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Abstract

Urban streets are increasingly complex environments where diverse transportation modes
like cars, bicycles, pedestrians, micromobility, and emerging automated vehicles, interact within
constrained spaces. Traditional design practices, guided by qualitative policies such as Complete
Streets, often lack the quantitative foundation needed to evaluate trade-offs between efficiency,
equity, and safety. This research introduces a data-driven framework to address these gaps by
integrating macroscopic and microscopic modeling approaches for multimodal street design.

The study develops two major tools: a Network Fundamental Diagram (NFD)-based
optimization framework and a multi-agent simulation platform. The optimization framework
applies a two-step process: first, identifying flow-maximizing network attributes at the aggregate
level, and second, allocating these attributes to specific links using a Genetic Algorithm (GA)
under multiple ethical objectives, including utilitarian, sufficiency, accessibility gap, and
maximin principles. The simulation platform models realistic interactions among vehicles,
cyclists, pedestrians, and emerging modes, incorporating stochastic demand and behavioral rules
to evaluate safety and efficiency. Conflict characterization combines Time-to-Collision (TTC)
and Impact Severity metrics to assess both the likelihood and consequence of interactions,
enabling nuanced safety evaluations.

Applications to real-world networks, including a case study of Evanston, IL and a corridor
in Chicago, demonstrate the feasibility and effectiveness of these tools. Results show that
optimized designs improve multimodal accessibility and reduce severe conflicts compared to
existing layouts, while highlighting trade-offs between throughput, equity, and safety. Although
no single design achieves all objectives simultaneously, the framework provides transparent
evaluation and supports evidence-based decision-making. Policy priorities and community
values remain essential in guiding the selection of final designs, ensuring that technological
innovation aligns with human-centered goals.



1 INTRODUCTION

Urban streets are increasingly complex environments where diverse transportation modes
like cars, bicycles, pedestrians, micromobility, and emerging automated vehicles, interact within
constrained spaces. Traditional design practices, guided by qualitative policies such as Complete
Streets, often lack the quantitative foundation needed to evaluate trade-offs between efficiency,
equity, and safety. This research introduces a data-driven framework to address these gaps by
integrating macroscopic and microscopic modeling approaches for multimodal street design.

This report addresses that need by developing and applying integrated modeling and
optimization frameworks to make CAV deployments compatible with Complete Streets
objectives. The research spans multiple scales of analysis: from macroscopic models that capture
network-level flow dynamics to microscopic simulation platforms that represent agent-level
behaviors and interactions. A unified approach combines Network Fundamental Diagram
(NFD)-based optimization, multi-agent simulation, and conflict severity analysis to evaluate how
design choices influence throughput, accessibility, and safety under realistic operating
conditions. Ethical considerations such as sufficiency, equity, and maximin principles are
incorporated into the optimization process to ensure that infrastructure decisions reflect not only
technical efficiency but also social fairness.

By bridging the gap between policy-driven guidelines and quantitative modeling, this
study provides urban planners and policymakers with actionable tools to design streets that
balance technological innovation with human-centered values. The resulting frameworks enable
transparent evaluation of trade-offs, support informed decision-making, and advance the vision
of safe, efficient, and equitable urban mobility.
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2 MICROSCOPIC BIKE NETWORK DESIGN PROBLEM
2.1 Introduction

This chapter outlines a methodology and results of a bike lane network design problem
application to the real-world example of Evanston, IL. Building on the functional form of the
NFD developed in Chapter 6, in this chapter a two-step optimization framework that integrates
flow and accessibility maximization is developed In the first optimization, the functional form,
which models flow as a function of network attributes (mode-exclusive area, shared area, and
interaction plane) is used as the objective function, where the goal is to maximize the total flow
of the network across all modes with the network attributes as decision variables. With these
optimal network characteristics identified, the next step of the optimization aims to find the
allocation of these characteristics to specific links. To do this, a genetic algorithm was
implemented with the objective of maximizing accessibility and minimizing the difference
between the predicted NFD curve for the network and the optimized NFD curve from the first
step. The decision variables for this formulation are the set of links and their respective
configurations. Alternative formulations that focus on meeting additional ethical considerations
with the design are also included. These ethical frameworks consider the impacts on less
advantaged groups, whether that be by mode used, income, or accessibility. A flowchart of this
methodology, beginning with the functional form developed in Chapter 6, to the resulting
network design is shown in Figure 2.1 .

4 ™
Extract flow, density observations from simulated scenarios with varying

amounts of bike lanes and separated bike lanes

Estimate parameters used in functional form (us, Q, x, w)

Model parameter relationships to network attributes (4,,, 4, )

[ Estimat? Functional Form of NFD defined by network attributes ]
[
( \) Step 1 Flow Optimization: )
Obj- maximize total q,,, (k;, A, A, 1)

Decisions- values of network attributes
\ Constraints- space conservation )

(" Step 2 Link Selection Optimization: A

Obj- maximize accessibility, minimize distance to optimal NFD curve
Decisions- set of links to upgrade

\ Constraints- budget, space conservation )

1
J

OUTPUT Flow and accessibility maximizing network

Figure 2.1 Process Flow of NFD led Bike Network Design Problem
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2.2 Methodology

2.2.1 Step 1- Flow Optimization

The two step optimization process begins with the flow optimization formulation. Here,
the functional form developed in Chapter 6 for q,,,(k,,, I, A,,, A ) is maximized with decision
variables k,,, I, A,,, and A. The formulation of the optimization problem is outlined.

i 2 4 - A ) Ea21)
m
st A+ Z A <A (Eq2.2)
m
0< kcrit,m < ﬁ7m + ﬁSmAm + ﬂ9m1 (Eq 2-3)
I, A, A =0 (Eq2.4)

where k,, is the density of mode m, I is the interaction plane, A4,, is the modal area of
mode m, A is the shared area, and A4,,,, is the total existing area of the network.

The inner objective finds the critical density k,,, where the flow of the given function is at
a maximum given the values of the other three variables. I, A,,, 4, are the outer optimization’s
decision variables. Across the inner and outer optimization outlined in Equation 2.1, flow is
maximized across all modes; in this example, bikes and cars are the modes considered. The first
constraint, Equation 2.2, conserves the existing area of the network- no additional area can be
added to the network to increase flow. The second constraint, Equation 2.3, keeps the estimation
of critical density feasible, less than the value of jam density k developed in the estimation of the
NFD form. The last constraint, Equation 2.4, ensures that the values of the network attribute
decision variables I, a,,, and A are non-negative.

2.2.2 Step 1- Solution Method

The Step 1 formulation was solved using the Python package Pyomo and the IPOPT
solver to address a nonlinear, constrained optimization problem. /POPT is a large-scale, interior-
point optimization solver designed to handle smooth, nonlinear objectives with both equality and
inequality constraints. /POPT guarantees convergence to a locally optimal solution under
smoothness assumptions, but global optimality cannot be assured due to the non-convex nature
of the problem.
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2.2.3 Step 2- Space Allocation Optimization

Step 1 results in flow maximizing values of I, a,,, and A for the whole network. The
second step of the framework aims to allocate these values to specific links in the network in
order to meet these aggregate optimal values, resulting in an optimal NFD. Given a set of links
and outcomes, X, , 1s the decision variable to make a link [ have an outcome type o where o
represents a possible treatment and a corresponding width. The possible treatments are shown in
Figure 2.2 .

Type 1: Bikes Allowed Type 2: Bike Lane Type 3: Separated Bike Lane
(No dedicated space)

W A8 & x
\‘“v/ ¢
[ - & A8 . _— B A = B I — A Al B
Ig= & L rLf;m;} 1 ih L ekl o
Shared  Shared ehicleVehicl Spac Space
Area Area MICrcl)-mo ilitybane Lanrsllcromoblllty Separated MICTOmObHItyp Separated
ane Lane Lane Micromobility Lane

Figure 2.2 Link Treatment Types

Accessibility is defined by z; ZO(xl,o) which is the number of zonal centroids
accessible from the centroid of zone i by mode m within a 20-minute threshold for the network
configuration x; ,. The minimization portion of the objective aims to reduce the area between the
optimal NFD curve found in Step 1 and the resulting NFD curve for a configuration x; ,. The
formulation for Step 2 is shown.

K
IHHX; Z] Zr’,m\QO(x,',o) - ; [_[0 [q:r(k:r’l*’A:t’A h) - an(km’l’Am’A)]dk (Eq 25)

s.t. ng =1 VieL (Eq 2.6)
ZLZO ,C1,<B (Eq 2.7)
eclLoe

lZL ZO<A(10)+ZA (Lo)) <A (Eq2.8)
clLo e

Zwloxlo = (Eq 2.9)
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Z Wio X0 = W) (Eq 2.10)
o

where () , is the construction cost of a configuration x; ,, W is the total width of the
individual link /.

The objective function, Equation 2.5, maximizes the total accessibility within a 20-
minute threshold across modes m and zones i while minimizing the area between NFD curves
through the integral difference. The first constraint, Equation 2.6, ensures that each link only has
one outcome o. Equation 2.7 is a budget constraint where each network configuration has a cost
of implementation C; , . Equation 2.8 imposes a total area constraint which conserves the total
network area. Equation 2.9 further specifies this to each link, which cannot gain additional width.
Equation 2.9 forces the total values of I, a,,, A,and Z; 50 to be non-negative.

2.2.4 Step 2- Modified Space Allocation Optimization using Area Constraints

An alternative formulation of the second-step optimization is presented for cases where
the actual values obtained in Step 1 are unavailable or infeasible to implement. In such scenarios,
the allocation of interaction plane length (1), mode-specific areas (a,), and total area (4) may
instead be determined based on local priorities and needs. In this version of the formulation,
values of /, a,, and A4 are treated as fixed constraints, and accessibility is maximized directly as
opposed to minimizing the area between the predicted and optimal NFDs.

maxzzZi,nqzo(xl,o) Eq2.11
C L (Eq2.11)

S.t.
z xl,o = 1 Vl (S L
L (Eq2.12)
Z Z xl,oCl'o <B
L oo (Eq2.13)
Z Z (AL o) + Z A.(1,0) <A,
e - (Eq 2.14)
Z Wio X0 < W,
= (Eq 2.15)

, >
I; Amt Aer,m|20 = 0 (Eq 216)
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> > Aoz A" - A%
LEL o €0 (Eq 217)
* *EQ
ZZA(Z,O)SA + A*5% (Eq 2.18)
leL o €0
Z Z A (l,0) = Ay — A55%
leL 0 €0 (Eq 2.19)
* * 20
Z Z Apn(l,0) < Ay + A35% (Eq 2.20)
leL o €0
Z z I(L,0) 21" — I"5%
lEL 0 €0 (Eq 2'21)
* =0
ZZ I(L,0) <I" + I"5% (Eq2.22)
lEL o0 €0

Equations 2.12 - 2.16 reflect constraints on total area, budget, link width, and non-
negativity as outlined in the initial formulation. Equations 2.17 and 2.18 2.182.18restrict the
shared area A4 to be within a +£5% buffer of the optimal value 4" identified in Step 1. Equations
2.19 and 2.20 impose the same restriction for modal area, A;,. Equations 2.21 and 2.22 aim to
meet the optimal interaction plane value I” of Step 1 within a 5% buffer.

