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EXECUTIVE SUMMARY

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set
targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by
2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that
transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the
Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for
meeting GHG reduction. The Climate Action Plan further identified a high priority action to
quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont
context.

Delivering on this high priority action in the Climate Action Plan, this project explored the
hypothesis that compact, mixed use development patterns generate fewer VMT and GHG
emissions per person than more dispersed or rural settlement patterns. Further, this study
explored built environment relationships with VMT across Vermont, inclusive of many rural
areas across the state, which will help to fill a critical gap in the literature. Current and future
patterns of built environment development, land use, population growth, and travel behavior
were quantified in several scenarios to fulfill two primary focal points of the research:

e Demonstrate the degree to which smart growth strategies in the Vermont context can
reduce VMT to meet transportation related GHG emission reduction targets; and,

¢ Quantify the co-benefits of smart growth strategies beyond GHG emission reductions to
include health benefits of increased active and multimodal travel, safety benefits of
reduced VMT, reduced maintenance associated with fewer vehicles and possibly fewer
lane miles, and increased economic activity located in downtowns and community
centers.

The consultant team of VHB and RSG worked in close collaboration with a Champion from the
Vermont Agency of Transportation’s Policy, Planning and Research Bureau, as well as a
Technical Advisory Committee (TAC) composed of representatives from:

e Agency of Transportation | Environmental Policy & Sustainability

e Agency of Transportation | Highway Division

e Agency of Transportation | Policy, Planning and Intermodal Development Division

e Agency of Digital Services | Vermont Center for Geographic Information

e Agency of Commerce & Community Development | Community Planning & Revitalization
e Agency of Natural Resources | Climate Action Office

e Vermont Natural Resources Council

e Conservation Law Foundation

The study’s TAC provided integral feedback at key decision points regarding the study scope,
data exploration, findings, and applications discussed in greater detail below.



Passively collected, location-based services (LBS) data were leveraged to develop weekly per
capita VMT estimates for the state. Location based data were gathered for any device seen
within Vermont's boundary in each season of 2019. Devices were filtered to remove sporadic or
anomalous behavior. Data processing entailed enriching the device data to identify device
locations using transportation network, land use, and point of interest features. For each
device's records, stops and anchor locations as well as visits or dwell times were determined.
Anchor locations (e.g., home, work) were classified and trips between locations were identified
and assigned trip attributes. Post-processing entailed assigning quality tiers and removing
suspected commercial trucks and junk devices. All non-Vermont residents were also removed.
The data were resampled to extract the most representative week for each device in each
season. Based on the characteristics of each trip, mode was assigned categorizing every trip
into motorized, non-motorized, flights, and ferry trips. A two-stage weighting was applied to
scale the sample of devices to represent weekly VMT by all Vermont residents. A demographic
expansion factor was used to scale the sample based on how many people are represented by
a given device. An adjusted VMT factor was used to account for missing VMT relative to the
Local Area Transportation Characteristics for Households estimates. This procedure resulted in
LBS-derived VMT estimates based on a data set containing 750,000 trips from nearly 30,000
devices seen throughout 2019.

Informed by the body of research that explores the relationship between travel behavior and the
built environment, a database of built environment measures was assembled. The built
environment measures focused on representing the ‘five D’ variables that influence travel
behavior, including density, diversity of land use, design, destination accessibility, and distance
to transit. VMT estimates and built environment measures were resolved to a hex-grid spatial
database across the state of Vermont to develop a model that relates the built environment
measures to the weekly per capita VMT estimates.

Future growth scenarios were developed to represent a range of possible growth and built
environment changes. The scenarios explored a few common themes — dispersed growth
patterns versus concentrated growth patterns, concentrated growth prioritized to places with
density versus places with low VMT, and employment growth in balance with concentrated
residential growth versus allocated to places near established cores or lower density areas. The
model was applied to these scenarios to predict how VMT and other related benefits might
change under different future growth scenarios. The scenarios forecast growth to 2035 and
2050 time horizons, included both a low and high growth scenarios, and derived various growth
patterns as follows:

e Dispersed growth: In this scenario, low-density residential development occurs across
all developable land, ignoring existing community designations and wastewater service
areas. From a smart growth perspective, this represents a “worst case” scenario.

e Concentrated growth, concentrated jobs: In this scenario, future residential and
employment growth is concentrated in already dense neighborhoods. Growth “overflows”
to less dense neighborhoods when density exceeds a maximum density threshold.



e Concentrated growth, dispersed jobs: Like above, future residential growth is
concentrated in already dense areas of the state. However, employment growth is
allocated to lower density areas (i.e., greenfield development of employment centers).

e Concentrated growth, balanced land use: In this scenario, future development is
focused on copying places in Vermont that exemplify smart growth principles today.
Growth is allocated so that future development mirrors the lowest VMT neighborhoods in
Vermont currently by leveraging prototype smart growth neighborhood attributes.

e Concentrated growth, unbalanced land use: This scenario allocates residential growth
as described above. Employment growth, on the other hand, occurs in locations near
established cores, but not in locations with high population density.

The resulting VMT estimates were then used to estimate benefits associated with each
scenario. In addition to changes in GHG emissions—the primary benefit explored in this study—
co-benefits were estimated to quantify the following:

e Safety: Changes in fatal and injury crashes, for motorized and non-motorized travel
modes;

e Health: Impacts associated with changes in physical activity from nonmotorized travel;
e Cost Reductions:
o Changes in infrastructure maintenance costs associated with VMT; and,

o Potential reductions on infrastructure construction costs associated with more
compact development patterns.

Based on the analysis of future scenarios, concentrated growth reduced VMT by nearly 10 miles
per person per week compared to dispersed patterns, demonstrating the opportunity for smart
growth strategies in Vermont and the impact they might have on travel patterns. Of the
scenarios evaluated, focusing growth in areas with low VMT and emulating prototype smart
growth communities with low VMT were most effective in reducing weekly per capita VMT
overall. The GHG emission reduction potential of smart growth, based on scenario
evaluations, could amount to over 15% of the annual reduction needed to achieve the
2050 Global Warming Solutions Act targets. Conversely, dispersed settlement patterns can
produce an increase in emissions of up to 20% of the annual target, working against other
mechanisms to drive down annual GHG emissions. Beyond VMT and GHG emission
reductions, the most effective future scenarios (i.e., emulating the lowest VMT communities)
demonstrated the benefit of smart growth strategies on outcomes associated with the
transportation system in Vermont, including:

o safety outcomes with 1 avoided traffic death and over 30 avoided traffic injuries per
year;

e health outcomes with reduced physical inactivity mortality by saving nearly 4 lives
annually; and,

¢ maintenance outcomes with reduced annual maintenance costs by over $1.5 million.



There are communities within Vermont where the built environment supports more condensed

travel patterns. There are also locations in Vermont that seem to produce more VMT and GHG
emissions on average even though characteristics of their built environment reflect patterns of

smart growth. Zooming in on a few communities through the lens of these scenarios illuminated
some key takeaways for contextualizing the results of this study, including:

o Denser, mixed land uses require job proximity to achieve targeted VMT and GHG
reductions, necessitating holistic planning to co-locate jobs relative to compact centers
and livable neighborhoods to strike a jobs-housing balance;

e Vermont’s historical settlement patterns and predominant landscape of denser
centers surrounded by more rural areas lends itself inherently to smart growth
strategies where the state’s “good bones” can be enhanced through thoughtful, context
sensitive modifications to density, land use mix, proximity to jobs, and civil infrastructure;

¢ Regional neighbors influence VMT and travel patterns where condensed movement
patterns within town centers may serve some needs complemented by more expansive
travel patterns to adjacent communities to serve other needs.

These communities offer insights on the potential scope and scale of VMT and GHG reductions
that are possible through implementation of smart growth strategies. The work at the local and
regional level to encourage and operationalize smart growth principles can have a statewide
impact, contributing over 15% of the year-over-year GHG reduction targets required to meet the
goals set forth in the Global Warming Solutions Act.



INTRODUCTION

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set
targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by
2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that
transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the
Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for
meeting GHG reduction. The Climate Action Plan further identified a high priority action to
quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont
context.

This project evaluates how future patterns of land use and built environment development for
the state of Vermont may influence transportation GHG emissions. The project explores the
overarching hypothesis that compact, mixed use development patterns intrinsically generate
less VMT and GHG emissions per person than more dispersed or rural settlement patterns. In
such an exploration, the two primary focal points of the research were to:

1. Demonstrate the degree to which smart growth strategies, particularly in the Vermont
context, can reduce VMT to meet transportation related GHG emission reduction
targets as promulgated in the Vermont Pathways Analysis Report (“Pathways”).

2. Quantify the co-benefits of smart growth strategies beyond GHG emission reductions.
Such benefits include health benefits of increased active and multimodal travel, safety
benefits for reduced VMT, reduced maintenance associated with fewer vehicles and
possibly fewer lane miles, and increased economic activity located in downtowns and
community centers.

To achieve these research objectives, a project was funded through the VTrans Research
Program assembling a team including a project champion from VTrans Policy & Planning and
researchers from RSG and VHB. In order to guide the research project and support key
decision making, a Technical Advisory Committee (TAC) was assembled with representation
from the Agency of Transportation’s Highway Division, Environmental Policy & Sustainability
Section, Policy Planning and Intermodal Development Division, Agency of Digital Services’
Vermont Center for Geographic Information, Agency of Commerce & Community
Development’s Community Planning & Revitalization Section, Agency of Natural Resources’
Climate Action Office, Vermont Natural Resources Council, and Conservation Law Foundation.
With this team and advisory assembled, the project encompassed five phases of work:

e A review of built environment measures and travel behavior. Described in Chapter 2,
this foundational step reviewed academic literature exploring how the built environment
shapes travel behavior. Findings from this review informed which built environment
measures were to be included in a spatial database developed for the state of Vermont
and used in the other phases of this project.

¢ Developing estimates of baseline per capita VMT for Vermont residents. The next
phase of work, described in Chapter 3, leveraged passively collected location data to



develop estimates of typical weekly VMT based on a sample of approximately 30,000
Vermonters.

Developing a Vermont-specific VMT model. The third phase of work combined the
spatial database developed during the first phase with VMT estimates from the second
phase to develop a regression model that can be used to estimate or predict how per
capita VMT changes when built environment measure(s) in the spatial database change.
This work is described in Chapter 4.

Estimating VMT for future development scenarios. The fourth phase of work,
described in Chapter 5, developed future growth scenarios in conjunction with the
project’s Technical Advisory Committee (TAC) for how the built environment might grow
and change. The model developed in the third phase was applied to predict how these
different scenarios would impact VMT and other benefits associated with reduced VMT.
Potential benefits related to changes in VMT included greenhouse gas (GHG) emission
reductions, public health and traffic safety benefits, and cost savings for VTrans. A
dashboard tool was developed to support decisionmakers by providing a means to
interact with scenario parameters and model outcomes in a GIS environment at the
neighborhood scale and summarize the future scenario outcomes at the statewide scale.

Contextualizing future scenarios with case studies. Finally, case study narratives
were developed for several Vermont communities. lllustrative examples from different
Vermont communities across the spectrum of outcomes for future scenarios offers a
roadmap for using the dashboard tool to evaluate localized and regional smart growth
initiatives. The case studies and final takeaways for the study are described in Chapters
6 and 7, respectively.



BUILT ENVIRONMENT MEASURES

The first phase of this project reviewed existing literature on how the characteristics of the built
environment impact travel behavior. This work informed the development of a spatial database
of built environment measures comprised of the characteristics most relevant to understanding
this relationship between the built environment and travel behavior in Vermont. A foundational
step in understanding how the built environment shapes travel behavior is developing measures
that describe characteristics of the built environment. This chapter summarizes this literature
with three specific aims:

e Inform the selection of built environment measures included in the spatial database.
e Provide guidance on data sources and methods used to develop such measures.

¢ Identify limitations and considerations that should be made in exploring the relationship
between the built environment and travel behavior in the Vermont context.

Section 2.1 presents a high-level overview of the literature review and Section 2.2 digs deeper
into how specific built environment measures shape travel behaviors. Section 2.3 introduces
three cross-cutting themes and Section 2.4 summarizes limitations of the existing literature.
Finally, Section 2.5 discusses issues specific to the Vermont context and Section 2.6 describes
the database of built environment measures. An annotated bibliography is provided in Appendix
A for reference.

LITERATURE REVIEW

The literature investigating the relationship between the built environment and travel behavior is
large and complex. Several recent review papers have succinctly summarized this expansive
body of work. Rather than conducting our own independent review of the literature, we instead
began this review by identifying these review papers. We then conducted a brief supplemental
review using the snowball method (i.e., identifying more recent papers that cited these keystone
reviews) and targeted searches with keywords to uncover work in the rural context. Identifying
cross-cutting themes, we performed a more targeted review of studies exploring the relationship
between VMT and the built environment in the context of these themes.

Overview

The keystone papers used in our snowball sampling approach—two recently authored by Reid
Ewing and others—explore the relationships between the built environment and travel behavior
using the ‘five D’ variables to frame their findings." These variables seek to independently
characterize aspects of the built environment that influence travel choices. Each of these five
elements typically represent built environment land use attributes that may or may not be
intentionally designed to impact travel patterns:

" These two keystone papers are Ewing and Cervero 2017 and Ewing et al. 2019



The Five Ds

e Density: The number or concentration of land use opportunities per square mile, such as
dwellings, households, people, and jobs.

e Diversity: The number and mix of different land uses within a certain area, which is often
measured by land use mix and jobs-housing balance.

e Design: Physical features of the built environment that impact travel patterns, such as
sidewalks, cycle paths, and street design. Metrics that are used to quantify design
include intersection/street density and number of 4-way intersections.

e Destination Accessibility: When destinations are more accessible, people may be able to
travel shorter distances and/or use non-automobile modes to reach goods and services.

e Distance to Transit: The proximity to transit service.

Additional dimensions (Ds) have been proposed to supplement the original five Ds research.
Travel demand management is a sixth D that is sometimes included in this research and
consists of policy interventions or strategies which are explicitly designed to impact travel
demand.? Demand management is a broad category that may or may not include land use
elements and includes strategies such as parking pricing, transit incentives, and technology.
This review focuses on the traditional “five Ds” described above.

VMT AND THE FIVE DS

Within the five Ds framework, certain dimensions may impact different travel choices in different
ways. For example, physical design and land use diversity may be more influential on mode
choice decisions whereas destination accessibility may be more influential on trip distance.
Importantly, VMT is influenced by many travel decisions, including mode choice, deciding
when/how often to travel, and how much distance needs to be travelled to reach destinations.
This complexity is well-described in Ewing et al:

“...destinations that are closer, as a result of higher development density or greater land
use diversity may be easier to walk or bike to than drive to. Also, origins that are closer
to high quality transit, and hence to destinations regionally via transit, render transit a
viable alternative to the automobile. People living in such environments will tend to own
fewer vehicles. Also, a household’s vehicle fleet can be utilized more efficiently when
destinations are close by, as trip chaining and carpooling become more practical.?

Despite this complexity, the research consistently finds that households that live in dense,
mixed-use, and transit served areas tend to drive less compared to households in areas that do
not have these characteristics.

2(Qgra, 2014
3 Ewing et al. 2019



Quantifying the Effects of the Five Ds on VMT

A prevailing approach in the literature is to develop elasticities describing how changes in the
five Ds can be expected to change VMT. Elasticity refers to the relative change in an outcome
variable (VMT) given a change in an exploratory variable (one of the five Ds). For example, the
elasticity of a VMT in relation to the density of bicycle lanes would describe the expected
percent change in VMT given a 1% change in the density of bicycle lanes. Ewing and Cervero
presented elasticities for the five Ds using different methods and assert that the elasticities in
the second column of the table below are the most reliable estimates available (Table 1).

TABLE 1. VMT & 5 D VARIABLE ELASTICITIES*

META-
REGRESSION
ELASTICITIES
ACCOUNTING

FOR SELF-
SELECTION
AND
REPORTING
BIAS »

META-
WEIGHTED WEIGHTED REGRESSION
AVERAGE AVERAGE ELASTICITIES

ELASTICITIES ELASTICITIES ACCOUNTING
a 2 FOR SELF-
SELECTION »

Household/population

Density . -0.04 -0.15 -0.22 -0.22
density
Job density 0.00 -0.01 007 . 007 ...
Diversity ~ -2nduse mx )(e”tmpy -0.09 007 +0.03 +0.11
Jobs-housing balance -0.02 -0.03 U NA 0.00 ...
Design Intersection/street 0.12 0.16 NA 0.14
ensity
% 4-way intersections -0.12 -0.06 e NA 006 .
Destination Job accessibility by
Accessibility auto -020 025 NA -0.20
Job accessibility by
transit -0.05 -0.07 NA 0.00
Distance to downtown -0.22 +0.01 -0.29 . -063 ...
Distance to Distance to nearest
Transit transit stop -0.05 -0.06 NA -0.05

@ Ewing & Cervero sample
b Stevens sample

... Increases in one built environment variable alone
may not yield expected reductions in VMT without
other variables supporting lower VMT levels—for
example, increases in population density absent
diverse land uses and access to transit may not result
in VMT reductions below what would otherwise be
expected. This highlights a possible “sum greater than
the individual parts” characteristic of the five Ds.

4 Adapted from Ewing & Cervero 2017



Across different dimensions of the built environment, these elasticities vary dramatically. Within
the “Weighted average elasticities: Stevens sample” estimates, for example, job density seems
to have a minor effect—a 0.01% reduction in VMT given a 1% increase in job density—while job
accessibility by auto has an effect size roughly 25 times higher (Table 1). Applying other
methods, however, the impact of job density is larger while the impact of auto job accessibility is
lower (column 4 of Table 1).

The variability across studies and the five D measures themselves reflect the nuances in the
relationship between the built environment and travel behavior, as described previously by
Ewing. While the five Ds are typically treated as (somewhat) independent of one another in the
literature, these variables are often correlated. Further, increases in one built environment
variable alone may not yield expected reductions in VMT without other variables supporting
lower VMT levels—for example, increases in population density absent diverse land uses and
access to transit may not result in VMT reductions below what would otherwise be expected.
This highlights a possible “sum greater than the individual parts” characteristic of the five Ds.
While the literature has sought to isolate the effects of each, the effects of these variables in
VMT may be interrelated. Interestingly, while plotting a single built environment measure alone
may reveal a relationship with VMT—as demonstrated in work by Litman (Figure 1)—accounting
for variables across different dimensions often strengthens such associations.

FIGURE 1. VMT PER CAPITA AND POPULATION DENSITY?
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To better understand the nuances of these relationships, a recent study sought to isolate the
effects of the five Ds on specific travel choices to support the development of travel model

5 Adapted from Litman 2022



enhancement in the Salt Lake City, Utah region.® This study reviewed existing work in the
context of elements of the travel demand model, such as walk and bike mode choice models
(Table 2 and Table 3, respectively). Walk mode choice tends to have a positive relationship with
higher population, job density, higher commercial floor area ratio, more diverse land use, and
short distance to commercial destinations.

TABLE 2. WALK MODE CHOICE AND THE 5DS’

BUILT ENVIRONMENT MEASURES

. . . . Destination
METHOD Density Diversity Design accessibility
Hamre & Buehler MNL Population ) ) )
(2014) density (+)
Distance to
Reily & Landis MNL Population closest ) )
(2002) density (+) commercial
use (-)
Frank et al. NL Retail floor Land use mix Intersection density )
(2008) area ratio (+) (+) (+)
Ferrell et al. MNL Population ) 4-way intersection )
(2015) density (+) density (+)
Rajamani et al. MNL ) Land use mix % Cul-de-sac }
(2003) (+) streets (-)
Jobs-to-
Mitra (2011) BNL - population ratio Block density (+) -
()
Ozbil & Peponis LNR ) Mixed-use Street connectivity )
(2012) entropy (+) (+)
Ewing et al. MNL ) ) Average sidewalk Walk time to
(2004) coverage (+) school (-)
. Intersection density s
Evggoegt)al. MNL ) ) (+), Sidewalk Jobsmvivlgh(lr)one
coverage (+)
Aziz et al. (2017) MNL - - Street width (+) -
3-way/4-way
Khan et al. (2014) MNL - - intersection density

)

MNL: Multinomial logit regression
NL: Nested logit regression
BNL: Binomial regression

LNR: Linear regression

(+) = positive relationship

(-) = negative relationship

Similarly, bike mode choice related to higher population densities and greater mix of land uses.
Interestingly, higher job and population densities have also occasionally been found to result in
less biking—potentially due to other built environment measures such as street design and
automobile traffic that may be present barriers to cycling in dense environments (Table 3).

