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    Executive Summary 
Slippery road conditions, particularly black ice and high-water film on roadway surfaces, 
pose significant hazards to roadway safety, contributing to over 10% of weather-related 
crashes in the U.S. State Departments of Transportation (DOTs) traditionally rely on 
fixed Road Weather Information Sensors (RWIS) and static signage, offering limited 
coverage to address this challenge. Advancements in mobile sensor technology now 
enable the collection of road condition data at highway speeds, addressing the high 
costs and limited coverage of fixed RWIS units.  

This research project aimed to develop predictive models for identifying and forecasting 
slippery conditions to enhance highway safety. Comprehensive field data collection was 
conducted using mobile RWIS sensors and advanced surface characterization 
instrumentation technologies, including the OSU Pave3D 8K and Grip Tester. With field 
data collected on four roadway segments in Oklahoma (SH-177, SH-33, N2432 County 
Road, SH-51), three machine learning based predictive models were developed for 
predicting ice formation, water film height, and pavement friction. 
Key findings: 

• Field Data Collection: Mobile RWIS sensors captured road state variables such as
water film height, ice percentage, and friction estimates under diverse weather
conditions. Surface characteristics influencing slipperiness, including macrotexture,
cracking, and rut depth, were measured using advanced tools.

• Predictive Models: Machine learning models, including Random Forest and Gradient
Boosting, achieved robust prediction results. Ice percentage, water film height, and friction
models demonstrated accuracies of 75.8%, 65.2%, and 71.7%, respectively. Critical
parameters identified include Mean Profile Depth (MPD), cross slope, rut depth, and the
International Roughness Index (IRI).

   Key outcomes: 

• ODOT PMS Data Integration: The study highlighted the feasibility of using the
Oklahoma DOT (ODOT) Pavement Management System (PMS) database to predict
slippery conditions. Six key variables in the PMS database were identified as
significant contributors, which could enable the implementation of developed models
for the estimation of ice percentage, water film height, and friction. However, some
influential variables like RMS and kurtosis are not currently saved in the PMS
database.

• Strategic Implications: The developed models support a proactive approach to
identifying slippery conditions and offer potential for integration into Maintenance
Decision Support Systems (MDSS) to enhance situational awareness during
inclement weather and support winter maintenance decision-making.

This research aligns with strategic objectives to improve transportation safety and 
supports USDOT goals. While the study relied on limited data, the results 
recommendations include expanding data collection across broader networks, 
incorporating additional weather variables, and addressing gaps in the PMS database to 
further improve predictive capabilities. 
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Chapter 1. Introduction 

1.1 Problem Statement 

Black ice, a nearly invisible hazard, forms as a translucent layer of frozen glaze 
resembling dark pavement and wet roads. It primarily emerges on bridges and 
overpasses before spreading to roadways as temperatures drop. This peril contributes 
to over 10% of weather-related crashes in the U.S., causing nearly 200,000 annual 
automobile crashes. It leads to an average of 700 fatalities and over 65,000 injuries 
yearly due to icy road conditions. Besides, other slippery surface conditions also could 
play significant roles in roadway safety. Traditionally, state DOTs have relied on fixed 
Road Weather Information Sensors (RWIS) and cautionary signs such as "Ice May Form 
on Bridge," along with flashing lights, to notify drivers of adverse road conditions with 
limited localized coverage. 

Additionally, during inclement weather conditions with heavy precipitation, residual 
water film on roadway surfaces can significantly reduce pavement friction, thereby 
compromising roadway safety. The height of the water film on the surface also serves 
as a critical precursor to ice formation on roads. However, the measurement of water 
film height and the detection of ice on roadway surfaces remain underdeveloped in 
network-level system surveys. 

Recent advancements in weather sensor technology now allow for collecting road 
conditions and weather data at highway speeds directly from moving vehicles, 
eliminating the costs and limited coverage associated with installing complete RWIS 
units. Nonetheless, obtaining real-time road condition data at the network level during 
and after inclement weather remains not only expensive but also hazardous. 

