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Abstract 

In this research, we develop a framework for machine learning enabled information fusion for 
iefrastructure health monitoring. Traditionally, off-the-shelfsensors such as accelerometers and 
strain gages have been used to collect real-time measurements ofstructural responses to 
facilitate health monitoring. While certain level ofsuccesses have been achieved, they also 
exhibit limitations such as relatively low detection sensitivity to incipient damage and especially 
limited detection range and coverage. In this project, we 1) establish a benchmark testbed that 
incorporates various sensors to assess different sensing mechanisms; 2) develop a machine 
learning based approach that can leverage sensing information and extrapolate to full-field 
measurement; and 3) investigate scalability strategies that can result in actual implementation of 
the newframework. Potential applications are large-scale infrastructure such as bridges. 



Chapter 1: Introduction and Background 

1.1 Project Motivation 
While various sensors and sensing technologies have been developed in recent years to facilitate 
the structural health monitoring (SHM) of infrastructure, the actual implementation of these new 
technologies has been limited. Major technical barriers exist. Traditionally, off-the-shelf sensors 
such as accelerometers and strain gages are employed. Coupled with statistical analysis or model­
based dynamic analysis, the changes of local strain or global vibration properties such as natural 
frequencies, mode shapes, mode shape curvatures, can be used to infer damage occurrence. These 
approaches however generally suffer from low detection sensitivity. The strain gages would have 
to be very closed to damage site to detect damage occurrence. The damage would need to be quite 
severe to induce significant changes to dynamic properties. To tackle such challenges, in recent 
years a number of new sensing mechanisms have been suggested, including piezoelectric 
transducers as well as magneto-mechanical transducers for wave propagation and impedance based 
fault detection. Nevertheless, such high detection sensitivity comes with a price. That is, small 
variations in the infrastructure under normalcy condition may be diagnosed as fault condition, 
leading to frequent false alarms. To overcome these technical barriers, we propose to conduct 
information fusion of sensors and to leverage machine learning to acquire full-field measurement 
information based on a small number of point sensors. 

1.2 Research, Objectives, and Tasks 
The overarching goal of this research is to synthesize a new framework of infrastructure 
monitoring that can concurrently take in sensing signals from both traditional sensors and new 
sensing techniques, process the information through machine learning that integrate together deep 
learning and underlying physics, and produce highly accurate and robust full field measurement 
results to facilitate fault detection. These represent paradigm-shifting advancements with respect 
to the current practice: 1) heterogeneous sensing allows the possibility of taking advantage of the 
merits of various sensors and avoiding their drawbacks; 2) as more information is processed, the 
result will be naturally more accurate and robust; 3) the inference of full-field measurement results 
will significantly enhance the fault detection sensitivity and robustness, and 3) with the machine 
learning approach, there will be no need to develop complex finite element model of the structure 
to be inspected, and empirical knowledge can be incorporated into decision making through the 
adoption of a composite convolutional network architecture to be formulated in this research. As 
physics knowledge can be injected into the decision making through the new deep learning 
approach proposed, the methodology can potentially be scalable to large infrastructure with many 
sensor types and units. 

To accomplish these objectives, research activities along two thrust areas are executed, a) testbed 
setup and data acquisition, b) analysis and machine learning synthesis. Four tasks are conducted: 

Task 1: Testbed setup 
Task 2: Data acquisition and initial analysis of the testbed 
Task 3: Full-field measurement inference 
Task 4: Fault detection decision making 



1.3 Report Overview 
In the subsequent chapters, we present the research methodology and results obtained throughout 
this research. 

Chapter 2 outlines the materials involved in this research. The testbed design and analyses are 
based upon benchmark frame structure experimental investigation. Full field measurement 
inference is conducted based on the testbed structure. 

Chapter 3 presents in detail the research tasks as well as the key data/results. The full field 
measurement expansion methodology is outlined, followed by damage detection illustrations. 

Chapter 4 summarizes the workforce training aspect of the project as well as knowledge 
dissemination. 

Chapter 5 provides the overall conclusion as well as recommendation for future work 



Chapter 2: Methodology 

2.1 Materials 
In terms of physical materials, this project involves a three-story frame structure used as 
benchmark testbed, a modal shop shaker (K2110E), and a scanning laser Doppler vibrometer 
(Polytec 500). 

In terms of reporting materials, in this final report we provide details of 
a) Testbed design details; 
b) Modal testing and full-field measurement results; 
c) Re-construction of full-field measurement based on point sensing information; and 
d) structural damage detection examination cases. 

2.2 Test Setup & Process 
A number of testings are conducted throughout this project. Figure 1 shows testbed setup. Figure 
2 details the excitation and measurement data flow. 

Measurement Unit 

Amplifier Cooling System 

Figure I .Experimental setup. 

The experimental setup comprises two main components: a building structure equipped with 16 
accelerometers and excited by a shaker system and a scanning vibrometer capable of dense 
measurement for validating the full-field reconstruction. Given the use of a 2D laser vibrometer 
and the symmetry of the frame structure, measurements are conducted on one side of the frame, as 
indicated in Figure 2. This setup allows us to characterize the full vibrational responses of the 
structure using 16 sensors. The objective is to estimate the full responses of the frame structure 
from limited sensor data. In other words, we aim to answer the question: Can a small number of 
sensors be used to reconstruct the full vibrational responses? The proposed approach follows two 
main steps: collecting dense measurements from all 16 nodes as prior knowledge (training dataset) 
and reconstructing the responses under different loading conditions using limited sensor data. It is 
worth noting that determining the optimal number and placement of sensors is a multi-objective 
optimization problem, as formulated in the previous section. The adapted optimizer for binary 
optimization is utilized to solve the problem. 