6 Ewing et al. 2019
7 Adapted from Ewing et al. 2019
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TABLE 3. BIKE MODE CHOICE AND THE 5DS?®

BUILT ENVIRONMENT MEASURES
Destination
accessibility

METHOD Density Diversity Design

_______ Tl . MNL o, Mieduwse( TG
Hamr(ezg‘ﬁl;ehler MNL ggggilstlgr.; Urbaz core Bikeway supply (+) )
Population 4-way intersection
Khan et al. (2014) MNL density (+), Job - .
density (-) density (+)
Bike land length
Aziz et al. (2017) MNL - - width (+), Fraction -
open space (+)
Ewing et al. Walk time to
(2004) MNL - - school (-)

MNL: Multinomial logit regression

(+) = positive relationship

(-) = negative relationship
A recent study from Portland State University provides additional support for the relationship
between built environment measures and multimodal travel across the US.® Controlling for
sociodemographic variables, the author analyzed the relationship between multimodal travel
behavior and built environment variables such as population density, accessibility, and job
diversity for roughly 200,000 census block groups. Using linear regression and machine
learning with American Community Survey and EPA Smart Location data, the author found
statistically significant built environment predictors of multimodal travel. The author concludes
that “planners who would like to encourage multimodal travel behavior should consider the
features, particularly population density, regional accessibility, walkability index, and network
density, when developing their land-use design strategies for the transportation system.”

TABLE 4. REGRESSION ANALYSIS OF VMT, SMART LOCATION DATABASE VARIABLES"®

VARIABLES ESTIMATE STD. ERROR T-VALUE P-VALUE VIF
Constant 0.359 0.007 48.780 <0.001 -
Population density 0.010 <0.001 24.190 <0.001 1.535
HH, job diversity -0.082 0.063 -1.294 0.196 1.017
Job diversity -0.023 0.003 -7.851 <0.001 1.592
Network density -5.998 1.140 -5.262 <0.001 6.031
Intersection density 2.223 0.123 18.091 <0.001 3.936
Walkability index 0.011 <0.001 45.797 <0.001 4.443
Job proximity 0.014 <0.001 32.686 <0.001 1.180
Auto accessibility -0.080 0.002 -36.339 <0.001 1.559
Transit accessibility 0.146 0.003 42.948 <0.001 1.935
Household size 0.024 0.001 22.794 <0.001 1.606
Household income 0.001 <0.001 3.826 <0.001 2.995
White -0.018 <0.001 -37.876 <0.001 6.550
Black -0.015 <0.001 -30.829 <0.001 4.905
Asian 0.013 0.001 17.815 <0.001 2.202
Single 0.037 <0.001 78.524 <0.001 1.857
Low education -0.002 <0.001 -5.323 <0.001 2.960
No car 0.025 <0.001 81.355 <0.001 1.410
Work at home 0.044 0.001 49.115 <0.001 1.180
Observations 206,380
Model adjusted R? 0.309

8 Adapted from Ewing, Sabour, et al, 2019
9 Lee, 2022
10 Adapted from Lee 2022



CROSS-CUTTING THEMES

Apart from overall findings related to the five Ds and VMT, several other themes emerged
during this review. First, a range of techniques are used to develop the built environment
measures that are foundational to studies on this topic, and the way these variables are
measured is important. Second, while there is strong evidence of these relationships in urban
contexts, much less is known in rural contexts. Finally, built environments that support lower
VMT often have other measurable benefits, such as reduced maintenance costs due to reduced
infrastructure needs.

Theme 1: Measurement Matters

The five Ds can be calculated in different ways. Two common approaches in the literature use
non-uniform geographies: 1) calculating variables within an underlying geography, such as
census block groups; or 2) calculating variables within buffers around specific coordinates, such
as home locations. Both non-uniform methods such as these have important drawbacks. First,
calculating built environment measures within nonuniform geographies can present issues
related to boundary effects and the modifiable unit problem, and tend to understate variation as
the size of polygons in the underlying geography increases.'! This can be particularly
problematic in rural areas where Census geometries are typically very large. Calculating the five
Ds within buffers tends to mitigate these limitations but can be computationally difficult as the
number of buffer operations required increase (e.g., when calculating buffers for big data
sources, such as passively collected location data).

Grid-based options, where built environment measures are calculated within grid cells spanning
a study region offer a nice compromise between these two prevailing methods. Grid-based
techniques can mitigate spatial sampling bias and the modifiable areal unit problem, result in
less information loss when underlying data are available at high resolutions, and simplify
computation across large geographic areas. An example of such an approach is described in
Mansfield et al.'?

Theme 2: Understanding the Rural Context

While there is ample research on the relationship between elements of the built environment
and VMT in urban settings, there is less understanding of this relationship in rural settings
where there are fewer, and lower densities, of both people and places. A 2009 study from the
University of Vermont Research Center provides some evidence from two small size towns in
Maine, Lisbon and Sanford, which have a similar built environment to many areas in Vermont.™
The study showed relatively low reductions in VMT (less than 1%) for 3 different smart growth
modeled scenarios, which assumed that household and employment growth would be
redirected to dense, mixed-use infill developments in certain parts of each town. Notably, the
study isolated the influence of dense mixed-use infill development without including significant
upgrades to transit service. As a result, the authors concluded that “the efficacy of the smart

" Houston, 2014
12 Mansfield et al 2023
13 Weeks, 2009
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growth scenarios to reduce VMT in Lisbon and Sanford is greatly limited without transit to
complement the proposed dense, mixed-use developments.” A more recent 2020 study from
Florida provides some additional nuance about the VMT impact of land use strategies in rural
areas’. This study was based upon a robust panel dataset of all 67 counties in Florida between
the 2001 and 2014, with a total of 938 county/year data points, which the authors used to
estimate a log-linear model of a county’s VMT in relation to eight land use types. Like other
studies, this one demonstrated the general observation that compact development is generally
associated with reductions in VMT. Yet, the study showed that for rural counties in Florida, the
effects depend on the type of land use that is included in built environment. In particular, the
study showed that in rural areas concentrating industrial and institutional properties produces
VMT reductions while the concentration of residential housing units did not produce similar
reductions. Critically, the Florida study quantified built environment measures at the county
level, potentially missing the role of within-county variability (e.g., small town centers
accompanied by more traditional suburban development patterns) in shaping VMT—further
highlighting the importance of the measurement matters theme described above.

Theme 3: The Benefits of VMT Reductions

There also exists ample research to indicate the benefits of compact development. The
literature documents the relationship between urban form and other attributes related to the built
environment such as cost of maintenance and operations of the assets, stormwater and other
environmental impacts such as health and safety.

For example, a 2013 study in Nova Scotia showed that compact development that “increases
the portion of new housing located in existing urban centers from 25%- 50% reduced
infrastructure and transportation costs approximately 10% and helped improve public health and
reduced pollution emissions”'®. Furthermore, a 2017 analysis of 300 academic papers found
that “69% identify positive effects associated with compact urban form: over 70% attribute
positive effects of economic density (the number of people living or working in an area), 58%
attribute positive effects to land use mix, and 56% attribute benefits to urban density'®”.
Moreover, there are space benefits of compact development that go beyond VMT. As density
increases, fewer roadway facilities are needed on a per capital basis (Figure 2). In fact, smart
growth development patterns require less than half as much land for housing, roads, and
parking facilities relative to sprawl (Table 5). Such reductions in total space consumed from the
built environment can benefit roadway maintenance costs as well as stormwater costs (Figure
3). One estimate indicates that sprawl increases local road lane-miles 10%, annual public
service costs about 10%, and housing development costs about 8%, increasing total costs an
average of $13,000 per dwelling unit, or about $550 in annualized costs.'” In a recent study,
Mattson reached similar conclusions, stating that “construction and operating costs of municipal
streets and highways, emergency services (expect police operations), parks and recreation,

14 lhlanfedlt, 2020

15 Stantec, 2013

16 Ahlfeldt and Pietrostefani, 2017
7 Burchell and Mukheriji (2003)



water, sewage and solid waste management tend to decline with density”'®. Other work has
reached similar conclusions related to the cost of fire protection in Charlotte, North Carolina
and simar overall cost reductions with increasing density in the Latin American context°.

FIGURE 2. URBAN DENSITY VERSUS ROADWAY SUPPLY ACROSS REGIONS IN THE UNITED
STATES?
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TABLE 5. PER CAPITA IMPERVIOUS SURFACE AREA, SMART GROWTH VS SPRAWL
CONDITIONS?

SMART GROWTH MIXED SPRAWL
Vehicles per capita 0.8 0.65 0.5
Road space per vehicle (ft?) 235 453 670
Off-street parking spaces per capita 2 4 6
Land area per parking space (ft?) 275 300 325
Housing footprint per capita (ft?) 250 375 500
Road and parking land area per capita (ft?) 878 1,344 1,810

8 Mattson, 2021

9 CDOT 2021

20 de Duren and Compean, 2015
21 Adapted from Litman, 2022

22 Adapted from Litman, 2022
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FIGURE 3. RESIDENTIAL SERVICE COSTS INCREASE AS DENSITY DECREASES®
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2.4 LIMITATIONS

There are two notable limitations of the literature reviewed here. The first, described above, is
the relative lack of rural studies on this topic. Critically, this study will help fill this gap in the
literature by exploring built environment relationships with VMT across Vermont, inclusive of
many rural areas across the state. Second, much of the existing literature relies on cross-
sectional data, and self-selection may bias findings (i.e., individuals may sort into
neighborhoods that support lower VMT, resulting in differences in underlying preferences for
non-auto travel between neighborhoods that bias regression models). Two notable studies have
addressed this issue using longitudinal panel data—Ilhlanfeldt and Knuiman et al.—and both
have still found associations between built environment and travel behavior, though attenuated
relative to other studies that did not account for self-selection?*. While the passively collected
data that will be used for this study are longitudinal, privacy restrictions preclude our ability to
control for possible self-selection bias. Nonetheless, using a novel data source to explore the
relationship between VMT and the built environment will strengthen the findings of the literature.

Critically, this study will help fill this gap in the
literature by exploring built environment relationships
with VMT across Vermont, inclusive of many rural
areas across the state.

2.5 UNDERSTANDING THE VERMONT CONTEXT

While the themes from the literature review describe the relationship between the built
environment and VMT in more urban and suburban contexts, Vermont is a predominantly rural

28 Adapted from Litman, 1989
24 Knuiman et al., 2014



state with relatively low population density. There is evidence that, despite its predominantly
rural character, areas in Vermont with more urban-like built environment still generate reduced
VMT demonstrating a similar directional relationship to more urban places. Importantly, there is
evidence that downtown residents across most of the state travel less than average, though
there is variation across the state (Figure 4). While limited, there is also evidence from the 2009
National Household Travel Survey that downtown residents produced less VMT than others in
the state (Figure 5).

Average Daily Distanced Traveled as % of State Average
Downtowns

Bennington

Burlington

Brattleboro

Rutland City

Springfield

Montpelier

Newport
Waterbury
Bellowsfalls
Poultn
White River Junction
Middlebury
Brandon
Qutside
Bristol
Stowe
Randolph

Wilmington

FIGURE 4. ANALYSIS OF OCTOBER 2019 SAFEGRAPH DATA IN VERMONT?®

There is evidence that, despite its predominantly rural
character, areas in Vermont with more urban-like built
environment still generate reduced VMT
demonstrating a similar directional relationship to
more urban places.

25 John E. Adams using Safegraph data from 2019
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FIGURE 5. ANNUAL VMT BY LOCATION, FROM VERMONT 2009 NHTS?

SPATIAL DATABASE OF BUILT ENVIRONMENT
MEASURES

Based on the findings of this literature review the project team assembled a built environment
database for Vermont. Built environment measures included in this database characterize the
five Ds described in this chapter, including measures of population and employment density,
land use diversity, physical design, destination accessibility, and access to transit. A uniform
hexagonal grid was used as the underlying geographic unit for calculating these measures,
adopting the grid-and-buffer methods described previously.?” A summary of this database is
presented in Appendix B.

26 John E. Adams using the 2009 NHTS (Vermont purchased the add on)
27 https://h3geo.org/docs



3.0 ESTIMATING BASELINE VMT

In addition to the built environment measures described in Chapter 2, estimates of VMT are
required to develop a model predicting VMT based on built environment measures. To develop
VMT estimates under current land use and built environment conditions, the project team
leveraged passively collected location-based services (LBS) data. LBS data are generated by
location-aware applications installed on mobile devices and typically offer samples sizes orders
of magnitude larger than those in most travel surveys. However, unlike travel surveys, these
data contain minimal contextual data in raw form and require extensive processing to develop
useful transportation metrics. For this project, RSG obtained and processed passively collected
LBS data for all devices seen in Vermont in 2019.

3.1 LBS DATA PROCESSING

Raw LBS data records have limited information—typically only a unique identifier, a timestamp,
and a location. As a result of this limitation, all information on travel behavior and attributes of
the device owner (home and work/habitual locations) must be imputed. Furthermore, raw LBS
data includes devices with a wide range of data quality. Some devices may generate only a
handful of location records per month while others may generate thousands of records daily.
Thus, it is critical for data processing steps to include devices only with sufficient data quality to
produce reliable inferences and apply methods, such as weighting, to account for differences in
device quality. The workflow RSG has developed to process LBS data includes three primary
components: preparing study geometry, data filtering, and data processing (Figure 6). These
components are described in turn below.

- - Filter quality devices: B

> Select devices in 1) space/time coverage y _

RSG data igll study area/time il 2) median speed Project data
store period 3) daily distance selection

Database Study
geometry

Identify device
anchor locations
("clusters™)

Device-level operations

Cluster-level operations

Dwell-level operations

Unexpanded KR Identify trips
trips

Trip-level operations

Sighting-level operations

database

FIGURE 6. DATA PROCESSING WORKFLOW

Preparing Study Geometry

Before processing LBS data for Vermont, the project team compiled demographic, land use,
transportation network, and point-of-interest (POI) data across the state. Census blockgroups
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were used to generate an underlying geometry for the region, and transportation network data
were obtained via the OpenStreetMap (OSM) API using the OSMnx Python package.?®
Additionally, a nationwide layer of airports was obtained, and all airport polygons were included
as airport POI data for the study.

The project team also obtained E911 data for the state, including point data with land use
descriptions and building footprint polygon data (with no land use designation). The RSG team
used E911 point data to append land use designations to the E911 building footprint data. To do
so, the 133 unique land use descriptions in the point data were collapsed into 21 categories
(Table 6). Next, the E911 point closest to each building footprint was calculated using a nearest
neighbor search and land use designations were assigned to the building footprints. If multiple
uses were present within a single building footprint, that building was assigned one of the
mixed-use categories (mixed-use with residential or mixed-use without residential, depending
on whether one of the uses tagged to the footprint was residential). Finally, non-building
footprints categories (airport, agriculture, golf course, park, shopping, stadium, trail, quarry)
were tagged as “non-building” POI. The resulted in a comprehensive land-use dataset spanning
the state (Figure 7) and a POI dataset containing airports nationwide and other “non-building”
POI within Vermont.

P anti\al
rgsidentill s
3 '

FIGURE 7. COMPILED LAND-USE DATASET IN BURLINGTON, VT

28 Boeing, G. 2017. “OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing
Complex Street Networks.” Computers, Environment and Urban Systems. 65, 126-139.
doi:10.1016/j.compenvurbsys.2017.05.004
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TABLE 6. AGGREGATION OF E911 LAND-USE CATEGORIES

AGGREGATE LAND-USE CATEGORIES E911 LAND-USE LABELS

Sugarhouse, accessory bard, greenhouse/nursery,

Agriculture commercial farm, fish farm/hatchery
. Air support/maintenance facility, helipad/heliport/helispot,
Airport : .
airport terminal
Commercial Commercial, other commercial, bank, commercial garage
Education Educational, school k-12, college/university

Entertainment

Museum, historic site/point-of-interest, fair/exhibition/rodeo
grounds.
auditorium/concert hall/theater/opera house, cultural, fitness
facility, ice arena, public gathering, golf course

Gas stations, rest areas

Gas station, rest stop/roadside park, visitor/information center

Healthcare

Health clinic, veterinary hospital/clinic, ambulance service,
outpatient clinic, hospital/medical center

Hotel

RV hookup, lodging b&b/hotel/motel/inn

Industrial/utility

Oil/gas facility, gravel pit/quarry/mine, industrial, lumber
mill/saw mill, transfer station, manufacturing facility,
commercial construction service, hazardous materials facility,
communication box, communication tower, solar facility, utility
pole w/phone, water tank, substation, pump station, public
telephone, utility, hydroelectric facility, water tower,
wastewater treatment plant, wind facility/wind tower, public
water supply well, landfill, public water supply intake,
hazardous storage facility, waste/biomass facility

Mixed-use w/ residential

Any combination of two uses in same building footprint,
including at least one residential use

Mixed-use w/out residential

Any combination of two uses in same building footprint,
including at least one residential use

Officelinstitutional

Government, office building, town office, city/town hall, town
garage, state garage, state government facility

Other

Other, accessory building, unknown

Park-and-ride

Park-and-ride/commuter lot, bus station/dispatch facility

Recreation

Camp, campground, trailhead, shooting range, cemetery,
boat ramp/dock, ski area/alpine resort, community/recreation
facility, picnic area, state park, racetrack/dragstrip, sports
arena/stadium, lookout tower, public beach, harbor/marina,
youth camp

Residential

Commercial w/residence, single-family dwelling, multi-family
dwelling, seasonal home, mobile home, condominium, other
residential, residential farm, nursing home/long term care,
institutional residence/dorm/barracks

Retail

Restaurant, grocery store, retail facility, brewery, pharmacy

Services

House of worship, fire station, national guard/armory, law
enforcement, library, US government facility, courthouse,
post office, day care facility, US forest facility, border
crossing, morgue, state capitol, coast guard, border patrol,
prison/correctional facility

Train station

Railroad station

Warehouse

Storage units, warehouse, food distribution center, private
and express shipping facility

Ignore

Development site, access point, gated w/building, gated w/o
building, abandoned, temporary structure, EBS tower, PSAP,
emergency phone/callbox
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Data Filtering

Once underlying geometry data were compiled, RSG’s nationwide LBS datastore was queried
to obtain all location records for any device seen within the Vermont state boundary in each
season of 2019. Data from 2019 was selected as a full year of data with seasonal affects was
desired for the study outside of the influence of the COVID-19 pandemic. For each device seen
within Vermont, this query obtained all records (both within and outside the state) to infer home
locations for both Vermont residents and Vermont visitors.

There is significant variation in quality across devices in the nationwide LBS sample. Some
devices are seen only sporadically while others show anomalous behavior (e.g., impossibly fast
travel times between locations records). Such devices are not useful for deriving travel behavior
information and including them in later analysis would produce unreliable inferences. RSG uses
a set of empirically derived inclusion criteria to isolate devices with data of sufficient quality to
produce reliable travel behavior estimates. Specifically, devices are only included if:

e The median speed between sightings over the full study period less than 91 feet per
second.?

e The average daily distance traveled is less than 2,400 miles (about the width of the
United States).

e Location records are present in at least 5% of all possible 30-minute time bins over the
study time period (referred to as “data density”).

e The device is observed in at least 10 unique 7-digit geohashes over the course of the
study time period.*

Data Processing

After filtering out poor quality devices, location records for all remaining devices are processed
on a device-by-device basis. For each device, a series of processing steps are used:

Enrich location records. While raw LBS data contain limited information, the land use, POI,
and transportation network data described above contain a wealth of contextual information that
can improve the accuracy of data processing. The following pieces of contextual information
were appended to each location record in the dataset:

1. Distance from nearest transportation network link and classification of nearest link®'

2. Distance from nearest building footprint and land-use classification for nearest building
footprint

3. Boolean indicating whether location record was inside a POI polygon and, if true, the
POI type

2% The set of all sightings for any given device includes both stationary and moving sightings. Devices
removed by this filter either periodically jump between locations at extreme speed or are rarely at rest.
30 Geohashing is a method to encode geographic coordinates. A seven-digit geohash represents
approximately a 153-meter by 153-meter square.

31 Classification based on OSM facility types (motorway, trunk, primary, secondary, tertiary, residential
street)



Identify stops. First, a smoothing algorithm is applied to calculate 5-minute average speed
across all location records and records are classified as “stopped” if smoothed speed is below 3
miles per hour. This smoothing algorithm helps identify true stopped sightings while not falsely
classifying short stops (e.g., stops at traffic lights or stops due to congestion) as “stopped.”

Identify anchor locations. Next, a spatial clustering algorithm?? is applied on all stopped
sightings for each device. A weighting function is used so that location records within or near
building footprint are more likely to produce clusters while location records near transportation
network links are less likely to produce clusters. The resulting groups of stopped sightings
represent anchor locations for the device; these are referred to as “clusters.” These clusters are
tagged to the study region’s underlying geometry—in this case, census block groups within the
state of Vermont.

