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ABSTRACT

Notional vehicles are useful in evaluation and rating of existing bridges as well as in design of new
bridges. According to current trends, the number of overloaded trucks continues to increase. Alabama
Department of Transportation (ALDOT) needs an effective and rational approach to include permit
vehicles in the analysis. Therefore, the objective of this research was to develop a notional vehicle
or group of notional vehicles for rating of complex bridges in Alabama representing permit loads.
This project utilized ALDOT permit data collected between 2013 and 2024. Load effect simulations
were performed using detailed 3D analysis. The finite element (FE) models for truss and arch bridges
were developed in MIDAS Civil software. Dead load from the models was compared and validated
based on the designers’ hand calculations specified in the original technical drawings. The discrepancy
between these two datasets was approximately 10%, which can be attributed to the exclusion of steel
connection weight in the finite element models. This variance was considered acceptable for the
purpose of this research. Then, live load calculations were performed by running almost 300,000
overloaded permits and permit candidates through every complex bridge FE model resulting in total
number of 606,463,020 load points. Superload permits were excluded from this analysis. Midas Civil
NX (2025) enabled powerful automation by utilizing dedicated Python libraries. Statistical parameters
were computed for every notional vehicle candidate based on over 21 billion permit-to-candidate ratios
for every considered truss bridge element which formed the basis for the selection criteria. Presented
approach aims to reduce the number of vehicles required for complex bridge rating by introducing
representative notional truck and helps with permits issuance process. Overloaded vehicles that
produce a load effect lower than the developed notional vehicle, can apply for a permit without
performing complex numerical analysis. The research was specifically focused on truss bridges,

resulting in the development of notional permit vehicle tailored to this structural type.
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Chapter 1

INTRODUCTION

Vehicle traffic is continuously increasing, and the proportion of heavy vehicles to regular traffic is
becoming more prevalent. Both the Weigh-in-Motion data and the number of permits issued are
steadily increasing. While keeping such growth, an efficient method is needed for issued permits

to ensure adequate safety and carrying capacity on bridges in Alabama.

The American Association of State Highway and Transportation Officials (A ASHTO LRFD 2020)
specifies notional vehicles for bridge design. However, they do not take into account the site-
specific traffic for individual regions and states. There is a considerable variation in overload permit
vehicles in different states. Most states have their own notional vehicles and use them to evaluate
the carrying capacity of bridges for permit loads. Currently, Alabama does not have a notional

vehicle to represent permit traffic.

Routine ratings of bridges should be typically conducted every 2 to 4 years except for special cases
that require evaluation every year. This procedure is intended to provide adequate safety for users
of the bridge and also help to identify problems at an early stage. This can greatly reduce
maintenance costs and extend the service life of the bridge. The load evaluation process
considering both design and permit vehicles is in accordance with AASHTO, particularly Manual
for Bridge Evaluation (AASHTO MBE 2018). The procedure considers geometry of the bridge, type
of materials and, importantly, the predicted traffic patterns. However, the analysis for simple bridges
with the main structure consisting of linear girders is not complicated and can be conducted using
the available software such as AASHTOWare. Bridge rating can be calculated for various vehicles
in traffic flow with minimal computational effort and reduced calculation time. Additionally, more
advanced software is available on the market which allows to determine bridge rating for complex
structures, but consideration of a larger number of permit vehicles on many bridges is not

an effective approach.

The primary objective of this project is to develop notional permit vehicles that accurately represent
the load effects caused by the actual permit vehicles operating in Alabama, specifically for truss
and arch bridges. The developed notional models can be used to improve the efficiency of
evaluating complex bridge structures under permit traffic conditions. The expected result is
a notional permit vehicle, which will support more consistent and effective bridge rating practices

in Alabama.
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Chapter 2

LITERATURE REVIEW

2.1 PERMIT TRAFFIC

Highway traffic can be considered as a combination of legal vehicles (satisfying FHWA Bridge
Formula), grandfathered vehicles, permit vehicles and illegally overloaded vehicles. This study is
focused on the development of notional vehicles for rating for permit traffic. The available permit
data includes records from 2013 to 2024. The ALDOT Maintenance Offices issues 500-600 permits
per day.

Legal Vehicle / Overloadeof Vehicle
Grandfather
Federal Truck Size .
. .. ILL L Vehicl
and Weight Limits egal Vehicles
Permit

\_ \ /

Figure 2-1. Traffic Structure.

2.2 AASHTO BRIDGE RATING

The AASHTO Manual for Bridge Evaluation outlines detailed procedures and standards for
assessing bridge capacity to withstand traffic loads. Bridge rating allows to determine the maximum

load a bridge can safely carry.

Bridge inspections and evaluations are regularly conducted every two to four years, depending on
age, condition, structural type, ADTT and so on. The LRFR methodology consists of three distinct
evaluations: (1) design, (2) legal, and (3) permit load rating. Inventory rating assesses the bridge
capacity under standard design loads, while in operating rating a reduced live load factor is
specified. Legal loads refer to vehicles that comply with federal truck size and weight regulations.
The AASHTO MBE provides a set of standard legal vehicles, such as Type 3, 3S3, and 3-3 trucks,
as well as specialized hauling vehicles (SU4-SU7). Permit loads are caused by overweight vehicles
that have permission to operate on designated routes and bridges. Since AASHTO MBE does not
define any standard notional permit vehicle, each state may develop its own truck model based on

local traffic characteristics.
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Evaluation of an existing bridge according to AASHTO MBE involves calculation of a rating factor
(RF) using the following equation:

_ C — (pc)(DC) — (ypw)(DW) + (vp)(P)

RE @)L + 1M
where:
C - live load carrying capacity
Ypc)(DC) - factored dead load effect due to structural components
and attachments
pw)(DW) - factored dead load effect due to wearing surface and utilities
(rp)(P) - factored permanent loads other than dead load effect
(Y )L + IM) - factored live load effect with dynamic impact

A bridge is capable to carry live load if RF = 1, otherwise the bridge is not adequate and has to be
posted or strengthened. Evaluating bridge performance under overweight trucks can require the
use of specialized software or analytical techniques.

Table 6A.4.5.4.2a-1—Permit Load Factors: y,

Load Factor by
Permit Weight Ratio”
2.0<
GVW/ GVW /AL
ADTT (one GVW /AL AL <3.0 >3.0
Pemnﬂ Type Frequency Loading Condition DF? direction) | < 2.0 (kip/ft) (kip/ft) (kip/ft)
Routine or Unlimited Mix with traffic Two or more >5.000 1.4 1.35 1.30
Annual Crossings (other vehicles may lanes =1.000 1.35 125 1.20
be on the bridge) <100 130 1.20 115
Unlimited Mix with traffic One lane All ADTTs 140
Crossings (other vehicles may
(Reinforced be on the bridge)
Concrete Box
Culverts)®
All Weights
Special or Single-Trip Escorted with no One lane N/A 1.10
Limited other vehicles on
Crossing the bridge
Single-Trip Mix with traffic One lane All ADTTs 1.20
(other vehicles may
be on the bridge)
Multiple Trips | Mix with traffic One lane All ADTTs 1.40
(less than 100 (other vehicles may
crossings) be on the bridge)

Notes:
@ DF=LRFD-distribution factor. When one-lane distribution factor is used, the built-in multiple presence factor should be divided
out

Permit Weight Ratio = GVW/AL:. GVW = Gross Vehicle Weight: AL = Front axle to rear axle length: Use only axles on the
bridge.

¢ Referto Article 6A.5.12.
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Figure 2-2. Live Load Factors for Permit Vehicles According to AASHTO MBE.

AASHTO MBE does not define a specific notional permit truck but provides a table of live load
factors applicable to various permit types. These factors, shown in Figure 2-2, range from 1.10 to
1.40 depending on the permit category and the ratio of permit load to legal load. It is important to
recognize that live load factors serve as safety margins in the Load and Resistance Factor Rating

(LRFR). The live load factor is determined in the reliability-based calibration to assure the minimum
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reliability index B, equal to 2.50 for the existing structures. Reliability index, B is 3.5 for newly

designed structures.
2.3 ALDOT BRIDGE RATING

Bridge rating procedures in Alabama follow the standards and recommendations outlined in the
AASHTO Manual for Bridge Evaluation (MBE). These procedures involve an assessment of bridge
structural capacity and safety under live load.

