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16. Abstract 
Pedestrians who cross roads, often emerge from occlusion (i.e., obstructed views) or abruptly begin crossing from a standstill, 
frequently leading to unintended collisions with vehicular traffic that result in accidents and interruptions. Existing studies have 
predominantly relied on external network sensing and observational data to anticipate pedestrian motion. However, these methods 
are post hoc (reactive) and insufficient when pedestrians are occluded or stationary, reducing the vehicles’ ability to respond in a 
timely manner. This study addresses these gaps by introducing a novel data stream and analytical framework derived from 
pedestrians’ wearable electroencephalogram (EEG) signals to predict motor planning in road crossings. Experiments were 
conducted where participants were embodied in a visual avatar as pedestrians and interacted with varying traffic volumes, marked 
crosswalks, and traffic signals. To understand how human cognitive modules flexibly interplay with hemispheric asymmetries in 
functional specialization, we analyzed time-frequency representation and functional connectivity using collected EEG signals and 
constructed a Gaussian Hidden Markov Model to decompose EEG sequences into cognitive microstate transitions based on 
posterior probabilistic reasoning. Subsequently, datasets were constructed using a sliding window approach, and motor readiness 
was predicted using the K-nearest Neighbors algorithm combined with Dynamic Time Warping. Results showed that high-beta 
oscillations in the frontocentral cortex achieved an Area Under the Curve of 0.91 with approximately a 1-second anticipatory lead 
window before physical road crossing movement occurred. These preliminary results signify a transformative shift towards 
pedestrians proactively and automatically signaling their motor intentions to autonomous vehicles within intelligent vehicle-to-
everything (V2X) systems. The proposed framework is also adaptable to various human-CAV interactions (e.g., bicyclists in 
traffic), enabling seamless collaboration in dynamic and connected traffic environments. 
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1 Introduction 
Pedestrians are among the most vulnerable road users (VRUs) when navigating vehicular traffic, largely 
due to their increased susceptibility to injury in collisions (Valos & Bennett, 2023). This heightened 
vulnerability arises from their lower visibility to drivers and the lack of protective structures that could 
shield them from vehicle impacts. As a result, pedestrians face a significantly higher risk of harm compared 
to other road users (Anaya et al., 2014). Statistics from the US Governors Highway Safety Association 
indicate that over 7500 pedestrians were killed in road accidents in 2022, marking the highest number in 
the past 40 years (Kim, 2023). Similarly, in 2019, 16.1 million road injuries were reported in China, with 
pedestrian incidents accounting for more than half of the recorded data (Dong et al., 2023). The World 
Health Organization also reports that more than half of all road traffic deaths involve VRUs, including 
pedestrians, cyclists and motorcyclists, making pedestrian safety a truly global concern (WHO, 2023). 
 
1.1 Problem Statement and Project Scope 
A significant concern regarding pedestrian safety arises when individuals enter the roadway, particularly 
during the act of crossing. At this point, pedestrians occupy the same space as oncoming traffic (Markkula 
et al., 2020), thereby increasing the likelihood of path conflicts between pedestrian movements and 
vehicular flow, which consequently increases the risk of collisions. This safety issue is particularly 
pronounced in two common situations. The first occurs when pedestrians unexpectedly emerge from 
drivers’ blind spots (Frampton & Millington, 2022; Mole & Wilkie, 2017). Pedestrians may start from 
locations obscured from a driver’s view due to various obstructions, such as emerging from between parked 
cars, crossing in front of or behind large buses or trucks, being hidden by overgrown trees near intersections 
or driveways, obscured by street artifacts like large mailboxes or waste receptacles, or hidden behind 
temporary construction barriers and equipment. These obstructions can prevent pedestrians from being seen 
by drivers in adjacent lanes. Consequently, when pedestrians suddenly step into the roadway, their 
unexpected appearance leaves drivers with limited time to perform effective maneuvers or braking to avoid 
collisions or reduce their impact (Puga et al., 2023).  
 The second challenging situation is the difficulty in predicting whether and when pedestrians 
waiting by the roadside will initiate crossing (Rasouli et al., 2018). This uncertainty makes it hard for drivers 
to respond appropriately, especially on unsignalized roads (those without traffic signals or marked road 
crossings), where pedestrians may risk jaywalking (Papadimitriou et al., 2016). Pedestrians typically assess 
traffic volume, speed and the distance to vehicles, then choose a moment they perceive as safe to initiate 
crossing (Schmidt & Färber, 2009; Sucha et al., 2017). Even at signalized intersections, when the wait time 
exceeds expectations, pedestrians often cross the road against traffic signals (Kumar & Ghosh, 2022; 
Lipovac et al., 2013). This behavior is highly unpredictable and abrupt (Ridel et al., 2018). In fact, 
pedestrians often display impatience and commit traffic violations in their road-crossing behaviors (Ghomi 
& Hussein, 2022; Kalantarov et al., 2018).  
 This disregard for traffic rules makes it hard for drivers to interpret the right-of-way and slow down 
in time to avoid collisions. On the other hand, in those situations where the “yield to pedestrians” rule is 
not strongly enforced, it is reported that only 34% of drivers yield (Wang et al., 2021). Even at marked 
crosswalks, 36% of drivers still do not stop and give way to pedestrians (Fu et al., 2018). It is inferred that 
when it is unclear when pedestrians will start to cross the road, drivers often take risky actions instead of 
yielding, which greatly increases the chances of accidents occurring.   
 As autonomous vehicles (AVs) continue to evolve with the vision of enhancing safety and 
sustainability (Huang et al., 2021), the ability to accurately predict pedestrian movements becomes 
increasingly critical to ensure that AVs can operate safely and effectively (Almodfer et al., 2015). Unlike 
human drivers who can often communicate their intentions with pedestrians using eye contact or gestures 
(Rothenbücher et al., 2016), AVs lack this intuitive form of interaction, making human-vehicle 
communication significantly more challenging.  
 Therefore, to avoid collisions and ethical dilemmas in protecting pedestrians, a proactive strategy 
is to focus on the upstream decision-making points (Kuipers, 2020), which necessitates the forecasting of 
pedestrians’ future motions and trajectory changes (Deshmukh et al., 2023; Goldhammer et al., 2018). 
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Without accurate prediction of pedestrians’ intended movement and considering the additional complexity 
of pedestrians sometimes being invisible to sensors, the safe operation of AVs and their acceptance by the 
public become more difficult and raise further concerns (Chavhan et al., 2023; Keller & Gavrila, 2014). 
 
1.2 Limitations of Existing Methods in Pedestrian Trajectory Prediction 
1.2.1 Cooperative Sensing Between Vehicular Communication Modes 
To overcome the challenge of occlusion (view blocked by objects), current research recommends using 
cooperative sensing within Vehicle-to-Vehicle and Vehicle-to-Infrastructure frameworks (Malik et al., 
2023). In this approach, cameras mounted on other vehicles or traffic infrastructure offer different 
viewpoints to detect the location and movement of pedestrians (Koda et al., 2020; Tang et al., 2021). This 
information is then shared with approaching vehicles that cannot see the pedestrians due to blind spots 
(Wang et al., 2020), allowing them to coordinate actions to keep a safe distance (Flores et al., 2019; 
Koopmann et al., 2020).  
 This approach relies on communication between connected agents within the intelligent 
transportation system, offering a viable solution for smart intersections and dense urban areas (Moradi-Pari 
et al., 2022). However, in suburban areas where there are fewer vehicles to provide alternative viewpoints 
or where there are unsignalized crosswalks without street cameras, this occlusion problem cannot be fully 
resolved. In addition, even when pedestrians are visible, the dependence on vision-based methods for 
sensing has certain limitations, which are discussed in detail below. 
 
1.2.2 Vision-based Methods for Predicting Pedestrians’ Future Movements 
In vision-based methods where road security cameras (Noh et al., 2021) or stereo-based cameras installed 
in passenger vehicles (Keller & Gavrila, 2014) are leveraged to detect pedestrians (Gandhi & Trivedi, 
2007), extract their behavioral features from video footage (Noh et al., 2022), and analyze collision risks 
between pedestrians and vehicles (Matsui et al., 2013), there are typically three primary analytical 
approaches:  

1) Dynamic Motion Modelling: One research stream treats the prediction for VRU intentions as a 
dynamical motion modeling problem, often addressed using Bayesian filters (Pool et al., 2017; 
Schneider & Gavrila, 2013). These approaches require explicit modeling of agents, and while 
effective in specific traffic scenarios (Song et al., 2020), they struggle with non-linear motion 
trajectories and the tracking dynamics over longer periods where increased uncertainty arises in 
path changes due to complex interactions inherent in real-word traffic.  

2) Planning-based Models: Another research direction explores planning-based models for forecasting 
pedestrians’ trajectories. These models use end goals and occupancy grid maps of the environment 
to generate a probability distribution over possible trajectories (Bandyopadhyay et al., 2013; 
Rehder & Kloeden, 2015). Although planning-based approaches do not require explicit modeling 
of motion dynamics, their effectiveness is constrained by their dependence on a prior knowledge 
of the pedestrians’ end goals.  

3) Deep learning methods: The third stream of studies incorporates deep learning techniques, such as 
three-dimensional pose estimation of pedestrians (Kim et al., 2020) (including head movement 
(Lyu et al., 2024) and body skeleton (Jiang et al., 2022)) and recurrent neural network-based 
methods that use past positions to predict future motion trajectories (Alahi et al., 2016; Saleh et al., 
2017; Saleh et al., 2018). Additionally, some models integrate contextual environmental 
information, such as the pedestrian's distance to the curb and the relative locations of nearby 
approaching vehicles, to enhance the prediction of road-crossing intentions (Neogi et al., 2020; 
Saleh et al., 2019). 