Identify visits. Once clusters are established for the device, a “dwell” (or visit) is formed each
time a device is seen staying in the same cluster. The start of the visit is defined as the first
location record within the cluster and the end of the visit defined by the last location record
within the cluster.

Classify anchor locations. A device’s home location is inferred using observed overnighting
at anchor locations. A device’s work/habitual location is inferred by assessing the importance of
each location using methods from graph theory.*® Inferred home locations are used to classify
devices as resident devices (inferred home location inside Vermont) or visitor devices (inferred
home location anywhere else).

Identify trips. A “trip” is formed each time a device is seen moving from one cluster to
another. Each trip is routed on the OSM transportation network using a shortest travel time
algorithm. Long-distance trips and intermediate stops (e.g., a quick stop at a service station on a
longer trip) are identified as part of this process. Finally, trip attributes are calculated, including
trip purpose (e.g., home-based habitual trip), time of day (e.g., AM period), and routed trip
distance.

CUSTOM POST-PROCESSING

While the pipeline described in Section 2.1 includes devices that meet empirically derived
inclusion criteria suitable for most applications of passively collected data, generating reliable
VMT estimates requires stricter device filtering. To support device-level VMT estimation, a
custom post-processing pipeline was developed (Figure 8). First, a clustering algorithm was
applied to identify the highest quality tier of processed devices to improve the reliability of VMT
estimates and remove devices that likely represent non-passenger (e.g., commercial truck)
travel. Next, device records were resampled to identify the most representative travel week
within each time period. Finally, a mode choice estimation model was developed to identify trips
that do not contribute to VMT (non-motorized trips, ferry trips, and flights). These steps are
described in greater detail below.

32 Specifically, density-based spatial clustering algorithm with noise (DBSCAN).
33 PageRank calculated for a directed graph representing all the devices’ dwells.
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Developing Device Quality Tiers

To further differentiate processed devices into quality tiers and device type (passenger versus
commercial truck), several device quality metrics were calculated:

Data density: the number of 15-minute timebins with at least one location record divided
by the total number of 15-minute timebins between the device’s first and last timestamp.

Average dalily travel distance: total distance travelled by the device divided by the
number of days with at least one location record.

Percentage of days that start and end at home: the percentage of days on which the
device’s first and last location records were within the device’s home cluster divided by
the number of days with at least one location record.

Typical location score: the mean value of the location frequency score for all four-digit
geohashes visited by the device over the week, where the location frequency score for
each four-digit geohash is the percentage of all days in which the device visited the four-
digit geohash.3

Average trip distance: the average great circle (as the bird flies) distance of all trips
identified for the device.

34 A four-digit geohash represents approximately a 24-mile by 12-mile rectangle.



e Average trip duration: the average duration of all trips identified for the device.

e Percentage of truck visits: the percentage of visits identified for the device inside
Vermont for which the nearest land use is associated with commercial truck activity (gas
stations, industrial/utility land uses, rest areas, or warehouses)

e Percentage of flights: the percentage of trips that were flagged as suspected flights.

e Frequency of data anomalies: the average number of anomalous data events® identified
per day for the device.

Next, a kmeans clustering algorithm was applied, using the quality metrics above to identify five
device clusters. kmeans is an unsupervised machine learning technique which splits a dataset
into n clusters (in this case, 5) by maximizing the differences in metrics between clusters and
minimizing the differences in metrics within clusters. However, there is no guarantee that the
groups identified will be labeled consistently across applications of the algorithm (i.e., in some
cases the highest-quality devices may be labeled as group 1, in other cases the highest-quality
devices may be labeled as group 4, and so on). To ensure comparability across the four
seasons, a set of rules was developed to re-label kmeans-derived clusters into useful categories
(three quality tiers, commercial trucks, and junk devices. These rules were:

¢ Median data density and percentage of days that start and end at home scores were
calculated for each cluster and clusters were sorted based on the average of these two
scores.

e The cluster with the highest percentage of truck visits was labeled as “commercial
trucks”.

e The cluster with the highest combined frequency of data anomalies and percentage of
flights was labeled as “junk devices”.

e The three remaining unlabeled clusters were labeled as Tier 1 (highest mean data
density and percentage of days that start and end at home scores), Tier 2 (second-
highest scores) and Tier 3 (lowest scores).

Over the year, nearly 700,000 devices were seen in Vermont, over 145,000 of which were
identified as Vermont resident devices. Nearly 50,000 of these devices were identified as
commercial trucks or junk devices. Around 95,000 devices (including 26,651 Vermont residents)
were placed in the quality Tier 1, with larger numbers of devices in Tiers 2 and 3 (Table 7).

TABLE 7. PROCESSED DEVICE COUNTS, BY KMEANS-DERIVED GROUP
ALL DEVICES VERMONT RESIDENT DEVICES

Winter Spring Summer Fall Year : Winter Spring Summer Fall Year
Tier1 23,772 16,162 38,948 16,911 95,793 | 6,811 5,447 9,422 4,971 26,651
Tier2 51,893 35460 65,497 42,092 194,942 { 13,901 10,567 13,150 9,449 47,067
Tier3 99,226 61,047 118,406 57,126 335,805 { 19,931 13,233 18,675 10,390 62,229
Trucks 3,585 2,390 3,794 2,289 12,058 1,715 1,111 1,009 534 4,369
Junk 7,881 7,109 12,105 4,928 32,023 1,786 1,553 2,154 950 6,443
Total 186,357 122,168 238,750 123,346 670,621 44,144 31,911 44,410 26,294 146,759

35 Anomalous data events including sequential location records that are more than 100 kilometers apart
that travel greater than 1,000 kilometers per hour
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Given the scope of this project and in response to feedback from the Technical Advisory
Committee received during the December 16™ Technical Advisory Committee meeting, the
commercial truck and junk devices were dropped from the dataset. Additionally, all non-Vermont
residents were removed, leaving a dataset containing only Vermont residents grouped into three
quality tiers (bolded and shaded groups in Table 7).

Resampling Devices

Previous studies examining the relationship between built environment factors and VMT have
typically used travel survey data reporting only one day of travel, though a handful of studies
have used longer time periods.*® While passively collected data offer much longer time frames
of data collection, data quality can vary dramatically over time and can include periods of
atypical travel, like vacations. For this study, the project team developed a technique to
resample passively collected data to provide data like the travel survey data used in previous
studies, including only the highest-quality and most representative week for each device in each
season processed.

To resample these data, a set of quality metrics were calculated over a 7-day rolling window
over the length of each device’s record (that is, calculated for each consecutive 7-day period of
device records). To the extent possible, these quality metrics were different than those used to
identify device quality tiers. Importantly, these metrics also reference a third-party ground truth
per capita VMT datasets: the Bureau of Transportation Statistics (BTS) Local Area
Transportation Characteristics for Households (LATCH) estimates. LATCH estimates were
developed using data form the 2017 National Household Travel Survey (NHTS) and supply
tract-level suites of per capita VMT and person-miles travelled (PMT) across the United States,
based largely on socioeconomic characteristics and household types in each tract.’

Resampling was performed in two stages. First, device-weeks were included if they included all
7 days (i.e., had at least one location record for each day of the week), included at least one
trip, included at least 4 days inside Vermont, and had a data density of 0.33 or higher (at least
252 15-minute timebins with at least one location record over the week). Next, a composite
quality score was developed for each device-week using four quality indicators:

e Data density: the number of 15-minute timebins in the past week with at least one
location record divided by 762 (the maximum number of timebins in a week)

e Typical location score: mean location frequency score for the week.

e Deviation in trip rate relative to LATCH estimate: the absolute value of the difference
between the daily trip rate over the past week and the LATCH estimate of daily trips for
the tract identified as the device’s home location.

36 For example, Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the
Twin Cities region: evidence from a smartphone-based household travel survey, 2022

37 https://www.bts.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-
data/surveys/224076/latch2017methodology.pdf


http://www.bts.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-

e Deviation in observed miles travelled relative to LATCH estimate: the absolute value of
the difference between the sum of trip distances over the past week and the LATCH
estimate of PMT for the tract identified as the device’s home location.

For each device, the week with the highest quality score was retained and all other weeks were
discarded. Across the 4 seasons, a total of 135,947 devices were processed, and 29,943
devices had at least one qualifying device-week (labeled “qualifying devices” in Table 8 below).
Most Tier 1 devices (79%) had at least one week that met the inclusion criteria described above
while relatively few Tier 2 and Tier 3 devices had qualifying weeks (8.3% and 8.5%,
respectively; Table 8).

TABLE 8. DEVICES WITH AT LEAST ONE QUALIFYING DEVICE-WEEK AFTER RESAMPLING

WINTER SPRING SUMMER FALL
Devices Quali_fying Devices Quali_fying Devices Quali_fying Devices Quali_fying
devices devices devices devices
Tier 1 6,811 4,416 5,447 4,525 9,422 7,350 4,971 3,929
Tier 2 13,901 2,259 10,567 603 13,150 2,176 9,449 780
Tier 3 19,931 608 13,233 1,228 18,675 1,181 10,390 888
Total 40,643 7,283 29,247 6,356 41,247 10,707 24,810 5,597

Mode Choice Estimation

While LBS data contain information on all movements made by a device, not all movements
contribute to VMT. Ciritically, trips inferred from LBS data contain flights, non-motorized trips,
and trips made on public transportation modes such as ferries and buses. A multi-stage mode
choice model was used to identify four transportation modes for this study: motorized, non-
motorized, flights, and ferry trips. First, flights were identified directly using a combination of POI
information and trip characteristics:

e Trips with an origin and destination in an airport POI
e Trips with on origin or a destination in an airport POl and a speed greater than 125 mph
e Trips longer than 340 miles with a speed greater than 125 mph

Similarly, ferry trips were identified if a device had a trip with more than 25% of its location
records located in Lake Champlain.

To identify non-motorized trips, a logit regression model was fitted to Vermont trip data present
in the 2017 NHTS (n=2,620 trips) predicting the likelihood of a non-motorized trip (walking or
bicycling) based on trip attributes that could be calculated for trips in the passively collected
data. Prior to estimating the model, flights and ferry trips—trips for which mode was estimated
using other data sources—were removed:

T =PBo+ BXi+¢
where m; is the probability that trip i used a non-motorized mode (walking or biking), X;
is a vector of trip variables for individual i with regression coefficients £, and ¢ is an error term.

This regression model revealed largely expected relationship: A 1-mph increase in trip speed is
significantly associated with a 6% decrease in the likelihood that a trip was non-motorized while
a 1-unit increase in population density was associated with a 0.01% increase in likelihood (or a
1% increase in likelihood per 100-unit increase in population density). Weekend trips were 47%
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more likely to be nonmotorized (Table 9). Trip distance was also borderline significant in the
expected direction and was retained in the model to improve the application of the model to LBS
trips.

TABLE 9. NONMOTORIZED REGRESSION MODEL RESULTS

TRIP VARIABLE ODDS RATIO T-STAT
Trip length (miles) 0.94 -1.56
Trip speed (mph) 0.79 -13.44™
Trip OD population density (persons/mi?) 1.0001 4.36™
Trip on weekend 147 2.25"
Intercept 0.367 291"
AlIC 1,292.4
Pseudo-R? 0.39

“p<0.001 “p<0.01 'p<0.05

To identify non-motorized trips in the LBS data, coefficients from the NHTS model were applied
to calculate the non-motorized likelihood of each trip, after removing flights and ferry trips. For
each season, all LBS trips were then ordered based on the calculated likelihood, forcing the
likelihood to equal zero if the trip distance was greater than 25 miles (the longest non-motorized
trip length reported in the NHTS). Then, the top n ordered trips in each were labelled as non-
motorized so that the percentage of non-motorized trips in the LBS data matched the
percentage non-motorized in the NHTS. In general, trip metrics differed as expected based on
imputed mode, with the shortest mean distance and slowest mean speed for nonmotorized trips
and the highest mean distance and speed for flights (Table 10).

TABLE 10. TRIP SUMMARY BY MODE

MOTORIZED NON-MOTORIZED FLIGHTS FERRY TRIPS
Mean trip length (miles) 7.80 0.89 286 8.34
Mean trip speed (mph) 18.0 1.23 139 11.8
Number of trips 665,768 89,989 159 2,927

DEVICE WEIGHTING

LBS data contain only a sample of all persons in the population and, even after isolating the
highest quality available week for each device, may contain incomplete information on device
travel. A two-state weighting process was applied to scale observed VMT in the sample of LBS
devices for each season to the expected population-level VMT across the state of Vermont: a
demographic expansion to scale the sample of LBS devices to represent the population and a
temporal adjustment applied to account for travel that may have been missed when a device
was not providing data.

First, the sample rate for LBS devices was calculated at the blockgroup level by dividing the
number of devices with a home location in each blockgroup by the 2019 American Community
Survey (ACS) population of adults®®. A demographic weight (i.e., the number of devices
represented by the device) was then calculated for each device by taking the inverse of the
sample rate. A demographically expanded population-level VMT was then calculated at the tract
level:

38 | BS data obtained from our supplier do not contain data for children under the age of 18



VMT_let = Z vmtl"t Wl'

where VMT_lbs, is the LBS-estimated VMT for tract t, vmt;, is the estimated VMT for
device i in tract t, and W, is the demographic expansion factor for tract t.

Next, the daytime data density (i.e., data density calculated only during daytime hours when we
would expect most trip making to occur) was calculated for each device. The difference between
tract-level VMT estimates and expected values derived from LATCH estimates was the
calculated, providing an estimate of “missing” VMT in the LBS estimates before any temporal
adjustments:

VMT _res; = VMT _latch; — VMT_lbs;

where VMT _res; is the error in LBS-estimated VMT relative to the LATCH VMT estimate
for the tract, VMT _latch.. Finally, missing VMT for each tract was assigned to devices
proportionally based on the number of missing daytime timebins, in the form of a temporal
adjustment factor:
. 1—dit)'VMT rest
vmt_adj;; =vmt;, = ztl1—di,t o
where vmt_adj; . is the adjusted VMT for device i in tract t and d;; data density for
device i in tract t.

After this two-stage weighting process, each device has two distinct expansion factors: a
demographic expansion factor that represents how many persons are represented by the device
and an adjusted VMT estimate (vmt_adj; ) that accounts for “missing VMT” relative to LATCH
estimates, accounting for difference in sampling across blockgroups. The difference in these
two factors is important for Task 4: while the demographic factor may be useful as a weight in
regression modeling, the temporal adjustment is critical in grounding LBS-based estimates of
VMT to a third-party dataset and ensuring models estimated using these data fully account for
expected VMT across the state.

RESULTS

The data processing steps described in Section 3.2 produced a dataset consisting of devices,
trips made by these devices over the course of a week, and an adjusted estimate of weekly
VMT. These data are described below.

VMT Dataset Summaries

The resampled dataset contains over 750,000 trips made by nearly 30,000 devices across the
year (Table 11). This sample is orders of magnitude larger than survey data available in
Vermont, including the 2017 NHTS, and much larger than most samples used to produce the
studies summarized in Task 1. While very larger, the sample does exhibit expected bias
towards more urban areas, resulting in higher sample rates in these areas and lower sample
rates in more rural regions of the state (Figure 9). However, these biases can be addressed in
the Task 4 model through the careful application of the demographic weights developed as
described in Section 2.3.
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TABLE 11. DEVICE AND TRIP COUNTS IN RESAMPLED DATASET

TIER 1 TIER 2 TIER 3 TOTAL
Trips Devices Trips Devices Trips Devices Trips Devices
Winter 97,987 97,987 20,695 780 36,155 888 154,837 5,697
Spring 115,679 4,525 18,010 603 47,776 1,228 181,465 6,356
Summer 173,825 7,350 53,782 2,176 33,129 1,181 260,736 10,707
Fall 94,010 4,416 51,156 2,259 16,815 608 161,981 7,283
Full Year 481,501 20,220 143,643 5,818 133,875 3,905 759,019 29,943
Device count Sample rate
M < Bl <002
B s5-14 B 0.02-0.03
B 14-29 B 0.03-0.04
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>371

>0.14

FIGURE 9. DISTRIBUTION OF DEVICE HOME LOCATIONS (LEFT) AND SAMPLING RATE (RIGHT)

ACROSS VERMONT

A similar spatial distribution is present for trips origins. Interestingly, while trip counts are
substantially higher in urban parts of Vermont, median trip distance in more urban areas is
much lower than in rural areas (Figure 10). This finding harkens back to some of the Task 1
findings—namely, that neighborhoods with higher “five D” variables produce less driving, but not
necessarily fewer trips, because trip distances may be shorter and non-motorized modes may
be better supported. In fact, higher shares of non-motorized trips are estimated in more urban
areas of the state and near large recreational areas, including trails and ski slopes (Figure 11).
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Data Validation

An important data validation exercise for LBS-derived trip data is to check for expected weekday
AM and PM peaking (and lack of peaking on weekends) in trip time-of-day profiles. Trip time-of-
day distributions for Tier 1 devices show strong AM and PM peaking, as expected, while
weekend trips rise slowly over the day (Figure 12). Further, AM peaking is especially prominent
for home-based work trips, and home-based other trips dominate the weekend distribution.
While the trip time-of-day distributions for Tier 2/3 devices have similar characteristics, peaking
is slightly less prominent and a higher number of trips start very early in the morning, reflecting
slightly lower quality data for the Tier 2/3 devices (Figure 13).
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As an additional validation step, tract-level VMT estimates derived from LBS data were
compared to LATCH estimates. At the tract level, aggregate VMT from these two data sources
are well aligned, with an R? value near 0.90 (Figure 14). Given this project’s focus on VMT, this
validation is particularly important and demonstrates that the methods described in this memo
have produced VMT estimates from LBS data.
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FIGURE 14. COMPARISON OF TRACT-LEVEL VMT DERIVED FROM LBS DATA (HORIZONTAL
AXIS) AND LATCH ESTIMATES (VERTICAL AXIS)

The combination of RSG’s standard LBS data processing approach and a custom-developed
post-processing pipeline generated a high-quality, LBS-derived dataset containing over 750,000
trips from nearly 30,000 devices seen throughout 2019. Broadly, these data are aligned with the
findings from Chapter 1: areas of the states with higher “5 d” variables tend to have lower
average per capita VMT.

The development of the Vermont VMT model described in the next chapter will dig deeper into
these relationships by joining the device-level VMT estimates described here to built
environment measures developed in Task 2 modeling the relationships between built
environment factors and VMT in Vermont.
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DEVELOPING A VMT MODEL FOR VERMONT

This Chapter describes how the data developed during previous phases of this project were
integrated to create a model that predicts how land use and built environment choices in
Vermont will impact VMT. First, 2019 estimates derived from location-based services (LBS)
data, as described in Chapter 2, were joined to the spatial database of built environment
measures, as described in Chapter 2, using underlying hex cell geometry as described in
Section 2.6. Next, exploratory analysis informed the development of additional built
environment variables, including summaries of many “5d” variables in buffers of varying sizes
around each hex cell across the state. Next, a structured variable selection process was
employed to reduce the 200+ possible predictor variables in the built environment database to a
more parsimonious set of variables for the regression model. Finally, the regression model was
used to generate a 2019 VMT estimate, which could then be compared to other 2019 VMT
estimates to validate the model for estimating VMT based on built environment measures. Each
of these steps are described in greater detail below.

DATA PREPARATION

A foundational step in developing the regression model was to join LBS-derived VMT estimates
to built environment measures. The built environment database described in Section 2.7 used
hex cells covering the state as a base geometry. To join VMT estimates to these data, the hex
cell containing devices’ imputed home location was determined and built environment measures
for that hex cell were joined to the VMT dataset. This resulted in a VMT dataset where each
observation represents the LBS-derived VMT for a device (the outcome variable in the VMT
model), with built environment variables describing the hex cell containing that device’s home
location joined to these VMT estimates.

Initial exploratory analysis revealed expected relationships between LBS-derived VMT and built
environment factors: as density and land-use diversity increased, VMT tended to decrease
(Table 12).