State agencies are mandated to gather pavement surface condition data for asset 
management purposes. It is acknowledged that road surface characteristics, in 
conjunction with environmental conditions, can significantly impact ice formation on 
roadways, although these relationships have not yet been established. Therefore, there 
exists a critical need to harness existing surface characteristics, pertinent climatic 
variables, and road geometry datasets to proactively predict slippery conditions.  

1.2. Research Approaches 

The objective of this project is to develop procedures and models for fast detection and 
prediction of slippery conditions for enhanced highway safety. This project involved 
comprehensive field data collection on specific roadway segments before, during, and 
after inclement weather. We utilized mobile RWIS sensors to detect slippery conditions 
and the OSU Pave3D 8K to gather data on roadway surface characteristics and 
geometry. The primary goal was to develop predictive models that could anticipate 
slippery road conditions in different weather scenarios. These prediction models could  
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then be applied to identify potential slippery areas across Oklahoma, using the annual 
pavement management system (PMS) datasets collected by the Oklahoma Department 
of Transportation (ODOT). The anticipated outcomes of this project aligned with the 
SPTC's strategic objectives, aiming to “make our transportation system safer for all 
people and advance a future without transportation-related serious injuries and 
fatalities”, and supported the USDOT's goals. 

The research team accomplished the project objectives by breaking down the research 
into the following four major work activities: 

Field roadway weather data collection using Mobile Advanced RWIS (MARWIS) 
technology to rapidly measure surface states, including temperature, dew point, 
humidity, road state (dry, wet, icy, etc.), presence of chemicals, water film depth, ice 
percentage, and friction estimates. We conducted field data collection on selected 
testing sites under normal traffic conditions by considering various surface 
characteristics, both before, during, and after inclement weather events. 

Field assessment of road surface characteristics used the Grip Tester at OSU for 
friction measurements and the Pave3D 8K technology for pavement surface 
characteristics acquisition under dry conditions. The surface characteristics could 
influence the ice-forming mechanisms, the skid resistance levels and roadway 
slipperiness. 

Slippery condition prediction models’ development was accomplished by leveraging 
roadway weather data collected from MARWIS, pavement surface characteristics data 
collected from Pave3D 8K, and surface friction data from Grip Tester. Slippery 
conditions predictive models were developed using machine learning methods to 
forecast road conditions during rainy or icy days. 

Discussions were held regarding the implementation of predictive models for slippery 
condition warning using the ODOT PMS database. This integration could help identify 
potential locations with slippery conditions to assist in enhancing situational awareness 
and supporting road maintenance operations. 

1.3 Report Outline 

To attain the goal of research, this report is presented below in the following chapters: 

• Chapter 1 introduces the problem statement, research objective, research
approaches, and report outline.

• Chapter 2 presents a literature review and includes utilization and various road
information sensors, the relevant methodologies for roadway slippery condition
detection and monitoring, and the use of MARWIS data for winter maintenance
decision support at state DOTs in the United States.
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• Chapter 3 summarizes the field data collection and processing, including the use of 
MARWIS during and after inclement weather, as well as roadway condition data using 
Pave3D 8K and Grip Tester. The weather and road surface characteristics data were 
processed and summarized. 

 

• Chapter 4 details the development of predictive models for slippery roadway 
conditions, including ice percentage, water film height, and pavement friction, 
utilizing machine learning techniques. In addition, the chapter explored how data 
from the ODOT PMS database can be integrated into these models to forecast 
slippery roadway conditions effectively. 
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Chapter 2. Literature Review 
This chapter presents a comprehensive literature review on weather-related road safety, 
fast detection, and prediction of slippery roads with its contributing factors, and statistics 
on crashes caused by slippery roads. It also extended to current technologies for 
detecting slippery roads, accuracy, and limitations of current technologies. 

 

2.1 Weather-Related Roadway Safety 

Adverse weather conditions can significantly impact traffic mobility and safety, as they 
can create hazardous driving conditions and increase the risk of crashes. For example, 
snow and high wind speeds could increase the probability of single-truck crashes, while 
rain has the largest effect on single-car crashes. Especially at higher speed limits and in 
rear-end crashes, sun glare prompts multi-car crashes. So, understanding the impact of 
inclement weather reduces weather-based crashes, and allocates substantial 
significance to winter maintenance operation (WRM) to improve mobility and public 
traffic safety. Snow and ice reduce pavement friction and vehicle maneuverability, 
causing slower speeds, reducing roadway capacity, and increasing crash risk. 

