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Abstract 

 

Urban streets are increasingly complex environments where diverse transportation modes 

like cars, bicycles, pedestrians, micromobility, and emerging automated vehicles, interact within 

constrained spaces. Traditional design practices, guided by qualitative policies such as Complete 

Streets, often lack the quantitative foundation needed to evaluate trade-offs between efficiency, 

equity, and safety. This research introduces a data-driven framework to address these gaps by 

integrating macroscopic and microscopic modeling approaches for multimodal street design. 

The study develops two major tools: a Network Fundamental Diagram (NFD)-based 

optimization framework and a multi-agent simulation platform. The optimization framework 

applies a two-step process: first, identifying flow-maximizing network attributes at the aggregate 

level, and second, allocating these attributes to specific links using a Genetic Algorithm (GA) 

under multiple ethical objectives, including utilitarian, sufficiency, accessibility gap, and 

maximin principles. The simulation platform models realistic interactions among vehicles, 

cyclists, pedestrians, and emerging modes, incorporating stochastic demand and behavioral rules 

to evaluate safety and efficiency. Conflict characterization combines Time-to-Collision (TTC) 

and Impact Severity metrics to assess both the likelihood and consequence of interactions, 

enabling nuanced safety evaluations. 

Applications to real-world networks, including a case study of Evanston, IL and a corridor 

in Chicago, demonstrate the feasibility and effectiveness of these tools. Results show that 

optimized designs improve multimodal accessibility and reduce severe conflicts compared to 

existing layouts, while highlighting trade-offs between throughput, equity, and safety. Although 

no single design achieves all objectives simultaneously, the framework provides transparent 

evaluation and supports evidence-based decision-making. Policy priorities and community 

values remain essential in guiding the selection of final designs, ensuring that technological 

innovation aligns with human-centered goals. 
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1 INTRODUCTION 

 

 

Urban streets are increasingly complex environments where diverse transportation modes 

like cars, bicycles, pedestrians, micromobility, and emerging automated vehicles, interact within 

constrained spaces. Traditional design practices, guided by qualitative policies such as Complete 

Streets, often lack the quantitative foundation needed to evaluate trade-offs between efficiency, 

equity, and safety. This research introduces a data-driven framework to address these gaps by 

integrating macroscopic and microscopic modeling approaches for multimodal street design. 

This report addresses that need by developing and applying integrated modeling and 

optimization frameworks to make CAV deployments compatible with Complete Streets 

objectives. The research spans multiple scales of analysis: from macroscopic models that capture 

network-level flow dynamics to microscopic simulation platforms that represent agent-level 

behaviors and interactions. A unified approach combines Network Fundamental Diagram 

(NFD)-based optimization, multi-agent simulation, and conflict severity analysis to evaluate how 

design choices influence throughput, accessibility, and safety under realistic operating 

conditions. Ethical considerations such as sufficiency, equity, and maximin principles are 

incorporated into the optimization process to ensure that infrastructure decisions reflect not only 

technical efficiency but also social fairness. 

By bridging the gap between policy-driven guidelines and quantitative modeling, this 

study provides urban planners and policymakers with actionable tools to design streets that 

balance technological innovation with human-centered values. The resulting frameworks enable 

transparent evaluation of trade-offs, support informed decision-making, and advance the vision 

of safe, efficient, and equitable urban mobility.  
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2 MICROSCOPIC BIKE NETWORK DESIGN PROBLEM 

2.1     Introduction  

This chapter outlines a methodology and results of a bike lane network design problem 

application to the real-world example of Evanston, IL. Building on the functional form of the 

NFD developed in Chapter 6, in this chapter a two-step optimization framework that integrates 

flow and accessibility maximization is developed  In the first optimization, the functional form, 

which models flow as a function of network attributes (mode-exclusive area, shared area, and 

interaction plane) is used as the objective function, where the goal is to maximize the total flow 

of the network across all modes with the network attributes as decision variables. With these 

optimal network characteristics identified, the next step of the optimization aims to find the 

allocation of these characteristics to specific links. To do this, a genetic algorithm was 

implemented with the objective of maximizing accessibility and minimizing the difference 

between the predicted NFD curve for the network and the optimized NFD curve from the first 

step. The decision variables for this formulation are the set of links and their respective 

configurations. Alternative formulations that focus on meeting additional ethical considerations 

with the design are also included. These ethical frameworks consider the impacts on less 

advantaged groups, whether that be by mode used, income, or accessibility. A flowchart of this 

methodology, beginning with the functional form developed in Chapter 6, to the resulting 

network design is shown in Figure 2.1 . 

 
Figure 2.1 Process Flow of NFD led Bike Network Design Problem 
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2.2 Methodology 

2.2.1 Step 1- Flow Optimization  

The two step optimization process begins with the flow optimization formulation. Here, 

the functional form developed in Chapter 6 for 𝑞𝑚(𝑘𝑚 ,  𝐼,  𝐴𝑚 ,  𝐴 ) is maximized with decision 

variables 𝑘𝑚 ,  𝐼,  𝐴𝑚 , and 𝐴. The formulation of the optimization problem is outlined. 

 

 max
𝐴𝑚,𝐴, 𝐼|𝑘𝑚

∑ 𝑞𝑚(𝑘𝑚 ,  𝐼,  𝐴𝑚 ,  𝐴 )

𝑚 

 (Eq 2.1) 

s.t. 𝐴 + ∑ 𝐴𝑚 < 𝐴𝑚𝑎𝑥
𝑚

 (Eq 2.2) 

 0 < 𝑘𝑐𝑟𝑖𝑡,𝑚 < 𝛽7𝑚 +  𝛽8𝑚𝐴𝑚 +  𝛽9𝑚𝐼 (Eq 2.3) 

 𝐼,  𝐴𝑚 ,  𝐴 ≥ 0 (Eq 2.4) 

 

where 𝑘𝑚 is the density of mode m, 𝐼 is the interaction plane, 𝐴𝑚 is the modal area of 

mode m, 𝐴 is the shared area, and 𝐴𝑚𝑎𝑥 is the total existing area of the network.  

The inner objective finds the critical density 𝑘𝑚 where the flow of the given function is at 

a maximum given the values of the other three variables. 𝐼,  𝐴𝑚 ,  𝐴,  are the outer optimization’s 

decision variables. Across the inner and outer optimization outlined in  Equation 2.1, flow is 

maximized across all modes; in this example, bikes and cars are the modes considered. The first 

constraint, Equation 2.2, conserves the existing area of the network- no additional area can be 

added to the network to increase flow. The second constraint, Equation 2.3, keeps the estimation 

of critical density feasible, less than the value of jam density 𝜅 developed in the estimation of the 

NFD form.  The last constraint, Equation 2.4, ensures that the values of the network attribute 

decision variables 𝐼,  𝑎𝑚, and 𝐴 are non-negative.  

2.2.2 Step 1- Solution Method  

The Step 1 formulation was solved using the Python package Pyomo and the IPOPT 

solver to address a nonlinear, constrained optimization problem. IPOPT is a large-scale, interior-

point optimization solver designed to handle smooth, nonlinear objectives with both equality and 

inequality constraints. IPOPT guarantees convergence to a locally optimal solution under 

smoothness assumptions, but global optimality cannot be assured due to the non-convex nature 

of the problem. 
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2.2.3 Step 2- Space Allocation Optimization  

 Step 1 results in flow maximizing values of 𝐼,  𝑎𝑚 ,  and 𝐴 for the whole network. The 

second step of the framework aims to allocate these values to specific links in the network in 

order to meet these aggregate optimal values, resulting in an optimal NFD. Given a set of links 

and outcomes, 𝑥𝑙,𝑜 is the decision variable to make a link 𝑙 have an outcome type 𝑜 where 𝑜 

represents a possible treatment and a corresponding width. The possible treatments are shown in 

Figure 2.2 .  

 

Figure 2.2 Link Treatment Types 

 

Accessibility is defined by 𝑧𝑖, 𝑚|20(𝑥𝑙,𝑜) which is the number of zonal centroids 

accessible from the centroid of zone 𝑖 by mode 𝑚 within a 20-minute threshold for the network 

configuration 𝑥𝑙,𝑜. The minimization portion of the objective aims to reduce the area between the 

optimal NFD curve found in Step 1 and the resulting NFD curve for a configuration 𝑥𝑙,𝑜. The 

formulation for Step 2 is shown.  

 
 

(Eq 2.5) 

s.t. 

 

(Eq 2.6) 

 

 

(Eq 2.7) 

 

 

(Eq 2.8) 

 ∑ 𝑤𝑙,𝑜 𝑥𝑙,𝑜 ≤ 𝑊𝑙

𝑜
 (Eq 2.9) 
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 ∑ 𝑤𝑙,𝑜 𝑥𝑙,𝑜 ≤ 𝑊𝑙

𝑜

 (Eq 2.10) 

 

 

where 𝐶𝑙,𝑜 is the construction cost of a configuration 𝑥𝑙,𝑜, 𝑊𝑙 is the total width of the 

individual link l. 

The objective function, Equation 2.5, maximizes the total accessibility within a 20-

minute threshold across modes m and zones i while minimizing the area between NFD curves 

through the integral difference. The first constraint, Equation 2.6, ensures that each link only has 

one outcome o. Equation 2.7 is a budget constraint where each network configuration has a cost 

of implementation 𝐶𝑙,𝑜 . Equation 2.8 imposes a total area constraint which conserves the total 

network area. Equation 2.9 further specifies this to each link, which cannot gain additional width. 

Equation 2.9 forces the total values of 𝐼,  𝑎𝑚,  𝐴, and 𝑍𝑖, 𝑚|20 to be non-negative.  

2.2.4 Step 2- Modified Space Allocation Optimization using Area Constraints 

An alternative formulation of the second-step optimization is presented for cases where 

the actual values obtained in Step 1 are unavailable or infeasible to implement. In such scenarios, 

the allocation of interaction plane length (I), mode-specific areas (aₘ), and total area (A) may 

instead be determined based on local priorities and needs. In this version of the formulation, 

values of I, aₘ, and A are treated as fixed constraints, and accessibility is maximized directly as 

opposed to minimizing the area between the predicted and optimal NFDs. 

𝑚𝑎𝑥 ∑ ∑ 𝑧𝑖, 𝑚|20(𝑥𝑙,𝑜)

𝐼𝑀

 
(Eq 2.11) 

s.t.  

∑ 𝑥𝑙,𝑜 = 1  ∀𝑙 ∈ 𝐿

𝑜∈𝑂 

 
(Eq 2.12) 

∑ ∑ 𝑥𝑙, 𝑜𝐶𝑙,𝑜 ≤ 𝐵

𝑜 ∈𝑂𝑙∈𝐿

 
(Eq 2.13) 

∑ ∑ (𝐴(𝑙, 𝑜)

𝑜 ∈𝑂𝑙∈𝐿

+ ∑ 𝐴𝑚(𝑙, 𝑜)

𝑚

) < 𝐴𝑚𝑎𝑥 
(Eq 2.14) 

∑ 𝑤𝑙,𝑜 𝑥𝑙,𝑜 ≤ 𝑊𝑙

𝑜

 
(Eq 2.15) 

𝐼,  𝐴𝑚 ,  𝐴, 𝑍𝑖, 𝑚|20 ≥ 0 
(Eq 2.16) 
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∑ ∑ 𝐴(𝑙, 𝑜)

𝑜 ∈𝑂

≥ 𝐴∗ − 𝐴∗5% 

𝑙∈𝐿

 
(Eq 2.17) 

∑ ∑ 𝐴(𝑙, 𝑜)

𝑜 ∈𝑂

≤ 𝐴∗ + 𝐴∗5% 

𝑙∈𝐿

 
(Eq 2.18) 

∑ ∑ 𝐴𝑚(𝑙, 𝑜)

𝑜 ∈𝑂

≥ 𝐴𝑚
∗

𝑙∈𝐿

− 𝐴𝑚
∗ 5% 

(Eq 2.19) 

∑ ∑ 𝐴𝑚(𝑙, 𝑜)

𝑜 ∈𝑂

≤ 𝐴𝑚
∗

𝑙∈𝐿

+ 𝐴𝑚
∗ 5% 

(Eq 2.20) 

∑ ∑ 𝐼(𝑙, 𝑜) ≥

𝑜 ∈𝑂

𝐼∗

𝑙∈𝐿

− 𝐼∗5% 
(Eq 2.21) 

∑ ∑ 𝐼(𝑙, 𝑜) ≤

𝑜 ∈𝑂

𝐼∗

𝑙∈𝐿

+ 𝐼∗5% 
(Eq 2.22) 

Equations 2.12 - 2.16 reflect constraints on total area, budget, link width, and non-

negativity as outlined in the initial formulation. Equations 2.17 and 2.18 2.182.18restrict the 

shared area A to be within a ±5% buffer of the optimal value A* identified in Step 1. Equations 

2.19 and 2.20 impose the same restriction for modal area, 𝐴𝑚
∗ . Equations 2.21 and 2.22 aim to 

meet the optimal interaction plane value I* of Step 1 within a ±5% buffer. 

