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Abstract 

The deterioration of structural components within the nation’s transportation infrastructure has 
long been a major concern. This project developed and evaluated 3D-printed composite materials 
as practical solutions for structural strengthening and rehabilitation. The work focused on several 
approaches, including sandwich composites with 3D-printed cores and fiber-reinforced polymer 
(FRP) systems with tailored 3D-printed architectures designed to improve strength and durability. 
These materials were assessed for their structural performance, adaptability, and potential for use 
in repairing and strengthening existing components of transportation infrastructure. Results from 
material characterization, mechanical testing, and predictive modeling confirmed that 3D-printed 
composite systems can provide reliable and efficient options for improving the performance of 
degraded structures. The findings contribute to a better understanding of how advanced 
manufacturing techniques can support durable and cost-effective solutions for infrastructure 
maintenance and renewal. 
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Chapter 1: Introduction and Background 

1.1 Project Motivation 

Infrastructure forms the backbone of the nation’s economy, supporting mobility, commerce, and 
overall quality of life. However, the continued deterioration of transportation infrastructure across 
the country has raised serious concerns regarding safety, service reliability, and long-term 
economic impact. While progress has been made in recent years through targeted investment and 
rehabilitation programs, the overall condition of many structural components remains below 
desired levels. 

In Rhode Island and other northeastern states, maintaining and improving the condition of 
transportation infrastructure remains a pressing challenge due to aging assets and harsh 
environmental conditions. These challenges highlight the need for durable materials, innovative 
construction technologies, and efficient repair strategies that can extend the service life of critical 
structural systems. 

The motivation for this project arises from the need to address these persistent issues through 
research and development of advanced composite materials and modern strengthening methods. 
By developing and implementing new material systems with enhanced performance and durability, 
this work contributes toward creating a more resilient, sustainable, and long-lasting transportation 
infrastructure network. 

1.2 Research, Objectives, and Tasks 

The overall objective of this project was to design, develop, and evaluate advanced 3D-printed 
composite systems for the structural strengthening and rehabilitation of transportation 
infrastructure. The work focused on creating durable and efficient materials capable of improving 
performance and extending the service life of degraded concrete components. 

To accomplish this objective, the project involved several related tasks. The first task focused on 
the design of re-entrant honeycomb cores with auxetic behavior to enhance energy absorption and 
strength recovery. Numerical simulations and machine learning techniques were used to study the 
effects of geometry and material configuration on structural performance and manufacturability. 

The next task involved fabricating the designed 3D-printed auxetic cores and integrating them with 
degraded concrete cylinders. These strengthened specimens were subjected to a comprehensive 
mechanical performance assessment to evaluate their overall strengthening effectiveness and 
durability. 

Subsequent tasks included conducting numerical simulations to analyze the behavior of auxetic 
cores wrapped around concrete cylinders and to study their structural response under service 
conditions. Continuous carbon fibers and fiber-reinforced polymer (FRP) plates were incorporated 
in a sandwich configuration around the cores to enhance strength and load-carrying capacity. 
Additional simulations were carried out to assess the performance of these multi-layered 
strengthening systems. 

www.tidc-utc.org 7 | P a g e 
                

                    
 

     
 

   
 

            
            

            
              

           
  

 
             

            
           

              
  

 
               

           
            
            

  
 

     
 

              
          

             
          

 
               
              

             
           

 
              

           
          

 
 

            
             

           
             

            
  



1.3 Report Overview 

This report documents the design, development, and evaluation of 3D-printed composite systems 
incorporating re-entrant honeycomb cores for the structural strengthening and rehabilitation of 
transportation infrastructure. It presents the methodology used to design and fabricate auxetic core 
geometries, along with the mechanical performance assessment of concrete cylinders strengthened 
using these 3D-printed composites. The report also describes the simulation and machine learning 
approaches developed to study the structural response of auxetic cores and composite 
configurations under various loading and service conditions. The results and their interpretations 
are discussed in detail, highlighting the relationships between material geometry, mechanical 
behavior, and strengthening performance. The report concludes with key findings, 
recommendations for practical application, and directions for future research to support the broader 
adoption of 3D-printed composite systems in infrastructure strengthening and rehabilitation. 

Chapter 2: Methodology 

2.1 Design and Mechanical Evaluation of Auxetic Structures 

Geometry Generation and Modeling 

Re-entrant honeycomb auxetic geometries were generated using a Python-based parametric 
modeling script that defined geometric parameters including vertical and slant cell lengths, wall 
thickness, and re-entrant angle. A representative model with specified geometry was created and 
imported into Abaqus CAE for finite element analysis (FEA). 

Finite Element Analysis Setup 

Finite element analysis was performed to study the deformation and Poisson’s ratio behavior of 
the auxetic geometries under uniaxial tension. Quadrilateral-dominant CPE4H elements were used 
for meshing, with curvature control applied to capture the small-radius features of the structure. 
One end of the model was fixed while the opposite end was subjected to a controlled displacement 
load. The resulting deformation field is shown in Fig. 1. MATLAB-based post-processing was 
used to compute strains and Poisson’s ratios from the simulated displacements. 