The Polytec 500 vibrometer functions as both a signal generator and a data acquisition system. 
Different excitation signals are applied via the shaker amplifier (Modal Shop 2050E09-FS), as 
demonstrated in the next subsection. The shaker (Modal Shop K.211 OE) is attached to a steel table 
with a stinger, inducing motion in a single direction, as shown in Figure 5. The frame structure is 
mounted on the steel shake table, enabling back-and-forth vibrations along one direction when 
excited. The laser vibrometer captures these vibrations by measuring points marked in Figure 5. 
The training dataset comprises acceleration responses from 16 nodes, with each time series 
containing 800 data points. 

--- Power Connection Excitation Signal 

Building Structure 

Laser Point 

- ■ 
Amplifier 

ooler System 

Scanning 
Vibrometer 

Figure 2.Excitation and measurement data flow 

The details of the analyses and testings are reported in Chapter 3. 



Chapter 3: Results and Discussion 

3.1 Full-field reconstruction overview 
The dependence of limited sensor selection can affect the influence the reconstruction 

performance. Moreover, selecting a few measurement points from all possible points in the full 
field constitutes a sparse, combinatorial optimization problem. Therefore, this research explores 
whether this process can be delegated to an optimization algorithm, allowing the algorithm to 
determine the optimal data volume while maintaining high reconstruction accuracy. Additionally, 
the process of transitioning from sparse measurements to full-field reconstruction is an 
underdetermined problem, indicating that multiple solutions are feasible. To fit this nature, this 
section converts the reconstruction process into a binary multi-objective optimization problem. 
Subsequently, the sparsity aware MOPSO algorithm enhanced by reinforcement learning is 
adapted to solve the binary setting. 
3.1.1 Methodology outline 

In data analysis, an effective representation should emphasize the underlying content ofsignals 
while reducing redundancy. Sparse representation has emerged as a widely recognized approach, 
where a signal is reconstructed using only a few dominant components selected from a larger 
dictionary. A signal y e IR m can often be represented in a sparse manner using a combination of 
elements from a predefined dictionary. Mathematically, this can be expressed as: 

y =Dx ="n X d ="X .d (1)L.Jj=I J J LJ J J 
j eS 

where DE IR mxn is the orthonormal basis matrix or dictionary, and dj is the jth column of D. Sis 

the total columns of D (i.e., the number of atoms). In general, the basis matrix is overcomplete. 

i.e., m < n. In Equation (1), most of the coefficients of xj are zero, hence x E IR" is a sparse vector. 

The basis matrix D is chosen in such a way that the signal has a sparse representation in that 
domain. Most periodic signals or images have a sparse representation in Fourier or wavelet 
domain. If there is no information available about the signals, then the basis matrices can be 
obtained via training signals using dictionary learning (Rubinstein et al, 2008; Jana, et al, 2023; 
Mousavi et al, 2023). 

The objective of this study is to find out ye IR"' using compressive sensing, which is 
effectively applied to various applications (Ao et al, 2023; Wei et al, 2023; Yuan et al, 2024), by 
using limited measurement z E JR P. Here, p << m. Any measured vector z is a simple linear 
projection of the main signal y and can be found out as 

z =Oy =0Dx = <px, where, <p =0D (2) 
where 0 E IR pxm is the measurement matrix which is the binary sensor location matrix. That is, only 
one element of each row of the 0 matrix contains the value 1 depending on the location of sensor 
and other values will be 0. Asp<< min 0, hence recovering original response y oflength m from 
p measurement in z is an under-determined problem. x is the sparse representation ofz in the sub­
dictionary of D basis, i.e., <p .xcan be obtained exactly by solving an optimization problem as 
follows, 

mjnllz-<pxll~ s.t. llxj ll0<TVJ (3) 
X 

where 11 · llo is the L0 norm and Tis the sparsity level. F denotes the Frobenius norm. As with 
dictionary learning, we use the Orthogonal Matching Pursuit (OMP) algorithm (Tropp and Gilber, 



2007) to solve this optimization. Once x is obtained, we can reconstruct the full-filed data by 
solving the forward problem, 

y=Dx (4) 

