistance to shear buckling must also be 

investigated. Since the nomograph for the smallest web size available is 24 in, use extrapolation. 

The ratio of core thickness to web thickness is 0.75 𝑖𝑛 1.5 𝑖𝑛⁄ = 0.5, and the face sheet thickness 

is 
(1.5 𝑖𝑛 − 0.75 𝑖𝑛)

2⁄ = 0.375 𝑖𝑛: 
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𝑁𝑥𝑦−𝑐𝑟 =
15 

𝑘𝑖𝑝
𝑖𝑛 − 10.5 

𝑘𝑖𝑝
𝑖𝑛

(36 𝑖𝑛 − 24 𝑖𝑛)
∗ (36 𝑖𝑛 − 18.13 𝑖𝑛) + 15 

𝑘𝑖𝑝

𝑖𝑛
= 21.7 

𝑘𝑖𝑝

𝑖𝑛
 

The factored shear buckling resistance is therefore: 

𝑉𝑟 = 𝜙𝑁𝑥𝑦−𝑐𝑟 ∗ ℎ𝑤𝑒𝑏 ∗ 2 = 0.35 ∗ 21.7 
𝑘𝑖𝑝

𝑖𝑛
∗ 18.13 𝑖𝑛 ∗ 2 = 275 𝑘𝑖𝑝 

Shear strength controls the design but both failure modes exceed shear demand. The section is 

adequate in shear. 
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