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Executive Summary

Slippery road conditions, particularly black ice and high-water film on roadway surfaces,
pose significant hazards to roadway safety, contributing to over 10% of weather-related
crashes in the U.S. State Departments of Transportation (DOTSs) traditionally rely on
fixed Road Weather Information Sensors (RWIS) and static signage, offering limited
coverage to address this challenge. Advancements in mobile sensor technology now
enable the collection of road condition data at highway speeds, addressing the high
costs and limited coverage of fixed RWIS units.

This research project aimed to develop predictive models for identifying and forecasting
slippery conditions to enhance highway safety. Comprehensive field data collection was
conducted using mobile RWIS sensors and advanced surface characterization
instrumentation technologies, including the OSU Pave3D 8K and Grip Tester. With field
data collected on four roadway segments in Oklahoma (SH-177, SH-33, N2432 County
Road, SH-51), three machine learning based predictive models were developed for
predicting ice formation, water film height, and pavement friction.

Key findings:

Field Data Collection: Mobile RWIS sensors captured road state variables such as

water film height, ice percentage, and friction estimates under diverse weather

conditions. Surface characteristics influencing slipperiness, including macrotexture,
cracking, and rut depth, were measured using advanced tools.

Predictive Models: Machine learning models, including Random Forest and Gradient
Boosting, achieved robust prediction results. Ice percentage, water film height, and friction
models demonstrated accuracies of 75.8%, 65.2%, and 71.7%, respectively. Critical
parameters identified include Mean Profile Depth (MPD), cross slope, rut depth, and the
International Roughness Index (IRI).

Key outcomes:

ODOT PMS Data Integration: The study highlighted the feasibility of using the
Oklahoma DOT (ODOT) Pavement Management System (PMS) database to predict
slippery conditions. Six key variables in the PMS database were identified as
significant contributors, which could enable the implementation of developed models
for the estimation of ice percentage, water film height, and friction. However, some
influential variables like RMS and kurtosis are not currently saved in the PMS
database.

Strategic Implications: The developed models support a proactive approach to
identifying slippery conditions and offer potential for integration into Maintenance
Decision Support Systems (MDSS) to enhance situational awareness during
inclement weather and support winter maintenance decision-making.

This research aligns with strategic objectives to improve transportation safety and
supports USDOT goals. While the study relied on limited data, the results
recommendations include expanding data collection across broader networks,
incorporating additional weather variables, and addressing gaps in the PMS database to
further improve predictive capabilities.



Chapter 1. Introduction

1.1 Problem Statement

Black ice, a nearly invisible hazard, forms as a translucent layer of frozen glaze
resembling dark pavement and wet roads. It primarily emerges on bridges and
overpasses before spreading to roadways as temperatures drop. This peril contributes
to over 10% of weather-related crashes in the U.S., causing nearly 200,000 annual
automobile crashes. It leads to an average of 700 fatalities and over 65,000 injuries
yearly due to icy road conditions. Besides, other slippery surface conditions also could
play significant roles in roadway safety. Traditionally, state DOTs have relied on fixed
Road Weather Information Sensors (RWIS) and cautionary signs such as "lce May Form
on Bridge," along with flashing lights, to notify drivers of adverse road conditions with
limited localized coverage.

Additionally, during inclement weather conditions with heavy precipitation, residual
water film on roadway surfaces can significantly reduce pavement friction, thereby
compromising roadway safety. The height of the water film on the surface also serves
as a critical precursor to ice formation on roads. However, the measurement of water
film height and the detection of ice on roadway surfaces remain underdeveloped in
network-level system surveys.

Recent advancements in weather sensor technology now allow for collecting road
conditions and weather data at highway speeds directly from moving vehicles,
eliminating the costs and limited coverage associated with installing complete RWIS
units. Nonetheless, obtaining real-time road condition data at the network level during
and after inclement weather remains not only expensive but also hazardous.

State agencies are mandated to gather pavement surface condition data for asset
management purposes. It is acknowledged that road surface characteristics, in
conjunction with environmental conditions, can significantly impact ice formation on
roadways, although these relationships have not yet been established. Therefore, there
exists a critical need to harness existing surface characteristics, pertinent climatic
variables, and road geometry datasets to proactively predict slippery conditions.

1.2. Research Approaches

The objective of this project is to develop procedures and models for fast detection and
prediction of slippery conditions for enhanced highway safety. This project involved
comprehensive field data collection on specific roadway segments before, during, and
after inclement weather. We utilized mobile RWIS sensors to detect slippery conditions
and the OSU Pave3D 8K to gather data on roadway surface characteristics and
geometry. The primary goal was to develop predictive models that could anticipate
slippery road conditions in different weather scenarios. These prediction models could



then be applied to identify potential slippery areas across Oklahoma, using the annual
pavement management system (PMS) datasets collected by the Oklahoma Department
of Transportation (ODOT). The anticipated outcomes of this project aligned with the
SPTC's strategic objectives, aiming to “make our transportation system safer for all
people and advance a future without transportation-related serious injuries and
fatalities”, and supported the USDOT's goals.

The research team accomplished the project objectives by breaking down the research
into the following four major work activities:

Field roadway weather data collection using Mobile Advanced RWIS (MARWIS)
technology to rapidly measure surface states, including temperature, dew point,
humidity, road state (dry, wet, icy, etc.), presence of chemicals, water film depth, ice
percentage, and friction estimates. We conducted field data collection on selected
testing sites under normal traffic conditions by considering various surface
characteristics, both before, during, and after inclement weather events.