2.2.5 Step 2- Space Allocation Optimization with Additional Ethical Formulations 

Both the NFD-based and optimal value-based formulations fall under a utilitarian 

framework of ethics where the objective is maximizing total accessibility. By modifying the 

objective function and introducing additional constraints aligned with ethical theories, this study 

adapts applications of ethical theory, originally developed for transit network design, to the 

context of bike network design [1]. The initial formulation covers a utilitarian approach. Other 

principles considered are the sufficiency principle sets a minimum threshold of accessibility to 

ensure no resident is excluded from basic needs, while the accessibility gap limits inequality by 

regulating the maximum allowable difference in accessibility across residents. The maximin 

formulation prioritizes maximizing accessibility for the least advantaged. 

2.2.5.1 Sufficiency Criteria 

The first additional constraint is based on the ethics framework of sufficiency, which 

ensures that all areas meet some minimum threshold of accessibility. Sufficiency is implemented 

by the addition of a constraint to either formulation.  

∑ ∑ 𝑧𝑖, 𝑚|45(𝑥𝑙,𝑜)

𝐼

≥ 𝑆

𝑀

 
(Eq 2.23) 

Equation 2.23 ensures zonal accessibility within a 45-minute threshold should be greater 

than 𝑆 which is the threshold number of zonal accessibility to be reached. 
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2.2.5.2 Accessibility Gap Criteria  

The accessibility gap criterion aims to limit the difference in accessibility between the 

worst-off and best-off areas. Worst-off and best-off can be defined in many ways; the difference 

between zones of varying income, transportation modes, and accessibility are considered. The 

constraints included for each of these considerations are shown in Equations 2.24, 2.25, and 2.26, 

respectively.  

∑ 𝑍𝐿𝐼, 𝑚|20 − ∑ 𝑍𝐻𝐼, 𝑚|20

𝑀𝑀

≥ 0 (Eq 2.24) 

∑ 𝑍𝑖, 𝐵|20 − ∑ 𝑍𝑖, 𝐶|20

𝐼𝐼

≥ 0 (Eq 2.25) 

∑ min (𝑍𝑖, 𝑚|20) − ∑ max(𝑍𝑖, 𝑚|20)

𝑀𝑀

≥ 0 (Eq 2.26) 

Equations 2.24 ensures that the lowest income zone, LI, receives equal or better total 

accessibility than the highest income zone, HI. Equation 2.25 ensures that total accessibility by 

bikes is at least as great as that by cars across all zones. Equation 2.26 ensures there is no 

difference between the highest accessibility zone and the lowest accessibility zone. Each 

constraint is added independently to the formulation giving three possible accessibility gap 

results based on income, mode, and accessibility.  

2.2.5.3 Maximin Criteria  

The final ethical criterion considered is the maximin framework, which seeks to 

maximize the outcomes for the least advantaged group. With the maximin formulation, the first 

term of Equation 2.5 is changed to reflect disadvantage on the basis of income, mode, and 

accessibility.  

𝑚𝑎𝑥 ∑ ∑ 𝑍𝐿𝐼, 𝑚|20(𝑥𝑙,𝑜)

𝐼𝑀

 (Eq 2.27) 

𝑚𝑎𝑥 ∑ 𝑍𝑖, 𝐵|20(𝑥𝑙,𝑜)

𝐼

 (Eq 2.28) 

𝑚𝑎𝑥 ∑ min (𝑍𝑖, 𝑚|20)

𝑀

 (Eq 2.29) 

Equation 2.27 maximizes the access of the lowest income zone, LI. Equation 2.28 

maximizes accessibility by bikes. Equation 2.29 maximizes the accessibility of the lowest 

accessibility zone. When using the Modified Space Allocation Optimization using Area 

Constraints, the maximin criteria objectives may be directly swapped with Equation 2.11. When 

using the Space Allocation Optimization with NFD Area Minimization, however, the objective 

function for each maximin criteria implementation would be as follows.  
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𝑚𝑎𝑥 ∑ ∑ 𝑍𝐿𝐼, 𝑚|20(𝑥𝑙,𝑜)

𝐼𝑀

− ∑(∫ 𝑞𝑚
∗ (𝑘𝑚

∗ , 𝐼∗, 𝐴𝑚
∗ , 𝐴∗) − 𝑞𝑚(𝑘𝑚 , 𝐼, 𝐴𝑚 , 𝐴 )

𝜅

0

𝑑𝑘)

𝑚

 (Eq 2.30) 

𝑚𝑎𝑥 ∑ 𝑍𝑖, 𝐵|20(𝑥𝑙,𝑜)

𝐼

− ∑(∫ 𝑞𝑚
∗ (𝑘𝑚

∗ , 𝐼∗, 𝐴𝑚
∗ , 𝐴∗) − 𝑞𝑚(𝑘𝑚 , 𝐼, 𝐴𝑚 , 𝐴 ) 𝑑𝑘)

𝜅

0𝑚

 (Eq 2.31) 

𝑚𝑎𝑥 ∑ 𝑚𝑖𝑛 (𝑍𝑖, 𝑚|20)

𝑀

− ∑(∫ 𝑞𝑚
∗ (𝑘𝑚

∗ , 𝐼∗, 𝐴𝑚
∗ , 𝐴∗) − 𝑞𝑚(𝑘𝑚 , 𝐼, 𝐴𝑚 , 𝐴 ) 𝑑𝑘)

𝜅

0𝑚

 (Eq 2.32) 

In Equations 2.30, 2.31, and 2.32 the minimization of the maximin between the optimal 

and predicted NFD curves is included. These objective functions are each swapped with the 

objective outlined in the formulation of Equations 2.5 - 2.10 where the constraints are shown by 

Equations 2.6 - 2.10 remain.  

2.2.6 Step 2- Solution Algorithm 

These formulations are implemented and solved using a Genetic Algorithm (GA) with 

Python’s DEAP package. In this context, an individual represents a specific configuration of the 

network, where each edge is assigned a value for 𝑥𝑙,𝑜 denoting the type and width of bike 

infrastructure on that link. Each individual corresponds to a complete SUMO network reflecting 

this configuration. To evaluate network performance, mode-specific trips are generated from the 

centroid of each zone and routed to all other zones using the SUMO tool, duarouter, resulting in 

trip lengths for each origin-destination pair and mode. For cyclists, this trip length is additionally 

updated with the marginal rate of substitution of the cyclist stress index developed in the 

literature [2]. Links with higher speed limits and less dedicated bike infrastructure increase the 

stress index of cyclists, resulting in effective trip lengths of up to 100% longer, as shown in 

Table 2.1. 

Table 2.1 Marginal Rate of Substitution by Bike Lane Type 

Speed Limit Type 1 Type 2 Type 3 

25 mph 20% 10% 5% 

30 mph 40% 20% 10% 

35 mph 100% 50% 25% 

 

Using the defined free flow speed, the distances of these routes are converted to travel 

times between all zones by each mode, resulting in the count of OD pairs accessible within 

defined time thresholds.  

Construction costs are included for both the addition of bike lanes and the removal of 

bike lanes that exist in the current network. The initial budget is set at $10 million, similar to 

other projects that have been completed in the city. The values considered are estimates from a 

recent construction proposal and are shown in Table 2.1  [3].  

Table 2.2 Construction Costs by Infrastructure Element 

Item Units Unit Cost 

Painting Bike Lane sq.ft. $14 

Installing Separation (curb) ft. $30 
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Paint removal sq.ft. $10 

Separation (curb) removal ft. $9 

Repaving sq. yd. $30 

 

Within the Genetic Algorithm (GA), several functions guide the search for optimal 

solutions. Because random mutations often produce disjointed or unrealistic network 

configurations, a custom operator was used to develop more geographically contiguous 

solutions. The function biases mutation decisions based on the configuration of adjacent edges. 

During mutation, the function iterates through each edge in the individual solution. For a given 

edge, it retrieves the types of its neighbors and identifies the most frequently occurring type. If 

the current edge differs from this type and a mutation probability threshold is met, the edge is 

reassigned to the majority type among its neighbors. The crossover function combines parent 

solutions by swapping edge types and occasionally re-randomizing both offspring. Additionally, 

a custom repair function was developed to eliminate small, disconnected links of Type 2 or 3. 

The function ensures that any group of contiguous edges assigned to the same type meets a 

minimum cluster size. This repair mechanism is applied after mutation and crossover to enforce 

a minimum spatial structure in solutions and reduce fragmented configurations. Finally, a 

feasibility check ensures that individuals remain within the construction budget before being 

admitted into the next generation. The construction cost of each configuration is calculated based 

on the cumulative width and length of added or modified bike lanes. Individual solutions that 

exceed the budget are either excluded or penalized, depending on their performance trade-offs. 

This soft constraint allows the budget to be exceeded when substantial gains in accessibility or 

NFD alignment justify the additional cost.  Tournament selection is used to identify the fittest 

individuals from each generation and guide the selection. In a k-way tournament, k candidates 

are randomly chosen, and the one with the highest fitness is selected to proceed.  

This process is repeated to form the next generation until convergence of solutions is 

reached. To determine when to stop the evolutionary process, convergence is measured using a 

tolerance-based stopping criterion. Convergence is measured by tracking changes in the best 

fitness value across generations. If the improvement is smaller than a set tolerance and number of 

consecutive generations, the algorithm is considered to have converged and stops. This approach 

ensures that the algorithm stops when improvements become negligible. 

2.3 Results and Discussion 

2.3.1 Step 1 Optimization Results 

The first optimization step finds the optimal aggregate values of network attributes, shared area, 

exclusive modal area, and interaction plane as described in the methodology. This nonlinear, 

constrained optimization problem was implemented using Pyomo with the IPOPT solver. The 

implementation of this formulation resulted in solutions that converged after 51 iterations, as 

shown in Figure 2.3 .  
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Figure 2.3 Convergence of Step 1 Optimization 

 

In IPOPT, convergence indicates that the first-order optimality conditions have been met 

within specified tolerances, thus a locally optimal solution was obtained for the decision 

variables.  The resulting values of these network attribute decision variables (shared area, car 

area, bike area, and interactions) that optimize the flow function q, as well as the locally optimal 

objective value, are shown in  

Table 2.3. 

Table 2.3 Optimal Values of Decision Variables and Objective from Step 1 

Variable Units Optimal Value 

Total Flow veh/m/min 174.53 

Car Area km2 0.91 

Bike Area km2 0.88 

Shared Area km2 0.16 

Interaction Plane km 53.00 

Critical Density Car veh/m2 0.47 

Critical Density Bike veh/m2 0.98 

 

The optimal values include a car area and a bike area of similar values, 0.91 km2 and 0.88 

km2, respectively. The shared area of 0.16 km2 reflects a limited integration of shared space, 

which has a negative relationship with capacity. This shared area is also associated with a 

smaller interaction plane value of 53.00 km, which was previously identified as having a 

negative relationship with capacity in the functional form for bikes. The resulting optimal curves 

are shown in Figure 2.4 for both cars and bikes.  
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Figure 2.4 Optimal Form of NFD for Evanston Network 

 

The micromobility curve (green) demonstrates a higher overall capacity, peaking at 

approximately 110 veh/min/m near a density of 1 veh/m². The car mode curve (blue) reaches a 

lower peak flow of about 60 veh/min/m at a density just below 0.5 veh/m². This also reflects the 

efficiency of micromobility vehicles, which contribute more to the total flow being maximized. 

