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A Finite Element Framework for Rail Buckling Using Displacement 
Control 
T. Liu, V. Musu, D. H. Allen, S. Wilk 

 

Abstract 

Rail buckling is a nonlinear instability problem influenced by multiple service conditions, 
including train passage, thermal stress, track misalignment, tie-ballast interaction, and complex 
boundary effects. To address the challenge of modeling this phenomenon efficiently while 
preserving physical fidelity, this study presents a finite element model based on Euler-Bernoulli 
beam theory, implemented in Python. The framework is designed to be computationally 
lightweight, with individual simulations completing within minutes, making it suitable for 
parametric studies and engineering applications. 

The model builds upon prior foundational studies by incorporating a displacement-
controlled solution algorithm, which offers numerical advantages over traditional force-control 
approaches, particularly in capturing post-buckling behavior. This capability is critical for 
assessing structural response when unexpected energy input—such as train effects—pushes the 
system beyond critical thresholds. To further enhance model realism, a nonlinear tie-ballast 
resistance formulation is introduced, calibrated to replicate responses observed in single-tie push 
tests (STPT). 

Results demonstrate that displacement control enables robust and accurate simulation, and 
that the model reliably captures the influence of initial misalignments and the nonlinearity of the 
lateral resistance. The findings underscore the utility of displacement control not only in improving 
numerical convergence but also in providing meaningful insight into failure mechanisms under 
various track conditions. 

Rail Structures, Buckling, Finite Element Method, Displacement Control, Euler-Bernoulli 
Beam Theory, Geometrical Nonlinearity, Single-Tie Push Test 

1. Introduction 

Rail buckling poses a serious threat to railway safety and infrastructure reliability, with 
recent data indicating that approximately 11% of train accidents between 2021 and 2023 may be 
attributed to buckling-related failures (Federal Railroad Administration, 2024). These incidents 
can result in costly disruptions and, in some cases, human casualties. Despite growing attention in 
recent years, there remains a lack of practical, deployable modeling tools for predicting and 
preventing buckling failures under varying field conditions. 
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Figure 1: Photograph showing thermally induced buckling of a railway (reprinted with permission from 
ABproTWE, CC BY-SA 3.0, via Wikimedia Commons) 

 

Buckling in continuous welded rail (CWR) systems is primarily induced by thermal 
stresses, often happening during hot weather conditions, commonly referred to as "sun kinks," as 
observed in events such as the 2002 Amtrak derailments in Florida and Maryland (National 
Transportation Safety Board, 2003, 2004). However, it is also strongly influenced by multiple 
secondary factors, including geometric imperfections, crosstie/ballast degradation, train-induced 
lift-off, and boundary constraints. Field observations and post-incident analyses consistently show 
that initial misalignments and weak tie-ballast resistance zones play a pivotal role in triggering 
these failures. 

Theoretical modeling of rail behavior under thermal loading traces back to classical beam 
theory, with Euler’s work on beam deformation (1744) forming the foundation for later railway-
specific applications by Timoshenko (1915, 1927) and others. The concept of modeling rails as 
beams on elastic foundations has been progressively refined over the decades. Notably, the 
formulations by Kerr (1974, 1976) and subsequent finite element implementations by Tvergaard 
and Needleman (1981) introduced nonlinear lateral resistance models and demonstrated that 
imperfections can drastically reduce critical buckling temperatures, leading to localized post-
buckled configurations. Recent work by Yang and Bradford (2016) emphasized the importance of 
displacement-controlled solution schemes to accurately capture unstable post-buckling behavior, 
where force-controlled algorithms often fail. 

Specifically, Tvergaard and Needleman (1981) employed a Rayleigh-Ritz technique to 
predict global buckling of elastic structures, providing efficient solutions but limited in their 
applicability to track systems with localized nonlinearities. Yang (2016) presented a 
comprehensive framework for thermally induced rail buckling and post-buckling behavior, 
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initially solving a linearized eigenvalue problem to determine the critical buckling load and 
subsequently applying single and multiple shooting methods to trace post-buckling equilibrium 
paths under prescribed displacements. 

While these approaches advanced the theoretical understanding of rail instability, they 
present limitations for field applications. Rayleigh-Ritz methods typically assume smooth, global 
deformation modes and are not readily adaptable to systems with discrete tie supports, nonlinear 
ballast resistance, or localized fastener stiffness without significant modification of the assumed 
displacement fields. Shooting methods, though capable of capturing post-buckling behavior, 
require reformulating the boundary value problem into a sequence of initial value problems during 
numerical integration, are sensitive to initial guess accuracy, and often demand domain 
segmentation to maintain numerical stability under large deformations. Moreover, many prior 
formulations assume simplified ballast resistance models that do not fully capture the progressive 
reduction of track support observed under large displacements. 

Commercial finite element software is increasingly applied to model CWR buckling (e.g., 
Pucillo, 2016; Miri et al., 2021). Despite their capabilities, these tools often involve long runtime, 
high licensing costs, and steep learning curves, making them overly complex for direct application 
by field engineers. 

To address these challenges, this work presents a finite element-based displacement-
control framework for rail buckling simulation. Building upon the methodology of Musu (2023), 
the model incorporates a displacement-control algorithm adapted from the self-correcting 
displacement incrementation method introduced by Haisler, Stricklin, and Key (1977). Developed 
in Python and based on Euler-Bernoulli beam theory, the model also includes nonlinear resistance 
functions calibrated to STPT data, updated variational formulations, and flexible input parameters 
such as tie spacing, rail profile, and ballast friction coefficients. It captures key nonlinearities—
such as tie-ballast interaction, local track parameter variations, track lift-off, large strain effects, 
and geometric nonlinearities—while maintaining minimal computational cost. 

Unlike previous displacement-control schemes, the proposed model stably follows 
equilibrium paths into the post-buckling regime by directly solving the full nonlinear coupled 
system. Additionally, the displacement control point can be assigned to any nodal degree of 
freedom, including both displacements and rotations, offering full flexibility to simulate realistic 
boundary conditions, misalignments, or external disturbances. A parametric study is conducted to 
assess the effects of lateral tie-ballast resistance, and the simulation results show that the lateral 
resistance is a crucial factor for rail buckling, agreeing with established experimental and 
theoretical trends (e.g., Li & Batra, 2007; Kish & Samavedam, 2013). With runtime measured in 
minutes on a standard Intel Core i7 laptop, the developed tool offers a practical and field-ready 
simulation capability for engineers and researchers focused on rail stability analysis and preventive 
maintenance planning. 

A preliminary version of this model and its underlying framework appears in the first 
author's doctoral dissertation (Liu, 2025), where additional derivation details and extended case 
studies are provided. 
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2. Model Development 

This section summarizes the key assumptions used in model development. For the full 
derivation and additional details, see Liu (2025). 

2.1. Overview of The Track Structure 

As illustrated in Figure 2, the track is affixed to the crossties using fasteners (spikes). The 
ballast, composed of crushed stone aggregate, is deposited on the rail bed beneath the ties, which 
are typically embedded within it. Note that the coordinate axes 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 correspond to the axial, 
lateral, and vertical directions relative to the direction of travel. 