2.2.5 Step 2- Space Allocation Optimization with Additional Ethical Formulations

Both the NFD-based and optimal value-based formulations fall under a utilitarian
framework of ethics where the objective is maximizing total accessibility. By modifying the
objective function and introducing additional constraints aligned with ethical theories, this study
adapts applications of ethical theory, originally developed for transit network design, to the
context of bike network design [1]. The initial formulation covers a utilitarian approach. Other
principles considered are the sufficiency principle sets a minimum threshold of accessibility to
ensure no resident is excluded from basic needs, while the accessibility gap limits inequality by
regulating the maximum allowable difference in accessibility across residents. The maximin
formulation prioritizes maximizing accessibility for the least advantaged.

2.2.5.1 Sufficiency Criteria

The first additional constraint is based on the ethics framework of sufficiency, which
ensures that all areas meet some minimum threshold of accessibility. Sufficiency is implemented
by the addition of a constraint to either formulation.

z Z Zi, m|45 (x0) 2 S (Eq2.23)
M 1

Equation 2.23 ensures zonal accessibility within a 45-minute threshold should be greater
than S which is the threshold number of zonal accessibility to be reached.
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2.2.5.2 Accessibility Gap Criteria

The accessibility gap criterion aims to limit the difference in accessibility between the
worst-off and best-off areas. Worst-off and best-off can be defined in many ways; the difference
between zones of varying income, transportation modes, and accessibility are considered. The
constraints included for each of these considerations are shown in Equations 2.24, 2.25, and 2.26,
respectively.

Z Z11,mj20 — Z Zui,mp2o = 0 (Eq2.24)
M M
Zzi,B|20 —zzi,qzo =0 (Eq 2.25)
1 1
Z min (Z; ymj20) — Z max(Z; mj20) =0 (Eq 2.26)
M M

Equations 2.24 ensures that the lowest income zone, LI, receives equal or better total
accessibility than the highest income zone, HI. Equation 2.25 ensures that total accessibility by
bikes is at least as great as that by cars across all zones. Equation 2.26 ensures there is no
difference between the highest accessibility zone and the lowest accessibility zone. Each
constraint is added independently to the formulation giving three possible accessibility gap
results based on income, mode, and accessibility.

2.2.5.3 Maximin Criteria

The final ethical criterion considered is the maximin framework, which seeks to
maximize the outcomes for the least advantaged group. With the maximin formulation, the first
term of Equation 2.5 is changed to reflect disadvantage on the basis of income, mode, and
accessibility.

max > " 2y mizo(¥10) (Eq2.27)
M I
max Z Z; pi20(x10) (Eq 2.28)
1

max Z min (Z; m20) (Eq 2.29)
M

Equation 2.27 maximizes the access of the lowest income zone, LI. Equation 2.28
maximizes accessibility by bikes. Equation 2.29 maximizes the accessibility of the lowest
accessibility zone. When using the Modified Space Allocation Optimization using Area
Constraints, the maximin criteria objectives may be directly swapped with Equation 2.11. When
using the Space Allocation Optimization with NFD Area Minimization, however, the objective
function for each maximin criteria implementation would be as follows.
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K
max )" Zusmiao(10) = D (| G A 4 = G L, A A) ) (B1230)
M 1 m 0
K
max Z ZL', B|20(xl,0) - Z(l q:n(k:nll*!A:?’uA*) - qm(km' I' AmJA ) dk) (Eq 231)
1 m 0

K
max z min (Z; my20) — Z( ] g (ki I', An, AY) — @ (e, 1L Ay, A) dk) (Eq 2.32)
M m 0

In Equations 2.30, 2.31, and 2.32 the minimization of the maximin between the optimal
and predicted NFD curves is included. These objective functions are each swapped with the
objective outlined in the formulation of Equations 2.5 - 2.10 where the constraints are shown by
Equations 2.6 - 2.10 remain.

2.2.6 Step 2- Solution Algorithm

These formulations are implemented and solved using a Genetic Algorithm (GA) with
Python’s DEAP package. In this context, an individual represents a specific configuration of the
network, where each edge is assigned a value for x; , denoting the type and width of bike
infrastructure on that link. Each individual corresponds to a complete SUMO network reflecting
this configuration. To evaluate network performance, mode-specific trips are generated from the
centroid of each zone and routed to all other zones using the SUMO tool, duarouter, resulting in
trip lengths for each origin-destination pair and mode. For cyclists, this trip length is additionally
updated with the marginal rate of substitution of the cyclist stress index developed in the
literature [2]. Links with higher speed limits and less dedicated bike infrastructure increase the
stress index of cyclists, resulting in effective trip lengths of up to 100% longer, as shown in
Table 2.1.

Table 2.1 Marginal Rate of Substitution by Bike Lane Type

Speed Limit Type 1 Type 2 Type 3
25 mph 20% 10% 5%

30 mph 40% 20% 10%
35 mph 100% 50% 25%

Using the defined free flow speed, the distances of these routes are converted to travel
times between all zones by each mode, resulting in the count of OD pairs accessible within

defined time thresholds.

Construction costs are included for both the addition of bike lanes and the removal of
bike lanes that exist in the current network. The initial budget is set at $10 million, similar to
other projects that have been completed in the city. The values considered are estimates from a

recent construction proposal and are shown in Table 2.1 [3].

Table 2.2 Construction Costs by Infrastructure Element

Item Units Unit Cost
Painting Bike Lane sq.ft. $14
Installing Separation (curb) ft. $30
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Paint removal sq.ft. $10
Separation (curb) removal ft. $9
Repaving sq. yd. $30

Within the Genetic Algorithm (GA), several functions guide the search for optimal
solutions. Because random mutations often produce disjointed or unrealistic network
configurations, a custom operator was used to develop more geographically contiguous
solutions. The function biases mutation decisions based on the configuration of adjacent edges.
During mutation, the function iterates through each edge in the individual solution. For a given
edge, it retrieves the types of its neighbors and identifies the most frequently occurring type. If
the current edge differs from this type and a mutation probability threshold is met, the edge is
reassigned to the majority type among its neighbors. The crossover function combines parent
solutions by swapping edge types and occasionally re-randomizing both offspring. Additionally,
a custom repair function was developed to eliminate small, disconnected links of Type 2 or 3.
The function ensures that any group of contiguous edges assigned to the same type meets a
minimum cluster size. This repair mechanism is applied after mutation and crossover to enforce
a minimum spatial structure in solutions and reduce fragmented configurations. Finally, a
feasibility check ensures that individuals remain within the construction budget before being
admitted into the next generation. The construction cost of each configuration is calculated based
on the cumulative width and length of added or modified bike lanes. Individual solutions that
exceed the budget are either excluded or penalized, depending on their performance trade-offs.
This soft constraint allows the budget to be exceeded when substantial gains in accessibility or
NFD alignment justify the additional cost. Tournament selection is used to identify the fittest
individuals from each generation and guide the selection. In a A~way tournament, £ candidates
are randomly chosen, and the one with the highest fitness is selected to proceed.

This process is repeated to form the next generation until convergence of solutions is
reached. To determine when to stop the evolutionary process, convergence is measured using a
tolerance-based stopping criterion. Convergence is measured by tracking changes in the best
fitness value across generations. If the improvement is smaller than a set tolerance and number of
consecutive generations, the algorithm is considered to have converged and stops. This approach
ensures that the algorithm stops when improvements become negligible.

2.3 Results and Discussion

2.3.1 Step 1 Optimization Results

The first optimization step finds the optimal aggregate values of network attributes, shared area,
exclusive modal area, and interaction plane as described in the methodology. This nonlinear,
constrained optimization problem was implemented using Pyomo with the /POPT solver. The
implementation of this formulation resulted in solutions that converged after 51 iterations, as
shown in Figure 2.3 .
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Figure 2.3 Convergence of Step 1 Optimization

In IPOPT, convergence indicates that the first-order optimality conditions have been met
within specified tolerances, thus a locally optimal solution was obtained for the decision
variables. The resulting values of these network attribute decision variables (shared area, car
area, bike area, and interactions) that optimize the flow function ¢, as well as the locally optimal
objective value, are shown in

Table 2.3.

Table 2.3 Optimal Values of Decision Variables and Objective from Step 1
Variable Units Optimal Value
Total Flow veh/m/min 174.53
Car Area km? 0.91
Bike Area km? 0.88
Shared Area km? 0.16
Interaction Plane km 53.00
Critical Density Car veh/m? 0.47
Critical Density Bike | veh/m? 0.98

The optimal values include a car area and a bike area of similar values, 0.91 km? and 0.88
km? respectively. The shared area of 0.16 km? reflects a limited integration of shared space,
which has a negative relationship with capacity. This shared area is also associated with a
smaller interaction plane value of 53.00 km, which was previously identified as having a
negative relationship with capacity in the functional form for bikes. The resulting optimal curves
are shown in Figure 2.4 for both cars and bikes.
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Figure 2.4 Optimal Form of NFD for Evanston Network

The micromobility curve (green) demonstrates a higher overall capacity, peaking at
approximately 110 veh/min/m near a density of 1 veh/m?. The car mode curve (blue) reaches a
lower peak flow of about 60 veh/min/m at a density just below 0.5 veh/m?. This also reflects the
efficiency of micromobility vehicles, which contribute more to the total flow being maximized.
Though cars and bikes are allocated almost equal mode-exclusive areas in the decision variables,
bikes achieve almost double the flow with higher densities.

2.3.2 Step 2 Optimization Results- Utilitarian Formulation

This optimal curve is then implemented in the GA framework with the formulation
described in Equations 2.5 - 2.10, which aims to generate a network configuration that both
minimizes the area difference between its estimated NFD and the optimal curve and maximizes
accessibility. This section presents the results and analysis of the network solution, which is
based on utilitarian allocation. To evaluate the performance of the Genetic Algorithm across
different formulations, convergence behavior and population diversity are tracked over
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generations. Figure 2.5 illustrates the progression of best and average fitness values as well as
the diversity of solutions to validate the convergence towards near-optimal solutions.
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Figure 2.5 Convergence of Utilitarian Solution

Both best and mean fitness demonstrate improvement within the first 10 generations, with
convergence observed shortly thereafter. The diversity of the population over generations
measures the spread of solutions. The decline in diversity in early generations reflects strong
selection pressure, followed by stabilization near zero, suggesting convergence to a narrow
region of the solution space.

The GA seeks to minimize the area between a solution network’s NFD and the optimal
NFD found in Step 1; each curve and the corresponding difference in area are shown in Figure
2.6.