Fabrication and Experimental Testing 

The optimized auxetic geometries were fabricated using fused filament fabrication (FFF) on a 
Creality CR-10 V3 3D printer with Overture™ thermoplastic polyurethane (TPU) filament. 
Printing was performed at a nozzle temperature of 225°C, bed temperature of 50°C, and print speed 
of 30 mm/s with 100% infill. The layer thickness was maintained at 0.2 mm to ensure consistent 
interlayer bonding. Each printed specimen was coated with a fine black–white speckle pattern 
using acrylic paint to enable digital image correlation (DIC). The surface speckle density was 
adjusted to yield a spatial resolution of approximately 3 × 3 pixels per speckle. Uniaxial tensile 
testing was performed using a 10 kN Shimadzu Autograph AGS-X universal testing machine under 
a displacement rate of 2 mm/min at room temperature (25°C). A FLIR Blackfly S camera captured 
one image per second during loading, generating a sequence of 596 images per test. These images 
were processed in VIC-2D software to compute full-field displacements and strains, as illustrated 
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in Fig. 2. The DIC results provided direct validation of the FEA-predicted deformation and 
Poisson’s ratio, confirming the auxetic expansion behavior and establishing a foundation for the 
next phase of integration with cementitious materials. 

Fig. 1 - Schematic representation of the FEA simulation framework. From left to right, (a) 
the model generated from the Python script followed by (b) the TRI/QUAD discretized 
model, (c) the loaded model, and (d) the deformed model of the FEA with a color spectrum 
showing the maximum displacement tensile load of 20 mm. 

Fig. 2 - 2D DIC setup of a selected sample geometry. 
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2.2 Fabrication and Testing of Cementitious Specimens with Auxetic Cores 

Mortar Mix Preparation 

Cementitious mortar specimens were prepared with a 50% paste volume fraction to maintain a 
balanced paste-to-sand ratio. The water-to-cement ratio (w/c) was maintained at 0.4 to ensure 
uniform workability and strength development. The mix design followed standard ASTM C305 
procedures. The mortar was cast into cylindrical molds and vibrated to minimize air entrapment. 
After demolding at 24 hours, specimens were cured in water for 28 days to achieve full hydration 
and stable mechanical properties. 

Integration of Auxetic Cores 

Re-entrant auxetic cells were designed with variable geometry by adjusting cell thickness, base 
length, and re-entrant angle. Auxetic cores were fabricated using PLA, ABS, and TPU to evaluate 
the effect of material stiffness and geometry on confinement behavior. The printed auxetic wraps 
were carefully fitted around cured mortar cylinders to form composite confined specimens. The 
final integrated assemblies are illustrated in Fig. 3. 

Fig. 3 — Representative re-entrant auxetic cores and integration around mortar cylinders 

Mechanical Evaluation 

Uniaxial compression tests were conducted to determine the compressive strength of the auxetic-
confined mortar specimens. Cylindrical specimens were tested under load control using a servo-
hydraulic universal testing machine equipped with a calibrated load cell. Each specimen was 
placed concentrically between the machine platens to ensure uniform load distribution and to 
minimize eccentricity during testing. A constant loading rate was maintained throughout the test 
until specimen failure. The applied load was continuously recorded, and the compressive strength 
was calculated by dividing the maximum load at failure by the cross-sectional area of the specimen. 
For each auxetic configuration, multiple specimens were tested to ensure consistency and 
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reproducibility of results. The testing procedure followed standard laboratory practices for 
compression testing of cementitious materials, with attention to specimen alignment, surface 
leveling, and load application to maintain accuracy and repeatability. 

2.3 Method for Multiscale Numerical Modeling and Simulation of Concrete 
Cylinders Confined by a Sandwich System with Continuous Carbon Fiber– 
Reinforced Auxetic Core and CFRP Face Sheets 

A comprehensive multiscale numerical framework was developed to simulate the behavior of 
concrete cylinders confined by a sandwich composite system composed of a continuous carbon 
fiber–reinforced auxetic core and carbon fiber–reinforced polymer (CFRP) face sheets. This 
integrated approach combines microscale material homogenization, mesoscale cellular modeling, 
and macroscale structural simulation to capture material interactions and confinement mechanisms 
under compressive loading. 

Microscale Modeling of Continuous Carbon Fiber–Reinforced TPU Composite 

At the microscale level, the focus was on characterizing the effective mechanical properties of the 
auxetic core material, consisting of thermoplastic polyurethane (TPU) reinforced with continuous 
carbon fibers (CCF). A representative volume element (RVE) was developed to capture the local 
interactions between the polymer matrix and reinforcing fibers. The RVE dimensions were 
determined through sensitivity analysis to ensure size independence of the computed homogenized 
properties. The TPU matrix was modeled as a hyperelastic material using an Ogden model of order 
three to accurately represent its nonlinear elastic behavior. Material parameters for TPU, including 
an elastic modulus of approximately 51 MPa and a Poisson’s ratio of 0.48, were used to define the 
hyperelastic response. The carbon fibers were modeled as transversely isotropic with a longitudinal 
elastic modulus of 780 GPa, a transverse modulus of 10 GPa, and a Poisson’s ratio of 0.2. Periodic 
boundary conditions were applied on all faces of the RVE to ensure continuity between opposing 
surfaces. A uniaxial strain was applied in one direction while maintaining zero displacement on 
the orthogonal planes. The resulting stress field was volume-averaged to obtain the effective 
mechanical response. The homogenized elastic constants and hyperelastic coefficients derived 
from the RVE were then used to define the constitutive behavior of the auxetic core at the 
mesoscale level. 