The determination of sensor location presents a challenge because selecting a limited number 
of sensor nodes from the full set of available sensors is a combinatorial problem. Additionally, 
possible sensor location is inherently sparse. These motivates us to reformulate the dictionary 
learning into a sparse binary multi-objective optimization problem as follows : 

min 110 llo and max r(y,y) (5) 
where r refers to the Pearson's correlation between the reconstructed and original training/testing 
measurements. A larger value of r leads to more accurate reconstruction. Since the optimization 
algorithm operates on a one-dimensional vector but the reconstruction process requires a sparse 
matrix, a vectorization-reshaping mechanism is introduced. In this process, 0 is a sparse selection 
matrix, which is vectorized into a binary vector 9 for optimization. The vector 9 is then reshaped 
back into the matrix form 0 for use in the reconstruction process. For example, suppose 9 is a 
binary vector of size 12, where only the 3rd, 4th, and 7th entries are 1 (means that the limited 
measurements are obtained from sensors located at these 3 locations), while all other entries remain 
0. The corresponding measurement matrix 0 is constructed by reshaping this vector into a sparse 
matrix, where each row corresponds to a selected sensor. The vectorization-reshaping process can 
be illustrated as follows: 

o o 1 o o o o o o o o 01 
0 : 0r 0 0 1 0 0 0 0 0 0 0 0 vectorization 

reshap ing 

0 0 0 0 0 0 1 0 0 0 0 0 

(6) 

o: [o o 1 1 o o 1 o o o o o] 
It is worth mentioning that selecting a few measurement points from dense measurement points 

for full-field data reconstruction is an underdetermined problem. Therefore, many solutions may 
exist. Fortunately, multi-objective optimization can also provide multiple solutions, which is 
precisely what we desire. From an engineering practical perspective, due to certain constraints, it 
may not be convenient to install sensors at certain locations. Hence, having multiple solutions 
offers more references for sensor placement. To solve the problem in Equation (5), the optimizer 
developed in our previous work will be adapted for current problem setting, as presented in the 
subsequent subsections. As shown in Figure 3, the flowchart summarizes the whole process of 
using limited measurements to reconstruct the full-filed structural responses based on dictionary 
learning. First, we obtain a dense measurement under controlled conditions. Subsequently, we train 
a dictionary using dictionary learning, which will be explained in the next sub-section. We then 
reframe the reconstruction process into a sparse binary multi-objective optimization, as shown in 
Equation (5), in which, a sparse coding is integrated, as shown in the bottom branch in Figure 3. 
After convergence or the iteration criteria are met, multiple solutions will be obtained. 
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Figure 3.Flowchart of full-filed structural response reconstruction using limited data. 

3.1.2 Binary particle swarm optimizer 
This section describes the optimizer used to solve the reconstruction model formulated in the 

previous section. The model typically exhibits multimodality, meaning it contains multiple local 
extrema. Additionally, the presence of the LO norm further increases its complexity. As a result, 
conventional gradient-based algorithms are not suitable for this problem. To address these 
challenges, we employ the Particle Swarm Optimization (PSO) technique (Kennedy and Eberhart, 
1995), a type ofpopulation-based optimizer known for its simplicity, ease of implementation, and 
strong performance in multimodal problems. Given that our problem involves binary optimization, 
we adapt our previously developed Q-leaming-enhanced PSO framework (Zhang et al, 2024 ). This 
framework was originally applied to structural damage identification with sparse, multimodal, and 
combinatorial characteristics, which share similarities with the current reconstruction setup. While 
the original framework was designed for continuous variable optimization, the binary nature of 
our reconstruction model necessitates specific modifications to the algorithm. 

PSO was originally developed for continuous nonlinear optimization. The population of PSO 
is called a swarm, and each individual in the population of PSO is called a particle. A swarm 
consists of NP particles moving around a D-dimensional search space, each representing a 

potential solution. The i-th particle is characterized by its position vector x; and velocity vector 
v;. Each particle flies through the solution space searching for the global optimal solution. In the 
process of flying, the current position and velocity of the i-th particle are updated according to the 
following equations, respectively: 

k+I k (pk k) ( k k) (7)V; =W·V; +C1 · lj. best ,i-Xi +C2 ·r2. gbest -X; 

xk+l = xk +vk+l (8)
l l l 

where c1 and c2 are the acceleration constants multiplied respectively by two random numbers, 1i 

and r2 , uniformly distributed in [0.0, 1.0] and used to weight the velocity toward the best previous 

position of the i-th particle, P!est; , and toward the best global position attained by all swarm 

members, g~si ; , found at iteration k. Parameter w is an inertia weight in interval [0.0, 1.0] to control 



the influence of the previous velocity. A large inertia weight facilitates global exploration, which 
is particularly useful in the initial stages of an optimization. On the contrary, a small value allows 
for more localized searching, which is useful as the swarm moves toward the neighborhood of the 
optimum. A suitable value for the inertia weight usually provides a balance between exploration 
and exploitation and consequently results in a better optimum solution. A limit, [vmin, vmax] , may 
be placed on v; to ensure that the velocities are acceptable. Velocities that are not within the range 
are clamped. In addition, the decision variable is bounded, x; E [ xmin, xmax]. If the updating equation 
causes the position to violate this interval, the infeasibility is removed by setting it to xmin if 

X; < xmin or equating it to xmax if X; > xmax • However, it is known that the original PSO has 
difficulties in controlling the balance between exploration and exploitation and, therefore, has the 
disadvantage ofpremature convergence. Thus, we develop several local search heuristics to tackle 
the balance exploration and exploitation. To make the presentation clear, we revisit the five local 
search strategies and summarize them in Table 1. 

Table I .Local search heuristics. 