The ALDOT Manual for Bridge Evaluation (ALDOT) specifies a set of vehicles to be used in routine
bridge rating analyses. The Alabama rating vehicle set includes standard AASHTO trucks such as
HS-20, HL-93, and 3S2, along with state-specific modified truck configurations. Figure 2-3
illustrates the vehicles utilized in bridge evaluation processes.
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Figure 2-3. ALDOT posting vehicles (ALDOT).

There are currently no standardized permit vehicles designated for bridge evaluation purposes in

Alabama. Therefore, it is necessary to develop representative notional vehicle or set of vehicles
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depending either on bridge type or length, that reflect the characteristics of permit traffic within the
state. This process requires an extensive numerical analysis, including a detailed traffic data
evaluation. Once developed, these notional permit vehicles can be effectively applied in bridge
rating procedures involving permit loads.

The proposed methodology is designed to generate one or more representative vehicle
configurations that streamline the rating process. By reducing the number of individual permit trucks
considered in calculations, this approach supports more efficient and cost-effective evaluation of

bridge capacity under permit load conditions.
24 NOTIONAL PERMIT TRUCKS

Due to the varying parameters of trucks and the specifics of each region, state DOTs
developed their individual vehicles (Lou et al. 2018). As early as 1994 there was information about
an overloaded vehicle evaluation for the state of Tennessee (Chou et al. 1999). Currently, many
states have an individual solution for permit models. Especially in the eastern states of the country
such as New York (Lou et al. 2018; New York State Department of Transportation 2021), New
Jersey (New Jersey Department of Transportation 2016), Pennsylvania (Laman and Shah 2016),
Connecticut (Connecticut Department of Transportation 2003), Virginia (Walus 2020), Ohio (Ghosh
et al. 2011) and Florida (FHWA 2022). The remaining states on the west coast include Washington
(FHWA 2022), Oregon and California (Lou et al. 2018). It demonstrates that the notional vehicles
are widely used throughout the United States. The numerous states adopt similar methodologies
for notional vehicle applications, particularly in assessing existing bridge structures which facilitates
the integration of hundreds of permit vehicles within a unified computational model. In addition,
California Department of Transportation also utilizes developed vehicles to assess fatigue and
dynamic loading conditions (Caltrans 2020). Detailed reliability-based procedure for development
of notional permit truck for Florida using simple and two equal span continuous bridges was
described by Stawska (2021). Examples of notional vehicles used in various states are shown in

Figure 2-4.
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Figure 2-4. Examples of notional vehicles in different states (Lou et al. 2018).

Most of these notional vehicles were developed for simple girder bridges rather than complex
bridges. Wyoming notional truck was derived on the basis of single-span and two-spans with
different lengths ranging from 30 to 200 ft (Baker and Puckett 2016). The vehicle for Wisconsin
DOT was analysed for simply supported, 2-span, and 3-span continuous girders Tabatabai and
Zhao 2012). In all mentioned studies, the analysis was limited to 2D beam elements. It is widely
recognized that existing bridges, particularly those featuring complex designs, cannot be accurately
represented by a single beam model. Correia et al. (2006) highlighted this limitation and proposed
the use of an additional precast-arch model. Furthermore, research considering the transverse
direction has been conducted by Ghosn et al. (2011), utilizing variable spacing between 4 and 12
feet in the transverse direction alongside variable lengths longitudinally. While the literature outlines
evaluation approaches implemented in other states, there is a lack of three-dimensional analysis
of complex structures. Consequently, there is a need to develop a notional vehicle for analyzing

complex bridges in Alabama using 3D modelling which do not currently exist.
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25 RELIABILITY BASED-METHODS

The acceptability criterion for load and resistance factors in both AASHTO Specifications and the
MBE is determined by their alignment with the target reliability index. Load and resistance factors
are established through a reliability-based calibration procedure (Nowak 1999). The target reliability
index for newly designed steel and concrete elements is set at 3.5, whereas for existing bridge
components, it is set at 2.5.

The calibration procedure developed for determining the live load rating factor is outlined as follows.
It begins with the selection of representative complex bridge types, such as trusses and arches.
Limit state functions are then formulated, and relevant load and resistance parameters are
identified. Appropriate statistical models are assumed for both load and resistance, where permit
load is used to represent the live load. Reliability indices for selected bridge components are
subsequently calculated using either Cornell’'s formula or Monte Carlo simulations (Nowak and
Collins 2012). The target reliability index for permit vehicles is set at 3= 2.5. Based on this criterion,
the corresponding live load factor is derived for candidate of the notional permit vehicle. This
approach aligns with the calibration methodologies established in the AASHTO MBE.
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Chapter 3

PERMIT DATA

3.1 PERMIT STRUCTURE IN ALABAMA

In the state of Alabama, as in other states, the entity responsible for issuing permits for oversized
and overweight vehicles is the Department of Transportation. The Alabama Department of
Transportation (ALDOT) has established a set of laws and regulations governing the operation of
such vehicles. Permits in Alabama are issued through ALPASS, the state’s automated online
system for managing oversize and overweight (OS/OW) vehicle permits. Any vehicle that does not
comply with standard traffic regulations must obtain a travel permit. Table 3-1 presents the types
of permits currently in effect, along with their descriptions. The numerical codes shown in the table,
which correspond to ALDOT's official nomenclature, have been adopted throughout this report and
are used in place of the full permit type names for consistency and clarity.

Table 3.1. ALDOT permit types.

Permit Type Number | Description

A1-Equipment OS 110 Oversized equipment permits

A1-House 111 Oversize stick-built house

A2-Equipment OW 112 Overweight equipment permit

A2-Sealed Container 113 Overweight shipping container

A3-Equipment OS/OW 114 Oversized and Overweight equipment permit

B1-Mobile Homes 120 Oversized mobile homes

(H;l;rm/leos?;fe:ts 130 Oversized boast or portable buildings

A-Annual 210 Annual permit for equipment

B-Annual 220 Annual permit for mobile home

C-Annual 230 An.mfal permit for modular homes boat or portable
building

D-Annual 240 Annual permit for sealed ocean-going container

E-Annual 260 Annual permit for construction project equipment

F-Annual 300 Annual permit for emergency tow

A-Routing Authorization 310 eR(;)l:Jigr:r?eil:thorization for oversized and overweight

B-Routing Authorization 320 Routing authorization for mobile homes
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In Alabama, as in other states, the authority responsible for issuing permits for oversized and
overweight vehicles is the Department of Transportation. The Alabama DOT has established a set
of laws and regulations governing the operation of such vehicles. Permits are issued through
ALPASS, the state's automated online system for managing oversize and overweight (OS/OW)
vehicle permits. Any vehicle that does not conform to standard traffic requirements must apply for
an appropriate travel permit. Table 3-1 details the current permit types and associated descriptions.
For clarity and consistency throughout this report, the numerical codes from ALDOT’s official

nomenclature are used in place of full permit names.

3.2 PERMIT DATA AND QUALITY CONTROL

Permit data covering the years 2013 to 2104 was provided by ALDOT. This dataset contains
information such as permit type, trip origins and destinations, approved travel routes, axle spacing
and weights, as well as the gross vehicle weight (GVW) of permitted vehicles. The responsibility
for applying for permits and entering related data into Alabama's consent sheet lies with the
company or driver handling the transport of overloaded trucks. The database serves as an official
record of registered vehicles. In most instances, entries are correctly reported and do not require
additional filtering. However, some records within the dataset are incomplete or lack certain fields
in the table which are necessary for load computations. To ensure the integrity of subsequent
calculations, basic filters are applied to exclude incomplete or questionable records. This step is
particularly important in the initial phase of the research since incorrect elimination of data may
result in significant underestimation or overestimation of traffic-induced load effects on bridges
(Luszczynska et al. 2025). The comprehensive data assessment procedure is illustrated in Figure
3-1.

