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Abstract

In this research, we develop a framework for machine learning enabled information fusion for
infrastructure health monitoring. Traditionally, off-the-shelf sensors such as accelerometers and
strain gages have been used to collect real-time measurements of structural responses to
facilitate health monitoring. While certain level of successes have been achieved, they also
exhibit limitations such as relatively low detection sensitivity to incipient damage and especially
limited detection range and coverage. In this project, we 1) establish a benchmark testbed that
incorporates various sensors to assess different sensing mechanisms; 2) develop a machine
learning based approach that can leverage sensing information and extrapolate to full-field
measurement, and 3) investigate scalability strategies that can result in actual implementation of
the new framework. Potential applications are large-scale infrastructure such as bridges.
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Chapter 1: Introduction and Background

1.1 Project Motivation

While various sensors and sensing technologies have been developed in recent years to facilitate
the structural health monitoring (SHM) of infrastructure, the actual implementation of these new
technologies has been limited. Major technical barriers exist. Traditionally, off-the-shelf sensors
such as accelerometers and strain gages are employed. Coupled with statistical analysis or model-
based dynamic analysis, the changes of local strain or global vibration properties such as natural
frequencies, mode shapes, mode shape curvatures, can be used to infer damage occurrence. These
approaches however generally suffer from low detection sensitivity. The strain gages would have
to be very closed to damage site to detect damage occurrence. The damage would need to be quite
severe to induce significant changes to dynamic properties. To tackle such challenges, in recent
years a number of new sensing mechanisms have been suggested, including piezoelectric
transducers as well as magneto-mechanical transducers for wave propagation and impedance based
fault detection. Nevertheless, such high detection sensitivity comes with a price. That is, small
variations in the infrastructure under normalcy condition may be diagnosed as fault condition,
leading to frequent false alarms. To overcome these technical barriers, we propose to conduct
information fusion of sensors and to leverage machine learning to acquire full-field measurement
information based on a small number of point sensors.

1.2 Research, Objectives, and Tasks

The overarching goal of this research is to synthesize a new framework of infrastructure
monitoring that can concurrently take in sensing signals from both traditional sensors and new
sensing techniques, process the information through machine learning that integrate together deep
learning and underlying physics, and produce highly accurate and robust full field measurement
results to facilitate fault detection. These represent paradigm-shifting advancements with respect
to the current practice: 1) heterogeneous sensing allows the possibility of taking advantage of the
merits of various sensors and avoiding their drawbacks; 2) as more information is processed, the
result will be naturally more accurate and robust; 3) the inference of full-field measurement results
will significantly enhance the fault detection sensitivity and robustness, and 3) with the machine
learning approach, there will be no need to develop complex finite element model of the structure
to be inspected, and empirical knowledge can be incorporated into decision making through the
adoption of a composite convolutional network architecture to be formulated in this research. As
physics knowledge can be injected into the decision making through the new deep learning
approach proposed, the methodology can potentially be scalable to large infrastructure with many
sensor types and units.

To accomplish these objectives, research activities along two thrust areas are executed, a) testbed
setup and data acquisition, b) analysis and machine learning synthesis. Four tasks are conducted:
Task 1: Testbed setup
Task 2: Data acquisition and initial analysis of the testbed
Task 3: Full-field measurement inference
Task 4: Fault detection decision making
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1.3 Report Overview

In the subsequent chapters, we present the research methodology and results obtained throughout
this research.

Chapter 2 outlines the materials involved in this research. The testbed design and analyses are
based upon benchmark frame structure experimental investigation. Full field measurement

inference is conducted based on the testbed structure.

Chapter 3 presents in detail the research tasks as well as the key data/results. The full field
measurement expansion methodology is outlined, followed by damage detection illustrations.

Chapter 4 summarizes the workforce training aspect of the project as well as knowledge
dissemination.

Chapter 5 provides the overall conclusion as well as recommendation for future work
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Chapter 2: Methodology

2.1 Materials
In terms of physical materials, this project involves a three-story frame structure used as

benchmark testbed, a modal shop shaker (K2110E), and a scanning laser Doppler vibrometer
(Polytec 500).

In terms of reporting materials, in this final report we provide details of
a) Testbed design details;
b) Modal testing and full-field measurement results;
¢) Re-construction of full-field measurement based on point sensing information; and
d) structural damage detection examination cases.

2.2 Test Setup & Process
A number of testings are conducted throughout this project. Figure 1 shows testbed setup. Figure
2 details the excitation and measurement data flow.

Measurement Unit

Amplifier Cooling System
Figure 1.Experimental setup.