 

Figure 2: Generic rail with right-handed coordinate system as shown (reprinted with Permission from 
Allen and Fry, 2017) 

 

2.2. Effects on the Track 

In this study, five primary effects are considered in the mechanical model: lateral tie–
ballast resistance, longitudinal tie–ballast resistance, vertical support from the ballast, rotational 
restraint provided by the rail fasteners, and thermally induced axial stresses. Incorporating these 
effects is essential for accurately capturing the mechanical behavior of the track and for 
formulating a well-posed boundary value problem suitable for numerical analysis. 

The ties fastened to the track provide resistance that helps limit track deformation. Studies 
indicate that the tie-ballast interaction contributes additional resistance and behaves in a strongly 
nonlinear manner (Samavedam et al., 1995). 

For lateral tie-ballast resistance (𝐹𝐹𝑦𝑦), this research has deployed the results of single-tie 
push tests (STPT) (Wilk, 2024). STPTs are experiments that apply a lateral load to a single tie 
embedded within the track structure to measure the force-displacement relationship, as depicted in 
Figure 3.  
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Figure 3:  Photograph showing the Operation of a Single-Tie Push Test Experiment Conducted by MxV 
Rail, Pueblo, CO (reprinted with Permission from Liu, 2025) 

Although the tie is disconnected from the original track during the experiment, it is still 
embedded in the ballast, implying that the resistance measured is caused strictly by tie-ballast 
interaction. Thus, in the remainder of this research, the term lateral resistance refers specifically to 
the lateral tie–ballast resistance, unless otherwise stated. The lateral resistance is modeled using a 
generalized trilinear force–displacement relationship that captures two key physical states of the 
track system: the disturbed and compacted conditions. These conditions represent different levels 
of ballast consolidation, typically governed by maintenance history and traffic-induced 
compaction. 

In the compacted condition, the ballast has undergone sufficient consolidation through 
repeated train loading, resulting in well-interlocked aggregates and a higher peak lateral resistance. 
The force–displacement behavior in this case is characterized by an initial linear increase in 
resistance with displacement, reaching a peak value (𝐹𝐹𝑦𝑦,𝑝𝑝𝑝𝑝), followed by a gradual decrease in 
force until it stabilizes at a residual limit value (𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙). In contrast, the disturbed condition, which 
typically occurs after tamping operations, features a loose ballast structure with lower resistance. 
This behavior can be represented as a special case of the trilinear model in which the peak and 
limit resistances are equal, effectively reducing the curve to a bilinear form. This unification allows 
a single mathematical formulation to represent both physical states by adjusting the peak and limit 
parameters accordingly. 

The mathematical expressions for this generalized resistance function are provided in 
Equation (1), where 𝐹𝐹𝑦𝑦,𝑝𝑝𝑝𝑝, 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙, 𝑣𝑣𝑝𝑝𝑝𝑝 , and 𝑣𝑣𝑙𝑙𝑙𝑙  define the key parameters of the relation. A sign 
function is applied to ensure that the lateral resistance opposes the direction of displacement. 
Figure 4 shows representative STPT experimental results along with curve-fitted trilinear models, 
illustrating the flexibility of the formulation to fit both compacted and disturbed conditions. 
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𝐹𝐹𝑦𝑦(𝑣𝑣) =

⎩
⎪
⎨

⎪
⎧

𝐹𝐹𝑦𝑦,𝑝𝑝𝑝𝑝

𝑣𝑣𝑝𝑝𝑝𝑝
⋅ |𝑣𝑣| ⋅ sgn(−𝑣𝑣), |𝑣𝑣| ≤ 𝑣𝑣𝑝𝑝𝑝𝑝

�𝐹𝐹𝑦𝑦,𝑝𝑝𝑝𝑝 +
𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 − 𝐹𝐹𝑦𝑦,𝑝𝑝𝑝𝑝

𝑣𝑣𝑙𝑙𝑙𝑙 − 𝑣𝑣𝑝𝑝𝑝𝑝
⋅ �|𝑣𝑣| − 𝑣𝑣𝑝𝑝𝑝𝑝�� ⋅ sgn(−𝑣𝑣), 𝑣𝑣𝑝𝑝𝑝𝑝 <  |𝑣𝑣| ≤ 𝑣𝑣𝑙𝑙𝑙𝑙

𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 ⋅ sgn(−𝑣𝑣), |𝑣𝑣| > 𝑣𝑣𝑙𝑙𝑙𝑙

 (1) 

 

 

Figure 4: Demonstration of actual STPT experiment results alongside the corresponding curve-fitting 
model for the displacement-resistance relationship (reprinted with Permission from Liu, 2025) 

A similar approach is applied to the longitudinal tie-ballast resistance (𝐹𝐹𝑥𝑥), which varies 
with axial displacement (𝑢𝑢). Although previous studies have suggested that this relationship is 
inherently nonlinear (Tvergaard and Needleman, 1981; Nobakht et al., 2022), the precise 
governing mechanism remains unclear and needs to be further investigated. As a practical 
simplification, 𝐹𝐹𝑥𝑥 is assumed to vary linearly with 𝑢𝑢 in this study, as shown in Equation (2): 

 𝐹𝐹𝑥𝑥(𝑢𝑢) = −𝑘𝑘𝑥𝑥 ⋅ 𝑢𝑢 (2) 
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Here, 𝑘𝑘𝑥𝑥  is the longitudinal stiffness and is assumed to be constant. The term longitudinal 
resistance is used similarly to denote the longitudinal tie–ballast resistance, following the same 
assumptions and modeling approach as the lateral case. 

Before these resistance models are incorporated into the finite element formulation, 
additional calibrations are performed. The lateral resistance comprises three main components (Li 
et al., 1997): friction beneath the tie, friction along the tie sides, and shoulder resistance from the 
surrounding ballast, as shown in Figure 5. A similar breakdown applies to longitudinal resistance. 

 

Figure 5: Illustration of the tie-ballast interaction, showing the three major lateral resistance components 
(reprinted with Permission from Liu, 2025) 

 

To generalize the STPT-derived resistance curves to different tie weights, loading 
conditions, and tie–ballast interface properties, a scaling factor (𝜆𝜆𝑖𝑖) is introduced using Coulomb’s 
friction law:  

λ𝑖𝑖 =
𝐹𝐹𝑖𝑖 + 𝜇𝜇 ⋅ 𝑁𝑁 − 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐹𝐹𝑖𝑖
 (3) 

Here, subscripts 𝑖𝑖 denote the corresponding direction (longitudinal or lateral), and subscripts STPT 
represent the values specific to the STPT experiments. This factor accounts for differences in 
vertical load (𝑁𝑁) and friction coefficient (𝜇𝜇) between the experiment and the modeled track section 
and should be multiplied to the curve fit Equations (1) and (2) to capture these effects. It is 
important to note that in this model, vertical load is assumed to affect only the bottom friction 
component, while the side and shoulder contributions remain unchanged. 

Finally, the lumped resistance forces 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 are converted into distributed loads 𝑓𝑓𝑥𝑥 and 
𝑓𝑓𝑦𝑦 by dividing by the tie spacing (𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡). These distributed terms (Equations (4) and (5)) are then 
used as inputs along the rail in the finite element model to represent tie–ballast interaction 
throughout the track. 