Though cars and bikes are allocated almost equal mode-exclusive areas in the decision variables, 

bikes achieve almost double the flow with higher densities.  

2.3.2 Step 2 Optimization Results- Utilitarian Formulation 

This optimal curve is then implemented in the GA framework with the formulation 

described in Equations 2.5 - 2.10, which aims to generate a network configuration that both 

minimizes the area difference between its estimated NFD and the optimal curve and maximizes 

accessibility. This section presents the results and analysis of the network solution, which is 

based on utilitarian allocation. To evaluate the performance of the Genetic Algorithm across 

different formulations, convergence behavior and population diversity are tracked over 
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generations. Figure 2.5 illustrates the progression of best and average fitness values as well as 

the diversity of solutions to validate the convergence towards near-optimal solutions. 

 
Figure 2.5 Convergence of Utilitarian Solution 

 

Both best and mean fitness demonstrate improvement within the first 10 generations, with 

convergence observed shortly thereafter. The diversity of the population over generations 

measures the spread of solutions. The decline in diversity in early generations reflects strong 

selection pressure, followed by stabilization near zero, suggesting convergence to a narrow 

region of the solution space. 

 The GA seeks to minimize the area between a solution network’s NFD and the optimal 

NFD found in Step 1; each curve and the corresponding difference in area are shown in Figure 

2.6.  

 
Figure 2.6 NFD and Optimal NFD of Utilitarian Network Design 

 

Across the simulated scenarios and the Step 1 optimization, the efficiency of 

micromobility vehicles has been highlighted. However, when considering the area between the 

curves, the car NFD is able to achieve closer-to-optimal performance. This discrepancy arises 

from the solution not reaching the specific micromobility-exclusive area values that yield 

optimal flow, likely due to budget constraints. The actual network with bike lane link type 

selections can be seen in Figure 2.7. 
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Figure 2.7 Utilitarian Design of Evanston Bike Network with Type 2 and Type 3 lanes  

 

To best visualize the locations of bike lanes, the network is shown twice, first with Type 2 

lanes highlighted and then Type 3 lanes highlighted. The optimized network demonstrates a 

widespread and fairly uniform selection of Type 3 links (teal), particularly concentrated along 

major corridors and key north-south and east-west connectors. Type 2 (orange) lanes are added 

to local streets and peripheral areas. Overall, the spatial pattern indicates a strategy of 

concentrating high-quality infrastructure along primary routes aligning with a utilitarian goal of 

maximizing system-wide accessibility and flow. While the distribution of the network links is 

valuable, understanding the effectiveness of the design requires examining the underlying 

performance metrics, which are quantified in Table 2.4. 

 

Table 2.4 Metrics of Utilitarian GA Solution 

Metric Units Value Target/Upper Bound 

Car 20-min Accessibility # trips 2109 3306 

Bike 20-min Accessibility # trips 840 3306 

Total 20-min Accessibility # trips 2949 6612 

Construction Cost $ 9,974,335 10,000,000 

Car Area km2 0.43 0.91 

Shared Area km2 1.13 0.16 

Bike Area km2 0.40 0.88 

Interaction Plane km 228.02 53.00 

Area between Car NFD 

(optimal and actual) 
veh2/m3*min 45.61 0.00 

Area between Bike NFD 

(optimal and actual) 
veh2/m3*min 133.18 0.00 
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In terms of 20-minute accessibility, the algorithm achieves 2,949 connected zones for both 

car and bike modes, aligning with the objective of maximizing overall accessibility. However, 

this underperforms relative to the target, reaching only 2,109 car trips and 840 bike trips. Car and 

bike areas fall below the desired 0.91 km² and 0.88 km², respectively, while shared area remains 

over-allocated at 1.13 km² compared to the optimal 0.16 km². Both car and bike networks exhibit 

divergence from the ideal curves (45.61 and 133.18 veh²/m³/min, respectively). 

  

2.3.3 Step 2 Optimization Results- Additional Ethical Formulations 

In this section, comparisons of outcomes under alternative ethical frameworks are shown. 

These include sufficiency- and priority-based approaches, which emphasize equitable access 

rather than total network efficiency. Figure 2.8 presents the convergence behavior for each 

fairness-oriented objective tested in the Genetic Algorithm framework.  

 Utilitarian Sufficiency 

 

  
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   
Figure 2.8 Convergence of GA Over Fairness Objectives 

 

Across all objectives, the algorithm exhibits convergence within the first few generations. 

For most cases, both best and mean fitness improve steadily before plateauing, indicating that the 

population quickly evolves toward high-quality solutions. Notably, objectives like Accessibility 

Gap Income and Accessibility Gap Access show continued incremental gains across nearly 50 
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generations, suggesting a slower and more prolonged search process. In contrast, objectives such 

as Utilitarian, Maximin Mode, and Maximin Access converge rapidly, often stabilizing within the 

first 10–15 generations. These differences indicate varying levels of search complexity: some 

objectives reach high-performing solutions quickly, while others require sustained optimization 

over a longer period to reach convergence. Figure 2.9 shows diversity, measured as the standard 

deviation across individuals in each generation. 

 Utilitarian Sufficiency 

 

  
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   
Figure 2.9 Diversity over Generations of GA 

 

The diversity plots generally show a sharp drop in the early generations, which is expected 

as the algorithm quickly exploits promising regions of the search space. An exception to this 

trend is observed in Accessibility Gap Access, where diversity remains volatile. This reflects 

trade-offs within the solutions where improving accessibility in one low-access area may 

inadvertently reduce accessibility in another. 

To evaluate how well each network aligns with the optimal NFD found in Step 1, the 

estimated NFD curves of networks generated by the GA are compared to the optimal curve. This 

optimal curve represents the theoretical upper bound of flow performance achievable. The plots 

in  

 

Existing Utilitarian Sufficiency 
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Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   
Figure 2.10 illustrate the fitted NFD for each fairness objective alongside the optimal 

reference to assess the ability of each objective to reach optimal states.  

 

Existing Utilitarian Sufficiency 

   
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 
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Maximin Mode Maximin Income Maximin Access 

   

Figure 2.10 Difference Between Optimal Micromobility NFD and Best Solution from G 

Across all networks, a consistent pattern is shown: the optimal flow curve (dashed orange) 

lies above the actual flow curve (solid blue), indicating that these solutions do not reach the 

optimal maximized flow. This may reflect the infeasibility of the macroscopic solution applied to 

the link-choice optimization. Although constraints are imposed to ensure the overall area is 

constant on the aggregate network-wise estimation, the optimal areas may not be able to be 

created through the summation of individual links.  

Furthermore, the resulting GA optimized curves are strikingly similar to each other 

despite their alternative objectives and constraints. This pattern, as well as the relationship 

between budget and the optimal NFD, shows the limitations of achieving either optimality in 

terms of NFD deviation or differentiation across the varied ethical objectives. To complement 

the micromobility analysis,  
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Existing Utilitarian Sufficiency 

   
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   
Figure 2.11 presents the fitted NFD curves for cars under each fairness objective, again 

compared against a reference optimal curve. 
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Existing Utilitarian Sufficiency 

   
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   

Figure 2.11 Difference Between Optimal Car NFD and Best Solution from GA 

 

These curves follow similar patterns to micromobility vehicles, again indicating a 

structural incapability of the network to reach optimal due to limited physical space or budget. 

Compared to micromobility, the car flow curves exhibit less deviation from the optimal. Here, 

the maximin objectives perform well with Maximin Mode and Maximin Income, achieving the 

smallest area between curves, followed by the Utilitarian objective.  

The results of each formulation in terms of the various metrics optimized for each 

objective are shown in Table 2.5.  
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Table 2.5 Evaluation Metrics of GA Results by Ethical Framework 

Network Existing Utilitarian Sufficiency 

 Value 

Target 

Attainment Value 

Target 

Attainment Value 

Target 

Attainment 

20-minute Access (Car) 2109 -36.21% 2109 -36.21% 2105 -36.33% 

20-minute Access (Bike) 647 -80.43% 840 -74.59% 859 -74.02% 

20-minute Access (Total) 2756 -58.32% 2949 -55.40% 2964 -55.17% 

45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00% 

45-minute Access (Bike) 2434 -26.38% 2714 -17.91% 2744 -17.00% 

45-minute Access (Total) 5740 -13.19% 6020 -8.95% 6050 -8.50% 

Low Income Access 46 -59.65% 49 -57.02% 46 -59.65% 

High Income Access 37 -67.54% 40 -64.91% 39 -65.79% 

Most Accessible  69 -39.47% 74 -35.09% 76 -33.33% 

Least Accessible  13 -88.60% 14 -87.72% 14 -87.72% 

Construction Cost ($)  -     10,000,000  9,974,336   25,664  9,791,746  208,254  

Area to Optimal (Car) 72.82 -72.82 45.61 -45.61 45.59 -45.59 

Area to Optimal (Bike) 182.08 -182.08 133.18 -133.18 140.54 -140.54 

 Accessibility Gap (Income) Accessibility Gap (Mode) Accessibility Gap (Access) 

 Value 

Target 

Attainment Value 

Target 

Attainment Value 

Target 

Attainment 

20-minute Access (Car) 2109 -36.21% 2106 -36.30% 2109 -36.21% 

20-minute Access (Bike) 863 -73.90% 883 -73.29% 827 -74.98% 

20-minute Access (Total) 2972 -55.05% 2989 -54.79% 2936 -55.60% 

45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00% 

45-minute Access (Bike) 2718 -17.79% 2688 -18.69% 2665 -19.39% 

45-minute Access (Total) 6024 -8.89% 5994 -9.35% 5971 -9.69% 

Low Income Access 50 -56.14% 49 -57.02% 46 -59.65% 

High Income Access 39 -65.79% 40 -64.91% 40 -64.91% 

Most Accessible  74 -35.09% 74 -35.09% 71 -37.72% 

Least Accessible  14 -87.72% 14 -87.72% 14 -87.72% 

Construction Cost ($) 9,966,250  33,750  9,992,368  7,632   9,844,529  155,471  

Area to Optimal (Car) 44.97 -44.97 45.94 -45.94 46.65 -46.65 

Area to Optimal (Bike) 131.86 -131.86 135.54 -135.54 131.30 -131.30 
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 Maximin (Income) Maximin (Mode) Maximin (Access) 

 Value 

Target 

Attainment Value 

Target 

Attainment Value 

Target 

Attainment 

20-minute Access (Car) 2109 -36.21% 2109 -36.21% 2110 -36.18% 

20-minute Access (Bike) 870 -73.68% 853 -74.20% 850 -74.29% 

20-minute Access (Total) 2979 -54.95% 2962 -55.20% 2960 -55.23% 

45-minute Access (Car) 3306 0.00% 3306 0.00% 3306 0.00% 

45-minute Access (Bike) 2758 -16.58% 2685 -18.78% 2702 -18.27% 

45-minute Access (Total) 6064 -8.29% 5991 -9.39% 6008 -9.13% 

Low Income Access 50 -56.14% 50 -56.14% 50 -56.14% 

High Income Access 40 -64.91% 40 -64.91% 36 -68.42% 

Most Accessible  74 -35.09% 73 -35.96% 73 -35.96% 

Least Accessible  14 -87.72% 14 -87.72% 14 -87.72% 

Construction Cost ($) 11,910,409   -1,910,409 9,928,178  71,822  9,985,509  14,491  

Area to Optimal (Car) 40.52 -40.52 45.87 -45.87 46.30 -46.30 

Area to Optimal (Bike) 108.61 -108.61 133.41 -133.41 127.40 -127.40 
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All optimized networks preserve high levels of car accessibility within the 20-minute 

window and full accessibility within the 45-minute window, where cars can reach 3,306 

accessible zones, which is the maximum accessibility. While bike access increases substantially 

over the existing network in all formulations, full accessibility in either window is not achieved. 