Strategy 
Particle dynamics Coefficients

Name 

V; ( t + 1) = aJV; ( t) + C11'j ( Acsti ( t) - X; ( t)) 
( mmax - mmin ) it 

u) = u)max - ---~- C1 = 2.5 
Exploration +c2r2 ( g (t) - X; ( t)) maxlter 

C2 =0.5x;(t+ 1) =X; (t)+v; (t + 1) 
V; ( t + 1) =mv; ( t) + C11'j ( Aesti ( t) - X; ( t)) 

( mmax - mmin )it
{U = {Umax - ----- C1 =0.5 

Convergence +c2r2 ( g (t) - X; ( t)) maxlter 
C2 =2.5

X; (t +1) =X; (t) +V; (t +1) 

Jtcsti,d + rd •(iuppcr,d -/lowcr,d) 

if rand> 0.5 N-(µ,R 2) 
Elitist-based temp.Jtesti,d = ( ) 

Jtesti,d - rd • /uppcr,d -/lower,d (l\nax -~ ) . itperturbation R = ~ - -'--------'--
ax maxlterif rand ~ 0.5 

repeated for defined times 
N-(µ,R 2 ) 

temp4est,d =4..i,d + normmd(µ, R2)
Mutation R _ _ (l\nax - ~n ) • itrepeated for defined times 

- ~ax maxlter 

temp.Jtesti d =.ltesti d + v; d
Fine Tuning ' ' ' 

repeated for all dimensions 

Based on PSO, a binary version (BPSO) is proposed by Kennedy and Eberhart (1997) to 
accommodate discrete binary variables and allow it to operate in a binary problem space. A particle 
moves in a search space restricted to O or 1 on each dimension. In BPSO, updating a particle 
represents changes of a bit which should be in either state 1 or 0, and the velocity represents the 
probability of the bit taking the value 1 or 0. A sigmoid function is used to transform all real-



valued velocities to the range [0.0, 1.0]. In BPSO, the updating velocity equation remains 
unchanged while the position updating rule is replaced by the following equation: 

xk+I = {o if rand() 2'. S(vt 1) (9) 
' 1 if rand() < S(v1+1) 

where S(-) is a sigmoid function to transform the particle's velocity to the probability as follows: 

( k+I ) 1 (10)s V; = k+I 
1 + e-V; 

and rand() is a random number uniformly distributed in [0.0, I.OJ. 
Leveraging the concept of BPSO, we can modify the local heuristics in Table 1 to address 

binary models formulated in Section 3.1. The particle velocity update equation remains the same, 
so only the position update equation needs adjustment. During iterations, Exploration and 
Convergence involve only changes in coefficients, the basic updating equations are the same as 
conventional PSO. The binary cases for Exploration and Convergence adopt Equations (15) and 
(16). While in the EBP, we directly alter the personal best position. It is worth noting that the best 
personal position in optimization is a binary vector as mentioned in Equation (12), therefore, the 
objective of EBP (Elitist-based perturbation) is to mutate the personal best by selecting one 
dimension and flipping a bit in its binary position, turning a Oto 1 or 1 to 0. This process can be 
achieved and expressed as P ~17i,d =1-p~ti,d directly. Mutation is similar to EBP, the bit-flipping 

expression is g::':d =1- gbest,d . For Fine Tuning, each dimension is flipped using a probabilistic 

strategy as shown in Equations (17) and (18). The flipping probability determines the likelihood 
of changing a bit in the binary position vector, adding variability and enabling exploration of new 
solutions. 

xk+t ={1-x1 if rand() <Poiv (ll) 
' x1 otherwise 

The probability of flipping a bit, denoted as Pruv =b/t' , is calculated with b as the base 

probability. If the updated solution shows improvement, the probability is reset to b. Otherwise, it 
is reduced using a reduction factor s: 

b if xk+t --< xk 
prob= { ' ' (12)

prob I s otherwise 

where, bis set to 0.5, sis 4, r is 5, and tis 2 tuned with good performance on the reconstruction. 
By decaying the probability over time, we can reduce the chance of flipping. This can help 
maintain the structure of the optimal solution currently found while still allowing for some level 
of exploration. 

3.2 Full-field reconstruction case demonstration 
This section demonstrates the proposed reconstruction framework through two case studies. 

Case I examines reconstruction under the same loading condition, where both dictionary training 
and reconstruction use burst chirp excitation data. Case II explores cross-loading reconstruction 
scenarios, where the dictionary is trained under one loading condition and applied to reconstruct 
responses under a different excitation. These cases validate the method's effectiveness and 
robustness for practical engineering applications. 



3.2.1 Case I: Reconstruction under the Same Loading Condition 
In Case I, a burst chirp signal covering 3-25 Hz is used to excite the structure over 2 seconds. 

The sampling frequency is set to 400 Hz, yielding 800 data points per time series. The vibrometer 
outputs velocity responses directly, which are used for both training and reconstruction. Two 
independent datasets are collected: one for dictionary training and one for testing reconstruction 
accuracy. The dictionary is randomly initialized and trained using the first dataset. Figure 4 shows 
the initialized and learned dictionaries, where each heatmap represents a dictionary matrix (16 
spatial locations x 100 atoms). These atoms serve as basis functions encoding spatial dependencies 
across measurement locations. The dictionary captures compressed spatial relationships rather 
than direct vibration patterns, enabling response reconstruction from limited measurements. 