Mesoscale Modeling of the Re-entrant Honeycomb Auxetic Core 

At the mesoscale, the homogenized composite material from the microscale analysis was used to 
model the re-entrant honeycomb auxetic core. The re-entrant geometry, characterized by its 
negative Poisson’s ratio, was selected for its ability to provide enhanced confinement and lateral 
expansion under compressive loading. The geometry of the unit cell was parameterized by the 
vertical cell length, slant cell length, wall thickness, and re-entrant angle. These parameters were 
varied systematically to investigate their influence on the mechanical performance and the extent 
of the auxetic effect. The core material was modeled using the homogenized TPU/CCF properties, 
which combine flexibility from the polymer matrix and strength from the embedded carbon fibers. 

Boundary conditions were defined to simulate a single layer of periodic cells subjected to uniform 
compressive loading. The load was applied quasi-statically, and lateral expansion was allowed to 
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occur freely to capture the auxetic deformation response. The finite element model was solved 
using Abaqus CAE, employing reduced-integration hexahedral elements to ensure computational 
efficiency and numerical stability. This mesoscale modeling stage provided the effective 
deformation characteristics, including the equivalent stiffness and Poisson’s ratio of the auxetic 
core, which were then transferred to the macroscale simulation of the sandwich-confined concrete 
cylinder. 

Macroscale Modeling of the Sandwich-Confined Concrete Cylinders 

At the macroscale, the full concrete cylinder confined by the sandwich system was modeled to 
evaluate the global mechanical performance under axial compression. The sandwich system 
consisted of an inner and outer CFRP face sheet enclosing a middle layer of the carbon fiber– 
reinforced auxetic core. The concrete cylinder was modeled using the Concrete Damage Plasticity 
(CDP) model to represent both tensile cracking and compressive crushing. The parameters of the 
CDP model, including dilation angle, eccentricity, viscosity, and the ratio of biaxial to uniaxial 
compressive yield stress, were selected based on literature values representative of normal-strength 
concrete. This model captured the nonlinear inelastic behavior of concrete and its progressive 
damage evolution under load. The auxetic core was assigned the homogenized material properties 
obtained from the mesoscale analysis, while the CFRP face sheets were modeled as orthotropic 
materials with principal moduli of elasticity aligned with the fiber direction. The layers were 
assembled concentrically around the concrete cylinder to form a three-component sandwich 
structure. The model geometry included surface-to-surface tie constraints between the interfaces 
of the concrete, auxetic layer, and CFRP sheets to simulate perfect bonding. The bottom surface 
of the concrete cylinder was fully fixed, while a compressive load was applied to the top surface 
through a reference node with displacement control to simulate uniaxial loading. Contact 
conditions with a static friction coefficient of 1.0 were defined to ensure realistic load transfer 
between interfaces. 

Numerical Implementation and Analysis 

All simulations were performed in Abaqus CAE, utilizing the implicit solver with nonlinear 
geometry effects enabled to capture large deformations and contact interactions. A refined mesh 
was applied along the interfaces to ensure accurate stress distribution and convergence of results. 
The mesh density was determined through a convergence study that balanced accuracy and 
computational efficiency. The analysis output included axial stress–strain curves, deformation 
patterns, and the evolution of plastic strains within the concrete and auxetic layers. These data 
were post-processed to quantify the confinement efficiency provided by the auxetic–CFRP 
sandwich system. The numerical framework thus established a multiscale linkage—from material 
behavior at the microscale to structural performance at the macroscale—providing a robust basis 
for understanding how auxetic geometry and fiber reinforcement jointly enhance the strength and 
ductility of confined concrete cylinders. 
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Chapter 3: Results and Discussion 

3.1 Evaluating the Auxetic Response of Re-entrant Honeycomb Core 

3.1.1 Computational and Experimental Results 

The Poisson’s ratio from the FEA simulations was compared to the tensile data. Fig. 4 (a)-(e) 
show the displacement images from the progression of the deformation. The undeformed image 
of the structure is shown in Fig. 4a. followed by the subsequent deformation history up to the 
maximum 20 mm displacement in Fig. 4e. The Poisson’s ratio evaluated from the three 
structures with the same geometrical features is -0.367. 

Fig. 9 - Computer numerical simulation images of the selected geometry showing (a) an 
undeformed shape, (b) 4 mm displacement load, (c) 10 mm displacement load, (d) 16 mm 
displacement load, (e) and 20 mm displacement load. 

For the tensile test/DIC experiment, the entire face of the 3D printed structures, excluding the 
gripped ends, is selected as the area of interest, as illustrated in Fig. 5a. This selection enables the 
DIC to compute the strain values to include all the points on the features of the auxetic structures. 
Fig. 5(b)-(d) show how the auxetic structure increases in dimension transversely with applied 
uniaxial tension at 5, 10, and 17 mm, respectively. Fig. 5e shows the RT deformed structure at the 
maximum uniaxial displacement load of 20 mm. The Poisson’s ratio evaluated from three replicate 
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structures with the same geometrical features is -0.372 ± 0.006, which correlates very well with 
the simulated value. The computational and testing data agree with each other. Hence the 
simulations are expanded to generate a large dataset to enable machine learning-based 
performance prediction. 

Fig. 10 - DIC images of the selected geometry showing (a) region of interest, (b) deformed 
sample at 5 mm displacement load, (c)10 mm displacement load, (d) 17 mm displacement 
load, and (e) 20 mm displacement load. 