Field assessment of road surface characteristics used the Grip Tester at OSU for
friction measurements and the Pave3D 8K technology for pavement surface
characteristics acquisition under dry conditions. The surface characteristics could
influence the ice-forming mechanisms, the skid resistance levels and roadway
slipperiness.

Slippery condition prediction models’ development was accomplished by leveraging
roadway weather data collected from MARWIS, pavement surface characteristics data
collected from Pave3D 8K, and surface friction data from Grip Tester. Slippery
conditions predictive models were developed using machine learning methods to
forecast road conditions during rainy or icy days.

Discussions were held regarding the implementation of predictive models for slippery
condition warning using the ODOT PMS database. This integration could help identify
potential locations with slippery conditions to assist in enhancing situational awareness
and supporting road maintenance operations.

1.3 Report Outline

To attain the goal of research, this report is presented below in the following chapters:

« Chapter 1 introduces the problem statement, research objective, research
approaches, and report outline.

« Chapter 2 presents a literature review and includes utilization and various road
information sensors, the relevant methodologies for roadway slippery condition
detection and monitoring, and the use of MARWIS data for winter maintenance
decision support at state DOTs in the United States.



Chapter 3 summarizes the field data collection and processing, including the use of
MARWIS during and after inclement weather, as well as roadway condition data using
Pave3D 8K and Grip Tester. The weather and road surface characteristics data were
processed and summarized.

Chapter 4 details the development of predictive models for slippery roadway
conditions, including ice percentage, water film height, and pavement friction,
utilizing machine learning techniques. In addition, the chapter explored how data
from the ODOT PMS database can be integrated into these models to forecast
slippery roadway conditions effectively.



Chapter 2. Literature Review

This chapter presents a comprehensive literature review on weather-related road safety,
fast detection, and prediction of slippery roads with its contributing factors, and statistics
on crashes caused by slippery roads. It also extended to current technologies for
detecting slippery roads, accuracy, and limitations of current technologies.

2.1 Weather-Related Roadway Safety

Adverse weather conditions can significantly impact traffic mobility and safety, as they
can create hazardous driving conditions and increase the risk of crashes. For example,
snow and high wind speeds could increase the probability of single-truck crashes, while
rain has the largest effect on single-car crashes. Especially at higher speed limits and in
rear-end crashes, sun glare prompts multi-car crashes. So, understanding the impact of
inclement weather reduces weather-based crashes, and allocates substantial
significance to winter maintenance operation (WRM) to improve mobility and public
traffic safety. Snow and ice reduce pavement friction and vehicle maneuverability,
causing slower speeds, reducing roadway capacity, and increasing crash risk.

Extensive research has been conducted on traffic crashes correlated with winter
precipitation events. Winter weather conditions in the US pose a hazard to motorists,
one-half of fatalities occur in snow, while 75% occur in ongoing snowfall, 41% happen
near the onset of freezing precipitation, 42% of fatalities occur before the crash, more
than 25 percent primary visibility reduction, eventually resulting in approximately 1000
fatalities annually on U.S. roadways (Tobin et al., 2022). This number is greater when all
other weather-related fatalities are combined. Among the various forms of hazardous
weather for motorists, winter precipitation is correlated with a heightened risk of
vehicular collisions and injuries and increasing precipitation rates augment collision
frequencies (Qiu and Nixon, 2008; Strong et al., 2010; Theofilatos and Yannis, 2014).
Meteorological conditions have a direct impact on road safety, thus monitoring weather
and its impact on road conditions can save lives, and winter maintenance services.

2.2 Slippery Roadway Conditions

Slippery roads occur when friction is reduced due to factors like rain, snow, ice, black
ice, or oil spills. The conditions reduce tire traction, making it difficult for vehicles to
maintain control, and significantly increase the risk of crashes. Slippery roadways can
result from various weather conditions, road surface conditions, or the presence of
substances such as ice, snow, or water on the road. Quick identification and accurate
prediction of slippery conditions are crucial for authorities and drivers to implement
appropriate measures, prevent crashes, and ensure road safety.

When the temperature drops below the freezing point, ice is formed, causing water on
the road surface to freeze. It can be extremely slippery and make the road very



hazardous, especially when it is not visible to drivers. Snow creates a slippery surface,
which is formed when water vapor in the atmosphere freezes into ice crystals and falls
to the ground. Water on the road surface, either due to rain, melting snow, or other
sources make wet roadway conditions, which could decrease the road surface skid
resistance. Wet surfaces can be slippery, especially if other contaminants are present,
such as oil or other oil-like substances on the surface.

Slippery road conditions are influenced by various factors, including temperature,
precipitation, weather conditions, oil spills, and worn-out pavement. Snow and ice
significantly increase the risk of slipping as shown by previous studies, but most slips
occur when the temperature is near zero degrees or slightly beneath it (Marjo, 2022).
Any moisture on the road can freeze from ice due to the temperature dropping below
the freezing point, making the road extremely slippery. Cold temperatures can cause
the road surface to become icy, even if there is no precipitation, posing a significant risk
to drivers and pedestrians.

Rainwater can create a thin layer of water on the road that reduces the grip and makes it
easier for vehicles to slide. Accumulated snow and sleet forming a layer of ice or slush
significantly reduces friction, making driving hazardous. Weather conditions such as
rain, snow, sleet, and black ice can make the road surface wet and reduce the friction
between the tires and the road. Additionally, strong wind can blow debris into the road,
further reducing traction. Understanding these factors in relationship with friction is
crucial for drivers and road maintenance authorities to respond appropriately to ensure
road safety.