Bike Flow-Density Curves: Actual vs Optimal Car Flow-Density Curves: Actual vs Optimal
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Figure 2.6 NFD and Optimal NFD of Utilitarian Network Design

Across the simulated scenarios and the Step 1 optimization, the efficiency of
micromobility vehicles has been highlighted. However, when considering the area between the
curves, the car NFD is able to achieve closer-to-optimal performance. This discrepancy arises
from the solution not reaching the specific micromobility-exclusive area values that yield
optimal flow, likely due to budget constraints. The actual network with bike lane link type
selections can be seen in Figure 2.7.
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Figure 2.7 Utilitarian Design of Evanston Bike Network with Type 2 and Type 3 lanes

To best visualize the locations of bike lanes, the network is shown twice, first with Type 2
lanes highlighted and then Type 3 lanes highlighted. The optimized network demonstrates a
widespread and fairly uniform selection of Type 3 links (teal), particularly concentrated along
major corridors and key north-south and east-west connectors. Type 2 (orange) lanes are added
to local streets and peripheral areas. Overall, the spatial pattern indicates a strategy of
concentrating high-quality infrastructure along primary routes aligning with a utilitarian goal of
maximizing system-wide accessibility and flow. While the distribution of the network links is
valuable, understanding the effectiveness of the design requires examining the underlying
performance metrics, which are quantified in Table 2.4.

Table 2.4 Metrics of Utilitarian GA Solution

Metric Units Value Target/Upper Bound
Car 20-min Accessibility ~ # trips 2109 3306

Bike 20-min Accessibility  # trips 840 3306

Total 20-min Accessibility # trips 2949 6612
Construction Cost $ 9,974,335 10,000,000
Car Area km? 0.43 0.91
Shared Area km? 1.13 0.16

Bike Area km? 0.40 0.88
Interaction Plane km 228.02 53.00
éfgﬁzﬁf;naftfaﬁm veh¥m™min  45.61 0.00

Area between Bike NED -y sy 133,18 0.00

(optimal and actual)
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In terms of 20-minute accessibility, the algorithm achieves 2,949 connected zones for both
car and bike modes, aligning with the objective of maximizing overall accessibility. However,
this underperforms relative to the target, reaching only 2,109 car trips and 840 bike trips. Car and
bike areas fall below the desired 0.91 km? and 0.88 km?, respectively, while shared area remains
over-allocated at 1.13 km? compared to the optimal 0.16 km?. Both car and bike networks exhibit

divergence from the ideal curves (45.61 and 133.18 veh?/m?*/min, respectively).

2.3.3 Step 2 Optimization Results- Additional Ethical Formulations

In this section, comparisons of outcomes under alternative ethical frameworks are shown.
These include sufficiency- and priority-based approaches, which emphasize equitable access
rather than total network efficiency. Figure 2.8 presents the convergence behavior for each
fairness-oriented objective tested in the Genetic Algorithm framework.
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Figure 2.8 Convergence of GA Over Fairness Objectives
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Across all objectives, the algorithm exhibits convergence within the first few generations.
For most cases, both best and mean fitness improve steadily before plateauing, indicating that the
population quickly evolves toward high-quality solutions. Notably, objectives like Accessibility
Gap Income and Accessibility Gap Access show continued incremental gains across nearly 50
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generations, suggesting a slower and more prolonged search process. In contrast, objectives such
as Utilitarian, Maximin Mode, and Maximin Access converge rapidly, often stabilizing within the
first 10—15 generations. These differences indicate varying levels of search complexity: some
objectives reach high-performing solutions quickly, while others require sustained optimization
over a longer period to reach convergence. Figure 2.9 shows diversity, measured as the standard
deviation across individuals in each generation.
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Figure 2.9 Diversity over Generations of GA

The diversity plots generally show a sharp drop in the early generations, which is expected
as the algorithm quickly exploits promising regions of the search space. An exception to this
trend is observed in Accessibility Gap Access, where diversity remains volatile. This reflects
trade-offs within the solutions where improving accessibility in one low-access area may
inadvertently reduce accessibility in another.

To evaluate how well each network aligns with the optimal NFD found in Step 1, the
estimated NFD curves of networks generated by the GA are compared to the optimal curve. This

optimal curve represents the theoretical upper bound of flow performance achievable. The plots
in

Existing Utilitarian Sufficiency
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Figure 2.10 illustrate the fitted NFD for each fairness objective alongside the optimal
reference to assess the ability of each objective to reach optimal states.
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Figure 2.10 Difference Between Optimal Micromobility NFD and Best Solution from G

Across all networks, a consistent pattern is shown: the optimal flow curve (dashed orange)
lies above the actual flow curve (solid blue), indicating that these solutions do not reach the
optimal maximized flow. This may reflect the infeasibility of the macroscopic solution applied to
the link-choice optimization. Although constraints are imposed to ensure the overall area is
constant on the aggregate network-wise estimation, the optimal areas may not be able to be

created through the summation of individual links.

Furthermore, the resulting GA optimized curves are strikingly similar to each other
despite their alternative objectives and constraints. This pattern, as well as the relationship
between budget and the optimal NFD, shows the limitations of achieving either optimality in
terms of NFD deviation or differentiation across the varied ethical objectives. To complement

the micromobility analysis,



26

Sufficiency

Car Flow-Density Curves: Actual vs Optimal

Utilitarian

Existing

Car Flow-Density Curves: Existing Network

100 =

T ——
50 =
{ .
¥ —— Actual Filiw,[Car)
== Optimal Flow (Gar)
Area Between Curv.s\

I
2

Density

Accessibility Gap Mode

Car Flow-Density Curves: Actual vs Optimal

Flow

100 =

Flow
\
!
I
/

~
Actual Fidw,(Car)
-_— al Flow {Gar)
Area en Curles,
~

0 T
2

Density

Maximin Mode

Car Flow-Density Curves: Actual vs Optimal

100 —
5 O ——
L5 = -~
~
tual Fidw [Car)
= Opf | Flow (Gar)
Area Bebvgen Curles
a T —

2
Density

Car Flow-Density Curves: Actual vs Optimal

100 =

o
s0 =~
-
——Atual Flliw,(Car)
w— Opt Flow (€ar)
Area Be Cu
T
2

Density

Accessibility Gap Income

Car Flow-Density Curves: Actual vs Optimal

Flow

100 =

Flow
N

!

I
/

50 =
~
Actual Filiw,(Car)
-_— al Flow (Gar)
Area en Curles
~

0 T
2

Density

Maximin Income

Car Flow-Density Curves: Actual vs Optimal

100 —
_g O ——
& 50 = ~
-~
—_ | Fidw (Car)
w— Opti low (Gar)
Area Betwesg Curlres
0 b
T
o 2
Density

compared against a reference optimal curve.

100 —

Flow
N
I
]
/

ual Flaw Car)
- al Flow (€ar)
Area een Curles
Y
1
2

Density

Accessibility Gap Access

Car Flow-Density Curves: Actual vs Optimal

100 =
g o —
[ ~
~
Actual Fléw,(Car)
- al Flow (6ar)
Area een Curles
[ T —

2
Density

Maximin Access

Car Flow-Density Curves: Actual vs Optimal

100 -
; o
L 50 - -~
-~
ual Fitw Car)
- Opl | Flow {Gar)
Area B n Cures
o T -}

2
Density

Figure 2.11 presents the fitted NFD curves for cars under each fairness objective, again
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Figure 2.11 Difference Between Optimal Car NFD and Best Solution from GA

These curves follow similar patterns to micromobility vehicles, again indicating a
structural incapability of the network to reach optimal due to limited physical space or budget.
Compared to micromobility, the car flow curves exhibit less deviation from the optimal. Here,
the maximin objectives perform well with Maximin Mode and Maximin Income, achieving the
smallest area between curves, followed by the Utilitarian objective.

The results of each formulation in terms of the various metrics optimized for each

objective are shown in Table 2.5.



Table 2.5 Evaluation Metrics of GA Results by Ethical Framework
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Network Existing Utilitarian Sufficiency
Target Target Target

Value Attainment Value Attainment Value Attainment
20-minute Access (Car) 2109 -36.21% 2109 -36.21% 2105 -36.33%
20-minute Access (Bike) 647 -80.43% 840 -74.59% 859 -74.02%
20-minute Access (Total) 2756 -58.32% 2949 -55.40% 2964 -55.17%
45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00%
45-minute Access (Bike) 2434 -26.38% 2714 -17.91% 2744 -17.00%
45-minute Access (Total) 5740 -13.19% 6020 -8.95% 6050 -8.50%
Low Income Access 46 -59.65% 49 -57.02% 46 -59.65%
High Income Access 37 -67.54% 40 -64.91% 39 -65.79%
Most Accessible 69 -39.47% 74 -35.09% 76 -33.33%
Least Accessible 13 -88.60% 14 -87.72% 14 -87.72%
Construction Cost ($) - 10,000,000 9,974,336 25,664 9,791,746 208,254
Area to Optimal (Car) 72.82 -72.82 45.61 -45.61 45.59 -45.59
Area to Optimal (Bike) 182.08 -182.08 133.18 -133.18 140.54 -140.54

Accessibility Gap (Income) Accessibility Gap (Mode) Accessibility Gap (Access)

Target Target Target

Value Attainment Value Attainment Value Attainment
20-minute Access (Car) 2109 -36.21% 2106 -36.30% 2109 -36.21%
20-minute Access (Bike) 863 -73.90% 883 -73.29% 827 -74.98%
20-minute Access (Total) 2972 -55.05% 2989 -54.79% 2936 -55.60%
45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00%
45-minute Access (Bike) 2718 -17.79% 2688 -18.69% 2665 -19.39%
45-minute Access (Total) 6024 -8.89% 5994 -9.35% 5971 -9.69%
Low Income Access 50 -56.14% 49 -57.02% 46 -59.65%
High Income Access 39 -65.79% 40 -64.91% 40 -64.91%
Most Accessible 74 -35.09% 74 -35.09% 71 -37.72%
Least Accessible 14 -87.72% 14 -87.72% 14 -87.72%
Construction Cost ($) 9,966,250 33,750 9,992,368 7,632 9,844,529 155,471
Area to Optimal (Car) 44.97 -44.97 45.94 -45.94 46.65 -46.65
Area to Optimal (Bike) 131.86 -131.86 135.54 -135.54 131.30 -131.30




Maximin (Income)

Maximin (Mode)

Maximin (Access)

Target Target Target
Value Attainment Value Attainment Value Attainment

20-minute Access (Car) 2109 -36.21% 2109 -36.21% 2110 -36.18%
20-minute Access (Bike) 870 -73.68% 853 -74.20% 850 -74.29%
20-minute Access (Total) 2979 -54.95% 2962 -55.20% 2960 -55.23%
45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00%
45-minute Access (Bike) 2758 -16.58% 2685 -18.78% 2702 -18.27%
45-minute Access (Total) 6064 -8.29% 5991 -9.39% 6008 -9.13%
Low Income Access 50 -56.14% 50 -56.14% 50 -56.14%
High Income Access 40 -64.91% 40 -64.91% 36 -68.42%
Most Accessible 74 -35.09% 73 -35.96% 73 -35.96%
Least Accessible 14 -87.72% 14 -87.72% 14 -87.72%
Construction Cost ($) 11,910,409 -1,910,409 9,928,178 71,822 9,985,509 14,491
Area to Optimal (Car) 40.52 -40.52 45.87 -45.87 46.30 -46.30
Area to Optimal (Bike) 108.61 -108.61 133.41 -133.41 127.40 -127.40
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All optimized networks preserve high levels of car accessibility within the 20-minute
window and full accessibility within the 45-minute window, where cars can reach 3,306
accessible zones, which is the maximum accessibility. While bike access increases substantially
over the existing network in all formulations, full accessibility in either window is not achieved.
This increased accessibility is most significant in the Accessibility Gap Mode network, allowing
236 additional zones compared to the existing network to be accessible to bikes within 20
minutes. Metrics for equity improve modestly in comparison. Access for low-income zones
increases in all scenarios, but only marginally. Construction costs vary by formulation, but all
formulations are just below the $10M budget except Maximin Income, though this resulting
network is also the most optimal in terms of closeness to the optimal curve for cars and bikes.