3.1.2 Machine Learning Implementation Results 

Dataset Generation and Adequacy 

Python scripts containing nested loops of the four geometrical features are loaded in batches into 
Abaqus CAE scripting to generate 8096 non-self-intersecting re-entrant honeycomb geometries. 
Each auxetic structure has a uniform re-entrant honeycomb pattern with six repeating units in the 
horizontal direction and three in the vertical direction. Fig. 6 shows the distribution of datasets of 
the independent features; (a) slant cell length, (b) cell thickness, (c) vertical cell length in 
millimeters, and (d) cell angle in degrees, and the dependent feature; (e) Poisson’s ratio. To ensure 
adequacy, four important factors are carefully considered: (a) representativeness, (b) consistency, 
(c) completeness, and (d) the balanced nature of the dataset. 

To ensure representativeness, careful consideration was made so that the dataset contains adequate 
information for training the model. Toward this, 20% of the whole dataset chosen randomly was 
kept unseen/hidden, and the remaining 80% data was used for training. Besides, 5-fold cross-
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validation was performed to tune the hyperparameters where during each fold, the dataset was 
further split into an 80% training set and a 20% validation set. Finally, the model was evaluated 
on the test set to determine the generalizability of unseen input features. 

For the completeness and balanced nature of the dataset, all possible combinations of the 
independent features of the structures were considered in nested loops from the least possible 
values that yielded non-self-intersecting structures. These values were scaled up uniformly, 
choosing small step sizes. For example, for the generation of geometries, the minimum slant cell 
length is 4 mm, and the minimum cell angle of 30o is adopted. Any angle less than 30o at a step 
size of 5o, when combined with a slant cell length less than 4 mm created a self-intersecting 
structure. The step size of the slant cell length is 2 mm. For the cell thickness, the minimum cell 
thickness is 2.0 mm, and step size is 0.2 mm. Cell thicknesses less than 2.0 mm, combined with 
other geometrical features of any value, created zero thickness element mesh errors for the 
quadrilateral dominant mesh with the configurations used. The minimum vertical cell length is 25 
mm at a step size of 5 mm, for all minimum allowable values for the other three geometrical 
features. The maximum vertical cell length, slant cell length, cell thickness, and cell angle are 80, 
20, 3.4 mm, and 85o, respectively. 

The 8096 different generated structures were each simulated for their Poisson’s ratio, following 
an applied uniaxial displacement load. Fig. 1 shows a schematic illustration of the FEA framework. 
The numerical simulation of re-entrant honeycomb structures demonstrated that some auxetic 
structure geometries exhibit a positive Poisson’s ratio. 49% of the Poisson’s ratios evaluated were 
equal to or greater than zero, while 51% of the Poisson’s ratios evaluated were less than zero. The 
highest Poisson’s ratio of the auxetic structure geometries recorded is 0.23, while the lowest is -
0.80. 

Fig. 11 - Dataset distribution of the independent features; (a) slant cell length, (b) cell 
thickness, (c) vertical cell length, (d) cell angle, and the dependent feature; (e) Poisson’s ratio. 
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For a detailed evaluation of the generated dataset, the influence of the four geometrical features on 
the predicted Poisson’s ratios is explained in Fig. 7(a)-(f) using surface plots. In Fig. 7a, keeping 
the slant cell length constant at 12 mm and vertical cell length at 50 mm, the Poisson’s ratio 
decreased from 0.06 to -0.26 when the cell angle was reduced from 80 to 50⁰. However, the trend 
reverses beyond 50⁰, and the Poisson’s ratio increases to -0.03 as the angle approaches 30⁰. The 
lowest Poisson’s ratio of -0.26 was obtained for a cell thickness of 2.0 mm. At a constant slant cell 
length of 12 mm and cell angle of 55⁰ in Fig. 7b, the Poisson’s ratio increased with an increase in 
cell thickness from 2.0 to 3.4 mm, and an increase in vertical cell length from 45 to 80 mm. 

The Poisson’s ratios are not significantly affected by the cell thickness and slant cell length, as it 
can be seen in Fig. 7c. At a constant vertical cell length of 50 mm and cell angle of 55⁰, the Poisson 
ratio hovered from 0.03 to 0.06, as the cell thickness decreased from 3.0 to 2.0 mm. The least 
Poisson’s ratio is recorded at a slant cell length of 4 mm. In Figure 7d, the vertical cell length is 
pegged at 50 mm, and cell thickness is kept constant at 2.6 mm, whereas the slant cell length and 
angle varied. As it can be seen in Fig. 7d, Poisson’s ratio remains unaffected by the variations in 
the cell angle for lower slant cell length values. However, at higher slant cell length values (beyond 
16 mm), the Poisson’s ratio significantly decreases as the cell angle is reduced from 80 to 50⁰. 

Fig. 12 - Influence of parametric interactions on the Poisson’s ratio prediction: (a) cell thickness-
cell angle interaction with slant cell length constant at 12 mm and vertical cell length at 50 mm (b) 
cell thickness-vertical cell length interaction with constant slant cell length of 12 mm and cell 
angle of 55⁰, (c) cell thickness-slant cell thickness interaction with constant vertical cell length of 
50 mm and cell angle of 55⁰, (d) slant cell length-cell angle interaction with constant vertical cell 
length of 50 mm and cell thickness of 2.6 mm, (e) cell angle-vertical cell length interaction with 
cell thickness and cell angle constant at 2.6 mm and 55⁰ respectively, and (f) slant cell length-
vertical cell length interaction for a constant slant cell length of 12 mm and the cell thickness of 
2.6 mm. 
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The slant cell length and the vertical cell length are varied while keeping the cell thickness and 
cell angle constant at 2.6 mm and 55⁰ in Figures 7e and 7d, respectively. Here, the Poisson’s ratio 
decreases from 0.10 to -0.59 as the slant cell length increases from 4 to 20 mm, while the vertical 
cell length of 55 mm shows the lowest Poisson’s ratio of -0.59. Keeping the slant cell length 
constant at 12 mm and the cell thickness at 2.6 mm (Fig 5f), the Poisson’s ratio decreases from 
0.10 to -0.23, as the cell angle is reduced from 80 to 50⁰ but increases to -0.05 as the angle is 
reduced beyond 50⁰ towards 30⁰. The vertical cell length shows a relatively lower influence on the 
predicted Poisson’s ratios. Overall, slant cell length-cell angle and slant cell length-vertical cell 
length interactions significantly influence the negative Poisson’s ratios compared to other 
parametric interactions, which are further explored later in this paper using interpretable machine 
learning. 