An important criterion incorporated into the filtering process was the minimum axle spacing. Due to
the units used in the permit form, it is likely that some drivers entered incorrect values. A threshold
of 3 feet was established as the minimum allowable distance between axles, and vehicles not
meeting this criterion were excluded from the dataset. This filter is crucial for calculations, as
unrealistically short axle spacing would result in an excessive concentration of loads within tandem
configurations, which is technically infeasible. An additional filter was applied to remove duplicate
records. This step eliminated identical vehicles whose load effects would be the same, thereby

significantly reducing the computational time required for processing such a large volume of data.
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Permit Data

Technical verification ‘

The number of declared The sum of loads from all The declared number of axles
axes is equal to the axes is equal to the total spacing is equal to n-1, where
declared loads per axis load n is the number of axles

Quality control @

Elimination of records with Elimination of records with Elimination of records with
zero spacing between zero loads between existing axle spacing less than 3 ft
existing axles axles between existing axles

Elimination of Superload permit

Elimination of records Elimination of records Elimination of records Elimination of records
with length > 150 ft with height > 16 ft with width > 16 ft with GVW > 300 kip

Filtered permit
database

Process-optimizing filter

Elimination of

repeated records

Figure 3-1 Flowchart of data selection for permit load analysis.

An important criterion in the filtering process was setting a minimum axle spacing. Given the units
specified on the permit application, it is likely that some values were entered incorrectly. To address
this, a threshold of 3 feet was set as the minimum acceptable distance between axles. Any vehicles
failing to meet this requirement were excluded from the dataset. This threshold is essential for
accurate calculations, as unrealistically short axle spacing would result in excessive concentration
of loads within tandem configurations which is technically unfeasible. Furthermore, a duplicate

records filter was applied, removing identical vehicle entries whose load effects would be identical.
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This step considerably reduced the computational efforts required for processing the massive

volume of data.

3.3  QUANTITATIVE OVERVIEW OF PERMIT DATA

Dataset shared by Alabama Department of Transportation in Excel format encompasses the years
2013 through 2024. Filtering was performed according to the specifications described in Figure 3-
1. The most commonly issued permit types in Alabama were identified and are presented in Figure
3-2. In addition, the number of permits issued on annually basis was studied. Permit statistics for
2013 to 2024 are shown in Figure 3-3. Between 2015 and 2019, a steady increase in the number
of issued permits was observed. In 2020, there was a significant decline, which can likely be
attributed to the COVID-19 pandemic. Following 2020, the upward trend resumed, reaching levels
previously observed between 2015 and 2017. Except for year 2022, annual growth has exceeded
5% since 2020. In 2024, the growth rate reached 7.4%, and data from the first quarter of 2025
suggest that this trend will persist. Furthermore, the number of issued permits has increased by

roughly 22% since 2020 and nearly 40% compared to statistics from 2015.

Other
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Figure 3-2. Distribution of permit types as a percentage of total permits issued in 2024.
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Figure 3-3. Number of permits issued in the years 2013-2024 and number of overweight

permits.

The ongoing project focuses on overweight vehicles with permit types 112, 113, 114, and 310.
These records contain full load data on truck configuration, such as axle weights and spacings,
allowing for thorough analysis. Figure 3-4 illustrates the distribution of the primary permit types
considered in this research. For each group, the number of issued permits is presented within the
last decade. Notably, there is a steady increase in the A-3 Equipment OS/OW category, except for

a temporary decline in 2021.
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Figure 3-4. Number of annually issued permits by year (2013-2024).
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Permit issuance in this category has resumed its growth, aligning once again with trends seen
before 2020. Across all four permit types examined, significant increases were noted throughout
the study period: type 112 grew by 62%, type 113 by 70%, type 114 by 34%, and type 310 by 28%.
Figure 3-5 illustrates the percentage breakdown for each permit type. The data indicates that the
proportion of overweight vehicles has remained relatively stable over the years, except for 2022,

when a noticeable deviation can be observed.
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Figure 3-5. Percentage distribution of the analyzed types in the total number of issued

permits.
3.4 SUPERLOAD PERMITS

In Alabama, permits for over-dimensional vehicles and excessive load combinations are issued.
Trucks exceeding one or more thresholds established by Alabama DOT (Table 3-2), related to
gross vehicle weight and certain dimensional limits, are classified as “Superload”. Due to their
unique axle configurations and impact on infrastructure, a refined analysis is required prior to
approval in order to determine whether such permits can be granted. Therefore, after discussion
with ALDOT, it was decided that vehicles falling under the Superload category are excluded from
the notional vehicle development process. These cases represent exceptional occurrences and
would distort the results derived from the permits dataset, which is intended to reflect typical vehicle

configurations and loading conditions within the state.

24



Table 3.2. Thresholds for Superload permits in Alabama.

Width 16 feet

Height 16 feet

Length 150 feet

Weight 300,000 Ibs. gross weight

3.5 STABILITY OF DATA

Process of developing the notional permit vehicle for rating is based on data from previous years.
It is necessary to predict the future traffic trends in comparison to existing records. Over the past
five years, the number of permits has increased dynamically. During development of candidate for
notional permit vehicle, data from 2020 to 2024 was used. Furthermore, the data was divided by
individual years and types. The variability of live load effect by year and permit type was very low.
Only a few individual cases at the upper and lower tails of distribution revealed minor differences.
However, no specific patterns can be identified. Detailed distributions of axial forces, shear forces,

and bending moments are presented in Appendix B.

The stability of the data suggests that the rise in permit numbers seen in Figure 3-3 does not impact
how live load effects are distributed on bridges. It's important to note that this trend excludes
superload vehicles, as they are not part of the research project or this assumption. Additionally, it's
reasonable to believe that truck axle configurations and weight limits for single, tandem, and tridem

axles will likely remain unchanged in the near future.

It is assumed that traffic trends remain consistent, supporting the continued use of the developed
notional permit vehicles for rating purposes over the long term. However, if legal load limits, the
definition of Superload vehicles, or other influential factors change and were not accounted for in

this project, updating the notional permit vehicles or confirming their accuracy will be required.
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Chapter 4

COMPLEX BRIDGES IN ALABAMA

4.1 BRIDGE STATISTICS

The National Bridge Inventory (NBI) serves as a critical source of information on bridges across
the United States. This extensive database captures key details related to bridge design, structural
condition, and operational characteristics. It includes data on dimensions, structural components,
traffic volumes, maintenance history, inspection outcomes, and performance ratings. For the
purpose of this study, the 2022 NBI dataset was utilized to assess Alabama’s bridge infrastructure.
The NBI database reports that Alabama has a total of 9,738 bndges and 6,443 culverts.
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Figure 4-1 Bridges in Alabama.
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Figure 4-2 illustrates the predominant structural categories of bridges. Beam girder bridges account
for approximately 50% of all structures, followed by channel bridges at 23%, and T-beam bridges

at 20%. Additionally, an assessment of construction materials was conducted, and Figure 4-3

displays the distribution of bridges based on selected material types.
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Figure 4-2. Distribution of bridge structural type in Alabama.
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Figure 4-3. Distribution of main span material type in Alabama.
4.2 CoMPLEX BRIDGES

Complex bridges do not represent the majority of existing structures, but they require special
attention during load rating and maintenance procedures. Due to their structural complexity, the
distribution of internal forces is not typical and often cannot be simplified into basic calculation
models. Complex bridges in Alabama can be divided into several types. Figure 4-4 illustrates the
percentage distribution of these bridges, while Figure 4-5 presents the division by material type of
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construction. Complex bridges have been identified based on NBI database, with over half
categorized as truss bridges and nearly half are constructed using steel, as illustrated in
Figure 4-5.

In the analysis of bridge types and the subsequent development of the notional vehicle, it was
essential to consider several factors such as:

e support conditions,
e number of spans,

e types of connections.
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= Arch Thru
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m Segmental Box Girder

m Stayed Girder

Figure 4-4. Distribution of structural types for complex bridges in Alabama.

The span length distribution of complex bridges differs significantly from that of the general bridge
population in Alabama. Complex bridges, such as truss and arch types, often feature much longer
spans due to their structural capabilities and design flexibility. In contrast, girder bridges are
typically limited in span length by economic considerations and construction feasibility. While some
complex bridges with shorter spans exist, these are often older structures built at a time when "long-
span" girder bridge solutions were not yet widely available. Therefore, when selecting
representative bridges for this project, it is important to account for these differences. This analysis
provides a foundation for identifying key characteristics of complex bridges in Alabama that are

relevant to the development of the notional vehicle.
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Figure 4-5. Distribution of main span material type for complex bridges.
4.3 TRUSSES AND ARCHES

As part of this research report, a notional vehicle was developed with a focus on two primary bridge
types, as established with ALDOT during the initial phase of the project. Truss and arch bridges,
being complex structures, require comprehensive analysis to accurately account for internal forces,
unlike simpler girder bridges. A detailed evaluation of these bridge types is essential for the proper
design of the notional vehicle. The analysis considered several factors including structural type,
span length, construction material, geographic location, and road classification. Due to the
predominance of permit vehicle routes and the localized nature of certain roads, some bridges were
excluded from the research. Figure 4-6 shows the location of the bridges taken into consideration

in current research project.