The experimental setup comprises two main components: a building structure equipped with 16
accelerometers and excited by a shaker system and a scanning vibrometer capable of dense
measurement for validating the full-field reconstruction. Given the use of a 2D laser vibrometer
and the symmetry of the frame structure, measurements are conducted on one side of the frame, as
indicated in Figure 2. This setup allows us to characterize the full vibrational responses of the
structure using 16 sensors. The objective is to estimate the full responses of the frame structure
from limited sensor data. In other words, we aim to answer the question: Can a small number of
sensors be used to reconstruct the full vibrational responses? The proposed approach follows two
main steps: collecting dense measurements from all 16 nodes as prior knowledge (training dataset)
and reconstructing the responses under different loading conditions using limited sensor data. It is
worth noting that determining the optimal number and placement of sensors is a multi-objective
optimization problem, as formulated in the previous section. The adapted optimizer for binary
optimization is utilized to solve the problem.
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The Polytec 500 vibrometer functions as both a signal generator and a data acquisition system.
Different excitation signals are applied via the shaker amplifier (Modal Shop 2050E09-FS), as
demonstrated in the next subsection. The shaker (Modal Shop K2110E) is attached to a steel table
with a stinger, inducing motion in a single direction, as shown in Figure 5. The frame structure is
mounted on the steel shake table, enabling back-and-forth vibrations along one direction when
excited. The laser vibrometer captures these vibrations by measuring points marked in Figure 5.
The training dataset comprises acceleration responses from 16 nodes, with each time series
containing 800 data points.

Excitation Signal

Power Connection

Building Structure

PSV-500
Scanning
Vibrometer

Amplifier \QO\

2 Cooler System

Figure 2.Excitation and measurement data flow

The details of the analyses and testings are reported in Chapter 3.

www.tidc-utc.org




Chapter 3: Results and Discussion

3.1 Full-field reconstruction overview

The dependence of limited sensor selection can affect the influence the reconstruction
performance. Moreover, selecting a few measurement points from all possible points in the full
field constitutes a sparse, combinatorial optimization problem. Therefore, this research explores
whether this process can be delegated to an optimization algorithm, allowing the algorithm to
determine the optimal data volume while maintaining high reconstruction accuracy. Additionally,
the process of transitioning from sparse measurements to full-field reconstruction is an
underdetermined problem, indicating that multiple solutions are feasible. To fit this nature, this
section converts the reconstruction process into a binary multi-objective optimization problem.
Subsequently, the sparsity aware MOPSO algorithm enhanced by reinforcement learning is
adapted to solve the binary setting.
3.1.1 Methodology outline

In data analysis, an effective representation should emphasize the underlying content of signals
while reducing redundancy. Sparse representation has emerged as a widely recognized approach,
where a signal is reconstructed using only a few dominant components selected from a larger
dictionary. A signal y e R” can often be represented in a sparse manner using a combination of

elements from a predefined dictionary. Mathematically, this can be expressed as:
y=Dx=)" xd,= Z;xjdj (1)
JE&
where DeR""is the orthonormal basis matrix or dictionary, and d; is the jth column of D. S is
the total columns of D (i.e., the number of atoms). In general, the basis matrix is overcomplete.
i.e., m <n. In Equation (1), most of the coefficients of X; are zero, hence xe R" is a sparse vector.

The basis matrix D is chosen in such a way that the signal has a sparse representation in that
domain. Most periodic signals or images have a sparse representation in Fourier or wavelet
domain. If there is no information available about the signals, then the basis matrices can be
obtained via training signals using dictionary learning (Rubinstein et al, 2008; Jana, et al, 2023;
Mousavi et al, 2023).

The objective of this study is to find out y e R” using compressive sensing, which is
effectively applied to various applications (Ao et al, 2023; Wei et al, 2023; Yuan et al, 2024), by
using limited measurement ze R”. Here, p << m. Any measured vector z is a simple linear
projection of the main signal y and can be found out as

z=0y =0Dx =X, where, p=0D (2)
where @ e R”" is the measurement matrix which is the binary sensor location matrix. That is, only
one element of each row of the § matrix contains the value 1 depending on the location of sensor
and other values will be 0. As p <<m in 0, hence recovering original response y of length m from
p measurement in z is an under-determined problem. x is the sparse representation of z in the sub-
dictionary of D basis, i.e., @ .1 can be obtained exactly by solving an optimization problem as
follows,

min|z- X[} st |[x, [,<T V) 3)

where ||-||, is the Z, norm and T is the sparsity level. F' denotes the Frobenius norm. As with
dictionary learning, we use the Orthogonal Matching Pursuit (OMP) algorithm (Tropp and Gilber,
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2007) to solve this optimization. Once i is obtained, we can reconstruct the full-filed data by
solving the forward problem,
y=Dx “