TABLE 12. RELATIONSHIP OF BUILT ENVIRONMENT VARIABLES AND OF LBS-DERIVED VMT
LBS-DERIVED WEEKLY  POP.DENSITY EMPLOYMENT LAND-USE MIX

LBS VMT QUINTILE

VMT (MEAN) (MEAN) DENSITY (MEAN) (MEAN)
1 (lowest 20%) 36.4 1,383 1,118 0.85
2 92.3 754 552 0.77
3 122.1 406 260 0.66
4 145.7 304 175 0.60
5 (highest 20%) 247.8 295 182 0.58

However, this exploratory analysis revealed a shortcoming in the built environment database:
density and diversity variables were calculated for each cell, which represent a very small
spatial area. Commonly, built environment variables are calculated across larger spatial areas
to better represent neighborhood-level effects of the built environment on travel behavior. To
better capture such effects, a grid-and-buffer method was applied. First, population and
employment density (by employment type) were calculated within each grid cell. Next, for each



grid cell, all other grid cells within an x-mile buffer of that grid cell were identified, and average
population and employment density were calculated across all identified grid cells. The resulting
value was assigned to the grid cell used as the center of the buffer. This process was repeated
for all grid cells in the state, using buffer sizes ranging from %4 mile to 3 miles (Table 13). As
illustrated below, the size of the grid cell has a significant impact on the distribution of density
values, with smaller buffer sizes tending to generate “spikier” distributions and larger buffer
sizes tending to generate smoother distributions (Figure 15).
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FIGURE 15. IMPACT OF BUFFER SIZE ON DENSITY VARIABLES

Exploratory analysis also revealed that the VMT variable and several predictor variables were
not normally distributed in the sample, a common problem in regression analysis. As needed,
log transformations were applied to these variables. Log-transformation of the outcome (VMT)
variable improved model performance, so the regression models described below use log-
transformed VMT as the outcome variable.

4.2 VARIABLE SELECTION

The joined dataset described above contained many possible predictive variables, and many of
these variables were correlated with one another (e.g., high population density may be
correlated with higher intersection density). To reduce this large set of possible predictive
variables to a smaller set, a structured variable selection process was employed. First, an initial
stepwise regression was performed using all non-buffered variables in the built environment
database. Buffer variables were then assessed independently, and the highest-performing
buffer variables were introduced to the model resulting from the initial stepwise regression and

35



final variable selection was performed, once again using a stepwise regression approach.
These steps are detailed below.

Initial Stepwise Regression

A linear regression model was specified, using log-transformed VMT as the outcome variable
and all variables in the built environment database as possible predictor variables. Stepwise
linear regression was performed using the caret package in R. Variables were retained if they
met three criteria: 1) were identified by the TAC as variables that could respond to available
policy levers (e.g., land use and transportation system variables) or controlled for important non-
modifiable influences of travel behavior (e.g., household income), 2) improved the model’'s
Akaike information criterion (AIC) value, and 3) had a sign in the expected direction, based on
the Task 1 literature review (e.g., increased transit service should reduce VMT, and have a
negative sign). This initial variable selection process yielded five significant variables with signs
in the expected direction:

¢ Median household income
e OSM-derived sidewalk density

e Intersection density with auto-oriented intersections removed (variable D3B in the Smart
Location Database)

e Transit service density (variable D4C in the Smart Location Database, log-transformed)

e Job accessibility within a 45-minute drive (variable DSAR in the Smart Location
Database)

Buffer Variable Selection

The buffer variables calculated as described above present their own challenges in variable
selection: within each type of buffer variable, different buffer sizes are highly correlated. For
example, population density calculated using a 1-mile buffer is highly correlated with population
density calculated using a 2-mile buffer, and so on. Because of this high degree of correlation, it
was important to identify the set of buffer variables that most improved model fit before
performing a final variable selection process.

To do so, a series of models was estimated, each using the five variables listed above and one
of the buffer variables. Within each category of buffer variables (e.g., population density
buffers), the model AIC was calculated, and the two-highest performing variables were
identified.®® Interestingly, across all categories of buffer variables, the highest performing
models used buffer sizes between 1 and 3 miles and used a log transformation (Table 13).

39 While the absolute value of the AIC does not indicate anything about model performance directly, the
AIC can be used to test two variations of the same model (for example, one with an extra variable) and
smaller AIC values indicate better model performance.



TABLE 13. EFFECT OF BUFFER SIZE ON VMT MODEL PERFORMANCE. TOP-TWO BUFFER
VARIABLES IN EACH CATEGORY ARE BOLDED AND SHADED

BUFFER POP. EMPLOYMENT RETAIL OFFICE INDUSTRIAL SERVICE ENTERTAIN.
SIZE DENSITY DENSITY DENSITY DENSITY DENSITY DENSITY DENSITY
Ya mile 47,917 48,046 48,047 48,046 48,027 47,999 48,044
72 mile 47,849 48,027 48,055 48,044 48,019 47,978 48,044
% mile 47,840 47,988 48,054 48,054 47,999 47,954 48,053
1 mile 47,847 47,923 47,956 48,038 47,962 47,951 48,047
2 miles 47,929 47,953 47,928 47,984 47,906 47,989 48,016
3 miles 48,032 48,024 47,995 48,034 48,010 48,033 48,048
Ya mile* 47,600 47,597 47,822 47,870 47,833 47,588 47,797
Y2 mile* 47,540 47,528 47,691 47,771 47,753 47,527 47,624
% mile* 47,487 47,460 47,590 47,641 47,681 47,465 47,521
1 mile* 47,426 47,383 47,479 47,491 47,598 47,395 47,394
2 miles* 47,380 47,302 47,356 47,402 47,501 47,310 47,297
3 miles* 47,522 47,376 47,362 47,464 47,576 47,386 47,409

* log-transformed

Final Stepwise Regression

Final variable selection was performed by combining the set of variables from the initial
stepwise regression process with the set of highest-performing buffer variables (i.e., the bolded
and shaded variables in Table 13). A second stepwise regression was performed, again
retaining variables if they improved the model’s AIC and had a sign in the expected direction.
This final variable selection process yielded eight significant variables:

e Median household income
o OSM-derived sidewalk density

e Intersection density with auto-oriented intersections removed (variable D3B in the Smart
Location Database)

e Transit service density (variable D4C in the Smart Location Database; log-transformed)
e Population density in 2-mile buffer (log-transformed)

e Retail job in 3-mile buffer (log-transformed)

e Office job density in 2-mile buffer (log-transformed)

e Land-use mix in 3-mile buffer

REGRESSION MODEL

The final regression model performed quite well, with highly significant coefficients for each
predictive variable and a coefficient of determination (r?) of roughly 0.25. In simple terms, this
means that the variables in the model are explaining roughly 25% of the observed variation in
VMT in the sample which, considering the lack of demographic attributes in the LBS data
sample and the complexity of travel behavior, is a strong result (Table 14).
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TABLE 14. VMT MODEL RESULTS
BUILT ENVIRONMENT

VARIABLE COEFFICIENT T-STAT

Median household income 0.003 15.91™

OSM-derived sidewalk density -0.050 -20.18™
Intersection density -0.001 -7.07
Transit service density -0.020 -2.36
Population density in 2-mile buffer @ -0.048 -5.07™
Retail job in 3-mile buffer@ -0.027 -3.54™
Office job density in 2-mile buffer 2 -0.038 -6.24™
Land-use mix in 3-mile buffer -0.048 -2.36"

Intercept 5.016 146.23™

“p<0.001 “p<0.01 'p<0.05 AIC 50,145.6

@ Jog-transformed Adjusted-R? 0.25

As expected, increases in population density, retail job density, office job density, and land-use
mix are associated with reduced VMT. Increases in intersection density, transit accessibility,
and sidewalk density are also associated with VMT reductions. Conversely, census block group
median household income is associated with increased VMT.

Because the outcome variable and several predictor variables are log-transformed in this model,
interpreting the coefficients in Table 14 can be difficult. To better illustrate the effects of each
variable, the marginal effect of a change in each variable on VMT was calculated (Table 15). To
interpret these results, the marginal effect represents the average change in predicted VMT
across the sample if the built environment variable were to be changed by the amount in the
“unit change” column. For example, if population density was increased by 100 persons/mi?
uniformly across all observations, the model would predict a 10.6 mile, or roughly 7%, reduction
in per capita VMT.

TABLE 15. VMT MODEL MARGINAL EFFECTS

BUILT ENVIRONMENT UNIT CHANGE IN BUILT ENVIRONMENT MARGINAL EFFECT
VARIABLE MEASURE ON WEEKLY VMT
Median household income $10,000 increase in median income +4.7 (+3%)
OSM-derived sidewalk density 1 unit increase in sidewalk density -7.2 (-5%)
Intersection density 50-unit increase in intersection density -8.4 (-6%)
Transit service density 5-unitincrease in transit service density -4.7 (-3%)
Population density in 2-mile buffer@ 100 persons/mi? increase in population density -10.6 (-7%)
Retail job in 3-mile buffer? 100 jobs/mi? increase in job density -15.3 (-10%)
Office job density in 2-mile buffer @ 100 jobs /mi? increase in job density -21.4 (-15%)
Land-use mix in 3-mile buffer 0.10 increase in land-use mix -0.7 (-0.5%)

MODEL VALIDATION AND APPLICATION

To validate the model, VMT was predicted for each observation in the sample, aggregated to
census tracts, and compared to both LBS-derived VMT estimates and estimates from the
Bureau of Transportation Statistics Local-Area Transportation Characteristics (LATCH) dataset.
Model predictions match observed data very well, with an r? value over 0.80. Model predictions
are not as well aligned with LATCH estimates, with an r? value approaching 0.65 (Figure 16).
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FIGURE 16. VMT MODEL PREDICTIONS VERSUS LBS OBSERVATIONS (LEFT) AND LATCH
ESTIMATES (RIGHT)

However, the model does reliably tend to predict low VMT in places with low LATCH VMT
estimates: for the lowest LATCH VMT quintile in the state, the model predicts an average
weekly VMT of 81.2 miles compared to 93.7 miles in the LATCH data; in the highest LATCH
VMT quintile, the model predicts an average weekly VMT of 141.5 miles compared to 169.2
miles in the LATCH data (Table 16). It is likely that the discrepancy between model predictions
and LATCH estimates are due in large part to the lack of demographic information for LBS-
derived data.

TABLE 16. COMPARISON OF MODEL PREDICTIONS TO LATCH ESTIMATES, BY LATCH VMT
QUINTILE

LATCH VMT QUINTILE MEAN WEEKLY VMT, LATCH MEAN WEEKLY VMT, MODEL
1 (lowest 20%) 93.7 81.2
2 138.0 115.9
3 148.9 127.7
4 159.3 133.0
5 (highest 20%) 169.2 141.5

Finally, to apply the model across the state, 2019 Vermont population was distributed to hex
cells using the E911 point and parcel datasets, which were joined as described in Task 3 memo.
2019 Census block group data were first used to calculate average household size for each
census block, and households were allocated to hex cells based on the number of single-family
residential parcels in each cell. Any remaining households were distributed evenly across all
multi-family parcels in each cell. Finally, the number of households in each cell was multiplied
by the block group average household size to obtain the number of persons residing in each cell
across the state. To generate aggregate VMT estimates, the VMT model was used to generate
a prediction for each resident of Vermont, using the built environment variables for the cell that
person was allocated to as predictor variables in the model (Figure 17).

39



Cell population
Bl <10
B 10-30
W 30-70
[ 70- 150
[0 150 - 250
[ 250 - 450
[ 450 - 700
1 700 - 1100
1100 - 2000
>2000

Predicted weekly VMT
per capita
B <40

- [ 40 - 80

W 80-120
[ 120 - 130
[ 130 - 140
[0 140 - 150
77 150 - 160
160 - 170
170 - 180
>180

FIGURE 17. VERMONT RESIDENTS ALLOCATED TO CELLS (LEFT) AND VMT MODEL

PREDICTIONS (RIGHT)

Overall, the VMT model provides intuitive results: denser regions across the state tend to have
lower per capita VMT, with these areas with lower per capita VMT sprinkled evenly across the
state. Interestingly, while some of the lowest per capita VMT predictions occur in and near
Burlington, some of the highest per capita VMT predictions occur in communities that circle
Burlington. This raises an interesting question that can be explored as scenarios are developed
in future tasks: is it more effective to focus on areas with already low VMT, or is it more effective
to encourage dense development in areas near low-VMT areas, but that currently have high
predicted VMT? The future development scenarios described in the next chapter are designed

in part to shed light on such questions.



VERMONT FUTURE GROWTH SCENARIOS

This chapter describes the methods used to develop future growth scenarios for Vermont, apply
the VMT model described in Chapter 4 to these scenarios, and estimate for each scenario the
benefits of the predicted change to VMT changes. This chapter is accompanied by an
interactive online dashboard which allows readers to explore scenarios at greater depth.*°

SCENARIO NARRATIVES

In coordination with the project TAC, the project team first developed a series of narratives to
describe five possible patterns of future development of the built environment in Vermont. These
narratives are provided below:

o Dispersed growth: In this scenario, low-density residential development occurs across all
developable land, ignoring existing community designations and wastewater service
areas. From a smart growth perspective, this represents a “worst case” scenario.

e Concentrated growth, concentrated jobs: In this scenario, future residential and
employment growth is concentrated in already dense neighborhoods. Growth “overflows”
to less dense neighborhoods when density exceeds a maximum density threshold.

e Concentrated growth, dispersed jobs: Like above, future residential growth is
concentrated in already dense areas of the state. However, employment growth in
allocated to lower density areas (i.e., greenfield development of employment centers).

e Concentrated growth, balanced land use: In this scenario, future development is focused
on copying places in Vermont that exemplify smart growth principles today. Growth is
allocated so that future development mirrors the lowest VMT neighborhoods in Vermont
today (prototype smart growth neighborhoods).

e Concentrated growth, unbalanced land use: This scenario allocates residential growth as
described above. Employment growth, on the other hand, occurs in locations near
established cores, but not in locations with high population density.

DEVELOPING FUTURE SCENARIOS

The narratives described in the previous section were used to develop a series of “allocation
rules” for each scenario that assign projected population and employment growth to specific
areas of Vermont based on the patterns of future development in each scenario. The allocations
of population and employment are distributed across the 31,739 grid cells covering the state as
described in Chapter 3. Growth projections are described below, followed by descriptions of
these allocation rules.

40 Dashboard tool link: https://rsginc.shinyapps.io/VTrans Smart Growth/
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Growth Projections

Rather than develop population growth projections specifically for this project, we adopted
population growth projections assumed in the LEAP developed in support of the Pathways
report.*! The LEAP model offers two projections—a ‘low-growth’ and a ‘high-growth’ projection.
Each projection estimates county-level population totals from 2019 through 2050. Because the
projections in the LEAP model pre-dated the 2020 Census., we adjusted these projections by
re-indexing the projections to the 2020 Census values, maintaining growth rates through 2050
(Table 17).

TABLE 17. LEAP GROWTH PROJECTIONS

COUNTY PROJECTION 2020 2035 2050

Addison Low growth, unadjusted 36,777 38,929 39,618
Low growth, adjusted 37,363 39,515 41,633
High growth, adjusted 37,363 40,761 45,319
Bennington Low growth, unadjusted 35,470 36,706 37,099
Low growth, adjusted 37,347 38,583 39,777
High growth, adjusted 37,347 39,786 43,332
Caledonia Low growth, unadjusted 29,993 28,010 27,410
Low growth, adjusted 30,233 28,250 26,499
High growth, adjusted 30,233 29,267 29,505
Chittenden Low growth, unadjusted 163,774 178,433 183,193
Low growth, adjusted 168,323 182,982 197,782
High growth, adjusted 168,323 188,536 214,195
Essex Low growth, unadjusted 6,163 5,385 5,157
Low growth, adjusted 5,920 5,142 4,494
High growth, adjusted 5,920 5,351 5112
Franklin Low growth, unadjusted 49,402 50,887 51,357
Low growth, adjusted 49,946 51,431 52,859
High growth, adjusted 49,946 53,106 57,810
Grand Isle Low growth, unadjusted 7,235 7,751 7,917
Low growth, adjusted 7,293 7,809 8,322
High growth, adjusted 7,293 8,054 9,047
Lamoille Low growth, unadjusted 25,362 26,700 27,128
Low growth, adjusted 25,945 27,283 28,594
High growth, adjusted 25,945 28,143 31,136
Orange Low growth, unadjusted 28,892 30,977 31,649
Low growth, adjusted 29,277 31,362 33,438
High growth, adjusted 29,277 32,342 36,334
Orleans Low growth, unadjusted 27,037 26,132 25,853
Low growth, adjusted 27,393 26,488 25,664
High growth, adjusted 27,393 27,405 28,373
Rutland Low growth, unadjusted 58,191 54,526 53,415
Low growth, adjusted 60,572 56,907 53,661
High growth, adjusted 60,572 58,881 59,493
Washington Low growth, unadjusted 58,409 55,797 53,524
Low growth, adjusted 59,807 56,059 52,742
High growth, adjusted 59,807 58,040 58,596
Windham Low growth, unadjusted 42,222 41,107 40,119

41 https://climatechange.vermont.gov/sites/climatecouncilsandbox/files/2022-
03/Pathways%Z20Analysis%20Report_Version%202.0.pdf



Low growth, adjusted 45,905 44,296 42,838

High growth, adjusted 45,905 45,728 47,069
Windsor Low growth, unadjusted 55,062 53,863 52,795
Low growth, adjusted 57,753 56,020 54,440
High growth, adjusted 57,753 57,887 59,958
Statewide Low growth, unadjusted 623,989 629,845 636,234
Low growth, adjusted 643,077 652,127 662,744
High growth, adjusted 643,077 673,286 725,279

Prototype Smart Growth Neighborhoods

The concentrated growth, balanced land use and concentrated growth, unbalanced land use
scenarios are based on the concept of prototype smart growth neighborhoods. These prototype
neighborhoods represent places in Vermont that embody smart growth principles today.
Prototype neighborhoods were identified by first grouping counties into four typologies (Table
18). Within each of these typologies, cells were sorted by baseline per capita VMT and,
depending on the value of the smart growth prototype percentile parameter, average built
environment measures were calculated for cells in the top X% of this distribution. These values
were then used to define the characteristics for prototype neighborhoods within each typology.

TABLE 18. COUNTY GROUPINGS FOR IDENTIFYING PROTOTYPE SMART GROWTH
NEIGHBORHOODS

COUNTY TYPOLOGY COUNTIES

Urban Chittenden
Medium centers Rutland, Washington, Windsor
Addison, Bennington, Caledonia, Franklin,
Lamoille, Orleans, Windham
Rural Essex, Grand Isle, Orange

Small centers

Allocation Rules

To estimate VMT for each future scenario, the scenario narratives developed in conjunction with
the TAC needed to be transformed into a framework for allocating growth to certain locations in
each county. To do so, we developed an allocation framework for each scenario narrative.
Broadly, an allocation framework consists of four components:

o Growth cells: a list of cells within each county that are eligible to grow in the future.
Depending on the scenario narrative, this list of cells can be restrictive (e.g., cells that
currently have wastewater service) or unconstrained (e.g., cells with developable land)

o Allocation parameters: variables that impact how growth is allocated to cells. For
example, the maximum population density parameter used in the concentrated growth,
concentrated jobs scenario controls how dense cells are allowed to become when
allocating growth. Multiple values are tested for each parameter to provide a range of
possible futures for each scenario narrative.

¢ Ruleset for growing counties: for counties that are projected to gain population, a
series of discrete steps are used to allocate growth projections to cells across the
county. These rulesets are designed so that the distribution of population and
employment in future scenarios is consistent with the scenario narrative.
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¢ Ruleset for shrinking counties: several counties are projected to lose population in
the LEAP growth projections. For these counties, a series of discrete steps are used to
allocate growth projections to cells across the county. These rulesets are designed so
that shrinking counties preserve population and employment in a manner consistent
with each scenario narrative.

While the LEAP growth projections contain only population projections, employment projections
are also needed to develop future scenarios. To calculate employment growth for each county,
the population-to-employment ratio for each county is calculated for the base year. This ratio is
applied to population growth projections in subsequent years to estimate employment growth
projections. These aggregate employment totals are used for scenario allocations. At the end of
each allocation process, employment allocation was assigned to industry sectors (retail,
office/institutional, services, entertainment, or other) using the baseline ratio of these sectors in
each cell.

Scenario Rulesets

Rulesets developed for each growth scenario are provided in a synopsis below and in detail in
the Appendix C. Each of these rulesets is accompanied by Python code that generates
allocations given baseline distribution of population and employment and county-level growth
control totals (Table 17).

Ruleset 1: Dispersed Growth

For the ruleset for the dispersed growth scenario, all cells with non-protected land are eligible to
receive future growth. The scenario employed a planning regulation density cap based on the
population density above which planning regulations are required. For growing counties,
population and employment growth was allocated up to the planning regulation density cap,
prioritizing the least dense cells in the county to receive growth first and allocating with that
priority until growth was exhausted or until all the cells had received growth up to their cap. In
the latter case, remaining growth was split across all cells. For shrinking counties, population
and employment was deallocated from cells. Starting with the densest cells, the difference
between the baseline and planning regulation density cap was removed from the densest cell
then the next densest cell and so on until the targeted total was deallocated or until removal
from all cells had occurred. In the latter case, the remaining deallocation was split evenly across
all cells.