 These deep learning methods can achieve favorable results under clear visibility, good weather, and 
adequate lighting conditions. However, their reliance on sensors such as cameras, LiDAR, and radar 
introduces several limitations. These sensors are subject to constraints in range, resolution, and accuracy 
(Yeong et al., 2021), and they are particularly susceptible to noise and measurement errors under adverse 
lighting (e.g., low light or direct sunlight) and weather conditions (e.g., fog, heavy rain, or snow) (Pang et 
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al., 2021; Swargiary & Kadali, 2023). Although advanced sensor fusion techniques can enhance sensor 
measurements (Volz et al., 2016), they are often cost-prohibitive and computationally intensive, with data 
processing requirements reaching up to 5TB per hour (Rich, 2020). 
 Another significant limitation is that although explicit representations of pedestrian behaviors (such 
as past positions and skeletal poses) can effectively predict future trajectories and road crossing intentions 
when pedestrians are in motion, it becomes challenging to accurately predict the exact moment pedestrians 
will initiate road crossing once they are standing at the curb without a clear intention to cross (Rasouli et 
al., 2018). 
 
1.2.3 Pedestrians as Data Source 
A cooperative approach has been proposed wherein pedestrians themselves can exchange information with 
vehicles, augmenting the vehicle’s sensor capabilities. Smartphone and wearable sensors on pedestrians are 
typically leveraged to enhance pedestrian localization and movement prediction. For instance, one study 
employed GPS in smartphones to provide precise pedestrian location information, thereby reducing reliance 
on external cameras for position estimation (Liebner et al., 2013). Another study incorporated 
accelerometers in mobile phones to detect changes in pedestrian movements, enhancing tracking accuracy 
(Flach et al., 2011). Similarly, inertial smartphone sensors have been used to detect pedestrian turning or 
crossing an intersection (Datta et al., 2014).  
 Moreover, wearable inertial measurement units mounted on the human body facilitate accurate 
pedestrian localization (Harle, 2013). Pressure-sensitive mats or insoles placed on the feet gather data on 
gait characteristics, such as stride length (Gao et al., 2016). The motion of body segments and joints is 
analyzed to understand the mechanics of walking, with kinematic models simulating human gait and 
predicting future movements. Additionally, radio signal propagation methods have been used to calculate 
the precise distance between vehicles and pedestrians (Andreone et al., 2006). Despite the increased 
positional accuracy provided by these approaches, they are largely reactive rather than proactive, i.e., they 
detect post-hoc behavioral patterns that have already occurred. For predicting the initiation of road-crossing 
by pedestrians, these methods fail to provide connected vehicles sufficient advance notice to respond in 
time.  
 Some other researchers have explored empowering pedestrians to act as active beacons for their 
planned road crossing. One particular study investigated using smartphones to notify nearby AVs about 
pedestrian positions, proposing a system architecture for pedestrian-to-vehicle communication (Arena et 
al., 2019). This system further calculates collision risk and triggers alarms if necessary (Sugimoto et al., 
2008). However, this notification process is not automatic, requiring pedestrians to actively engage with 
these third-party applications, which significantly limits its real-world adoption. This additional effort 
reduces the practicality of such systems and poses barriers to accessibility, particularly for vulnerable 
populations, such as older adults and persons with disabilities. 
 
1.4 Project Objective  
This project aims to explore the feasibility of an automatic prediction approach for pedestrian road-crossing 
initiation based on continuously monitored brain activities captured by a wearable, non-invasive EEG 
device. Given the complex spectral-spatial-temporal characteristics of EEG signals and the ever-increasing 
compactness and wearability of EEG devices (Sharma et al., 2022), the novelty and points of departure of 
this study are as follows: 
 1) This is the first study in our domain to use scalp EEG recording alongside source localization 
and brain connectivity analysis to investigate neural activation in deeper brain structures and functional 
coordination between different brain regions, providing new insights into cognitive processes.  
 2) To the best of our knowledge, this is the first study to investigate motor planning while 
developing a computational approach—combining statistical dependency analysis and machine learning—
to model the temporal evolution of underlying neural modulation for predicting motor readiness. The ability 
to capture temporal dependencies in fast-evolving EEG patterns is critical and adaptable to many real-time 
and high-level decision-making tasks in human-robot interactive systems, moving beyond traditional EEG 
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studies focused on emotional and stress states that change slowly over seconds or minutes. 
 3) This is the first study that examines motor readiness in a real-life decision-making context within 
a perception-action loop, where movement decisions are made dynamically based on perceptions of 
environmental cues and interactions with other entities. This study moves beyond reactive sensing to 
predictive (embodied perception) modeling and optimizes sliding window length and stride to provide 
critical lookahead time. These findings can be applied to connected vehicles and adapted for assistive and 
industrial robots, enabling them to understand human motion intentions and make intelligent decisions 
about path coordination and handovers in both non-interaction and seamless collaborative settings. 
 
2 Technical Approach 
2.1 EEG Applications and Technical Gaps 
Electroencephalography (EEG) measures brain electrical activity resulting from the flow of electric currents 
during synaptic excitations of neuronal dendrites via electrodes placed on the scalp (Abiri et al., 2019; 
Anwar et al., 2017). EEG was originally used as a neuroimaging tool and for monitoring subject’s mental 
states, such as emotions in interpersonal interactions (Gannouni et al., 2021), mental workload in employees 
(Chen et al., 2016; Eoh et al., 2005). EEG has also been used in brain-computer interface (BCI) systems to 
provide a direct communication pathway from the human brain to manipulate external devices, such as 
neuroprosthetic and neurorehabilitation tools (e.g. wheelchair, robotic arms). These applications are 
particularly beneficial for physically disabled individuals, including paralyzed patients, amputees, and 
individuals recovering from brain injuries (e.g. stroke patients) (Abiri et al., 2019). In recent years, EEG 
applications have gained increasing significance beyond the medical domain (see (Värbu et al., 2022) for 
an overview). Emerging applications include controlling smart home devices (Gao et al., 2018), thought-
controlled vehicle (Lu & Bi, 2019), game control for entertainment (Liao et al., 2012), enhancing creativity 
in education (Yin et al., 2024), identity authentication (Bidgoly et al., 2022), music recommendation 
systems (Cui et al., 2022).  
 Previous EEG studies in the civil infrastructure community have primarily focused on assessing 
cognitive state as physiological measures, typically inducing specific mental states in controlled 
experimental settings, linking them to the tasks being performing (Chauhan et al., 2024) or the contexts 
being experienced (Ergan et al., 2019; Zou et al., 2021), and using supervised learning models to classify 
different states or exogenous tasks (Jiang et al., 2024). Although these approaches provide insights into 
static cognitive states, they fail to capture the temporal evolution of cognitive processes. For higher-level 
cognitive tasks, particularly those involving complex perceptual decision-making, cognitive processing is 
dynamic and continuously evolving. Although a few studies suggest that the brain actively reconfigures 
neural resources across different time scales and modulates ocular activities for scanning and information-
seeking behavior (Liao et al., 2022; Zhang et al., 2023), there is no established method to track these 
dynamics over time. 
 On the other hand, motor preparedness (or readiness) has been extensively studied in the 
psychology and neuroscience communities (Parés-Pujolràs et al., 2023). Research has found neural 
correlates of decision-making in the Frontal Eye Field of mammal animals, both before, during, and after 
decision commitment. These findings are consistent with the temporal accumulation of sensory evidence, 
where neural activities modulates till convergence to a threshold before triggering a behavioral response 
(Ding & Gold, 2011). Studies have also identified the readiness potential as an event-related potential (ERP) 
that signals an upcoming action. This potential precedes subjects’ reports of their decision to move, but 
crucially, it is more prominent in unconscious or spontaneous actions. In other words, it does not exhibit 
strong modulations in deliberate, reasoning-based decisions (Maoz et al., 2019). This limitation suggests 
that the readiness potential cannot serve as a direct neural proxy for predicting upcoming road-crossing 
actions, unlike more well-established ERPs such as P300 or error-related potential, which have been widely 
used in BCI applications (Salazar-Gomez et al., 2017; Yu et al., 2017). Instead, alternative neural markers 
in the frequency domain may provide stronger predictive value. For instance, research has shown that beta-
band event-related desynchronization (ERD) is closely linked to prospective conscious access to motor 
preparation (Parés-Pujolràs et al., 2023). Donner et al. (2009) found that beta-frequency range (12–30 Hz) 
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in the motor cortex can predict participants’ perceptual choices in a yes-or-no visual detection task, before 
their overt manual responses (Donner et al., 2009). These neurophysiological findings provide insights into 
potential neural signatures of movement-related decision-making. However, substantial empirical evidence 
is needed to validate these findings in more complex perceptual decision-making and assess their 
computational feasibility for motor preparedness prediction. 
   
2.2 Overview of the Developed Computing Framework 
An overview of the computational framework proposed in this study is shown in Figure 1. The details are 
provided in the following subsections. 
 

 
Figure 1. Overview of the computing framework. 