The determination of sensor location presents a challenge because selecting a limited number
of sensor nodes from the full set of available sensors is a combinatorial problem. Additionally,
possible sensor location is inherently sparse. These motivates us to reformulate the dictionary
learning into a sparse binary multi-objective optimization problem as follows:

min||@|, and max r(y,y) (5)
where r refers to the Pearson’s correlation between the reconstructed and original training/testing
measurements. A larger value of rleads to more accurate reconstruction. Since the optimization
algorithm operates on a one-dimensional vector but the reconstruction process requires a sparse
matrix, a vectorization-reshaping mechanism is introduced. In this process, @ is a sparse selection
matrix, which is vectorized into a binary vector 0 for optimization. The vector 0 is then reshaped
back into the matrix form @ for use in the reconstruction process. For example, suppose 0 is a
binary vector of size 12, where only the 3rd, 4th, and 7th entries are 1 (means that the limited
measurements are obtained from sensors located at these 3 locations), while all other entries remain
0. The corresponding measurement matrix @ is constructed by reshaping this vector into a sparse
matrix, where each row corresponds to a selected sensor. The vectorization-reshaping process can
be illustrated as follows:

0010000O0O0O0O00O
©:0 0010000000 0=Sen
00000O0T100TO0O00O

(6)
8:[0 0 11001000 0 0]

It is worth mentioning that selecting a few measurement points from dense measurement points
for full-field data reconstruction is an underdetermined problem. Therefore, many solutions may
exist. Fortunately, multi-objective optimization can also provide multiple solutions, which is
precisely what we desire. From an engineering practical perspective, due to certain constraints, it
may not be convenient to install sensors at certain locations. Hence, having multiple solutions
offers more references for sensor placement. To solve the problem in Equation (5), the optimizer
developed in our previous work will be adapted for current problem setting, as presented in the
subsequent subsections. As shown in Figure 3, the flowchart summarizes the whole process of
using limited measurements to reconstruct the full-filed structural responses based on dictionary
learning. First, we obtain a dense measurement under controlled conditions. Subsequently, we train
a dictionary using dictionary learning, which will be explained in the next sub-section. We then
reframe the reconstruction process into a sparse binary multi-objective optimization, as shown in
Equation (5), in which, a sparse coding is integrated, as shown in the bottom branch in Figure 3.
After convergence or the iteration criteria are met, multiple solutions will be obtained.

www.tidc-utc.org




Controlled Condition
Dense Measurements

\%‘@AL K-SVD f W IM | w | ’ N .‘ | Reconstruction
" W

I Dictionary Learning | Reconstructed Data

OMP

In Operation I Sub Dictionary | Sparse Representation l
Limited Sensors ] T

AT
/! l\: e |

\I II ﬂlll |

OMP

A
Wy Sparse Binary

Optimization

Figure 3.Flowchart of full-filed structural response reconstruction using limited data.

3.1.2 Binary particle swarm optimizer

This section describes the optimizer used to solve the reconstruction model formulated in the
previous section. The model typically exhibits multimodality, meaning it contains multiple local
extrema. Additionally, the presence of the LO norm further increases its complexity. As a result,
conventional gradient-based algorithms are not suitable for this problem. To address these
challenges, we employ the Particle Swarm Optimization (PSO) technique (Kennedy and Eberhart,
1995), a type of population-based optimizer known for its simplicity, ease of implementation, and
strong performance in multimodal problems. Given that our problem involves binary optimization,
we adapt our previously developed Q-learning-enhanced PSO framework (Zhang et al, 2024). This
framework was originally applied to structural damage identification with sparse, multimodal, and
combinatorial characteristics, which share similarities with the current reconstruction setup. While
the original framework was designed for continuous variable optimization, the binary nature of
our reconstruction model necessitates specific modifications to the algorithm.

PSO was originally developed for continuous nonlinear optimization. The population of PSO
is called a swarm, and each individual in the population of PSO is called a particle. A swarm
consists of N, particles moving around a D-dimensional search space, each representing a

potential solution. The i-th particle is characterized by its position vector x, and velocity vector
v,. Each particle flies through the solution space searching for the global optimal solution. In the

process of flying, the current position and velocity of the i-th particle are updated according to the

following equations, respectively
k+1

Vi =WV G R (Pha — X)) 6y (B — X)) @)

xk+1 X +Vk+1 (8)

where ¢, and ¢, are the acceleration constants multiplied respectively by two random numbers, r,
and r,, uniformly distributed in [0.0, 1.0] and used to weight the velocity toward the best previous
position of the i-th particle, py,,,, and toward the best global position attained by all swarm