Ruleset 2: Concentrated growth, concentrated jobs

For the ruleset for the concentrated growth, concentrated jobs scenario, all cells that have
wastewater service in the baseline year (2019) were eligible to receive future growth. For this
scenario, maximum allowed density and a jobs-population mix ratio were the parameters
controlling the allocation. For growing counties, the amount of population allocated to the
densest cells first was calculated as the new population the cell could receive before exceeding
the maximum allowed density. Moving to the next densest cell and so on, the population was
allocated until the county allocation was exhausted or all possible growth cells had received
growth, with any remaining split evenly among the eligible cells. Employment was allocated
using the same process, with the jobs-population mix ratio determining the number of jobs



allocated to the growth cell. For shrinking counties, removal of population and employment was
prioritized for the least dense, non-growth cells up to the target deallocation or until removal
from all non-growth cells was achieved, in which case the remaining deallocation was split
evenly across the non-growth cells.

Ruleset 3: Concentrated growth, dispersed jobs

For the ruleset for the concentrated growth, dispersed jobs scenario, cells that have wastewater
service in the baseline year were again eligible to receive future population growth. For growing
counties, the amount of growth that could be allocated to a cell was calculated as the amount it
could receive before exceeding the maximum allowed density. This allocation was prioritized to
the growth cells with the lowest employment density, moving to the growth cell with the next
lowest employment density until the population allocation was exhausted or all growth cells had
received population, in which case the remainder was split evenly among those eligible to
receive growth. The employment was then allocated to non-growth cells, prioritizing those with
the lowest employment density and using the jobs-population mix parameter to determine the
number of jobs to allocate. For shrinking counties, the least dense non-growth counties were
prioritized for population removal, continuing until the deallocation target was reached or
population had been removed from all non-growth cells, at which point the remaining
deallocation was evenly removed from the growth cells. The same process was used for
employment.

Ruleset 4: Concentrated growth, balanced land use

For the concentrated growth, balanced land use scenario, the growth cells were identified as
those cells within an Agency of Commerce and Community Development (ACCD) designated
area (Tier 1), cells immediately adjacent to ACCD designated areas (Tier 2), or cells
neighboring Tier 2 cells (Tier 3). Two parameters were used to allocate growth in this scenario.
A smart growth prototype percentile represented the percentile value of baseline cell VMT used
to define “exemplar” smart growth neighborhoods within each county typology. A prototype
boost percentage represented a boost applied to the build environment characteristics
calculated for prototype smart growth neighborhoods (e.g., 25% more dense). For growing
counties, the Tier 1 growth cell with the lowest VMT was prioritized to receive growth up to the
reference population density as derived from the exemplar smart growth neighborhoods. The
growth was then allocated to the next lowest VMT Tier 1 growth cell and so on until the targeted
population was allocated to all Tier 1 growth cells. If there was remaining growth to be allocated,
the process was repeated for Tier 2 cells, then Tier 3 cells, then split evenly across all growth
cells. Employment was allocated through the same process. For shrinking counties, population
was removed from the highest VMT non-growth cell first, moving to the next highest VMT non-
growth cell and so on, until reaching the target deallocation or exhausting all of the non-growth
cells. Any remaining deallocation was removed evenly across all Tier 1, 2, and 3 growth cells.
Employment was deallocated through the same process.

Ruleset 5: Concentrated growth, unbalanced land use

For the concentrated growth, unbalanced land use scenario, growth cells were similarly defined
as those cells within ACCD designated areas (Tier 1), immediately adjacent to ACCD
designated areas (Tier 2), and cells neighboring Tier 2 cells (Tier 3). Again, the smart growth
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prototype percentile and prototype boost percentage were leveraged in this scenario. For
growing counties, the population was allocated in the same way as the ruleset above for
concentrated growth, balanced land use. However, for employment the allocation was prioritized
to the cell with the highest employment density, skipping any Tier 1 cells. For shrinking counties,
removal was prioritized from the highest VMT non-growth cells, moving to the next highest VMT
non-growth cell and repeating until the deallocation was exhausted or all non-growth cells had
population removed. If there was remaining deallocation, that was removed evenly from the Tier
1, 2, and 3 growth cells. The employment deallocation for this scenario was conducted using the
same process as the population.

CALCULATING SCENARIO BENEFITS

The resulting VMT estimates were then used to estimate benefits associated with each
scenario. In addition to changes in GHG emissions—the primary benefit explored in this study—
four co-benefits were estimated:

¢ Changes in fatal and injury crashes, for motorized and non-motorized travel modes.
e Health impacts associated with changes in physical activity from nonmotorized travel.
e Changes in infrastructure maintenance costs associated with VMT.

e Potential reductions on infrastructure construction costs associated with more compact
development patterns.

Methods used to quantify each of these benefit pathways are described in turn below.

GHG Emission Reductions

To estimate changes in GHG emissions for each development scenario, per capita VMT
estimates in each hex cell were multiplied by the population of that cell in each scenario to
obtain an estimate of total weekly VMT produced by each cell. This total was then annualized
and multiplied by fleet-average CO»-equivalent (CO-eq) emissions per mile to obtain GHG
emissions for each cell and aggregated across the state to obtain a statewide total. This model
can be expressed as:

GHGtarewide = X VMT; X pop; X emissionscoy X 52

Where GHGqewide iS the estimate of statewide GHG emissions from private vehicles, VMT; is
the model estimated per capita VMT in hex cell j, pop; is the scenario population in hex cell j,
and emissionsco; is the fleet-average CO.eq emissions per mile. Estimates for fleet average
CO2eq were adopted from a recent MOVES analysis performed for the Chittenden County
region in 2020 and 2050 (Table 19). The key data is the CO2eq per mile is 430 grams per mile
today and expected to decrease to 86 grams per mile by 2050 with the shift toward higher
shares of electrified transportation. The fleet electrification assumptions that underly this
reduction in CO2eq per mile for Chittenden County were adopted from the Vermont Climate
Action Plan and thus assumed relevant for this statewide application.42

42 https://climatechange.vermont.gov/readtheplan



TABLE 19: CHITTENDEN COUNTY LONG RANGE PLAN - MOVES OUTPUTS

2020 2050 YEAR WITH

MODEL YEAR MTP TIP

CO2eq (kilograms) 1,932,969 455,547
Methane (kg) CH4 143 13.3
Nitrous Oxide (kg) N2O 25 6.3
Total Energy (Million BTUs) 25,208 19,962
Distance (VMT) 4,497,488 5,268,122
CO2zeq / VMT (g / mile) 430 86

MTP: metropolitan transportation plan
TIP: transportation improvement program

Safety Co-Benefit

Changes in fatal and injury crashes were estimated for both motorized and non-motorized travel
modes. To do so, crash data were obtained from the Vermont crash data portal for the base
year (2019), split into motorized and non-motorized travel modes and injury severity (fatal and
injury crashes). Baseline crash rates per mile travelled were obtained by dividing baseline fatal
and injury crashes by baseline VMT estimates derived from passively collected data as
described in Chapter 3. Similarly, non-motorized crashes were divided by estimated statewide
non-motorized travel duration described in Chapter 3 to develop non-motorized fatal and injury
crash rates per minute of non-motorized travel (Table 20).

TABLE 20: VERMONT CRASH RATES

MOTORIZED NON-MOTORIZED
Injuries 1,772 173
Fatalities 42 3
Total travel 3,867,005,887 (VMT) 1,112,933,520 (active minutes)
Injury rate 0.109 per million VMT 0.027 per million active minutes
Fatality rate 4.58 per million VMT 1.56 per million active minutes

For each future scenario, the rates derived above were multiplied by VMT and active travel
estimates to obtain fatality and injury estimates for motorized and non-motorized modes at the
neighborhood scale. Interestingly, because VMT reductions are often accompanied by
increases in active travel, scenarios that tend to reduce VMT tend to have estimated reductions
in motorized fatalities and injuries but small increases in non-motorized injuries and fatalities.

Health Co-Benefit

In addition to safety co-benefits described above, other health impacts associated with
increases in active travel were estimated using the population attributable fraction (PAF)
approach. The PAF approach is commonly applied in comparative risk assessment frameworks
and is used in several leading transportation health impact tools including the World Health

47



Organization’s Health Economic Assessment Tool (HEAT)* and the Integrated Transport and
Health Impact Model (ITHIM).* The PAF model uses the estimated change in transportation
physical activity to predict changes in mortality risks from all causes, using relative risk
estimates obtained from epidemiological evidence that characterized this relationship.

The first step in developing this model was obtaining the baseline death rate for Vermont,
excluding accidental deaths and intentional self-harm. The epidemiological evidence used for
this estimate is valid only for persons aged 15 to 74, so the baseline death rate was calculated
for this group of Vermonters. These data were obtained from the Vermont Department of Health
and are summarized below.

TABLE 21. VERMONT DEATH RATES

DEATHS, EXCLUDING INCLUDE IN RATE

AGE RANGE POPULATION AchIIE)IFFr‘fI-II-ﬁkl\?ND DEATH RATE CALCULATION
Under 1 5,579 15 0.002689 No
1-4 years 23,464 8 0.000341 No
5-14 years 64,156 7 0.000109 No
15-24 years 86,646 38 0.000439 Yes
25-34 years 74,408 41 0.000551 Yes
35-44 years 71,267 95 0.001333 Yes
45-54 years 78,051 233 0.002985 Yes
55-64 years 95,379 671 0.007035 Yes
65-74 years 75,206 1,163 0.015464 Yes
75-84 years 35,396 1,355 0.038281 No
85+ years 14,437 1,911 0.132368 No
15-74 years 480,957 2,241 0.002689

To estimate changes in mortality associated with changes in active travel, per capita active
travel time for each cell were first converted in metabolic equivalents (MET-hrs), and the
difference the MET-hrs between each scenario and the baseline scenario were used to
calculated the population attributable fraction (PAF):
RR;;, —RR;

PAF; = Tj,b

where PAF; is the population attributable fraction for cell j, RR;, is the relative risk of all-
cause mortality for cell j given estimated active travel in the baseline scenario b and RR; is the
relative risk of all-cause mortality for cell j given estimated active travel for scenario s,. Relative
risk values were estimated using a log-linear dose-response function:

MET;
RR; = 0.9011.25

where MET | is the estimated per capita transportation physical activity for cell j. Finally,
attributable mortality for each cell was estimated:

43 https://www.heatwalkingcycling.org
44 https://github.com/ITHIM/ITHIM-R
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where DR, is the baseline death rate as derived in Table 21.

Maintenance Co-Benefit

Reductions in per capita VMT are expected to reduce VTrans infrastructure maintenance costs
related to wear and tear. Because this project focuses on passenger VMT, an estimate of the
share of roadway maintenance costs contributed by passenger vehicles (auto) was required.
The 2019 weight-based annual registration report apportions roadway maintenance costs to
specific vehicles classes and derives estimates of maintenance costs per mile travelled within
each vehicle class (Table 22). While the cost responsibility per mile for autos is substantially
lower than for other vehicle types, the larger number of miles travelled by autos makes the total
auto cost responsibility roughly 30% of the total across all vehicle classes. We adopted the
estimate derived for private passenger vehicles in this report: $0.01 per mile.

TABLE 22. VTRANS MAINTENANCE COSTS PER MILE TRAVELED, FROM THE 2019 WEIGHT-
BASED ANNUAL REGISTRATION REPORT

cosT COST

VEHICLE BRIDGES PAVEMENT RESPONSIBILITY PER

CLASS (STHOUSANDS)  (STHOUSANDS) or ONSIBILITY MILE

(STHOUSANDS) (CENTS PER MILE)

Auto $38.10 $5.90 $44.00 1¢
LT4 $12.70 $2.50 $15.20 1¢
SuU2 $6.50 $17.90 $24.50 9¢
SU3 $2.20 $6.70 $9.00 13¢
SU4+ $0.50 $1.60 $2.10 20¢
CS3 $0.70 $1.70 $2.40 11¢
CS4 $1.30 $3.10 $4.50 14¢
382 $5.80 $24.10 $29.90 39¢
CS5 $0.50 $1.60 $2.00 33¢
CS6 $1.40 $5.00 $6.40 47¢
CSs7+ $1.20 $4.00 $5.20 1,357¢
CT4- $0.00 $0.00 $0.10 16¢
CT5 $0.40 $1.80 $2.20 47¢
CTo+ $0.10 $0.20 $0.30 26¢
DS5 $0.10 $0.20 $0.40 33¢
DS6 $0.20 $0.30 $0.50 71¢
DS7 $0.10 $0.20 $0.40 794¢

Avoided Infrastructure Co-Benefit

To estimate potential reduction in required roadway miles for future smart growth scenarios, we
applied the relationship between population density and per capita roadway miles described in
Chapter 2. To do so, we first obtained data from Table HM 72 of the Federal Highway
Administration’s Highway Statistics 2019*° and modeled the relationship between population
density and lane-miles (Figure 18). We then assigned each grid cell within Vermont to its

45 https://www.fhwa.dot.gov/policyinformation/statistics/2019/hm72.cfm
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township and applied the derived function to estimate township-level roadway miles needed for
each scenario:

RM =192.02 X e~ 0-48popden

town

where RM,,,, is the number of road-miles per person for each township and popden is
the population density in the township.
20 -
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FIGURE 18. RELATIONSHIP BETWEEN POPULATION DENSITY AND ROADWAY MILES PER
CAPITA

RESULTS

Applying the allocation rulesets as described in Section 5.2 resulted in unique distributions of
population and employment by industry sector across the 31,739 cells covering Vermont for
each scenario. Given that many of the benefits calculations presented in Section 5.3 are based
on per capita VMT, a fundamental step in calculating the benefits associated with each of these
scenarios is calculating VMT and non-motorized travel duration associated with each scenario.
To do so, the VMT model and non-motorized travel duration models described in Chapter 3
were applied. As necessary, buffered built environment variables were developed as previously
described, using scenario population and employment values instead of baseline values.

The VMT results for each of the scenarios are depicted in Figure 19. After calculating per capita
VMT across the state, GHG emissions and associated co-benefits were calculated by applying
each benefit calculation. These calculations were performed for both horizon years in the LEAP



projections (2035 and 2050) and for both the low- and high-growth scenarios. All permutations
of scenario parameters were also tested, resulting in a range of values for each scenario. These
results are presented in Table 23 and Table 24. Statewide per capita VMT for each scenario is
presented, alongside scenario benefits relative to the baseline scenario for each growth
projection. When interpreting benefits, positive values indicate a benefit (e.g., avoided traffic
fatalities or a reduction in GHG emissions) while negative values indicate a worsening of the
situation (e.g., an increase in traffic fatalities or GHG emissions).
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FIGURE 19. WEEKLY PER CAPITA VMT ACROSS ALL SCENARIOS

Across most benefit categories, the concentrated growth, concentrated jobs and concentrated
growth, balanced land use scenarios perform best, illustrating the benefits of the smart growth
strategies embedded in these scenarios. It is noted that the low growth futures in 2035 and
2050 produce similar outcomes for these two scenarios, but in the high growth futures
concentrated growth, balanced land use outperforms concentrated growth, concentrated jobs
scenarios. Results indicate that concentrating growth in areas with density and in areas where
VMT is low are both capable of significantly reducing per capita VMT; however, in a high growth
future, focusing growth in areas with low VMT while emulating prototype communities has an
advantage in achieving further VMT reductions.

Further, the concentrated growth, concentrated jobs and concentrated growth, balanced land
use scenarios indicate the importance of concentrating jobs in proximity and in balance with
population growth. Each of these scenarios outperform the concentrated growth, dispersed jobs
and concentrated growth, unbalanced land use scenarios in reducing VMT. This outcome has
implications for future development patterns, indicating that statewide initiatives, regional
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planning, and local zoning should focus attention on the proximity and balance of job generating
land uses with population density and growth.

Conversely, the dispersed growth scenario performs worse than the baseline across all
outcomes, reinforcing the importance of smart growth principles in reducing transportation GHG
emissions and providing important co-benefits to Vermont residents.

With a focus on quantifying the implications of smart growth principles in future scenarios, the
concentrated growth, balanced land use scenario out to 2050 is poised to produce the following
results:

e Reduce weekly VMT to 110 miles per capita;

e Reduce GHG emissions by over 13,000 metric tons annually;
e Avoid 1 traffic death per year;

e Avoid over 31 traffic injuries per year;

¢ Reduce physical inactivity mortality by nearly 4 lives annually;
e Reduce annual maintenance costs by over $1.5 million; and,
e Avoid 364 additional road miles.

Conversely, the dispersed growth scenario out to 2050 was poised to produce the following
results:

e Increase weekly VMT to nearly 120 miles per capita;

e Increase GHG emissions by over 17,000 metric tons annually;
¢ Increase traffic deaths per year by 1.5;

e Increase traffic injuries per year by 52;

e Increase physical activity mortality by nearly 3 lives annually;

e Cost an additional $2 million in annual maintenance costs; and,
e Require over 500 additional road miles.

A comparison of the best (concentrated growth, balanced land use) to worst (dispersed growth)
scenarios results in a difference of 10 additional miles per capita VMT, 2.5 traffic fatalities per
year, over 80 traffic injuries per year, physical inactivity mortality of 7 lives annually, and
approximately $3.5 million in maintenance costs.

To put these results in context, the GHG emission reductions were compared to the targets set
forth in the Global Warming Solutions Act. To achieve the target of 80% below 1990 GHG
emissions levels by 2050, annual reductions of 84,000 metric tons of CO; equivalent (MTCOze)
would be required when starting from 2019 levels (i.e., 3.34 million MTCOz¢e).*¢ The GHG
reductions produced by the concentrated growth, balanced land use scenario would represent
approximately 15.5% of the annual reduction needed to achieve the target out to 2050.

46 \Vermont Greenhouse Gas Emissions Inventory and Forecast: 1990-2020
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Conversely, a dispersed growth scenario would contribute to an annual increase in GHG
emissions, representing an adverse increase in emissions of approximately 20% of the annual
change needed.

