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A Fmite Element Framework for Rail Buckling Using Displacement

Control
T. Liu, V. Musu, D. H. Allen, S. Wilk

Abstract

Rail buckling is a nonlinear instability problem influenced by multiple service conditions,
including train passage, thermal stress, track misalignment, tie-ballast interaction, and complex
boundary effects. To address the challenge of modeling this phenomenon efficiently while
preserving physical fidelity, this study presents a finite element model based on Euler-Bernoulli
beam theory, implemented in Python. The framework is designed to be computationally
lightweight, with individual simulations completing within minutes, making it suitable for
parametric studies and engineering applications.

The model builds upon prior foundational studies by incorporating a displacement-
controlled solution algorithm, which offers numerical advantages over traditional force-control
approaches, particularly in capturing post-buckling behavior. This capability is critical for
assessing structural response when unexpected energy input—such as train effects—pushes the
system beyond critical thresholds. To further enhance model realism, a nonlinear tie-ballast
resistance formulation is introduced, calibrated to replicate responses observed in single-tie push
tests (STPT).

Results demonstrate that displacement control enables robust and accurate simulation, and
that the model reliably captures the influence of initial misalignments and the nonlinearity of the
lateral resistance. The findings underscore the utility of displacement control not only in improving
numerical convergence but also in providing meaningful insight into failure mechanisms under
various track conditions.

Rail Structures, Buckling, Finite Element Method, Displacement Control, Euler-Bernoulli
Beam Theory, Geometrical Nonlinearity, Single-Tie Push Test

1. Introduction

Rail buckling poses a serious threat to railway safety and infrastructure reliability, with
recent data indicating that approximately 11% of train accidents between 2021 and 2023 may be
attributed to buckling-related failures (Federal Railroad Administration, 2024). These incidents
can result in costly disruptions and, in some cases, human casualties. Despite growing attention in
recent years, there remains a lack of practical, deployable modeling tools for predicting and
preventing buckling failures under varying field conditions.



Figure 1: Photograph showing thermally induced buckling of a railway (reprinted with permission from
ABproTWE, CC BY-SA 3.0, via Wikimedia Commons)

Buckling in continuous welded rail (CWR) systems is primarily induced by thermal
stresses, often happening during hot weather conditions, commonly referred to as "sun kinks," as
observed in events such as the 2002 Amtrak derailments in Florida and Maryland (National
Transportation Safety Board, 2003, 2004). However, it is also strongly influenced by multiple
secondary factors, including geometric imperfections, crosstie/ballast degradation, train-induced
lift-off, and boundary constraints. Field observations and post-incident analyses consistently show
that initial misalignments and weak tie-ballast resistance zones play a pivotal role in triggering
these failures.

Theoretical modeling of rail behavior under thermal loading traces back to classical beam
theory, with Euler’s work on beam deformation (1744) forming the foundation for later railway-
specific applications by Timoshenko (1915, 1927) and others. The concept of modeling rails as
beams on elastic foundations has been progressively refined over the decades. Notably, the
formulations by Kerr (1974, 1976) and subsequent finite element implementations by Tvergaard
and Needleman (1981) introduced nonlinear lateral resistance models and demonstrated that
imperfections can drastically reduce critical buckling temperatures, leading to localized post-
buckled configurations. Recent work by Yang and Bradford (2016) emphasized the importance of
displacement-controlled solution schemes to accurately capture unstable post-buckling behavior,
where force-controlled algorithms often fail.

Specifically, Tvergaard and Needleman (1981) employed a Rayleigh-Ritz technique to
predict global buckling of elastic structures, providing efficient solutions but limited in their
applicability to track systems with localized nonlinearities. Yang (2016) presented a
comprehensive framework for thermally induced rail buckling and post-buckling behavior,



initially solving a linearized eigenvalue problem to determine the critical buckling load and
subsequently applying single and multiple shooting methods to trace post-buckling equilibrium
paths under prescribed displacements.

While these approaches advanced the theoretical understanding of rail instability, they
present limitations for field applications. Rayleigh-Ritz methods typically assume smooth, global
deformation modes and are not readily adaptable to systems with discrete tie supports, nonlinear
ballast resistance, or localized fastener stiffness without significant modification of the assumed
displacement fields. Shooting methods, though capable of capturing post-buckling behavior,
require reformulating the boundary value problem into a sequence of initial value problems during
numerical integration, are sensitive to initial guess accuracy, and often demand domain
segmentation to maintain numerical stability under large deformations. Moreover, many prior
formulations assume simplified ballast resistance models that do not fully capture the progressive
reduction of track support observed under large displacements.

Commercial finite element software is increasingly applied to model CWR buckling (e.g.,
Pucillo, 2016; Miri et al., 2021). Despite their capabilities, these tools often involve long runtime,
high licensing costs, and steep learning curves, making them overly complex for direct application
by field engineers.