To visually compare the performance of network configurations optimized under
different ethical principles, radar plots are used. Each axis represents a key evaluation metric,
including total and mode-specific accessibility, construction cost, equity measures, and closeness
to achieving the optimal NFD. For interpretability, all axes are scaled such that higher values
indicate better performance, specifically, construction cost and NFD deviation have been
inverted so that lower raw values translate into larger positions on the plot. The resulting plots
are shown in Figure 2.12.
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Figure 2.12 Visual Metrics of GA Solutions by Ethical Formulation

The existing network serves as a baseline, characterized by high NFD deviation and
strong car accessibility, but limited bike accessibility and poor performance on equity-related
metrics. The Utilitarian solution achieves high overall accessibility across both 20- and 45-
minute thresholds. While Sufficiency yields the highest total 45-minute accessibility, it performs
poorly in 20-minute car accessibility and low-income access. Each of the accessibility gap
strategies performs best in the metric it targets, like bike accessibility, low-income access, or
coverage of the least accessible zones. Among all alternatives, the Maximin Income solution
stands out with high performance across nearly all metrics. However, this comes at the expense
of a higher construction cost, reflecting a trade-off between broad improvement and budget

efficiency.
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To better understand the spatial implications of each fairness objective, the resulting
network configurations are mapped across the grid. These maps in Figure 2.13 display the
assigned lane types on each edge, representing how the GA allocates space for cars and
micromobility under each formulation.

Existing Utilitarian Sufficiency Type

Accessibility Gap (Mode) Accessibility Gap (Income) Accessibility Gap (Access)

Maximin (Mode) Maximin (Income) Maximin (Access)

Figure 2.13 Network Representation of GA Solutions

In the existing configuration, micromobility infrastructure is sparse and fragmented, with
few corridors of high-quality separation (Type 3). The existing network also includes a corridor
where bikes are not allowed, identified by Type 0. In contrast, all optimized networks show
expanded coverage of Types 2 and 3. Utilitarian, Accessibility Gap Income, Accessibility Gap
Access, Maximin Income, and Maximin Mode all include corridors of bike infrastructure
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connecting the western side of the network from north to south. In many of the networks, Type 3
links are concentrated in the center of the network, while Type 2 links fill in the more residential
areas.

Since the objective function is designed to maximize zonal connectivity, mapping zonal
access metrics allows for analysis of the spatial distribution of accessibility. These maps, shown
in Figure 2.14, illustrate how accessibility varies across the network under different
configurations

Existing Utilitarian Sufficiency

© 2025 Mapbos & OpenStreetidap © 2025 Mapbox © OpenSireetitap ©2025 Mapbox © OpenSreetMap

Accessibility Gap (Mode) Accessibility Gap (Income) Accessibility Gap (Access)

© 2025 Mapbox & OpenStreetitap © 2025 Mapbox © OpenStreetitap © 2025 Magbox & OpenSireetitap

Maximin (Mode) Maximin (Income) Maximin (Access)

© 2025 Mapbos © OpenStreetidap © 2025 Mapbax © OpenSireetitap © 2025 Magbox © OpenSireetiap

Total Accessibility
- IS 4 2 T ., 2

Figure 2.14 Zonal Access of GA Solutions across Fairness Objectives
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The existing network shows distinct disparities between geographies, with many northern
and peripheral zones in orange or beige, reflecting low access. The existing network shows high
levels of connectivity in the centermost part of the map, where the downtown and most bike
infrastructure is concentrated. In contrast, all optimized networks show a substantial expansion
of high-accessibility areas, with more zones shaded in blue, particularly in the southern and
central portions of the grid.

Utilitarian and Sufficiency solutions increase overall accessibility with expanded
accessibility in the southern zones of the network and improvements in accessibility for the
north-west portion. The modal solutions, Accessibility Gap Mode and Maximin Mode have the
least uniform pattern of accessibility and are more similar to the Existing network but with
expanded coverage in the center. Maximin Income and Maximin Access emerge as the best
distribution of accessibility with the least low coverage zones of any solution.

The maps in Figure 2.15 visualize the spatial differences between each ethically guided
network design and the utilitarian benchmark. To highlight only the meaningful variations, links
that share the same treatment in both the displayed formulation and the Utilitarian solution are
omitted. The full grid of both the Utilitarian solution and the Existing network are also included
as reference points.
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Existing Utilitarian Sufficiency

Accessibility Gap (Mode) Accessibility Gap (Income) Accessibility Gap (Access)

Maximin (Mode) Maximin (Income) Maximin (Access)

Figure 2.15 Grid Networks by Ethical Formulation Compared to Utilitarian Results

Across all formulations, there are significant variations between solutions compared to the
utilitarian solution. In the Sufficiency scenario, a large number of links differ from the Utilitarian
configuration, especially with Type 2 links which are used to affordably expand access,
reflecting the Sufficiency objective’s aim to raise all users to a minimum acceptable level of
access. The Accessibility Gap strategies show more targeted variations. Both Accessibility Gap
Mode and Accessibility Gap Income have some of the longest connected corridors, creating more
low-stress accessibility for cyclists and connecting low-income zones. Accessibility Gap Access
appears to prioritize more widespread coverage of the network, including more investment on the
periphery. The Maximin principle designs demonstrate the most widespread changes relative to
the Utilitarian baseline. Maximin Mode and Maximin Income both result in dense reallocation of
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links, particularly shifting treatments in areas underserved by the Utilitarian plan, like the north-

west portion of the map. Maximin Access shows the most spatially extensive reconfiguration,

aligning with its goal to prioritize the zones with the lowest existing accessibility.
To assess the distributional impacts of each network configuration, cumulative

distribution curves illustrate the change in 20-minute bike accessibility relative to the existing

network. These plots represent the net gain or loss in access for each zone to observe which areas
benefit from the reallocation of space and which ones experience reduced connectivity. By

incorporating population size and median income, the curves highlight the tradeoffs between

efficiency and fairness, capturing both the "winners" and "losers" under each optimization

objective shown by Figure 2.16.
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Across all formulations, most zones experience improvements compared to the existing
network. However, some tradeoffs are visible in Maximin Mode, where some zones lose access
to benefit others. Across the distributions, there are no clear patterns in the variation in income,
both low- and high-income zones see losses in different objectives, and gains are distributed to
both high and low-income zones as well.

To better understand the tradeoffs between network efficiency and investment, a
sensitivity analysis of the two objective function components (accessibility and flow-efficiency)
over varying the construction budget was conducted. Figure 2.17 shows the resulting sensitivities
of the networks toward reaching optimal flow and improvement of accessibility.
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Across all scenarios, as construction cost increases, accessibility improves and NFD
deviation decreases, though no formulations achieve full accessibility or reach the optimal NFD
curve. The Utilitarian and Accessibility Gap Income formulations achieve the closest fit to the
optimal NFD curves. The Accessibility Gap Mode and Maximin Mode formulations achieve the
highest accessibility, which is achieved through the prioritization of bike accessibility. When
budgets are limited, the solution tends to preserve much of the existing network. However, even
modest additions lead to noticeable improvements in accessibility compared to the baseline (grey
line). For example, in Accessibility Gap Mode, an investment of $96,000 yields 82 more
accessible zones. This improvement is achieved by adding bike lane infrastructure to the
network, particularly along a major corridor that was previously exclusive to cars (Ridge

Avenue).

To assess the accuracy of the GA's objective function and its underlying flow predictions,
each optimized network was re-simulated. The resulting flow-density curves were compared to
the predicted curves used during optimization and are shown in Figure 2.18.
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Figure 2.18 Difference Between Optimal and Actual NFD Curves and Simulated Relationships

This validation step verifies whether the simulated performance for each GA-optimized
network aligns with the predicted NFD. While these graphs reinforce the finding that the GA is
unable to find a network that meets the optimality defined NFD from Step 1, the predicted NFD
curves and simulated points align well.
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While the direct optimization network from the perspective of maximizing the function
qm(km, A, A, ) is feasible in the sense of meeting the imposed constraints; these results
suggest it is not feasible in the actual creation of a physical network that meets the optimal areas
found, especially when enforcing budget constraints.

24 Summary

This chapter introduces a novel, two-step framework for the macroscopic design of bike
lane networks. Building upon the network fundamental diagram (NFD) relationships identified in
the prior chapter, an optimization formulation is developed that finds flow-maximizing values of
the network attributes. The second step of the framework translates these optimal network
characteristics onto specific links within the Evanston network using a Genetic Algorithm (GA).
The GA selects configurations of links with no bike lanes, bike lanes, and separated bike lanes.
The objective of the GA is to maximize accessibility while minimizing the difference between
the theoretical curves of a solution network and the optimal shape found in Step 1. This solution
method includes custom operators, constraint handling, and a repair function to maintain solution
feasibility, improve convergence, and ensure spatial coherence of the proposed infrastructure.

To test how different ethical frameworks influence the resulting network design, the GA
is implemented under multiple fairness objectives: utilitarian, sufficiency, accessibility gap, and
maximin principle. Each of these formulations produces a distinct configuration of bike
infrastructure with varying levels of accessibility, equity, and efficiency. Despite these
differences, all optimized networks outperform the existing network, which is sparse and
fragmented.

Performance metrics, convergence behavior, NFD curve comparisons, and spatial maps
collectively illustrate how different objectives shape both the technical and social outcomes of
the network design. Cumulative distribution curves of access gains, differentiated by income and
population, reveal the extent to which each objective benefits or burdens specific zones. These
analyses demonstrate that while all objectives deliver gains, tradeoffs are inevitable, and fairness
criteria play a critical role in determining who benefits most.