 
2.3 Power Spectral Density 
EEG data were recorded as voltage fluctuations over time (time domain). Fast Fourier Transform (FFT) 
(Cochran et al., 1967) was performed to transform the signal into frequency domain that decomposed the 
EEG signals into five frequency components: theta (4–8 Hz), alpha (8–12 Hz), low beta (12–16 Hz), high 
beta (16-25Hz) and gamma (25–45 Hz). A Hanning tapered window was used to prevent wrapping artefacts, 
which occur when the FFT treats the data as an infinite repeating sequence. Without tapering, any mismatch 
between the first and last samples would be interpreted as a sudden jump, introducing spectral leakage—
artificial noise broadcast across the frequency spectrum. This analysis was conducted by the EmotivPRO 
software (v3.0) (EMOTIV, 2023). The FFT outputs (𝑋𝑋(𝑓𝑓)) contains both magnitude and phase information 
about different frequency components of the signals. Later, the squared magnitude of 𝑋𝑋(𝑓𝑓) was computed 
as power spectrum and normalized by the frequency resolution (∆𝑓𝑓) to obtain Power Spectral Density 
(PSD). Given the 5 frequency bands and 14 electrodes embedded in our scalp recording headset, the PSD 
data structure had 70 dimensions on a continuous time scale at a sampling rate of 8Hz. 
 
2.4 Epoch Segmentation 
Epoch segmentation was performed using event markers corresponding to stimuli onset and participant 
responses to extract stimulus-response period-of-interest. Epochs were segmented on a trial-by-trial basis 
and labeled according to the experimental scenario. Both EmotivPro (for EEG data) and PsychoPy (for 
experimental stimuli) generated marker/event files (.csv) that contains timestamp information. However, 
these timestamps were recorded in different local time scales, making direct alignment challenging. To 
synchronize, Psychopy was programmed to send event triggers directly to the Emotiv EEG recording 
system, ensuing that both datasets contained a shared reference timestamp for stimulus onset. This shared 
timestamp was then used as an index reset point. 
 
2.5 Time-Frequency Analyses 
PSD provides an average power distribution across different frequency over the entire epoch segment, but 
it does not retain temporal information. To get a dynamic view of power fluctuations at different frequencies 
over time, time-frequency analysis was performed. Given the inherent time-frequency trade-off—where 
longer temporal windows improve frequency resolution but reduce temporal precision, while shorter 
windows enhance time resolution but cause frequency smearing (MNE-Python)—two methods were 
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applied: Morlet wavelet transform that uses sinusoidal waves multiplied by a Gaussian envelope to 
convolve the signal and localize in time, which provides good time resolution but lower frequency 
resolution, and a multitaper method that uses multiple orthogonal tapering windows to compute 
independent spectral estimates and average them, which reduces variance and provides high frequency 
resolution but is limited in temporal precision (Slepian, 1978).  
 The reason to perform time-frequency analysis and the differences between ERP and ERD or event-
related synchronization (ERS) can be found in (Pfurtscheller & Lopes da Silva, 1999). Traditional ERP 
analysis relies on trial averaging, which enhances phase-locked signals but filters out non-phase-locked 
activity. However, event-related oscillations—frequency-specific changes in ongoing EEG activity 
triggered by an event—may not be phase-locked, meaning they could be lost in ERP averaging but remain 
detectable using time-frequency analysis. In time-frequency analysis, the power dynamics of frequency-
specific oscillations are quantified over time, enabling the examination of how spatiotemporal changes in 
EEG activity relate to task-specific sensory, motor, and/or cognitive processes. A decrease in power within 
a specific frequency band indicates ERD (Pfurtscheller, 1977), reflecting a reduction in neuronal synchrony, 
often associated with increased cortical activation or engagement. Conversely, an increase in power is 
referred to as ERS (Pfurtscheller, 1992), indicating greater neuronal synchrony, often linked to functional 
inhibition or memory processes.  
 The EEG data were exported from EmotivPro in European Data Format (.edf) and processed using 
MNE-Python (Gramfort et al., 2013) for time-frequency analysis. To visualize event-related power changes, 
the EEG data was normalized using a 200-millisecond pre-stimulus baseline interval. Two normalization 
methods were applied: (1) arithmetic mean correction, which corrects bias by  subtracting the average power 
across segments, and (2) log-ratio transformation, which computes the logarithmic ratio of power relative 
to the baseline mean, providing a scale-invariant measure of power fluctuations. 
  
2.6 Functional Connectivity 
Activation-based analysis can identity strong localized activity in specific brain regions; however, the brain 
operates as a network, where inter-regional coordination plays a crucial role in distributed cognitive 
processes and synchronized neural dynamics—especially for high-level cognitive functions. Isolated 
activation patterns alone may not fully capture these interactions (Liao et al., 2022). Therefore, this study 
also examines functional connectivity to understand how different brain regions interact over time.  
 The Weighted Phase Lag Index (wPLI) was computed to estimate the synchronization between two 
brain regions based on phase difference in their oscillatory activity. Suppose 𝑆𝑆𝑖𝑖𝑖𝑖 is the cross-spectrum 
(multiplication of one signal’s Fourier transform with the complex conjugate of the other) between two 
signals 𝑖𝑖, 𝑗𝑗. wPLI measures the consistency of the imaginary component of the phase difference between 
these two signals:  

( ){ }
( ){ }

Imag

Imag

ij

ij

E S
wPLI

E S
=  

 Equation 1 

 where 𝐸𝐸{∗} denotes the expectation across time/frequency epochs.  
 When neurons generate electrical activity, the signals propagate through brain tissue, cerebrospinal 
fluid, the skull, and the scalp before being captured by EEG electrodes. Because the brain’s electrical 
activity spreads through these conductive media, two electrodes may pick up the same signal from a 
common source, creating the false appearance of connectivity—a phenomenon known as volume 
conduction. wPLI helps mitigate volume conduction, compare to traditional connectivity measures such as 
coherence and Phase-Locking Value (PLV). wPLI focuses only on non-zero phase lags: the imaginary 

component of the cross-spectrum is maximal when signals have a phase difference of 
2

k ππ +  and zero 
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when the phase difference is 𝑘𝑘𝑘𝑘 (where 𝑘𝑘 ∈ ℤ) (Vinck et al., 2011). wPLI is bounded in the range of [0, 1] , 
where higher values indicate stronger phase synchronization with a consistent lag. 

2.7 Hidden Markov Models for Decomposing Microstates 
Based on the Perception-Action model (Kowalski-Trakofler & Barrett, 2003; Windridge et al., 2013), we 
hypothesized that there are four key cognitive microstates underlying the road-crossing decision (Tian et 
al., 2022): perceiving the environment (selectively attending to critical sensory information, such as 
oncoming traffic), assessing risk based on vehicle speed and distance, determining the available time to 
cross, and initiating movement onto the road. These processes are complex and engage multiple high-level 
functions, such as selective attention, which orients focus on highly relevant environmental cues (Ptak, 
2012), and working memory that manipulates information for memory retrieval and rule-based response 
selection (Bunge, 2005).  

To identify temporal markers that distinguish these hypothesized latent cognitive states and their 
transitions, we constructed a Hidden Markov Model (HMM) to infer these states using probabilistic 
inference (Rabiner, 1989). In this framework, road-crossing decision-making was modeled as a Markov 
process with hidden states, which were inferred from multivariate EEG power time series data, leveraging 
the probabilistic dependence (transition probabilities) of successive hidden states. 

To explain the statistical inference process in more details, let 𝑆𝑆 =  {𝑆𝑆1,𝑆𝑆2,𝑆𝑆3,𝑆𝑆4} be the set of four 
latent states. The initial state distribution π represents the probability of starting in each state: 𝜋𝜋 =
{𝜋𝜋1,𝜋𝜋2,𝜋𝜋3,𝜋𝜋4}, where 𝜋𝜋𝑖𝑖 = 𝑃𝑃(𝑆𝑆1 =  𝑆𝑆𝑖𝑖), for i∈{1,2,3,4}. 

The state transition matrix A represents the probabilities of transitioning from one state to another: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a

A
a a a a
a a a a

 
 
 =
 
 
 

Equation 2 

where 𝑎𝑎  = 𝑃𝑃 (𝑆𝑆 𝑡𝑡 +1 = 𝑖𝑖 |𝑆𝑆 𝑡𝑡  = 𝑖𝑖 ) for i, j ∈{1,2,3,4}. 
The emissions from each state are modeled by Gaussian distributions. Each state 𝑆𝑆𝑖𝑖 is associated 

with a Gaussian distribution characterized by a mean 𝜇𝜇𝑖𝑖 and a covariance matrix 𝑈𝑈𝑖𝑖. The estimation 
probabilities are modelled by 

( ),i i iB N Uµ=
Equation 3 

where 𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝑈𝑈𝑖𝑖) represents the multivariate Gaussian distribution with mean vector 𝜇𝜇𝑖𝑖 and 
covariance matrix 𝑈𝑈𝑖𝑖. 