To address these challenges, this work presents a finite element-based displacement-
control framework for rail buckling simulation. Building upon the methodology of Musu (2023),
the model incorporates a displacement-control algorithm adapted from the self-correcting
displacement incrementation method introduced by Haisler, Stricklin, and Key (1977). Developed
in Python and based on Euler-Bernoulli beam theory, the model also includes nonlinear resistance
functions calibrated to STPT data, updated variational formulations, and flexible input parameters
such as tie spacing, rail profile, and ballast friction coefficients. It captures key nonlinearities—
such as tie-ballast interaction, local track parameter variations, track lift-off, large strain effects,
and geometric nonlinearities—while maintaining minimal computational cost.

Unlike previous displacement-control schemes, the proposed model stably follows
equilibrium paths into the post-buckling regime by directly solving the full nonlinear coupled
system. Additionally, the displacement control point can be assigned to any nodal degree of
freedom, including both displacements and rotations, offering full flexibility to simulate realistic
boundary conditions, misalignments, or external disturbances. A parametric study is conducted to
assess the effects of lateral tie-ballast resistance, and the simulation results show that the lateral
resistance is a crucial factor for rail buckling, agreeing with established experimental and
theoretical trends (e.g., Li & Batra, 2007; Kish & Samavedam, 2013). With runtime measured in
minutes on a standard Intel Core 17 laptop, the developed tool offers a practical and field-ready
simulation capability for engineers and researchers focused on rail stability analysis and preventive
maintenance planning.

A preliminary version of this model and its underlying framework appears in the first
author's doctoral dissertation (Liu, 2025), where additional derivation details and extended case
studies are provided.



2. Model Development

This section summarizes the key assumptions used in model development. For the full
derivation and additional details, see Liu (2025).

2.1. Overview of The Track Structure

As illustrated in Figure 2, the track is affixed to the crossties using fasteners (spikes). The
ballast, composed of crushed stone aggregate, is deposited on the rail bed beneath the ties, which
are typically embedded within it. Note that the coordinate axes x, y, and z correspond to the axial,
lateral, and vertical directions relative to the direction of travel.

Track fasteners

Crossties

Figure 2: Generic rail with right-handed coordinate system as shown (reprinted with Permission from
Allen and Fry, 2017)

2.2. Effects on the Track

In this study, five primary effects are considered in the mechanical model: lateral tie—
ballast resistance, longitudinal tie—ballast resistance, vertical support from the ballast, rotational
restraint provided by the rail fasteners, and thermally induced axial stresses. Incorporating these
effects is essential for accurately capturing the mechanical behavior of the track and for
formulating a well-posed boundary value problem suitable for numerical analysis.

The ties fastened to the track provide resistance that helps limit track deformation. Studies
indicate that the tie-ballast interaction contributes additional resistance and behaves in a strongly
nonlinear manner (Samavedam et al., 1995).

For lateral tie-ballast resistance (F,), this research has deployed the results of single-tie
push tests (STPT) (Wilk, 2024). STPTs are experiments that apply a lateral load to a single tie
embedded within the track structure to measure the force-displacement relationship, as depicted in
Figure 3.
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Figure 3: Photograph showing the Operation of a Single-Tie Push Test Experiment Conducted by MxV
Rail, Pueblo, CO (reprinted with Permission from Liu, 2025)

Although the tie is disconnected from the original track during the experiment, it is still
embedded in the ballast, implying that the resistance measured is caused strictly by tie-ballast
interaction. Thus, in the remainder of this research, the term lateral resistance refers specifically to
the lateral tie—ballast resistance, unless otherwise stated. The lateral resistance is modeled using a
generalized trilinear force—displacement relationship that captures two key physical states of the
track system: the disturbed and compacted conditions. These conditions represent different levels
of ballast consolidation, typically governed by maintenance history and traffic-induced
compaction.

In the compacted condition, the ballast has undergone sufficient consolidation through
repeated train loading, resulting in well-interlocked aggregates and a higher peak lateral resistance.
The force—displacement behavior in this case is characterized by an initial linear increase in
resistance with displacement, reaching a peak value (F), i), followed by a gradual decrease in
force until it stabilizes at a residual limit value (F), ;;). In contrast, the disturbed condition, which
typically occurs after tamping operations, features a loose ballast structure with lower resistance.
This behavior can be represented as a special case of the trilinear model in which the peak and
limit resistances are equal, effectively reducing the curve to a bilinear form. This unification allows
a single mathematical formulation to represent both physical states by adjusting the peak and limit
parameters accordingly.

The mathematical expressions for this generalized resistance function are provided in
Equation (1), where Fy p, Fy 1, Vpk, and vy, define the key parameters of the relation. A sign
function is applied to ensure that the lateral resistance opposes the direction of displacement.
Figure 4 shows representative STPT experimental results along with curve-fitted trilinear models,
illustrating the flexibility of the formulation to fit both compacted and disturbed conditions.

10
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Figure 4: Demonstration of actual STPT experiment results alongside the corresponding curve-fitting
model for the displacement-resistance relationship (reprinted with Permission from Liu, 2025)

A similar approach is applied to the longitudinal tie-ballast resistance (F,), which varies
with axial displacement (u). Although previous studies have suggested that this relationship is
inherently nonlinear (Tvergaard and Needleman, 1981; Nobakht et al., 2022), the precise
governing mechanism remains unclear and needs to be further investigated. As a practical
simplification, F, is assumed to vary linearly with u in this study, as shown in Equation (2):

E(u) = —ky-u )

11



Here, k, is the longitudinal stiffness and is assumed to be constant. The term longitudinal
resistance is used similarly to denote the longitudinal tie—ballast resistance, following the same
assumptions and modeling approach as the lateral case.