Selection of representative structures is a critical step in the development of the notional vehicle.
To support this process, a detailed analysis of truss and arch bridges in Alabama was conducted
to gather the necessary data. Figure 4-7 presents the percentage distribution of bridge types within
the truss and arch categories according to National Bridge Inventory (NBI). This summary helps

identify key characteristics for further analysis.
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Figure 4-6. Locations of truss and arch bridge structures across Alabama.
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Figure 4-7. Distribution of bridge structures by type: (a) arch and (b) truss.
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Figure 4-9. Distribution of bridge material for: (a) arches and (b) trusses.
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Another important distinction concerns the ownership of the structure or, more precisely, its
jurisdictional location. It is important to note that not all bridge types are loaded by permitted traffic.
Figure 4-8 shows how arch and truss bridges are distributed according to ownership, while Figure
4-9 displays distribution by material type which is important both for categorizing the bridges in
present research and for choosing the appropriate load factor. Based on Figure 4-9, it can be
observed that the type of structure is determined by material: trusses are typically made of steel,
while arches are usually constructed from concrete. However, in this particular instance, one out of
every ten bridges is made from steel.

Another important parameter considered in the analysis is the main span length of arch and truss
bridges presented in Figures 4-10 and 4-11 accordingly. In both cases, there is a noticeable
concentration of spans below 100 ft. However, numerous long-span structures are also present.

This is especially evident in the case of arch bridges, where two structures feature spans of 800 ft.
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Figure 4-10. Main Span Length Distribution for Arch Bridges.
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Trusses- Length of main span [ft]
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Figure 4-11. Main Span Length Distribution for Truss Bridges.

This statistic should be interpreted with caution, as it aggregates data from all bridge structures
without considering roadway classification. Based on route data, it can be observed that the
majority of heavy vehicle traffic occurs on state and interstate highways. In contrast, traffic on local
routes is generally limited to permitted vehicles due to the geometric and structural constraints of
the roads and bridges.

Figure 4-12 illustrates the distribution of main span lengths for truss and arch bridges owned by the
State Highway Agency. Presented data reveals a significant deviation in proportions when
compared to the overall statistical trends. For arch bridges, the distribution encompasses both short
spans (less than 100 ft) and long-span structures. In contrast, truss bridges predominantly feature
spans exceeding 200 ft.
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Figure 4-12. Main Span Length Distribution for State Highway Agency Bridges.

Another source of complex bridge data provided by ALDOT included both inspection reports and
technical drawings. These documents served as the basis for a detailed analysis aimed at
identifying key characteristics of complex bridges. The extracted information was subsequently
used for development of statistical summaries of selected bridge parameters, such as span lengths
and structural types.
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Chapter 5

DEVELOPMENT OF NOTIONAL PERMIT CANDIDATES

5.1 INTRODUCTION

Candidates for notional permit vehicles should be suitable for all bridge structures within the
selected category. The vehicle configuration was developed based on criteria described in detail in
the following subsection. However, it was assumed that the notional vehicle does not need to
correspond to any existing or realistic vehicle. This approach allows for flexibility in design while
ensuring compatibility with the structural characteristics of the bridges under consideration.

5.2 HEeAvy TRAFFIC CHARACTERISTICS

The development of notional vehicle candidates was based on a detailed analysis of permit data
collected over the past five years. The comparison focused on key characteristics such as gross
vehicle weight (GVW) of trucks, individual axle spacings and axle weights. Probabilities were
assigned to each category to reflect their frequency and relevance. Additionally, axle spacings
within tandem and tri-axle configurations were considered to better assess potential load
concentration scenarios. Figure 5-1 illustrates the annual distribution of gross vehicle weight,
confirming minimal variation across the years. Similar analyses were conducted for other

parameters, yielding consistent conclusions.

Figure 5-2 presents the distribution of axle counts for permitted vehicles. The data indicate limited
variability across the years, with seven-axle vehicles representing the highest percentage
contributing to total distribution. For heavier vehicles, the number of axles typically ranges between
10 and 13. However, their overall proportion is significantly lower compared to seven-axle

configurations.

Figure 5-3 shows the annual distribution of steering axle load, while Figure 5-4 illustrates the
spacing between the first and second axles. In Figure 5-4, several peaks are observed: at shorter
distances specifically 6 ft and 9 ft and at higher frequencies, each exceeding 10% of the total, for
spacings between 15 and 18 ft. The distribution of first axle loads is concentrated around 12 kips

and 14 kips, with smaller peaks also occurring at 18 kips and 20 kKips.
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Figure 5-1. Annual distribution of Gross Vehicle Weight (GVW).
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Figure 5-2. Annual distribution of number of axles for permit
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1st Axle Weight Distribution [kips]
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Figure 5-3. Annual distribution of 15t axle weight.

Distribution of 1st Axle Spacing [ft]
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Figure 5-4. Annual distribution of 15t axle spacing.

As part of the detailed analysis, cumulative data from the last five years was analyzed. Figure 5-5
shows the weight distributions for the first six axles, while Figure 5-6 presents the distributions for
the first seven distances between individual axles. In case of axle weights, it is evident that the
distribution for the first axle differs significantly from those of the subsequent axles. Similarly,
spacing between the first and second axles demonstrates a distinct concentration relative to other
axle pairs. In addition to the predominance of values within the 4-5 ft range, corresponding to

37



tandem and tridem configurations, there is also a significant clustering observed in the 33-40 ft

range. This extended spacing typically characterizes vehicles equipped with long trailers.
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Figure 5-5. Distribution of Axle Weights for the First Six Axles.
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Distribution of Axle Spacing [ft]
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Figure 5-6. Distribution of Spacing Between the First Eight Axles.
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5.3 CANDIDATE GROUPS OF NOTIONAL PERMIT VEHICLES

Based on the presented load and spacing ranges, as well as an iterative development procedure,
combinations of notional permit vehicle candidates were generated. Analysis of overloaded vehicle
characteristics using permit database shared by Alabama Department of Transportation allowed to
select candidates. Thirteen different groups with total number of 164,891 notional permit vehicle
candidates were developed and presented in Table 5-1, 5-2 and 5.3. Various combinations of axle
count and axle configuration including loads and spacings were considered. The axle weight and
spacing are the variable that change in the iterative procedure for every 2 kips and 2 ft accordingly,

except for tandem and tridem axle spacing changing in 1 ft increment.

The first group of candidates is illustrated in Figure 5-7, and detailed spacing parameters are
provided in Table 5-1. This group represents shorter vehicles. However, due to load concentration,
such configurations may be critical, particularly in case of short-span bridges or structural types
where forces are distributed over a limited deck area. The accompanying Figure 5-7 presents
schematic proportions of vehicle characteristics, including axle load and axle spacing ranges for
the first five candidates. This visualization illustrates the procedure used to generate groups of
notional permit vehicle candidates. The approach enables consideration of a wide range of possible

configurations in order to identify representative overload vehicle types.
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Figure 5-7. Considered range of axle load and spacing for candidates 1-5.
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Table 5.1. Axle weight and spacing ranges for notional permit candidates 1 to 5.

Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5

Axle Spacing Axle Spacing Axle Spacing Axle Spacing Axle Spacing
Weight | Range | Weight | Range | Weight | Range | Weight | Range | Weight | Range
[kip] [ft] [kip] [ft] [kip] [ft] [kip] [ft] [kip] [ft]

Axle Number

1 10-14 | 12-22 | 10-14 | 12-22 | 10-14 | 12-22 | 10-14 | 12-22 | 10-14 | 12-22
2 16-24 4-8 16-24 4-8 16-24 4-8 16-24 4-8 16-24 4-8
3 16-24 4-8 16-24 | 28-36 | 16-24 4-8 16-24 | 28-36 | 16-24 4-8
4 14 -26 4-8 16 - 26 4-8 14 -26 4-8 16-24 4-8 16-24 | 28-36
5 14 -26 - 16 - 26 - 14 -26 4-8 16 -28 4-8 16 -28 4-8
6 - - - - 14 -26 - 16 -28 - 16 -28 -

7

Another group of candidate vehicles is based on configurations with the most frequently occurring
axle counts. These vehicles represent the largest portion of permit dataset and are illustrated

through schematic diagrams in Figure 5-8 and described in Table 5-2.
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Figure 5-8. Considered range of axle load and spacing for candidates 6-7,9-10.