2.3 Assessing Winter Roadway Surface States

Throughout recent years, numerous investigations have been conducted to assess the
state of pavements during winter conditions, ranging from indirect estimates based on
pavement images and weather forecasts (Pang et al., 2023), to advanced deep learning
algorithms and connected vehicle (CV) data for precise prediction of dry, snowy, and icy
pavement conditions (Hu et al., 2023).

The Road Weather Management Program (RWMP) of the Federal Highway
Administration (FHWA) (2024) collects weather data, performs quality check, and
disseminates atmospheric and road weather observations through a map interface. Field
observations were collected from the department of Transportation's RWIS fixed and
transportable Environmental Sensor Stations (ESSs) and from mobile sources using
external road weather sensors. This system encompassed a central processing unit, a
communications network, and various ESSs for the gathering of weather data,
pavement conditions, etc. The collected data was transmitted to the central system,
enabling the generation of timely nowcasts and forecasts crucial for effective road
management and maintenance strategies. The RWIS data, once processed, became
pivotal for the operation and management of roadways.



Similarly, Linton and Fu (2016) introduced the Road Surface Condition Monitoring
System that integrated pavement imagery with meteorological data to facilitate real-time
pavement condition monitoring. Three machine learning classifiers - Artificial Neural
Network (ANN), Classification and Regression Trees (CART), and Random Forest —
were tested for their model efficacy in field applications, with the Random Forest
algorithm particularly standing out for its superior classification accuracy. Additional
research was conducted to predict road friction levels using vehicle-derived data for
slippery road conditions. Panahandeh et al. (2017) illustrated the effectiveness of
combining vehicle data with weather reports for road friction prediction using a binary
classification approach (slippery vs. non-slippery), and machine learning techniques
including support vector machine algorithm (SVM), Artificial Neural Network (ANN), and
logistic regression. Their findings underscored the feasibility of their methodology in
accurately identifying slippery surfaces. Irschik and Stork (2014) developed a hazard
identification system that utilized standard vehicle sensor data to categorize current
pavement conditions to enable the provision of timely warnings to motorists (Irschik and
Stork, 2014). This system facilitates preventive driver responses to imminent road
hazards, thereby enhancing road safety.

Enriquez et al. (2012) introduced a versatile On-Board Diagnostics (OBD) tool capable of
not just gathering a wide array of vehicular data but also identifying real-time vehicular
slip events. Hou et al. (2017) designed a system that employed smartphones and OBD-II
adapters to signal slippery conditions on roads by utilizing the discrepancy between
wheel speed and the ground speed (the vehicle’s actual running speed) as the primary
indicator for potential skidding events and proactive monitoring of such incidents. The
detection algorithm for skidding was formulated and tested through field experiments in
Buffalo, New York. Field application results demonstrated the algorithm's high precision
and minimal false-positive occurrences. Heiman (2016), Shi (2018) and Padarthy Heyns
(2019) introduced similar systems for detecting slipperiness and assessing friction.

Recently, the transfer-learning system (Grabowski and Czyzewski, 2020) was
developed to monitor road slippery using data collected from CCTV cameras and a
convolutional neural network (CNN) architecture. The Densenet201 network could
achieve 98.34% accuracy. However, the data was collected in limited lighting conditions
and a limited number of weather stations that can detect snow on the road. In addition,
different weather stations had different sets of available sensors that limited the
development of more accurate slippery surface detection models. Additionally, utilizing
wheel slip and wheel acceleration data was proposed by Jang (2021). for the
identification of road slipperiness, by employing sensor data derived from a digital
tachograph (DTG), a device widely available in commercial vehicles. The approaches
detected road slipperiness using support vector machine algorithms and achieved an
accuracy of over 98%.

In 2022, Yang et al. (2022) integrated vehicle-infrastructure cooperative systems to
detect road- slippery conditions. The system included a trained recognition model, a
vehicle-road cooperative network, and a mobile app for visualization. The results
demonstrated high real-time performance, low omission rate, and good recognition
accuracy. Nonetheless, the study focused only on slippery road condition recognitions



and did not address other types of road conditions or hazards. Secondly, the system’s
performance and accuracy may vary in different real-world scenarios and road
conditions that were not specifically tested. Thirdly, the study did not provide information
on its feasibility for implementation on a larger scale, and fourthly, it did not discuss any
limitation of the vehicle-infrastructure cooperative network. Finally, it missed a
comprehensive analysis of the system’s performance in terms of false positives or false
negatives, which could impact its practicality and reliability (Yang et al., 2022).

The latest research in connected vehicles (CV) has also been used to acquire surface
data and then to implement deep learning algorithms to predict pavements’ slippery
conditions (Hu et al., 2023). The algorithms could predict the accuracy of 100%, 99.06%,
and 98.02% for dry pavement, snowy pavement, and icy pavement, respectively. The
research relies on simulated CV data in VISSIM for training the deep learning algorithm,
which may not capture the complexity and variability of real-world pavement.