Full results for each of the scenarios out to 2035- and 2050-time horizons for both low and high
growth scenarios are tabulated below. In addition, results for each scenario at the statewide and
hex grid scale can be explored through the project dashboard.*

47 Dashboard tool link: https://rsginc.shinyapps.io/VTrans Smart Growth/
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TABLE 23. SCENARIO BENEFITS, 2035

CONCENTRATED .\ CONCENTRATED CONCENTRATED
GROWTH, GROWTH, GROWTH,
BENEFITS CATEGORY  DISPERSED GROWTH GROWTH,
CONCENTRATED "' BALANCEDLAND UNBALANCEDLAND
JOBS USE USE
. 118.4 114.1 115.9 114.3 115.0
Per capita VMT (weekly) (118.3—- 118.5) (113.9—- 114.4) (115.7-116.1) (114.0 - 114.6) (114.6 - 115.3)
GHG emission reductions -7,484 4,888 -284 4,533 2,430
(annual metric tons) (7,719 — -7,244) (4,091 — 5,589) (-941 — 264) (3,544 — 5,331) (1,435 3,473)
Annually avoided traffic -0.66 0.48 0.08 0.25 0.19

£ _deaths (-0.69 — -0.63) (0.33 - 0.60) (-0.02 - 0.16) (0.05— 0.46) (-0.02 — 0.40)

S  Annually avoided traffic -23.33 17.99 4.92 5.47 6.14

Q _injuries (-24.76 — -21.89) (10.84 - 23.51) (0.86 — 8.58) (-4.16 - 16.07) (-4.00 — 16.56)

S Annually avoided physical -1.20 0.67 -0.54 1.55 -0.10
inactivity mortality (-1.23 - -1.17) (0.41—1.02) (-0.63 — -0.46) (1.17 - 1.83) (-0.31 - 0.07)
Annually avoided 870,313 568,386 -33,040 527,148 282,618
maintenance ($) (-897,620 — -842,377) (475,767 — 649,976)  (-109,422—30,760) (412,102 — 619,930) (166,874 — 403,935)
Avorded road i 279.9 2251 95.32 95.65 77.59

volded road miles (-295.5— -267.5) (215.2 - 237.2) (75.93 - 114.05) (80.88 — 104.01) (49.03 — 98.47)
) 118.4 113.4 116.6 112.7 113.8

Per capita VMT (weekly) (118.3 - 118.5) (113.0 - 113.9) (116.3— 116.8) (112.1-113.2) (113.2— 114.3)
GHG emission reductions -9,410 6,060 -3,850 8,085 4,717

(annual metric tons) (-9,707 — -9,224) (4,519 7,282) (-4,507 — -3,017) (6,414 - 9,751) (3,083 - 6,457)
Annually avoided traffic -0.83 0.58 -0.23 0.57 0.46

$ deaths (-0.87 — -0.80) (0.32 - 0.81) (-0.33—-0.11) (0.20- 0.95) (0.14— 0.79)

©  Annually avoided traffic -29.59 21.47 -5.71 16.81 17.56

O injuries (-31.41— -28.34) (9.50 — 32.62) (-9.93 - -0.68) (-1.11 - 35.54) (2.02 - 32.79)

-39:’ Annually avoided physical -1.59 0.95 -1.18 2.36 -0.40
inactivity mortality (-1.63—-1.51) (0.66 — 1.30) (-1.31 - -1.05) (1.76 - 2.95) (-0.62 - -0.20)
Annually avoided 1,004,272 704,660 447,695 940,116 548,534
maintenance ($) (-1,128,781—-1,072,646) (525,528 — 846,854)  (-524,153—-350,883) (745,816 1,133,938) (358,500 — 750,919)
Avoided road mi -339.3 254.6 24.39 2175 177.6

volded road miles (-345.3— -331.1) (226.4 - 275.8) (-53.85— 2.29) (175.9 - 250.8) (136.9— 237.3)




TABLE 24. SCENARIO BENEFITS, 2050

Avoided road miles

(-527.6 — -500.2)

(350.8— 491.2)

(-107.70 - -16.57)

(273.7 - 451.1)

CONCENTRATED CONCENTRATED CONCENTRATED CONCENTRATED
DISPERSED GROWTH, GROWTH, GROWTH,
BENEFITS CATEGORY GROWTH,
GROWTH CONCENTRATED BALANCED LAND UNBALANCED
DISPERSED JOBS
JOBS USE LAND USE
. 120.1 112.4 115.8 112.4 113.7
Per capita VMT (weekly) (120.0 - 120.3) (111.9-113.0) (115.6 — 116.0) (111.8-113.0) (113.2-114.2)
GHG emission reductions -14,324 8,484 -1,630 8,384 4,608
(annual metric tons) (-14,846 — -13,977) (6,682 - 9,777) (-2,323 — -1043) (6,527 — 10,244) (2,983 6,181)
Annually avoided traffic -1.26 0.83 0.05 0.53 0.42
§ _deaths (-1.33—-1.21) (0.52—-1.11) (-0.05— 0.14) (0.11-0.97) (0.09— 0.73)
8 ~Annually avoided traffic 4467 31.44 593 14.10 15.19
Q _injuries (-47.67 — -42.46) (16.94 — 44.63) (1.52—9.89) (-6.46 — 35.94) (-0.64 - 30.11)
S Annually avoided physical -2.10 1.39 -1.08 2.89 -0.32
inactivity mortality (-2.16 —-2.04) (0.84 - 1.95) (-1.26 —-0.91) (1.94 - 3.60) (-0.56 —-0.01)
Annually avoided 1,665,668 986,591 -189,581 974,978 535,820
maintenance ($) (-1,726,345— -1,625,321)  (777,028—1,136,974)  (-270,162—-121,335) (758,997 —1,191,212) (34,6890 — 718,807)
. . 4776 4044 145.7 209.0 178.2
Avoided road miles (-486.6 — -468.1) (367.1— 423.7) (124.9 - 166.9) (166.8 — 243.0) (149.6 — 231.8)
. 119.8 T11.3 116.8 110.3 T12.2
Per capita VMT (weekly) (119.6 — 119.8) (110.5-112.2) (116.4-117.2) (109.3—111.4) (111.3-113.2)
GHG emission reductions -17,418 9,996 -7,708 13,261 7,112
(annual metric tons) (-17,685— -16,987) (7,229 12,671) (-9,055 — -6,375) (9,768 — 16,648) (3,999 - 10,127)
Annually avoided traffic -1.49 0.96 -0.45 0.99 0.78
£ deaths (-1.53—-1.43) (0.44 - 1.48) (-0.65 — -0.25) (0.21— 1.69) (0.21— 1.35)
©  Annually avoided traffic -52.06 35.84 -10.83 31.42 30.87
O injuries (-53.87 — -49.38) (11.45- 60.38) (-19.83 — -2.13) (-6.79 — 65.03) (4.24 - 58.04)
-:IE:” Annually avoided physical -2.96 1.82 -2.16 3.96 -1.20
inactivity mortality (-3.15—-2.87) (0.68 - 2.82) (-2.45—-1.83) (2.93— 5.89) (-1.66 —-0.91)
Annually avoided 22,025,391 1,162,389 ~896,280 1,5420,12 827,009
maintenance ($) (-2,056,434—-1,975,310) (840,682 — 1,473,478)  (-1,052,971—-741,281) (1,135,824 1,935,881) (465,062 — 1,177,634)
513.9 4305 61.24 364.0 298.8

(191.1-385.1)
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6.0 CASE STUDIES

As observed through the estimation of vehicle miles travelled (VMT) from passively collected, location-
based data, there are a number of exemplary communities that have lower VMT activity relative to other
Vermont communities, due to their settlement pattern and characteristics of the local built environment.
These prototype communities were identified as those with the top 10% performing (i.e., lowest VMT) hex
cells in the base scenario within the particular county typology (i.e., rural, small centers, medium centers,
urban). County typologies were identified with feedback from the TAC and their top 10% performing
communities were identified as outlined in Table 25.

TABLE 25. COUNTY TYPOLOGIES AND PROTOTYPE COMMUNITIES

TYPOLOGIES
MEDIUM
SMALL CENTERS
CENTERS
Counties Grand Isle Addison Rutland Chittenden
Essex Bennington Washington
Orange Caledonia Windsor
Franklin
Lamoille
Orleans
Windham
Prototype Bradford Middlebury Montpelier Burlington
Communities Fairlee Vergennes Barre
Randolph Manchester Rutland
Stowe
St. Albans
Bennington
Brattleboro

Zooming in on these places, most prototype communities that have low per capita VMT travel patterns in
the Vermont context tend to exhibit the following features:

e Dense core area (typically a main street, merchants’ row, or center of a grid network);
e Mix of uses, services, and amenities;

e Concentration of population and employment;

e Water and sewer district;

e Sidewalk network; and,

e Access to transit.

In depth case studies were developed to examine a couple of communities more closely. A selection of
communities was identified to represent different community sizes distributed across different parts of the



state in coordination with the TAC. Springfield, Rutland, and Morrisville were selected as locations to be
further investigated to contextualize the base and future forecasted scenarios while providing insights into
opportunities for smart growth at the community level. Each case study serves to demonstrate the
opportunities for VMT reduction through implementation of smart growth principles and the utility of the
forecasted scenarios in identifying the potential challenges, opportunities, and benefits to employing smart
growth principles at the community scale.
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6.1 RUTLAND CITY ]

Rutland City is a relatively densely populated city that, RUTLAND PROFILE
like many Vermont communities, already has a lot of the

elements in place to support smart growth. This includes

a relatively dense downtown district with mostly three- to City Population | 15,807 persons (2020)
five-story buildings along Merchants Row, Center Street,

and West Street as depicted in Figure 20. Most of these County Population | 60,572 persons
buildings have first floor retail spaces at the back of wide (2020)

sidewalks connecting to a grid pattern street network. Gity Land Area | 7.6 miles

These attributes contribute to the travel behaviors in the
City and the identification of Rutland as a prototype Population Density | 2,096 persons / mi®
community when compared to other places within the
medium center county typology. The densest parts of
downtown Rutland have weekly per capita VMT of less
than 50 miles traveled in the base scenario. v Designated Downtown District

v Transit Agency | Marble Valley
Regional Transit District (The Bus)

Further, the surrounding area land uses outside of the T ST B
City contribute to a smaller footprint of travel activity for
Rutland City as demonstrated in Figure 21. The US-7
and US-4 corridors provide connectivity to the areas surrounding Rutland City, which are highlighted in the
lighter color in Figure 21 based on observed travel patterns (i.e., >20% of devices). Travel along these
corridors results in a relatively tight activity space, with the most concentration of trips occurring at the
center within Rutland City and some concentration of trips further afield but generally not expanding
beyond neighboring towns in each direction (i.e., Brandon, Killington, Wallingford, and Castleton).

FIGURE 20. RUTLAND’S CITY CENTER



Even though Rutland is a prototype
community, future population growth
projections forecast Rutland County to lose
population. Although Rutland City, particularly
the densest parts of the City’s downtown
district, would be ideal for concentrating
growth with the aim of further reducing VMT,
the anticipated contraction of population at the
county scale may challenge the community
when looking to enhance their smart growth
strategy.

Case study towns
. . . .. 1 [ Morrisville
Looking to the future scenarios, maintaining | 3 Ruttand
density in the lowest VMT areas of the county ;= springfield
results in marginal increases in population and gﬁf; \f";‘l"e;ei g‘;t
employment opportunities in Rutland City. This " mmo-0.02

is evident when comparing the concentrated ¢ B 0.02-0.04
. . . # [ 0.04 - 0.06
growth scenarios to the baseline scenario. ¥ mm 0.05-0.08
Despite the county contraction of population, W 0.08-0.1
slight increases to population and employment - 812001‘;4
in the City’s downtown enables slightly more T
density in the core area supporting a 0.1% - 77 016-0.18

0.18-0.2

decrease in weekly per capita VMT. sl

This contrasts with the dispersed growth
scenario. Although low levels of VMT remain
in the core area, the downtown loses population and jobs. Additionally, the settlement pattern stretches
along the US-7 corridor, particularly south of the City, contributing to more sprawl. Although more moderate
(i.e., slightly lower) weekly VMT per capita can be seen extending south along US-7 in the dispersed
pattern depicted in Figure 22 as compared to the concentrated growth scenario, population is
simultaneously drawn away from those core areas with low levels of VMT. The combination of the effects
of population shifting from areas with low VMT to areas with moderate VMT has the net effect of a 1.1%
increase in weekly VMT for the City.

FIGURE 21. RUTLAND ACTIVITY SPACE

The resulting travel pattern under the dispersed growth scenario can be visualized in contrast to the
concentrated growth, balanced land use scenario as demonstrated in Figure 22. Further exploration of the
scenarios within the dashboard tool*® reveals the dynamics of shifting population and jobs, providing a
fuller picture of the future scenarios for a prototype community that faces countywide reduction in
population. With a contracting population anticipated for the county, more strategic approaches may be
required to draw population, jobs, and other smart growth opportunities into the places with more density
and lower VMT.

48 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io)
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6.2 SPRINGFIELD I

Springfield is a medium sized community situated adjacent
to the Black River and Black River Falls, like many SPRINGFIELD PROFILE

Vermont communities established along a river and water
falls for the resources (i.e., water and power) they provide.

The community has a designated downtown district that Town Population | 9,062 (2020)
runs along Main Street and encompasses parcels on both _
sides of the river. The core of this area has two- and three- County Population | 57,753 (2020)

story buildings with first floor retail and a connected

sidewalk network. There are also mill buildings within the
district, some of which have been adaptively repurposed Town Density | 180 persons / mi2
for other, updated uses.

Town Land Area | 49.3 miles?

Downtown District Density |
Approximately 1,200 persons / mi?

v’ Transit Agency | Southeast
Vermont Transit (MOOver)

v' Designated Downtown District

v’ Water / Sewer District

TN
' Case study towns

2

Springfield has neighboring small communities,

gg pomatle like North Springfield, Chester, Bellows Falls,
Springfield and Claremont, NH, that contribute to a tight

j e network of trips to and from Springfield’s
“mmo-002 downtown. The connections to these other

- W 0.02-0.04 ” e . | P h

| small communities in close proximity to the
I 0.06-0.08 area makes for a mix of jobs, services, and
s amenities that support one another through this
| B 012-0.14 clustered set of defined places. These

’ 7 0.14-0.16 e

L 016018 complementary communities and land uses

§ T 0.18-0.2 represent the majority of trips in the
e - demonstrated activity space from the location-
FIGURE 23. ACTIVITY SPACE FOR SPRINGFIELD based data as shown in Figure 23.

Although the downtown is topographically
restricted with the river and steep surrounding
landscape, the area in the downtown district is

61



ripe with opportunities to increase density, which would reduce VMT compared to a more dispersed growth
pattern. Progress towards repurposing underutilized spaces is outlined in the Main Street Master Plan for
Springfield*®. The Plan recognizes the opportunity to draw more population and employment into the
district, and the co-benefits this could create, such as activation of public spaces, support for economic
development, and a more vibrant downtown.

Springfield on the Move is active in supporting the expansion of opportunities within the district. Challenges
and costs associated with the repurposing of former industrial spaces and other barriers to increasing
density can be overcome by some of the mechanisms already available, like the opportunity zone
designation. Expansion of these types of programs can help to alleviate the significant burden in
repurposing underutilized, developed areas and encouraging density.

Dispersed growth scenarios for Springfield indicate a less than 1% increase in weekly per capita VMT.
However, the concentrated growth and balanced land use scenario could reduce VMT by 6.6%. Comparing
the baseline pattern to the concentrated growth, balanced land use scenario reveals a broader area of
reduced weekly per capita VMT (i.e., expanded dark purple area in Figure 25). As demonstrated in Figure
25, closer examination reveals the scale of increased population and employment in the core area and
affiliated increase in active transportation and reduction in VMT. Looking at the same core area across
scenarios, a reduction of 3.6 miles traveled and 9 additional minutes of active transportation per capita is
associated with a concentration of population and jobs in the downtown core. The scenario is consistent
with plans for the area in terms of redevelopment and adaptive reuse and aligns with the magnitude of
change potentially achieved through the scale of revitalization and economic development anticipated for
the area.

49 hitps://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-
F2FB1EF67C08%7D/uploads/Springfield Report 6 30 17 Complete.pdf



https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf
https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf
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FIGURE 25. COMPARISON OF BASELINE AND CONCENTRATED GROWTH BALANCED LAND USE SCENARIOS FOR
SPRINGFIELD
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6.3 MORRISVILLE

Morrisville is a village in Morristown, Vermont. The
downtown village area has a small, dense core along
Main Street and Portland Street, coinciding with the
Historic VT-100 corridor and junction with VT-15A and
VT-12. Similar to other Vermont villages, it is adjacent to
the Lamoille River and a set of falls. The core area has
primarily two- and some three-story buildings with first
floor retail running along a connected sidewalk network
as shown in Figure 26. Morrisville has an adjacent
alignment of VT-100 that connects the surrounding areas
to VT-100 to the south and VT-15 to the north.

The core village area has many of the characteristics of
smart growth; however, the area has a relatively high
weekly per capita VMT at approximately 100 miles per
week. This is significantly higher than other comparable
village centers. Given the proximity to opportunities in
surrounding communities and in neighboring Chittenden

]
MORRISVILLE PROFILE

Village Population | 2,086 (2020)
County Population | 25,945 (2020)

Village Land Area | 1.96 miles?

Village Density | 1,000 persons / mi?

v Transit Agency | Rural
Community Transportation

[0 Designated Downtown District

v Water / Sewer District

County, the activity space depicted in Figure 27 for the community indicates that travel to and from the
Burlington area and other neighbors is a significant contributor to the high average weekly per capita VMT.

—

FIGURE 26. DOWNTOWN MORRISVILLE




For Morrisville, context and employment
are key to the demonstrated travel
patterns and the opportunities to reduce
VMT. Not only do Morrisville residents
access neighboring Chittenden County
with frequency, but Morrisville also
serves as an employment center drawing
workforce from the Northeast Kingdom,
or the large geographic area to the
northeast. Jobs are concentrated
northeast of the downtown and
commercial services are dispersed
outside of the core area. These
employment opportunities and services

. . . [ Rutland
are outside of a walkable distance from ¥ [ springfield
downtown. This lack of intermixing of 5 4 devices that
uses locally combined with the draw from [ travelled here

. . . . 7 0-0.02
a wide geographic region may contribute | g 5 0 04
to the higher per capita VMT W 0.04-0.06
demonstrated in the baseline scenario. | 0.06-0.08
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concentrated growth, balanced land use
scenario could reduce VMT by 2.1%.
However, it is the concentrated growth,
concentrated jobs scenario that seems to
move the needle on bringing the area’s

[ Morrisville
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FIGURE 27. MORRISVILLE ACTIVITY SPACE

weekly per capita VMT down. It may be that the wide commute shed and geographic pull of neighboring
areas of employment imposes diminishing returns for the concentrated growth scenarios until employment

is also concentrated in the area.

The area with the greatest demonstrated VMT reduction is spread across Morrisville north of the core

downtown, where current industrial and commercial uses are more prevalent. Drawing more employment
and thus commute trips into these areas in closer proximity to the population density may reduce the need
for longer trip making to neighboring areas for employment, therefore reducing VMT. This indicates that
other mechanisms to support job growth may be required to spur the type of smart growth patterns that will
induce further decreases in VMT, particularly for the historic center of Morrisville. Further, more direct
connections from the historic center to these areas north of the core may be required to facilitate improved
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access and VMT reductions. It is notable that some of these areas north of the historic center where growth
and VMT reductions are anticipated fall outside of the existing water and sewer district.

The contrast between the dispersed scenario and concentrated growth, concentrated jobs scenario is
depicted in Figure 28 and can be further explored in the dashboard tool®. For Morrisville, the concentration
of growth and jobs combines to create a broader area where weekly per capita VMT reductions are
possible. In this scenario, the concentration of population and employment is most significant in the area
that encapsulates the historic center of Morrisville, which could achieve a reduction of nearly 5 miles of
travel per week per capita and an increase of over 9 minutes of weekly active travel.

50 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io)



https://rsginc.shinyapps.io/VTrans_Smart_Growth/
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FIGURE 28. COMPARISON OF DISPERSED AND CONCENTRATED GROWTH, CONCENTRATED JOBS SCENARIOS FOR MORRISVILLE
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KEY TAKEAWAYS

Combined with the results of the future scenarios overall, key takeaways demonstrated in these
case studies include the following:

Land Use alone doesn’t move the needle — balance with job proximity is needed,;
while denser, mixed land uses reduce VMT by reducing trip lengths and inducing shift to
active transportation modes, such as walking, biking or the use of public transit, for daily
travel activities, an equally important factor that influences VMT is proximity to jobs. Each
of the case study communities exemplifies the dynamic where, broadly speaking, the
closer jobs are to where people live, the greater the additional VMT reduction exhibited.
This inelasticity of VMT as a function of job proximity serves as a crucial reminder that
wholistically planning communities from a smart growth perspective requires envisioning
the location of jobs relative to town centers and lived neighborhoods.

Vermont has “good bones;” smart growth land use patterns that inherently lead to
reductions in VMT are rooted in Vermont’s land use goal of town centers surrounded by
rural countryside and can be enhanced through thoughtful modifications to density, mix of
land use, and proximity to jobs. Contextual scaling that corresponds to character of place
and careful coordination to align local actions with state and regional land use plans and
visions are crucial next steps to build on Vermont’s “good bones” and position the state to
make further strides in the reduction of VMT. Each of the case study communities has a
specific type of “good bones” that is elaborated on through the modelling undertaken in

this study to test and demonstrate how VMT can further be reduced.

Regional neighbors influence VMT and travel patterns; Vermont's scale lends itself to
region- wide and state-wide travel patterns. This creates a dynamic where folks live,
work, and play in condensed movement patterns in their town centers to service various
needs, and complement these needs with more expansive patterns via travel to adjacent
communities and regions. Each of the case study communities exemplifies and
documents a specific corresponding VMT response to this complementarity.



CONCLUSIONS

This project explored the hypothesis that compact, mixed use development patterns generate
fewer VMT and GHG emissions per person than more dispersed or rural settlement patterns.
Current and future patterns of built environment development, land use, population growth, and
travel behavior were quantified in several scenarios to demonstrate the degree to which smart
growth strategies in the Vermont context can reduce VMT to meet transportation related GHG
emission reduction targets.

Passively collected, location-based data were leveraged to develop weekly per capita VMT
estimates for the state. VMT estimates and built environment measures were resolved to a hex-
grid spatial database across the state of Vermont to develop a model relating these measures to
the weekly per capita VMT. Future scenarios were developed to represent a range of possible
growth and built environment changes. The passive data derived VMT estimates and model
relating VMT to built environment measures was applied to the scenarios to predict how VMT
and other related benefits might change across the potential futures.

Scenario Evaluations

Based on the analysis, compact development patterns in future scenarios reduced VMT by
nearly 10 miles per person per week compared to dispersed patterns, demonstrating the
opportunity for smart growth strategies in Vermont and the impact they might have on travel
patterns. Further, the most effective scenarios for smart growth were focused on
concentrating balanced residential and employment growth in areas with demonstrated
low VMT based on the characteristics of exemplary low VMT communities.

The GHG emissions reduction potential of smart growth, based on the most effective
scenarios evaluated, could amount to over 15% of the annual reduction needed to
achieve the 2050 Global Warming Solutions Act targets. Conversely, dispersed settlement
patterns could produce an increase in emissions of approximately 20% of the annual target,
working against other mechanisms to achieve Vermont's GHG emissions reduction goals.