( ) ( ) { }| | , 1, 2,3, 4t t i t t iP O S S N O U iµ= = = ∈
Equation 4 

where 𝑂𝑂𝑡𝑡 is the observed data at time t. 
The process of estimating these model parameters was performed through a fitting procedure, 

wherein the model iteratively adjusted the parameters to maximize the likelihood of the observed data given 
the model structure. The Expectation-Maximization (EM) algorithm, specifically the Baum-Welch 
algorithm (Fine et al., 1998), is used to train the HMM. After firstly initializing the model parameters 𝜋𝜋, A, 
and B, the forward and backward probabilities using the current parameters were calculated: 

Forward Probabilities (𝛼𝛼): 
( ) ( )1 2, ,..., , |t t t ii P O O O S Sα λ= =  

Equation 5 
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( ) ( )1 1i ii b Oα π=
Equation 6 

( ) ( ) ( )1 1
1

N

t t ij j t
i

j i a b Oα α+ +
=

 =  
 
∑

Equation 7 

Backward Probabilities (𝛽𝛽): 
( ) ( )1 2, ,..., , |t t t T t ii P O O O S Sβ λ+ += =  

Equation 8 

( ) 1T iβ =
Equation 9 

( ) ( ) ( )1 1
1

N

t ij j t t
j

i a b O jβ β+ +
=

 
=  
 
∑  

Equation 10 

Then the model parameters were updated to maximize the expected likelihood. The initial state 
distributions were re-estimated: 

( )1i iπ γ=  
Equation 11 

where Υ𝑡𝑡(𝑖𝑖) =  𝑃𝑃(𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑖𝑖|𝑂𝑂, 𝜆𝜆) and can be computed as: 

( ) ( ) ( )
( ) ( )1

t t
t N

t tj

i i
i

j j

α β
γ

α β
=

=
∑

Equation 12 

The state transition probabilities were re-estimated: 

( )
( )

1

1
1

1

,T
tt

ij T
tt

i j
a

i

ξ

γ

−

=
−

=

= ∑
∑

Equation 13 

where 𝜉𝜉 (𝑖𝑖 , 𝑗𝑗 ) = 𝑃𝑃 (𝑆𝑆 𝑡𝑡  = 𝑆𝑆 𝑖𝑖 , 𝑆𝑆 𝑡𝑡 +1 = 𝑖𝑖 |𝑂𝑂 , 𝜆𝜆 ). The 
emission probabilities were re-estimated: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

1 11 1

, t ij j t t
t N N

t ij j t ti j

i a b O j
i j

i a b O j

α β
ξ

α β
+ +

+ += =

=
∑ ∑

Equation 14 

For the Gaussian distribution associated with each state 𝑆𝑆𝑖𝑖: 

( )
( )

1

1

T
t tt

i T
tt

i O

i

γ
µ

γ
=

=

= ∑
∑

Equation 15 
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( )( )( )
( )

1

1

T T
t t t t tt

i T
tt

i O O
U

i

γ µ µ

γ
=

=

− −
= ∑

∑
 

Equation 16 

 This iterative process continued until convergence (i.e., the change in likelihood between iterations 
is below a certain threshold), ensuring that the model parameters were optimized to best represent the 
underlying structure of the EEG data. 
 Following the optimization of the model parameters, the most probable sequence of hidden states 
were inferred from the time series of observed data using the Viterbi algorithm. First, the variables for the 
most probable path up to time t ending in state 𝑆𝑆𝑖𝑖, denoted as 𝛿𝛿𝑡𝑡(𝑖𝑖), and the backpointer 𝜓𝜓𝑡𝑡(𝑖𝑖) to keep track 
of the states were initialized: 

( ) ( ) ( ) { }1 1 1, 0, 1, 2,3, 4i ii b O i iδ π ψ= = ∈  
Equation 17 

 For each time step 𝑡𝑡 = 2, … ,𝑇𝑇 and each state 𝑆𝑆𝑗𝑗: 

( )
{ }

( ) ( )11,2,3,4
maxt t ij j ti

j i a b Oδ δ −∈
 =    

Equation 18 

( )
{ }

( )11,2,3,4
arg maxt t iji

j i aψ δ −∈
 =    

Equation 19 

 The most probable final state and the corresponding probability was identified by: 

{ }
( )*

1,2,3,4
max ti

P iδ
∈

=  

Equation 20 

{ }
( )*

1,2,3,4
arg maxT ti

S iδ
∈

=  

Equation 21 

 Then the most probable sequence of states was retrieved by backtracking through the backpointer 
array 𝜓𝜓𝑡𝑡(𝑖𝑖): 

( )* *
1 1 , 1, 2,...,1t t tS S t T Tψ + += = − −  

Equation 22 

 This sequence, {𝑆𝑆1∗,𝑆𝑆2∗, 𝑆𝑆3∗,𝑆𝑆4∗} resulted in a temporal map of the latent cognitive microstates 
experienced by participants during the road-crossing decision-making process. 
  
2.8 Motor Readiness Prediction 
To create the dataset for training the machine learning classifier, a sliding window approach was adopted, 
where a fixed-length window moves over the EEG power data with a specific stride to extract segments 
from the time series. Depending on the length and stride, the segments could be overlapping or non-
overlapping. In this study, an exhaustive search method was used to find the optimal window configuration 
that results in the best signal classification performance. The length and stride of each window started at 
0.25 seconds (s) and incrementally increased by 0.125s at each stop until a maximum of 2s. As a result, the 
total of windows W extracted from the time series is given by  
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1N LW
S
− = +  

 

Equation 23 

 where N is the total number of data points, L is the window length, S is the stride. ⌊∗⌋ denotes the 
floor function that returns the greatest integer less than or equal to the given value.  
 The last (W-th) window, 𝜔𝜔𝑊𝑊, can be described as: 

{ }1 2 1
, , ,...,

w w w w LW t t t tx x x xω
+ + + −

=  
Equation 24 

 This last segment, which reaches the end of the sequence, was assigned a label of “1”, signifying 
the final initiation of road-crossing. The earlier segments were all assigned a label of “0”. Given the 
pronounced class imbalance within the dataset, Adaptive Synthetic Sampling Approach (ADASYN), which 
was commonly used for oversampling (He et al., 2008), was used to adaptively generate synthetic samples 
for the minority class.  
 Based on the segmented dataset, a K-Nearest Neighbors (KNN) classifier was used to predict the 
precise moments when participants decide to initiate road crossing. Dynamic time warping (DTW) distance 
between two time series was used as the distance measure. Originally proposed in (Sakoe & Chiba, 1978), 
DTW is an elastic distance measure, i.e., it is a distance computed after realigning (warping) two time series 
to best match each other via time axis distortions (Ratanamahatana & Keogh).  
This is critical for considering the non-fixed response time across trials, where similar cognitive processes 
may unfold at different rates. The underlying principal is that DTW compares two time series by optimally 
aligning their points to minimize the distance between them, thus taking into account the temporal 
differences in speed or duration between the series. 
 To be more specific, two sequences that we want to compare are defined below: 

• 𝑋𝑋 =  [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] with length n 
• 𝑌𝑌 =  [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑚𝑚] with length m 

 The goal of DTW is to find a path through the grid that defines the mapping between X and Y that 
minimizes the total distance between the aligned elements of the sequences. This path is known as the 
“warping path”. First, the distance matrix D was computed, where each element 𝐷𝐷(𝑖𝑖, 𝑗𝑗) represents the 
Euclidean distance between 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑗𝑗: 

( ) ( )2
, i jD i j x y= −  

Equation 25 

 Next, the accumulated cost matrix C was calculated using dynamic programming. Each element 
𝐶𝐶(𝑖𝑖, 𝑗𝑗) represents the minimum cumulative distance to align the first i elements of X and the first j elements 
of Y. The accumulated cost matrix is defined as: 

( ) ( ) ( ) ( ) ( ){ }, , min 1, 1 , 1, , , 1C i j D i j C i j C i j C i j= + − − − −  
Equation 26 

 The boundary conditions are: 
( ) ( )0,0 0,0C D=  

Equation 27 

( ) ( ) ( ),0 ,0 1,0 , 1,2,...,C i D i C i i n= + − −  
Equation 28 

( ) ( ) ( )0, 0, 0, 1 , 1,2,...,C j D j C j j m= + − =  
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Equation 29 

 The optimal warping path P is the path from 𝐶𝐶(𝑛𝑛,𝑚𝑚) to 𝐶𝐶(0,0) that minimizes the total cumulative 
distance. This path is found by starting at 𝐶𝐶(𝑛𝑛,𝑚𝑚) and tracing back to 𝐶𝐶(0,0) by moving through the indices 
that provide the minimum accumulated cost as defined above. Finally, the total cost of the optimal warping 
path, which is the measure of similarity between X and Y, is given by the value of 𝐶𝐶(𝑛𝑛,𝑚𝑚). 
 By integrating DTW as the distance metric, our KNN classifier gains the flexibility to accurately 
measure the similarity between EEG sequences with temporally varying patterns. The KNN algorithm 
determines the classification of a sample by identifying the majority class among its k closest neighbors. 
Through tuning, k = 5 was chosen. The tslean toolkit that specializes in machine learning for time series 
analysis in Python was used for this analysis (Tavenard et al., 2020).   
 The performance of the classifier was assessed based on five-fold cross validation. The dataset was 
divided into five subsets. In each validation cycle, four subsets underwent ADASYN oversampling to 
address class imbalance before being used for training, while the fifth subset was used for testing. Each 
subset of data was used for testing exactly once, and the average of the evaluation metrics across all subsets 
was calculated and reported. Finally, A permutation test was implemented to evaluate how well the classifier 
performed by comparing with the observed accuracy obtained by chance (from the datasets where the class 
labels were randomly shuffled) (Ojala & Garriga, 2009).  
 
 
3 Experiments 
3.1 Participants 
Twelve participants were recruited for the experiment (six males and six females; mean age = 24.92 years). 
This sample size was determined based on the latest biometric review, which reports that prior EEG studies 
in the civil engineering domain typically recruit an average of 12 participants (Cheng et al., 2022). In 
addition, the sufficiency of the dataset for the primary modelling approach used in this study–the HMM—
was validated by the convergence of model fitting. For statistical analysis, normality assumptions were first 
tested, followed by effect size reporting, with an effect size of d=0.4 as a reference of minimal acceptable 
threshold for supporting reliable results in psychological experiments (Brysbaert, 2019). All participants 
had normal or corrected-to-normal vision and reported no history of neurological health issues, such as 
epilepsy or brain cancer. They all provided verbal informed consent prior to participation. This study was 
approved by the University of Michigan Institutional Review Board (Reference ID HUM00249262). 
  