Machine Learning Model 

Tensorflow [1] ML system with Python is used for training the NN, due to its ability to run on 
multicore CPU and GPU. Optimization of the weights and the biases is accomplished by 
determining the model’s loss function using the Adam algorithm through backpropagation. In 
order to optimize the performance of the NN model in this study, a thorough hyperparameter tuning 
process was considered. This involved carefully considering several hyperparameters, including 
the learning rate, number of epochs, number of hidden layers, and number of hidden nodes in each 
layer. MSE and R2 values were employed to inform the selection of the optimum hyperparameters 
while balancing computational resources and model efficiency. The hyperparameter tuning 
process identified five neurons as the most efficient choice to balance model accuracy and 
computational resources. This conclusion was supported by the MSE and R2 plot. Furthermore, a 
learning rate of 0.001 was obtained based on the learning rate sensitivity study. Overall, after the 
tuning process, we obtained the optimal hyperparameters for our model, which include a learning 
rate of 0.001, number of epochs of 200, number of hidden layers of 2, and number of neurons of 
5. Such a hyperparameter tuning process helps to optimize the performance of the NN model and 
enables accurate predictions while minimizing computational resources. 

The first operation that is conducted on the datasets to prevent overfitting is splitting the dataset 
into training datasets, and test datasets using Scikit learn library [2] in the ratio of 80:20. The 20% 
test dataset is kept hidden from the model during training, leaving the 80% only to be exposed and 
used for model training. At the end of the training, the hidden test dataset is revealed to evaluate 
the performance of the NN model. The model is trained with k-fold cross-validation (CV) [3]. The 
R2 and MSE values deduced from each fold of the CV operation are averaged to evaluate the 
performance of the NN algorithm. A 5-fold CV on the training dataset enabled the dataset to be 
reshuffled to a dataset of 80% training and 20% validation [4]. 

Predicted Machine Learning Results 

The performance of the NN model is determined by comparing the FEA-measured Poisson’s ratios 
with the predicted Poisson’s ratios data for the training, validation, and test datasets in Fig. 8. The 
R2 values for the train, validation, and test datasets is 0.98. 
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Fig. 13 - Comparison of the measured Poisson’s ratio from the FEA model with the predicted 
Poisson’s ratio from the trained NN model using (a) train set, (b) validation set, and (c) test 
set of data. 

SHAP Interpretation of the Predictions 

In this section, the SHAP analysis is presented to provide more insight into the predicted Poisson’s 
ratio and to clarify the relative importance of the slant cell length, cell angle, vertical cell length, 
and cell thickness. The relevance of the individual input features and the influence on the output 
feature are addressed by assigned importance values. Slant cell length and cell angle strongly 
influence the prediction of Poisson’s ratios relative to the vertical cell length and the cell thickness. 
As it can be seen in Fig. 9, the Poisson’s ratio prediction is dominated by the slant cell length with 
an absolute SHAP value of 0.08, followed by the cell angle with a SHAP value of 0.07, the vertical 
cell length with a SHAP value of 0.02, and the cell thickness with a SHAP value of 0.01. 

Fig. 14 - SHAP summary plot for the Poisson’s ratio for each input from the trained NN model. 

To elucidate more on the relative importance of the input features, Fig. 10 shows the violin plots 
of the SHAP values for the individual input features that contributed to the prediction of the 
Poisson’s ratios. The color scale from blue to red shows the range of values of the individual input 
feature, and the horizontal axis shows the SHAP values. While the red color represents the highest 
input feature value, the blue color represents the lowest value of the input feature. The mean 
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Poisson’s ratio of the entire datasets at -0.06 is represented by a SHAP value of zero. The features 
from top-down are arranged in descending order of importance. 

Blue cluster toward the positive SHAP value axis of the slant cell length indicates that the SHAP 
values corresponding to Poisson’s ratios greater than -0.06 correlate to low slant cell length values. 
A mix of a blue and red cluster from 0 to -0.2 SHAP values depicts that a mix of low and high 
slant cell length values correspond to the Poisson’s ratios less than -0.06. SHAP values from -0.2 
to -0.4 with the bold red line indicate that further negative Poisson’s ratios less than -0.06 correlate 
to high slant cell length values. The observed relationship between slant cell length and Poisson's 
ratios, where increased slant cell length corresponds to decreased Poisson's ratio values and vice 
versa. The red cluster from -0.07 to 0.28 on the cell angle SHAP violin shows that a small portion 
of the Poisson’s ratio less than -0.06 and a large portion greater than -0.06 was predicted by high 
cell angle values. An inconsistent mix of red and blue clusters from -0.07 to -0.25 SHAP value 
depicts that a mix of low and high cell angle values predicted some negative Poisson’s ratios. Red 
clusters from -0.03 to 0.1 SHAP values on the vertical cell length indicate that the quantity of 
Poisson’s ratio from slightly below -0.06 up to the Poisson’s ratios that correspond to the SHAP 
value of 0.1 was predicted by high vertical cell length values. From -0.03 to -0.07 SHAP values, 
the mix of blue and red indicates that a mix of low and high vertical cell length values predicted 
the corresponding Poisson’s ratios below -0.06. From -0.07 to -0.18 SHAP values on the vertical 
cell length, the blue clusters depict that low vertical cell length values predicted the negative 
Poisson’s ratios in the cluster. 