Beyond VMT and GHG emission reductions, smart growth strategies were demonstrated to
benefit safety (e.g., 1 avoided traffic death and over 30 avoided traffic injuries), health (e.g.,
reduced physical inactivity mortality by nearly 4 lives annually), and maintenance (e.g., reduced
annual maintenance costs by over $1.5 million) outcomes associated with the transportation
system in Vermont.

Case Study Evaluations

There are communities within Vermont where the built environment supports more condensed
travel patterns. These exemplary VMT communities, or places with lower VMT compared to
other communities within the same county typology, tend to have a dense core area, mix of
uses, concentration of population and employment, water and sewer districts, a sidewalk
network, and access to transit. There are also locations in Vermont that seem to produce more
VMT and GHG emissions on average despite a built environment that has smart growth
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characteristics. Zooming in on a few communities through the lens of the future scenarios
illuminated some key takeaways for contextualizing the results of this study, including:

o Denser, mixed land uses require complementary economic opportunities where
job proximity is a factor for some communities to achieve targeted VMT and GHG
reductions. Achieving this requires holistic planning to locate jobs relative to compact
centers and livable neighborhoods;

o Vermont’s historical settlement patterns and land use goal of denser centers
surrounded by more rural areas lends itself inherently to smart growth strategies

where the state’s “good bones” can be enhanced through thoughtful, context sensitive
modifications to density, land use mix, proximity to jobs, and civil infrastructure;

¢ Regional neighbors influence VMT and travel patterns where condensed movement
patterns within town centers may serve some needs complemented by more expansive
patterns with travel to adjacent communities to serve other needs. Such activity is
affected by proximity of neighboring communities to provide complementary services and
amenities.

These communities offer insights on the potential scope and scale of VMT and GHG reductions
that are possible through implementation of smart growth strategies. The work at the local and
regional level to encourage and operationalize smart growth principles can have a statewide
impact of contributing over 15% towards the annual reduction needed to achieve the targeted
GHG emissions reduction in the Global Warming Solutions Act.



ANNOTATED BIBLIOGRAPHY

The existing literature outlined below includes a mix of peer reviewed studies, case studies, and
policy guidance documents for practitioners. The peer reviewed literature methodologies include
meta-regression, meta-analysis, case studies, and other statistical methodologies. Notable
limitations of the existing studies include small sample size, homogenous sample composition,
and the understanding that correlation between variables does not necessarily imply causation.
Additional caveats about the existing literature include the use of only some of the D variables
when there are interdependencies and the use of different metrics to represent the Ds.

Ahlfedt and Pietrostefani, 2017
The Economic Effects of Density: A Synthesis

This paper synthesizes the state of knowledge on the economic effects of density. We consider
15 outcome categories and 209 estimates of density elasticities from 103 studies. More than
50% of these estimates have not been previously published and have been provided by authors
on request or inferred from published results in auxiliary analyses. We contribute own estimates
of density elasticities of 16 distinct outcome variables that belong to categories where the
evidence base is thin, inconsistent or non-existent. Along with a critical discussion of the quality
and the quantity of the evidence base we present a set of recommended elasticities. Applying
them to a scenario that roughly corresponds to an average high-income city, we find that a 1%
increase in density implies positive per capita net present values of wage and rent effects of
$280 and $485. The decrease in real wage net of taxes of $342 is partially compensated for by
an aggregate amenity effect of $221 and there is a positive external welfare effect of $52.
Density has important positive amenity and resource implications, but also appears to create a
scarcity rent, which harms renters and first-time buyers.

Burchell and Mukherji, 2003

Conventional Development Versus Managed Growth: The Costs of Sprawl

We examined the effects of sprawl, or conventional development, versus managed (or "smart")
growth on land and infrastructure consumption as well as on real estate development and public
service costs in the United States. Mathematical impact models were used to produce US
estimates of differences in resources consumed according to each growth scenario over the
period 2000-2025. Sprawl produces a 21% increase in amount of undeveloped land converted
to developed land (2.4 million acres) and approximately a 10% increase in local road lane-miles
(188 300). Furthermore, sprawl causes about 10% more annual public service (fiscal) deficits
($4.2 billion US dollars) and 8% higher housing occupancy costs ($13 000 US dollars per
dwelling unit). Managed growth can save significant amounts of human and natural resources
with limited effects on traditional development procedures.

Burchell, Robert & Mukherji, Sahan. (2003). Conventional Development Versus Managed
Growth: The Costs of Sprawl. American journal of public health. 93. 1534-40.
10.2105/AJPH.93.9.1534.
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CAPCOA, 2021

Handbook for Analyzing Greenhouse Gas Emission Reductions, Assessing Climate
Vulnerabilities, and Advancing Health and Equity

The California Air Pollution Control Officers Association (CAPCOA) produced an updated, 2021
handful which provides methods to quantify greenhouse gas emission reductions from a
specified list of measures, primarily focused on project level actions. In particular, the handbook
provides guidance for combining emission reductions from transportation measures and
adjusting VMT reductions to expected GHG savings. For several of the measures, CAPCOA
uses Stevens, 2016 meta-regression elasticities of VMT which accounts for self-selection.

https://www.caleemod.com/handbook/index.html

Project Level Strategy Maximum GHG Reduction
Increased residential density -30%
Increased employment density -30%
Transit oriented development  -31%
Affordable housing -28%

Increased Residential Density

B-C

C><D

A =

GHG Calculation Variables

ID Variable Value Unit Source
Output
A Percent reduction in GHG emissions from project 0-30.0 % calculated
VMT in study area
User Inputs
B Residential density of project development 1 dufacre  user input

Constants, Assumptions, and Available Defaults

C Residential density of typical development 9.1 dufacre  Ewing et al.
2007
D Elasticity of VMT with respect fo residential density -0.22 unitless Stevens

2016


http://www.caleemod.com/handbook/index.html

Increased Employment Density

GHG Reduction Formula
B-C

C><D

-

GHG Calculation Variables

ID Variable Value Unit Source
Output
A Percent reduction in GHG emissions from 0-30.0 % calculated
project VMT in study area
User Inputs
B  Job density of project development [1 jobs per acre user input

Constants, Assumptions, and Available Defaults
C  lob density of typical development 145 jobs per acre ITE 2020
D  Elasticity of VMT with respect to job density -0.07 unitless Stevens 2016

Transit Oriented Development

GHG Reduction Formula

B x C)

A= )

GHG Calculation Variables

ID Variable Value Unit Source
Output
A Percent reduction in GHG emissions from 6.9-31.0 % calculated
project VMT in study area
User Inputs
MNone

Constants, Assumptions, and Available Defaults

B Transit mode share in surrounding city Table T-3.1 % FHWA 2017a
C  Ratio of transit mode share for TOD area with 4.9 unitless Lund et al.
measure compared to existing transit mode 2004

share in surrounding city

D  Auto mode share in surrounding city Table T-3.1 % FHWA 2017b
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Affordable Housing

GHG Reduction Formula
A=BXxC

GHG Calculation Variables

ID Variable Value Unit Source
Qutput
A Percent reduction in GHG emissions from 0-28.6 % calculated

Project/Site VMT for multifamily residential
developments

User Inputs

B  Percent of multifamily units permanently 0-100 % user input
dedicated as affordable

Constants, Assumptions, and Available Defaults

C  Percent reduction in VMT for qualified units -28.6 % ITE 2021
compared to market rate units

de Duren and Compean, 2015

Growing Resources for Growing Cities: Density and the Cost of Municipal Public
Services in Latin America

We find that per capita municipal spending on public services is strongly and non-linearly
correlated to urban population density. Optimal expenditure levels for municipal services are
achieved with densities close to 9,000 residents per square kilometre. In our study of about
8,600 municipalities of Brazil, Chile, Ecuador and Mexico, 85% of all municipalities are below
this ideal density level. This result provides strong policy support for densification, particularly in
medium-sized cities of developing countries, which are currently absorbing most of the world’s
urban population growth.

Libertun de Duren, N., & Guerrero Compean, R. (2016). Growing resources for growing cities:
Density and the cost of municipal public services in Latin America. Urban Studies, 53(14),
3082-3107. https://doi.org/10.1177/0042098015601579

EPA Smart Location Database

The U.S. Environmental Protection Agency’s (EPA) and U.S. General Services Administration
(GSA) Smart Location Database (SLD) addresses the growing demand for data products and
tools that consistently compare the location efficiency of various places. The SLD summarizes
several demographic, employment, and built environment variables for every Census block
group (CBG) in the United States.2 The database includes indicators of the commonly cited “D”
variables shown in the transportation research literature to be related to travel behavior. The Ds
include residential and employment density, land use diversity, design of the built environment,
access to destinations, and distance to transit. SLD variables can be used as inputs to travel
demand models, baseline data for scenario planning studies, and combined into composite
indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions.



https://doi.org/10.1177/0042098015601579

https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user-
quide

Ewing and Cervero, 2001

Travel and the Built Environment: A Synthesis

The potential to moderate travel demand through changes in the built environment is the subject
of more than 50 recent empirical studies. Elasticities of travel demand with respect to density,
diversity, design, and regional accessibility are then derived from selected studies. These
elasticity values may be useful in travel forecasting and sketch planning and have already been
incorporated into one sketch planning tool, the Environmental Protection Agency’s Smart
Growth Index model. In weighing the evidence, what can be said, with a degree of certainty,
about the effects of built environments on key transportation “outcome” variables: trip frequency,
trip length, mode choice, and composite measures of travel demand, vehicle miles traveled
(VMT) and vehicle hours traveled (VHT). Trip frequencies have attracted considerable academic
interest of late. They appear to be primarily a function of socioeconomic characteristics of
travelers and secondarily a function of the built environment. Trip lengths have received
relatively little attention, which may account for the various degrees of importance attributed to
the built environment in recent studies. Trip lengths are primarily a function of the built
environment and secondarily a function of socioeconomic characteristics. Mode choices have
received the most intensive study over the decades. Mode choices depend on both the built
environment and socioeconomics (although they probably depend more on the latter). Studies
of overall VMT or VHT find the built environment to be much more significant, a product of the
differential trip lengths that factor into calculations of VMT and VHT.

Ewing R, Cervero R. Travel and the Built Environment: A Synthesis. Transportation Research
Record. 2001;1780(1):87-114. doi:10.3141/1780-10

Ewing and Cervero, 2010

Travel and the Built Environment: A Meta-Analysis

Travel variables are generally inelastic with respect to change in measures of the built
environment. Of the environmental variables considered here, none has a weighted average
travel elasticity of absolute magnitude greater than 0.39, and most are much less. Still, the
combined effect of several such variables on travel could be quite large. Consistent with prior
work, we find that vehicle miles traveled (VMT) is most strongly related to measures of
accessibility to destinations and secondarily to street network design variables. Walking is most
strongly related to measures of land use diversity, intersection density, and the number of
destinations within walking distance. Bus and train use are equally related to proximity to transit
and street network design variables, with land use diversity a secondary factor. Surprisingly, we
find population and job densities to be only weakly associated with travel behavior once these
other variables are controlled.

Reid Ewing & Robert Cervero (2010) Travel and the Built Environment, Journal of the American
Planning Association, 76:3, 265-294, DOI: 10.1080/01944361003766766
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Ewing and Cervero, 2017

Does Compact Development Make People Drive Less?” the Answer Is Yes

Both Stevens (2016) and we measure effect sizes in terms of elasticities of vehicles miles
traveled (VMT) per capita with respect to the five D variables. So we are measuring the same
thing but getting different results, characterizing them differently, and reaching different
conclusions. The questions are why the differences, and who has come closest to capturing the
truth about travel and the built environment? We would never equate Stevens’s well-
documented, well-reasoned, empirical study to Echenique’s poorly documented simulation
study, but it may have the potential to do more harm simply because of its relative rigor
combined with its overreaching on conclusions. Saying that relationships are “inelastic” is not
the same as saying that relationships are “small.” Inelastic means that elasticities have an
absolute magnitude of less than 1.0, which means that a 1% change in an independent variable
may produce up to a 1% change in a dependent variable. No one would call that upper limit
“small.” Indeed, we don't think an elasticity of —0.22 is small. A halving of distance to downtown
leads to a 22% reduction in VMT.

Ewing et al, 2019
Key Enhancements to the WFRC/MAG Four-Step Travel Demand Model

In a National Transit Institute course on “Coordinating Land Use and Transportation,” co-taught
by Robert Cervero, Uri Avin, and the Principal Investigator on this project, the analytic tools
session began with a hypothetical: assume that all households, jobs, and other trip generators
are concentrated in a walkable village rather than segregated by use and spread across a traffic
analysis zone in the standard suburban fashion. The instructor then asks: How would the
outputs of conventional four-step travel demand models differ between these two future land
use scenarios. The answer, to most participants’ surprise, was “Not at all.” Conventional four-
step travel demand models are used by nearly all metropolitan planning organizations (MPOs),
state departments of transportation, and local planning agencies, as the basis for long-range
transportation planning in the United States. In the simplest terms, the four-step model proceeds
from trip generation, to trip distribution, to mode choice, and finally to route assignment. Trip
generation tells us the number of trips generated (produced or attracted) in each traffic analysis
zone (TAZ), usually based on some prediction of vehicle ownership. Trip distribution tells us
where the trips go, matching trip productions to trip attractions by considering the spatial
distribution of productions and attractions as well as the impedance (time or cost) of
connections. Particularly tricky are predictions of trips that remain within the same zone. Mode
choice tells us which mode of travel is used for these trips, factoring trip tables to reflect the
relative shares of different modes. Route assignment tells us what routes are taken, assigning
trips to networks that are specific to each mode. A flaw of the four-step model is its relative
insensitivity to the so-called D variables. The D variables are characteristics of the built
environment that are known to affect travel behavior. The Ds are development density, land use
diversity, street network design, destination accessibility, and distance to transit. This report
develops a vehicle ownership model (car shedding model), an intrazonal travel model (internal
capture model), and mode choice model that consider all of the D variables based on household
travel surveys and built environmental data for 32, 31, and 29 regions, respectively, validates



the models, and demonstrates that the models have far better predictive accuracy than Wasatch
Front Regional Council (WFRC)/Mountainland Association of Governments’ (MAG) current
models.

Ewing, R., Sabouri, S., Park, K., Lyons, T., & Tian, G. Key Enhancements to the WFRC/MAG

Four-Step Travel Demand Model. NITC-RR-1086. Portland, OR: Transportation Research and
Education Center (TREC), 2019. https://dx.doi.org/10.15760/trec.246

Ewing et al, 2014

Varying Influences of the Built Environment on Household Travel in 15 Diverse Regions
of the United States

This study pools household travel and built environment data from 15 diverse US regions to
produce travel models with more external validity than any to date. It uses a large number of
consistently defined built environmental variables to predict five household travel outcomes —
car trips, walk trips, bike trips, transit trips and vehicle miles traveled (VMT). It employs
multilevel modelling to account for the dependence of households in the same region on shared
regional characteristics and estimates ‘hurdle’ models to account for the excess number of zero
values in the distributions of dependent variables such as household transit trips. It tests built
environment variables for three different buffer widths around household locations to see which
scale best explains travel behavior. The resulting models are appropriate for postprocessing
outputs of conventional travel demand models, and for sketch planning applications in traffic
impact analysis, climate action planning and health impact assessment.

Ewing, R., Tian, G., Goates, JP., Zhang, M., Greenwald, M. J., Joyce, A., Kircher, J., & Greene,
W. (2015). Varying influences of the built environment on household travel in 15 diverse regions

of the United States. URBAN STUDIES, 52(13), 2330-
2348. https://doi.org/10.1177/0042098014560991

Ganson and Miller, 2015
Mitigating Vehicle-Miles Traveled (VMT) in Rural Development

Vehicle-miles traveled (VMT) as an environmental review metric is more effective at combating
climate change than level of service (LOS), and policymakers are beginning to advance its
adoption for this purpose. Years of research and development prove that VMT mitigation
strategies such as density, diversity, and design succeed in urban areas, but doubts remain
about how VMT can be mitigated in rural development. This report reviews the current
understanding of both urban VMT mitigation and rural development. Finally, additional literature
and evidential case studies are explored to identify urban VMT mitigation strategies that can be
modified for the rural scale as well as mitigation strategies unique to the rural context.

Ruth Miller, 415-373-6442, ruth@blinktag.com and Christopher Ganson, Governor’s Office of
Planning and Research, 916-324-9236, Email: chris.ganson@opr.ca.gov for National
Academies Transportation Research Board (TRB) Annual Meeting 2015

Houston, 2014

Implications of the modifiable areal unit problem for assessing built environment
correlates of moderate and vigorous physical activity

7


https://dx.doi.org/10.15760/trec.246
mailto:ruth@blinktag.com
mailto:chris.ganson@opr.ca.gov

This study assesses the influence of the Modifiable Areal Unit Problem (MAUP) in analysis of
the effect of built environment (BE) exposure on moderate and vigorous physical activity
(MVPA) during walking periods. Adults (n = 55) wore a GPS unit and accelerometer for up to 7
days. More nearby green space, residential use, and open space were positively associated
with MVPA after controlling for socio-demographics. Scale and zoning effects were observed in
models of momentary BE-MVPA relationships using different scales and zone configurations.
Compared to larger aggregation zones, proximate measures may be better for assessing green
space and land use exposure during walking periods. Results do not support a prescriptive
recommendation whether future studies should use a buffer- or grid-based zonal configuration.
Douglas Houston, Implications of the modifiable areal unit problem for assessing built

environment correlates of moderate and vigorous physical activity, Applied Geography, Volume
50, 2014, Pages 40-47, ISSN 0143-6228, https://doi.org/10.1016/j.apgeog.2014.02.008.

Ihlanfedlt, 2020

Vehicle Miles Traveled and the Built Environment: New Evidence from Panel Data

There has been considerable interest in the impact that the built environment has on vehicle
miles traveled (VMT). While this issue has been extensively researched, due to the heavy
reliance on crosssectional data, there remains uncertainty regarding how effective local land
use planning and regulation might be in reducing VMT. Based on a 13-year panel of Florida
counties, models are estimated that relate VMT to new measures of the spatial distribution of
alternative land uses within counties and county urban expansion. Identification of causal effects
is established by including year and county fixed effects, along with an extensive set of control
variables, and instrumenting those land uses that may be endogenous. Incremental annual
changes in the spatial concentration of alternative land uses are found to affect VMT. The policy
implication is that appropriate land use policy can reduce VMT and should be considered part of
the strategy for dealing with the problem of global warming.

Ihlanfeldt, K. (2020). Vehicle miles traveled and the built environment: New evidence from panel
data. Journal of Transport and Land Use, 13(1), 23—48. https://www.jstor.org/stable/26967234

Knuiman et al, 2014

A longitudinal analysis of the influence of the neighborhood built environment on
walking for transportation: the RESIDE study

The purpose of the present analysis was to use longitudinal data collected over 7 years (from 4
surveys) in the Residential Environments (RESIDE) Study (Perth, Australia, 2003-2012) to more
carefully examine the relationship of neighborhood walkability and destination accessibility with
walking for transportation that has been seen in many cross-sectional studies. We compared
effect estimates from 3 types of logistic regression models: 2 that utilize all available data (a
population marginal model and a subject-level mixed model) and a third subject-level conditional
model that exclusively uses within-person longitudinal evidence. The results support the
evidence that neighborhood walkability (especially land-use mix and street connectivity), local
access to public transit stops, and variety in the types of local destinations are important
determinants of walking for transportation. The similarity of subject-level effect estimates from
logistic mixed models and those from conditional logistic models indicates that there is little or


https://www.jstor.org/stable/26967234

no bias from uncontrolled time-constant residential preference (self-selection) factors; however,
confounding by uncontrolled time-varying factors, such as health status, remains a possibility.
These findings provide policy makers and urban planners with further evidence that certain
features of the built environment may be important in the design of neighborhoods to increase
walking for transportation and meet the health needs of residents.

Knuiman MW, Christian HE, Divitini ML, Foster SA, Bull FC, Badland HM, Giles-Corti B. A
longitudinal analysis of the influence of the neighborhood built environment on walking for

transportation: the RESIDE study. Am J Epidemiol. 2014 Sep 1;180(5):453-61. doi:
10.1093/aje/kwu171. Epub 2014 Aug 11. PMID: 25117660.

Lee, 2022

Exploring Associations Between Multimodality and Built Environment Characteristics in
the U.S.