3.2 Stimuli 
The stimuli used in the experiment were designed to simulate a variety of real-world traffic conditions and 
scenarios. As detailed in Table 1, five scenarios were developed with variations in intersection settings and 
traffic volumes. These scenarios were informed by prior research on pedestrian safety and road-crossing 
behaviors. Studies highlight that 30% of pedestrian accidents occur at non-signalized crosswalks (Fu et al., 
2019; Gerogiannis & Bode, 2024; Haleem et al., 2015; Noh et al., 2020; Olszewski et al., 2015), coupled 
with different traffic volumes (Alver & Katanalp, 2022). The classification of traffic volumes in our 
scenarios was guided by three established definitions of roadway density conditions (Homburger et al., 
1982). In addition, pedestrian road-crossing intentions have been examined in various intersection contexts 
(Kim et al., 2020; Koehler et al., 2013; Volz et al., 2016) and in the presence of right-turning vehicles 
(Kumar et al., 2019). The stimuli, illustrated in Figure 2 (as static images), were crafted using Adobe 
Animate. The GIF versions of these are available in the supplementary materials. The vehicular flow 
animations were generated using Motion Tween (Adobe, 2023). The traffic speeds were configured by 
adjusting the playhead frame on the tween span at a 24 frames per second (FPS) rate. The right-turn 
flickering signal was created using multiple keyframes with alternative light source invisibility and an 
overlay layer with reduced opacity to simulate ambient dim lighting. A blur effect with glow was created 
for the red traffic light to enhance its luminance and visibility.  
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Figure 2. Experimental Stimuli (presented as animations to participants). 
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Table 1 Descriptions of the simulated experimental scenarios 
Traffic Scenarios Description 

Minimal Traffic 
Volume 

A two-lane road without signalized crosswalks, with no cars 
approaching within sight.  

Low Traffic 
Volume 

A two-lane road without signalized crosswalks, with two cars 
approaching at a slow speed within sight. 

High Traffic 
Volume 

A two-lane road without signalized crosswalks, with two cars 
approaching in the adjacent lane and three vehicles approaching in the 
opposite lane at a moderate speed within sight. 

Surface-marked 
Intersection 

A four-way intersection with surface-marked crosswalks but without 
traffic lights. One car is waiting behind the sidewalk on the side 
opposite to the pedestrian’s intended movement, with its right-turn 
signal flashing and visible within sight. 

Signalized 
Intersection 

A four-way intersection with surface-marked crosswalks and a traffic 
light (green/red). One car is waiting behind the sidewalk in the vertical 
orthogonal direction relative to the pedestrian’s intended movement 
with its right-turn signal flashing. A red traffic light, perpendicular to 
the pedestrian’s movement, is visible at the intersection.  

 
3.3 Experimental Procedure 
One day before the experiment, participants received a reminder email detailing the appointment and 
preparatory requirements, including ensuring a good night’s sleep, abstaining from caffeinated beverages, 
and showering with a mild shampoo before the experiment. The experiment was conducted in a dimly lit 
and sound-attenuated room. First, participants completed a self-report questionnaire to collect basic 
demographic information, such as age, gender, and education level. Subsequently, the experimenter helped 
the participants wear the EEG headset. Saline-soaked felt pads were used for electrode contact. After fitting 
the headset, the experimenter carefully separated hair from each electrode to ensure adequate scalp contact 
and rehydrated the sensor felts as necessary. The contact quality (impedance) of each electrode was 
continuously monitored via the EmotivPro software (EMOTIV, 2023). Recording of EEG signals started 
only after confirming that all electrodes maintained good contact quality. 
 The procedure for each trial was described as follows: Each trial began with a 500-millisecond 
fixation cross (+) to calibrate participants’ attention to the center of the screen. Subsequently, a video clip 
simulating a road-crossing scenario was played. Participants were asked to envision themselves as the 
pedestrian standing beside the road curb. Their task was to perceive the traffic flow and determine the safest 
moment to cross the road. When they decided it was the right moment to cross, they pressed the “up” key 
on the keyboard. Participants were self-paced with no time pressure to make a decision. Each animation 
continued looping until the participant responded. The program then automatically proceeded to the next 
scenario.  

After completing all of five scenarios participants were asked to provide retrospective “thinking aloud” 
to reflect on their perceptions and decision-making process in each of the five scenarios. These verbal 
statements were recorded. 

 
3.4 EEG Signals and Event Markers Recording 
EEG signals were recorded using a 14-electrode headset (EPOC X, Emotiv), which was placed according 
to the international 10-20 system (Klem et al., 1999) at a sampling rate of 128Hz. During the recording, a 
0.16Hz first order high-pass filter was used to remove the DC offset. The 14 electrodes and their 
corresponding cortical regions are: the frontal region (AF3, F7, F3, F4, F8, AF4), responsible for executive 
functions including decision-making, problem-solving, and planning (Chayer & Freedman, 2001; Frith & 
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Dolan, 1996); the central region (FC5, FC6), implicated in integrating sensory and motor information (Liao 
et al., 2022); the parietal region (P7, P8), key to spatial awareness and processing of visual and 
somatosensory data (Bressler et al., 2008); the temporal region (T7, T8), essential for semantic processing 
and memory functions (Schrouff et al., 2020); and the occipital region (O1, O2), dedicated to visual 
processing (Shokri-Kojori et al., 2012). A picture of participants wearing the EEG headset is shown in 
Figure 3. 

 
Figure 3. Participants wearing the EEG headset in the experiment. 

 
The stimuli were presented to participants using PsychoPy (v2022.2.5) (Peirce et al., 2019). The 

program automated the experiment and ensured that each participant experienced the same sequence of 
stimuli, timing and conditions. Furthermore, Psychopy includes built-in plugins for synchronizing EEG 
recording with EmotivPro and inserting event markers at stimulus onset. It also records behavioral response, 
including timestamps for stimulus onset and key presses, thus allowing for the calculations of response 
times. 

  
4 Findings 
4.1 Behavioral Response Time 
Figure 4 presents participants’ response times across five traffic scenarios. In the “Minimal Traffic Volume” 
scenario (M = 4.02s, 95% HDI [1.91s, 7.04s]), participants exhibited longer decision times and greater 
variability compared to the “Low Traffic Volume” scenario (M = 2.62 s, 95% HDI [2.07s, 4.76s]). The 
absence of clear traffic cues on an empty road seemed to lead to more diverse decision strategies and greater 
hesitation. On the other hand, the “High Traffic Volume” scenario (M = 8.08 s, 95% HDI [3.17s, 23.53s]) 
introduced dense traffic flow and significantly increased decision difficulty to identity a safe crossing gap. 
Some participants adopted a cautious, risk-averse approach, waiting longer for an ideal opening, while 
others navigated traffic more aggressively. 
 For intersection scenarios, in the “Surface-marked Intersection”, the signalized turning vehicle 
introduced additional hesitation (M = 4.36 s, 95% HDI [1.79s, 9.73s]) compared to continuous vehicular 
flow (in “Low Traffic Volume”). This hesitation, as reported in retrospective think-aloud sessions, stemmed 
from the need to confirm whether the stopped vehicle would remain stationary behind the stop line and give 
pedestrian right-of-way. The added uncertainty increased evidence accumulation thresholds, aligning with 
predictions from the drift diffusion model (McIntosh & Sajda, 2020). In the “Signalized Intersection” 
scenario, participants took longer to respond (M = 5.27s, 95% HDI [2.23s, 14.59s], likely due to the need 
to process additional sensory cues—the traffic light. This suggests that decision-making in road-crossing 
did follow a sequential process, where participants first perceived and interpreted the environment, then 
conformed safety and prepared the motor, finally initiated movement. 
 Overall, these behavioral results indicated that participants were actively engaged in the tasks, and 
the five traffic scenarios successfully elicited a range of decision-making strategies. Simpler conditions 
encouraged fast, heuristic responses, while more complex scenarios required deliberative processing. 
Additionally, the results captured individual differences in risk tolerance, with some participants 
demonstrating aggressive, decisive behaviors, while others exhibited more conservative, risk-averse 
strategies, as reflected in their response times and variability. 
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Figure 4. Radar plots of response time for all participants across the five traffic scenarios. 

 
4.2 EEG Results 
Figure 5 shows the butterfly plots (raw EEG signal traces over time) with scalp topographies (scalp 
distribution) of the event-related brain activities. Topographies were placed at timepoints that segmented 
the sequence into four time intervals. The response time in Figure 5(a) and Figure 5(b) is 2.145s and 2.845s, 
respectively. We observed strong positive activations (increase in amplitude) over left frontal electrodes 
emerging around 0.5s preceding the reach of the response action. Prior to this, the EEG topographies show 
low or negative frontal activation, indicating that the strong left frontal activity is built up leading up to the 
response reach/motor preparedness. This helps us pinpoint the localized spatial electrode, but it remains 
unclear which frequency band (and associated cognitive functions) modulated this motor planning and 
readiness. 

Figure 6(a) shows the PSD across frequencies from 14 channels. The trend indicates a 1/f-like 
power decrease, where lower frequencies have higher power, while higher frequencies show a gradual drop 
in power. Figure 6(b) shows EEG power distribution across the scalp. Overall, we can observe stronger 
activation in the frontal regions. Based on the color scale values, theta and alpha power are notably stronger 
compared to higher frequency bands. Figure 6(c-e) further provides a time-resolved view of frequency 
power changes at electrode F4 with three spectral estimation methods. The Morlet FFT method 
demonstrates better time resolution compared with Multitaper, while Multitaper provides better frequency 
resolution. In addition, Figure 6(c) shows the power changes relative to the baseline mean, where power 
from only low frequency ranges (theta) is observed around 0.6s post-stimulus), whereas higher-frequency 
power seems to be filtered out. In contrast, Figure 6(d-e) indicate that log-transformed normalization retains 
higher-frequency components. According to Figure 6(e), where the Multitaper method provides a more 
stable power estimation, the dominant frequency bands are observed in theta and alpha during the earlier 
perception stage and high beta that remains sustained till the motor preparation and execution.   
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Figure 5. Joint plots combing butterfly plots with scalp topographies in (a) the “Low Traffic Volume” 

scenario and (b) the “Signalized Intersection” scenario. 
 