I 
l 

I 
11 

I 

0 50 0 50 
Atoms Atoms 

(a) (b) 

Figure 4.( a) Initialized dictionary and (b) learned dictionary for burst chirp excitation. 
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Figure 5. Multiple optimal solutions for limited sensor layout. 

The reconstruction process is formulated as a multi-objective binary optimization problem, 
yielding multiple solutions with different sensor placement configurations and varying sensor 



counts. To simulate resource-constrained scenarios, a maximum ofeight sensors is imposed. Seven 
optimal solutions are obtained (Figure 5), with sensor counts ranging from 2 to 8. Each solution 
corresponds to specific sensor locations marked by green dots, where measurements enable full­
field response reconstruction with varying accuracy levels. To verify solution optimality, 
perturbations are introduced to each optimal solution, generating alternative sensor placements 
with the same sensor count but different locations (Table 2). Reconstruction accuracy is quantified 
using average similarity across all 16 locations, defined as the mean Pearson correlation coefficient 
between reconstructed and ground truth responses. 

Table 2. Sensor placement combinations from optimization and perturbations for Case I. 

Solutions O~timization Mutated 1 {Random 1} Mutated 2 {Random 2} 
Sol I 9, 15 2, 7 8, 14 
Sol 2 6, 12, 15 7,9, 14 2, 5, 11 
Sol 3 1, 6, 12, 16 4, 7, 13, 16 1, 9, 10, 13 
Sol4 1, 6, 12, 14, 16 1, 7, 12, 14, 16 1, 7, 12, 13, 16 
Sol 5 2, 4, 8, 11, 14, 16 2, 4, 9, 11, 14, 16 2, 3, 9, 11, 14, 16 
Sol 6 2, 4, 5, 8, 11, 14, 16 2, 4, 6, 8, 11, 14, 16 2, 4, 6, 8, 11, 13, 16 
Sol 7 2, 4, 5, 8, 10, 12, 14, 16 2, 3, 5, 8, 10, 12, 14, 16 2, 4, 5, 8, 10, 12, 13, 16 

Figure 6 presents the average similarity comparisons between the optimal solutions and their 
perturbations. The horizontal axis denotes the solution index, while the vertical axis indicates the 
average similarity across 16 locations, which serves as the accuracy metric in this study. The 
solutions differ in the number of sensors used, ranging from 2 to 8 (Soll to Sol7) out of the 16 
locations, thereby reflecting different levels of sensor sparsity. Each optimal solution is 
accompanied by two perturbed variations, resulting in three bars per solution. Regardless of how 
the solutions are perturbed, their reconstruction accuracies never exceed those of the optimal 
solutions. This confirms that the solutions obtained through the optimization algorithm are indeed 
optimal. Additionally, we analyze the relationship between reconstruction accuracy and the 
number of sensors, as visualized by the curve in Figure 8. As expected, increasing the number of 
sensors improves accuracy. Intuitively, more sensors provide more information, leading to more 
precise reconstructions. However, our objective is to achieve high-accuracy reconstruction with a 
limited number of sensors, which is why we impose an upper limit of eight. Furthermore, we 
explore whether a smaller number of sensors can still meet the accuracy requirements. From the 
curve, we observe that a solution using only five sensors (Sol 4) achieves an average similarity of 
0.9933. As the number of sensors increases to six and seven, the average similarity rises to 0.9985 
and 0.9993, corresponding to marginal accuracy improvements of 0.5% and 0.6%, respectively. 
This suggests that the similarity metric has nearly converged. Notably, the average similarity itself 
reaches a high level, approaching 1. 
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Figure 6. Average similarity comparison between different solutions 

(a) Sol 4 with 5 sensors. (b) Sol 5 with 6 sensors. 

Figure 7. Vibration comparison with ground truth. Blue solid line is ground truth, and orange 
dash line is reconstruction. The subplots, arranged from the upper left to the bottom right, 

correspond to measurement locations 1 through 16. 

To comprehensively evaluate reconstruction quality, time-series comparisons and error 
distributions are examined. Figure 7 compares Solutions 4 (5 sensors) and 5 (6 sensors). In 
Solution 4, reconstructions generally capture structural vibrations accurately, but miss some peaks 
at locations 2-4, 9-11, and 13, particularly during initial excitation. This discrepancy is attributed 
to complex frequency variations and transient dynamics at excitation onset. In contrast, Solution 
6 with 6 sensors shows near-perfect agreement, fully recovering the missing details. The error bars 
across all time points exhibit notably smaller fluctuations for Solution 5, demonstrating superior 
reconstruction performance. 

Three representative data-driven algorithms are selected for comparison: autoencoder, 
transformer (two deep learning approaches), and Karhunen-Loeve transformation (KL/POD, a 
decomposition-based method). Using the 6-sensor configuration (Solution 5) on Case I dataset, 
the autoencoder, our approach, transformer, and KL/POD achieve average similarities of 0.9989, 
0.9985, 0.999, and 0.9993, respectively (Table 3). While achieving comparable accuracy, our 



approach offers significant practical advantages: (1) no retrammg required when sensor 
configurations change, unlike deep learning models that must be retrained for different input 
dimensions; (2) operational flexibility maintaining performance regardless of input dimensions; 
(3) architectural simplicity requiring no design modifications for specific applications. 
Additionally, cross-domain evaluation reveals that KL/POD performs well within the same signal 
domain but cannot effectively reconstruct across different excitations (burst-to-sine or sine-to­
burst), whereas our method maintains robust performance across varying loading conditions. 