Before these resistance models are incorporated into the finite element formulation,
additional calibrations are performed. The lateral resistance comprises three main components (Li
et al., 1997): friction beneath the tie, friction along the tie sides, and shoulder resistance from the
surrounding ballast, as shown in Figure 5. A similar breakdown applies to longitudinal resistance.

Resistance caused by the friction between the sides of ties and the ballast

» Displacement direction Resistance of ballast shoulder to displacement

Resistance caused by the friction between the bottom of ties and the ballast

Figure 5: Illustration of the tie-ballast interaction, showing the three major lateral resistance components
(reprinted with Permission from Liu, 2025)

To generalize the STPT-derived resistance curves to different tie weights, loading
conditions, and tie—ballast interface properties, a scaling factor (4;) is introduced using Coulomb’s
friction law:

_ Fi+u- N — usrpr - Norpr 3)
F;

A

Here, subscripts i denote the corresponding direction (longitudinal or lateral), and subscripts STPT
represent the values specific to the STPT experiments. This factor accounts for differences in
vertical load (N) and friction coefficient (u) between the experiment and the modeled track section
and should be multiplied to the curve fit Equations (1) and (2) to capture these effects. It is
important to note that in this model, vertical load is assumed to affect only the bottom friction
component, while the side and shoulder contributions remain unchanged.

Finally, the lumped resistance forces Fy and F, are converted into distributed loads f, and
fy by dividing by the tie spacing (d;;.). These distributed terms (Equations (4) and (5)) are then

used as inputs along the rail in the finite element model to represent tie—ballast interaction
throughout the track.

Ay - F,
fr(uw) = ' 4)

12



A, - E
fy(w) === (5)

In contrast to the x and y axes—where frictional effects are considered—friction in the z
direction is taken to be negligible. Even so, the ballast supplies vertical support that is idealized as
springs, so the vertical reaction force (f,) is assumed to vary linearly with the vertical displacement
(w), according to:

fr(w) ==k, -w (6)

Here, f, is already described as distributed loads and has units of force per unit length. The track

modulus (k,) is assumed to be a constant and can be acquired from experimental data (Oden,
1967).

In addition to the forces in the x, y, and z direction, fasteners are used to connect tracks
and ties and can provide rotational resistance to prevent the rail from bending, as shown in Figure
6:

Figure 6: Demonstration of the rotational resistance induced by fasteners and ties (reprinted with
permission from Allen and Fry, 2017)

Similar to the axial resistance, the precise amount of rotational resistance that is provided
by the fastener as a function of the rotation angle (6,) is still unclear. In addition, the relationship
may also be nonlinear and strongly dependent on the fastener type (Samavedam et al., 1993). In
the current research, it is assumed that the rotational stiffness (S) is a constant as shown in Equation

13



(7). To facilitate implementation in the finite element model, the point moment (T, ) is
reformulated as a distributed moment by dividing by d;;,.. This approach, analogous to the
treatment of tie—ballast resistance, results in a moment per unit length (), as expressed below.

TZ(HZ) =-S5 Hz (7)
T, (8)
[a] =
w00 = 75

Rail buckling is typically triggered by thermal effects such as elevated ambient
temperatures, direct solar exposure, and frictional heating from train operation. As a result, the
thermal stresses arising from rail expansion must be accounted for in the analysis. In this study,
heat transfer effects are not modeled directly, and it is assumed that the rail undergoes uniform
temperature changes with no local variation. A linear thermoelastic constitutive relationship is
employed in the model and is expressed as follows:

Oxx = E(&xx — a - AT) )]

Here, E is the Young’s modulus, &, is the axial strain, a is the coefficient of thermal expansion,
and AT is the current temperature difference compared to the rail neutral temperature (RNT),
implying that at RNT there will be no thermal stress applied to the system.

Finally, additional sources of loads or moments—such as those induced by vehicle
operation—are represented as either distributed or concentrated point loads applied directly to the
track structure. The influence of these external loadings on rail buckling behavior will be discussed
in later sections.

2.3. Boundary Value Problem

Given the slender geometry of the rail—where the axial length greatly exceeds the lateral
and vertical dimensions—the Euler-Bernoulli beam assumption is adopted. This assumption states
that cross-sections of the rail remain planar and perpendicular to the centroidal axis throughout
deformation. Based on this assumption, two key simplifications follow: (1) the transverse normal
stress components are negligible compared to the axial stress; and (2) the displacement fields are
functions of the axial coordinate x only (Euler, 1744; Allen and Haisler, 1985; Grissom and Kerr,
2006). According to field observations, torsional effects—specifically rotation about the x-axis—
are relatively minor in the context of rail buckling. As such, a three-dimensional beam model with
five degrees of freedom, excluding torsion, is developed in this study.