Analysis of the resulting networks across all performance metrics highlights important
tradeoffs. The Accessibility Gap Mode formulation yields the largest gains in 20-minute bike
accessibility; however, Maximin Income is shown to be the best overall solution with strong
results across all metrics, including accessibility, equity, and efficiency, though it slightly
exceeds the allocated budget. In terms of zone-level accessibility, Maximin Access achieves the
best outcomes, with few low-access zones in the final network. When measuring improved
accessibility compared to the existing network, a small number of zones lose accessibility in the
Maximin Mode solution.

A sensitivity analysis to construction costs provides additional insight into how different
optimization goals respond to varying investment levels. Both accessibility and efficiency in
terms of the area between NFD curves respond to increased budget, resulting in smaller areas
between curves and higher accessibility values. Under increased budgets, the U'tilitarian
objective most closely reaches the theoretical NFD, while mode-based objectives (Accessibility
Gap Mode and Maximin Mode) deliver the highest aggregate accessibility gains with additional
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funding. Finally, a re-simulation of the GA-selected networks is used to validate the predictive
accuracy of the functional form developed. Taken together, these results provide a set of high-
performing solutions that reflect different priorities. By exploring alternative designs at a given
budget, planners can present the tradeoffs between equity, efficiency, and access in transparent
ways. Community input should guide the selection of objectives and final designs, ensuring that
the infrastructure reflects local values and the needs of those it is meant to serve.
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3 A MULTI-AGENT SIMULATION PLATFORM FOR URBAN STREETS
3.1 Introduction

Urban streets are dynamic environments where multiple types of users interact: cars, buses,
bicycles, pedestrians, delivery vehicles, rideshare vehicles, etc. These interactions shape safety,
efficiency, and overall street functionality. Modeling such complexity requires a framework that
captures both predictable flows and stochastic events. This chapter presents a multimodal urban
traffic modeling framework, designed to simulate the interplay between flowing and stopping
agents and their interactions. By conceptualizing traffic as a combination of flows, stops, and
localized interactions, the framework allows realistic simulation of street-level dynamics and
assessment of design and operational performance.

Street dynamics operate across multiple spatial scales. At the city-wide scale, models focus
on broad operations, such as rideshare fleet movement, public transit network design, and vehicle
repositioning, providing insights into demand concentrations and likely flow corridors. At an
intermediate scale, such as a neighborhood or corridor, sub-network models capture more
localized features, including bike lane design, transit stop placement, signal timing, and shared
mobility dock locations. These models reveal nuances in how different street users interact in
specific areas. At the street-level scale, attention is on micro-scale interactions, such as a double-
parked delivery truck, a bus pulling into a stop, pedestrians crossing mid-block, or cyclists
navigating around obstacles. While higher-level models provide expected flows, the precise
timing and locations of these events are stochastic, driven by variability in where and when
agents stop and by the interactions among them, which may cause delays, conflicts, or rerouting.

Urban street users can be classified as either flowing or stopping agents. Flowing agents
primarily travel through the street to reach their destinations, including vehicles moving along a
corridor or cyclists riding along a bike lane. Stopping agents, in contrast, treat the street as a
destination or task location; examples include rideshare pickups, buses pausing at stops, delivery
trucks temporarily stopping, or pedestrians crossing mid-block. Interactions between flowing and
stopping agents are central to the functionality and safety of streets, necessitating a modeling
framework that can represent these interactions accurately.

3.2 Simulation Framework

The framework represents flowing agents with distributions of speeds and flow rates to
capture natural variability and stopping agents with stochastic stop locations and dwell times. It
incorporates street infrastructure such as lane widths, sidewalks, bike lanes, and curb allocations,
which influence agent movement and interactions and affect throughput, safety, and overall user
experience. The framework simulates complex interactions, including lane blockage by delivery
trucks, unexpected pedestrian crossings, or bus stop delays, allowing evaluation of congestion,
safety, and efficiency. By integrating stochastic demand, infrastructure features, and interaction
rules, this simulator provides a tool for understanding and testing urban street designs under
realistic conditions.

Each agent in the simulation is represented as an independent entity with its own decision-
making capabilities. Agent types include autonomous vehicles (AVs), connected vehicles (CVs),
human-driven vehicles (HDVs), bicycles, and pedestrians. Roadways can be configured flexibly;
for a 60 ft right-of-way, approximately 200 different layouts are possible, specifying vehicle lane
widths and directions, bike lane placement and width, and pedestrian sidewalk dimensions. The
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simulator models hierarchical agent movement, including longitudinal and lateral dynamics,
infrastructure-related decision processes, and multi-modal interactions. Figure 3.1 outlines some
of these layouts.
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Figure 3.1 Various Simulation Street Layouts
33 Base Movement Models
A number of models are implemented in this simulator to represent agent movement. Some

of them are borrowed from the literature, others are novel models. Figure 3.2 show these models
implemented from the literature.
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Figure 3.2 Movement Models from Literature
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3.3.1 Automated Vehicle Control Model

Automated vehicles are modeled using a longitudinal control framework inspired by [4]
where vehicles continuously sense the environment and react to leader motion. The effective
stopping distance for vehicle ifollowing i — 1is:

vl

decc
2ai"c]

Ax, = (x;oq —x;— li_) + vt + (Eq3.1)

where x; is the longitudinal position of vehicle iin meters, v;is its speed in meters per
second, [;_ is the length of the leading vehicle, 7is the driver response delay in seconds, and
a®¢ is the maximum comfortable deceleration of the leader in meters per second squared.

Because the sensing system has limited range, the usable stopping distance is
Ax = min(SensorRange, Ax,,) (Eq3.2)

The maximum safe speed that ensures stopping within this distance is given by:

Vmax = _|—2a%¢Ax (Eq 3.3)

where af®¢is the maximum deceleration of vehicle i. The vehicle’s desired acceleration

incorporates the leader’s acceleration a;_4, the relative velocity (v;_;—v;), and the difference
between the current spacing s;and the desired spacing Spqf:

af (t) = ko [a;-1(t = D] + ky[vi1 (t = T) —vi(t = D] + ka[si(t = 1) = Sref]  (Eq3.4)
Here, k,, k,, and kgare control gains, and s,¢is the desired spacing, calculated as the

minimum of three components: the minimum gap sy, the system-based spacing Sgystem = Vi T,

and the safe-stopping spacing Sgare = V21 /[2(1/a8®¢ — 1/a%)]. The actual acceleration

applied is bounded to ensure compliance with the safe-speed limit:
a;(t) = min (afl (), k(vmax - vi(t))) (Eq3.5)

where kmoderates convergence toward the safe-speed boundary. This formulation
guarantees that AVs maintain safe headways while responding smoothly to surrounding traffic.

3.3.2 IDM for Connected Vehicles

Connected Vehicle and longitudinal dynamics follow the Intelligent Driver Model (IDM)
[5]:
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v\S  [s*(v,Av)\°
a=ay (1 - (U_O) - <T> ) (Eq 36)

where a,is the maximum acceleration, vthe current speed, vythe desired free-flow speed,
sthe gap to the leader, and dan acceleration exponent. The desired dynamic spacing is:

s*(v,Av) = s + vT +

vAv
Eq3.7
2Jab (Eq3.7)

with sythe minimum gap, T'the desired time headway, Av = v — v)q,4¢r the relative speed,
and bthe comfortable deceleration.

3.3.3 Multi-Regime Prospect-Theory based Car-Following Behavior

Human drivers evaluate candidate accelerations using Prospect Theory (PT) [6]. Two
behavioral regimes are distinguished: uncongested (UC) and congested (C) [7]. The expected
utility of a candidate acceleration a,,is

Upr(ay) = P(C) - Usr(a,) + P(UC) - UPF (ay) (Eq3.8)

where USrand US¥ are regime-specific utilities, and P(C), P(UC)are probabilities derived
from local traffic density and spacing. Collisions are accounted for as

Upr(a,) = (1 - Pn,i) Upr(a,) — Pn,i k(v, Av) (Eq 3.9)

where p,, ;is the probability of collision and k(v, Av)is the crash severity function. Final
accelerations are stochastically sampled from

f(an) X eXp(ﬁPT UT(an)) (Eq 310)

3.3.4 Pedestrian and Bike Prospect Theory Model

Pedestrians and bicycles select speed vand heading wto maximize expected utility while
avoiding collisions [8]. Candidate velocities are evaluated using the subjective value function

SV (v, w) = (1 - align)sp-ratio® (Eq3.11)
where align = max (0, cos (w — goal,,)), sp_ratio = v/vp., Nis a utility weight, and

§controls sensitivity to deviations from the preferred speed vp,.or. Expected utility accounts for
collision probability p.yand collision weight W_:
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Uexpected = (1 - pcol) SV — Peol VVC (Eq 312)
Velocities are smoothed with a first-order lag

At

Vpew = U + ? (vdesired - 17) (Eq 313)
and stochastic noise is added:
Vtinal = Vnew + N (0, 0VAL) (Eq 3.14)

where tis the smoothing time constant and orepresents process noise.

3.3.5 MOBIL Lane Changing Model

Lane changes follow the MOBIL model [9]. A lane change is allowed if it satisfies both a
safety and incentive criterion. Safety requires that the follower in the target lane does not exceed
a safe braking limit bg,ge:

a'pr > bygre (Eq 3.15)

where a/is the acceleration of the back vehicle after the change. The incentive criterion
requires a net advantage to the driver:

a'(M") —a(M) > pla(B") —a'(B)] + ay, (Eq3.16)

where ajpand a,,are the ego vehicle accelerations before and after, pis the politeness factor, and
Arls @ minimum advantage threshold.

34 Novel Model Implementations

A number of models are newly implemented in this simulator to represent agent
movement. show these novel models.
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Figure 3.3 Novel Movement Models
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3.4.1 Lane Keeping Dynamics Model

Accurately modeling how vehicles stay within their lanes is essential for representing traffic flow
in urban environments. While longitudinal behavior such as acceleration and car-following has
been widely studied, lane-keeping behavior, the small, continuous lateral adjustments drivers
make to remain centered in a lane, requires separate consideration. These adjustments are
influenced not only by the physical boundaries of the lane, but also by nearby vehicles and the
driver’s ability to control lateral motion.

This section presents a physics-based lane-keeping model that represents lateral vehicle motion
as the result of three interacting effects: a restoring force that pulls the vehicle toward the lane
center, repulsive forces from nearby vehicles, and damping that limits abrupt lateral movement.
Together, these components produce realistic within-lane motion over time.

vy,i(t + 1) = yvy,i(t) + [Fcenter,i(t) + Fneighbor,i(t) + fi(t)]At (Eq 3'17)

Here, v,,;(t)denotes the lateral velocity of vehicle i, y € [0,1]is a damping coefficient that
controls how quickly lateral motion decays, and Atis the simulation time step. The term
&;(t)represents Gaussian noise with zero mean and variance o2, capturing stochastic variation in
human driving behavior. The lane-centering force pulls the vehicle toward the center of its lane
and is proportional to its lateral deviation:

Fcenter,i(t) = _ﬁcenterdi(t) (Eq 3-18)

where Beener > 0is the centering force coefficient and d;(t)is the signed lateral distance between
the vehicle’s current position and the lane centerline. The negative sign ensures that deviations to
one side generate forces in the opposite direction, producing a stabilizing effect similar to a
spring. To maintain lateral separation from nearby vehicles, the model includes a neighbor
repulsion force that decreases with distance:

Fneighbor,i(t) = Bneighbor Z sgn (yi(t) —Yj (t)) /rij (t)z (Eq 3-19)

JEN;(t)

In this expression, Bpeighvor > Ocontrols the strength of repulsion, V;(t)is the set of neighboring
vehicles, and 7;;(t)is the Euclidean distance between vehicles iand j. The sign function ensures
that the force pushes vehicles laterally away from one another.