Table 3. Performance comparisons on Case I data. 

Approaches 
Training time 

(on GPU) 
Retraining 

Input dimension 
dependance 

Architecture design 

Our approach 17.38s(±l.15) No No No 
Autoencoder 10.43s(±0.68) Yes Yes Yes 
Transformer 47.71s (±0.65) Yes Yes Yes 

KL/POD 1.36s (±0.11) No No No 

3.2.2 Case II: Reconstruction under Different Loading Conditions 
In practical applications, structures are monitored under varying loading conditions. Case II 

explores cross-loading reconstruction where dictionaries trained under one excitation are applied 
to reconstruct responses under different loading. Two scenarios are examined: burst-to-sine and 
sine-to-burst reconstruction. When the dictionary is trained using burst chirp data and applied to 
reconstruct sine excitation responses (near 5 Hz), the optimization yields 5 solutions (Figure 8). 
Solution 4 with 6 sensors achieves 0.9998 average similarity. Figure 9 shows that reconstructed 
curves match ground truth excellently across all 16 locations, with absolute relative errors nearly 
zero at all time points. This demonstrates that dictionaries capture structural spatial response 
patterns rather than specific load characteristics, enabling accurate cross-loading reconstruction. 

Solution ode Numbers 
Sol I 4, 12, 15 
Sol 2 I, 5, 12, 15 
Sol 3 I, 6,12,14,16 
Sol 4 I, 6, ll ,12,14,16 
Sol 5 I, 2, 6, 7, 10, II , 14, 16 

Solutions: Burst to Sine 

Solution Node Numbers 
Sol I 5, 13, 15 
Sol 2 6, 12, 15, 16 
Sol 3 6, 10, 13, 15, 16 
Sol 4 2, 6, 10, 13 , 15, 16 
Sol 5 I, 3, 6, 10, 13, 15, 16 
Sol 6 4, 6, 9,11 , 12, 13, 14, 15 

Solutions: Sine to Burst Sine to Burst 

Figure 8. Schematic diagram for reconstructions under varying loadings. 
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Figure 9. Response comparisons and error analysis for case ofburst to sine. Reconstructed 
response comparisons using Solution 4 with 6 sensors. 

When the dictionary is trained (Figure 10) using monotonic sine data and applied to reconstruct 
burst chirp responses, the optimization yields 6 solutions. Solutions 4, 5, and 6 using 6, 7, and 8 
sensors achieve accuracies of0.9527, 0.9687, and 0.985, respectively (deviations of4. 73%, 3.13%, 
and 1.5% from unity). Figure 11 shows that even with 8 sensors (Solution 6), reconstruction curves 
deviate from ground truth at locations 3, 4, 5, 9, 11, and 12, with high error fluctuations across 
time points. This limitation arises because dictionaries trained on monotonic signals cannot capture 
response patterns from broader frequency excitations. The finding emphasizes that rich, diverse 
training data covering various loading conditions is essential for achieving high-fidelity cross­
loading reconstruction in real-world applications. 
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Figure 10. (a) Initial dictionary and (b) learned dictionary for sine excitation. 



Time (s) 

Figure 11. Response comparisons and error analysis for case of sine to burst. Reconstructed 
response comparisons using Solution 6 with 8 sensors. 

3.3 Application to Structural Damage Detection 
The application of full-field response reconstruction to damage identification is grounded in 

two fundamental principles. First, from the dictionary learning perspective, the trained dictionary 
captures structural spatial response patterns rather than load-specific vibration signatures. 
Consequently, the dictionary can reconstruct full-field responses under various loading conditions, 
as demonstrated by the burst-to-sine reconstruction in Section 3.2. Second, if the structure is time­
invariant (i.e., in healthy condition), the reconstructed responses should yield consistent dynamic 
characteristics (natural frequencies, mode shapes, and damping ratios) regardless of excitation 
type. However, when structural damage occurs, these mechanical properties change due to local 
stiffness reduction, manifesting as shifts in natural frequencies and alterations in mode shapes. 
These changes enable damage localization through modal-based indicators. An important aspect 
is that reconstruction can be performed regardless of the structure's health state. The mathematical 
principle underlying reconstruction (Equation 1) states that any engineering signal can be 
represented as a linear combination ofdominant basis functions. As long as the dictionary contains 
corresponding vibration modes, reconstruction remains feasible. Under damaged conditions, the 
primary difference compared to the healthy state is that the coefficients of the linear combination 
change, reflecting the altered structural response patterns. 

A numerical simulation model is established based on the three-story laboratory structure. To 
introduce structural damage, the thickness of one support column between the 1st and 2nd floors 
(connecting points 6 and 10) is reduced from 3.175 mm to 2.675 mm, as shown in Figure 12. Due 
to structural symmetry, the corresponding column on the opposite side is also damaged. This 
damage scenario is widely adopted in structural health monitoring studies, effectively simulating 
practical conditions such as material degradation, corrosion, or fatigue-induced cross-sectional 
reduction. The structure is equipped with 16 sensors ( 4 per floor, numbered sequentially left to 
right). The shaker generates chirp waveform excitation with 5 mm displacement amplitude over 
approximately 4 seconds. Under both healthy and damaged conditions, displacement responses 
from all sensors are recorded. To simulate real-world measurement uncertainties, Gaussian white 



noise with 15% magnitude relative to signal standard deviation is added to the damaged structural 
response data. 
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Figure 12. Schematic illustration of simulation modeling. 