Under the Euler-Bernoulli framework, the effects of the stress components oyy, 0y, 0,5,
Oxy, and dy,, are represented using the corresponding resultants: axial force (P), shear forces (1,
V;), and bending moments (M,,, M,). The associated free-body diagrams are illustrated in Figure
7 and Figure 8.

14
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Figure 7: x-y plane view of the resultant forces and moment applied to a differential element of the rail
(reprinted with Permission from Liu, 2025)
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Figure 8: x-z plane view of the resultant forces and moment applied to a differential element of the rail
(reprinted with Permission from Liu, 2025)

Here, u, v, w represent centroidal displacements in the x, y, z direction, py, py, p, are the

distributive loads applied to the element. With z* defined as the vertical distance from the rail base
to its centroid, the distributed moment produced by f, is denoted by 7,, and can be obtained by:

Ty (x) = 2" f(x) (10)

Note that the x-y plane is illustrated in its deformed configuration, whereas the x-z plane
is kept undeformed. Owing to the disparity between the moments of inertia /,,,, and I,,, buckling

15



is far more prevalent in the x-y plane, and its geometric nonlinearity is therefore the primary focus
of this study. Vertical buckling mostly arises when lateral motion is constrained, which seldom
occurs, so significant vertical deflections are considered negligible and are not examined further
in this research.

As buckling problems could induce large deformations, the axial strain-displacement
relation is given by:

o=l @ (@) a

as we know, lateral displacements are much more significant than the other two directions

2
for the lateral bucking problem, %(g) will be the only second-order term that needs to be taken

into consideration (Tvergaard and Needleman, 1981; Grissom and Kerr, 2006), so that the final
strain-displacement relationship utilized herein is therefore simplified as:

(12)

Exx _a 2

_ du 1 (dv)z
dx

Because the track length is much greater than the deflection amplitude, the rotational angles
can be assumed to be small and expressed as:

Aw dw
0, = tan(Hy ) Al;r_}no Ax dx (13)
Av  dv

0, = tan(8,) = lim — (14)

Ax—0Ax  dx

With all the assumptions given, a well-posed initial boundary value problem can be
constructed. By assuming that the problem is quasi-static and using standard time-stepping
procedures, the only independent variable for solving the displacement fields at the centroid for
each time-step will be x. Applying the equilibrium equations and utilizing the equations above,
the problem shown in Table 1:
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Table 1: Initial boundary value problem for predicting rail response (reprinted with Permission from Liu,
2025)

1. Independent variables: x
2. Known inputs:
Loads: p, = py(x), py = py (%), p, = p,(x),0 <x <L
Temperature change: AT, known
Geometry: A, I, I,,, L, z*
Material properties: E, a
Track parameters: ky, Fy, 1, Fy pic> Vit> Vpks Axs Ays Qiies Kz, S
3. Dependent variables: u = u(x), v = v(x),w = w(x), P = P(x),
Vy =1 (), V; = V;(x), My = My (x), M, = M,(x)

4. Field equations:

dpP
a =—px— fx (15
dV,
d_;’ =-p, — f, (16)
dv,
d_xz =P, Iz a7
aM.
d—xy =V, +z*f, (18)
dMm, dv
_ a 19
dx h+P dx ¢ (19)
T 2
du_P+P _l(ﬂ) (20)
dx EA 2 \dx
2
v _ M, Q1)
dx? El,
d*w M, -
dx? El, 2)

5. Auxiliary equations: f, (w), f, (v), f,(w), 7,(6,), PT(AT)

The system includes 8 primary equations along with 5 auxiliary expressions accounting for
tie-ballast resistance, vertical ballast support, fastener rotational stiffness, and loading from the
thermoelastic constitutive relation. These collectively govern 8 dependent variables. While the
problem is mathematically well-posed, the strong coupling among the equations makes it
challenging to derive analytical solutions without introducing significant simplifications. To avoid
such limitations, a finite element—based numerical solution approach is adopted in this study.
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2.4. Finite Element Method

To solve the coupled equations in Table /, we apply the principle of virtual work to
Equations (15), (16) and (17), which are Newton’s Law of Motion equations for the x, y, and z
direction:

“rdp Lrdv,
f [—+px+fx]6udx+f [—+py+fy]5vdx
o Ldx o Ldx 23)

L dVZ
+f0 [E+pz+fz]5wdx=0

Through a series of integration by parts and equation substitution, we can come up with
the final weak form of our problem:

L' du du L d*v d*v L d*w  d*w
-] J J x
0 0

FA—§6—dx—- | El,;,—6—-——dx— | El,,—6—
dx dax 22 qx2 O qxz o Y dx? " dx?

LEA /dv\* du L dudv dv
—f —(—) 0 — dx—f EA——6— dx
0 0

2 \dx dx dxdx dx
LEA /dv\> dv L du L dv dv
—f —(—) 60— dx+f PT § — dx+f PT —§— dx
o 2 \dx/ ~dx 0 dx o dx dx 24)

L L L L dw
+ffx5udx+ffy5vdx+ffz5wdx+f Z'f, 6 = dx
0 0 0 o dx

L dv L L
+] TZ(S—dx+fpx5udx+jpy6vdx+jp26wdx
0 dx 0 0 0

+ [P Suls + [V, 6v]§ + [V, 6wk + [M, 59y]z +[M, 56,]5=0

As shown, the system includes multiple sources of nonlinearity: geometric nonlinearity
(terms 5 and 6), nonlinearity from the strain—displacement relationship (terms 4 and 6), and the
nonlinear behavior of lateral tie—ballast resistance (term 10). Additionally, although not explicitly
included in the weak formulation, nonlinear effects from point loads and moments are incorporated
through realistic boundary conditions.