Together, these equations describe a stable and flexible lane-keeping model that captures
realistic lateral behavior while remaining computationally efficient for large-scale traffic
simulations.
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The model is calibrated using real-world trajectory data of human drivers from the Third
Generation Simulation (TGSIM) dataset collected at George Washington University's Foggy
Bottom campus in Washington, D.C. [10].Through multi-objective optimization using genetic
algorithms, parameter sets are identified that best reproduce observed lateral velocities,
achieving an acceptable fit on validation data. While the current calibration focuses on human
driving behavior, the model framework is designed to accommodate autonomous vehicle (AV)
behavior in future simulation studies through parameter adjustment, particularly reduced
stochastic noise (o) to reflect more precise lateral control.

3.4.2 Car/Ped Stopping Model

Vehicles approaching stops like rideshare pickup or drop-off, buses, or delivery vehicles
approaching stops decelerate smoothly:

_ ( v? ) (Eq 3.20)
a =min| —————, Anax

2 dremaining

where vis current speed, apaxthe maximum comfortable deceleration, and dremainingthe
distance to the stopping point. Lateral adjustments are applied for the car to pull-over or double
park:
Yoew = ¥ + v sin(0) At (Eq3.21)

with Othe drift angle toward lane edge.

3.4.3 Drift-Diffusion Model (DDM) for Pedestrian/Bicycle Crossing Decisions

The drift diffusion model Implementation is as in the Phase I report for this project [11].

3.4.4 Shared-Lane Yielding Model

The Shared Lane Yield (SLY) Model simulates interactions between bicycles and cars in
non-traditional shared lanes, where bicycles may laterally adjust to allow vehicles to pass. Unlike
conventional lanes, lateral movement is used to resolve potential conflicts rather than strict lane
discipline. In the SLY framework, bicycles detect approaching vehicles and yield toward the
edge of the lane if they are putting the car at a significant disadvantage. Cars, in turn, continue
forward, passing around the bicycle without slowing. Lateral yielding and passing movements
are executed gradually using a small drift angle, ensuring smooth and realistic motion

Bicycles decide to yield based on the potential disadvantage imposed on a following
vehicle, measured as the reduction in expected acceleration if the bicycle were present:
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disadvantage = |Qyith pike — Awithout bikel (Eq 3.22)

If this value exceeds a threshold, the bicycle politely drifts toward the lane edge, allowing
cars to pass safely. The lateral motion toward the lane edge is governed by:

Xnew =X +V-cos(0)At, Vpew =y +v-sin(0) At (Eq 3.23)

where vis the agent’s forward speed and 6is a fixed drift angle (10°) toward the target
lateral position. Longitudinal acceleration is updated according to the forward speed.

Bicycles move laterally to avoid impeding cars, while cars maintain their course and speed,
passing on the open side of the lane. Once the vehicle has passed, the bicycle returns to the lane
center smoothly. This model captures realistic bicycle—car interactions in shared lanes, where
bicycles yield laterally while vehicles pass, using smooth drift dynamics to ensure safety and
continuity of motion.

3.4.5 Stopped Vehicle Avoidance Model

Vehicles approaching stopped cars follow a hierarchical navigation strategy, prioritizing
lane changes, then lateral avoidance if necessary, and incorporating cooperative behavior for
merging vehicles. Each vehicle evaluates movement priorities in the following order: conflict
resolution, stopping behavior, discretionary lane changes using MOBIL, shared lane yielding,
and stopped vehicle avoidance as a fallback. When possible, vehicles attempt a discretionary
lane change to pass the stopped obstacle, considering safety and acceleration benefits.

If a lane change is not feasible, lateral avoidance is applied by drifting to the side of the
lane to maintain a lateral clearance from the stopped car. Vehicles adjust acceleration to maintain
a passing speed. The model uses a three-state machine: Approaching in which the vehicle drifts
toward the target lateral position; Passing, maintaining the lateral clearance alongside the
stopped vehicle; and Returning, in which the vehicle returns to the lane center once past the
stopped car by 5m longitudinally.

Cooperative behavior occurs when the stopped vehicle is in a waiting-to-merge state.
Approaching vehicles reduce speed if feasible; otherwise, they navigate around the obstacle. If
the slowdown creates a sufficient 3-second gap, the stopped vehicle merges back into traffic.
Once past the obstacle, vehicles clear the avoidance state and resume normal car-following
behavior.

Together, these models implement a hierarchical navigation system in which vehicles first
attempt lane changes to pass pulled-over cars, fallback to lateral avoidance within the lane if lane
changes are not possible, and apply cooperative strategies when interacting with stopped or
merging vehicles. This is a unique feature of the simulator, as most traffic models assume a
simple FIFO behavior where stopped vehicles form a queue behind them. By allowing vehicles
to navigate around stopped agents on links, the model more realistically represents urban driving
behavior and produces credible macroscopic traffic patterns.

3.5  Hierarchy of Agent Movements
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Given the substantial number of potential movement models, this simulator uses a hierarchical
structure for how agents choose their movements. The agent movement model implements this
hierarchical decision structure at every simulation time step. For each agent, candidate actions
are evaluated sequentially across the four layers, with higher-priority layers preempting lower
ones. If a safety response is triggered, such as emergency braking or evasive lateral motion, that
action is executed immediately and no further decisions are considered for that time step. If no
safety-critical condition is present, agents with localized objectives, such as reaching a curbside
stop, transit platform, or crossing location, enter the strategic layer, where route-aligned lane
choices and deceleration plans are generated to reach the target safely. In the absence of strategic
demands, the tactical layer evaluates discretionary behaviors, including lane changes governed
by incentive and safety criteria, yielding in shared spaces, or lateral avoidance of stopped
vehicles. When none of the higher layers produce an action, agents default to the operational
layer, where longitudinal and lateral motion are determined by their base movement models,
such as car-following, lane-keeping, or pedestrian and bicycle velocity selection. This
hierarchical evaluation is performed independently for each agent at every simulation time step,
ensuring that immediate safety is always prioritized while allowing longer-horizon objectives
and discretionary behaviors to emerge naturally from the interaction of agents and infrastructure.
This is outlined in Figure 3.4.
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While the preceding sections define the microscopic motion rules for autonomous vehicles
(AVs), connected vehicles (CVs), and human-driven vehicles (HDVs), the primary value of
these models lies in the macroscopic traffic phenomena that emerge from their interaction. To
illustrate this, a simple bidirectional corridor is simulated in which vehicles enter at a constant
flow rate, and five pedestrian jaywalking events are introduced as localized disturbances. As
vehicles decelerate to yield to pedestrians, these disturbances propagate upstream as backward-
moving shockwaves in the space—time trajectories. Despite operating under the same geometric
and demand conditions, the three vehicle classes exhibit clearly separated speed—density
relationships, reflecting differences in control precision, reaction time, and headway selection.
Autonomous vehicles recover most rapidly from pedestrian-induced slowdowns due to
conservative gap-keeping and responsive control, connected vehicles exhibit moderate recovery
as information sharing reduces but does not eliminate variability, and human-driven vehicles
recover the slowest, with the greatest dispersion in speeds and headways. These differences are
visible both in trajectory diagrams (Figure 3.5) and in aggregated speed—density plots (Figure
3.6), where pedestrian crossings appear as localized deviations whose dissipation rates vary by
vehicle type. Overall, the results demonstrate that the proposed microscopic rules generate
realistic macroscopic behavior, including shockwave formation, heterogeneous recovery
dynamics, and mode-specific speed—density patterns consistent with established traffic-flow
theory.

Automated Vehicle Trajectories with Pedestrian-Induced Disturbance
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Connected Vehicle Trajectories with Pedestrian-Induced Disturbance
Position vs Time
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Figure 3.5 Trajectory Plots of Traffic Stream Recovery
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4 CONFLICT CHARACTERIZATION AND SEVERITY ANALYSIS
4.1 Introduction

The previous chapter described how agents navigate the street environment: pedestrians
weaving through other pedestrians, cyclists negotiating speed and stability, and vehicles
accelerating, braking, changing lanes, and yielding to others roadway users. These behavioral
models generate agent trajectories based on local observations of neighbors. But even with
realistic movement models, conflicts are not avoided altogether. Limited perception ranges,
heterogeneous reaction times, and imperfect predictions of others’ intentions mean that agents
will inevitably encounter situations where paths intersect in unsafe ways. Understanding how
these conflicts emerge, and what makes some far more dangerous than others, reveals how street
design directly shapes safety outcomes.

Crucially, a conflict between two vehicles does not pose the same level of risk as one
involving a pedestrian, even if the spatial arrangement and time to collision are identical. This
motivates a dual-metric framework: Time to Collision (TTC) captures the temporal urgency of
an interaction, while Impact Severity (IS) captures the potential consequence if the conflict were
to result in collision. Weighting conflicts by both metrics distinguishes designs that merely
reduce the number of interactions from those that eliminate severe ones.

4.2 Conflict Detection Methodology

4.2.1 Time-To-Collision (TTC) Conflict Identification

Physical proximity alone does not define a conflict. Relative speed, direction, timing, and
agent type all shape whether an interaction is dangerous. A fast-moving vehicle approaching a
cyclist head-on represents a more critical interaction than two pedestrians passing close together;
likewise, interactions involving vulnerable road users generally carry greater risk than those
between similarly protected agents. To systematically identify when agents are on paths that may
intersect dangerously, this study uses a vectorized Time-to-Collision (TTC) calculation at each
simulation step. For every pair of agents on the same link, TTC estimates the time remaining
until collision if both agents maintain their current velocities. The TTC between agents i and j is

defined as:
GTTC; = dij adjusted (Eq4.1)

vapproach

Here, d;; agjusted 18 the separation distance adjusted for agent dimensions, and Vapproach 18

the relative velocity projected onto the line connecting the two agents. Diverging or negative
TTC values are discarded. A conflict is recorded when TTC is positive, below a 3-second
threshold, and the pair is on a converging trajectory.

4.2.2 Conflict Severity Determination

TTC identifies when an agent is facing a situation requiring an evasive action, but it does
not quantify the potential harm of a resulting collision. TTC is fundamentally a binary filter
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where either the TTC is low enough to constitute a conflict or it is not. It cannot distinguish a
minor low-speed interaction from a high-energy collision involving a vulnerable road user.

