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1. Research Overview

We are developing state-of-the art models for predicting failure of railway due to buckling
and/or rail fracture, and these research efforts are detailed within one of our companion annual
reports [1] for this year. The development of these models includes the necessity to provide
experimentally determined material properties within our advanced fracture mechanics model.

Toward this end, Our team has undertaken the following activities: 1) obtain rail sections with
internal cracks that were previously in service from MxV Rail (by previous agreement with MxV
Rail); 2) cut specimens from the rails that can be tested under uniaxial cyclic loading conditions;
3) subject these specimens to uniaxial cyclic mechanical loads that are representative of the loads
incurred on in-service track (cyclic loading previously supplied to us by MxV Rail); 4) utilize these
results to determine the material properties necessary to characterize the fracture properties
required to perform simulations using our advanced computational fracture model described in our
companion proposal entitled Computational Model for Predicting Fracture in Rails Subjected to
Long-Term Cyclic Fatigue Loading; and 5) utilize the fracture properties to predict the growth of

cracks in rails subjected to actual in-service loading conditions.
2. Research Results Obtained to Date

We note here that over the previous decade we have performed a series of complex full-scale
multiaxial cyclic loading experiments (with funding from MxV Rail) on five rail specimens. The
experimental apparatus we have used for our previous full-scale rail testing is shown in Figure 1.
The railhead is contained within the apparatus but can be observed at the bottom where there is
yellow paint. The longitudinal constraints allowed for the application of axial loading, thereby
accounting for temporally constant thermal loads in the field, and the transverse portion of the
apparatus subjects the rail head to fatigue loading. Applying both of these loadings simultaneously
while constraining the rail head against both lateral and axial displacements simulated the loads

applied by train cars continuously running over the segment of the rail.



Figure 1: Rail Head in Experimental Apparatus

This apparatus was capable of exposing the segment to one-hundred thousand cycles per night,
at which point the rail head was removed from the constraints and interrogated using a phased
array. The acoustic emitter was run over the top of the rail head from the field side to the gauge
side, during which the internal crack was observed using the phased array.

We have now been performing these tests for ten years, during which we have successfully
tested five rails over several million cycles [2], thereby resulting in the crack evolution diagram
shown in Figure 2.

The results shown in Figure 2 are utilized as a means of validating our advanced multiscale
fracture mechanics model described in our companion report [1]. However, in order to deploy that
model, it is first necessary to obtain the material properties required to deploy our fracture model

from dramatically simplified (and less expensive!) experiments, to be described below.



2.50000

All Rails

200000 Rail#s

—. 150000

Crack Area (sq. in.

1.00000

050000

Rail#1 Ruail#6 Rait47

000000
2000 2000 6000 8000 10000 12000 14000 16000 18000 20000

Kilocycles

Figure 2: Comparison of Crack Progression in Each Rail Tested

As described in our companion annual report, we deploy a nonlinear cohesive zone model to
account for internal crack growth within the rail head. This model requires the determination of

accurate fracture-based material parameters in order to predict crack growth in in-service rail heads.
2.1 Obtain Rail Sections with Internal Cracks

In order to perform these material characterization experiments, it is necessary to obtain
damaged rail specimens that have previously been in service, and toward this end, MxV Rail has

provided us with pre-cracked rails (Figure 3) that we are currently testing in our own labs.



Figure 3: The Damaged Rail Sections Received from MxV Rail

2.2 Cut Specimens for Uniaxial Cyclic Testing

As depicted in Figure 4 and Figure 5, each specimen contains internal cracks. We determine
where they are located within the railhead, and we cut test specimens (Figure 6), that we then test

in our MTS Testing Machine.
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Figure 5: 2-D Cartoon of the Damaged Rail Showing the Cross-Section of the Test Specimen
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Figure 6. Cartoon Showing the Testing Configuration for Applied Cyclic Loading

z

2.3 Subject Specimens to Uniaxial Cyclic Loading

The specimens are then tested in our uniaxial MTS Testing Machine (Figure 7) and subjected
to cyclic loading. Specimens are intermittently subjected to non-destructive evaluation (Figure 8)
to evaluate the evolution of the internal crack geometry resulting from the uniaxial loading. A

typical image from the output of the phased array is shown in Figure 9.

10



Figure 7: The 100 Kip MTS Machine Utilized for the Cyclic Fatigue Testing of the Railhead
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Figure 8: Photograph of Test Specimen Periodically Interrogated with a Phased Array to Assess
Internal Crack Growth Due to Cyclic Uniaxial Loading

Figure 9: Phased Array Scan Showing Internal Crack in Railhead Shown in Figure 8
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2.4 Utilize the Experimental Results to Calibrate Our Advanced Fracture Model

The results of the above experiment are utilized to calibrate our nonlinear cohesive zone

model [3-7], given by

t (t)=%[1—oc(t)]jD (t—r)%d'c

1

(1)
where

* t are the components of the crack-opening traction vector
1

* u are the components of the crack opening displacement vector
1

* D(t) is the cohesive zone relaxation modulus
* a(t) is the current value of the interfacial damage parameter, which is modeled by a
damage evolution law.

* A(t) is the Euclidean norm of the cohesive zone interfacial displacement vector

2.5 Utilize the Experimentally Determined Fracture Properties to Predict the Response

of In-Service Rails

The experimental results are used to determine the material parameters for deployment in our
fracture model [8], and the above fracture model is deployed within our multiscale nonlinear finite
element computational algorithm [9-13] to predict crack growth in rails subjected to complex long-
term fatigue loading, and results to date are described in our companion annual report [1]. As an
example, we show in Figure 10 four comparisons of our predicted results to the experimental
results we previously obtained in Figure 2. These results provide encouragement that our model

is proceeding in the right direction.
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Figure 10: Comparisons of Numerical and Experimental Results

3. Conclusion

It is known that rail fracture causes nearly a hundred derailments every year within the United
States [14]. Furthermore, previous efforts [8] to predict rail fracture have for the most part failed
to be sufficiently accurate determining if/when internally damaged rails should be removed from
service.

The purpose of the current research being to develop just such a model, if successful, would
then be useful in developing an AREMA standard for the purpose of advising field engineers when
rails with detected internal flaws should be removed from service. Based on the location, size and
orientation of an internal crack within the railhead, engineers could therefore make informed

decisions as to if/when rails with flaws need to be replaced. This ability would provide continued
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rail transport in certain circumstances, thereby saving the cost of immediately shutting down rail

lines, while maintaining high-level safety standards.
4. Future Work

Our companion research project, entitled Computational Model for Predicting Fracture in
Rails Subjected to Long-Term Cyclic Fatigue Loading is in the process of developing a high-
fidelity multiscale computational algorithm that will be capable of predicting crack growth in
railheads as functions of crack location, crack size, and crack orientation within the rail head.
Since these three artifacts can be regularly detected remotely using a phased array, given these
three pieces of information, when completed, our computational model will be capable of
informing track engineers if/when track section with detected internal flaws will need to be
removed and replaced.

Unfortunately, whereas our modeling effort is proving useful, it requires input information
from the experimental research described within this report. As such, the experimental data to be
acquired in this research project is necessary to prove the accuracy of the computational model
that is under development in our companion project. The experimental results to be obtained in
this project therefore represent a necessary component to that end — the development of a model
for predicting crack growth rates in rails with previously detected internal flaws.

Our future work will then focus on utilizing the experimental results from this project as input
to our rail fracture model so that the accuracy of our model can be established concisely. Should
our predicted results prove to be accurate when compared to previously obtained multiaxial testing

results [15, 16].
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