Extensive research has been conducted on traffic crashes correlated with winter 
precipitation events. Winter weather conditions in the US pose a hazard to motorists, 
one-half of fatalities occur in snow, while 75% occur in ongoing snowfall, 41% happen 
near the onset of freezing precipitation, 42% of fatalities occur before the crash, more 
than 25 percent primary visibility reduction, eventually resulting in approximately 1000 
fatalities annually on U.S. roadways (Tobin et al., 2022). This number is greater when all 
other weather-related fatalities are combined. Among the various forms of hazardous 
weather for motorists, winter precipitation is correlated with a heightened risk of 
vehicular collisions and injuries and increasing precipitation rates augment collision 
frequencies (Qiu and Nixon, 2008; Strong et al., 2010; Theofilatos and Yannis, 2014). 
Meteorological conditions have a direct impact on road safety, thus monitoring weather 
and its impact on road conditions can save lives, and winter maintenance services. 

 

2.2 Slippery Roadway Conditions 

Slippery roads occur when friction is reduced due to factors like rain, snow, ice, black 
ice, or oil spills. The conditions reduce tire traction, making it difficult for vehicles to 
maintain control, and significantly increase the risk of crashes. Slippery roadways can 
result from various weather conditions, road surface conditions, or the presence of 
substances such as ice, snow, or water on the road. Quick identification and accurate 
prediction of slippery conditions are crucial for authorities and drivers to implement 
appropriate measures, prevent crashes, and ensure road safety. 

When the temperature drops below the freezing point, ice is formed, causing water on 
the road surface to freeze. It can be extremely slippery and make the road very  
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hazardous, especially when it is not visible to drivers. Snow creates a slippery surface, 
which is formed when water vapor in the atmosphere freezes into ice crystals and falls 
to the ground. Water on the road surface, either due to rain, melting snow, or other 
sources make wet roadway conditions, which could decrease the road surface skid 
resistance. Wet surfaces can be slippery, especially if other contaminants are present, 
such as oil or other oil-like substances on the surface. 

 

Slippery road conditions are influenced by various factors, including temperature, 
precipitation, weather conditions, oil spills, and worn-out pavement. Snow and ice 
significantly increase the risk of slipping as shown by previous studies, but most slips 
occur when the temperature is near zero degrees or slightly beneath it (Marjo, 2022). 
Any moisture on the road can freeze from ice due to the temperature dropping below 
the freezing point, making the road extremely slippery. Cold temperatures can cause 
the road surface to become icy, even if there is no precipitation, posing a significant risk 
to drivers and pedestrians. 

Rainwater can create a thin layer of water on the road that reduces the grip and makes it 
easier for vehicles to slide. Accumulated snow and sleet forming a layer of ice or slush 
significantly reduces friction, making driving hazardous. Weather conditions such as 
rain, snow, sleet, and black ice can make the road surface wet and reduce the friction 
between the tires and the road. Additionally, strong wind can blow debris into the road, 
further reducing traction. Understanding these factors in relationship with friction is 
crucial for drivers and road maintenance authorities to respond appropriately to ensure 
road safety. 

 

2.3 Assessing Winter Roadway Surface States 

Throughout recent years, numerous investigations have been conducted to assess the 
state of pavements during winter conditions, ranging from indirect estimates based on 
pavement images and weather forecasts (Pang et al., 2023), to advanced deep learning 
algorithms and connected vehicle (CV) data for precise prediction of dry, snowy, and icy 
pavement conditions (Hu et al., 2023). 