This increased accessibility is most significant in the Accessibility Gap Mode network, allowing 

236 additional zones compared to the existing network to be accessible to bikes within 20 

minutes. Metrics for equity improve modestly in comparison. Access for low-income zones 

increases in all scenarios, but only marginally. Construction costs vary by formulation, but all 

formulations are just below the $10M budget except Maximin Income, though this resulting 

network is also the most optimal in terms of closeness to the optimal curve for cars and bikes. 

To visually compare the performance of network configurations optimized under 

different ethical principles, radar plots are used. Each axis represents a key evaluation metric, 

including total and mode-specific accessibility, construction cost, equity measures, and closeness 

to achieving the optimal NFD. For interpretability, all axes are scaled such that higher values 

indicate better performance, specifically, construction cost and NFD deviation have been 

inverted so that lower raw values translate into larger positions on the plot. The resulting plots 

are shown in Figure 2.12.  
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Existing Utilitarian Sufficiency 

   
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   

Figure 2.12 Visual Metrics of GA Solutions by Ethical Formulation 

 

The existing network serves as a baseline, characterized by high NFD deviation and 

strong car accessibility, but limited bike accessibility and poor performance on equity-related 

metrics. The Utilitarian solution achieves high overall accessibility across both 20- and 45-

minute thresholds. While Sufficiency yields the highest total 45-minute accessibility, it performs 

poorly in 20-minute car accessibility and low-income access. Each of the accessibility gap 

strategies performs best in the metric it targets, like bike accessibility, low-income access, or 

coverage of the least accessible zones. Among all alternatives, the Maximin Income solution 

stands out with high performance across nearly all metrics. However, this comes at the expense 

of a higher construction cost, reflecting a trade-off between broad improvement and budget 

efficiency. 
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To better understand the spatial implications of each fairness objective, the resulting 

network configurations are mapped across the grid. These maps in Figure 2.13 display the 

assigned lane types on each edge, representing how the GA allocates space for cars and 

micromobility under each formulation.  

 
Figure 2.13 Network Representation of GA Solutions 

 

In the existing configuration, micromobility infrastructure is sparse and fragmented, with 

few corridors of high-quality separation (Type 3). The existing network also includes a corridor 

where bikes are not allowed, identified by Type 0.  In contrast, all optimized networks show 

expanded coverage of Types 2 and 3. Utilitarian, Accessibility Gap Income, Accessibility Gap 

Access, Maximin Income, and Maximin Mode all include corridors of bike infrastructure 
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connecting the western side of the network from north to south. In many of the networks, Type 3 

links are concentrated in the center of the network, while Type 2 links fill in the more residential 

areas.  

Since the objective function is designed to maximize zonal connectivity, mapping zonal 

access metrics allows for analysis of the spatial distribution of accessibility. These maps, shown 

in Figure 2.14, illustrate how accessibility varies across the network under different 

configurations 

 
Figure 2.14 Zonal Access of GA Solutions across Fairness Objectives 

 



 34 

 

 

The existing network shows distinct disparities between geographies, with many northern 

and peripheral zones in orange or beige, reflecting low access. The existing network shows high 

levels of connectivity in the centermost part of the map, where the downtown and most bike 

infrastructure is concentrated. In contrast, all optimized networks show a substantial expansion 

of high-accessibility areas, with more zones shaded in blue, particularly in the southern and 

central portions of the grid. 

Utilitarian and Sufficiency solutions increase overall accessibility with expanded 

accessibility in the southern zones of the network and improvements in accessibility for the 

north-west portion. The modal solutions, Accessibility Gap Mode and Maximin Mode have the 

least uniform pattern of accessibility and are more similar to the Existing network but with 

expanded coverage in the center. Maximin Income and Maximin Access emerge as the best 

distribution of accessibility with the least low coverage zones of any solution. 

The maps in Figure 2.15 visualize the spatial differences between each ethically guided 

network design and the utilitarian benchmark. To highlight only the meaningful variations, links 

that share the same treatment in both the displayed formulation and the Utilitarian solution are 

omitted. The full grid of both the Utilitarian solution and the Existing network are also included 

as reference points.  
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Figure 2.15 Grid Networks by Ethical Formulation Compared to Utilitarian Results 

 

Across all formulations, there are significant variations between solutions compared to the 

utilitarian solution. In the Sufficiency scenario, a large number of links differ from the Utilitarian 

configuration, especially with Type 2 links which are used to affordably expand access, 

reflecting the Sufficiency objective’s aim to raise all users to a minimum acceptable level of 

access. The Accessibility Gap strategies show more targeted variations. Both Accessibility Gap 

Mode and Accessibility Gap Income have some of the longest connected corridors, creating more 

low-stress accessibility for cyclists and connecting low-income zones. Accessibility Gap Access 

appears to prioritize more widespread coverage of the network, including more investment on the 

periphery. The Maximin principle designs demonstrate the most widespread changes relative to 

the Utilitarian baseline. Maximin Mode and Maximin Income both result in dense reallocation of 
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links, particularly shifting treatments in areas underserved by the Utilitarian plan, like the north-

west portion of the map. Maximin Access shows the most spatially extensive reconfiguration, 

aligning with its goal to prioritize the zones with the lowest existing accessibility. 

To assess the distributional impacts of each network configuration, cumulative 

distribution curves illustrate the change in 20-minute bike accessibility relative to the existing 

network. These plots represent the net gain or loss in access for each zone to observe which areas 

benefit from the reallocation of space and which ones experience reduced connectivity. By 

incorporating population size and median income, the curves highlight the tradeoffs between 

efficiency and fairness, capturing both the "winners" and "losers" under each optimization 

objective shown by Figure 2.16.  

 
Figure 2.16 Cumulative Distribution of Improvements over Existing Infrastructure 
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Across all formulations, most zones experience improvements compared to the existing 

network. However, some tradeoffs are visible in Maximin Mode, where some zones lose access 

to benefit others. Across the distributions, there are no clear patterns in the variation in income, 

both low- and high-income zones see losses in different objectives, and gains are distributed to 

both high and low-income zones as well.  

To better understand the tradeoffs between network efficiency and investment, a 

sensitivity analysis of the two objective function components (accessibility and flow-efficiency) 

over varying the construction budget was conducted. Figure 2.17 shows the resulting sensitivities 

of the networks toward reaching optimal flow and improvement of accessibility. 

 
Figure 2.17 Cumulative Distribution of Improvements over Existing Infrastructure 
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Across all scenarios, as construction cost increases, accessibility improves and NFD 

deviation decreases, though no formulations achieve full accessibility or reach the optimal NFD 

curve. The Utilitarian and Accessibility Gap Income formulations achieve the closest fit to the 

optimal NFD curves. The Accessibility Gap Mode and Maximin Mode formulations achieve the 

highest accessibility, which is achieved through the prioritization of bike accessibility. When 

budgets are limited, the solution tends to preserve much of the existing network. However, even 

modest additions lead to noticeable improvements in accessibility compared to the baseline (grey 

line). For example, in Accessibility Gap Mode, an investment of $96,000 yields 82 more 

accessible zones. This improvement is achieved by adding bike lane infrastructure to the 

network, particularly along a major corridor that was previously exclusive to cars (Ridge 

Avenue). 

To assess the accuracy of the GA's objective function and its underlying flow predictions, 

each optimized network was re-simulated. The resulting flow-density curves were compared to 

the predicted curves used during optimization and are shown in Figure 2.18.  

 

Existing Utilitarian Sufficiency 

   
Accessibility Gap Mode Accessibility Gap Income Accessibility Gap Access 

   
Maximin Mode Maximin Income Maximin Access 

   
Figure 2.18 Difference Between Optimal and Actual NFD Curves and Simulated Relationships 

 

This validation step verifies whether the simulated performance for each GA-optimized 

network aligns with the predicted NFD. While these graphs reinforce the finding that the GA is 

unable to find a network that meets the optimality defined NFD from Step 1, the predicted NFD 

curves and simulated points align well.  
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While the direct optimization network from the perspective of maximizing the function 

𝑞𝑚(𝑘𝑚 ,  𝐴𝑚 ,  𝐴,  𝐼) is feasible in the sense of meeting the imposed constraints; these results 

suggest it is not feasible in the actual creation of a physical network that meets the optimal areas 

found, especially when enforcing budget constraints.  

 

2.4 Summary 

This chapter introduces a novel, two-step framework for the macroscopic design of bike 

lane networks. Building upon the network fundamental diagram (NFD) relationships identified in 

the prior chapter, an optimization formulation is developed that finds flow-maximizing values of 

the network attributes. The second step of the framework translates these optimal network 

characteristics onto specific links within the Evanston network using a Genetic Algorithm (GA). 

The GA selects configurations of links with no bike lanes, bike lanes, and separated bike lanes. 

The objective of the GA is to maximize accessibility while minimizing the difference between 

the theoretical curves of a solution network and the optimal shape found in Step 1. This solution 

method includes custom operators, constraint handling, and a repair function to maintain solution 

feasibility, improve convergence, and ensure spatial coherence of the proposed infrastructure. 

To test how different ethical frameworks influence the resulting network design, the GA 

is implemented under multiple fairness objectives: utilitarian, sufficiency, accessibility gap, and 

maximin principle. Each of these formulations produces a distinct configuration of bike 

infrastructure with varying levels of accessibility, equity, and efficiency. Despite these 

differences, all optimized networks outperform the existing network, which is sparse and 

fragmented.  

Performance metrics, convergence behavior, NFD curve comparisons, and spatial maps 

collectively illustrate how different objectives shape both the technical and social outcomes of 

the network design. Cumulative distribution curves of access gains, differentiated by income and 

population, reveal the extent to which each objective benefits or burdens specific zones. These 

analyses demonstrate that while all objectives deliver gains, tradeoffs are inevitable, and fairness 

criteria play a critical role in determining who benefits most. 

Analysis of the resulting networks across all performance metrics highlights important 

tradeoffs. The Accessibility Gap Mode formulation yields the largest gains in 20-minute bike 

accessibility; however, Maximin Income is shown to be the best overall solution with strong 

results across all metrics, including accessibility, equity, and efficiency, though it slightly 

exceeds the allocated budget. In terms of zone-level accessibility, Maximin Access achieves the 

best outcomes, with few low-access zones in the final network. When measuring improved 

accessibility compared to the existing network, a small number of zones lose accessibility in the 

Maximin Mode solution. 

A sensitivity analysis to construction costs provides additional insight into how different 

optimization goals respond to varying investment levels. Both accessibility and efficiency in 

terms of the area between NFD curves respond to increased budget, resulting in smaller areas 

between curves and higher accessibility values. Under increased budgets, the Utilitarian 

objective most closely reaches the theoretical NFD, while mode-based objectives (Accessibility 

Gap Mode and Maximin Mode) deliver the highest aggregate accessibility gains with additional 
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funding. Finally, a re-simulation of the GA-selected networks is used to validate the predictive 

accuracy of the functional form developed. Taken together, these results provide a set of high-

performing solutions that reflect different priorities. By exploring alternative designs at a given 

budget, planners can present the tradeoffs between equity, efficiency, and access in transparent 

ways. Community input should guide the selection of objectives and final designs, ensuring that 

the infrastructure reflects local values and the needs of those it is meant to serve. 
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3 A MULTI-AGENT SIMULATION PLATFORM FOR URBAN STREETS  

3.1 Introduction 

Urban streets are dynamic environments where multiple types of users interact: cars, buses, 

bicycles, pedestrians, delivery vehicles, rideshare vehicles, etc. These interactions shape safety, 

efficiency, and overall street functionality. Modeling such complexity requires a framework that 

captures both predictable flows and stochastic events. This chapter presents a multimodal urban 

traffic modeling framework, designed to simulate the interplay between flowing and stopping 

agents and their interactions. By conceptualizing traffic as a combination of flows, stops, and 

localized interactions, the framework allows realistic simulation of street-level dynamics and 

assessment of design and operational performance. 