 𝑓𝑓𝑥𝑥(𝑢𝑢) =
𝜆𝜆𝑥𝑥 ⋅ 𝐹𝐹𝑥𝑥
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

 (4) 
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 𝑓𝑓𝑦𝑦(𝑣𝑣) =
𝜆𝜆𝑦𝑦 ⋅ 𝐹𝐹𝑦𝑦
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

 (5) 

In contrast to the 𝑥𝑥 and 𝑦𝑦 axes—where frictional effects are considered—friction in the 𝑧𝑧 
direction is taken to be negligible. Even so, the ballast supplies vertical support that is idealized as 
springs, so the vertical reaction force (𝑓𝑓𝑧𝑧) is assumed to vary linearly with the vertical displacement 
(𝑤𝑤), according to: 

 𝑓𝑓𝑧𝑧(𝑤𝑤) = −𝑘𝑘𝑧𝑧 ⋅ 𝑤𝑤 (6) 

Here, 𝑓𝑓𝑧𝑧 is already described as distributed loads and has units of force per unit length. The track 
modulus (𝑘𝑘𝑧𝑧) is assumed to be a constant and can be acquired from experimental data (Oden, 
1967). 

In addition to the forces in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 direction, fasteners are used to connect tracks 
and ties and can provide rotational resistance to prevent the rail from bending, as shown in Figure 
6: 

 

Figure 6: Demonstration of the rotational resistance induced by fasteners and ties (reprinted with 
permission from Allen and Fry, 2017) 

Similar to the axial resistance, the precise amount of rotational resistance that is provided 
by the fastener as a function of the rotation angle (𝜃𝜃𝑧𝑧) is still unclear. In addition, the relationship 
may also be nonlinear and strongly dependent on the fastener type (Samavedam et al., 1993). In 
the current research, it is assumed that the rotational stiffness (𝑆𝑆) is a constant as shown in Equation 
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(7). To facilitate implementation in the finite element model, the point moment (Τ𝑧𝑧 ) is 
reformulated as a distributed moment by dividing by 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 . This approach, analogous to the 
treatment of tie–ballast resistance, results in a moment per unit length (𝜏𝜏𝑧𝑧), as expressed below. 

 Τ𝑧𝑧(𝜃𝜃𝑧𝑧) = −𝑆𝑆 ⋅ 𝜃𝜃𝑧𝑧 (7) 

 𝜏𝜏𝑧𝑧(𝜃𝜃𝑧𝑧) =
Τ𝑧𝑧
𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

 (8) 

Rail buckling is typically triggered by thermal effects such as elevated ambient 
temperatures, direct solar exposure, and frictional heating from train operation. As a result, the 
thermal stresses arising from rail expansion must be accounted for in the analysis. In this study, 
heat transfer effects are not modeled directly, and it is assumed that the rail undergoes uniform 
temperature changes with no local variation. A linear thermoelastic constitutive relationship is 
employed in the model and is expressed as follows: 

 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸(𝜀𝜀𝑥𝑥𝑥𝑥 − 𝛼𝛼 ⋅ 𝛥𝛥𝛥𝛥) (9) 

Here, 𝐸𝐸 is the Young’s modulus, 𝜀𝜀𝑥𝑥𝑥𝑥 is the axial strain, 𝛼𝛼 is the coefficient of thermal expansion, 
and 𝛥𝛥𝛥𝛥 is the current temperature difference compared to the rail neutral temperature (RNT), 
implying that at RNT there will be no thermal stress applied to the system. 

Finally, additional sources of loads or moments—such as those induced by vehicle 
operation—are represented as either distributed or concentrated point loads applied directly to the 
track structure. The influence of these external loadings on rail buckling behavior will be discussed 
in later sections. 

2.3. Boundary Value Problem 

Given the slender geometry of the rail—where the axial length greatly exceeds the lateral 
and vertical dimensions—the Euler-Bernoulli beam assumption is adopted. This assumption states 
that cross-sections of the rail remain planar and perpendicular to the centroidal axis throughout 
deformation. Based on this assumption, two key simplifications follow: (1) the transverse normal 
stress components are negligible compared to the axial stress; and (2) the displacement fields are 
functions of the axial coordinate 𝑥𝑥 only (Euler, 1744; Allen and Haisler, 1985; Grissom and Kerr, 
2006). According to field observations, torsional effects—specifically rotation about the 𝑥𝑥-axis—
are relatively minor in the context of rail buckling. As such, a three-dimensional beam model with 
five degrees of freedom, excluding torsion, is developed in this study.  

Under the Euler-Bernoulli framework, the effects of the stress components 𝜎𝜎𝑥𝑥𝑥𝑥, 𝜎𝜎𝑦𝑦𝑦𝑦, 𝜎𝜎𝑧𝑧𝑧𝑧, 
𝜎𝜎𝑥𝑥𝑥𝑥, and 𝜎𝜎𝑥𝑥𝑥𝑥, are represented using the corresponding resultants: axial force (𝑃𝑃), shear forces (𝑉𝑉𝑦𝑦, 
𝑉𝑉𝑧𝑧), and bending moments (𝑀𝑀𝑦𝑦, 𝑀𝑀𝑧𝑧). The associated free-body diagrams are illustrated in Figure 
7 and Figure 8. 
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Figure 7: x-y plane view of the resultant forces and moment applied to a differential element of the rail 
(reprinted with Permission from Liu, 2025) 

 

Figure 8: x-z plane view of the resultant forces and moment applied to a differential element of the rail 
(reprinted with Permission from Liu, 2025) 

Here, u, 𝑣𝑣, 𝑤𝑤 represent centroidal displacements in the 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 direction, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧 are the 
distributive loads applied to the element. With 𝑧𝑧∗ defined as the vertical distance from the rail base 
to its centroid, the distributed moment produced by 𝑓𝑓𝑥𝑥 is denoted by 𝜏𝜏𝑦𝑦 and can be obtained by: 

 𝜏𝜏𝑦𝑦(𝑥𝑥) = 𝑧𝑧∗ ⋅ 𝑓𝑓𝑥𝑥(𝑥𝑥) (10) 

Note that the 𝑥𝑥-𝑦𝑦 plane is illustrated in its deformed configuration, whereas the 𝑥𝑥-𝑧𝑧 plane 
is kept undeformed. Owing to the disparity between the moments of inertia 𝐼𝐼𝑦𝑦𝑦𝑦 and 𝐼𝐼𝑧𝑧𝑧𝑧, buckling 
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is far more prevalent in the 𝑥𝑥-𝑦𝑦 plane, and its geometric nonlinearity is therefore the primary focus 
of this study. Vertical buckling mostly arises when lateral motion is constrained, which seldom 
occurs, so significant vertical deflections are considered negligible and are not examined further 
in this research. 