Dictionary learning and multi-objective optimization are employed for reconstruction and 
optimal sensor placement. The healthy dataset trains the dictionary, while the noisy damaged data 
undergoes reconstruction. One optimal solution places sensors at locations 3, 6, 8, 10, 14, and 16, 
achieving 0.999583 average similarity between reconstructed signals and ground truth across all 
16 locations. Modal identification is performed on both partial measurements and fully 
reconstructed data. Under healthy conditions with full measurements, the identified natural 
frequencies are 5.1270 Hz and 14.4043 Hz. Under damaged conditions, these frequencies shift to 
4.8828 Hz and 14.1602 Hz. For damage localization, two modal-based indicators are employed: 
Coordinate Modal Assurance Criterion (COMAC) and modal flexibility change. COMAC 
identifies which degrees of freedom (DOF) negatively contribute to modal correlation, where 
values near 1 indicate intact structure and values near Osignify damage. Modal flexibility increases 
locally at damage locations due to stiffness reduction. A combined indicator (1 - COMAC) x 

flexibility change is computed, where measurement DOFs with maximum values correspond to 
damage locations. 
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Figure 13. Damage localization indicators using partial and fully reconstructed responses. 



Figure 13 presents damage localization indicators using fully reconstructed responses. Since 
DOFs 13-16 correspond to input nodes, they are excluded from calculations. The COMAC 
indicator shows that DOFs 5-8 exhibit the lowest values, suggesting damage in this region. The 
flexibility change indicator shows DOFs 5-8 with the highest values, followed by DOFs 9-12, 
strongly indicating second-floor damage. The comprehensive indicator product clearly identifies 
DOFs 5-8 as most affected, followed by DOFs 9-12. The ground truth confirms damage at the 
column connecting DOFs 6 and 10, validating the accuracy of full-field reconstruction-based 
damage localization. In contrast, damage detection using only partial measurements from sensors 
3, 6, 8, 10, 14, and 16 yields incomplete results. Although partial data captures some damage 
information (significant anomaly at location 7, followed by location 11, suggesting second-floor 
damage), it fundamentally lacks a global structural perspective. Most indicator values are zero due 
to unmeasured locations. This limitation creates significant blind spots, potentially leading to 
incomplete damage assessment and misdiagnosis. The absence ofdata at critical locations prevents 
accurate identification of complete damage patterns and their spatial relationships. 

The comparison demonstrates that full-field data reconstruction provides comprehensive and 
reliable structural health assessment by generating damage indices at all measurement points. This 
holistic approach enables engineers to visualize complete damage patterns, identify precise 
locations, and understand damage propagation throughout the structure. The ability to generate 
indices for unmeasured points through reconstruction significantly enhances practical applicability 
ofstructural health monitoring systems, particularly in complex structures where sensor placement 
is limited by physical or economic constraints. Therefore, full-field reconstruction represents a 
promising approach for practical engineering applications, balancing monitoring accuracy with 
implementation feasibility. 

The case studies demonstrate that the proposed method yields multiple solutions providing 
valuable guidance on sensor placement and optimal sensor count. The availability of multiple 
solutions offers operational flexibility when certain sensors fail or specific locations are unsuitable 
for installation. The validation confirms that just 6 strategically placed sensors can achieve 
accurate full-field response reconstruction regardless of excitation type. The approach has been 
successfully validated using different response types (acceleration, displacement, velocity) and 
can be extended to other signatures such as strain or stress through appropriate dictionary training. 
With rich training data covering various conditions, accurate reconstruction of in-service structural 
responses is achievable. The downstream damage detection results emphasize that full-field 
reconstructions are essential for accurate damage localization in structural health monitoring 
applications. 



Chapter 4: Education Impact and Knowledge Dissemination 

Throughout this project, three graduate students are involved at different stages of research. Yang 
Zhang set up the testbed and conducted data acquisition. Ting Wang looked into shaker excitation 
and contributed to sensor integration. Yang Zhang and Qianyu Zhou worked together on sensor 
network optimization and full-field re-construction algorithm based on machine learning. They 
collaborated on damage detection case demonstration. The work is heavily experimental. All these 
students gained significant amount of experiences on sensor tuning, information fusion, machine 
learning, and decision making for structural fault detection. The research components have been 
incorporated to their respective Ph.D. dissertations. Yang Zhang and Ting Wang received Ph.D. 
degrees during the duration of the project. Qianyu Zhou is progressing well in his Ph.D. study, and 
is expected to graduate in the fall of 2025. 

The research findings have been integrated into several undergraduate- and graduate-level classes 
that the PI has instructed in project years, including ME3220 Mechanical Vibrations, ME 5420 
Advanced Mechanical Vibrations, ME 5210 Intelligent Material Systems and Structures, and ME 
5895 Structural Dynamics. 

The research outcome has been presented systematically in TIDC annual review meetings and 
poster competitions. The key research findings are being summarized into archival publications. 