Street dynamics operate across multiple spatial scales. At the city-wide scale, models focus 

on broad operations, such as rideshare fleet movement, public transit network design, and vehicle 

repositioning, providing insights into demand concentrations and likely flow corridors. At an 

intermediate scale, such as a neighborhood or corridor, sub-network models capture more 

localized features, including bike lane design, transit stop placement, signal timing, and shared 

mobility dock locations. These models reveal nuances in how different street users interact in 

specific areas. At the street-level scale, attention is on micro-scale interactions, such as a double-

parked delivery truck, a bus pulling into a stop, pedestrians crossing mid-block, or cyclists 

navigating around obstacles. While higher-level models provide expected flows, the precise 

timing and locations of these events are stochastic, driven by variability in where and when 

agents stop and by the interactions among them, which may cause delays, conflicts, or rerouting. 

Urban street users can be classified as either flowing or stopping agents. Flowing agents 

primarily travel through the street to reach their destinations, including vehicles moving along a 

corridor or cyclists riding along a bike lane. Stopping agents, in contrast, treat the street as a 

destination or task location; examples include rideshare pickups, buses pausing at stops, delivery 

trucks temporarily stopping, or pedestrians crossing mid-block. Interactions between flowing and 

stopping agents are central to the functionality and safety of streets, necessitating a modeling 

framework that can represent these interactions accurately. 

 

3.2 Simulation Framework 

The framework represents flowing agents with distributions of speeds and flow rates to 

capture natural variability and stopping agents with stochastic stop locations and dwell times. It 

incorporates street infrastructure such as lane widths, sidewalks, bike lanes, and curb allocations, 

which influence agent movement and interactions and affect throughput, safety, and overall user 

experience. The framework simulates complex interactions, including lane blockage by delivery 

trucks, unexpected pedestrian crossings, or bus stop delays, allowing evaluation of congestion, 

safety, and efficiency. By integrating stochastic demand, infrastructure features, and interaction 

rules, this simulator provides a tool for understanding and testing urban street designs under 

realistic conditions. 

Each agent in the simulation is represented as an independent entity with its own decision-

making capabilities. Agent types include autonomous vehicles (AVs), connected vehicles (CVs), 

human-driven vehicles (HDVs), bicycles, and pedestrians. Roadways can be configured flexibly; 

for a 60 ft right-of-way, approximately 200 different layouts are possible, specifying vehicle lane 

widths and directions, bike lane placement and width, and pedestrian sidewalk dimensions. The 
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simulator models hierarchical agent movement, including longitudinal and lateral dynamics, 

infrastructure-related decision processes, and multi-modal interactions. Figure 3.1 outlines some 

of these layouts. 

 

 

 
Figure 3.1 Various Simulation Street Layouts 

 

3.3 Base Movement Models 

A number of models are implemented in this simulator to represent agent movement. Some 

of them are borrowed from the literature, others are novel models. Figure 3.2 show these models 

implemented from the literature. 

 

 
Figure 3.2 Movement Models from Literature 
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3.3.1 Automated Vehicle Control Model  

Automated vehicles are modeled using a longitudinal control framework inspired by [4] 

where vehicles continuously sense the environment and react to leader motion. The effective 

stopping distance for vehicle 𝑖following 𝑖 − 1is: 

 

 Δ𝑥𝑛 = (𝑥𝑖−1 − 𝑥𝑖 − 𝑙𝑖−1) + 𝑣𝑖𝜏 +
𝑣𝑖−1

2

2𝑎𝑖−1
𝑑𝑒𝑐𝑐 (Eq 3.1) 

   

where 𝑥𝑖 is the longitudinal position of vehicle 𝑖in meters, 𝑣𝑖is its speed in meters per 

second, 𝑙𝑖−1 is the length of the leading vehicle, 𝜏is the driver response delay in seconds, and 

𝑎𝑖−1
dec is the maximum comfortable deceleration of the leader in meters per second squared. 

Because the sensing system has limited range, the usable stopping distance is 

 

 Δ𝑥 = 𝑚𝑖𝑛(𝑆𝑒𝑛𝑠𝑜𝑟𝑅𝑎𝑛𝑔𝑒, Δ𝑥𝑛) (Eq 3.2) 

   

The maximum safe speed that ensures stopping within this distance is given by: 

 

 𝑣𝑚𝑎𝑥 = √−2𝑎𝑖
𝑑𝑒𝑐𝑐Δ𝑥 (Eq 3.3) 

   

where 𝑎𝑖
decis the maximum deceleration of vehicle 𝑖. The vehicle’s desired acceleration 

incorporates the leader’s acceleration 𝑎𝑖−1, the relative velocity (𝑣𝑖−1−𝑣𝑖), and the difference 

between the current spacing 𝑠𝑖and the desired spacing 𝑠ref: 

 

 𝑎𝑖
𝑑(𝑡) = 𝑘𝑎  [𝑎𝑖−1(𝑡 − 𝜏)] + 𝑘𝑣[𝑣𝑖−1(𝑡 − 𝜏) − 𝑣𝑖(𝑡 − 𝜏)] + 𝑘𝑑[𝑠𝑖(𝑡 − 𝜏) − 𝑠𝑟𝑒𝑓] (Eq 3.4) 

   

Here, 𝑘𝑎 , 𝑘𝑣 , and 𝑘𝑑are control gains, and 𝑠refis the desired spacing, calculated as the 

minimum of three components: the minimum gap 𝑠min, the system-based spacing 𝑠system = 𝑣𝑖𝜏, 

and the safe-stopping spacing 𝑠safe = 𝑣𝑖−1
2 /[2(1/𝑎𝑖

dec − 1/𝑎𝑖−1
dec)]. The actual acceleration 

applied is bounded to ensure compliance with the safe-speed limit:  

 

 𝑎𝑖(𝑡) = 𝑚𝑖𝑛 (𝑎𝑖
𝑑(𝑡), 𝑘(𝑣𝑚𝑎𝑥 − 𝑣𝑖(𝑡))) (Eq 3.5) 

 

where 𝑘moderates convergence toward the safe-speed boundary. This formulation 

guarantees that AVs maintain safe headways while responding smoothly to surrounding traffic. 

 

3.3.2 IDM for Connected Vehicles 

Connected Vehicle and longitudinal dynamics follow the Intelligent Driver Model (IDM) 

[5]: 
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 𝑎 = 𝑎0 (1 − (
𝑣

𝑣0
)

𝛿

− (
𝑠∗(𝑣, Δ𝑣)

𝑠
)

2

) (Eq 3.6) 

 

where 𝑎0is the maximum acceleration, 𝑣the current speed, 𝑣0the desired free-flow speed, 

𝑠the gap to the leader, and 𝛿an acceleration exponent. The desired dynamic spacing is: 

 

 

 
𝑠∗(𝑣, Δ𝑣) = 𝑠0 + 𝑣𝑇 +

𝑣Δ𝑣

2√𝑎0𝑏
 (Eq 3.7) 

 

with 𝑠0the minimum gap, 𝑇the desired time headway, Δ𝑣 = 𝑣 − 𝑣leader the relative speed, 

and 𝑏the comfortable deceleration. 

 

3.3.3 Multi-Regime Prospect-Theory based Car-Following Behavior 

Human drivers evaluate candidate accelerations using Prospect Theory (PT) [6]. Two 

behavioral regimes are distinguished: uncongested (UC) and congested (C) [7]. The expected 

utility of a candidate acceleration 𝑎𝑛is 

 

 𝑈𝑃𝑇(𝑎𝑛) = 𝑃(𝐶) ⋅ 𝑈𝑃𝑇
𝐶 (𝑎𝑛) + 𝑃(𝑈𝐶) ⋅ 𝑈𝑃𝑇

𝑈𝐶(𝑎𝑛) (Eq 3.8) 

 

where 𝑈𝑃𝑇
𝐶 and 𝑈𝑃𝑇

𝑈𝐶are regime-specific utilities, and 𝑃(𝐶), 𝑃(𝑈𝐶)are probabilities derived 

from local traffic density and spacing. Collisions are accounted for as 

 

 𝑈𝑃𝑇(𝑎𝑛) = (1 − 𝑝𝑛,𝑖) 𝑈𝑃𝑇(𝑎𝑛) − 𝑝𝑛,𝑖  𝑘(𝑣, Δ𝑣) (Eq 3.9) 

 

where 𝑝𝑛,𝑖is the probability of collision and 𝑘(𝑣, Δ𝑣)is the crash severity function. Final 

accelerations are stochastically sampled from 

 

 𝑓(𝑎𝑛) ∝ ex p(𝛽𝑃𝑇  𝑈𝑇(𝑎𝑛)) (Eq 3.10) 

 

3.3.4 Pedestrian and Bike Prospect Theory Model  

Pedestrians and bicycles select speed 𝑣and heading 𝜔to maximize expected utility while 

avoiding collisions [8]. Candidate velocities are evaluated using the subjective value function  

 

 𝑆𝑉(𝑣, 𝜔) = (𝜂 ⋅ align)𝑠𝑝_𝑟𝑎𝑡𝑖𝑜𝜉
 (Eq 3.11) 

 

where align = max (0, cos (𝜔 − goal𝜔)), 𝑠𝑝_𝑟𝑎𝑡𝑖𝑜 = 𝑣/𝑣pref, 𝜂is a utility weight, and 

𝜉controls sensitivity to deviations from the preferred speed 𝑣pref. Expected utility accounts for 

collision probability 𝑝coland collision weight 𝑊𝑐: 

 



 45 

 

 

 𝑈expected = (1 − 𝑝col) ⋅ 𝑆𝑉 − 𝑝col ⋅ 𝑊𝑐 (Eq 3.12) 

 

Velocities are smoothed with a first-order lag 

 

 𝑣new = 𝑣 +
Δ𝑡

𝜏
 (𝑣desired − 𝑣) (Eq 3.13) 

 

and stochastic noise is added: 

 

 𝑣final = 𝑣new + 𝒩(0, 𝜎√Δ𝑡) (Eq 3.14) 

 

where 𝜏is the smoothing time constant and 𝜎represents process noise. 

 

3.3.5 MOBIL Lane Changing Model 

Lane changes follow the MOBIL model [9]. A lane change is allowed if it satisfies both a 

safety and incentive criterion. Safety requires that the follower in the target lane does not exceed 

a safe braking limit 𝑏safe: 

 

 𝑎′
𝐵′ > 𝑏𝑠𝑎𝑓𝑒 (Eq 3.15) 

 

where 𝑎𝐵′
′ is the acceleration of the back vehicle after the change. The incentive criterion 

requires a net advantage to the driver: 

 

 𝑎′(𝑀′) − 𝑎(𝑀) > 𝑝 [𝑎(𝐵′) − 𝑎′(𝐵′)] + 𝑎thr (Eq 3.16) 

 

where 𝑎𝑀and 𝑎𝑀′
′ are the ego vehicle accelerations before and after, 𝑝is the politeness factor, and 

𝑎thris a minimum advantage threshold. 

 

3.4 Novel Model Implementations  

A number of models are newly implemented in this simulator to represent agent 

movement. show these novel models. 

 

 
Figure 3.3 Novel Movement Models 
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3.4.1 Lane Keeping Dynamics Model 

Accurately modeling how vehicles stay within their lanes is essential for representing traffic flow 

in urban environments. While longitudinal behavior such as acceleration and car-following has 

been widely studied, lane-keeping behavior, the small, continuous lateral adjustments drivers 

make to remain centered in a lane, requires separate consideration. These adjustments are 

influenced not only by the physical boundaries of the lane, but also by nearby vehicles and the 

driver’s ability to control lateral motion. 