Cell thickness is a feature that has contributed the least to the prediction of Poisson’s ratios. All 
the SHAP values are within the weak negative correlation of -0.1 and weak positive correlation of 
0.1. A cluster of Poisson’s ratios is observed corresponding to a SHAP value of zero, and these 
mean Poisson’s ratios around -0.06 are obtained for higher cell thickness values. In fact, most high 
cell thickness values yield Poisson’s ratios equal to or higher than -0.06. However, Poisson’s ratios 
lower than -0.06 are also observed for higher cell thickness values. Results in Fig. 6 corresponding 
to cell thickness also indicate that lower cell thickness values always yield negative Poisson’s 
ratios lower than -0.06. Hence, although cell thickness shows the least SHAP value (Fig. 9), the 
violin plot depicts that a judicious selection of lower cell thickness in the design of re-entrant 
honeycomb structures can provide substantial means to obtain an auxetic response. Overall, 
comparison of the SHAP violin plot trends and FEA trends reveals a generally good alignment 
between the two, indicating that the SHAP interpretations are consistent with the fundamental laws 
of physics. This observation highlights that the interpretable ML model, developed using a dataset 
generated through fundamental physics-based FEA, not only achieves outstanding predictive 
efficacy but also maintains the integrity of the underlying fundamental physics. 
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Fig. 15 - SHAP violin plot for the Poisson’s ratio using the trained NN model 

While the SHAP violin plot concentrates on the impact of a selected individual input feature on 
the prediction of the Poisson’s ratios, the SHAP river flow plot, shown in Fig. 11, concentrates on 
the impact of the different input features on a selected Poisson’s ratio [5]. The SHAP river flow 
plot of the NN model is illustrated in Fig. 11 for the individual Poisson’s ratios, as the four input 
features influence them. Here, the expected value of -0.06, indicates that the predicted value from 
the model would be the mean of all the 8096 Poisson’s ratios in the training of the NN model when 
no information on the input feature values is available. Every line of the SHAP river flow plot 
corresponds to a specific Poisson’s ratio. The tendency of these Poisson’s ratio lines to sway above 
or below the expected value line is influenced by the value of the input feature in the model. The 
color spectrum corresponds to the property value for a given data point. While the red color 
represents low Poisson’s ratio configuration, the blue represents high Poisson’s ratio cases. Each 
predicted Poisson’s ratio progressed through the effect of the input features as indicated on the 
Poisson’s ratio axis on the left side of the plot. 

Fig 16 - SHAP river flow plot for Poisson’s ratio using the trained NN model 
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The order of arrangement of the input features from right to left on the horizontal axis is in 
decreasing absolute SHAP values. Figure 11 shows a clear trend for the slant cell length. The slant 
cell length decreases the model predictions for low Poisson’s ratio configurations. On the other 
hand, for high Poisson’s ratio cases, the slant cell length increases the model predictions. 
Observation of such a clear trend signifies that slant cell length plays a dominant role in dictating 
the model output. It is not influenced significantly by the other input features. A mixed trend is 
observed for both cell angle and vertical cell length. These parameters increase or decrease the 
model output for low Poisson’s ratio configurations. Such a mixed trend indicates that other input 
features significantly influence the model output for both cell angle and vertical cell length in the 
model. The trend concerning cell thickness also shows a mixed response. However, the overall 
variations are relatively narrow. The model output hovers around the expected mean value for 
changes in cell thickness. Overall, in this study, both SHAP violin and SHAP riverflow plots were 
implemented to explain the impact and relevance of geometrical features on Poisson’s ratios and 
vice versa. SHAP violin allowed for the identification of the key geometrical features that 
influenced the prediction of Poisson’s ratios, while SHAP river flow explored the influence of 
different input features on each Poisson’s ratio. Thus, synergistic implementation of these two 
metrics facilitates a comprehensive understanding of the behavior of the NN model and its 
relationship with the input features. This study primarily focused on the linear elastic response 
under small displacements, where a constant Poisson's ratio was assumed. It should be noted, 
however, that under large deformations, the evaluation of strain-dependent Poisson's ratios may 
be necessary, presenting an interesting avenue for future research. 

3.2 Experimental and Numerical Evaluation of 3D-Printed Auxetic Confinement for 
Cementitious Mortar Cylinders 

The experimental results demonstrated that re-entrant auxetic confinement significantly enhanced 
the compressive strength of mortar specimens compared to unconfined controls. The improvement 
in strength is attributed to the negative Poisson’s ratio behavior of auxetic structures, which exert 
lateral compression on the mortar as the axial load increases. Among the three materials tested, 
ABS confinement exhibited the highest strength increase due to its superior stiffness and balanced 
ductility. PLA confinement also produced substantial gains, while TPU showed moderate 
improvement because of its compliant nature. The average compressive strength results for all 
configurations are summarized in Table 1. 