As buckling problems could induce large deformations, the axial strain-displacement 
relation is given by: 

 𝜀𝜀𝑥𝑥𝑥𝑥 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
2
��
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+ �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
2

� (11) 

as we know, lateral displacements are much more significant than the other two directions 

for the lateral bucking problem, 1
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
 will be the only second-order term that needs to be taken 

into consideration (Tvergaard and Needleman, 1981; Grissom and Kerr, 2006), so that the final 
strain-displacement relationship utilized herein is therefore simplified as: 

 𝜀𝜀𝑥𝑥𝑥𝑥 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
1
2
 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

 (12) 

Because the track length is much greater than the deflection amplitude, the rotational angles 
can be assumed to be small and expressed as: 

 𝜃𝜃𝑦𝑦 ≅ 𝑡𝑡𝑡𝑡𝑡𝑡�𝜃𝜃𝑦𝑦� = − 𝑙𝑙𝑙𝑙𝑙𝑙
𝛥𝛥𝛥𝛥→0

𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

= −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (13) 

 𝜃𝜃𝑧𝑧 ≅ 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃𝑧𝑧) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝛥𝛥𝛥𝛥→0

𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (14) 

With all the assumptions given, a well-posed initial boundary value problem can be 
constructed. By assuming that the problem is quasi-static and using standard time-stepping 
procedures, the only independent variable for solving the displacement fields at the centroid for 
each time-step will be 𝑥𝑥. Applying the equilibrium equations and utilizing the equations above, 
the problem shown in Table 1: 
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Table 1: Initial boundary value problem for predicting rail response (reprinted with Permission from Liu, 
2025) 

 

The system includes 8 primary equations along with 5 auxiliary expressions accounting for 
tie-ballast resistance, vertical ballast support, fastener rotational stiffness, and loading from the 
thermoelastic constitutive relation. These collectively govern 8 dependent variables. While the 
problem is mathematically well-posed, the strong coupling among the equations makes it 
challenging to derive analytical solutions without introducing significant simplifications. To avoid 
such limitations, a finite element–based numerical solution approach is adopted in this study. 
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2.4. Finite Element Method 

To solve the coupled equations in Table 1, we apply the principle of virtual work to 
Equations (15), (16) and (17), which are Newton’s Law of Motion equations for the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 
direction: 

� �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑝𝑝𝑥𝑥 + 𝑓𝑓𝑥𝑥�
𝐿𝐿

0
𝛿𝛿𝛿𝛿 𝑑𝑑𝑑𝑑 + � �

𝑑𝑑𝑉𝑉𝑦𝑦
𝑑𝑑𝑑𝑑

+ 𝑝𝑝𝑦𝑦 + 𝑓𝑓𝑦𝑦�
𝐿𝐿

0
𝛿𝛿𝛿𝛿 𝑑𝑑𝑑𝑑

+ � �
𝑑𝑑𝑉𝑉𝑧𝑧
𝑑𝑑𝑑𝑑

+ 𝑝𝑝𝑧𝑧 + 𝑓𝑓𝑧𝑧�
𝐿𝐿

0
𝛿𝛿𝛿𝛿 𝑑𝑑𝑑𝑑 = 0 

(23) 

Through a series of integration by parts and equation substitution, we can come up with 
the final weak form of our problem: 

−� 𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 − � 𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

𝐿𝐿

0
𝛿𝛿
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

 𝑑𝑑𝑑𝑑 − � 𝐸𝐸𝐼𝐼𝑦𝑦𝑦𝑦
𝐿𝐿

0

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

𝛿𝛿
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

 𝑑𝑑𝑑𝑑

− �
𝐸𝐸𝐸𝐸
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 − � 𝐸𝐸𝐸𝐸

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑

− �
𝐸𝐸𝐸𝐸
2
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
3𝐿𝐿

0
𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑 + � 𝑃𝑃𝑇𝑇 𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑃𝑃𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑

+ � 𝑓𝑓𝑥𝑥 𝛿𝛿𝛿𝛿
𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑓𝑓𝑦𝑦 𝛿𝛿𝛿𝛿

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑓𝑓𝑧𝑧 𝛿𝛿𝛿𝛿

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑧𝑧∗𝑓𝑓𝑥𝑥 𝛿𝛿

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
 𝑑𝑑𝑑𝑑

+ � 𝜏𝜏𝑧𝑧 𝛿𝛿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑝𝑝𝑥𝑥 𝛿𝛿𝛿𝛿

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑝𝑝𝑦𝑦 𝛿𝛿𝛿𝛿

𝐿𝐿

0
 𝑑𝑑𝑑𝑑 + � 𝑝𝑝𝑧𝑧 𝛿𝛿𝛿𝛿

𝐿𝐿

0
 𝑑𝑑𝑑𝑑

+ [𝑃𝑃 𝛿𝛿𝛿𝛿]0𝐿𝐿 + �𝑉𝑉𝑦𝑦 𝛿𝛿𝛿𝛿�
0
𝐿𝐿

+ [𝑉𝑉𝑧𝑧 𝛿𝛿𝛿𝛿]0𝐿𝐿 + �𝑀𝑀𝑦𝑦 𝛿𝛿𝜃𝜃𝑦𝑦�0
𝐿𝐿

+ [𝑀𝑀𝑧𝑧 𝛿𝛿𝜃𝜃𝑧𝑧]0𝐿𝐿 = 0 

(24) 

As shown, the system includes multiple sources of nonlinearity: geometric nonlinearity 
(terms 5 and 6), nonlinearity from the strain–displacement relationship (terms 4 and 6), and the 
nonlinear behavior of lateral tie–ballast resistance (term 10). Additionally, although not explicitly 
included in the weak formulation, nonlinear effects from point loads and moments are incorporated 
through realistic boundary conditions. 

To solve the weak form with the finite element method, we employ Hermite shape 
functions of cubic order (Allen and Haisler, 1985): 

Substituting into the weak formulation, we have: 

 �(𝐼𝐼𝑖𝑖𝑒𝑒 − 𝐹𝐹𝑖𝑖𝑒𝑒)
10

𝑖𝑖=1

 𝛿𝛿𝑞𝑞𝑖𝑖𝑒𝑒 = 0 (25) 

file://coe-fs.engr.tamu.edu/Faculty/dhallen/Desktop/Displacement%20Control%20Journal%20V1%20(1).docx#tab:BVP
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 𝒒𝒒𝑒𝑒 = [𝑢𝑢1𝑒𝑒 𝑣𝑣1𝑒𝑒 𝑤𝑤1𝑒𝑒 𝜃𝜃𝑦𝑦,1
𝑒𝑒 𝜃𝜃𝑧𝑧,1

𝑒𝑒 𝑢𝑢2𝑒𝑒 𝑣𝑣2𝑒𝑒 𝑤𝑤2
𝑒𝑒 𝜃𝜃𝑦𝑦,2

𝑒𝑒 𝜃𝜃𝑧𝑧,2
𝑒𝑒 ]𝑇𝑇 (26) 

where: 

 𝐼𝐼𝑖𝑖𝑒𝑒 = 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 + 𝐼𝐼LS,𝑖𝑖

𝑒𝑒 + 𝐼𝐼Geo,𝑖𝑖
𝑒𝑒 + 𝐼𝐼LS,Geo,𝑖𝑖

𝑒𝑒 + 𝐼𝐼T,𝑖𝑖
𝑒𝑒 + 𝐼𝐼Lon,𝑖𝑖

𝑒𝑒 + 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 + 𝐼𝐼Bal,𝑖𝑖

𝑒𝑒 + 𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹,𝑖𝑖
𝑒𝑒  (27) 