To solve the weak form with the finite element method, we employ Hermite shape
functions of cubic order (Allen and Haisler, 1985):

Substituting into the weak formulation, we have:

10
D s —Fp) 8q =0 @5)
i=1
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N e e e e e e e e e 1T
qQ° =[w vi wy 6y, 0;1 u; v; w; 0,, 0;,] (26)
where:

IF =10 F s + 1ot 175Geoi T 170 + Ifoni t 1faei + 1gari + IFas, (27)

Le
f
Ff = f [prl +pyni + 0,0 + PT— dx l (28)
0

In this context, [;° is a functional that depends on the functions defined by the displacement array
(qi°), while F;° represents the force vector that accounts for external loads or temperature effects.
The components of [ are listed below:

ILBin,i = —[0 EA_(Z $m m) ZZd 2 (Z Nm qm) dxz

(29)

10
dé;
- (Z T qs) %] dx (30)
n=1

Zf e | il gy G1)
e 2, |3

e
ILS,GeoL _f
0

EAdz di edi Janil 5
> dx NMm G dx Nndn dx Ny 4y dx X
n=1 r=1
Le
I;i:z _'J~ PT
0

L€ LE
Ioni = — f £ & dx— j Zfic—dx (34)
0 0

10
d dT]l
— e | — 33
dx<z UQO) dx dx (33)
m=1
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Le

Ifat,i = - fy UF; dx (35)
0
Le
Iggi=—| f:¢ dx (36)
0
L dn:
i == | Gt G7)
0

Here, I, ; includes the linear contributions from axial and bending stiffness. The terms
Ifs; represent large strain effects in the axial direction. I, ; captures geometric nonlinearity,
while ITs ;e,,; accounts for the combined influence of geometric nonlinearity under large strain
conditions. The terms I7;, If o i» ITat i> Ipari» Ifas,; correspond to secondary moment effects from
thermal loads, longitudinal tie-ballast resistance, lateral tie-ballast resistance, vertical ballast
support, and fastener rotational resistance, respectively. The resultant force and moment terms at
the boundaries are intentionally excluded, since they cancel out during the process of assembling
the local forms into the global system.

Since §q; should be mutually linear independent, and Equation (25) is always true, we
obtain a set of 10 equations:

I =F¢, fori =1to 10 (38)

Since the problem involves nonlinearities that require a time-stepping approach, a Taylor
expansion of I (q j) is performed. By omitting higher-order terms, the resulting incremental
equilibrium equations are derived as follows:

oIf
K& = —L
3] aq]? (40)
AFf = Ff(q;’ + Aqf) — Fﬁ(qf) (41)

Here, K/} is the Jacobian matrix of I, commonly known as the element stiffness matrix in the
finite element method. Rather than using numerical integration techniques such as Gauss
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quadrature to compute the coefficients of Ki‘j-, these values are precomputed to reduce

computational cost. Further details can be found in Liu (2025).

Utilizing the standard FE assembly method, the local stiffness matrices and force vectors
are assembled into the global form to model the entire rail section.

2.5. Buckling Load Identification

To accurately capture the nonlinear behavior of K;;, which is the global stiffness matrix
that depends on the global displacement vector (q;), the entire loading process is divided into
multiple time-steps. When the load increment (4F;) is specified at each step, the corresponding
displacement field (q;) can be obtained using Equation (38). This procedure is known as the force-
control algorithm. It has been verified against several analytical solutions and has proven effective
in predicting the critical buckling load (P.,-), which refers to the axial load at the first point of
instability, across a range of scenarios (Musu, 2021, 2023; Liu, 2025). P., can be identified by
looking at the applied axial load vs. maximum lateral displacement curve, as shown in Figure 9:

4,000 -

3,000 1 Critical Buckling Point
<
?: Potential Snap-T Region
2 2,000
[}
= Minimum Buckling Point
=
<

1,000 +

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Maximum Lateral Displacement (1)

Figure 9: Demonstration of the axial load vs. maximum lateral displacement curve for a rail buckling
problem (reprinted with Permission from Liu, 2025)

In symmetric buckling problems without external loads, the maximum lateral displacement
occurs at the midpoint of the rail, and the corresponding load represents the compressive thermal
force applied simultaneously at both ends of the track system.

In many cases, as the applied load increases and exceeds P.., the slope of the load—
displacement curve drops sharply, a behavior known as softening. In reality, the displacement path
often exhibits snap-through at the first unstable point, where the applied load reaches a local
maximum and does not exist an equilibrium state with a larger axial load value close to the critical
buckling point. However, if additional energy enters the system—such as dynamic loads from
passing vehicles—the rail may buckle under lower axial loads (Kish and Samavedam, 2013). At
larger displacement values, the curve may stiffen again, likely due to nonlinear large strain effects.
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This creates a snap-through region, with the lowest point referred to as the minimum buckling load
(Ppin) as illustrated in Figure 9.