This study demonstrated associations between multimodality and built environment
characteristics, and proposed policy implications for fostering multimodal travel behaviors. It
conducted a U.S. nationwide analysis using ordinary least square regression and gradient
boosting decision tree regressor models with American Community Survey 2015-2019 5-year
estimates and the United States Environmental Protection Agency Smart Location Database
version 3.0. Notable findings were as follows: First, built environment characteristics were found
to be statistically significant predictors of multimodality across the U.S. Second, certain features
were identified as having considerable importance, specifically including population density,
regional accessibility, walkability index, and network density, all of which should be given
particular attention by transportation and land use planners. Third, the non-linear effects of built
environment characteristics on multimodality suggested an effective range to encourage
multimodal transportation choice behaviors in various situations. The findings can guide the
development of effective strategies to transform the built environment, which may subsequently
be used to minimize reliance on automobiles and promote people to travel more sustainably.
Lee, Sangwan. 2022. "Exploring Associations between Multimodality and Built Environment

Characteristics in the U.S." SUSTAINABILITY 14, no. 11: 6629.
https://doi.org/10.3390/su14116629

Litman, 2022

Understanding Smart Growth Savings Evaluating Economic Savings and Benefits of
Compact Development

How communities develop can have many direct and indirect impacts. Smart Growth policies
create more compact, multimodal development which reduces per capita land consumption and
the distances between destinations. This, in turn, reduces the costs of providing public
infrastructure and services, improves accessibility, and reduces motor vehicle travel, which
provides many economic, social and environmental benefits. This report examines these
impacts. It defines Smart Growth and its alternative, sprawl, summarizes current research
concerning their costs and benefits, investigates consumer preferences, and evaluates Smart
Growth criticisms. This report should be useful to anybody involved in development policy
analysis.
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Todd Litman (2014), Analysis of Public Policies That Unintentionally Encourage and Subsidize
Urban Sprawl, commissioned by LSE Cities (www.lIsecities.net), for the Global Commission on
the Economy and Climate (www.newclimateeconomy.net); at https://bit.ly/2QgPhzc.

Mansfield, Ehrlich, Zmud, and Lee, 2022

Built Environment Influences on Active Travel in the Twin Cities Region: Evidence from a
Smartphone-based Household Travel Survey.

Using travel survey data collected via both smartphone and web-based survey methods, we
found string associations between built environment factors and the likelihood of meeting
Centers for Disease Control and Prevention (CDC) physical activity recommendations via active
transportation. Additionally, we found that using location data beyond respondents’ home
location to characterize built environment factors strengthened our findings, particularly related
to employment density for the smartphone sample. This finding speaks to the importance of built
environment factors in supporting active travel at non-home locations for non-home based trips.
In addition, we found that measuring aspects of the transportation system itself, such as the
density of bike facilities and the relative absence of major roadway barriers, are significantly
associated with an increased likelihood of meeting CDC physical activity recommendations
through active transportation. More broadly, the findings of this study provide strong evidence
that rich location information provided by smartphone-based travel survey instruments can
further our understanding of how the built environment shapes travel behavior. Further, our
findings demonstrate how such data can be useful to stakeholders beyond traditional
transportation professionals, including public health researchers and practitioners.

Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the Twin
Cities region: evidence from a smartphone-based household travel survey, 2022

Mattson, 2021
Relationships Between Density and Per Capita Municipal Spending in the United States

The objective of this research is to determine the relationship between land use, particularly
density, and per capita spending levels in cities across the United States. A model was
developed using data from the U.S. Census Bureau’s Annual Survey of State and Local
Government Finances to estimate the impacts of population-weighted density and other factors
on per capita municipal spending. This study focused on municipal spending for eight categories
that theoretically could be influenced by land use development: fire protection, streets and
highways, libraries, parks and recreation, police, sewer, solid waste management, and water.
Density was found to be negatively associated with per capita municipal expenditures for the
following cost categories: operational costs for fire protection, streets and highways, parks and
recreation, sewer, solid waste management, and water; construction costs for streets and
highways, parks and recreation, sewer, and water; and land and existing facility costs for police,
sewer, and water. Results were insignificant for other cost categories, and a positive
relationship was found for police operations costs. In general, results support the conclusion
that increased density is associated with reduced per capita municipal spending for several cost
categories.
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Jeremy Mattson (2021), “Relationships between Density and per Capita Municipal Spending in
the United States,” Urban Science, Vo. 5/3: 69 (https://doi.org/10.3390/urbansci5030069).

Ogra, 2014

The Role of 6Ds: Density, Diversity, Design, Destination, Distance, and Demand
Management in Transit Oriented Development (TOD)

This paper reflects on the efficacy of Transit Oriented Development (TOD) and the primary
components that constitute it. These components are widely recognized as manifesting
themselves through the concept of “6Ds": Design, Diversity, Density, Distance, Destination, and
Demand management. The paper thus investigates the main aspects that underlie these “Ds"
and how they can equally be taken up in TOD initiatives. The development of efficient and
sustainable transport systems has become a key mitigation method for major traffic problems
such as congestion, poor mobility and access to services, as well as greenhouse gas
emissions. The primary argument of this paper centers on the premise that the application of
“6Ds" through TOD can go a long way in addressing current challenges that confront urban
transport within cities. Using a case study, the paper contextualizes one of the “6Ds" and
subsequent conclusions are drawn thereof in the form of key determinants.

Aurobindo, Ogra, Robert, Ndebele, Department of Town and Regional Planning Faculty of

Engineering and the Built Environment (FEBE)University of Johannesburg Beit Street,
Doornfontein- 2028, Johannesburg, South Africalaogra@uj.ac.za,2ziphoe@gmail.com

Stantec, 2013

Quantifying the Costs and Benefits to HRM, Residents and the Environment of Alternate
Growth Scenarios

Stantec (2013), Quantifying the Costs and Benefits to HRM, Residents and the Environment of
Alternate Growth Scenarios, Halifax Regional Municipality (www.halifax.ca); at
https://bit.ly/2X9kO0TI.

Stevens, 2016

Does Compact Development Make People Drive Less?

Planners commonly recommend compact development in part as a way of getting people to
drive less, with the idea that less driving will lead to more sustainable communities. Planners
base their recommendations on a substantial body of research that examines the impact of
compact development on driving. Different studies, however, have found different outcomes:
Some studies find that compact development causes people to drive less, while other studies do
not. | use meta-regression analysis to a) explain why different studies on driving and compact
development yield different results, and b) combine different findings from many studies into
reliable statistics that can better inform planning practice. | address the following questions:
Does compact development make people drive less, and if so, how much less? | find that
compact development does make people drive less, because most of the compact development
features | study have a statistically significant negative influence on driving. The impact,
however, is fairly small: Compact development features do not appear to have much influence
on driving. My findings are limited to some extent because they are derived from small sample
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sizes. Planners should not rely on compact development as their only strategy for reducing
driving unless their goals for reduced driving are very modest and can be achieved at a low
cost.

Stevens, M. R. (2017). Does Compact Development Make People Drive Less? Journal of the
American Planning Association, 83(1), 7-18. hitps://doi.org/10.1080/01944363.2016.1240044

Reid Ewing & Robert Cervero (2017) “Does Compact Development Make People Drive Less?”
The Answer Is Yes, Journal of the American Planning Association, 83:1, 19-
25, DOI: 10.1080/01944363.2016.1245112

Weeks, 2009

Transportation Impacts of Smart Growth Development in Maine — Town of Lisbon and
Town of Sanford

This study evaluates the reductions in average trip lengths, daily vehicle miles traveled (VMT),
and daily greenhouse gas (GHG) emissions from on-road automobiles due to smart growth
development strategies in two Maine towns, Lisbon in Androscoggin County and Sanford in
York County. In summary, analysis results for Lisbon and Sanford indicate that the densification
and mixing of residential and employment growth as infill developments has a slight but
observable impact on VMT and average trip lengths, some roadways in the towns experienced
VMT increases, which were offset by greater VMT reductions on other roadways, resulting in
net, network-wide VMT reductions, and greater reductions in VMT and GHG emissions could be
attained through an increased share of daily transit trips by providing new transit service to/from
the smart growth developments along existing transportation corridors. The results indicate that
the efficacy of the smart growth scenarios to reduce VMT in Lisbon and Sanford is greatly
limited without transit to complement the proposed dense, mixed-use developments.

Andrew Weeks, University of Vermont Transportation Research Center, 2009.Transportation
Impacts of Smart Growth Development in Maine — Town of Lisbon and Town of Sanford. 802)
656-1312, www.uvm.edu/trc
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BUILT ENVIRONMENT DATABASE

This document includes a list of built environment datasets compiled for the VTrans Smart
Growth project. The source of each dataset is described along with any assumptions made or
any pre-processing performed.

All datasets listed were aggregated to H3 cells at level 8 resolution to create statewide hex
layers. These data are compiled here:
https://vhb.maps.arcgis.com/apps/mapviewer/index.html?webmap=a4f2713286eb46a6ab19f48
bceb7122e

Socio-Economic Data

Population

e Vermont Census 2020 Redistricting Blocks

Source - Esri

Source Data URL:
https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/Vermont_Census_
2020_Redistricting_Blocks/FeatureServer/0

‘Total Population Count’ (POP100) attribute field was used to generate the hex layer
A lot of other demographic attributes are also available in this dataset

Technical documentation for the 2020 Census Redistricting block data:
https://www2.census.gov/programs-surveys/decennial/2020/technical-
documentation/complete-tech-docs/summary-

file/2020Census_PL94 171Redistricting_StatesTechDoc_English.pdf

Employment

e ArcGIS Business Analyst Employment Data

Points of Interest Search for all business categories — Data Source: Data Axle

Statewide dataset had to be pieced together due to 5000 record display/export limit.
Combined dataset available for project team to download from ‘VTrans Smart Growth’
ArcGIS Online group

Two hex layers were created from this dataset: ‘Count of Employees’ which summarizes
the ‘Number of Employees’ (EMPNUM) attribute field for each cell, and ‘Count of
Employers’ which totals the number of business point feature within each cell

Income

e ArcGIS Business Analyst 2022 Median Household Income

Statewide dataset had to be pieced together due to 5000 record display/export limit.
Data downloaded in tabular format then joined to the Vermont Census 2020 Redistricting
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Block dataset. Combined dataset available for project team to download from ‘VTrans
Smart Growth’ ArcGIS Online group

Built Environment Data

Land-Use Diversity
e VT Data - Statewide Standardized Parcel Data - parcel polygons
e Source: VCGI (Vermont Center for Geographic Information)

e Source Data URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA_ Cadastral VTPARCELS poly standardized parcels_SP_v1/FeatureServer/0

e Several hex layers were created to display statewide parcel data:
o ‘Parcel Count’ — Count of parcels per hex cell

o ‘Parcels — Residential’: Count of parcels categorized as 'Mobile Home/la', 'Mobile
Home/un', 'Residential-1', 'Residential-2', Seasonal-1', or 'Seasonal-2'as’ for the
‘Category (Real Estate Only)’ attribute field

o Parcels — Commercial/Industrial: Count of parcels categorized as 'Commercial’,
'‘Commercial Apt', 'Industrial' for the ‘Category (Real Estate Only)’ attribute field

o Parcels — Woodland: Count of parcels categorized as ‘Woodland’ for the
‘Category (Real Estate Only)’ attribute field

o Parcels — Utilities: Count of parcels categorized as 'Utilities Elec', 'Utilities Other'
for the ‘Category (Real Estate Only)’ attribute field

o Parcels — Farms: Count of parcels categorized as ‘Farms’ for the ‘Category (Real
Estate Only)’ attribute field

o Parcels — Other: Count of parcels categorized as 'Miscellaneous', 'Other for the
‘Category (Real Estate Only)’ attribute field

e VT Data - E911 Site Locations
e Source: VCGI

e Source Data URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA_Emergency_ ESITE_point_SP_v1/FeatureServer/0

e Hex layer for count of E911 Site Locations per hex was created

e ‘SITETYPE’ attribute includes 136 categories. Groupings have been developed and
consolidated into 8 categories and will be applied appropriately.

¢ ArcGIS Business Analyst Business Locations

e See the entry for ArcGIS Business Analyst Employment Data above



Destination Access

Microsoft Building Footprints
e Source: Microsoft Open Data Commons Open Database License

e Source Data page with download reference:
https://github.com/Microsoft/USBuildingFootprints

E911 Building Footprints
e Source: VCGI

e Source Data URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA_Emergency FOOTPRINTS_poly_SP_v1/FeatureServer/0

e Hex layer for count of E911 footprints per hex was created

SafeGraph POI Visitation Summary

e (CSV file provided by John Adams (VCGI)

e Vintage: 2019

e Summarized by 1) top level place category, 2) 2019 quarterly data 3) level 9 hex
e Extrapolated to level 8 hex layers by VHB

e Median weekly visit hex layers for each

Transportation Network

VT Road Centerline
e Source: VTrans

e Source Data URL:
https://maps.vtrans.vermont.gov/arcgis/rest/services/Master/General/FeatureServer/39

e Summarized by total length per hex
OpenStreetMap Sidewalks

e Source: OpenStreetMap (OSM)

e Extraction performed in R

e Summarized by total length per hex
Chittenden County Sidewalks & Paths
e Source: CCRPC

e Source Data URL:
https://map.ccrpcvt.org/arcgis/rest/services/ CCRPC/CloseTheGap/MapServer/1

e Summarized by total length per hex
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Public Transit

VT Data - Public -Transit Stops from GTFS Data-Feeds

Source: VCGI

Data Source URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA Trans_PUBLICTRANS_point_stops_SP_v1/FeatureServer/0

Hex layer represents count of stops per hex

VT Data - Public -Transit Routes from GTFS Data-Feeds

Source: VCGI

Data Source URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA _Trans_PUBLICTRANS line_routes_SP_v1/FeatureServer/0

Hex layer includes attributes for count of unique routes and summary of total route
length per hex

Other Datasets

Designated Growth Center

Source: ANR

Source Data URL:
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS
erver/3

Display by presence/absence

Existing Wastewater Service Area

Source: ANR

Source Data URL:
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS
erver/11

Hex Display — Count of EWSASs per hex

Electric Charging Stations

Source: ANR

Source Data URL:
https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS
erver/22

Display: Count of EV charging stations per hex



VT Data — Broadband Status 2021

Source: VCGI

Source Data URL:
https://maps.vcgi.vermont.gov/arcgis/rest/services/PSD_servicessfOPENDATA PSD LA
YERS_SP_NOCACHE_v1/MapServer/48

Separate hex layers for each category in the ‘BB_Status’ attribute field displaying count
per hex

Broadband Availability information with descriptions of categories:
https://publicservice.vermont.gov/content/broadband-availability

Categories/layers:
o Broadband Served 100/100
o Broadband Served 100/20
o Broadband Served 25/3
o Broadband Served 4/1

o Broadband Underserved

Waterbody Coverage

Source: VCGI

Source Data URL:
https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN
DATA_ Water VHDCARTO_poly SP_v1/FeatureServer/0

Metadata:
https://maps.vcgi.vermont.gov/gisdata/metadata/WaterHydro_ VHDCARTO.htm

Percent waterbody coverage was calculated for each hex
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APPENDIX C. SCENARIO RULESETS

Scenario rulesets

Rulesets developed for each growth scenario are provided in detail below. Each of these
rulesets is accompanied by Python code that generates allocations given baseline distribution of
population and employment and county-level growth control totals.



Ruleset 1: Dispersed growth

Growth cells: all cells with non-protected land are eligible to receive future growth.

Allocation parameters:

1.

Planning regulation density cap: the population density above which planning regulations
are required.

Ruleset for growing counties:

1.

Starting with the least dense cell in the county, calculate the amount of new population the
cell can receive before exceeding the planning regulation density cap. Allocate this
population to the cell and subtract from the remaining county population allocation.

Move to the next least cell and repeat step 1. Continue until all new growth has been
allocated or population has been allocated to all cells in the county.

If population has been allocated to all cells in the county up to the planning regulation
density cap and the county allocation has not been exhausted, split the remaining growth
across all cells.

Allocate employment using the same process as was used to allocate population, again
using the planning regulation density cap to limit employment density in allocation cells.

Ruleset for shrinking counties:

1.

Starting with the densest cell in the county, calculate the difference between the baseline
population and the planning regulation density cap. Remove this population from the cell
and subtract from the remaining county deallocation.

Move to the next densest cell and repeat step 1. Continue until the county deallocation has
been reached, or population has been removed from all cells in the county.

If population has been removed from all cells in the county up to the planning regulation
density cap and the county deallocation has not been reached, split the remaining
deallocation across all cells.

4. Deallocate employment using the same process as was used to deallocate population.
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Ruleset 2: Concentrated growth, concentrated jobs

Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to
receive future growth.

Allocation parameters:

1. Maximum allowed density: the highest population density allowed in any allocation cell.

2. Jobs-population mix: the ratio of jobs to population assumed when allocating employment.
Ruleset for growing counties:

1. Starting with the densest growth cell in the county, calculate the amount of new population
the cell can receive before exceeding the maximum allowed density. Allocate this population
to the cell and subtract from the remaining county population allocation.

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has
been allocated or population has been allocated to all cells in the county.

3. If population has been allocated to all growth cells in the county up to the maximum allowed
density and the county allocation has not been exhausted, split the remaining allocation
across all growth cells.

4. Allocate employment using the same process as was used to allocate population, again
using the planning regulation density cap to limit employment density in allocation cells. The
jobs-population mix parameter is used to determine the number of jobs allocated to a given
cell.

Ruleset for shrinking counties:

1. Starting with the least dense non-growth cell in the county, remove all population from the
cell and subtract from the remaining county deallocation.

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county
deallocation has been reached, or population has been removed from all non-growth cells in
the county.

3. If population has been removed from all non-growth cells in the county and the county
deallocation has not been reached, split the remaining deallocation across all growth cells.

4. Deallocate employment using the same process as was used to deallocate population,
deallocating employment until the jobs-population mix parameter is reached for a cell.



Ruleset 3: Concentrated growth, dispersed jobs

Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to
receive future growth.

Allocation parameters:

1. Maximum allowed density: the highest population density allowed in any allocation cell.

2. Jobs-population-mix: the ratio of jobs to population assumed when allocating employment.
Ruleset for growing counties:

1. Starting with the growth cell with the lowest employment density in the county, calculate the
amount of new population the cell can receive before exceeding the maximum allowed
density. Allocate this population to the cell and subtract from the remaining county
population allocation.

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has
been allocated or population has been allocated to all cells in the county.

3. If population has been allocated to all growth cells in the county up to the maximum allowed
density and the county allocation has not been exhausted, split the remaining allocation
across all growth cells.

4. Allocate employment using the same process as was used to allocate population, but only
allocate employment to non-growth cells in the county. The jobs-population mix parameter is
used to determine the number of jobs allocated to a given cell.

Ruleset for shrinking counties:

1. Starting with the least dense non-growth cell in the county, remove all population from the
cell and subtract from the remaining county deallocation.

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county
deallocation has been reached, or population has been removed from all non-growth cells in
the county.

3. If population has been removed from all non-growth cells in the county and the county
deallocation has not been reached, split the remaining deallocation across all growth cells.

4. Deallocate employment using the same process as was used to deallocate population.
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Ruleset 4: Concentrated growth, balanced land use

Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to
ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3).

Allocation parameters:

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define
“‘exemplar’ smart growth neighborhoods within each county typology.

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment
characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense)

Ruleset for growing counties:

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new
population the cell can receive before exceeding the reference population density (derived
from the exemplar smart growth neighborhoods). Allocate this population to the cell and
subtract from the remaining county population allocation.

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new
growth has been allocated or population has been allocated to all Tier 1 growth cells.

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the
process for Tier 2 growth cells, and again for Tier 3 growth cells.

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in
the county, split the remaining allocation across all growth cells.

5. Allocate employment using the same process as was used to allocate population.
Ruleset for shrinking counties:

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the
cell and subtract from the remaining county deallocation.

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county
deallocation has been reached, or population has been removed from all non-growth cells in
the county.

3. If population has been removed from all non-growth cells in the county and the county
deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and
3 growth cells.

4. Deallocate employment using the same process as was used to deallocate population.



Ruleset 5: Concentrated growth, unbalanced land use

Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to
ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3).

Allocation Parameters:

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define
“‘exemplar’ smart growth neighborhoods within each county typology.

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment
characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense)

Ruleset for growing counties:

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new
population the cell can receive before exceeding the reference population density (derived
from the exemplar smart growth neighborhoods). Allocate this population to the cell and
subtract from the remaining county population allocation.

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new
growth has been allocated or population has been allocated to all Tier 1 growth cells.

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the
process for Tier 2 growth cells, and again for Tier 3 growth cells.

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in
the county, split the remaining allocation across all growth cells.

5. Allocate employment starting with the cell with the highest employment density, but skipping
any Tier 1 cells (i.e., do not allocate any employment to Tier 1 cells).

Ruleset for shrinking counties:

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the
cell and subtract from the remaining county deallocation.

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county
deallocation has been reached, or population has been removed from all non-growth cells in
the county.

3. If population has been removed from all non-growth cells in the county and the county
deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and
3 growth cells.

4. Deallocate employment using the same process as was used to deallocate population.
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