members, g, , , found at iteration k. Parameter w is an inertia weight in interval [0.0, 1.0] to control
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the influence of the previous velocity. A large inertia weight facilitates global exploration, which
is particularly useful in the initial stages of an optimization. On the contrary, a small value allows
for more localized searching, which is useful as the swarm moves toward the neighborhood of the
optimum. A suitable value for the inertia weight usually provides a balance between exploration
and exploitation and consequently results in a better optimum solution. A limit, [v__ ,v__ ], may
be placed on v, to ensure that the velocities are acceptable. Velocities that are not within the range
are clamped. In addition, the decision variable is bounded, x, €[x_; X, ]. If the updating equation
causes the position to violate this interval, the infeasibility is removed by setting it to x_, if
x, <x_, Or equating it to x__ if x,>x_, . However, it is known that the original PSO has
difficulties in controlling the balance between exploration and exploitation and, therefore, has the
disadvantage of premature convergence. Thus, we develop several local search heuristics to tackle
the balance exploration and exploitation. To make the presentation clear, we revisit the five local
search strategies and summarize them in Table 1.

Table 1.Local search heuristics.

Strategy . . .
Name Particle dynamics Coefficients
v,.(t+1)=a)v,.(t)+clrl(pbesti(t)—xi(t)) (pa — O )it
. w=a0, ——————— =25
Exploration +cr, (g(1)—x,(t)) e maxlter
x,(t+1)=x,(¢) +v, (1+1) ¢ =03
v,.(t+1)=a)vi(t)+clrl(pbesti(t)—xi(t)) (a) o )it
a):d)max——max L Cl=0.5
Convergence +e,r, (g(t)-x, (1)) maxlter
x (t+1)=x, () +v, (£ +1) 6 =23
})besu‘,d +7. d '(lupper,d _llower,d)
jf rand > 0.5 N ~(u,R’
Elitist-based tempF; , = o xan ( ) .
perturbation Pbesti,d - rd : (lupper,d - llower,d ) .R — Rm _ (Rmax - Rmm ) -
if rand <0.5 ax maxIter
repeated for defined times
tem, = + normrnd(u, R*) N~(ﬂ’R2)
Mutation Plisss = oo S (Rop =Ry )it
repeated for defined times R=R_ - maxl—n
ter

. . tempP,_., =P, _.,+V,
Flne Tunlng besti,d besti,d id

repeated for all dimensions

Based on PSO, a binary version (BPSO) is proposed by Kennedy and Eberhart (1997) to
accommodate discrete binary variables and allow it to operate in a binary problem space. A particle
moves in a search space restricted to 0 or 1 on each dimension. In BPSO, updating a particle
represents changes of a bit which should be in either state 1 or 0, and the velocity represents the
probability of the bit taking the value 1 or 0. A sigmoid function is used to transform all real-
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valued velocities to the range [0.0, 1.0]. In BPSO, the updating velocity equation remains
unchanged while the position updating rule is replaced by the following equation:

: > ’f*'l
X = 0 .1f rand() > S(V;{ 1) ©)
1 if rand() <S(v;")
where S() is a sigmoid function to transform the particle’s velocity to the probability as follows:

! (10)

_Vik+l

S(vEy=
1

and rand() is a random number uniformly distributed in [0.0, 1.0].

Leveraging the concept of BPSO, we can modify the local heuristics in Table 1 to address
binary models formulated in Section 3.1. The particle velocity update equation remains the same,
so only the position update equation needs adjustment. During iterations, Exploration and
Convergence involve only changes in coefficients, the basic updating equations are the same as
conventional PSO. The binary cases for Exploration and Convergence adopt Equations (15) and
(16). While in the EBP, we directly alter the personal best position. It is worth noting that the best
personal position in optimization is a binary vector as mentioned in Equation (12), therefore, the
objective of EBP (Elitist-based perturbation) is to mutate the personal best by selecting one
dimension and flipping a bit in its binary position, turning a 0 to 1 or 1 to 0. This process can be
achieved and expressed as pyy, ; =1 —Prey; o directly. Mutation is similar to EBP, the bit-flipping

expression is g, =1—8y., . For Fine Tuning, each dimension is flipped using a probabilistic

strategy as shown in Equations (17) and (18). The flipping probability determines the likelihood
of changing a bit in the binary position vector, adding variability and enabling exploration of new
solutions.

(11)

The probability of flipping a bit, denoted as Ry =b/t", is calculated with b as the base

x* otherwise

1

i

o _{l-xjc if rand() <P,

probability. If the updated solution shows improvement, the probability is reset to b. Otherwise, it

is reduced using a reduction factor s:
k+1

. k
prob={b if x; <xi' (12)
prob/s otherwise
where, b is set to 0.5, s is 4, r is 5, and ¢ is 2 tuned with good performance on the reconstruction.
By decaying the probability over time, we can reduce the chance of flipping. This can help
maintain the structure of the optimal solution currently found while still allowing for some level

of exploration.