Table 5.2. Axle weight and spacing ranges for notional permit candidates 6 to 10.

Candidate 6 Candidate 7 Candidate 9 Candidate 10

Axle Spacing Axle Spacing Axle Spacing Axle Spacing
Weight | Range | Weight | Range | Weight | Range | Weight | Range
[kip] [ft] [kip] [ft] [kip] [ft] [kip] [ft]

Axle Number

1 10-14 | 12-22 | 10-14 | 12-22 | 10-14 | 12-22 | 12-14 | 12-22
2 16-24 4-8 16-24 4-8 16-24 4-8 16-24 4-8

3 16-24 4-8 16-24 4-8 16-24 4-8 16-24 4-8

4 16-24 | 30-40 | 16-24 4-8 16-24 | 30-40 | 16-24 | 30-36
5 16-28 4-8 16-24 | 30-40 | 16-28 4-8 16-28 4-8

6 16 - 28 4-8 16 - 28 4-8 16 - 28 4-8 16-28 | 12-18
7 16 - 28 - 16 - 28 4-8 16-28 | 10-18 | 16-28 4-8

8 - - 16 - 28 - 16 - 28 4-8 16 -28 4-8

9 - - - - 16-28 - 16-28 -
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The next group of candidates corresponds to the longest vehicles, typically those with more than
ten axles. Candidate configurations with 10 to 13 axles are illustrated in Figure 5-9, while detailed
ranges of axle loads and axle spacing are provided in Table 5-3. These figures present schematic
proportions of the vehicles and serve to visualize the procedure used to generate groups of notional
permit vehicle candidates. This approach allows for the consideration of a wide range of possible
configurations in order to identify representative overload vehicle types. Additionally, this group of
vehicles has a particularly significant impact on long-span bridges due to their size, which allows

them to be positioned within the central portion of the span.
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Figure 5-9. Considered range of axle load and spacing for candidates 11-14.

Table 5.3. Axle weight and spacing ranges for notional permit candidates 11 to 14.

Candidate 11 Candidate 12 Candidate 13 Candidate 14
Axle Number Axle Spacing Axle Spacing Axle Spacing Axle Spacing
Weight | Range | Weight | Range | Weight | Range | Weight | Range

[kip] [ft] [kip] [ft] [kip] [ft] [kip] [ft]
1 12-14 | 12-22 | 12-14 | 12-22 | 12-14 | 12-22 | 12-14 | 12-22
2 16-24 4--8 16-24 4-8 16-24 4-8 16-24 4-8
3 16-24 | 16-24 | 16-24 4-8 16-24 4-8 16-24 4-8
4 16 -28 4-8 16-24 | 10-18 | 16-24 | 10-18 | 16-24 | 10-18
5 16-28 | 16-24 | 16-24 4-8 16-24 4-8 16-24 4-8
6 16 -28 4-8 16-24 | 10-18 | 16-24 4-8 16-24 4-8
7 16-28 | 16-24 | 16-24 | 10-18 | 16-24 | 30-40 | 16-24 | 30-42
8 16 -28 4-8 14 - 26 4-8 16 - 22 4-8 14-28 4-8
9 16 -28 - 14 - 26 4-8 16-22 | 10-18 | 14-28 4-8
10 - - 14 - 26 - 16 - 22 4-8 14-28 | 10-18
11 - - - - 16 - 22 4-8 14 - 28 4-8
12 - - - - 16 - 22 - 14 - 28 4-8

13 - - - - - - 14 -- 28 -
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Chapter 6

LIVE LOAD MODELS FOR FEM ANALYSIS OF TRUSS BRIDGES

6.1 TRuss BRIDGES

The rating process for truss bridges is complex due to the structural characteristics, the number of
components and connections, the variety of materials used, and most importantly, their age.
Statistics show that 58% of truss bridges in Alabama are more than 75 years old, and 75% are over
50 years old (Luszczynska et al. 2025). As a result, the maintenance and load rating of these
structures is particularly important.

Due to the complexity of the structural system and the underlying design assumptions, simplifying
this type of bridge to a beam element is not adequate. The distribution of internal forces among
chords, verticals, and diagonals cannot be accurately captured using simplified methods. As a
result, the Finite Element Method (FEM) was used. This numerical approach enables a detailed
analysis of load effects in all primary structural components considered in the study. Although the
FEM process is time-consuming since it requires the development of a precise model and the
application of load cases involving hundreds of thousands of vehicles, it provides the level of
analytical accuracy necessary for this research. Such accuracy is essential for the development of

representative notional permit vehicles.

6.2 REPRESENTATIVE TRUSS BRIDGES — FINITE ELEMENT MODELS

The first bridge selected for analysis is the Project S-149(6) — Bridge over Sipsey River, located in
Winston County. This structure is a steel through-truss bridge consisting of three spans: the interior
span measures 360 ft, while the exterior spans are 301 ft 2 in and 300 ft, respectively. The bridge
was modeled using Midas Civil software, employing the finite element method (FEM) to accurately
reflect the geometry and cross-sectional properties of the existing structure.

The FEM model provides a detailed representation of the bridge, excluding minor components such
as connection plates and joint details, which were intentionally omitted due to the primary objectives
of the study. The main goal was to evaluate the structural response under permit vehicle loading,
rather than to perform a full-scale analysis including the response of structural connections of
bridge elements. To validate the model, the dead load results obtained from the FEM analysis were
compared with the designer’s hand calculations presented in original technical drawing provided
by ALDOT. The difference between these two datasets was approximately 10%, which corresponds
to the weight of steel connections not included in the FEM model. This discrepancy was deemed

acceptable for the scope of the research. An overview of the FEM model is presented in
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Figure 6-1, illustrating the bridge’s span configuration and structural layout. Detailed live load

analysis of this bridge was also described by Luszczynska et al. (2024).
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Figure 6-2. Numbering of elements in model: top - external span, bottom - internal span.

The truss model consists of over 2,500 linear elements (beam and truss types) and approximately
5,000 plate elements. For detailed analysis, a subset of 203 elements belonging to one of the truss
section was selected. The model was loaded with both actual permit vehicles and candidate
notional vehicles. Additionally, each vehicle was incrementally run across the bridge in 1-foot steps,
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and the maximum load effect for each element was determined for every vehicle. The vehicles
were positioned on the deck in such a configuration to maximize loading on one side of the truss

in order to induce the highest possible force effects.

The next modeled truss bridge is the structure associated with Project No. ABC-16, located in
Clarke and Choctaw Counties, spanning the Tombigbee River near the town of Coffeeville. This
bridge is a three-span steel truss structure, with the main span measuring 400 ft, and the two outer
spans measuring 265 ft each. The bridge features a complex configuration, combining elements of
both through-truss and deck-truss designs. An overview of the FEM model is presented in Figure
6-3, showing the span arrangement and structural layout. To facilitate interpretation of the analysis
results, Figure 6-4 presents numbering system of structural members. This numbering is consistent
with the output data from the FEM analysis and will be referenced throughout the discussion of

results.

Figure 6-3. General view of the Coffeeville Bridge - FE Model.

Truss model consists of over 3,600 linear elements (beam and truss types) and approximately
7,300 plate elements. For detailed analysis, a subset of 233 elements belonging to one of the truss
section was selected. Considered elements consist of top and bottom chords, posts, diagonals and
hangers.

The model was loaded with both actual permit vehicles and candidate notional vehicles.
Additionally, each vehicle was incrementally run across the bridge in 1-foot steps and the maximum

load effect for each element was determined for every vehicle.
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Figure 6-4. Numbering of elements in model: top - external span, bottom - internal span.