 

Figure 7 provides an overview regarding oscillatory effects across both time and space. From the 
spatial differences in scalp topographies, it is clear that theta-band dominant oscillatory activity around 
0.65s post-stimulus peak (presumably corresponding to the perception stage) is strongly frontal and left-
lateralized, with suppression over parietal-temporal regions. This pattern is highly likely associated with 
theta-band activity modulated sensory processing and attentional control during perception (Karakaş, 
2020). Later, the activation shifts to a strong high-beta band response in the frontocentral area, which is 
closely linked to motor areas that are committed to decision reach and motor readiness 2s-post stimulus 
(with reference to the 2.145s response time in this trial) (Wagner et al., 2017).   
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Figure 6. (a) Power Spectral Density across frequencies (0-65 Hz) over 14 EEG channels. (b) Interpolated 

scalp topography of power in five specific frequency bands. (c-e) Time-Frequency Representations 
(TFRs) at electrode F4 using Morlet FFT with a mean baseline correction, Morlet FFT with a log ratio 

baseline correction, and a Multitaper with a log ratio baseline correction method respectively. 
 
 

Strong low-frequency frontal activity suggests top-down control during the perception stage 
(Helfrich et al., 2017). However, it remained unclear about the network dynamics and which posterior 
region the frontal area primarily modulates for guided visual perception and processing. From the functional 
connectivity analysis, we observed that at 0.812s post-stimulus in the evoked response, there was high theta 
phase coupling on a global scale (see Figure 8(a)). To investigate individual channel-level in more detail, 
we visualized the connectivity matrix and sensor connectivity at 0s pre-stimulus (Figure 8(c) and at the 
timepoint with most global theta connectivity after stimulus presentation (Figure 9(c)(g)). A hemispheric 
shift was observed during perception, with connectivity initially emerging between the left hemisphere and 
the right posterior regions (P8, O2). Later, stronger connectivity developed between the right frontal regions 
and the left posterior areas (P7, O1). This reorganization of neural circuits aligns with previous 
neurophysiological findings on hemispheric asymmetries that the right hemisphere is more specialized for 
spatial reasoning (Sun & Walsh, 2006).  
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Figure 7. A joint plot showing the aggregated TFR across channels and topomaps at two specific times 

and frequencies. 

 
Figure 8. (a),(d) Global wPLI for theta and alpha bands. (b) 3D Field Map at 0.3s post-stimulus. (c),(e),(f) 

sensor connectivity for theta (0s pre-stimulus), alpha (0.445 post-stimulus), and high beta (0.055 post-
stimulus). 
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The initial left frontal dominant connectivity is highly likely associated with the proactive inhibitory 
control mechanism that started before stimulus onset and was released concomitantly to the stimulus 
appearance (Sulpizio et al., 2017). The hemispheric shift suggests a cross-hemispheric complementary 
frontal mechanism under perceptual uncertainty (Tsumura et al., 2021). Although this functional 
connectivity analysis does not provide direction information, previous findings from effective connectivity 
studies indicate that frontal-to-posterior connectivity is dominant when the stimulus is ambiguous, whereas 
posterior-to-frontal connectivity emerges when the stimulus information is more distinctive (Tsumura et al., 
2021). Given that the left frontal region was more activated but connectivity later shifted to a right frontal–
left posterior pattern, we speculate that proactive inhibitory control, a top-down process dominated by the 
left frontal region, played a key role in early perception. However, this was supplemented by bottom-up 
stimulus-driven sensory processing, facilitated by the right frontal region. This interpretation appears 
logical because around 0.8s post-stimulus, the vehicle first appears in view in this low-traffic scenario, 
which evidently necessitates bottom-up processing to assess the environment. 

 

 
Figure 9. (a) Durations of cognitive microstates decomposed by HMM from representation principal 

components. (b) Explained variance by the top 5 principal components from PCA. (c)-(f) Sensor 
connectivity matrices for theta (0812s post0stimulus), alpha (1.234s post-stimulus), alpha (2s post-

stimulus, high-beta (2s post-stimulus.) (g)-(j) Corresponding connectivity visualizations for the above 
matrices. 

 
 In the alpha-band connectivity from the lowest global wPLI timepoint (0.445s) (Figure 8(e) to the 
global wPLI peak (1.234s) (Figure 9(h) and to 2s post-stimulus (Figure 9(i)), we observed clear alpha 
suppression during the early perception stage that indicates active sensory processing for visual encoding 
(e.g., to detect a stimulus). Later, when more task-relevant visual cues became available, alpha-band 
connectivity increased globally for inhibitory control to actively gate irrelevant sensory input. As 
participants transitioned from perception to action, alpha modulation localized to the frontal area to mediate 
action execution (Filippi et al., 2020). 
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For high-beta modulations, comparing the lowest global high-beta wPLI at 0.055s after stimulus 
(Figure 8(f) with the connectivity patterns at timepoint 2s post stimulus (Figure 9(j)), we observe a clear 
transition in network configurations. Specifically, the motor area, reflected in the nearest channel F4, was 
completely absent from the activation network during the perception stage (as shown in Figure 8(f)). 
However, as the brain transitions into motor preparedness, strong activation emerges in F4, along with 
increased connectivity between F4 and P8. This pattern aligns with findings from mammalian studies, 
which have identified a sensorimotor cortical network where the motor cortex connects to the posterior 
parietal cortex to support goal-directed actions (Martínez-Vázquez & Gail, 2018).  

Overall, these neurophysiological signatures provide insights into how the brain flexibly reconfigures 
cognitive resources during the perception-action transitions for decision-making and motor planning.  
 
4.3 Latent Microstates Mediating Perception-Action Decomposed by HMM 
The above results reveal clear neural patterns, but to develop a computational method that quantitively 
establishes the predictive window for motor preparedness, we constructed the HMM to decompose the EEG 
sequences to four microstates. Temporal markers differentiating these microstates were used to segment 
and isolate distinct cognitive stages, and statistical analysis was performed to identify the PSD feature that 
best distinguishes stage transitions. Subsequently, we constructed a machine learning technique with a 
sliding window to predict the moment of motor readiness and investigated the lookahead time window that 
yields optimal prediction performance.  
 First, the 70-dimension EEG data were standardized by removing the mean and scaling to unit 
variance to account for sequence variance. The standardized data were then submitted to Principal 
Component Analysis (PCA) (Yu et al., 2014) to compress the feature space. The top five principal 
components and their explained variance are shown in Figure 9(b), which cumulatively preserved 
approximately 94% of the variance. Subsequently, the constructed Gaussian HMM was applied to the 
principal components on a trial basis, and model convergence was tracked. If the model converged, 
microstates were predicted based on the posterior probabilities and then sorted in order. Figure 9(a) 
demonstrates the temporal structure and four microstate transitions over time (with shaded areas showing 
the duration of each cognitive microstate). The temporal markers that differentiated the microstates were 
then used to segment each sequence into four microstates on a trial basis and labeled for all participants. 
Later, the 25th (Q1) and 75th (Q3) percentiles of each segment were calculated as the Interquartile Range 
(IQR). Data points outside the range Q1 - 1.5 × IQR and Q3 + 1.5 × IQR were classified as outliers and 
excluded from the subsequent analysis.  
 Since PSD data distributions characterized by each EEG microstate from multi-channels did not fit 
a normal distribution (p value>0.05 based on Shapiro-Wilk test), Friedman’s Analysis of variance 
(ANOVA)—a non-parametric alternative to repeated measures ANOVA—was used to analyze differences 
across the four cognitive microstates to improve statistical robustness (Friedman, 1937). Following a 
significant result in Friedman's ANOVA, Conover’s post-hoc tests were conducted to identify specific 
pairwise differences between microstates. All statistical tests were two-tailed, with the null hypothesis 
assuming no significant difference in mean values across subgroups using a 5% significance level. While 
p-values determined whether statistically significant differences existed between subgroups, t-scores 
provided information on the magnitude and the direction of differences, and Cohen’s d quantified the effect 
size, indicating the strength of the observed differences. Figure 10 highlights the feature dimensions with 
significant results, which were pronounced in frontal areas. 
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Figure 10. Post-hoc comparisons and significant results with the t-value and Cohen’s d. The bars 

represent the standard deviation. Colors differentiate the features. 
 
 Except for theta-band at the left frontal region (F7) with its established role in initial perceptual 
processing (Karakaş, 2020), we also observed alpha-band ERD at the right frontal region (F8) that 
complements attentional inhibition to selectively isolate critical environmental cues for sensory processing 
(Foxe & Snyder, 2011). These neurophysiology signatures suggest a hierarchical perpetual mechanism, 
where the brain first engages in broad perceptual surveillance of the environment and then shifts to a more 
focused assessment of critical cues to drive evidence accumulation for decision-making. 
 Transitioning to the action stage, consistent with scalp topographies from the TFR, we observed 
significantly stronger high-beta oscillations in the right-frontal region (F4). This finding aligns with right 
frontal beta-band’s established role in motor planning (Wagner et al., 2017). Additionally, this process was 
supplemented by higher-frequency (gamma) band activity that mediates high-order cognitive control for 
decision resolution and response execution preparation (Jensen et al., 2007; Polanía et al., 2012). 
 