The Road Weather Management Program (RWMP) of the Federal Highway 
Administration (FHWA) (2024) collects weather data, performs quality check, and 
disseminates atmospheric and road weather observations through a map interface. Field 
observations were collected from the department of Transportation's RWIS fixed and 
transportable Environmental Sensor Stations (ESSs) and from mobile sources using 
external road weather sensors.  This system encompassed a central processing unit, a 
communications network, and various ESSs for the gathering of weather data, 
pavement conditions, etc. The collected data was transmitted to the central system, 
enabling the generation of timely nowcasts and forecasts crucial for effective road 
management and maintenance strategies. The RWIS data, once processed, became 
pivotal for the operation and management of roadways. 
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Similarly, Linton and Fu (2016) introduced the Road Surface Condition Monitoring 
System that integrated pavement imagery with meteorological data to facilitate real-time 
pavement condition monitoring. Three machine learning classifiers - Artificial Neural 
Network (ANN), Classification and Regression Trees (CART), and Random Forest – 
were tested for their model efficacy in field applications, with the Random Forest   
algorithm particularly standing out for its superior classification accuracy. Additional 
research was conducted to predict road friction levels using vehicle-derived data for 
slippery road conditions. Panahandeh et al. (2017) illustrated the effectiveness of 
combining vehicle data with weather reports for road friction prediction using a binary 
classification approach (slippery vs. non-slippery), and machine learning techniques 
including support vector machine algorithm (SVM), Artificial Neural Network (ANN), and 
logistic regression. Their findings underscored the feasibility of their methodology in 
accurately identifying slippery surfaces. Irschik and Stork (2014) developed a hazard 
identification system that utilized standard vehicle sensor data to categorize current 
pavement conditions to enable the provision of timely warnings to motorists (Irschik and 
Stork, 2014). This system facilitates preventive driver responses to imminent road 
hazards, thereby enhancing road safety. 

 
Enriquez et al. (2012) introduced a versatile On-Board Diagnostics (OBD) tool capable of 
not just gathering a wide array of vehicular data but also identifying real-time vehicular 
slip events. Hou et al. (2017) designed a system that employed smartphones and OBD-II 
adapters to signal slippery conditions on roads by utilizing the discrepancy between 
wheel speed and the ground speed (the vehicle’s actual running speed) as the primary 
indicator for potential skidding events and proactive monitoring of such incidents. The 
detection algorithm for skidding was formulated and tested through field experiments in 
Buffalo, New York. Field application results demonstrated the algorithm's high precision 
and minimal false-positive occurrences. Heiman (2016), Shi (2018) and Padarthy Heyns 
(2019) introduced similar systems for detecting slipperiness and assessing friction. 

Recently, the transfer-learning system (Grabowski and Czyżewski, 2020) was 
developed to monitor road slippery using data collected from CCTV cameras and a 
convolutional neural network (CNN) architecture. The Densenet201 network could 
achieve 98.34% accuracy. However, the data was collected in limited lighting conditions 
and a limited number of weather stations that can detect snow on the road. In addition, 
different weather stations had different sets of available sensors that limited the 
development of more accurate slippery surface detection models. Additionally, utilizing 
wheel slip and wheel acceleration data was proposed by Jang (2021). for the 
identification of road slipperiness, by employing sensor data derived from a digital 
tachograph (DTG), a device widely available in commercial vehicles. The approaches 
detected road slipperiness using support vector machine algorithms and achieved an 
accuracy of over 98%. 

 
In 2022, Yang et al. (2022) integrated vehicle-infrastructure cooperative systems to 
detect road- slippery conditions. The system included a trained recognition model, a 
vehicle-road cooperative network, and a mobile app for visualization. The results 
demonstrated high real-time performance, low omission rate, and good recognition 
accuracy. Nonetheless, the study focused only on slippery road condition recognitions 
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and did not address other types of road conditions or hazards. Secondly, the system’s 
performance and accuracy may vary in different real-world scenarios and road 
conditions that were not specifically tested. Thirdly, the study did not provide information 
on its feasibility for implementation on a larger scale, and fourthly, it did not discuss any 
limitation of the vehicle-infrastructure cooperative network. Finally, it missed a 
comprehensive analysis of the system’s performance in terms of false positives or false 
negatives, which could impact its practicality and reliability (Yang et al., 2022). 

 
The latest research in connected vehicles (CV) has also been used to acquire surface 
data and then to implement deep learning algorithms to predict pavements’ slippery 
conditions (Hu et al., 2023). The algorithms could predict the accuracy of 100%, 99.06%, 
and 98.02% for dry pavement, snowy pavement, and icy pavement, respectively. The 
research relies on simulated CV data in VISSIM for training the deep learning algorithm, 
which may not capture the complexity and variability of real-world pavement. 