 𝐹𝐹𝑖𝑖𝑒𝑒 = � �𝑝𝑝𝑥𝑥𝜉𝜉𝑖𝑖 + 𝑝𝑝𝑦𝑦𝜂𝜂𝑖𝑖 + 𝑝𝑝𝑧𝑧𝜁𝜁𝑖𝑖 + 𝑃𝑃𝑇𝑇
𝑑𝑑𝜉𝜉𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝐿𝐿𝑒𝑒

0
𝑑𝑑𝑑𝑑 (28) 

In this context, 𝐼𝐼ᵢᵉ is a functional that depends on the functions defined by the displacement array 
(𝑞𝑞ᵢᵉ), while 𝐹𝐹ᵢᵉ represents the force vector that accounts for external loads or temperature effects. 
The components of Iᵢᵉ are listed below: 

 
𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 = � [

𝐿𝐿𝑒𝑒

0
𝐸𝐸𝐸𝐸

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝜉𝜉𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑𝜉𝜉𝑖𝑖
𝑑𝑑𝑑𝑑

+ 𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑑𝑑2

𝑑𝑑𝑥𝑥2
�� 𝜂𝜂𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑2𝜂𝜂𝑖𝑖
𝑑𝑑𝑥𝑥2

+ 𝐸𝐸𝐼𝐼𝑦𝑦𝑦𝑦
𝑑𝑑2

𝑑𝑑𝑥𝑥2
�� 𝜁𝜁𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑2𝜁𝜁𝑖𝑖
𝑑𝑑𝑥𝑥2

]𝑑𝑑𝑑𝑑 

(29) 

 𝐼𝐼LS,𝑖𝑖
𝑒𝑒 = � �

𝐸𝐸𝐸𝐸
2

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝜂𝜂𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝜂𝜂𝑛𝑛

10

𝑛𝑛=1

𝑞𝑞𝑛𝑛𝑒𝑒�
𝑑𝑑𝜉𝜉𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝐿𝐿𝑒𝑒

0
𝑑𝑑𝑑𝑑 (30) 

 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺,𝑖𝑖
𝑒𝑒 = � �𝐸𝐸𝐸𝐸

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝜉𝜉𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝜂𝜂𝑛𝑛

10

𝑛𝑛=1

𝑞𝑞𝑛𝑛𝑒𝑒�
𝑑𝑑𝜂𝜂𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝐿𝐿𝑒𝑒

0
𝑑𝑑𝑑𝑑 (31) 

𝐼𝐼LS,Geo,𝑖𝑖
𝑒𝑒 = � �

𝐸𝐸𝐸𝐸
2

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝜂𝜂𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝜂𝜂𝑛𝑛

10

𝑛𝑛=1

𝑞𝑞𝑛𝑛𝑒𝑒�
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝜂𝜂𝑟𝑟

10

𝑟𝑟=1

𝑞𝑞𝑟𝑟𝑒𝑒�
𝑑𝑑𝜂𝜂𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝐿𝐿𝑒𝑒

0
𝑑𝑑𝑑𝑑 (32) 

 𝐼𝐼T,𝑖𝑖
𝑒𝑒 = −� �𝑃𝑃𝑇𝑇

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝜂𝜂𝑚𝑚

10

𝑚𝑚=1

𝑞𝑞𝑚𝑚𝑒𝑒 �
𝑑𝑑𝜂𝜂𝑖𝑖
𝑑𝑑𝑑𝑑

�
𝐿𝐿𝑒𝑒

0
𝑑𝑑𝑑𝑑 (33) 

 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 = −� 𝑓𝑓𝑥𝑥 𝜉𝜉𝑖𝑖

𝐿𝐿𝑒𝑒

0
 𝑑𝑑𝑑𝑑 − � 𝑧𝑧∗𝑓𝑓𝑥𝑥

𝑑𝑑𝜁𝜁𝑖𝑖
𝑑𝑑𝑑𝑑

𝐿𝐿𝑒𝑒

0
 𝑑𝑑𝑑𝑑 (34) 
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 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 = −� 𝑓𝑓𝑦𝑦 𝜂𝜂𝑖𝑖

𝐿𝐿𝑒𝑒

0
 𝑑𝑑𝑑𝑑 (35) 

 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖𝑒𝑒 = −� 𝑓𝑓𝑧𝑧 𝜁𝜁𝑖𝑖
𝐿𝐿𝑒𝑒

0
 𝑑𝑑𝑑𝑑 (36) 

 𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹,𝑖𝑖
𝑒𝑒 = −� 𝜏𝜏𝑧𝑧  

𝑑𝑑𝜂𝜂𝑖𝑖
𝑑𝑑𝑑𝑑

𝐿𝐿𝑒𝑒

0
 𝑑𝑑𝑑𝑑 (37) 

Here, 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒  includes the linear contributions from axial and bending stiffness. The terms 

𝐼𝐼𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒  represent large strain effects in the axial direction. 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺,𝑖𝑖

𝑒𝑒  captures geometric nonlinearity, 
while 𝐼𝐼𝐿𝐿𝐿𝐿,𝐺𝐺𝐺𝐺𝐺𝐺,𝑖𝑖

𝑒𝑒  accounts for the combined influence of geometric nonlinearity under large strain 
conditions. The terms 𝐼𝐼T,𝑖𝑖

𝑒𝑒 , 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖
𝑒𝑒 , 𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖

𝑒𝑒 , 𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖𝑒𝑒 , 𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹,𝑖𝑖
𝑒𝑒  correspond to secondary moment effects from 

thermal loads, longitudinal tie-ballast resistance, lateral tie-ballast resistance, vertical ballast 
support, and fastener rotational resistance, respectively. The resultant force and moment terms at 
the boundaries are intentionally excluded, since they cancel out during the process of assembling 
the local forms into the global system. 

Since 𝛿𝛿𝑞𝑞𝑖𝑖 should be mutually linear independent, and Equation (25) is always true, we 
obtain a set of 10 equations: 

 𝐼𝐼𝑖𝑖𝑒𝑒 = 𝐹𝐹𝑖𝑖𝑒𝑒,  for 𝑖𝑖 = 1 to 10 (38) 

Since the problem involves nonlinearities that require a time-stepping approach, a Taylor 
expansion of 𝐼𝐼𝑖𝑖𝑒𝑒�𝑞𝑞𝑗𝑗�  is performed. By omitting higher-order terms, the resulting incremental 
equilibrium equations are derived as follows: 

 𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒𝛥𝛥𝑞𝑞𝑗𝑗𝑒𝑒 = 𝛥𝛥𝐹𝐹𝑖𝑖𝑒𝑒 (39) 

 𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 =
∂𝐼𝐼𝑖𝑖𝑒𝑒

∂𝑞𝑞𝑗𝑗𝑒𝑒
 (40) 

 𝛥𝛥𝐹𝐹𝑖𝑖𝑒𝑒 = 𝐹𝐹𝑖𝑖𝑒𝑒�𝑞𝑞𝑗𝑗𝑒𝑒 + 𝛥𝛥𝑞𝑞𝑗𝑗𝑒𝑒� − 𝐹𝐹𝑖𝑖𝑒𝑒�𝑞𝑞𝑗𝑗𝑒𝑒� (41) 

Here, 𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒  is the Jacobian matrix of 𝐼𝐼𝑖𝑖𝑒𝑒, commonly known as the element stiffness matrix in the 
finite element method.  Rather than using numerical integration techniques such as Gauss 
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quadrature to compute the coefficients of 𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒 , these values are precomputed to reduce 
computational cost. Further details can be found in Liu (2025). 