4.4 Classification Performance for Predicting Road-Crossing Initiation 
The above results demonstrate that before the physical execution of a motor response, there is preparatory 
neural activity mediated by high-beta oscillations in the right frontocentral area (F4). Using data from this 
feature dimension, a comparative analysis was conducted to evaluate all possible combinations of sliding 
window length and stride and their impact on classifier performance. For example, with a sliding window 
of 9 data points (1.125s, give the 8Hz sampling rate) and a stride of 3 data points (0.375s), we obtained 838 
segments for training the classifier and achieved 80% accuracy. As window length and stride increased, the 
dataset size decreased. For instance, with a sliding window of 11 data points (1.375s) and a stride of 7 data 
points (0.875s), the dataset was reduced to 356 segments, but accuracy increased to 83%. 

Given the variability in dataset size, Receiver Operating Characteristic (ROC) curves were generated 
to evaluate the classifier’s discriminative ability at various levels of sensitivity and specificity. The Area 
Under the Curve (AUC) was used as the performance metric, where a higher AUC indicates a better trade-
off between True Positive Rate and False Positive Rate across different classification thresholds. The results 
showed that a sliding window of 1.125s with a stride of 0.375s yielded an AUC as high as 0.91 (see Figure 
11(a)). To assess whether this performance was due to chance, we applied the same sliding window 
configuration and future dimension in a permutation test, where segment labels were randomly shuffled 
and submitted to five-fold cross validation. The AUC dropped from 0.91 to 0.52 (see Figure 11(b)),which 
corresponds to chance level for binary classification. This confirms that the classifier’s strong performance 
was not merely the result of random chance. 
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Figure 11. (a) ROC curves and AUC for representative sliding window configurations. (b) ROC curves 

for the chosen sliding window and the chance level. 
 
5 Recommendations 
5.1 Brain Dynamics in Embodied Perception and Motor Planning 
Neuroimaging studies have provided extensive evidence on motor readiness, but no computational 
approach using machine learning techniques has been developed to predict motor readiness for real-world 
applications. This study introduces a new framework that, when applied to high temporal resolution EEG 
signals, can predict imminent motor actions preceding physical execution. This advancement opens new 
possibilities for EEG applications, extending beyond its traditional role as an ergonomic tool for stress and 
fatigue monitoring to motor planning in human-robot interactions. In this work, we evaluate the framework 
for intelligent transportation systems, demonstrating the potential for communication of motor intentions 
in VRUs’ road-crossing behaviors with AVs. This could be particularly beneficial in scenarios where VRUs 
are in AVs’ blind spots, beyond the reach of traditional onboard sensors, or in situations involving 
ambiguous behaviors such as jaywalking. Beyond transportation, this technical framework is highly 
adaptable to other motor behaviors, such as handover coordination in industrial and assistive robot 
collaboration. Therefore, we believe this work offers promise to expand the horizon of neurodevices and 
facilitate seamless human-robot interaction in diverse real-world applications. 
 In addition, this work introduces new strategies for studying brain mechanisms underlying complex 
decision-making tasks, particularly those structured as a perception-action loop. We applied HMMs to 
decompose EEG microstates and examined dynamic functional connectivity across different frequency 
components, revealing how cluster activation and neural circuits shift between perception and action. This 
study is among the first EEG-based investigations to model microstate transitions in real-life, visually 
guided perception and motor planning. In contrast, most existing EEG approaches assume stationary 
cognitive states or consider only very slow state transitions. To further account for variability in temporal 
dynamics, our classifier integrates the DTW technique that adapts to differences in interval durations across 
microstates when making predications based on multivariant EEG signals. 
 
5.2 Practical Implications in “Cognitive Internet of Road Agents” 
By empowering VRUs as active beacons of their immediate road-crossing behaviors, this approach holds 
the potential to reshape the next generation of Vehicle-to-Everything (V2X) communication, emphasizing 
a cognitive layer of processing (Chen et al., 2018). In this vision, every road agent—whether a vehicle, 
VRU, or infrastructure element—functions as a smart, interconnected node within a larger network of 
shared information (Yang et al., 2022). Here, the flow of information is not merely mechanistic but 
enhanced through signal processing, enabling an adaptive and intelligent response system. At the core of 
this network, predictive models of pedestrian behavior serve as a foundation for automated, context-aware 
interactions with AVs, for safer and efficient human-vehicle collaboration in dynamic traffic environments. 
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5.3 Methodological Strengths and Limitations 
Our framework, built upon high temporal resolution EEG signals, offers a new direction for studying 
dynamic characteristics in motor planning. By integrating neurophysiological sensing with advanced signal 
analysis techniques—including time-frequency analysis, functional connectivity, and microstate 
decomposition—this approach provides fine-grained insights into cognitive processes that traditional 
retrospective self-reported methods (such as surveys or interviews in “thinking aloud” studies) cannot 
capture at the same level of detail. Secondly, higher-order cognitive functions are embedded in time-varying 
neural activities and network dynamics, which cannot be effectively measured using other physiological 
sensors such as heart rate or galvanic skin response (GSR) (Yi et al., 2023). More importantly, neural 
modulations can serve as predictive markers—supporting proactive expectation mechanisms in perception 
and mediating action execution.  

This is the first “anticipatory” study that brings the notion of lead time into perspective. This provides 
a key advantage over previous reactive sensing methods, as in high-speed environments—for instance, for 
a car travelling at 25-45 mph—even a one-second anticipation time can provide significantly increased 
braking time and distance, thereby lowering the risk and impact of collisions. Before autonomous vehicles 
becomes predominant, the proposed system also brings practical significance in the human-supervisory 
stage by reminding human drivers to stay focused in preparation for emergency takeovers in such alerted 
pedestrian crossing situations. These advancements are made possible by the proposed improvements in 
computational neuroscience. Our approach leverages probabilistic reasoning based on statistical 
dependencies to segment cognitive microstates and effectively accounting for temporal variability (phase 
lags across trials) in non-structured (self-paced) decision-making tasks. This moves beyond traditional 
structured design of psychology experiments and the reliance on expert-defined epoching for dataset 
preparation when employing machine learning techniques.  
 This study provides a proof-of-concept for a computational neuroscience approach to predicting 
motor preparedness. However, the findings are derived from a modest sample size (12 participants with 
balanced gender). The current results need to be generalized with a larger appropriate sample size in 
subsequent studies and validated in a controlled real-world testing field, such as the Mcity Testing Facility 
(Mcity). The dataset in this study was designed with variability introduced by environmental cues and 
interactions in five traffic scenarios and different participant behaviors (as reflected in behavioral response 
time). This range aimed to prevent overfitting of the machine learning classifier in homogenous trials 
settings and to improve the model’s generatability to real-world applications. However, it would not be 
surprising if inter-individual variability existed. For instance, some participants may exhibit more 
conservative behaviors, while others may be more aggressive.  

In addition, the differences in decision-making strategies across different traffic scenarios were 
expected, with simpler situations eliciting intuitive/heuristic decision-making, while hesitation or caution 
are demonstrated in more complex environments, or even introducing rolling gap behaviors in multi-lane 
settings (Zafri et al., 2022). Urgency can affect individuals’ decision thresholds, emotional arousal and 
sensorimotor processing (Steinemann et al., 2018). Despite these heterogeneities, we assume that the 
cognitive microstate transitions are repeatable in all situations and across individuals, and we account for 
the temporal distortions in microstate time course when constructing the classifier. However, the potential 
demographic differences in pedestrian behaviors and the interaction patterns with traffic infrastructure and 
AVs in different speed, vehicular density, and external Human-Machine Interfaces lead to our future studies 
that would be directed toward understanding the differences in neural dynamics and cognitive processes, 
and thus design targeted traffic policies and safety intervention programs for safer, and more efficient traffic 
systems in the AV coexistence era. 

  
6 Impacts 
This project explored the predictive capabilities of EEG signals for predicting pedestrian road-crossing 
initiation, situated within the broader context of V2X communications, specifically Vehicle-to-Pedestrian 
(V2P) dynamics. The researched approach addresses the gaps in vision-based methods, such as dynamic 
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modeling of positional data and skeletal analysis, particularly when pedestrians are occluded and motionless 
but may initiate abrupt actions unpredictably. First, the HMM provided a detailed quantitative analysis of 
the temporal progression in cognitive microstates. Further statistical analysis aligned with the findings from 
neural activation and brain connectivity about brain dynamics and pinpointed frontal theta and alpha 
oscillations modulating early perceptions, while high-beta in the frontocentral area modulating later motor 
action preparation and execution. Finally, the constructed KNN classifier, augmented with the DTW 
distance metric and optimized sliding window configurations, provided an AUC of 0.91 based on 
frontocentral cortex activities, with an approximate 1-second anticipatory lead window, for predicting 
pedestrian road-crossing initiation.  

The developed method empowers pedestrians as active beacons for automatically broadcasting 
their road-crossing initiation, marking a significant stride towards the realization of a fully connected and 
cognitive ecosystem of road agents. The technical framework is also adaptable to a wide range of human-
vehicle interaction scenarios that involve motor planning and readiness. For example, it can be applied to 
bicycle-vehicle interactions, where a CAV must anticipate and coordinate with bicyclist intent and 
movement to ensure a smooth and timely resolution of interactions. Similarly, it can enhance assistive 
robotic systems in traffic, such as smart mobility wheelchairs, by enabling them to predict human 
intentions and adjust speed and trajectory accordingly for seamless coexistence in traffic. 
 