Because the force-control algorithm cannot accommodate negative load increments, it fails
to capture the full equilibrium path once softening occurs beyond the critical buckling point. To
address this, the displacement-control algorithm is used in this study.

2.6. Displacement-Control Algorithm

The displacement-control algorithm works by incrementally increasing the displacement
at a designated point and computing the corresponding axial load needed to achieve that change.
In this study, the buckling shape is assumed to be symmetric about the midpoint, so the midpoint—
where the maximum lateral displacement occurs—is chosen as the control point. Since parts of
both the displacement and force vectors are unknown, the problem is classified as one with mixed
boundary conditions. The displacement-control algorithm herein is based on the self-correcting
displacement incrementation method proposed by Stricklin, Haisler, and Key (1977), with
modifications made to suit the specific requirements of rail buckling analysis.

The displacement control procedure starts with the assembled global form of element-wise
Equation (39):

K%'Aq} = AF} (42)

Here, the superscript “old” indicates that the stiffness matrix (K;;) is known a-priori based on
initial conditions or results of the previous time-step; the superscript “1” indicates that this
equation is currently used for the first iteration.

By dividing Equation (42) into sub-matrices and vectors, it can be rewritten as:

Kffijdaz,; + KicijAqe j = AFs; = AP fy; (43)
coflcli]Aqf] Kcoclcll]Aq(,'] = AFcl,i = APlfc,i (44)

In this formulation, the subscripts f and c refer to the “free” and “constrained” degrees of freedom,
respectively. The vector Aq}, ; contains the displacement changes for nodes that are free to vary
during the simulation. In contrast, Aqé ; contains prescribed displacement changes, defined by the
displacement boundary conditions and the displacement control point, and is therefore known.
AP is a scalar representing the applied load magnitude. The vectors fri and f;; consist of entries
with values of 0 or 1, indicating the locations where load increments are applied. Since the location
and direction of the external loads are given, fr; and f.; can be treated as known variables
throughout the calculation

Rearranging Equation (43), Aq}, ; can be written as:
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Aq},j = A; + AP'B; (45)

Here, A; and B; are defined by the following systems of equations:

K]?;cliJA Kf)clcliJAqC j (46)
KfiiBj = fr. (47)

By solving A; and B; and substituting them into Equation (45), Aq}' ; can be expressed as
a function of AP!. Substituting this expression into Equation (44) leads to:

APY(KZ9B; — foi) = —K&54; — K& 4q2 (48)

Since both sides of Equation (48) are vectors of the same dimension, element-wise division is used
to calculate AP*.

Using the predefined Aqé j» fe,i» and f ;, along with the computed values of Aqé jand AP,
the global displacement change vector Aq]1 and the global load change vector AF} for the first
iteration can be assembled. With K} ; updated using Agt ;> the force residual, R} is then calculated
through Equation (49) shown below completing the calculation for the first iteration.

R} = Ri(4q}) = K}, Aqj — AF} (49)
where:
Kl = l](q ) (50)
1 1
4j = qj0ia + 4q; (51)

In this context, q; 414 refers to the global displacement vector from the previous time-step. The
goal of the iteration is to reduce the residual—representing the imbalance between the applied load
and the internal reaction force resulting from the current displacement update—to a sufficiently
small value, indicating that equilibrium has been achieved.

If the magnitude of the residual vector ||Rll|| does not meet the predefined convergence

criterion, the iteration continues. For iteration m > 1, the updated displacement Aq}n and load
increment AF/™ are computed using:
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K~ 'Aq = AF" (52)

To simplify the formulation, the displacement correction vector (44q;") and force correction
vector (AAF/™) are introduced as:

AAqT' = Aq]t — Aq]+ T (53)

AAF™ = AF™ — AF™ 1 (54)

Substituting into Equation (52), the system becomes:
K ~'AAq]t = AAF™ — RTVT (55)

This equation is solved using the same procedure described in Equations (42) to (48), and the
process is repeated until the convergence criterion is satisfied.

The displacement-control algorithm allows the simulation to continue through the
softening phase of rail buckling. As mentioned before, the point at which the curve’s slope changes
direction is defined as the minimum buckling point, associated with the minimum buckling load
(Ppin) and the corresponding lateral displacement (v,y,;,,). This point is significant because applied
axial loads below P,,;,, are insufficient to cause buckling, even with additional external energy, as
no stable equilibrium configuration exists under such conditions.

2.7. Model Verification

Given the highly nonlinear and complex nature of rail buckling, direct validation against
real-world scenarios is challenging. Therefore, the model is verified using simplified cases with
known analytical solutions. Since the force-control algorithm implemented here has already been
validated against several analytical benchmarks and demonstrated to be reliable (Musu et al., 2021,
2023; Liu, 2025), the results from the displacement-control algorithm are compared against those
from the force-control approach to assess its accuracy and consistency.