2.4 Road Surface Characteristics and Condition Measurement

Recognizing the importance of integrating weather data with adverse road conditions
and pavement surface characteristics, countries in winter climates invest significant
financial resources into winter road maintenance (WRM) initiatives to enhance mobility
and public welfare. In the U.S., state governments collectively spend over $2.3 billion
annually on snow and ice control, accounting for approximately 20% of their WRM
budget (“FHWA Statistics,” 2022). Given these substantial maintenance expenses,
transportation agencies have consistently pursued cost-efficient strategies to optimize
the return on investment (Arvidsson, 2017). A critical element in developing such
strategies is access to detailed information about spatially variable road surface
conditions. State highway agencies typically evaluate pavement conditions using four
major categories: pavement distress, pavement roughness, deflection, and surface
friction.

e Pavement Distress: This assessment identifies visible surface issues such as
cracking, potholes, and rutting, which are indicative of structural deterioration or
wear. Common methods include visual inspections, manual surveys, and
automated data collection using imaging and laser technology.

e Pavement Roughness: Roughness measurements quantify the ride quality and
smoothness of the road surface, often expressed as the International Roughness
Index (IRI. Testing is performed using inertial profilers or laser-equipped vehicles.

e Deflection: Deflection testing evaluates the structural capacity of the
pavement by measuring its response to applied loads. Common techniques
include Falling Weight Deflectometer (FWD) tests and Dynaflect systems.

e Surface Friction: Surface friction testing assesses the road’s ability to provide
adequate tire grip. This is typically measured using equipment such as locked-
wheel skid trailers or dynamic friction testers.

These evaluations are conducted under standard testing and weather conditions and are
not designed to directly detect slippery road conditions caused by inclement or winter
climates, such as ice, snow, or water on the pavement surface. Road friction can be
influenced by several factors, including, not restricted to tire and pavement texture, as



well as contaminants on the road surface (Novikov et al., 2018). Research also showed
that environmental factors significantly impact road friction (Alexandersson et al., 1991;
Crevier and Delage, 2001; Hermansson, 2004; Kangas et al., 2015; Li et al., 2022,
Nowrin and Kwon, 2022; Tarleton, 2015; Vignisdottir et al., 2019; Walker et al., 2019).

Climatic factors are generally measured or estimated from RWIS (Liu et al., 2021). There
are two primary sorts of RWIS, particularly stationary RWIS (sRWIS) and mobile RWIS
(mRWIS). The former continuously monitors variable values through ESSs for long-term
data measurements. However, these stations do not directly provide road friction
measurements and coverage issues due to the considerable spacing between adjacent
stations. In recent years, various mRWIS sensors have been deployed by various
agencies to assist in winter maintenance decisions. The mobile climate information is
frequently employed to supplement the information collected by sSRWIS. MARWIS has
been adopted and mobilized on driving vehicles by several state agencies to collect
various parameters such as road conditions, temperatures, friction, and more in real time.
As MARWIS traverses the network, it offers spatially continuous measurements of road
friction values and the surrounding weather/environmental conditions. It is acknowledged
that data collected by MARWIS would experience lags due to travel time, resulting in
temporal gaps between adjacent data points.

In particular, the MARWIS by Lufft is a state-of-the-art solution designed to provide real-
time road weather data. Unlike stationary sensors, MARWIS is a mobile device mounted
on vehicles, capturing critical road conditions such as surface temperature, dew point,
water film height, relative humidity, and friction levels while on the move. This capability
makes it effective in assessing road safety under various weather scenarios, including
rain, snow, and icy conditions. In addition, MARWIS seamlessly integrates with fleet
management and RWIS to deliver data in real time via Bluetooth or cellular networks. The
system’s ability to measure friction and grip levels helps identify hazardous conditions for
winter road maintenance operations and resource allocation optimization.

The Finnish Meteorological Institute alongside the Road Administration introduced a
classification system for road friction by establishing friction ranges according to the
types of road surface contaminants (such as wet ice, icy conditions, packed snow,
rough ice or packed snow, clear and wet, and clear and dry), friction class estimates
through a hybrid criterion that considers meteorological factors including air
temperature, precipitation, humidity, and wind velocity (Juga et al., 2013).

In the United States, mobile RWIS models are employed by state highway agencies to
monitor critical road and weather parameters:

e Road parameters: including road conditions (e.g., dry, moist, wet, icy, snowy,
chemically treated wet surfaces), road surface temperature, water film height, ice
percentage, and friction levels.

e Weather parameters: such as ambient air temperature, dew point temperature,
and relative humidity.

Several organizations and entities actively utilize and evaluate the Lufft MARWIS
sensor for its innovative capabilities. These include the state DOTs of Arkansas,
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Minnesota, Missouri, Indiana, North Dakota, Nevada, Ohio, New York City, and
Colorado; the Michelin Tire Company for tire performance testing; and various school
districts along the East Coast (EI-Rayes and Ignacio, 2022). According to the OTT
HydroMet website, the Maryland DOT leveraged MARWIS in 2022 to enhance the
efficiency of winter maintenance operations, resulting in improved safety on Maryland
roads and optimized operational effectiveness during inclement weather. Additionally,
the California DOT retrofitted Caltrans’ Road weather stations in 2020 by integrating
new stationary RWIS sensors into their existing infrastructure, as a valuable tool for
improving roadway safety and facilitating data-driven decision-making under various
weather.

By providing real-time data on critical metrics such as surface temperature, ice
percentage, and water film height, MARWIS assists DOTs in responding effectively to
adverse weather. Furthermore, these advancements enhance the capabilities of
Maintenance Decision Support Systems (MDSS. MDSS integrates weather forecasts,
road condition data, maintenance practices, and resource allocation models, enabling
winter maintenance professionals to devise precise and effective road treatment
strategies.