The next modeled truss bridge is the structure associated with Project No. ABC-18, located in
Chilton- Coosa Counties, spanning the Coosa River. This bridge is a three-span steel deck truss
structure, with the main span measuring 300 ft and the two outer spans measuring 225 ft each.
The truss model consists of over 3,900 linear elements (beam and truss types) and approximately
12,000 plate elements. For further analysis, a subset of 123 elements belonging to one of the truss
sections was selected including top and bottom chords, posts, as well as diagonals. An overview

is presented in Figure 6-5, whereas Figure 6-6 shows the utilized numbering system.
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Figure 6-6. Numbering of elements in model: top - external span, bottom - internal span.
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The next truss bridge modeled for the conducted analysis is the structure associated with Project
No. ABC-4, located in St. Clair and Talladega Counties, spanning the Coosa River. This bridge is
a simple-span steel structure, with the main span measuring 200 ft. The truss model consists of

over 1,100 linear elements (beam and truss types) and approximately 2,600 plate elements. For

the analysis, a subset of 43 elements belonging to one of the truss sections was selected.
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Figure 6-8. Numbering of elements in the model.

The next truss bridge modeled for the conducted analysis is the structure associated with Project
No. BR 0002(550), located in Colbert and Lauderdale Counties, spanning the Tennessee River.
This bridge is a simple-span steel structure, with the main span measuring 200 ft. The truss model
consists of over 1,200 linear elements (beam and truss types) and approximately 2,600 plate
elements. For the analysis, a subset of 33 elements belonging to one of the truss sections was

selected.

48



Figure 6-9. General view of the Bridge - FE Model
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Figure 6-10. Numbering of elements in the model.

ANALYSIS RESULTS

6.3

As a result of the calculations, the maximum load effect for each individual element was

determined. The database of resulting internal forces contains a large number of cumulative

distribution function (CDF) plots. Therefore, selected graphs showing the calculated load effects

for individual elements under permit vehicles and notional vehicle candidates are included in

Appendix B.
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Chapter 7

LIVE LOAD MODELS FOR FEM ANALYSIS OF ARCH BRIDGES

7.1 ARCH BRIDGES

Another category of structures examined in this project is arch bridge. Arches present greater
variability in their possible configurations compared to truss bridges, due to the broader selection
of applicable materials. Examples include deck arches, half-through true arches, and through deck-
stiffened arches.

7.2 REPRESENTATIVE TRUSS BRIDGES — FINITE ELEMENT MODELS

The first arch bridge modeled for the conducted analysis is the structure associated with Project
No. BRF-0117(506), located on the Lookout Mountain Parkway section of SR-117, near the town
of Mentone. This bridge spans the West Fork of Little River and is designed as a concrete arch
bridge with a single span measuring 100 ft. An overview of the FEM model is presented in
Figure 7-1, showing the bridge’s geometry and structural layout. To facilitate interpretation of the
analysis results, Figure 7-2 presents the member numbering system, which aligns with the FEM
output and will be referenced in the subsequent results section. The arch model consists of over
440 linear elements (beam and truss types) and approximately 2,200 plate elements. For the

analysis, a subset of 152 elements belonging to one of the arch sections was selected.

Figure 7-1. General view of the West Fork Bridge - FE Model.
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Figure 7-2. Numbering of elements in the model for West Fork Bridge.

The next arch bridge modeled for the conducted analysis is the structure associated with Project
No. NO.RPF-IMF-NHF-1059(387). The arch bridge of the Interstate 20/59 over McFarland
Boulevard is located in Tuscaloosa. The bridge has a single span of 250 ft. The arch model consists
of over 1,650 linear elements (beam and truss types) and approximately 3,100 plate elements. For
the analysis, a subset of 71 elements belonging to one of the arch sections was selected. An
overview of the FEM model is presented in Figure 7-3, showing the bridge’s geometry, whereas

Figure 7-4 shows the utilized numbering system.

Figure 7-3. General view of the Arch Bridge in Tuscaloosa - FE Model.
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Figure 7-4. Numbering of elements in the model for Arch Bridge in Tuscaloosa.

The next arch bridge modeled for the conducted analysis is the bridge associated with Project No.
I-65 — 1 (85) 23, on the Interstate route 65. This bridge crosses the Mobile River Delta near the
Mobile. Structure classified as an arch bridge, features a span of 800 feet. Its geometric
characteristics and visual representation are provided in Figure 7-5. The ach model consists of over
4,100 linear elements (beam and truss types) and approximately 14,300 plate elements. For the
analysis, a subset of 129 elements belonging to one of the truss sections was selected.

Figure 7-5. General view of the Arch Bridge in Mobil - FE Model.

The next arch bridge modeled for the conducted analysis is the structure associated with Project
No. BHPF-000(540). The arch bridge of the US-80 over Alabama River is located in Selma. The
arch is the part of bigger structure in Selma. The arch model consists of over 740 linear elements
(beam and truss types) and approximately 1,500 plate elements. For the analysis, a subset of 43
elements belonging to one of the arch sections was selected. An overview of the FEM model is
presented in Figure 7-6, showing the bridge’s geometry, whereas Figure 7-7 shows the utilized

numbering system.
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Figure 7-6. General view of the Arch Bridge in Selma - FE Model.

Figure 7-7. Numbering of elements in the model for Arch Bridge in Selma.
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Chapter 8

NOTIONAL PERMIT VEHICLES FOR TRUSS
BRIDGES RATINGS

8.1 METHODOLOGY FOR THE DETERMINATION OF THE NOTIONAL PERMIT VEHICLE

The process of selecting a notional vehicle and the criteria involved is very important as it
determines the compliance of the notional vehicle with the external conditions defined by permit
trucks and ensures a rational and economic approach to the rating process.

First, a set of notional permit vehicle candidates was developed, and their statistical parameters of
live load were determined, including bias factors, standard deviations and coefficients of variation.
Additionally, the percentage of vehicles exceeding the bias factor of 1.0 was established for each
candidate, for each of the considered truss bridge models, for each truss element and for each load
case, depending on the vehicle’s position on the bridge. These parameters provide the basis for
selecting notional permit vehicles that ensure consistent safety across different bridges and load
cases. The distribution of internal forces and the importance of each force depend on the type of
structure. In structures where the main load-bearing element is a beam, the most important forces
are bending moments and shear forces. In long bridge structures, the axial force becomes more
important. This is especially true for truss bridges, where the axial force is the most significant.
Depending on the assumed structural model, bending moments and shear forces can also be
important when checking the top and bottom chords of the truss. The span lengths of truss bridges
considered in this study were greater than 200 ft. For this reason, one of the main criteria used to
select notional candidates was the 90™ quantiles for the lowest mean percent exceeding bias factor
of 1.0. Candidates that significantly exceed axial forces compared to permit vehicles were rejected.
Due to bending moments and shear forces occurring in the top and bottom chords, additional
conditions were included in the analysis for selected elements. Based on the lowest variation of
bias factors for these internal forces, the candidates with the lowest variation were identified. All
chord elements were considered. The process of selecting a notional permit vehicle from the

candidates is shown in Figure 8-1.
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®* the highast mean value of candidate/parmit bias,
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{

Notional Permit Vehicle
for Truss Bridges

Figure 8-1. Process for determining a notional permit vehicle for truss bridges.

The previous criterion resulted in approximately 100 vehicles for each group. In the final stage of
selection of the notional permit vehicle, three conditions were applied:

¢ the lowest variation of bias factors for axial, shear, and moment,

e the highest mean value of the candidate-to-permit bias ratio,

¢ the lowest mean percentage of vehicles exceeding a bias factor of 1.0.
The variation of bias factors relates to relationship of permit-to-candidate ratio, and variation
between elements as well as different bridges. The second condition ensured that the number of

permit vehicles, expressed as a ratio to the candidate, was similar. The third criterion determined
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the percentage of the heaviest vehicles generating the highest forces, that exceed those induced
by the proposed candidate.
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Figure 8-2. Examples of the candidates of group no. (11, 12, 12, 14)
8.2 NOTIONAL PERMIT VEHICLE FOR TRUSS BRIDGES IN ALABAMA

The notional permit vehicle for truss bridge rating in Alabama is shown in Figure 8-3. It is a 9-axle
vehicle. The first axle has a load of 14 kip. Next, there is a tri-axle group with 24 kip on each axle.
After that, there is a tandem and another tri-axle group, each axle carrying 28 kip.
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Figure 8-3. Notional permit vehicle for truss bridges rating in Alabama.
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Chapter 9

SUMMARY

The increasing number of overloaded vehicles on public roads presents a growing challenge for
the evaluation and rating of existing bridges. To address it, ALDOT requires a rational and effective
approach to include permit vehicles in bridge rating procedures. Historically, Alabama lacked
notional permit vehicles specifically calibrated for truss and arch bridge structures that are often
complex and aging.