7 Research Products 
The work on this project has produced the following products: 

U.S. Serial No. 63/810,537, “Method to Use EEG Signals to Determine VRU Intent in V2X Traffic 
Architectures,” [Patent Application] filed with the U.S. Patent and Trademark Office and assigned to 
UM, May 2025. 

Zhou, X., Menassa, C., and Kamat, V. (2025). A Wearable EEG Dataset for Road Crossing Decision-
Making [supporting dataset]. https://doi.org/10.7302/1a78-9t04  
 
Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Siamese network with dual attention for EEG-Driven 
social Learning: Bridging the Human-Robot gap in Long-Tail autonomous driving. Expert Systems with 
Applications, 128470. https://doi.org/10.1016/j.eswa.2025.128470  
 
Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Hands-Free Crowdsensing of Accessibility Barriers in 
Sidewalk Infrastructure: A Brain–Computer Interface Approach. Journal of Infrastructure Systems, 31(2), 
04025008. https://doi.org/10.1061/JITSE4.ISENG-2620  
 
Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Towards Probabilistic Inference of Human Motor 
Intentions by Assistive Mobile Robots Controlled via a Brain-Computer Interface. arXiv preprint 
arXiv:2501.05610. https://arxiv.org/abs/2501.05610  
 
Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Biologically Inspired Predictive Coding TCN-
Transformer for Anticipatory Human-Robot Interaction in Shared Physical Spaces. arXiv preprint 
arXiv:2405.13955. https://arxiv.org/abs/2404.03498  
 
 
  

https://doi.org/10.7302/1a78-9t04
https://doi.org/10.1016/j.eswa.2025.128470
https://doi.org/10.1061/JITSE4.ISENG-2620
https://arxiv.org/abs/2501.05610
https://arxiv.org/abs/2404.03498
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COVERT: Cognitive Internet of Vulnerable Road Users in Traffic 
 

Outputs: 
• U.S. Serial No. 63/810,537, “Method to Use EEG Signals to Determine VRU Intent in V2X 

Traffic Architectures,” [Patent Application] filed with the U.S. Patent and Trademark Office and 
assigned to UM, May 2025. 

• Zhou, X., Menassa, C., and Kamat, V. (2025). A Wearable EEG Dataset for Road Crossing 
Decision-Making [Supporting Dataset]. https://doi.org/10.7302/1a78-9t04  

• Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Siamese network with dual attention for EEG-
Driven social Learning: Bridging the Human-Robot gap in Long-Tail autonomous driving. Expert 
Systems with Applications, 128470. https://doi.org/10.1016/j.eswa.2025.128470  

• Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Hands-Free Crowdsensing of Accessibility 
Barriers in Sidewalk Infrastructure: A Brain–Computer Interface Approach. Journal of 
Infrastructure Systems, 31(2), 04025008. https://doi.org/10.1061/JITSE4.ISENG-2620  

• Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Towards Probabilistic Inference of Human 
Motor Intentions by Assistive Mobile Robots Controlled via a Brain-Computer Interface. arXiv 
preprint arXiv:2501.05610. https://arxiv.org/abs/2501.05610  

• Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Biologically Inspired Predictive Coding TCN-
Transformer for Anticipatory Human-Robot Interaction in Shared Physical Spaces. arXiv preprint 
arXiv:2405.13955. https://arxiv.org/abs/2404.03498 
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Outcomes 
The results of our technical experiments showed that theta oscillatory power in the frontal lobe achieved an 
Area Under the Curve of 0.91 in predicting a pedestrian’s intended road crossing, with approximately a 1-
second lead window before any physical movement occurred. These promising results signify a 
transformative shift towards pedestrians proactively and automatically signaling their intended behavior 
and trajectories, rather than being passively and reactively sensed by external sensors, enabling forward-
thinking and adaptive vehicle-to-everything (V2X) architectures for enhanced safety and mobility. 

Brain Dynamics in Embodied Perception and Motor Planning: Neuroimaging studies have provided 
extensive evidence on motor readiness, but no computational approach using machine learning techniques 
had been developed to predict motor readiness for real-world applications. This project introduced a new 
framework that, when applied to high temporal resolution EEG signals, can predict imminent motor actions 
preceding physical execution. This advancement opens new possibilities for EEG applications, extending 
beyond its traditional role as an ergonomic tool for stress and fatigue monitoring to motor planning in 
human-CAV interactions. We evaluated the framework for ITS, demonstrating the promise of anticipatory 
communication of motor intentions in VRUs’ road-crossing behaviors with CAVs. 

Practical Implications in “Cognitive Internet of Road Agents”: By empowering VRUs as active beacons of 
their immediate road-crossing behaviors, this approach holds the potential to reshape the next generation 
of Vehicle-to-Everything (V2X) communication, emphasizing a cognitive layer of processing. In this, every 
road agent—whether a vehicle, VRU, or infrastructure element—functions as a smart, interconnected node 
within a larger network of shared information. Here, the flow of information is not merely mechanistic but 
enhanced through signal processing, enabling an adaptive and intelligent response system. At the core of 
this network, predictive models of pedestrian behavior serve as a foundation for automated, context-aware 
interactions with AVs, facilitating safer and more efficient human-vehicle collaboration in dynamic traffic 
environments. 

The following patent application was filed during this performance period 

U.S. Serial No. 63/810,537, “Method to Use EEG Signals to Determine VRU Intent in V2X Traffic 
Architectures,” Patent application filed with the U.S. Patent and Trademark Office and assigned to UM, 
May 2025. 

The primary innovation described and claimed is a computing system for analyzing electrophysiological 
signals obtained from a vulnerable road user to predict a road usage intent prior to physical motion includes: 
a processor and a memory having stored thereon computer-executable instructions that, when executed, 
cause the computing system to (1) receive electroencephalogram signals from a vulnerable road user; (2) 
preprocess the received signals to extract temporal and spectral features indicative of cognitive state 
transitions; (3) apply a Hidden Markov Model to identify cognitive state transitions associated with road 
usage decisions; and (4) generate a prediction of road usage behavior based on the identified cognitive state 
transitions. 

In summary, this project developed the predictive capabilities of EEG signals for predicting pedestrian 
road-crossing initiation, situated within the broader context of V2X communications, specifically Vehicle-
to-Pedestrian (V2P) dynamics.  
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COVERT: Cognitive Internet of Vulnerable Road Users in Traffic 
Impacts 

This project has developed  and tested the feasibility of new methods that allow VRUs' road usage intentions 
to be interpreted in real-time using wearable biosensing and advanced machine learning algorithms. This 
approach leverages humans ‘inherent cognitive capacities as sensors and has the potential to be more 
reliable and widely deployable compared to existing methods that rely on cooperative sensing of CAVs in 
forecasting VRUs' future motion trajectories. Integration of the developed methods into V2X architectures 
promises to improve road safety, enhance traffic flow, and increase societal trust and acceptance of CAVs. 

The developed method and computational framework, built upon high temporal resolution EEG signals, 
offers a new direction for studying dynamic characteristics in motor planning. By integrating 
neurophysiological sensing with advanced signal analysis techniques—including time-frequency analysis, 
functional connectivity, and microstate decomposition—this approach provides fine-grained insights into 
cognitive processes that traditional retrospective self-reported methods cannot capture at the same level of 
detail. Secondly, higher-order cognitive functions are embedded in time-varying neural activities and 
network dynamics, which cannot be effectively measured using other physiological sensors such as heart 
rate or galvanic skin response (GSR). More importantly, neural modulations can serve as predictive 
markers—supporting proactive expectation mechanisms in perception and mediating action execution. 

This project was the first “anticipatory” study that brings the notion of lead time and VRU motion intent 
prediction into perspective. This provides a key advantage over previous reactive sensing methods, as in 
high-speed environments—for instance, for a car travelling at 25-45 mph—even a one-second anticipation 
time can provide significantly increased braking time and distance, thereby lowering the risk and impact of 
collisions. The project team took decisive steps to bring the developed research outcomes into 
commercialization practice. This has been done through patent filing developing a research partnership 
with HATCI. This will allow future research to develop a POC for demonstration of practicality. 

 

The work on this project has produced the following products: 

• U.S. Serial No. 63/810,537, “Method to Use EEG Signals to Determine VRU Intent in V2X Traffic 
Architectures,” [Patent Application] filed with the U.S. Patent and Trademark Office and assigned to 
UM, May 2025. 

• Zhou, X., Menassa, C., and Kamat, V. (2025). A Wearable EEG Dataset for Road Crossing Decision-
Making [Supporting Dataset]. https://doi.org/10.7302/1a78-9t04  

• Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Siamese network with dual attention for EEG-
Driven social Learning: Bridging the Human-Robot gap in Long-Tail autonomous driving. Expert 
Systems with Applications, 128470. https://doi.org/10.1016/j.eswa.2025.128470  

• Zhou, X., Menassa, C. C., & Kamat, V. R. (2025). Hands-Free Crowdsensing of Accessibility 
Barriers in Sidewalk Infrastructure: A Brain–Computer Interface Approach. Journal of Infrastructure 
Systems, 31(2), 04025008. https://doi.org/10.1061/JITSE4.ISENG-2620  

• Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Towards Probabilistic Inference of Human Motor 
Intentions by Assistive Mobile Robots Controlled via a Brain-Computer Interface. arXiv preprint 
arXiv:2501.05610. https://arxiv.org/abs/2501.05610  

• Zhou, X., Menassa, C. M., & Kamat, V. R. (2025). Biologically Inspired Predictive Coding TCN-
Transformer for Anticipatory Human-Robot Interaction in Shared Physical Spaces. arXiv preprint 
arXiv:2405.13955. https://arxiv.org/abs/2404.03498 
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