2.5 Summary

Slippery roads can have a significant negative impact on highway safety. Although
various works have been conducted for the identification of slippery road conditions,
they were generally developed using weather sensors and vehicular data sets. Since
state agencies collect PMS data regularly for their highway systems, this significant
amount of surface condition data sets could be of great value for the prediction of
slippery road surfaces to enhance safety.
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Chapter 3. Field Data Collection and Processing

3.1 Pilot Data Collection Sites

This study considered multiple ice and rain events in January and February 2024 to
gather field data in Oklahoma. The weather data was collected using MARWIS, while
pavement surface characteristics and pavement geometry data were obtained using
state-of-the-art laser imaging techniques Pave 3D 8K. Field data were collected from
several state highways in Oklahoma, namely SH-177, and SH-33, and one county road
connected with SH-33 and SH-51. In total, 51 miles of routes were selected for field data
collection, as shown in Figures 1 and 2. The data collection process for ice events, rain
events, pavement characteristics, and pavement geometry was conducted multiple
times along these same routes at regular driving speeds.

@BYle Public Schools

Figure I Field Data Collection Routes

Figure 2 Example Field Data Display
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3.2 Field Data Collection Instruments

Firstly, weather data was collected utilizing the MARWIS sensor (Figure 3), a mobile road
weather information sensor from Lufft. Multiple DOTs have adopted MARWIS
technology to support winter maintenance activities. The sensor was mounted on top of
the testing vehicle at a specific angle and securely fastened to ensure stability during
data collection, while also maintaining power and continuous internet connectivity. The
MARWIS sensor emits lights within a 2-inch by 2-inch area to collect data at vehicle
speed. The collected data is simultaneously uploaded to the cloud. MARWIS provides
data on various parameters, including road surface temperature, dew point temperature,
water film height, ice percentage, and estimated road conditions. The data collection
frequency is set at 10Hz.
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Figure 3 MARWIS-UMB Components

The 3D laser imaging data were collected for pavement surface characteristics and road
geometry data at the selected locations shown in Figure 4. This innovative technology
utilizes high-precision 3D laser imaging to capture pavement surfaces in both 2D and
3D representations. The Pave 3D 8K system offers a transverse resolution of 0.5 mm
and features over 8000 pixels across the lane width, providing detailed and
comprehensive data for pavement surface analysis.

. 2 3
.,., " 3 S i

Figure 4 Data Collection on Pave 3D 8K with MARWIS

in Ice Events
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After the completion of pavement field data collection, the raw data, consisting of high-
resolution 2D and 3D images of the pavement surface, was processed using customized
software that utilized a deep learning framework to extract key pavement conditions
parameters. The parameters of pavement include IRI, rut depth, texture indicators
(mean profile depth - MPD, mean texture depth - MTD, Root Mean Square - RMS,
skewness, kurtosis), crack density on Wheel Path (WP) and Non-wheel Path (NWP),
crack area, cross slope, and grade. Thereafter, ice and rain data, pavement surface
characteristics, and geometric data were compiled and aligned to a maximum distance
of 0.05 miles which ensured that the weather data and pavement data aligned with the
same locations.

Finally, the research team concentrated on measuring pavement friction data along the
specified data collection routes utilizing Grip Tester, a continuous friction measuring
device. The Grip Tester calculates pavement friction by measuring the longitudinal
friction coefficient between the road surface and the testing tire with a braked wheel at a
constant slip rate of about 15%, close to the optimum level of the anti-blocking system.
The slip rate generates the adhesive force, which is derived from the mechanical force
between the two carrier wheels and the measuring wheel. The friction data collection is
illustrated in Figure 5, in conjunction with the Pave 3D 8K vehicle.

I

I Pave 3D 8K

Figure 5 Pavement Friction Data Collection using Grip Tester

3.3 Field Data Processing

The three datasets collected using MARWIS, Pave 3D 8K, and grip tester were
synchronized based on the nearest GPS coordinates. Rigorous and detailed coding in
Python was performed to match the dataset. The data accumulation process
determined that Grip Tester data served as the basis for the model, with data collected
every 3 feet along the driving direction. To simplify the data-matching process, the
research team defined sections measuring 0.05 miles (264 feet) in length. The Grip
Tester data, processed as the final friction data (GN number), were recorded in a
spreadsheet along with corresponding GPS coordinates. If multiple GN values were
present in the dataset, the GN numbers were averaged.
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The GN number data was matched with the weather data, specifically considering water
film height. The MARWIS data, uploaded in real-time in Lufft's cloud ViewMondo, was
retrieved from the cloud database and matched with the GN number. The Pave 3D 8K
data was processed using ADA 3D software, to extract pavement surface condition
parameters. The GN number and water film height were matched with the
comprehensive pavement surface conditions and geometric data, including IRI, rut
depth, cracking, texture indicators, grade, and cross slope.

In summary, Table 1 presents the list of pavement surface characteristic variables,
derived and processed from collected field data. These variables will be utilized in
Chapter 4 for model development.

Table 1 List of pavement surface characteristic variables

Variable Description

IRI IRI, measurement of pavement smoothness. The lower the IRI value,
the smoother the road surface

Rut depth Permanent longitudinal surface depression in WP for flexible pavement
due to traffic passage

Crack Density In-WP, longitudinal cracks outside and within 2ft of the pavement edge,

WP referred to as fatigue cracking

Crack Density In the NWP , longitudinal cracking is not located in the defined wheel at

NWP each severity level.

MPD) MPD average height of roughness of the surface, impact on
permeability, and skid resistance

RMS) RMS deviation of surface texture properties, may impact on interaction
between tires and pave surface

Texture Asymmetrical measures of surface texture may affect drainage, tire-

Skewness pavement interaction, and ride quality.