Utilizing the standard FE assembly method, the local stiffness matrices and force vectors 
are assembled into the global form to model the entire rail section. 

2.5. Buckling Load Identification 

To accurately capture the nonlinear behavior of 𝐾𝐾𝑖𝑖𝑖𝑖, which is the global stiffness matrix 
that depends on the global displacement vector (𝑞𝑞𝑗𝑗), the entire loading process is divided into 
multiple time-steps. When the load increment (𝛥𝛥𝐹𝐹𝑖𝑖) is specified at each step, the corresponding 
displacement field (𝑞𝑞𝑗𝑗) can be obtained using Equation (38). This procedure is known as the force-
control algorithm. It has been verified against several analytical solutions and has proven effective 
in predicting the critical buckling load (𝑃𝑃𝑐𝑐𝑐𝑐), which refers to the axial load at the first point of 
instability, across a range of scenarios (Musu, 2021, 2023; Liu, 2025). 𝑃𝑃𝑐𝑐𝑐𝑐 can be identified by 
looking at the applied axial load vs. maximum lateral displacement curve, as shown in Figure 9: 

 

Figure 9: Demonstration of the axial load vs. maximum lateral displacement curve for a rail buckling 
problem (reprinted with Permission from Liu, 2025) 

In symmetric buckling problems without external loads, the maximum lateral displacement 
occurs at the midpoint of the rail, and the corresponding load represents the compressive thermal 
force applied simultaneously at both ends of the track system. 

In many cases, as the applied load increases and exceeds 𝑃𝑃𝑐𝑐𝑐𝑐 , the slope of the load–
displacement curve drops sharply, a behavior known as softening. In reality, the displacement path 
often exhibits snap-through at the first unstable point, where the applied load reaches a local 
maximum and does not exist an equilibrium state with a larger axial load value close to the critical 
buckling point. However, if additional energy enters the system—such as dynamic loads from 
passing vehicles—the rail may buckle under lower axial loads (Kish and Samavedam, 2013). At 
larger displacement values, the curve may stiffen again, likely due to nonlinear large strain effects. 
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This creates a snap-through region, with the lowest point referred to as the minimum buckling load 
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚), as illustrated in Figure 9. 

Because the force-control algorithm cannot accommodate negative load increments, it fails 
to capture the full equilibrium path once softening occurs beyond the critical buckling point. To 
address this, the displacement-control algorithm is used in this study. 

2.6. Displacement-Control Algorithm 

The displacement-control algorithm works by incrementally increasing the displacement 
at a designated point and computing the corresponding axial load needed to achieve that change. 
In this study, the buckling shape is assumed to be symmetric about the midpoint, so the midpoint—
where the maximum lateral displacement occurs—is chosen as the control point. Since parts of 
both the displacement and force vectors are unknown, the problem is classified as one with mixed 
boundary conditions. The displacement-control algorithm herein is based on the self-correcting 
displacement incrementation method proposed by Stricklin, Haisler, and Key (1977), with 
modifications made to suit the specific requirements of rail buckling analysis. 

The displacement control procedure starts with the assembled global form of element-wise 
Equation (39): 

𝐾𝐾𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝛥𝛥𝑞𝑞𝑗𝑗1 = 𝛥𝛥𝐹𝐹𝑖𝑖1 (42) 

Here, the superscript “𝑜𝑜𝑜𝑜𝑜𝑜” indicates that the stiffness matrix (𝐾𝐾𝑖𝑖𝑖𝑖) is known a-priori based on 
initial conditions or results of the previous time-step; the superscript “1” indicates that this 
equation is currently used for the first iteration. 

By dividing Equation (42) into sub-matrices and vectors, it can be rewritten as: 

 𝐾𝐾𝑓𝑓𝑓𝑓,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗

1 + 𝐾𝐾𝑓𝑓𝑓𝑓,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗

1 = 𝛥𝛥𝐹𝐹𝑓𝑓,𝑖𝑖
1 = 𝛥𝛥𝑃𝑃1𝑓𝑓𝑓𝑓,𝑖𝑖 (43) 

 𝐾𝐾𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗

1 + 𝐾𝐾𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗

1 = 𝛥𝛥𝐹𝐹𝑐𝑐,𝑖𝑖
1 = 𝛥𝛥𝑃𝑃1𝑓𝑓𝑐𝑐,𝑖𝑖 (44) 

In this formulation, the subscripts 𝑓𝑓 and 𝑐𝑐 refer to the “free” and “constrained” degrees of freedom, 
respectively. The vector 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗

1  contains the displacement changes for nodes that are free to vary 
during the simulation. In contrast, 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗

1  contains prescribed displacement changes, defined by the 
displacement boundary conditions and the displacement control point, and is therefore known. 
𝛥𝛥𝑃𝑃1 is a scalar representing the applied load magnitude. The vectors 𝑓𝑓𝑓𝑓,𝑖𝑖 and 𝑓𝑓𝑐𝑐,𝑖𝑖 consist of entries 
with values of 0 or 1, indicating the locations where load increments are applied. Since the location 
and direction of the external loads are given, 𝑓𝑓𝑓𝑓,𝑖𝑖  and 𝑓𝑓𝑐𝑐,𝑖𝑖  can be treated as known variables 
throughout the calculation 

Rearranging Equation (43), 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗
1  can be written as: 
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 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗
1 = 𝐴𝐴𝑗𝑗 + 𝛥𝛥𝑃𝑃1𝐵𝐵𝑗𝑗 (45) 

Here, 𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑗𝑗 are defined by the following systems of equations: 

 𝐾𝐾𝑓𝑓𝑓𝑓,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝑗𝑗 = −𝐾𝐾𝑓𝑓𝑓𝑓,𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗
1  (46) 

 𝐾𝐾𝑓𝑓𝑓𝑓,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝐵𝐵𝑗𝑗 = 𝑓𝑓𝑓𝑓,𝑖𝑖 (47) 

By solving 𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑗𝑗 and substituting them into Equation (45), 𝛥𝛥𝑞𝑞𝑓𝑓,𝑗𝑗
1  can be expressed as 

a function of Δ𝑃𝑃1. Substituting this expression into Equation (44) leads to: 

 𝛥𝛥𝑃𝑃1�𝐾𝐾𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝐵𝐵𝑗𝑗 − 𝑓𝑓𝑐𝑐,𝑖𝑖� = −𝐾𝐾𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝑗𝑗 − 𝐾𝐾𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗

1  (48) 

Since both sides of Equation (48) are vectors of the same dimension, element-wise division is used 
to calculate 𝛥𝛥𝑃𝑃1. 