3.2 Full-field reconstruction case demonstration

This section demonstrates the proposed reconstruction framework through two case studies.
Case I examines reconstruction under the same loading condition, where both dictionary training
and reconstruction use burst chirp excitation data. Case II explores cross-loading reconstruction
scenarios, where the dictionary is trained under one loading condition and applied to reconstruct
responses under a different excitation. These cases validate the method's effectiveness and
robustness for practical engineering applications.
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3.2.1 Case I: Reconstruction under the Same Loading Condition

In Case I, a burst chirp signal covering 3-25 Hz is used to excite the structure over 2 seconds.
The sampling frequency is set to 400 Hz, yielding 800 data points per time series. The vibrometer
outputs velocity responses directly, which are used for both training and reconstruction. Two
independent datasets are collected: one for dictionary training and one for testing reconstruction
accuracy. The dictionary is randomly initialized and trained using the first dataset. Figure 4 shows
the initialized and learned dictionaries, where each heatmap represents a dictionary matrix (16
spatial locations x 100 atoms). These atoms serve as basis functions encoding spatial dependencies
across measurement locations. The dictionary captures compressed spatial relationships rather
than direct vibration patterns, enabling response reconstruction from limited measurements.

oHFTTTATTIMINT T4 of 1 ] 0.6
I LCNRRLEA Tt T .
. 2H1LITY [Illl” L'HI ; 2 ||||| HI’ 10.4
2 41w 1 }\ | by 12 4} W | "
2 6f g‘ 6f \ |
§s||||||m |||||§8 | |wH L
EIO HlI ,‘llll‘ |—§|0 ; 1 4-0.2
%12}‘ :‘ | |]~ r}g:."l‘z Ml onz
S S |
: lr,'nlb I . lI |I —0.6
z‘\tloms At()ms
(a) (b)

Figure 4.(a) Initialized dictionary and (b) learned dictionary for burst chirp excitation.

Figure 5. Multiple optimal solutions for limited sensor layout.

The reconstruction process is formulated as a multi-objective binary optimization problem,
yielding multiple solutions with different sensor placement configurations and varying sensor
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counts. To simulate resource-constrained scenarios, a maximum of eight sensors is imposed. Seven
optimal solutions are obtained (Figure 5), with sensor counts ranging from 2 to 8. Each solution
corresponds to specific sensor locations marked by green dots, where measurements enable full-
field response reconstruction with varying accuracy levels. To verify solution optimality,
perturbations are introduced to each optimal solution, generating alternative sensor placements
with the same sensor count but different locations (Table 2). Reconstruction accuracy is quantified
using average similarity across all 16 locations, defined as the mean Pearson correlation coefficient
between reconstructed and ground truth responses.

Table 2. Sensor placement combinations from optimization and perturbations for Case 1.

Solutions Optimization Mutated 1 (Random 1) Mutated 2 (Random 2)
Soll 9,15 2,7 8, 14
Sol2  6,12,15 7,9, 14 2,5, 11
Sol 3 1,6,12,16 4,7,13,16 1,9, 10, 13
Sol 4 1,6,12, 14, 16 1,7,12, 14, 16 1,7,12,13, 16
Sol5  2,4,8,11,14,16 2,4,9,11, 14, 16 2,3,9,11, 14, 16
Sol6  2,4,5,8,11, 14,16 2,4,6,8,11,14,16 2,4,6,8,11,13,16
Sol7 2,4,5,8,10,12,14,16 2,3,5,8,10,12,14,16 2,4,5,8,10,12,13,16

Figure 6 presents the average similarity comparisons between the optimal solutions and their
perturbations. The horizontal axis denotes the solution index, while the vertical axis indicates the
average similarity across 16 locations, which serves as the accuracy metric in this study. The
solutions differ in the number of sensors used, ranging from 2 to 8 (Soll to Sol7) out of the 16
locations, thereby reflecting different levels of sensor sparsity. Each optimal solution is
accompanied by two perturbed variations, resulting in three bars per solution. Regardless of how
the solutions are perturbed, their reconstruction accuracies never exceed those of the optimal
solutions. This confirms that the solutions obtained through the optimization algorithm are indeed
optimal. Additionally, we analyze the relationship between reconstruction accuracy and the
number of sensors, as visualized by the curve in Figure 8. As expected, increasing the number of
sensors improves accuracy. Intuitively, more sensors provide more information, leading to more
precise reconstructions. However, our objective is to achieve high-accuracy reconstruction with a
limited number of sensors, which is why we impose an upper limit of eight. Furthermore, we
explore whether a smaller number of sensors can still meet the accuracy requirements. From the
curve, we observe that a solution using only five sensors (Sol 4) achieves an average similarity of
0.9933. As the number of sensors increases to six and seven, the average similarity rises to 0.9985
and 0.9993, corresponding to marginal accuracy improvements of 0.5% and 0.6%, respectively.
This suggests that the similarity metric has nearly converged. Notably, the average similarity itself
reaches a high level, approaching 1.
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Figure 7. Vibration comparison with ground truth. Blue solid line is ground truth, and orange
dash line is reconstruction. The subplots, arranged from the upper left to the bottom right,
correspond to measurement locations 1 through 16.