This research aims to develop representative notional vehicles that reflect permit load
characteristics and can be used in rating of truss and arch bridges. The study utilized ALDOT permit
data from the years 2013 to 2024. However, to optimize the internal force calculation process in
MIDAS Civil software, the dataset was selectively reduced. This allowed for an efficient analysis
while maintaining the integrity of the results.

To validate the accuracy of bridges modelled in MIDAS Civil software, dead load from the FEM
analysis was compared with the designer’s hand calculation specified in the technical drawings
provided by ALDOT. The discrepancy between these two datasets was approximately 10%, which
can be attributed to the exclusion of steel connection weights in the FEM model. This variance was

considered acceptable for the purpose of this research.

Using detailed 3D finite element models developed based on original technical drawings, the study
simulated load effects for over 130,000 permit vehicles and more than 165,000 candidate
configurations across selected complex bridge structures. Superload permits were excluded from
the scope of the analysis. The integration of large-scale databases with advanced FEM software
enabled accurate modeling of structural behavior under permit traffic, particularly for bridges

nearing the end of their service life.

Implementation of notional truck simplifies the rating process by reducing the number of individual
vehicles required for analysis, improving efficiency and consistency in evaluating complex bridge
types. It is recommended to continue research to develop efficient analytical tools and expand the
methodology to include notional permit vehicles for other bridge types beyond truss structures.
These advancements will support the maintenance, safety, and longevity of Alabama’s bridge

infrastructure and contribute to a more effective and streamlined rating process.
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Chapter 10

NUMERICAL AND COMPUTATIONAL CHALLENGES

The total number of 164,891 notional permit vehicle candidates was developed based on
overloaded vehicle characteristics. Alabama permit database for years 2020-2024 includes
750,000 permits. However, most of them were issued for oversize trucks which are not of interest
in current research project. Filtered permit data used for live load analysis consists of 131,089
overweight vehicles. Therefore, the total number of combinations included in load ratio calculations

was equal to 21,615,000,000 for every single bridge element considered in analysis.

Design projects for complex bridges in Alabama were received from ALDOT including 9 truss and
6 arch structures. Detailed finite element models were developed for 5 selected truss bridges using
provided technical drawings with total number of over 42,000 elements. In addition, FE models for
4 arch bridges were completed. The increment of the applied moving load was assumed to achieve
the high accuracy of the results and varied depending on the model. Thus, total number of
606,463,020 load points were calculated for all truss bridges since 295,980 vehicles including
permits and permit candidates were run through each of finite element model. Midas Civil software
used for modeling and live load analysis is not compatible with Linux, therefore the High
Performance Computer Cluster (HPCC) could not be used to run the simulations and reduce
computational time. However, Midas Civil NX (2025) allowed powerful automation through using
dedicated Python libraries.

Similarly, HPCC could not be used for computations of statistical parameters due to large size of
resulting files and lack of connection with Box Drive providing unlimited cloud-based storage
platform. For that reason, bias ratio, standard deviation, mean and coefficient of variation for every
load case was computed using simultaneously 41 computers in the Department of Civil and
Environmental Engineering at Auburn University. Additionally, the percentage of vehicles that
exceeded the bias factor of 1.0 was determined for every candidate and load combination.
Computed parameters provided a basis to select notional permit vehicle that provide uniform safety
and consistent reliability for different truss bridges and load cases. It was decided to reduce the
number of possible permit candidates by taking 90th quantiles which allowed selection of

representative vehicles from each permit candidate group.

The size of finite element models following the calculation of live load effects was estimated to be
over 100 TB. Therefore, the calculated files were regularly deleted after exporting the axial force
results required for subsequent statistical analysis. Procedure for development of notional vehicle
was successfully completed for complex truss bridges. Similar analysis is recommended for arch
bridge structures using finite element models already developed and presented in first part of

current report.
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Chapter 11

CONCLUSIONS AND RECOMMENDATIONS

The objective of the project was the development of notional vehicles for evaluation of complex
bridges in Alabama. The focus was on truss and arch structures. This required collection and
processing of permit data, development of Finite Element Method models of selected
representative complex bridges, running candidates for notional vehicles and recommendation of
selected notional vehicle or a set of vehicles to ALDOT. The conclusions and recommendations

are summarized as follows:

1. Permit database was provided by ALDOT with over 750,000 records for the last five years. A
comprehensive analysis has demonstrated that the data is relatively stable.

2. When comparing internal distributions over the past five years, the probability patterns remain
largely consistent. One of the key conclusions is that, despite a 7% annual increase in the
number of issued permits and variability in transported cargo, the internal forces generated by
permit vehicles remain stable and comparable.

3. The major effort was required for computation of all runs of candidates for notional vehicles
using specially developed procedure including influence line analysis. Each vehicle was run
at increment equal to approximately one foot at a time. Values of internal forces were calculated
and recorded for each of the considered elements.

4. Load rating analysis is essential for maintaining an adequate level of structural safety and plays
a critical role in infrastructure management and planning future maintenance.

5. The use of notional vehicles improves the accuracy of bridge load ratings by better reflecting
realistic load configurations, which reduces uncertainty in structural assessments associated
with the exclusion of permit vehicle effects. Standardized notional vehicles also enhance
structural safety by enabling consistent risk evaluation across bridge inventories, allowing for
more effective prioritization of maintenance and rehabilitation efforts.

6. The observed data stability indicates that it is feasible to define a notional vehicle for a specific
bridge type. Furthermore, due to the consistency of data, such a vehicle can be considered
valid for use over the coming years.

7. Incorporating notional vehicles into the design of new bridges ensures long-term durability and
cost-efficiency by accounting for future traffic demands and evolving permit vehicle
characteristics.
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Based on the extensive research and analysis conducted throughout this project, the following
items are recommended to support future development and implementation of notional permit

vehicles:

1. It is recommended to incorporate the developed notional vehicle into widely adopted rating
guidelines, which will improve load rating accuracy for truss bridges by better capturing permit
vehicle effects.

2. It is advised to initiate work on notional vehicles for additional purposes already identified by
other states, such as fatigue evaluation.

3. After the notional vehicle is introduced into widespread use and integrated into the rating
process, it is recommended to perform a data stability check after a 10-year interval. This will
help to verify whether evolving patterns in the transportation system have affected the load
effects compared to current values.

4. For older but critical bridges originally designed for different vehicle types, it is recommended
to develop custom notional vehicles. This will help extend the bridge’s service life by identifying
the specific permit vehicles that travel through these structures and adjust live load effects
accordingly, while maintaining safety.

5. The algorithms and procedures necessary for the development of notional vehicles have been
successfully established. Therefore, it is recommended to perform similar analysis for arch FE
models presented in current report as well as for other types of complex structures such as
curved ramps, floorbeam system, cable-stayed and segmental box girder bridges.

6. The outcome of this project is a notional vehicle for rating process representing Alabama permit
traffic. However, developed live load model accounts only for the scenario in which the permit
vehicle is the sole vehicle on the bridge, in contrast to the actual situation. Further work is
recommended to encompass the simultaneous occurrence of permit vehicles with other
vehicles. This case may be especially important for long-span bridges which require special

attention and therefore separate probabilistic studies are needed.
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Technical Drawings and Finite Element Model Representations
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Project S-149(6) — Bridge over Sipsey River, located in Winston County - Duncan Bridge
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Figure A-0-1. Longitudinal view: technical drawing (top) and FE model (bottom) — Truss_1

Figure A-0-2. View of top and bottom lateral bracing, stringer-floorbeam system: technical

drawing (top) and FE model (bottom) - Truss_1
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(top) and FE model (bottom) - Truss_1
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Project No. ABC-16, located in Clarke and Choctaw Counties - Jim Folsom Bridge
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Figure A-0-4. Longitudinal view: technical drawing (top) and FE model (bottom) — Truss_2
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70



Figure A-0-6. View of bracing for top and bottom chords and stringer—floorbeam system:

FE model - Truss_2
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Figure A-0-7. View of sway bracing of section above support and portal framing: technical

drawing (left) and FE model (right) - Truss_2
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Project No. ABC-18, located in Chilton- Coosa Counties - AL-22 Coosa River Bridge
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Figure A-0-11. Longitudinal view: technical drawing (top) and FE model (bottom) — Truss_3

Figure A-0-12. View of top and bottom lateral bracing, stringer—floorbeam system:
technical drawing (top) and FE model (bottom) - Truss_3
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Figure A-0-15. View of sway bracing: technical drawing (left) and FE model (right) -
Truss_3.