Using the predefined 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗
1 , 𝑓𝑓𝑐𝑐,𝑖𝑖, and 𝑓𝑓𝑓𝑓,𝑖𝑖, along with the computed values of 𝛥𝛥𝑞𝑞𝑐𝑐,𝑗𝑗

1  and 𝛥𝛥𝑃𝑃1, 
the global displacement change vector 𝛥𝛥𝑞𝑞𝑗𝑗1 and the global load change vector 𝛥𝛥𝐹𝐹𝑖𝑖1 for the first 
iteration can be assembled. With 𝐾𝐾𝑖𝑖𝑖𝑖1  updated using 𝛥𝛥𝑞𝑞𝑗𝑗1, the force residual, 𝑅𝑅𝑖𝑖1 is then calculated 
through Equation (49) shown below, completing the calculation for the first iteration. 

 𝑅𝑅𝑖𝑖1 = 𝑅𝑅𝑖𝑖�𝛥𝛥𝑞𝑞𝑗𝑗1� = 𝐾𝐾𝑖𝑖𝑖𝑖1𝛥𝛥𝑞𝑞𝑗𝑗1 − 𝛥𝛥𝐹𝐹𝑖𝑖1 (49) 

where: 

 𝐾𝐾𝑖𝑖𝑖𝑖1 = 𝐾𝐾𝑖𝑖𝑖𝑖�𝑞𝑞𝑗𝑗1� (50) 

 𝑞𝑞𝑗𝑗1 = 𝑞𝑞𝑗𝑗,𝑜𝑜𝑜𝑜𝑜𝑜 +  𝛥𝛥𝑞𝑞𝑗𝑗1 (51) 

In this context, 𝑞𝑞𝑗𝑗,𝑜𝑜𝑜𝑜𝑜𝑜 refers to the global displacement vector from the previous time-step. The 
goal of the iteration is to reduce the residual—representing the imbalance between the applied load 
and the internal reaction force resulting from the current displacement update—to a sufficiently 
small value, indicating that equilibrium has been achieved. 

If the magnitude of the residual vector ��𝑅𝑅𝑖𝑖1�� does not meet the predefined convergence 
criterion, the iteration continues. For iteration 𝑚𝑚 > 1, the updated displacement 𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚  and load 
increment 𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚 are computed using: 
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 𝐾𝐾𝑖𝑖𝑖𝑖𝑚𝑚−1𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚 = 𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚 (52) 

To simplify the formulation, the displacement correction vector (𝛥𝛥𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚 ) and force correction 
vector (𝛥𝛥𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚) are introduced as: 

 𝛥𝛥𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚 = 𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚 − 𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚−1 (53) 

 𝛥𝛥𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚 = 𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚 − 𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚−1 (54) 

Substituting into Equation (52), the system becomes: 

 𝐾𝐾𝑖𝑖𝑖𝑖𝑚𝑚−1𝛥𝛥𝛥𝛥𝑞𝑞𝑗𝑗𝑚𝑚 = 𝛥𝛥𝛥𝛥𝐹𝐹𝑖𝑖𝑚𝑚 − 𝑅𝑅𝑖𝑖𝑚𝑚−1 (55) 

This equation is solved using the same procedure described in Equations (42) to (48), and the 
process is repeated until the convergence criterion is satisfied. 

The displacement-control algorithm allows the simulation to continue through the 
softening phase of rail buckling. As mentioned before, the point at which the curve’s slope changes 
direction is defined as the minimum buckling point, associated with the minimum buckling load 
(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) and the corresponding lateral displacement (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚). This point is significant because applied 
axial loads below 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 are insufficient to cause buckling, even with additional external energy, as 
no stable equilibrium configuration exists under such conditions. 

2.7. Model Verification 

Given the highly nonlinear and complex nature of rail buckling, direct validation against 
real-world scenarios is challenging. Therefore, the model is verified using simplified cases with 
known analytical solutions. Since the force-control algorithm implemented here has already been 
validated against several analytical benchmarks and demonstrated to be reliable (Musu et al., 2021, 
2023; Liu, 2025), the results from the displacement-control algorithm are compared against those 
from the force-control approach to assess its accuracy and consistency. 

The Euler buckling problem is used as a demonstration to verify the displacement-control 
algorithm. For this purpose, a linear strain–displacement relationship is adopted to simplify the 
analytical derivation. This condition is implemented in the FEM code via a user-defined flag that 
allows switching between linear and nonlinear strain formulations. 

Verification Setup: 

A rail is subjected to an axial point load P applied at the left end (𝑥𝑥 =  0). Both ends are 
simply supported, but axial displacement is allowed at 𝑥𝑥 =  0, as illustrated in Figure 10. The rail 
properties are:  𝐿𝐿 = 10 𝑚𝑚 , 𝐸𝐸 = 2.06 × 1011 𝑁𝑁/𝑚𝑚2 , 𝐴𝐴 = 0.0172 𝑚𝑚2 , 𝐼𝐼𝑧𝑧𝑧𝑧 = 1.22 × 10−5 𝑚𝑚4 . 
Tie–ballast resistances and fastener rotational resistance are neglected in this case to align 
with the analytical assumptions. 
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Figure 10: Depiction of the displacement-control algorithm verification problem (reprinted with 
Permission from Liu, 2025) 

Objective: 

Determine the analytical buckling load and compare it with FEM predictions using both 
the force-control and displacement-control algorithms. 

Analytical Solution: 

Using the classical Euler buckling formula for a pinned–pinned beam: 

 𝑃𝑃𝑐𝑐𝑐𝑐 =
𝜋𝜋2 𝐸𝐸 𝐼𝐼𝑧𝑧𝑧𝑧
𝐿𝐿2

 (56) 

The resulting critical load is 𝑃𝑃𝑐𝑐𝑐𝑐 = 248.8 𝑘𝑘𝑘𝑘. 

FEM Simulation: 

To capture geometric nonlinearity, a small initial imperfection is introduced at the rail 
midpoint. Its magnitude is kept small enough to avoid affecting the critical load prediction. Both 
FEM simulations use 20 equally spaced beam elements. 

Figure 11 shows the load–displacement curves produced by the two algorithms. The 
displacement-control results closely match both the force-control solution and the analytical 
benchmark, confirming the accuracy of the displacement-control algorithm for nonlinear buckling 
analysis. 
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Figure 11: Result of the applied axial load vs. maximum displacement curves for different solving 
procedures (reprinted with Permission from Liu, 2025) 

3. Results and Sensitivity Studies 

This section presents the results of displacement-control simulations, and a sensitivity 
study focused on one of the key parameters affecting rail buckling: lateral tie–ballast resistance. 
As the lateral resistance can be described by several different parameters, the objective is to use 
the developed algorithm to assess how variations in these factors influence the critical buckling 
load and the corresponding lateral displacements, and demonstrate the capability of the computer 
model. 

3.1. Problem Setup 

While parametric studies are conducted by modifying one specific factor at a time, a base 
case is first defined. The base case is constructed using realistic rail and track properties, primarily 
based on the AREMA 136RE rail profile. Cross-sectional area and moments of inertia are doubled 
to represent a two-rail system. Steel material properties are taken from standard industry 
specifications (Nippon Steel Corporation, 2020; Musu, 2021). For this study, the ballast condition 
is assumed to be disturbed as it is more prone to buckle, and lateral tie–ballast resistance is modeled 
using a bilinear force–displacement relationship. 