To comprehensively evaluate reconstruction quality, time-series comparisons and error
distributions are examined. Figure 7 compares Solutions 4 (5 sensors) and 5 (6 sensors). In
Solution 4, reconstructions generally capture structural vibrations accurately, but miss some peaks
at locations 2-4, 9-11, and 13, particularly during initial excitation. This discrepancy is attributed
to complex frequency variations and transient dynamics at excitation onset. In contrast, Solution
6 with 6 sensors shows near-perfect agreement, fully recovering the missing details. The error bars
across all time points exhibit notably smaller fluctuations for Solution 5, demonstrating superior
reconstruction performance.

Three representative data-driven algorithms are selected for comparison: autoencoder,
transformer (two deep learning approaches), and Karhunen-Lo¢ve transformation (KL/POD, a
decomposition-based method). Using the 6-sensor configuration (Solution 5) on Case I dataset,
the autoencoder, our approach, transformer, and KL/POD achieve average similarities of 0.9989,
0.9985, 0.999, and 0.9993, respectively (Table 3). While achieving comparable accuracy, our
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approach offers significant practical advantages: (1) no retraining required when sensor
configurations change, unlike deep learning models that must be retrained for different input
dimensions; (2) operational flexibility maintaining performance regardless of input dimensions;
(3) architectural simplicity requiring no design modifications for specific applications.
Additionally, cross-domain evaluation reveals that KL/POD performs well within the same signal
domain but cannot effectively reconstruct across different excitations (burst-to-sine or sine-to-
burst), whereas our method maintains robust performance across varying loading conditions.

Table 3. Performance comparisons on Case I data.

Training time Input dimension

Approaches (on GPU) Retraining dependance Architecture design
Our approach  17.38s(+1.15) No No No
Autoencoder  10.43s(%0.68) Yes Yes Yes
Transformer  47.71s (£0.65) Yes Yes Yes

KL/POD 1.36s (£0.11) No No No

3.2.2 Case II: Reconstruction under Different Loading Conditions

In practical applications, structures are monitored under varying loading conditions. Case II
explores cross-loading reconstruction where dictionaries trained under one excitation are applied
to reconstruct responses under different loading. Two scenarios are examined: burst-to-sine and
sine-to-burst reconstruction. When the dictionary is trained using burst chirp data and applied to
reconstruct sine excitation responses (near 5 Hz), the optimization yields 5 solutions (Figure 8).
Solution 4 with 6 sensors achieves 0.9998 average similarity. Figure 9 shows that reconstructed
curves match ground truth excellently across all 16 locations, with absolute relative errors nearly
zero at all time points. This demonstrates that dictionaries capture structural spatial response
patterns rather than specific load characteristics, enabling accurate cross-loading reconstruction.

Solution Node Numbers
Sol 1 4,12, 15
Sol 2 1,5,12,15

Sol 3 1,6,12,14,16
~ Sol 4 1, 6, 11,12,14,16
/ Sol 5 1,2,6,7,10, 11, 14, 16
Solutions: Burst to Si
/I olutions: Burst to Sine

Solution Node Numbers

M 9 ‘{ / Soll 313,13
, : ‘ 127" Sol 2 6,12, 15, 16
1/»- Pty - Sol 3 0,13, 15, 16

, 6,1
A N i Sol 4 2,6, 10,13, 15,
il / N // 13 “‘1\ | / Sol 5 1.3.6,10, 13, 15, 16
: \/ . 157 Sol 6 4,6,9.11, 12,13, 14, 15

Sine to Burst Solutions: Sine to Burst

Figure 8. Schematic diagram for reconstructions under varying loadings.
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Figure 9. Response comparisons and error analysis for case of burst to sine. Reconstructed
response comparisons using Solution 4 with 6 sensors.

When the dictionary is trained (Figure 10) using monotonic sine data and applied to reconstruct
burst chirp responses, the optimization yields 6 solutions. Solutions 4, 5, and 6 using 6, 7, and 8
sensors achieve accuracies 0of 0.9527, 0.9687, and 0.985, respectively (deviations of 4.73%, 3.13%,
and 1.5% from unity). Figure 11 shows that even with 8 sensors (Solution 6), reconstruction curves
deviate from ground truth at locations 3, 4, 5, 9, 11, and 12, with high error fluctuations across
time points. This limitation arises because dictionaries trained on monotonic signals cannot capture
response patterns from broader frequency excitations. The finding emphasizes that rich, diverse
training data covering various loading conditions is essential for achieving high-fidelity cross-
loading reconstruction in real-world applications.
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Figure 10. (a) Initial dictionary and (b) learned dictionary for sine excitation.
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Figure 11. Response comparisons and error analysis for case of sine to burst. Reconstructed
response comparisons using Solution 6 with 8 sensors.