To capture the consequence dimension, an Impact Severity Metric is introduced, grounded
in collision physics and modeled against well-established injury risk benchmarks in the
literature. This metric is designed for comparative evaluation and system planning, not precise
injury prediction. Its purpose is to reflect the non-linear increase in harm with speed and mass
asymmetry and to provide a normalized, dimensionless measure for comparing conflict severity
across agent types.

For a hypothetical two-body perfectly inelastic collision, total impact energy is:

—1,.2 — MM Eq4.2
E MVl =0 (Eq 4.2)
where v, =Il v; — v, || is is the relative speed. Energy is allocated to each agent

proportional to the other agent’s mass:

my _ m;
JEy =EX —— (Eq 4.3)

EZZEX
m1+m2 m1+m2

Thus, when a heavy vehicle collides with a pedestrian or cyclist, the lighter agent absorbs a
disproportionate share of the impact energy, aligning with empirical vulnerability patterns.
Each agent’s severity is defined as:

S =—t (Eq 4.4)
Elhreshold,i

Where Eyesholq i 15 @ policy-based reference energy representing the onset of moderate to
high injury risk for that agent type. The thresholds are calibrated using standardized masses and
collision speeds drawn from widely used safety research, not individualized crash modeling.
They serve as consistent weighting factors that allow cross-scenario comparisons.

Table 4.1: Agent Severity Parameters

Agent Type | Mass (Kg) Vehicle Impact Speed E Threshold,i

Pedestrian 75 35 km/hr 3000
Cyclist 90 45 km/hr 6000
Vehicle 1,500 65 km/hr 60000

These thresholds are conservative, standardized policy weights chosen to ensure the metric
reliably flags interactions with meaningful safety implications.

Figure 4.1 plots severity as a function of relative speed for each collision pairing. All
curves exhibit the expected quadratic shape. The horizontal line at S = 1 marks the high-risk
severity threshold, showing where each collision type crosses into dangerous territory. The figure



56

highlights the dramatic sensitivity of pedestrians and cyclists to even modest impact speeds
relative to vehicle—vehicle collisions.

Severity as a Function of Relative Speed
by Collision Type and Affected Agent

Collision Type: Affected Agent
Vehicle-Pedestrian: Pedestrian Severity
Vehicle-Bike: Bike Severity
Vehicle-Vehicle: Vehicle Severity
Bike-Pedestrian: Pedestrian Severity
Bike-Pedestrian: Bike Severity
= S=1 Policy Threshold

(%)
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Relative Speed (km/h)

Figure 4.1 Severity Function

4.2.2.1 Brief Limitations

Although the severity metric captures the major differences across collision types, several
simplifying assumptions limit its precision.

First, this model assumes perfectly inelastic collisions. The model treats every collision as
if the two agents stick together and transfer the maximum possible amount of energy. Real-world
impacts often involve partial elasticity as vehicles rebound, cyclists glance off the hood,
pedestrians roll or slide. This assumption tends to overestimate severity for vehicle—vehicle
crashes, where energy is often absorbed by crumple zones or partially returned through rebound.
It may misrepresent cases where an agent is deflected rather than fully struck, such as a
pedestrian being brushed and spun rather than directly hit. In other words, the inelastic
assumption gives a conservative upper-bound estimate of energy transfer but does not account
for variations in collision mechanics.

Second, the thresholds represent policy-level risk, not medical injury modeling. The
calibrated energy thresholds correspond to transitions into “moderate-to-high risk™ zones, not



clinical injury probabilities or detailed biomechanics. They are intended for comparative safety
evaluation across scenarios.

Finally, angle of impact and secondary impacts like falling to the ground, sliding, or
striking another object are excluded.

Despite these simplifications, the metric provides a robust and consistent basis for
comparing relative conflict severity across different street designs, agent types, and scenarios.
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5 THE URBAN STREET DESIGN PROBLEM
5.1 Introduction

Urban street design can be framed as a multi-objective optimization problem in which
planners must balance competing goals within a highly constrained right-of-way. Two objectives
are central to this trade-off. The first is throughput, reflecting how efficiently people and vehicles
move through the corridor. The second is safety, operationalized as minimizing conflicts and
associated risk among street users. Improvements to one objective often come at the expense of
the other, making optimal design inherently dependent on how performance is evaluated.
Critically, performance is not a fixed property of a street layout. Instead, it is a function of
demand, which is inherently stochastic and varies by time of day, day of week, season, and
surrounding land uses. As a result, evaluating street designs under idealized or deterministic
demand assumptions risks misrepresenting real-world outcomes. To meaningfully compare
alternative designs, it is therefore necessary to first characterize what actual demand looks like
under realistic operating conditions.

5.1.1 Case Study Corridor: Belmont Avenue

To ground this analysis, a 200 m segment of Belmont Avenue in Chicago is used as a case study.
This corridor is relatively short but highly active, making it well suited for detailed observation
and simulation. The segment lies adjacent to the CTA Red, Brown, and Purple Line station and
is surrounded by a dense mix of land uses, including multiple coffee shops, retail stores such as
Target and Walgreens, restaurants, a hotel, and significant curbside activity. Together, these
features generate substantial pedestrian, vehicle, and delivery traffic throughout the day. Figure
5.1 outlines this study area.

o e : = Chii:ago
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Belmont (1) °  Annoy . N

Figure 5.1 Belmont Corridor

Field observations were conducted on a warm Saturday in November (approximately 65
°F), when outdoor activity levels were relatively high. Although demand increases further during
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the summer months, activity during the observation period was already substantial. In a single
hour, 12 pedestrians were observed jaywalking mid-block to access destinations such as
Walgreens and Taco Bell, despite the presence of marked crossings at both ends of the 200 m
corridor. Pedestrian volumes during this period were nearly comparable to vehicle volumes, and
nontraditional users, including a small autonomous delivery robot, were also present on the
sidewalk. These observations highlight the diversity of agents and the frequency of informal,
unscheduled interactions that shape safety and flow on urban streets.

Table 5.1 Field Counts

Mode / Activity Ist 15 min | 2nd 15 min | 3rd 15 min | 4th 15 min
Cars (Eastbound) 190 147 155 210
Cars (Westbound) 185 192 198 205
Buses (Eastbound) 2 3 1 3
Buses (Westbound) 2 1 3 2
Pedestrians (Eastbound) 144 152 130 103
Pedestrians (Westbound) 148 192 107 103
Bicycles 6 7 9 8
E-bikes 2 0 1 1
E-scooters 1 2 1 1
Trucks 1 3 2 1
Trolley 1 0 1 0
Delivery robot 0 1 0 0
Jaywalking pedestrians 3 2 4 3
Rideshare pick-up / drop-off 6 5 9 6

5.1.2 Demand Characterization and Simulation Framework

Using these field counts, a baseline demand schedule was constructed that distinguishes between
flowing agents and stopping agents. Flowing agents include pedestrians, cyclists, and vehicles
whose primary behavior is continuous movement through the corridor, characterized by desired
speeds and realized flow rates. Stopping agents include pedestrians crossing mid-block, curbside
deliveries, and other activities that temporarily disrupt traffic flow, characterized by the timing
and location of stops or crossings.

Because real-world demand is variable, this schedule represents only one possible realization of
activity on the corridor. To account for stochasticity, the simulation is run multiple times using a
Monte Carlo approach. For each run, flowing agents’ desired speeds and arrival rates are drawn
from probability distributions, while stopping agents’ crossing times and locations are randomly
perturbed within £2 minutes and =10 meters of their observed values. Each simulation run thus
represents a distinct but plausible realization of demand.

Simulations are executed in parallel, and performance metrics are aggregated across runs to
estimate expected outcomes. The framework overall is outlined in the flowchart shown in Figure
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Figure 5.2 Framework Flowchart
In practice, results stabilize after approximately 40 simulation runs, indicating convergence
of the estimated performance measures. This process yields robust estimates of both throughput
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and conflict outcomes for a given street design under realistic operating conditions. Figure 5.3
shows this convergence plot.
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Figure 5.3 Convergence of Severity Score

5.1.3 Feasible Street Designs

To systematically explore alternative street layouts, this study defines a bounded set of
feasible street designs based on geometric and operational constraints that reflect common urban
design standards. The goal is not to prescribe a single ideal configuration, but rather to identify
the full range of layouts that can physically fit within the available right-of-way while supporting
bidirectional travel and multimodal use.

All candidate designs are required to provide at least one vehicle lane in each direction,
ensuring continuous eastbound and westbound traffic flow. Let L.,iand L,.denote the number
of eastbound and westbound vehicle lanes, respectively; both must be positive integers. Each
vehicle lane is assigned a uniform width, denoted by w,;,, which is constrained to fall between
10 and 15 feet to remain consistent with standard lane design guidance.

Pedestrian infrastructure is explicitly represented through sidewalks on both sides of the
street. The width of each sidewalk, denoted by wg;4ewai, must be at least 3 feet. While this
minimum does not imply ideal pedestrian conditions, it establishes a lower bound that ensures
basic pedestrian accommodation in all designs.



62

Bicycle infrastructure is treated as optional. A binary indicator variable, z;., is used to
represent the presence or absence of dedicated bike lanes. When z,;. = 1, a bike lane is
provided on each side of the street, with each lane assigned a width wy;.between 3 and 8 feet.
When z,;. = 0, no dedicated bike lanes are included and the bike lane width is set to zero.

All design elements must collectively fit within the available cross-sectional roadway
width, denoted by W,,,;. This total width constraint ensures that sidewalks, vehicle lanes, and
bike lanes together do not exceed the physical right-of-way. Formally, the feasibility of a street
design is enforced through the following constraint:

2 Wsidewalk T (Least + Lwest) Wyen + 2 Zbike Whike = Wavail (Eq 5-1)

Each unique combination of lane counts, lane widths, sidewalk widths, and bike lane
configurations that satisfies this constraint constitutes a distinct street design. Applying these
rules to the 60-foot right-of-way considered in the Belmont Avenue case study produces nearly
200 feasible street configurations. This finite but diverse design space captures a wide spectrum
of trade-offs between pedestrian space, vehicle capacity, and bicycle accommodation, and serves
as the basis for the simulation and optimization analyses that follow.

5.1.4 Enumerating and Evaluating Street Designs

Once demand is fixed, the next step is to vary the street design itself and repeat the evaluation
process. For the Belmont Avenue case study, the available right-of-way is approximately 60 feet,
which significantly constrains feasible layouts. Design constraints include practical bounds on
lane widths: vehicle lanes must generally fall between 10 and 15 feet, while bicycle lanes range
from approximately 3 to 8 feet. Within these constraints, there are on the order of 200 distinct
feasible layouts.