The results clearly show that auxetic confinement enhances the compressive performance of 
cementitious mortar. The ABS-confined specimens exhibited the highest average compressive 
strength of 45.7 MPa, representing a 34% increase over the unconfined control. PLA confinement 
achieved a 24% strength improvement, while TPU confinement yielded an 11% increase. These 
outcomes confirm that auxetic confinement mechanisms, particularly with stiffer polymers, 
provide significant enhancement in load-bearing capacity suitable for structural strengthening 
applications. 
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Table 1. Average compressive strength of mortar specimens with different confinement materials. 

Specimen Type Confinement Average Strength Increase 
Material Compressive over Control (%) 

Strength (MPa) 
Control 
(Unconfined) 

— 34.2 — 

Auxetic–PLA Polylactic Acid 
(PLA) 

42.5 24% 

Auxetic–ABS Acrylonitrile 45.7 34% 
Butadiene Styrene 
(ABS) 

Auxetic–TPU Thermoplastic 
Polyurethane (TPU) 

38.1 11% 

Finite element simulations were carried out using Abaqus CAE to evaluate the compressive 
behavior of cementitious mortar cylinders confined by 3D-printed re-entrant auxetic geometries 
made from different polymer materials. The simulations replicated the experimental configuration 
to assess load-bearing performance and confinement efficiency. The mortar was modeled using 
the Concrete Damage Plasticity (CDP) model to capture its nonlinear compressive response. The 
auxetic shells were modeled as elastic or hyperelastic solids depending on the confinement 
material—PLA and ABS were modeled as elastic–plastic materials, while TPU was represented 
using an Ogden hyperelastic model. The confinement layers were tied to the mortar surface 
through surface-to-surface contact with perfect bonding assumed. The bottom surface of the 
cylinder was fully fixed, and a compressive load was applied at the top to simulate uniaxial 
compression. The simulations were performed using quasi-static loading conditions under the 
Dynamic Explicit scheme to ensure numerical stability. The ratio of kinetic to internal energy 
remained below 5%, validating the quasi-static nature of the simulation. 

The numerical simulations accurately reproduced the compressive behavior of the confined mortar 
specimens and provided close agreement with experimental findings. Predicted compressive 
strength values were within ±2% of measured data, confirming the reliability of the adopted 
modeling framework. As observed experimentally, auxetic confinement significantly enhanced the 
load-bearing capacity of the specimens. ABS confinement yielded the highest predicted strength, 
followed by PLA and TPU, mirroring the experimental trends. Table 2 presents the simulated 
compressive strength results and their deviation from experimental values. 

The simulation results confirmed that the auxetic confinement geometry effectively enhances the 
compressive strength of cementitious mortar cylinders. The ABS auxetic shell exhibited the 
highest strength enhancement, consistent with the experimental findings. The strong correlation 
between simulated and measured values validates the numerical model and demonstrates its 
potential for predictive evaluation and parametric studies of auxetic confinement systems. 
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Table 2. Simulated compressive strength results for auxetic-confined mortar specimens. 

Specimen Type Confinement Simulated Deviation from 
Material Compressive Experimental (%) 

Auxetic–PLA 

Auxetic–ABS 

Polylactic Acid 
(PLA) 
Acrylonitrile 

Strength (MPa) 
43.1 

46.4 

+1.4 

+1.5 
Butadiene Styrene 
(ABS) 

Auxetic–TPU Thermoplastic 
Polyurethane (TPU) 

37.4 –1.8 

3.3 Numerical Results: Concrete Cylinders Confined with TPU–Continuous Carbon 
Fiber Auxetic Core and CFRP Wraps 

In the previous study, thermoplastic polyurethane (TPU) auxetic confinement showed the least 
enhancement in compressive strength among the printed polymeric materials tested. This was 
primarily attributed to TPU’s high flexibility and low stiffness, which limited its ability to impose 
strong lateral confinement during loading. However, TPU’s compliant nature presents a key 
advantage for practical applications at structural scales—its inherent elasticity allows for tight, 
conformal fitting around irregular concrete surfaces, ensuring effective contact and uniform stress 
transfer when applied to bridge columns and other cylindrical components. Building on this 
premise, the current study explores how reinforcing TPU with continuous carbon fibers (CCF) and 
combining it with external carbon fiber reinforced polymer (CFRP) wraps can create a hybrid 
confinement system that synergizes flexibility, strength, and durability. Specifically, this section 
presents the performance of hybrid concrete confinement systems combining thermoplastic 
polyurethane (TPU)–based re-entrant auxetic (3RE) cores with continuous carbon fiber (CCF) 
reinforcement and external carbon fiber reinforced polymer (CFRP) wraps. 

The compressive strength data (Table 3) reveal a clear enhancement trend across different 
reinforcement configurations. The unconfined concrete cylinder exhibited a baseline compressive 
strength of approximately 30 MPa. Wrapping with two CFRP layers (2CFRP) increased strength 
to about 58 MPa (+93%), while four layers (4CFRP) raised strength to 75 MPa (+120%). The 
auxetic-only core (3RE, VF=20%) achieved 50 MPa (+67%), confirming confinement 
effectiveness even without CFRP. The hybrid systems—1CFRP–3RE (VF=20%)–1CFRP and 
2CFRP–3RE (VF=20%)–2CFRP—achieved 70 MPa (+214%) and 75 MPa (+221%), respectively, 
indicating that moderate wrapping densities yield near-optimal confinement performance. 