This section presents a physics-based lane-keeping model that represents lateral vehicle motion 

as the result of three interacting effects: a restoring force that pulls the vehicle toward the lane 

center, repulsive forces from nearby vehicles, and damping that limits abrupt lateral movement. 

Together, these components produce realistic within-lane motion over time. 

 

 𝑣𝑦,𝑖(𝑡 + 1) = 𝛾𝑣𝑦,𝑖(𝑡) + [𝐹𝑐𝑒𝑛𝑡𝑒𝑟,𝑖(𝑡) + 𝐹𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟,𝑖(𝑡) + 𝜉𝑖(𝑡)]𝛥𝑡 (Eq 3.17) 

 

Here, 𝑣𝑦,𝑖(𝑡)denotes the lateral velocity of vehicle 𝑖, 𝛾 ∈ [0,1]is a damping coefficient that 

controls how quickly lateral motion decays, and Δ𝑡is the simulation time step. The term 

𝜉𝑖(𝑡)represents Gaussian noise with zero mean and variance 𝜎2, capturing stochastic variation in 

human driving behavior. The lane-centering force pulls the vehicle toward the center of its lane 

and is proportional to its lateral deviation: 

 𝐹𝑐𝑒𝑛𝑡𝑒𝑟,𝑖(𝑡) = −𝛽𝑐𝑒𝑛𝑡𝑒𝑟𝑑𝑖(𝑡) (Eq 3.18) 

where 𝛽center > 0is the centering force coefficient and 𝑑𝑖(𝑡)is the signed lateral distance between 

the vehicle’s current position and the lane centerline. The negative sign ensures that deviations to 

one side generate forces in the opposite direction, producing a stabilizing effect similar to a 

spring. To maintain lateral separation from nearby vehicles, the model includes a neighbor 

repulsion force that decreases with distance: 

 𝐹𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟,𝑖(𝑡) = 𝛽𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∑ 𝑠𝑔𝑛 (𝑦𝑖(𝑡) − 𝑦𝑗(𝑡)) /

𝑗∈𝑁𝑖(𝑡)

𝑟𝑖𝑗(𝑡)2 (Eq 3.19) 

In this expression, 𝛽neighbor > 0controls the strength of repulsion, 𝒩𝑖(𝑡)is the set of neighboring 

vehicles, and 𝑟𝑖𝑗(𝑡)is the Euclidean distance between vehicles 𝑖and 𝑗. The sign function ensures 

that the force pushes vehicles laterally away from one another. 

Together, these equations describe a stable and flexible lane-keeping model that captures 

realistic lateral behavior while remaining computationally efficient for large-scale traffic 

simulations. 
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The model is calibrated using real-world trajectory data of human drivers from the Third 

Generation Simulation (TGSIM) dataset collected at George Washington University's Foggy 

Bottom campus in Washington, D.C. [10].Through multi-objective optimization using genetic 

algorithms, parameter sets are identified that best reproduce observed lateral velocities, 

achieving an acceptable fit on validation data. While the current calibration focuses on human 

driving behavior, the model framework is designed to accommodate autonomous vehicle (AV) 

behavior in future simulation studies through parameter adjustment, particularly reduced 

stochastic noise (𝜎) to reflect more precise lateral control. 

 

3.4.2 Car/Ped Stopping Model 

Vehicles approaching stops like rideshare pickup or drop-off, buses, or delivery vehicles 

approaching stops decelerate smoothly: 

 

 
𝑎 = min (

𝑣2

2𝑑remaining
, 𝑎max) 

(Eq 3.20) 

   

where 𝑣is current speed, 𝑎maxthe maximum comfortable deceleration, and 𝑑remainingthe 

distance to the stopping point. Lateral adjustments are applied for the car to pull-over or double 

park: 

 𝑦new = 𝑦 + 𝑣 sin(𝜃) Δ𝑡 (Eq 3.21) 

 

with 𝜃the drift angle toward lane edge. 

 

3.4.3 Drift-Diffusion Model (DDM) for Pedestrian/Bicycle Crossing Decisions  

The drift diffusion model Implementation is as in the Phase I report for this project [11]. 

 

3.4.4 Shared-Lane Yielding Model 

The Shared Lane Yield (SLY) Model simulates interactions between bicycles and cars in 

non-traditional shared lanes, where bicycles may laterally adjust to allow vehicles to pass. Unlike 

conventional lanes, lateral movement is used to resolve potential conflicts rather than strict lane 

discipline. In the SLY framework, bicycles detect approaching vehicles and yield toward the 

edge of the lane if they are putting the car at a significant disadvantage. Cars, in turn, continue 

forward, passing around the bicycle without slowing. Lateral yielding and passing movements 

are executed gradually using a small drift angle, ensuring smooth and realistic motion 

Bicycles decide to yield based on the potential disadvantage imposed on a following 

vehicle, measured as the reduction in expected acceleration if the bicycle were present: 

 



 48 

 

 

 𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 = |𝑎𝑤𝑖𝑡ℎ 𝑏𝑖𝑘𝑒 − 𝑎𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑏𝑖𝑘𝑒| (Eq 3.22) 

   

If this value exceeds a threshold, the bicycle politely drifts toward the lane edge, allowing 

cars to pass safely. The lateral motion toward the lane edge is governed by: 

 

 𝑥𝑛𝑒𝑤 = 𝑥 + 𝑣 ⋅ 𝑐𝑜𝑠(𝜃) 𝛥𝑡 ,       𝑦𝑛𝑒𝑤 = 𝑦 + 𝑣 ⋅ 𝑠𝑖𝑛(𝜃) 𝛥𝑡 (Eq 3.23) 

 

where 𝑣is the agent’s forward speed and 𝜃is a fixed drift angle (10°) toward the target 

lateral position. Longitudinal acceleration is updated according to the forward speed. 

Bicycles move laterally to avoid impeding cars, while cars maintain their course and speed, 

passing on the open side of the lane. Once the vehicle has passed, the bicycle returns to the lane 

center smoothly. This model captures realistic bicycle–car interactions in shared lanes, where 

bicycles yield laterally while vehicles pass, using smooth drift dynamics to ensure safety and 

continuity of motion. 

 

3.4.5 Stopped Vehicle Avoidance Model  

Vehicles approaching stopped cars follow a hierarchical navigation strategy, prioritizing 

lane changes, then lateral avoidance if necessary, and incorporating cooperative behavior for 

merging vehicles. Each vehicle evaluates movement priorities in the following order: conflict 

resolution, stopping behavior, discretionary lane changes using MOBIL, shared lane yielding, 

and stopped vehicle avoidance as a fallback. When possible, vehicles attempt a discretionary 

lane change to pass the stopped obstacle, considering safety and acceleration benefits.   

If a lane change is not feasible, lateral avoidance is applied by drifting to the side of the 

lane to maintain a lateral clearance from the stopped car. Vehicles adjust acceleration to maintain 

a passing speed. The model uses a three-state machine: Approaching in which the vehicle drifts 

toward the target lateral position; Passing, maintaining the lateral clearance alongside the 

stopped vehicle; and Returning, in which the vehicle returns to the lane center once past the 

stopped car by 5m longitudinally. 

Cooperative behavior occurs when the stopped vehicle is in a waiting-to-merge state. 

Approaching vehicles reduce speed if feasible; otherwise, they navigate around the obstacle. If 

the slowdown creates a sufficient 3-second gap, the stopped vehicle merges back into traffic. 

Once past the obstacle, vehicles clear the avoidance state and resume normal car-following 

behavior. 

Together, these models implement a hierarchical navigation system in which vehicles first 

attempt lane changes to pass pulled-over cars, fallback to lateral avoidance within the lane if lane 

changes are not possible, and apply cooperative strategies when interacting with stopped or 

merging vehicles. This is a unique feature of the simulator, as most traffic models assume a 

simple FIFO behavior where stopped vehicles form a queue behind them. By allowing vehicles 

to navigate around stopped agents on links, the model more realistically represents urban driving 

behavior and produces credible macroscopic traffic patterns. 

 

3.5 Hierarchy of Agent Movements 
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Given the substantial number of potential movement models, this simulator uses a hierarchical 

structure for how agents choose their movements. The agent movement model implements this 

hierarchical decision structure at every simulation time step. For each agent, candidate actions 

are evaluated sequentially across the four layers, with higher-priority layers preempting lower 

ones. If a safety response is triggered, such as emergency braking or evasive lateral motion, that 

action is executed immediately and no further decisions are considered for that time step. If no 

safety-critical condition is present, agents with localized objectives, such as reaching a curbside 

stop, transit platform, or crossing location, enter the strategic layer, where route-aligned lane 

choices and deceleration plans are generated to reach the target safely. In the absence of strategic 

demands, the tactical layer evaluates discretionary behaviors, including lane changes governed 

by incentive and safety criteria, yielding in shared spaces, or lateral avoidance of stopped 

vehicles. When none of the higher layers produce an action, agents default to the operational 

layer, where longitudinal and lateral motion are determined by their base movement models, 

such as car-following, lane-keeping, or pedestrian and bicycle velocity selection. This 

hierarchical evaluation is performed independently for each agent at every simulation time step, 

ensuring that immediate safety is always prioritized while allowing longer-horizon objectives 

and discretionary behaviors to emerge naturally from the interaction of agents and infrastructure. 

This is outlined in Figure 3.4. 
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Figure 3.4 Agent Movement Model Hierarchy 

3.6 Validation of Macroscopic Relationships 
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While the preceding sections define the microscopic motion rules for autonomous vehicles 

(AVs), connected vehicles (CVs), and human-driven vehicles (HDVs), the primary value of 

these models lies in the macroscopic traffic phenomena that emerge from their interaction. To 

illustrate this, a simple bidirectional corridor is simulated in which vehicles enter at a constant 

flow rate, and five pedestrian jaywalking events are introduced as localized disturbances. As 

vehicles decelerate to yield to pedestrians, these disturbances propagate upstream as backward-

moving shockwaves in the space–time trajectories. Despite operating under the same geometric 

and demand conditions, the three vehicle classes exhibit clearly separated speed–density 

relationships, reflecting differences in control precision, reaction time, and headway selection. 

Autonomous vehicles recover most rapidly from pedestrian-induced slowdowns due to 

conservative gap-keeping and responsive control, connected vehicles exhibit moderate recovery 

as information sharing reduces but does not eliminate variability, and human-driven vehicles 

recover the slowest, with the greatest dispersion in speeds and headways. These differences are 

visible both in trajectory diagrams (Figure 3.5) and in aggregated speed–density plots (Figure 

3.6), where pedestrian crossings appear as localized deviations whose dissipation rates vary by 

vehicle type. Overall, the results demonstrate that the proposed microscopic rules generate 

realistic macroscopic behavior, including shockwave formation, heterogeneous recovery 

dynamics, and mode-specific speed–density patterns consistent with established traffic-flow 

theory. 
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Figure 3.5 Trajectory Plots of Traffic Stream Recovery 
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Figure 3.6 Speed Density Relationships 
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4 CONFLICT CHARACTERIZATION AND SEVERITY ANALYSIS 

4.1 Introduction 

The previous chapter described how agents navigate the street environment: pedestrians 

weaving through other pedestrians, cyclists negotiating speed and stability, and vehicles 

accelerating, braking, changing lanes, and yielding to others roadway users. These behavioral 

models generate agent trajectories based on local observations of neighbors. But even with 

realistic movement models, conflicts are not avoided altogether. Limited perception ranges, 

heterogeneous reaction times, and imperfect predictions of others’ intentions mean that agents 

will inevitably encounter situations where paths intersect in unsafe ways. Understanding how 

these conflicts emerge, and what makes some far more dangerous than others, reveals how street 

design directly shapes safety outcomes. 