Texture Distribution of texture heights and impact on surface characteristics;

Kurtosis high kurtosis enhances friction.

Cross slope The cross slope may lead to multiple safety issues, including

(crsSlope) hydroplaning, loss of control, and run-off-road crashes (Alzraiee et al.

2024)

3.3.1 Descriptive Statistics

Descriptive statistics presents measures of central tendency (i.e., mean and median) and
dispersion (i.e., range, standard deviation, minimum, and maximum) for ice percentage,
water film height, and nine explanatory variables, as shown in Table 2. The variability in
road surface conditions, water film height, and ice percentage could have a significant
impact on road safety and maintenance priorities.
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Table 2 Descriptive Statistics of Variables

Variable Mean Median | Range SD Min Max
Ice Percentage (%) 42.29 0 100 47.31 0 100
Water Film Height (um) | 55.20 16.83 38160 |7466 |0 381.64
IRI (in/mi) 109.07 | 91.75 |1186.65 | 97.56 |34.25 | 1220.93
Rut Depth (mm) 1.920 1.26 15.65 2.35 0.46 | 16.04
Crack Density WP (%) 0.99 0.48 5.50 1.20 0 5.50
Crack Density NWP (%) | 1.51 0.82 10.45 1.82 0 10.45
crsSlope (%) 1.24 1.52 13.87 1.86 -6.45 |6.97
MPD (mm) 1.33 1.31 5.28 0.45 0.71 |5.99
RMS (mm) 2.81 2.40 14.98 1.64 0.92 |15.89
Skewness -0.31 -0.25 2.88 0.32 -243 |0.45
Kurtosis 2.51 2.28 8.98 0.83 1.73 | 10.72

Table 2 provides insights into the variability and patterns across ice percentage and
water film height. lce percentage had a mean of 42.29%, indicating moderate ice
coverage on average. Its skewed distribution, combined with a high standard deviation
(47.31) and a wide range, indicated the sporadic occurrences of ice coverage. Similarly,
Water Film Height displayed a mean of 55.20 ym and a median of 16.83 pm, indicating
predominantly low values with occasional high readings.

The IRI demonstrated significant variation in road conditions, with a mean of 109.07
in/mi and a median of 91.75 in/mi. However, the wide range and high variance
underscore diverse road roughness levels ranging from smooth to highly rough road
conditions. The low mean and median of rut depth reflected shallow ruts, though the
maximum rutting was 16.04 mm. Greater variability of crack density within NWP, as
evidenced by its range of 10.45mm and standard deviation of 1.82, indicated that cracks
were more prominent outside the WP. The MPD values were relatively consistent, with a
narrow range and low standard deviation, while RMS showed a wider range. The
slightly negative skewness suggested generally smooth road conditions with occasional
deviations, while high kurtosis in some areas identified some critical locations.

Besides the overall descriptive statistics of the surface characteristics, a glimpse of the
collected data for each indicator is represented in the following figures for the four
roadway segments. The road-specific examples were shown as follows:

o For SH-177: Figure 6 describes ice percentage, Figure 7 shows water film
height, Figure 8 illustrates pavement friction, and Figure 9 represents IRI.
Pavement cracking and rutting are displayed in Figures 10 and 11, texture data
is presented in Figure 12, and pavement geometry is illustrated in Figure 13.

e For SH-33: Figures 14 to 21 follow the same flow.

o For SH-51: Figures 22 to 29 depict the collected data.

e Forthe county road: Figures 30 to 37 provide an overview of data collection
following the same structure.
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Chapter 4. Slippery Conditions Prediction Models

4.1 Response and Independent Variables

Three response variables that relate to the roadway surface slippery conditions were
chosen for modeling: ice percentage, water film height (expressed in micrometers, um),
and pavement friction. All the variables were categorized into low and high levels based
on the percentiles of the data sets collected. Nine variables, as discussed in Chapter 3
associated with weather conditions, roadway geometry, and pavement surface
conditions, were included in the model development as independent variables.

4.2 Machine Learning Model Development

Using Python, two tree-based machine learning algorithms—random forest and gradient
boosting—were applied due to their ability to interpret feature importance, manage non-
linear relationships, and resist overfitting, thus offering reliable insights into the factors
affecting selected pavement measures. These algorithms were selected because of
their capacity for producing interpretable results to determine feature importance and
handle non-linear relationships. Also, these models provide robust techniques for
assessing the significance of various features and are less likely to overfit the data,
thereby producing more reliable outcomes.

The Random Forest model, introduced by Breiman (2001), executes as an ensemble
machine learning algorithm for classification and regression tasks. It operates by adding
decisions from different decision trees to derive outcomes. Constructing multiple
decision trees across different data sets enables the model to generate results for each
tree, which are then combined through a voting mechanism to determine the optimal
outcomes. In both categorical and continuous data, this algorithm can effectively
address overfitting issues for enhanced precision. In this study, the research team
applied 500 decision trees.

Secondly, the gradient boosting model, proposed by Friedman (2001) is another
ensemble of machine learning algorithms widely utilized for classification and regression
tasks. It employs a sequence of decision trees to predict results iteratively. The
fundamental principle of gradient boosting is to progressively strengthen a weak learner
to a strong one by technically resampling and creating models that minimize
differentiable loss functions, such as cross-entropy or the sum of squared error. The key
advantages of this model include reducing both bias and variance, however, overfitting
remains a potential drawback. In this study, the gradient boosting model consists of 500
decision trees with a 0.1 learning rate.