Project No. ABC-4, located in St. Clair and Talladega Counties, spanning the Coosa River
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Figure A-0-16. Longitudinal view: technical drawing (top) and FE model (bottom) — Truss_4
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Figure A-0-17. View of bottom lateral bracing, stringer—floorbeam system: technical

drawing (top) and FE model (bottom) - Truss_4
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Figure A-0-18. View of top lateral bracing and sway bracing: technical drawing (top) and

FE model (bottom) - Truss_4
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Project No. BR 0002(550), located in Colbert and Lauderdale Counties, spanning the
Tennessee River
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Figure A-0-20. View of typical cross section: technical drawing (top) and FE model
(bottom) - Truss_5.
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Project No. BRF-0117(506), located on the Lookout Mountain Parkway section of SR-117,
near the town of Mentone
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Figure A-0-22. Longitudinal view: technical drawing (top) and FE model (bottom) — Arch_1
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Figure A-0-23. View of the main arch with spandrel columns: technical drawing (top) and
FE model (bottom) — Arch_1
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Project No. NO.RPF-IMF-NHF-1059(387) over McFarland Boulevard is located in
Tuscaloosa.

Figure A-0-24. Longitudinal view: technical drawing (top) and FE model (bottom) — Arch_2

Figure A-0-25. View of the Arch structure with floor beam
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Project No. I-65 — 1 (85) 23, on the Interstate route 65, spanning the Mobile River Delta near
the Mobile.
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Figure A-0-28. Longitudinal view: technical drawing (top) and FE model (bottom) — Arch_3
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Figure A-0-29. Half elevation (top) and model view with cross-section type (bottom).
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Figure A-0-32. Trussed lateral bracing of the bridge - FE model.

Project No. BHPF-000(540). The bridge over Alabama River is located in Selma.
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Figure A-0-33. Longitudinal view of bridge: technical dréwing.
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Figure A-0-34. Longitudinal view: FE model (bottom) — Arch_4
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Figure A-0-35. Cross section — Arch_4
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Figure A-0-36. Top view of the structural system.
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Figure A-0-37. Floor beam and support syste'\//.iew
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Appendix B

Live Load Analysis Results for Truss Bridges
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Figure B-0-2. Axial forces in the top chord elements - Duncan Bridge.
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Figure B-0-3. Axial forces in the posts elements (tension) - Duncan Bridge.
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Figure B-0-6. Axial forces comparison in the bottom chord for different permit types.
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Figure B-0-7. Axial forces comparison in the top chord for different permit types.
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Figure B-0-10. Axial forces comparison in the top chord for different years and types.
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Figure B-0-11. Axial forces comparison in the bottom chord for different years and types.
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Project No. ABC-16, located in Clarke and Choctaw Counties - Jim Folsom Bridge - Results
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Figure B-0-20. Axial forces in the top chord elements - Jim Folsom Bridge.
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Figure B-0-23. Axial forces in the posts elements (tension) - Jim Folsom Bridge.
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Figure B-0-25. Axial forces comparison for the top chord for different types.
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Figure B-0-26. Axial forces comparison for the bottom chord for different types.
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Figure B-0-27. Axial forces comparison in the top chord for different years and types.
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Figure B-0-28. Axial forces comparison in the bottom chord for different years and types.
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Figure B-0-29. Axial forces comparison in post no 52 for different years and types.
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Figure B-0-30. Axial forces comparison in post no 58 for different years and types.
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Project No. ABC-18, located in Chilton- Coosa Counties - AL-22 Coosa River Bridge -
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Figure B-0-31. Axial forces in the top chord elements - AL-22 Coosa River Bridge.
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Figure B-0-33. Axial forces in the posts elements - AL-22 Coosa River Bridge.
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Figure B-0-34. Axial forces in the diagonals elements - AL-22 Coosa River Bridge.
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Figure B-0-35. Axial forces comparison in the bottom chord for different years and types.

0.9999
0.9995

0.995

Probability
o
(4]

o
N
3}

0.1
0.05

0.005

0.0005
0.0001
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Figure B-0-37. Axial forces in the top and bottom (tension) chord elements - Candidates.
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Figure B-0-38. Axial forces in the chord elements (compression) - Candidates.
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Figure B-0-39. Axial forces in the posts elements (compression) - Candidates.
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Figure B-0-40 Axial forces in the diagonals elements (compression) - Candidates.
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Figure B-0-41. Axial forces in the chord’s elements — Truss-4.

Probability

Posts - tension
T

T T T

0.9999 H'

0.9995 .
0.995 H .
0.95 =

—— element 66 |

075 element67 | _|
’ element 68

0.5 element69 |
| ——— element 70

025 { ——— element 71| |

—*—— element72 | -

0.05 =1

0.005 p
0.0005 f -
0.0001 =1

1 ! Il Il Il 1
0 10 20 30 40 50 60

Axial force [kip]

Figure B-0-42. Axial forces in the posts elements — Truss-4.

110

200



Diagonals - tension
T T

0.9999 -
0.9995 |-

0.995 -

Probability
o o
» o

o
T

0.05

0.005 -

0.0005 -
0.0001 -

—=—— element 24
element 25(+)
——+—— element 26
element 27
——— element 28(+)
——— element 29

Ly

20

40 60
Axial force [kip]

80

100

Diagonals - compression
T T :

0.9999 -
0.9995 |-

0.995 -

Probability
o o
» o

o
T

0.05

0.005

0.0005 -
0.0001 -

——=—— element 25(-)
element 28(-)

20 30
Axial force [kip]

Figure B-0-43. Axial forces in the diagonal’s elements — Truss-4.
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Figure B-0-44. Bending moment in the top and bottom chord elements
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Figure B-0-45. Shear forces in the top and bottom chord elements
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Figure B-0-49. Bending moment in the top and bottom chord elements

0.9999

0.9995 |-

0.995

Probability
o
w

<
)
a

0.1
0.05

0.005

0.0005 |

0.0001

Top chord - Shear
T T T

—=— element 10
element 11

element 13
— element 14
—— element 15

——+——element 12| |

= 0 1 2
Shear force [kip]

Probability

Bottom chord - Shear

0.9999 -
0.9995 |-

0.995 -

o
3]
T

<

)

a
T

°
T

0.05 -

0.005

0.0005 [
0.0001 -

T T T T T T

——element 1

element 2 | 4
——+—— element 4
—+— element 5
element 8

-0.2 0 0.2 0.4 0.6 0.8
Shear force [kip]

Figure B-0-50 Shear forces in the top and bottom chord elements.

114



Appendix C
Live Load Analysis Results for Arch Bridges
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West Fork Bridge - Results
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Figure C-0-1. Force variability comparison (2020) for selected arch elements (8, 39 and 16).
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Figure C-0-2. Axial force variability analysis by permit 2020: Elem 1 (left) and Elem 37

(right).
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Figure C-0-3 Axial force variability analysis by permit - 2020: Elem 8 (left) and Elem 39

(right).
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Figure C-0-4. Moment variability analysis by permit - 2020: Elem 1 (left) and Elem 37 (right).
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Figure C-0-5. Moment variability analysis by permit -2020: Elem 8 (left) and Elem 39 (right).
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Figure C-0-6. Axial force analysis by permit - 2020: Elem 53 (left) and Elem 54 (right).
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Figure C-0-7. Moment variability analysis by permit 2020: Elem 53 (left) and Elem 54 (right).
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Figure C-0-8. Shear force analysis by permit 2020: Elem 53 (left) and Elem 54 (right).
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Figure C-0-9. Shear force variability analysis by permit 2020: Elem 1 (left) and Elem 8
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Appendix D
Results of Reliability Analysis
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Figure D-0-1. Bias Factor for selected candidates from group 9 — element 4.
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Figure D-0-3. Bias Factor for selected candidates from group 9 — element 12.
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