Chapter 5: Conclusions and Recommendations 
The overarching goal of this research is to synthesize a new framework of infrastructure 
monitoring that can concurrently take in sensing signals from both traditional sensors and new 
sensing techniques, process the information through machine learning that integrate together deep 
learning and underlying physics, and produce highly accurate and robust full field measurement 
results to facilitate fault detection. This goal has been successfully achieved. 

Our findings are the following: 

• 

• 

• 

• 

• 

Different sensors possess different levels ofsensitivity toward structural damage detection and 
identification. In general, sensors and sensing devices with high-frequency interrogation 
capability possess higher detection sensitivity. At the same time, higher detection sensitivity 
may lead to higher likelihood of false alarms. As such, mitigating strategy will be beneficial. 
Data-driven techniques built upon machine learning can offer significant detection robustness 
in general, as they can bypass the challenges in variations and uncertainties with respect to the 
underlying baseline numerical model that are inherent in measurements. 
Full-field measurements provide critical insights into structural behavior, enabling 
comprehensive analysis of deformation, vibration, and stress distributions etc. However, the 
reality is that sparse sensor measurements are typically the case in practical applications. 
Therefore, reconstructing full-field measurement based on a small number of point sensors 
becomes necessary. 
The proposed approach that integrates dictionary learning into a sparse binary multi-objective 
optimization framework to reconstruct full-field structural responses is extremely promising. 
A case study on a three-story laboratory testbed structure demonstrated the effectiveness its 
effectiveness. The results reveal that (1) the framework successfully identifies multiple sensor 
combinations, each yielding accurate reconstructions of the full-field response; and (2) the 
reconstructed data align closely with the true measurements, validating the feasibility and 
accuracy of the framework. 
The reconstructed full-field measurement can lead to successful structural fault detection. 

The research outcomes lay down a foundation for engineering implementation for infrastructure 
monitoring. In order to fully unleash the potential ofthe new technology, we envision the following 
further advancements: 
• The scope of work can be extended to larger and more complex structures, 
• We can leverage physical modeling or simulation-generated data as training inputs to enhance 

generalizability. The method's inherent flexibility allows for adaptation to different response 
types (acceleration, displacement, strain) and structural configurations through appropriate 
dictionary training. 

• The reconstructed full field measurement can potentially lead to damage localization and even 
severity assessment. 



References 
Ao, C., Qiao, B., Liu, M., Zhu, W., Zhu, Y., Wang, Y. and Chen, X., 2023. Non-contact full-field 
dynamic strain reconstruction ofrotating blades under multi-mode vibration. Mechanical Systems 
and Signal Processing, 186, p.109840. 
Jana, D. and Nagarajaiah, S., 2023. Data-driven full-field vibration response estimation from 
limited measurements in real-time using dictionary learning and compressive sensing. Engineering 
Structures, 275, p.115280. 
Kennedy, J. and Eberhart, R., 1995, November. Particle swarm optimization. In Proceedings of 
ICNN'95-International Conference on Neural Networks (Vol. 4, pp.1942-1948). IEEE. 
Kennedy, J. and Eberhart, R.C., 1997, October. A discrete binary version of the particle swarm 
algorithm. In 1997 IEEE International Conference on Systems, Man, and Cybernetics. 
Computational Cybernetics and Simulation (Vol. 5, pp.4104-4108). IEEE. 
Mousavi, Z., Varahram, S., Ettefagh, M.M. and Sadeghi, M.H., 2023. Dictionary learning-based 
damage detection under varying environmental conditions using only vibration responses of 
numerical model and real intact state: Verification on an experimental offshore jacket model. 
Mechanical Systems and Signal Processing, 182, p.109567. 
Rubinstein, R., Zibulevsky, M. and Elad, M., 2008. Efficient implementation of the K-SVD 
algorithm using batch orthogonal matching pursuit (No. CS Technion report CS-2008-08). 
Computer Science Department, Technion. 
Tropp, J.A. and Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal 
matching pursuit. IEEE Transactions on Information Theory, 53(12), pp.4655-4666. 
Wei, D., Chen, Y., Li, H. and Zhang, X., 2023. Real-time reconstruction method of full-field 
dynamic response of rotating bladed disks. Mechanical Systems and Signal Processing, 188, 
p.109953. 
Yuan, J., Szydlowski, M. and Wang, X., 2024. An optimal sparse sensing approach for scanning 
point selection and response reconstruction in full-field structural vibration testing. Mechanical 
Systems and Signal Processing, 212, p.111298. 
Zhang, Y., Zhou, K. and Tang, J., 2024. Piezoelectric impedance-based high-accuracy damage 
identification using sparsity conscious multi-objective optimization inverse analysis. Mechanical 
Systems and Signal Processing, 209, p.111093. 



TID 
Transportation Infrastructure Durability Center 

AT THE UNIVERSITY OF MAINE 

3 5 Flagstaff Road 
Orono, Maine 04469 

tidc@maine.edu 
207.581.4376 

www.tidc-utc.org 

www.tidc-utc.org
mailto:tidc@maine.edu

	Structure Bookmarks
	Figure 12. Schematic illustration of simulation modeling. 
	1 2 3 4 5 6 7 8 9 10 11 12 Measurement Point 