 

Crucially, a conflict between two vehicles does not pose the same level of risk as one 

involving a pedestrian, even if the spatial arrangement and time to collision are identical. This 

motivates a dual‐metric framework: Time to Collision (TTC) captures the temporal urgency of 

an interaction, while Impact Severity (IS) captures the potential consequence if the conflict were 

to result in collision. Weighting conflicts by both metrics distinguishes designs that merely 

reduce the number of interactions from those that eliminate severe ones. 

 

4.2 Conflict Detection Methodology  

4.2.1 Time-To-Collision (TTC) Conflict Identification 

Physical proximity alone does not define a conflict. Relative speed, direction, timing, and 

agent type all shape whether an interaction is dangerous. A fast-moving vehicle approaching a 

cyclist head-on represents a more critical interaction than two pedestrians passing close together; 

likewise, interactions involving vulnerable road users generally carry greater risk than those 

between similarly protected agents. To systematically identify when agents are on paths that may 

intersect dangerously, this study uses a vectorized Time-to-Collision (TTC) calculation at each 

simulation step. For every pair of agents on the same link, TTC estimates the time remaining 

until collision if both agents maintain their current velocities. The TTC between agents 𝑖 and 𝑗 is 

defined as: 

 
GTTCij =

𝑑𝑖𝑗,adjusted

𝑣approach
 

(Eq 4.1) 

 

   

Here, 𝑑𝑖𝑗,adjusted is the separation distance adjusted for agent dimensions, and 𝑣approach is 

the relative velocity projected onto the line connecting the two agents. Diverging or negative 

TTC values are discarded. A conflict is recorded when TTC is positive, below a 3-second 

threshold, and the pair is on a converging trajectory.  

 

4.2.2 Conflict Severity Determination 

TTC identifies when an agent is facing a situation requiring an evasive action, but it does 

not quantify the potential harm of a resulting collision. TTC is fundamentally a binary filter 
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where either the TTC is low enough to constitute a conflict or it is not. It cannot distinguish a 

minor low-speed interaction from a high-energy collision involving a vulnerable road user. 

To capture the consequence dimension, an Impact Severity Metric is introduced, grounded 

in collision physics and modeled against well-established injury risk benchmarks in the 

literature. This metric is designed for comparative evaluation and system planning, not precise 

injury prediction. Its purpose is to reflect the non-linear increase in harm with speed and mass 

asymmetry and to provide a normalized, dimensionless measure for comparing conflict severity 

across agent types. 

 

For a hypothetical two-body perfectly inelastic collision, total impact energy is: 

 

 𝐸 =
1

2
𝜇𝑣rel

2  , 𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
 (Eq 4.2) 

 

where 𝑣rel =∣∣ v1 − v2 ∣∣ is is the relative speed. Energy is allocated to each agent 

proportional to the other agent’s mass: 

 

 𝐸2 = 𝐸 ×
𝑚1

𝑚1 + 𝑚2
, 𝐸1 = 𝐸 ×

𝑚2

𝑚1 + 𝑚2
 (Eq 4.3) 

 

 

 
 

Thus, when a heavy vehicle collides with a pedestrian or cyclist, the lighter agent absorbs a 

disproportionate share of the impact energy, aligning with empirical vulnerability patterns. 

Each agent’s severity is defined as: 

 

 
𝑆𝑖 =

𝐸𝑖

𝐸threshold,𝑖
 (Eq 4.4) 

   

Where 𝐸threshold,𝑖 is a policy-based reference energy representing the onset of moderate to 

high injury risk for that agent type. The thresholds are calibrated using standardized masses and 

collision speeds drawn from widely used safety research, not individualized crash modeling. 

They serve as consistent weighting factors that allow cross-scenario comparisons. 

 

Table 4.1: Agent Severity Parameters 

 

Agent Type Mass (Kg) Vehicle Impact Speed 𝑬Threshold,𝒊 

Pedestrian 75 35 km/hr 3000 

Cyclist 90 45 km/hr 6000 

Vehicle 1,500 65 km/hr 60000 

These thresholds are conservative, standardized policy weights chosen to ensure the metric 

reliably flags interactions with meaningful safety implications. 

Figure 4.1 plots severity as a function of relative speed for each collision pairing. All 

curves exhibit the expected quadratic shape. The horizontal line at 𝑆 = 1 marks the high-risk 

severity threshold, showing where each collision type crosses into dangerous territory. The figure 



 56 

 

 

highlights the dramatic sensitivity of pedestrians and cyclists to even modest impact speeds 

relative to vehicle–vehicle collisions. 

 
Figure 4.1 Severity Function 

 

4.2.2.1 Brief Limitations 

Although the severity metric captures the major differences across collision types, several 

simplifying assumptions limit its precision.  

First, this model assumes perfectly inelastic collisions. The model treats every collision as 

if the two agents stick together and transfer the maximum possible amount of energy. Real-world 

impacts often involve partial elasticity as vehicles rebound, cyclists glance off the hood, 

pedestrians roll or slide. This assumption tends to overestimate severity for vehicle–vehicle 

crashes, where energy is often absorbed by crumple zones or partially returned through rebound. 

It may misrepresent cases where an agent is deflected rather than fully struck, such as a 

pedestrian being brushed and spun rather than directly hit. In other words, the inelastic 

assumption gives a conservative upper-bound estimate of energy transfer but does not account 

for variations in collision mechanics. 

Second, the thresholds represent policy-level risk, not medical injury modeling. The 

calibrated energy thresholds correspond to transitions into “moderate-to-high risk” zones, not 



 57 

 

 

clinical injury probabilities or detailed biomechanics. They are intended for comparative safety 

evaluation across scenarios. 

Finally, angle of impact and secondary impacts like falling to the ground, sliding, or 

striking another object are excluded. 

Despite these simplifications, the metric provides a robust and consistent basis for 

comparing relative conflict severity across different street designs, agent types, and scenarios. 
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5 THE URBAN STREET DESIGN PROBLEM 

5.1 Introduction  

Urban street design can be framed as a multi-objective optimization problem in which 

planners must balance competing goals within a highly constrained right-of-way. Two objectives 

are central to this trade-off. The first is throughput, reflecting how efficiently people and vehicles 

move through the corridor. The second is safety, operationalized as minimizing conflicts and 

associated risk among street users. Improvements to one objective often come at the expense of 

the other, making optimal design inherently dependent on how performance is evaluated. 

Critically, performance is not a fixed property of a street layout. Instead, it is a function of 

demand, which is inherently stochastic and varies by time of day, day of week, season, and 

surrounding land uses. As a result, evaluating street designs under idealized or deterministic 

demand assumptions risks misrepresenting real-world outcomes. To meaningfully compare 

alternative designs, it is therefore necessary to first characterize what actual demand looks like 

under realistic operating conditions. 

 

5.1.1 Case Study Corridor: Belmont Avenue 

To ground this analysis, a 200 m segment of Belmont Avenue in Chicago is used as a case study. 

This corridor is relatively short but highly active, making it well suited for detailed observation 

and simulation. The segment lies adjacent to the CTA Red, Brown, and Purple Line station and 

is surrounded by a dense mix of land uses, including multiple coffee shops, retail stores such as 

Target and Walgreens, restaurants, a hotel, and significant curbside activity. Together, these 

features generate substantial pedestrian, vehicle, and delivery traffic throughout the day. Figure 

5.1 outlines this study area.

 
Figure 5.1 Belmont Corridor 

 

Field observations were conducted on a warm Saturday in November (approximately 65 

°F), when outdoor activity levels were relatively high. Although demand increases further during 
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the summer months, activity during the observation period was already substantial. In a single 

hour, 12 pedestrians were observed jaywalking mid-block to access destinations such as 

Walgreens and Taco Bell, despite the presence of marked crossings at both ends of the 200 m 

corridor. Pedestrian volumes during this period were nearly comparable to vehicle volumes, and 

nontraditional users, including a small autonomous delivery robot, were also present on the 

sidewalk. These observations highlight the diversity of agents and the frequency of informal, 

unscheduled interactions that shape safety and flow on urban streets.  

 

Table 5.1 Field Counts 

Mode / Activity 1st 15 min 2nd 15 min 3rd 15 min 4th 15 min 

Cars (Eastbound) 190 147 155 210 

Cars (Westbound) 185 192 198 205 

Buses (Eastbound) 2 3 1 3 

Buses (Westbound) 2 1 3 2 

Pedestrians (Eastbound) 144 152 130 103 

Pedestrians (Westbound) 148 192 107 103 

Bicycles 6 7 9 8 

E-bikes 2 0 1 1 

E-scooters 1 2 1 1 

Trucks 1 3 2 1 

Trolley 1 0 1 0 

Delivery robot 0 1 0 0 

Jaywalking pedestrians 3 2 4 3 

Rideshare pick-up / drop-off 6 5 9 6 

 

 

5.1.2 Demand Characterization and Simulation Framework 

Using these field counts, a baseline demand schedule was constructed that distinguishes between 

flowing agents and stopping agents. Flowing agents include pedestrians, cyclists, and vehicles 

whose primary behavior is continuous movement through the corridor, characterized by desired 

speeds and realized flow rates. Stopping agents include pedestrians crossing mid-block, curbside 

deliveries, and other activities that temporarily disrupt traffic flow, characterized by the timing 

and location of stops or crossings. 

Because real-world demand is variable, this schedule represents only one possible realization of 

activity on the corridor. To account for stochasticity, the simulation is run multiple times using a 

Monte Carlo approach. For each run, flowing agents’ desired speeds and arrival rates are drawn 

from probability distributions, while stopping agents’ crossing times and locations are randomly 

perturbed within ±2 minutes and ±10 meters of their observed values. Each simulation run thus 

represents a distinct but plausible realization of demand. 

Simulations are executed in parallel, and performance metrics are aggregated across runs to 

estimate expected outcomes. The framework overall is outlined in the flowchart shown in Figure 
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5.2. 

 
 

Figure 5.2 Framework Flowchart 

In practice, results stabilize after approximately 40 simulation runs, indicating convergence 

of the estimated performance measures. This process yields robust estimates of both throughput 
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and conflict outcomes for a given street design under realistic operating conditions. Figure 5.3 

shows this convergence plot. 

 

 
Figure 5.3 Convergence of Severity Score 

 

5.1.3 Feasible Street Designs 

To systematically explore alternative street layouts, this study defines a bounded set of 

feasible street designs based on geometric and operational constraints that reflect common urban 

design standards. The goal is not to prescribe a single ideal configuration, but rather to identify 

the full range of layouts that can physically fit within the available right-of-way while supporting 

bidirectional travel and multimodal use. 

All candidate designs are required to provide at least one vehicle lane in each direction, 

ensuring continuous eastbound and westbound traffic flow. Let 𝐿eastand 𝐿westdenote the number 

of eastbound and westbound vehicle lanes, respectively; both must be positive integers. Each 

vehicle lane is assigned a uniform width, denoted by 𝑤veh, which is constrained to fall between 

10 and 15 feet to remain consistent with standard lane design guidance. 

Pedestrian infrastructure is explicitly represented through sidewalks on both sides of the 

street. The width of each sidewalk, denoted by 𝑤sidewalk, must be at least 3 feet. While this 

minimum does not imply ideal pedestrian conditions, it establishes a lower bound that ensures 

basic pedestrian accommodation in all designs. 
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Bicycle infrastructure is treated as optional. A binary indicator variable, 𝑧bike, is used to 

represent the presence or absence of dedicated bike lanes. When 𝑧bike = 1, a bike lane is 

provided on each side of the street, with each lane assigned a width 𝑤bikebetween 3 and 8 feet. 

When 𝑧bike = 0, no dedicated bike lanes are included and the bike lane width is set to zero. 