Buckling simulations are conducted on a constrained rail section with a predefined 
buckling length (𝐿𝐿). Both ends are fixed against lateral and vertical displacements as well as 
rotations, including in the 𝑥𝑥 − 𝑦𝑦  plane, while axial contraction or expansion is permitted 
throughout the misalignment and buckling process. Mechanical axial loads are applied at both ends 



 
 

27 
 

to induce buckling, representing the effect of thermal loads resulting from temperature increases 
relative to the rail neutral temperature, as defined by Equation (9).  

To initiate buckling, initial lateral geometric imperfections are introduced by applying a 
small lateral point load at midspan. This procedure can be performed using either the force-control 
or displacement-control algorithm. After the misalignment is imposed as shown in Figure 12, 
displacement values used for computing axial, lateral and rotational resistance in Equation (4), (5) 
and (8) are reset to zero to simulate a static, misaligned initial state. It is important to allow axial 
freedom during this stage, as constraining both ends axially during misalignment would effectively 
pre-tension the rail and lead to an overestimation of the critical buckling load, potentially 
misrepresenting the system’s safety margin. 

 

Figure 12: Illustration of the lateral displacements along half of the rail when it is misaligned (reprinted 
with Permission from Liu, 2025) 

Table 2 lists all input parameters for the base case in SI units. Although the values are 
chosen to reflect realistic conditions, they may vary in practice and are primarily intended to 
showcase the functionality of the code. 
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Table 2: Base case input parameters for the sensitivity study (SI units) (reprinted with Permission 
from Liu, 2025) 

 

3.2. Convergence Studies 

To ensure numerical accuracy, mesh and step size convergence were examined prior to the 
sensitivity analysis (Liu, 2025). A uniform mesh of 0.25 𝑚𝑚 per element length and a displacement 
step size of 8 × 10⁻⁴ 𝑚𝑚  were found to produce minimum buckling load and corresponding 
displacement results within 2% of finer settings and are used throughout the study. 
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3.3. Sensitivity Study: Lateral Tie–Ballast Resistance 

Given the highly nonlinear behavior of lateral tie–ballast resistance (hereafter referred to 
as lateral resistance), two scenarios are examined. In both cases, the resistance is defined by a 
bilinear relationship characterized by two parameters: the limit lateral force (𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 ) and the 
corresponding limiting displacement (𝑣𝑣𝑙𝑙𝑙𝑙), representing disturbed ballast conditions. 

3.3.1. Case 1: Variation in Limit Force 

In the first case, 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 varies from 0 to 20 𝑘𝑘𝑘𝑘 to examine its influence on buckling behavior. 
The load–displacement curves in Figure 13 show that increasing 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 substantially raises both the 
𝑃𝑃𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, highlighting the pivotal role of lateral resistance in rail stability. As 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 decreases, 
the difference between 𝑃𝑃𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 narrows, indicating a reduced softening effect and a transition 
from snap-through buckling to progressive buckling. In the extreme case of 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 = 0, the load–
displacement response becomes fully progressive, with no distinguishable peak or softening 
region. Although a sharp buckling threshold is absent in this case, the axial load required to induce 
large lateral displacements remains significantly lower than in all other scenarios, emphasizing the 
vulnerability of such degraded conditions. 

As shown in Figure 14, the values of 𝑃𝑃𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 rise nonlinearly with increasing 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙, 
but the gap between them also becomes more pronounced, reflecting a clearer onset of instability 
as lateral restraint improves. It is important to note that the 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 = 0 case is omitted from Figure 
14, as the absence of a discernible critical point makes it difficult to define either buckling load. 

Additionally, except for the 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙 = 0  case, all other load–displacement curves in Figure 
13 are plotted only up to their respective 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  points. This is because, beyond 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , the 
displacement-control algorithm reveals a secondary stiffening response, where the axial load 
begins to increase again with further displacement. This post-buckling behavior is not included in 
the figure to avoid confusion and to better emphasize the initial buckling characteristics under 
varying lateral resistance conditions. 

These results are consistent with prior studies (Samavedam et al., 1993; Kish and 
Samavedam, 2013), which suggest that weak lateral resistance reduces the chance of snap-through 
and promotes a gradual, progressive buckling mode. Nonetheless, the drastically reduced load 
threshold underscores the importance of avoiding such ballast degradation in field conditions. 
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Figure 13: Maximum lateral displacement vs. applied axial load with various limit lateral resistance 

values applied to a typical rail structure 

 

 
Figure 14: Predicted effect of changes in the limit lateral resistance value on buckling load of a typical rail 

structure 
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3.3.2. Case 2: Variation in Limit Displacement 

In the second case, the limiting displacement 𝑣𝑣𝑙𝑙𝑙𝑙  varies from 0.25 𝑐𝑐𝑐𝑐  to 0.75 𝑐𝑐𝑐𝑐 . As 
shown in Figure 15, this parameter introduces slight differences in the initial slope of the load–
displacement curves, and Figure 16 indicates small variations in both 𝑃𝑃𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. However, the 
differences in the corresponding critical displacement values are minimal—typically just a few 
millimeters—and are not significant enough to warrant further investigation at the structural scale 
of rail buckling. 

Moreover, such small differences in 𝑣𝑣𝑙𝑙𝑙𝑙  are difficult to capture reliably in practice, 
particularly during single-tie push test (STPT) experiments, where precise measurement of lateral 
displacement at the onset of limit resistance is inherently challenging. These findings suggest that, 
compared to the 𝐹𝐹𝑦𝑦,𝑙𝑙𝑙𝑙, 𝑣𝑣𝑙𝑙𝑙𝑙 has a much less pronounced influence on buckling performance and can 
be treated as a secondary parameter in design and evaluation. 

 

Figure 15: Maximum lateral displacement vs. applied axial load with various limit lateral displacement 
values applied to a typical rail structure (reprinted with Permission from Liu, 2025) 
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Figure 16: Predicted effect of changes in the limit lateral displacement value on buckling load of a typical 
rail structure (reprinted with Permission from Liu, 2025) 

4. Conclusion 

In this study, a nonlinear finite element model for predicting rail buckling was developed 
using a displacement-control approach. The model is designed to be computationally efficient and 
is capable of capturing both critical and post-buckling behavior, which is often missed in 
traditional force-controlled methods. A key feature of the framework is its flexibility—it allows 
displacement control to be applied at any degree of freedom, making it suitable for a wide range 
of buckling scenarios and boundary conditions. 

Sensitivity studies were carried out to connect STPT experimental data to the model. The 
results confirm that the lateral tie-ballast resistance value plays a dominant role in determining 
buckling strength, with a nonlinear relationship observed across the tested range. In comparison, 
variation in the STPT limit displacement showed only small changes in response, particularly in 
terms of critical displacement values. These differences are minor and unlikely to impact buckling 
outcomes at the structural level. Moreover, such small differences are difficult to measure 
accurately in STPT experiments, so further investigation may not be warranted. 

Moving forward, the displacement-control algorithm developed here can serve as a 
foundation for more advanced post-buckling analyses. It could be extended to handle train-induced 
dynamic effects or adapted for real-time stability assessment, especially in systems where lateral 
resistance conditions change over time. 
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