3.3 Application to Structural Damage Detection

The application of full-field response reconstruction to damage identification is grounded in
two fundamental principles. First, from the dictionary learning perspective, the trained dictionary
captures structural spatial response patterns rather than load-specific vibration signatures.
Consequently, the dictionary can reconstruct full-field responses under various loading conditions,
as demonstrated by the burst-to-sine reconstruction in Section 3.2. Second, if the structure is time-
invariant (i.e., in healthy condition), the reconstructed responses should yield consistent dynamic
characteristics (natural frequencies, mode shapes, and damping ratios) regardless of excitation
type. However, when structural damage occurs, these mechanical properties change due to local
stiffness reduction, manifesting as shifts in natural frequencies and alterations in mode shapes.
These changes enable damage localization through modal-based indicators. An important aspect
is that reconstruction can be performed regardless of the structure's health state. The mathematical
principle underlying reconstruction (Equation 1) states that any engineering signal can be
represented as a linear combination of dominant basis functions. As long as the dictionary contains
corresponding vibration modes, reconstruction remains feasible. Under damaged conditions, the
primary difference compared to the healthy state is that the coefficients of the linear combination
change, reflecting the altered structural response patterns.

A numerical simulation model is established based on the three-story laboratory structure. To
introduce structural damage, the thickness of one support column between the 1st and 2nd floors
(connecting points 6 and 10) is reduced from 3.175 mm to 2.675 mm, as shown in Figure 12. Due
to structural symmetry, the corresponding column on the opposite side is also damaged. This
damage scenario is widely adopted in structural health monitoring studies, effectively simulating
practical conditions such as material degradation, corrosion, or fatigue-induced cross-sectional
reduction. The structure is equipped with 16 sensors (4 per floor, numbered sequentially left to
right). The shaker generates chirp waveform excitation with 5 mm displacement amplitude over
approximately 4 seconds. Under both healthy and damaged conditions, displacement responses
from all sensors are recorded. To simulate real-world measurement uncertainties, Gaussian white
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noise with 15% magnitude relative to signal standard deviation is added to the damaged structural

response data.
34 Floor
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Figure 12. Schematic illustration of simulation modeling.
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Dictionary learning and multi-objective optimization are employed for reconstruction and
optimal sensor placement. The healthy dataset trains the dictionary, while the noisy damaged data
undergoes reconstruction. One optimal solution places sensors at locations 3, 6, 8, 10, 14, and 16,
achieving 0.999583 average similarity between reconstructed signals and ground truth across all
16 locations. Modal identification is performed on both partial measurements and fully
reconstructed data. Under healthy conditions with full measurements, the identified natural
frequencies are 5.1270 Hz and 14.4043 Hz. Under damaged conditions, these frequencies shift to
4.8828 Hz and 14.1602 Hz. For damage localization, two modal-based indicators are employed:
Coordinate Modal Assurance Criterion (COMAC) and modal flexibility change. COMAC
identifies which degrees of freedom (DOF) negatively contribute to modal correlation, where
values near 1 indicate intact structure and values near 0 signify damage. Modal flexibility increases
locally at damage locations due to stiffness reduction. A combined indicator (1 - COMAC) X
flexibility change is computed, where measurement DOFs with maximum values correspond to
damage locations.
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Figure 13. Damage localization indicators using partial and fully reconstructed responses.
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Figure 13 presents damage localization indicators using fully reconstructed responses. Since
DOFs 13-16 correspond to input nodes, they are excluded from calculations. The COMAC
indicator shows that DOFs 5-8 exhibit the lowest values, suggesting damage in this region. The
flexibility change indicator shows DOFs 5-8 with the highest values, followed by DOFs 9-12,
strongly indicating second-floor damage. The comprehensive indicator product clearly identifies
DOFs 5-8 as most affected, followed by DOFs 9-12. The ground truth confirms damage at the
column connecting DOFs 6 and 10, validating the accuracy of full-field reconstruction-based
damage localization. In contrast, damage detection using only partial measurements from sensors
3, 6,8, 10, 14, and 16 yields incomplete results. Although partial data captures some damage
information (significant anomaly at location 7, followed by location 11, suggesting second-floor
damage), it fundamentally lacks a global structural perspective. Most indicator values are zero due
to unmeasured locations. This limitation creates significant blind spots, potentially leading to
incomplete damage assessment and misdiagnosis. The absence of data at critical locations prevents
accurate identification of complete damage patterns and their spatial relationships.