The Euler buckling problem is used as a demonstration to verify the displacement-control
algorithm. For this purpose, a linear strain—displacement relationship is adopted to simplify the
analytical derivation. This condition is implemented in the FEM code via a user-defined flag that
allows switching between linear and nonlinear strain formulations.

Verification Setup:

A rail is subjected to an axial point load P applied at the left end (x = 0). Both ends are
simply supported, but axial displacement is allowed at x = 0, as illustrated in Figure 10. The rail
properties are: L =10m, E = 2.06 X 101 N/m?, A =0.0172m?, I,, = 1.22 x 10~> m*.
Tie-ballast resistances and fastener rotational resistance are neglected in this case to align
with the analytical assumptions.
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Figure 10: Depiction of the displacement-control algorithm verification problem (reprinted with
Permission from Liu, 2025)

Objective:

Determine the analytical buckling load and compare it with FEM predictions using both
the force-control and displacement-control algorithms.

Analytical Solution:

Using the classical Euler buckling formula for a pinned—pinned beam:

w2 E I,
b=

(56)

The resulting critical load is P., = 248.8 kN.
FEM Simulation:

To capture geometric nonlinearity, a small initial imperfection is introduced at the rail
midpoint. Its magnitude is kept small enough to avoid affecting the critical load prediction. Both
FEM simulations use 20 equally spaced beam elements.

Figure 11 shows the load—displacement curves produced by the two algorithms. The
displacement-control results closely match both the force-control solution and the analytical
benchmark, confirming the accuracy of the displacement-control algorithm for nonlinear buckling
analysis.
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Figure 11: Result of the applied axial load vs. maximum displacement curves for different solving
procedures (reprinted with Permission from Liu, 2025)

3. Results and Sensitivity Studies

This section presents the results of displacement-control simulations, and a sensitivity
study focused on one of the key parameters affecting rail buckling: lateral tie—ballast resistance.
As the lateral resistance can be described by several different parameters, the objective is to use
the developed algorithm to assess how variations in these factors influence the critical buckling
load and the corresponding lateral displacements, and demonstrate the capability of the computer
model.

3.1. Problem Setup

While parametric studies are conducted by modifying one specific factor at a time, a base
case is first defined. The base case is constructed using realistic rail and track properties, primarily
based on the AREMA 136RE rail profile. Cross-sectional area and moments of inertia are doubled
to represent a two-rail system. Steel material properties are taken from standard industry
specifications (Nippon Steel Corporation, 2020; Musu, 2021). For this study, the ballast condition
is assumed to be disturbed as it is more prone to buckle, and lateral tie—ballast resistance is modeled
using a bilinear force—displacement relationship.

Buckling simulations are conducted on a constrained rail section with a predefined
buckling length (L). Both ends are fixed against lateral and vertical displacements as well as
rotations, including in the x — y plane, while axial contraction or expansion is permitted
throughout the misalignment and buckling process. Mechanical axial loads are applied at both ends
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to induce buckling, representing the effect of thermal loads resulting from temperature increases
relative to the rail neutral temperature, as defined by Equation (9).

To initiate buckling, initial lateral geometric imperfections are introduced by applying a
small lateral point load at midspan. This procedure can be performed using either the force-control
or displacement-control algorithm. After the misalignment is imposed as shown in Figure 12,
displacement values used for computing axial, lateral and rotational resistance in Equation (4), (5)
and (8) are reset to zero to simulate a static, misaligned initial state. It is important to allow axial
freedom during this stage, as constraining both ends axially during misalignment would effectively
pre-tension the rail and lead to an overestimation of the critical buckling load, potentially
misrepresenting the system’s safety margin.
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2
Q

2
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Figure 12: Illustration of the lateral displacements along half of the rail when it is misaligned (reprinted
with Permission from Liu, 2025)

Table 2 lists all input parameters for the base case in SI units. Although the values are
chosen to reflect realistic conditions, they may vary in practice and are primarily intended to
showcase the functionality of the code.
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Table 2: Base case input parameters for the sensitivity study (SI units) (reprinted with Permission
from Liu, 2025)

Input Parameter Value Unit
Rail Buckling Length, L 10.00 m
Cross-Section, 24 1.72 x 1072 m?
Moment of Inertia, 21, 7.90 x 10~° m*
Moment of Inertia, 21,, 1.22 x 107> m*
Rail Weight Per Unit Length, 2n,,; 1.32 x 103 N/m
Modeled Tie-Weight, N;;, 1.00 x 103 N
Modeled Friction Coefficient, u 1.50

Rail Young’s Modulus, E 2.06 x 1011 N/m?
Rail Thermal Expansion Coefficient, a 1.05 x 10~° 1/°C
Tie-Spacing, d;;. 0.50 m
Longitudinal Tie-Ballast Resistance Coefficient, k, 2.00 x 10° N/m
STPT Limit Lateral Force, F, j, 1.00 x 10* N
STPT Limit Lateral Displacement, v, 5.00 x 1073 m
Track Modulus, k, 7.00 x 107 N/m?
Fastener Rotational Stiffness, S 2.25 x 10° N -m/rad
STPT Tie-Weight, Ny, srpr 1.00 x 103 N
STPT Friction Coefficient, ysrpr 1.50