To construct classification models, it was necessary to transform continuous pavement
condition data into categorical data. Traditionally, the process follows an established
rating system from existing literature. The collected ice percentage data were mostly
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within two ranges, one being 0 to 10 percent, which was classified as lower than 50
percentiles, and another one being close to 100% which was referred to as greater than
50 percentiles. Similarly, the collected water film height data were divided into two parts,
one being 0 to 30um which was referred to as lower than 50 percentiles, and the other
water film height greater than 50um to more than 200um, noted as greater than 50
percentiles. Chatterjee et al., (2024) employed similar data binning techniques for
enhancing pavement performance modeling. The models were constructed using a 10-
fold cross- validation method, and the variable importance was evaluated by averaging
the importance scores across the cross-validation iterations.

4.3 Ice Percentage Model and Results

For ice percentage, the random forest multi-class classification model, employing a 0.1-
mile data sampling interval, achieved an accuracy of 75.79%. Figure 38 and Table 3
display the significant parameters influencing ice percentage, including crack density in
the NWP (0.19), IRI (0.16), crsSlope (0.13), MPD (0.10), Rut Depth (0.09), RMS (0.07),
crack density in the WP (0.07), kurtosis (0.07), and skewness (0.06).

Similarly, the gradient-boosting multi-class classification model, using a 0.05 mile as a
sampling interval, exhibited an accuracy of 71.76%. Figure 38 identifies the important
features, including crack density on the NWP, IRI, crsSlope, Rut Depth, MPD, RMS,
crack density in the WP, skewness, and kurtosis, with their respective importance value.

The feature importance values shown in Figure 38 were measured based on the mean
decrease in impurity, which is also known as Gini importance. The metric calculates
each feature's contribution to reducing variance across all decision trees in the
ensembles. Those features contribute to larger reductions in prediction error, attain
higher importance scores. The feature scores describe the importance of these
parameters. The importance scores are normalized and sum to 1 across all features.

A comparison of the two models revealed that skewness was the least important
parameter in the Random Forest model, while kurtosis was the least important in the
GB model. Also, several changes were observed in importance value; for example,
MPD in the Random Forest model had an importance value of 0.11, as compared to
0.08 in the GB model.
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Table 3 Feature Importance Number for Ice Percentage ML Models (Random Forest)

Random Forest
(Average Cross-Validation Score: 75.79)
Variable Feature Importance
Crack Density NWP 0.1991
IRI 0.1656
crsSlope 0.1320
MPD 0.1091
Rut Depth 0.0942
RMS 0.0798
Crack Density WP 0.0791
Kurtosis 0.0720
Skewness 0.0692

Table 4 Feature Importance Number for Ice Percentage ML Models (Gradient Boosting)

Gradient Boosting
(Average Cross-Validation Score: 71.76)
Variable Feature Importance
Crack Density NWP 0.2614
IRI 0.2317
crsSlope 0.1328
Rut Depth 0.1020
MPD 0.0881
RMS 0.0537
Crack Density WP 0.0532
Skewness 0.0385
Kurtosis 0.0385
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Feature

4.4 Water Film Height Model and Results

The water film height model is illustrated in Figure 7 for both the Random Forest and
gradient- boosting models, developed using a 0.05-mile sampling interval. The gradient-
boosting model achieved higher accuracy at 65.19% compared to the random forest
model, which displayed an accuracy of 63.27%. On average, the cross-validation
accuracy for random forests was 71.682%, while gradient boosting achieved 68.145%.

For the random forest model, Figure 39 and Table 4 highlight the importance of
variables, including IRI (0.13), MPD (0.13), crsSlope (0.13), RMS (0.12), rut depth
(0.12), crack density in the NWP (0.11), crack density in the WP (0.10), kurtosis (0.09),
and skewness (0.08). Similarly, the gradient-boosting model identified MPD, crsSlope,
IRI, crack density in NWP, rut depth, RMS, crack density in WP, kurtosis, and skewness
as key variables, with their respective importance values. A comparison of the two
models indicates that IRl was the top parameter in the Random Forest model, while
MPD ranked highest in the GB model.

Skewness Skewness

Kurtosis Kurtosis
Crack Density (%) WP Crack Density (%) WP
Crack Density (%) NWP v RMS
Rut Depth(mm) : Rut Depth(mm)
RMS & Crack Density (%) NWP
Cross Slope IRI{in/mi)
MPD Cross Slope
wigievmi) - MPD
S & Bs:? Qs:“’ 09“" Q{’ 0}? 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Importance Importance
Random Forest Model Gradient Boosting Model

Figure 39 Feature Importance for Water Film Height Model
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Table 5 Feature Importance Number for Water Film Height Models (Random Forest)

Random Forest
(Average Cross-Validation Score: 63.26)

Variable Feature Importance
IRI 0.1269
MPD 0.1248
crsSlope 0.1241
RMS 0.1168
Rut Depth 0.1164
Crack Density NWP 0.1057
Crack Density WP 0.1020
Kurtosis 0.0960
Skewness 0.0874

Table 6 Feature Importance Number for Water Film Height Models (Gradient Boosting)

Gradient Boosting
(Average Cross-Validation Score: 65.19)

Variable Feature Importance
MPD 0.1616
crsSlope 0.1450
IRI 0.1399
Crack Density NWP 0.1187
Rut Depth 0.1109
RMS 0.0971
Crack Density WP 0.0908
Kurtosis 0.0753
Skewness 0.0608

4.5 Pavement Friction Model and Results

The pavement friction model, illustrated in Figure 40 and Table 5, was developed using
both the random forest and gradient-boosting models with a 0.05-mile sampling interval.
The gradient- boosting model achieved a lower accuracy of 68.14% compared to the
random forest model, which demonstrated an accuracy of 71.68%.