The comparison demonstrates that full-field data reconstruction provides comprehensive and
reliable structural health assessment by generating damage indices at all measurement points. This
holistic approach enables engineers to visualize complete damage patterns, identify precise
locations, and understand damage propagation throughout the structure. The ability to generate
indices for unmeasured points through reconstruction significantly enhances practical applicability
of structural health monitoring systems, particularly in complex structures where sensor placement
is limited by physical or economic constraints. Therefore, full-field reconstruction represents a
promising approach for practical engineering applications, balancing monitoring accuracy with
implementation feasibility.

The case studies demonstrate that the proposed method yields multiple solutions providing
valuable guidance on sensor placement and optimal sensor count. The availability of multiple
solutions offers operational flexibility when certain sensors fail or specific locations are unsuitable
for installation. The validation confirms that just 6 strategically placed sensors can achieve
accurate full-field response reconstruction regardless of excitation type. The approach has been
successfully validated using different response types (acceleration, displacement, velocity) and
can be extended to other signatures such as strain or stress through appropriate dictionary training.
With rich training data covering various conditions, accurate reconstruction of in-service structural
responses is achievable. The downstream damage detection results emphasize that full-field
reconstructions are essential for accurate damage localization in structural health monitoring
applications.
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Chapter 4: Education Impact and Knowledge Dissemination

Throughout this project, three graduate students are involved at different stages of research. Yang
Zhang set up the testbed and conducted data acquisition. Ting Wang looked into shaker excitation
and contributed to sensor integration. Yang Zhang and Qianyu Zhou worked together on sensor
network optimization and full-field re-construction algorithm based on machine learning. They
collaborated on damage detection case demonstration. The work is heavily experimental. All these
students gained significant amount of experiences on sensor tuning, information fusion, machine
learning, and decision making for structural fault detection. The research components have been
incorporated to their respective Ph.D. dissertations. Yang Zhang and Ting Wang received Ph.D.
degrees during the duration of the project. Qianyu Zhou is progressing well in his Ph.D. study, and
is expected to graduate in the fall of 2025.

The research findings have been integrated into several undergraduate- and graduate-level classes
that the PI has instructed in project years, including ME3220 Mechanical Vibrations, ME 5420
Advanced Mechanical Vibrations, ME 5210 Intelligent Material Systems and Structures, and ME
5895 Structural Dynamics.

The research outcome has been presented systematically in TIDC annual review meetings and
poster competitions. The key research findings are being summarized into archival publications.
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Chapter 5: Conclusions and Recommendations

The overarching goal of this research is to synthesize a new framework of infrastructure
monitoring that can concurrently take in sensing signals from both traditional sensors and new
sensing techniques, process the information through machine learning that integrate together deep
learning and underlying physics, and produce highly accurate and robust full field measurement
results to facilitate fault detection. This goal has been successfully achieved.

Our findings are the following:

Different sensors possess different levels of sensitivity toward structural damage detection and
identification. In general, sensors and sensing devices with high-frequency interrogation
capability possess higher detection sensitivity. At the same time, higher detection sensitivity
may lead to higher likelihood of false alarms. As such, mitigating strategy will be beneficial.
Data-driven techniques built upon machine learning can offer significant detection robustness
in general, as they can bypass the challenges in variations and uncertainties with respect to the
underlying baseline numerical model that are inherent in measurements.

Full-field measurements provide critical insights into structural behavior, enabling
comprehensive analysis of deformation, vibration, and stress distributions etc. However, the
reality is that sparse sensor measurements are typically the case in practical applications.
Therefore, reconstructing full-field measurement based on a small number of point sensors
becomes necessary.

The proposed approach that integrates dictionary learning into a sparse binary multi-objective
optimization framework to reconstruct full-field structural responses is extremely promising.
A case study on a three-story laboratory testbed structure demonstrated the effectiveness its
effectiveness. The results reveal that (1) the framework successfully identifies multiple sensor
combinations, each yielding accurate reconstructions of the full-field response; and (2) the
reconstructed data align closely with the true measurements, validating the feasibility and
accuracy of the framework.

The reconstructed full-field measurement can lead to successful structural fault detection.

The research outcomes lay down a foundation for engineering implementation for infrastructure
monitoring. In order to fully unleash the potential of the new technology, we envision the following
further advancements:

The scope of work can be extended to larger and more complex structures,

We can leverage physical modeling or simulation-generated data as training inputs to enhance
generalizability. The method’s inherent flexibility allows for adaptation to different response
types (acceleration, displacement, strain) and structural configurations through appropriate
dictionary training.

The reconstructed full field measurement can potentially lead to damage localization and even
severity assessment.
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