Because the solution space is relatively small in this case, all feasible designs can be explicitly
enumerated rather than searched using heuristics. Each layout is evaluated using the same
stochastic demand framework, producing paired estimates of throughput and safety performance.
Figure 5.4 shows the design space and how various layout performed in relation to design
variables.



63

- 2 258
. L& ol
; .. L g
£ o g
S Sy 2 z
3 =3 2 .
E ‘ < .
Bike Width (Feet) 600 =
Number of Total Vehicle Lanes
0ft 8ft .
t I i - . - H: s M 2
o i i - Avg Severity Sum
Avg Severity Sum
.
" a d
3 ot BN £ 3 "

8 -, 8 -
o St a .
£ B4 £ .
o -l [=2]
3 I S 3
g g g
= ; £ ;
o i o b %
> B4 .
a < .

Sidewalk Width (Feet) soss Vehicle Lane Width (Feet)

3 7t [, O ¢ <t E 10t T

Avg Severity Sum Avg Severity Sum

Figure 5.4 Design Space

5.1.5 Pareto Frontier and Design Trade-offs

With performance measured along two objectives, results can be visualized using a Pareto
frontier. Each point on the frontier corresponds to a non-dominated design, meaning that no other
layout performs better on both throughput and safety simultaneously. Some designs prioritize
safety at the cost of reduced flow, while others maximize throughput while accepting higher
conflict levels.

A scalar weighting parameter, a, is used to trace this frontier. When a = 0, the optimization
prioritizes safety alone; when a = 1, it prioritizes throughput alone. Intermediate values of a
yield compromise solutions that balance the two objectives. For any chosen value of a, a single
optimal design can be identified, corresponding to the point labeled on the frontier.

Although the Belmont Avenue case study involves a limited number of design alternatives, the
framework readily generalizes to more complex environments. As the number of streets, design
variables, or objectives increases, the solution space grows rapidly, motivating the need for
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scalable simulation and optimization methods. Nonetheless, this case study demonstrates how
realistic demand modeling, stochastic simulation, and Pareto-based evaluation can be combined
to rigorously assess trade-offs in urban street design.
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5.1.6 Conclusions

The conflict characterization and severity analysis framework presented in this chapter
provides a powerful tool for evaluating the safety implications of urban street designs under
realistic operating conditions. By combining Time-to-Collision (TTC) metrics with an impact
severity measure grounded in collision physics, the approach moves beyond simple conflict
counts to capture both the likelihood and potential consequences of interactions among diverse
street users. This dual-metric system enables planners to distinguish between designs that merely
reduce the number of conflicts and those that meaningfully mitigate severe outcomes for
vulnerable road users such as pedestrians and cyclists.

These tools can be applied to compare alternative layouts, assess trade-offs between
throughput and safety, and identify design elements, such as protected bike lanes or reduced
shared space, that significantly lower high-risk interactions. However, while the framework
provides a rigorous quantitative basis for evaluation, its application must be guided by policy
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priorities and community values. Decisions about how to balance efficiency, equity, and safety
cannot be resolved by technical metrics alone; they require input from stakeholders and
alignment with broader goals such as Vision Zero, sustainability, and accessibility. In this sense,
the methodology serves as an evidence-based decision-support system rather than a prescriptive

solution, enabling transparent discussions about trade-offs and helping communities select
designs that reflect their priorities.
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Findings

The research demonstrates that integrated modeling and optimization tools can effectively
support urban street design decisions that balance efficiency, safety, and equity. The two-step
optimization framework based on the Network Fundamental Diagram (NFD) successfully
identifies flow-maximizing network attributes and translates them into practical link-level
configurations using a Genetic Algorithm (GA). While the GA cannot fully replicate the
theoretical optimal NFD due to physical and budget constraints, it consistently improves
accessibility and reduces conflict potential compared to the existing network.

Across all formulations, utilitarian, sufficiency, accessibility gap, and maximin, the
optimized networks outperform the baseline in terms of multimodal connectivity. Bike
accessibility within a 20-minute threshold increases substantially, and equity metrics such as
access for low-income zones show modest improvements. Ethical objectives influence spatial
allocation patterns:

o Utilitarian designs prioritize overall accessibility and flow efficiency.

e Sufficiency-based designs expand coverage to ensure minimum access for all
zones.

e Accessibility gap and maximin formulations target fairness by reducing disparities
and improving outcomes for disadvantaged groups.

Simulation-based evaluations confirm that these designs reduce severe conflicts without
compromising throughput excessively. The multi-agent simulation platform captures realistic
interactions among vehicles, cyclists, and pedestrians, enabling conflict characterization through
Time-to-Collision (TTC) and Impact Severity metrics. Results indicate that layouts with
dedicated micromobility infrastructure and reduced shared space achieve lower severity scores,
particularly for vulnerable road users.

Finally, the case study on Belmont Avenue illustrates the practical feasibility of these
tools. Nearly 200 candidate designs were evaluated under stochastic demand conditions, and
Pareto analysis revealed clear trade-offs between safety and efficiency. Designs that allocate
space for protected bike lanes and wider sidewalks consistently rank higher on safety, while
layouts with more lanes maximize throughput. These findings underscore the importance of
transparent trade-off analysis and community-driven prioritization in selecting final designs.
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Recommendations

Urban planners and policymakers should incorporate quantitative modeling and simulation
tools as a central part of street design and evaluation. Traditional qualitative guidelines provide
important principles but often fail to capture the complex trade-offs between safety, efficiency,
and equity in multimodal environments. The integrated frameworks presented in this study
combine Network Fundamental Diagram (NFD)-based optimization, multi-agent simulation, and
conflict severity analysis to deliver a rigorous, data-driven foundation for decision-making.
These tools enable transparent evaluation of design alternatives, quantify accessibility and flow
impacts, and assess safety outcomes under realistic operating conditions. Using such approaches
will allow communities to move beyond ad hoc design practices and toward evidence-based
solutions that balance technological innovation with human-centered values.
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Outputs

This research delivers two primary outputs that advance the state of practice in multimodal
street design and evaluation:

1. New Methodologies for Network Design Optimization

A two-step optimization framework was developed to systematically design
multimodal networks. The first step applies a Network Fundamental Diagram (NFD)-
based formulation to identify flow-maximizing values of network attributes such as
mode-exclusive areas, shared space, and interaction plane length. The second step
translates these aggregate optimal characteristics into link-level configurations using a
Genetic Algorithm (GA). This approach enables planners to balance efficiency,
accessibility, and fairness by incorporating ethical principles such as sufficiency,
accessibility gap, and maximin into the optimization process. These formulations move
beyond traditional qualitative guidelines by providing a quantitative basis for
evaluating trade-offs between throughput, equity, and safety under realistic constraints.

2. Multi-Agent Simulation Platform for Urban Streets

A comprehensive simulation platform was created to model the dynamic interactions
among diverse street users, including connected and autonomous vehicles, human-
driven vehicles, bicycles, pedestrians, and emerging micromobility modes. The
platform integrates microscopic behavioral models, such as car-following, lane-
changing, pedestrian crossing decisions, and shared-lane yielding, with stochastic
demand generation and hierarchical decision-making. This enables realistic
representation of both flowing and stopping agents and captures emergent macroscopic
phenomena such as shockwaves and congestion patterns. The simulator supports
conflict detection using Time-to-Collision (TTC) and Impact Severity metrics,
allowing quantitative assessment of safety outcomes across alternative street designs.
By combining behavioral realism with performance evaluation, this tool provides
planners with actionable insights into how design choices influence efficiency and
safety in complex urban environments.

Together, these outputs establish a rigorous, data-driven foundation for designing and
evaluating multimodal streets. They enable transparent comparison of design alternatives,
quantify accessibility and flow impacts, and assess safety under stochastic demand conditions,
supporting evidence-based decision-making for future urban mobility.
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Outcomes

The application of the developed methodologies and simulation platform has produced
several important outcomes:

1. Increased Understanding and Awareness
a. The research enhances understanding of how multimodal interactions and CAV
deployments affect safety, efficiency, and equity on urban streets. It introduces
quantitative tools that move beyond qualitative guidelines, enabling planners to evaluate
trade-offs transparently.

2. Expansion of the Body of Knowledge
a. The study contributes new formulations for multimodal network design optimization and
introduces a multi-agent simulation platform that captures realistic interactions among
diverse street users. These outputs advance the state of practice in urban mobility
research.

3. Improved Processes and Techniques
a. The two-step optimization framework and simulation platform provide planners with
systematic, data-driven processes for designing multimodal networks. These processes
improve decision-making by integrating flow efficiency, accessibility, and fairness
objectives.

4. Adoption Potential for New Practices
a. The tools developed in this research can be incorporated into planning workflows,
supporting evidence-based design and policy decisions. They enable agencies to adopt
quantitative evaluation methods for Complete Streets and CAV integration.
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Impacts

The outcomes of this research have the potential to generate significant impacts on
transportation systems and society:

1. Enhanced Safety for Vulnerable Road Users
a. Designs informed by the simulation platform and optimization framework reduce severe
conflicts, particularly for pedestrians and cyclists, contributing to lower crash risk and
improved street safety.

2. Improved Efficiency and Accessibility
a. Optimized network configurations increase multimodal accessibility while maintaining
reasonable throughput, supporting more equitable and efficient urban mobility.

3. Support for Policy and Investment Decisions
a. By providing transparent trade-off analysis, these tools can guide infrastructure
investments and policy frameworks toward designs that balance technological innovation
with human-centered values.

4. Long-Term Community and Environmental Benefits
a. Safer, more efficient multimodal streets encourage active transportation, reduce reliance
on private vehicles, and contribute to sustainability goals through lower emissions and
improved livability.
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Challenges and Lessons Learned

Developing large-scale optimization and simulation frameworks for multimodal street
design presented several technical and methodological challenges. One of the primary difficulties
was ensuring computational efficiency when handling highly complex models that integrate
multiple transportation modes, stochastic demand patterns, and ethical constraints. The
optimization formulations, particularly those involving nonlinear objectives and multiple
constraints, required advanced solvers and careful tuning to achieve convergence within
reasonable time frames. Implementing the two-step optimization process and genetic algorithm
for link-level design demanded custom operators and repair functions to maintain feasibility and
spatial coherence, which added to development complexity.

On the simulation side, building a multi-agent platform capable of representing diverse
behaviors, such as car-following, lane-changing, pedestrian crossing, and shared-lane yielding,
posed significant challenges in terms of scalability and realism. Modeling interactions among
thousands of agents while preserving detailed behavioral rules required hierarchical decision
structures and efficient data handling. Additionally, integrating conflict detection and severity
analysis into the simulation workflow introduced further computational overhead, necessitating
optimizations in both algorithm design and software architecture.

These challenges underscore the importance of balancing model fidelity with
computational tractability. Lessons learned include the need for modular software design,
parallel processing for simulation runs, and adaptive optimization strategies to handle non-
convex problems. Future work should focus on improving solver performance, leveraging high-
performance computing resources, and refining behavioral models to reduce complexity without
sacrificing accuracy.
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