In Figure 18, the random forest model identified significant variables, including water film
height (0.13), MPD (0.13), kurtosis (0.10), IRI (0.10), crsSlope (0.09), crack density in
the WP (0.08), crack density in the NWP (0.08), rut depth (0.08), and RMS (0.08).
Similarly, the gradient-boosting model highlighted significant variables, including MPD
(0.16), water film height (0.15), crsSlope (0.12), kurtosis (0.11), IRI (0.09), crack density
in the WP (0.08), rut depth (0.08), RMS (0.07), and crack density in the NWP (0.05).
When combining the results of both models, MPD and water film height emerged as the
most important variables, while other variables were similar in significance but varied in
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their rankings and importance values.
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Figure 40 Feature Importance for Pavement Friction Model

Table 7 Feature Importance Number for Pavement Friction Model (Random Forest)

Random Forest
(Average Cross-Validation Score: 71.68)
Variable Feature Importance
Water Film Height 0.1370
MPD 0.1322
Kurtosis 0.1095
IRI 0.1048
crsSlope 0.1044
Crack Density WP 0.0947
Rut Depth 0.0864
Crack Density NWP 0.0812
RMS 0.0800
Skewness 0.0698
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Table 8 Feature Importance Number for Pavement Friction Model (Gradient Boosting)

Gradient Boosting
(Average Cross-Validation Score: 68.15)
Variable Feature Importance
MPD 0.1684
Water Film Height 0.1580
crsSlope 0.1253
Kurtosis 0.1132
IRI 0.0943
Crack Density WP 0.0875
Rut Depth 0.0869
RMS 0.0705
Crack Density NWP 0.0552
Skewness 0.0407

4.6 Potential Implementation of Research Findings

ODOT collects annual pavement condition data, which is aggregated into a Pavement
Quality Index (PQI). The PQI evaluates overall pavement surface conditions on a scale
of 0 to 100, with 100 representing the best condition. For each pavement type, several
summary condition indices are calculated based on aggregated subsection pavement
distress data. These indices are weighted and combined to derive the overall PQI.

This data is stored in ODOT’s PMS database, a comprehensive repository supporting
planning, maintenance, and decision-making. The PMS database includes critical
information such as route numbers, lane details, surface and pavement types, and
various surface condition parameters. Cracking is classified into categories such as
transverse, longitudinal, alligator, patching, and raveling. Pavement texture, primarily
represented by macrotexture in terms of MPD, is also recorded, along with road
geometry data, including grade and curve radius. Additionally, measurements for IRI,
rutting, and faulting are collected.

Table 6 summarizes the most significant variables and their feature importance values.
Among the ten identified variables, six are included in ODOT’s PMS database. For the
three Random Forest models—ice percentage, water film height, and pavement
friction—the combined feature importance values of these six significant variables are
0.7791, 0.6999, and 0.6037, respectively. In a Random Forest model, the feature
importance values for all features in the model sum up to 1.0. Feature importance in
Random Forest measures the relative contribution of each feature in reducing the
model's overall error, such as Gini impurity (for classification) or
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mean squared error (for regression). These high feature importance values indicate that
ODOT’s PMS data can be confidently used to estimate ice percentage, water film
height, and surface friction when focusing on the most critical features. In other words,
the existing ODOT PMS data allows for reasonably accurate estimation of variables
closely associated with pavement slipperiness. Notably, aside from the six variables
collected by ODOT, RMS is a key variable for the water film height model. For the
pavement friction model, kurtosis and water film height are the most significant
variables; however, these are not currently reported in ODOT’s PMS database.

Table 9 Feature Importance of Significant Variables in the Random Forest Models

. Water Paveme Included in
Variable Ice Percent Fi the ODOT
ilm nt
Height Friction PMS

Database
IRI 0.1656 0.1269 0.1048 Yes
Rut Depth 0.0942 0.1164 0.0864 Yes
crsSlope 0.1320 0.1241 0.1044 Yes
Crack Density WP 0.0791 0.1020 0.0947 Yes
Crack Density NWP 0.1991 0.1057 0.0812 Yes
MPD 0.1091 0.1248 0.1322 Yes
RMS 0.0798 0.1168 0.0800 No
Skewness 0.0692 0.0847 0.0698 No
Kurtosis 0.0720 0.0960 0.1095 No
Water Film Height NA NA 0.1370 No
Sum of Feature
Importance: ODOT PMS| , 774, 0.6999 0.6037
Indicators

4.7 Summary

This analysis provides valuable insights into identifying the key parameters that
influence pavement safety during winter and adverse weather conditions. It also
demonstrates the potential for supporting an MDSS. However, it is important to note that
the models developed in this study were based on limited data collected from a small
roadway network. It is expected that more extensive datasets will become available for
future network-wide surveys.

Additionally, incorporating a broader range of weather parameters, such as surface
temperature and dew point temperature, is recommended to better understand their
effects on pavement safety under adverse weather conditions. It is worth mentioning
that during the one-year study period, only one extreme weather event involving snow
and one involving ice were observed. As a result, many weather-related parameters
were not included in the analysis.
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