Misalignment Value, d,;, ;¢ 4.00 x 1072 m

3.2. Convergence Studies

To ensure numerical accuracy, mesh and step size convergence were examined prior to the
sensitivity analysis (Liu, 2025). A uniform mesh of 0.25 m per element length and a displacement
step size of 8 X 10™* m were found to produce minimum buckling load and corresponding
displacement results within 2% of finer settings and are used throughout the study.
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3.3. Sensitivity Study: Lateral Tie—Ballast Resistance

Given the highly nonlinear behavior of lateral tie—ballast resistance (hereafter referred to
as lateral resistance), two scenarios are examined. In both cases, the resistance is defined by a
bilinear relationship characterized by two parameters: the limit lateral force (F, ;) and the

corresponding limiting displacement (v}, ), representing disturbed ballast conditions.
3.3.1. Case 1: Variation in Limit Force

In the first case, Fy,;; varies from 0 to 20 kN to examine its influence on buckling behavior.
The load—displacement curves in Figure 13 show that increasing F,, ;; substantially raises both the
P and Py, highlighting the pivotal role of lateral resistance in rail stability. As F), ;; decreases,
the difference between P, and P,,;,, narrows, indicating a reduced softening effect and a transition
from snap-through buckling to progressive buckling. In the extreme case of F,,;; = 0, the load-
displacement response becomes fully progressive, with no distinguishable peak or softening
region. Although a sharp buckling threshold is absent in this case, the axial load required to induce
large lateral displacements remains significantly lower than in all other scenarios, emphasizing the
vulnerability of such degraded conditions.

As shown in Figure 14, the values of P, and Pp,;,, rise nonlinearly with increasing Fy, ;¢,
but the gap between them also becomes more pronounced, reflecting a clearer onset of instability
as lateral restraint improves. It is important to note that the F,,;; = 0 case is omitted from Figure
14, as the absence of a discernible critical point makes it difficult to define either buckling load.

Additionally, except for the F,;; = 0 case, all other load—displacement curves in Figure
13 are plotted only up to their respective P,,;, points. This is because, beyond P,,;,, the
displacement-control algorithm reveals a secondary stiffening response, where the axial load
begins to increase again with further displacement. This post-buckling behavior is not included in
the figure to avoid confusion and to better emphasize the initial buckling characteristics under
varying lateral resistance conditions.

These results are consistent with prior studies (Samavedam et al., 1993; Kish and
Samavedam, 2013), which suggest that weak lateral resistance reduces the chance of snap-through
and promotes a gradual, progressive buckling mode. Nonetheless, the drastically reduced load
threshold underscores the importance of avoiding such ballast degradation in field conditions.
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Figure 13: Maximum lateral displacement vs. applied axial load with various limit lateral resistance
values applied to a typical rail structure
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Figure 14: Predicted effect of changes in the limit lateral resistance value on buckling load of a typical rail
structure
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3.3.2. Case 2: Variation in Limit Displacement

In the second case, the limiting displacement v;, varies from 0.25 cm to 0.75 cm. As
shown in Figure 15, this parameter introduces slight differences in the initial slope of the load—
displacement curves, and Figure 16 indicates small variations in both P, and P,,;,,. However, the
differences in the corresponding critical displacement values are minimal—typically just a few
millimeters—and are not significant enough to warrant further investigation at the structural scale

of rail buckling.

Moreover, such small differences in v, are difficult to capture reliably in practice,
particularly during single-tie push test (STPT) experiments, where precise measurement of lateral
displacement at the onset of limit resistance is inherently challenging. These findings suggest that,
compared to the F), ;;, v, has a much less pronounced influence on buckling performance and can

be treated as a secondary parameter in design and evaluation.
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Maximum Lateral Displacement (m)

Figure 15: Maximum lateral displacement vs. applied axial load with various limit lateral displacement
values applied to a typical rail structure (reprinted with Permission from Liu, 2025)
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Figure 16: Predicted effect of changes in the limit lateral displacement value on buckling load of a typical
rail structure (reprinted with Permission from Liu, 2025)

4. Conclusion

In this study, a nonlinear finite element model for predicting rail buckling was developed
using a displacement-control approach. The model is designed to be computationally efficient and
is capable of capturing both critical and post-buckling behavior, which is often missed in
traditional force-controlled methods. A key feature of the framework is its flexibility—it allows
displacement control to be applied at any degree of freedom, making it suitable for a wide range
of buckling scenarios and boundary conditions.

Sensitivity studies were carried out to connect STPT experimental data to the model. The
results confirm that the lateral tie-ballast resistance value plays a dominant role in determining
buckling strength, with a nonlinear relationship observed across the tested range. In comparison,
variation in the STPT limit displacement showed only small changes in response, particularly in
terms of critical displacement values. These differences are minor and unlikely to impact buckling
outcomes at the structural level. Moreover, such small differences are difficult to measure
accurately in STPT experiments, so further investigation may not be warranted.

Moving forward, the displacement-control algorithm developed here can serve as a
foundation for more advanced post-buckling analyses. It could be extended to handle train-induced
dynamic effects or adapted for real-time stability assessment, especially in systems where lateral
resistance conditions change over time.
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