Strain capacity results (Table 4) emphasize the ductility benefits of hybrid confinement systems. 
Plain concrete showed the lowest strain capacity (0.0020 mm/mm). The 2CFRP and 4CFRP 
configurations exhibited slight improvements (0.0022 and 0.0024 mm/mm, respectively). The 
auxetic-only 3RE (VF=20%) specimen achieved 0.0028 mm/mm (+40%), demonstrating the 
auxetic mechanism’s ability to delay failure. Hybrid systems exhibited the largest ductility 
enhancements: 1CFRP–3RE (VF=20%)–1CFRP reached 0.0035 mm/mm (+75%), and 2CFRP– 
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3RE (VF=20%)–2CFRP reached 0.0036 mm/mm (+80%), confirming the synergistic benefit of 
auxetic and CFRP confinement. 

Table 3. Compressive strength of concrete cylinders with different confinement configurations. 

Configuration Description Compressive % Increase over 
Strength (MPa) Plain Concrete 

Plain Concrete Unconfined 
concrete cylinder 

30 — 

2CFRP Two layers of 
CFRP wrap 

58 +93% 

4CFRP Four layers of 
CFRP wrap 

75 +120% 

3RE (VF=20%) Three-layer auxetic 
core with 20% CCF 

50 +67% 

1CFRP–3RE Hybrid sandwich 70 +214% 
(VF=20%)–1CFRP with one CFRP 

layer on each side 
2CFRP–3RE Hybrid sandwich 75 +221% 
(VF=20%)–2CFRP with two CFRP 

layers on each side 

Table 4. Strain capacity of concrete cylinders with different confinement configurations. 

Configuration Description Strain Capacity % Increase over 
(mm/mm) Plain Concrete 

Plain Concrete Unconfined 
concrete cylinder 

0.0020 — 

2CFRP Two layers of 
CFRP wrap 

0.0022 +10% 

4CFRP Four layers of 
CFRP wrap 

0.0024 +20% 

3RE (VF=20%) Three-layer auxetic 
core with 20% CCF 

0.0028 +40% 

1CFRP–3RE Hybrid sandwich 0.0035 +75% 
(VF=20%)–1CFRP with one CFRP 

layer on each side 
2CFRP–3RE Hybrid sandwich 0.0036 +80% 
(VF=20%)–2CFRP with two CFRP 

layers on each side 

The results demonstrate that while the contribution of the auxetic core to compressive strength 
becomes less dominant at higher CFRP confinement levels, its role in enhancing strain capacity 
and ductility remains substantial. The negative Poisson’s ratio behavior of the auxetic core 
promotes lateral contraction under axial compression, increasing confinement pressure on the 
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concrete and delaying microcrack formation. When integrated with CFRP face sheets, this lateral 
contraction also ensures continuous mechanical contact, minimizing debonding and promoting 
efficient stress transfer across interfaces. Overall, the hybrid TPU–CCF–CFRP system achieves 
superior load-bearing capacity, ductility, and energy absorption compared to single-material 
confinement systems. These findings confirm the effectiveness of this dual-mechanism 
confinement strategy for developing durable, damage-tolerant materials for transportation 
infrastructure applications. 

Chapter 4: Conclusions and Recommendations 

This project successfully demonstrated the feasibility and effectiveness of employing 3D-printed 
auxetic and hybrid composite systems for the structural strengthening of transportation 
infrastructure. Through an integrated sequence of experimental investigations, numerical 
simulations, and multiscale modeling, the research established a comprehensive understanding of 
how auxetic geometries and fiber-reinforced composites can enhance the mechanical performance, 
confinement efficiency, and overall durability of concrete structures. 

The material development and testing confirmed that 3D-printed thermoplastic polyurethane 
(TPU)–based auxetic geometries provide conformal and flexible confinement to concrete 
cylinders, enabling improved crack control and delayed failure. Although TPU alone exhibited 
limited strength enhancement, its unique negative Poisson’s ratio behavior and snug fit to the 
concrete surface make it particularly effective when upscaled for field applications where 
adaptability and continuity of contact are essential. When integrated with continuous carbon fiber 
(CCF) reinforcement, the auxetic core exhibited significantly higher compressive strength, 
demonstrating the benefit of combining flexibility with fiber stiffness. Further enhancement was 
achieved through the application of external carbon fiber reinforced polymer (CFRP) wraps, 
producing a multilevel confinement system capable of substantial gains in strength and ductility. 
The simulation and machine learning–based modeling framework developed in this project 
provided detailed insights into the behavior of these confinement systems at multiple scales. The 
multiscale finite element simulations accurately captured stress transfer and confinement 
efficiency from microscale fiber–matrix interactions to macroscale structural response. 

Together, the experimental and computational results demonstrate that hybrid TPU–CCF–CFRP 
confinement systems offer a promising, adaptable, and scalable solution for strengthening 
deteriorated or underperforming concrete components in transportation infrastructure. These 
systems provide improved load-bearing capacity, energy absorption, and crack resistance, while 
maintaining manufacturability through 3D printing and composite fabrication methods. The 
combined experimental validation and predictive modeling framework developed in this work 
establish a scientific and practical foundation for the broader application of advanced auxetic and 
fiber-reinforced composites in structural rehabilitation and resilience enhancement. 

Looking forward, the methodology and findings from this project pave the way for full-scale 
testing, long-term durability studies, and design integration into standard rehabilitation practices. 
The demonstrated synergy between experimental validation, numerical simulation, and intelligent 
modeling provides a rational, data-driven basis for developing next-generation strengthening 
materials tailored to the evolving demands of modern transportation infrastructure. 
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