All design elements must collectively fit within the available cross-sectional roadway 

width, denoted by 𝑊avail. This total width constraint ensures that sidewalks, vehicle lanes, and 

bike lanes together do not exceed the physical right-of-way. Formally, the feasibility of a street 

design is enforced through the following constraint: 

 2 𝑤sidewalk + (𝐿east + 𝐿west) 𝑤veh + 2 𝑧bike 𝑤bike   ≤   𝑊avail (Eq 5.1) 

Each unique combination of lane counts, lane widths, sidewalk widths, and bike lane 

configurations that satisfies this constraint constitutes a distinct street design. Applying these 

rules to the 60-foot right-of-way considered in the Belmont Avenue case study produces nearly 

200 feasible street configurations. This finite but diverse design space captures a wide spectrum 

of trade-offs between pedestrian space, vehicle capacity, and bicycle accommodation, and serves 

as the basis for the simulation and optimization analyses that follow. 

 

5.1.4 Enumerating and Evaluating Street Designs 

Once demand is fixed, the next step is to vary the street design itself and repeat the evaluation 

process. For the Belmont Avenue case study, the available right-of-way is approximately 60 feet, 

which significantly constrains feasible layouts. Design constraints include practical bounds on 

lane widths: vehicle lanes must generally fall between 10 and 15 feet, while bicycle lanes range 

from approximately 3 to 8 feet. Within these constraints, there are on the order of 200 distinct 

feasible layouts. 

Because the solution space is relatively small in this case, all feasible designs can be explicitly 

enumerated rather than searched using heuristics. Each layout is evaluated using the same 

stochastic demand framework, producing paired estimates of throughput and safety performance. 

Figure 5.4 shows the design space and how various layout performed in relation to design 

variables. 
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Figure 5.4 Design Space 

 

5.1.5 Pareto Frontier and Design Trade-offs 

With performance measured along two objectives, results can be visualized using a Pareto 

frontier. Each point on the frontier corresponds to a non-dominated design, meaning that no other 

layout performs better on both throughput and safety simultaneously. Some designs prioritize 

safety at the cost of reduced flow, while others maximize throughput while accepting higher 

conflict levels. 

A scalar weighting parameter, α, is used to trace this frontier. When α = 0, the optimization 

prioritizes safety alone; when α = 1, it prioritizes throughput alone. Intermediate values of α 

yield compromise solutions that balance the two objectives. For any chosen value of α, a single 

optimal design can be identified, corresponding to the point labeled on the frontier. 

Although the Belmont Avenue case study involves a limited number of design alternatives, the 

framework readily generalizes to more complex environments. As the number of streets, design 

variables, or objectives increases, the solution space grows rapidly, motivating the need for  
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scalable simulation and optimization methods. Nonetheless, this case study demonstrates how 

realistic demand modeling, stochastic simulation, and Pareto-based evaluation can be combined 

to rigorously assess trade-offs in urban street design. 

 
Figure 5.5 Pareto Frontier of Designs 

 

5.1.6 Conclusions 

The conflict characterization and severity analysis framework presented in this chapter 

provides a powerful tool for evaluating the safety implications of urban street designs under 

realistic operating conditions. By combining Time-to-Collision (TTC) metrics with an impact 

severity measure grounded in collision physics, the approach moves beyond simple conflict 

counts to capture both the likelihood and potential consequences of interactions among diverse 

street users. This dual-metric system enables planners to distinguish between designs that merely 

reduce the number of conflicts and those that meaningfully mitigate severe outcomes for 

vulnerable road users such as pedestrians and cyclists. 

These tools can be applied to compare alternative layouts, assess trade-offs between 

throughput and safety, and identify design elements, such as protected bike lanes or reduced 

shared space, that significantly lower high-risk interactions. However, while the framework 

provides a rigorous quantitative basis for evaluation, its application must be guided by policy 
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priorities and community values. Decisions about how to balance efficiency, equity, and safety 

cannot be resolved by technical metrics alone; they require input from stakeholders and 

alignment with broader goals such as Vision Zero, sustainability, and accessibility. In this sense, 

the methodology serves as an evidence-based decision-support system rather than a prescriptive 

solution, enabling transparent discussions about trade-offs and helping communities select 

designs that reflect their priorities.   
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Findings 

The research demonstrates that integrated modeling and optimization tools can effectively 

support urban street design decisions that balance efficiency, safety, and equity. The two-step 

optimization framework based on the Network Fundamental Diagram (NFD) successfully 

identifies flow-maximizing network attributes and translates them into practical link-level 

configurations using a Genetic Algorithm (GA). While the GA cannot fully replicate the 

theoretical optimal NFD due to physical and budget constraints, it consistently improves 

accessibility and reduces conflict potential compared to the existing network.  

Across all formulations, utilitarian, sufficiency, accessibility gap, and maximin, the 

optimized networks outperform the baseline in terms of multimodal connectivity. Bike 

accessibility within a 20-minute threshold increases substantially, and equity metrics such as 

access for low-income zones show modest improvements. Ethical objectives influence spatial 

allocation patterns: 

 

• Utilitarian designs prioritize overall accessibility and flow efficiency. 

• Sufficiency-based designs expand coverage to ensure minimum access for all 

zones. 

• Accessibility gap and maximin formulations target fairness by reducing disparities 

and improving outcomes for disadvantaged groups. 

 

Simulation-based evaluations confirm that these designs reduce severe conflicts without 

compromising throughput excessively. The multi-agent simulation platform captures realistic 

interactions among vehicles, cyclists, and pedestrians, enabling conflict characterization through 

Time-to-Collision (TTC) and Impact Severity metrics. Results indicate that layouts with 

dedicated micromobility infrastructure and reduced shared space achieve lower severity scores, 

particularly for vulnerable road users. 

Finally, the case study on Belmont Avenue illustrates the practical feasibility of these 

tools. Nearly 200 candidate designs were evaluated under stochastic demand conditions, and 

Pareto analysis revealed clear trade-offs between safety and efficiency. Designs that allocate 

space for protected bike lanes and wider sidewalks consistently rank higher on safety, while 

layouts with more lanes maximize throughput. These findings underscore the importance of 

transparent trade-off analysis and community-driven prioritization in selecting final designs.  
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Recommendations 

Urban planners and policymakers should incorporate quantitative modeling and simulation 

tools as a central part of street design and evaluation. Traditional qualitative guidelines provide 

important principles but often fail to capture the complex trade-offs between safety, efficiency, 

and equity in multimodal environments. The integrated frameworks presented in this study 

combine Network Fundamental Diagram (NFD)-based optimization, multi-agent simulation, and 

conflict severity analysis to deliver a rigorous, data-driven foundation for decision-making. 

These tools enable transparent evaluation of design alternatives, quantify accessibility and flow 

impacts, and assess safety outcomes under realistic operating conditions. Using such approaches 

will allow communities to move beyond ad hoc design practices and toward evidence-based 

solutions that balance technological innovation with human-centered values.  
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Outputs 

This research delivers two primary outputs that advance the state of practice in multimodal 

street design and evaluation: 

 

1. New Methodologies for Network Design Optimization 

A two-step optimization framework was developed to systematically design 

multimodal networks. The first step applies a Network Fundamental Diagram (NFD)-

based formulation to identify flow-maximizing values of network attributes such as 

mode-exclusive areas, shared space, and interaction plane length. The second step 

translates these aggregate optimal characteristics into link-level configurations using a 

Genetic Algorithm (GA). This approach enables planners to balance efficiency, 

accessibility, and fairness by incorporating ethical principles such as sufficiency, 

accessibility gap, and maximin into the optimization process. These formulations move 

beyond traditional qualitative guidelines by providing a quantitative basis for 

evaluating trade-offs between throughput, equity, and safety under realistic constraints. 

 

2. Multi-Agent Simulation Platform for Urban Streets 

 

A comprehensive simulation platform was created to model the dynamic interactions 

among diverse street users, including connected and autonomous vehicles, human-

driven vehicles, bicycles, pedestrians, and emerging micromobility modes. The 

platform integrates microscopic behavioral models, such as car-following, lane-

changing, pedestrian crossing decisions, and shared-lane yielding, with stochastic 

demand generation and hierarchical decision-making. This enables realistic 

representation of both flowing and stopping agents and captures emergent macroscopic 

phenomena such as shockwaves and congestion patterns. The simulator supports 

conflict detection using Time-to-Collision (TTC) and Impact Severity metrics, 

allowing quantitative assessment of safety outcomes across alternative street designs. 

By combining behavioral realism with performance evaluation, this tool provides 

planners with actionable insights into how design choices influence efficiency and 

safety in complex urban environments. 

 

Together, these outputs establish a rigorous, data-driven foundation for designing and 

evaluating multimodal streets. They enable transparent comparison of design alternatives, 

quantify accessibility and flow impacts, and assess safety under stochastic demand conditions, 

supporting evidence-based decision-making for future urban mobility. 
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Outcomes 

 

The application of the developed methodologies and simulation platform has produced 

several important outcomes: 

 

1. Increased Understanding and Awareness 

a.  The research enhances understanding of how multimodal interactions and CAV 

deployments affect safety, efficiency, and equity on urban streets. It introduces 

quantitative tools that move beyond qualitative guidelines, enabling planners to evaluate 

trade-offs transparently. 

 

2. Expansion of the Body of Knowledge 

a. The study contributes new formulations for multimodal network design optimization and 

introduces a multi-agent simulation platform that captures realistic interactions among 

diverse street users. These outputs advance the state of practice in urban mobility 

research. 

 

3. Improved Processes and Techniques  

a. The two-step optimization framework and simulation platform provide planners with 

systematic, data-driven processes for designing multimodal networks. These processes 

improve decision-making by integrating flow efficiency, accessibility, and fairness 

objectives. 

 

4. Adoption Potential for New Practices  

a. The tools developed in this research can be incorporated into planning workflows, 

supporting evidence-based design and policy decisions. They enable agencies to adopt 

quantitative evaluation methods for Complete Streets and CAV integration. 
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Impacts 

 

The outcomes of this research have the potential to generate significant impacts on 

transportation systems and society: 

 

1. Enhanced Safety for Vulnerable Road Users 

a. Designs informed by the simulation platform and optimization framework reduce severe 

conflicts, particularly for pedestrians and cyclists, contributing to lower crash risk and 

improved street safety. 

 

2. Improved Efficiency and Accessibility 

a. Optimized network configurations increase multimodal accessibility while maintaining 

reasonable throughput, supporting more equitable and efficient urban mobility. 

 

3. Support for Policy and Investment Decisions  

a. By providing transparent trade-off analysis, these tools can guide infrastructure 

investments and policy frameworks toward designs that balance technological innovation 

with human-centered values. 

 

4. Long-Term Community and Environmental Benefits   

a. Safer, more efficient multimodal streets encourage active transportation, reduce reliance 

on private vehicles, and contribute to sustainability goals through lower emissions and 

improved livability. 
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Challenges and Lessons Learned 

Developing large-scale optimization and simulation frameworks for multimodal street 

design presented several technical and methodological challenges. One of the primary difficulties 

was ensuring computational efficiency when handling highly complex models that integrate 

multiple transportation modes, stochastic demand patterns, and ethical constraints. The 

optimization formulations, particularly those involving nonlinear objectives and multiple 

constraints, required advanced solvers and careful tuning to achieve convergence within 

reasonable time frames. Implementing the two-step optimization process and genetic algorithm 

for link-level design demanded custom operators and repair functions to maintain feasibility and 

spatial coherence, which added to development complexity.  

On the simulation side, building a multi-agent platform capable of representing diverse 

behaviors, such as car-following, lane-changing, pedestrian crossing, and shared-lane yielding, 

posed significant challenges in terms of scalability and realism. Modeling interactions among 

thousands of agents while preserving detailed behavioral rules required hierarchical decision 

structures and efficient data handling. Additionally, integrating conflict detection and severity 

analysis into the simulation workflow introduced further computational overhead, necessitating 

optimizations in both algorithm design and software architecture.  

These challenges underscore the importance of balancing model fidelity with 

computational tractability. Lessons learned include the need for modular software design, 

parallel processing for simulation runs, and adaptive optimization strategies to handle non-

convex problems. Future work should focus on improving solver performance, leveraging high-

performance computing resources, and refining behavioral models to reduce complexity without 

sacrificing accuracy. 
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