 

2.4 Road Surface Characteristics and Condition Measurement 

Recognizing the importance of integrating weather data with adverse road conditions 
and pavement surface characteristics, countries in winter climates invest significant 
financial resources into winter road maintenance (WRM) initiatives to enhance mobility 
and public welfare. In the U.S., state governments collectively spend over $2.3 billion 
annually on snow and ice control, accounting for approximately 20% of their WRM 
budget (“FHWA Statistics,” 2022). Given these substantial maintenance expenses, 
transportation agencies have consistently pursued cost-efficient strategies to optimize 
the return on investment (Arvidsson, 2017). A critical element in developing such 
strategies is access to detailed information about spatially variable road surface 
conditions. State highway agencies typically evaluate pavement conditions using four 
major categories: pavement distress, pavement roughness, deflection, and surface 
friction. 

• Pavement Distress: This assessment identifies visible surface issues such as 
cracking, potholes, and rutting, which are indicative of structural deterioration or 
wear. Common methods include visual inspections, manual surveys, and 
automated data collection using imaging and laser technology. 

• Pavement Roughness: Roughness measurements quantify the ride quality and 
smoothness of the road surface, often expressed as the International Roughness 
Index (IRI. Testing is performed using inertial profilers or laser-equipped vehicles. 

• Deflection: Deflection testing evaluates the structural capacity of the 
pavement by measuring its response to applied loads. Common techniques 
include Falling Weight Deflectometer (FWD) tests and Dynaflect systems. 

• Surface Friction: Surface friction testing assesses the road’s ability to provide 
adequate tire grip. This is typically measured using equipment such as locked-
wheel skid trailers or dynamic friction testers. 

These evaluations are conducted under standard testing and weather conditions and are 
not designed to directly detect slippery road conditions caused by inclement or winter 
climates, such as ice, snow, or water on the pavement surface. Road friction can be 
influenced by several factors, including, not restricted to tire and pavement texture, as 
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well as contaminants on the road surface (Novikov et al., 2018). Research also showed 
that environmental factors significantly impact road friction (Alexandersson et al., 1991; 
Crevier and Delage, 2001; Hermansson, 2004; Kangas et al., 2015; Li et al., 2022; 
Nowrin and Kwon, 2022; Tarleton, 2015; Vignisdottir et al., 2019; Walker et al., 2019). 

Climatic factors are generally measured or estimated from RWIS (Liu et al., 2021). There 
are two primary sorts of RWIS, particularly stationary RWIS (sRWIS) and mobile RWIS 
(mRWIS). The former continuously monitors variable values through ESSs for long-term 
data measurements. However, these stations do not directly provide road friction 
measurements and coverage issues due to the considerable spacing between adjacent 
stations. In recent years, various mRWIS sensors have been deployed by various 
agencies to assist in winter maintenance decisions. The mobile climate information is 
frequently employed to supplement the information collected by sRWIS. MARWIS has 
been adopted and mobilized on driving vehicles by several state agencies to collect 
various parameters such as road conditions, temperatures, friction, and more in real time. 
As MARWIS traverses the network, it offers spatially continuous measurements of road 
friction values and the surrounding weather/environmental conditions. It is acknowledged 
that data collected by MARWIS would experience lags due to travel time, resulting in 
temporal gaps between adjacent data points.     

In particular, the MARWIS by Lufft is a state-of-the-art solution designed to provide real-
time road weather data. Unlike stationary sensors, MARWIS is a mobile device mounted 
on vehicles, capturing critical road conditions such as surface temperature, dew point, 
water film height, relative humidity, and friction levels while on the move. This capability 
makes it effective in assessing road safety under various weather scenarios, including 
rain, snow, and icy conditions. In addition, MARWIS seamlessly integrates with fleet 
management and RWIS to deliver data in real time via Bluetooth or cellular networks. The 
system’s ability to measure friction and grip levels helps identify hazardous conditions for 
winter road maintenance operations and resource allocation optimization. 

The Finnish Meteorological Institute alongside the Road Administration introduced a 
classification system for road friction by establishing friction ranges according to the 
types of road surface contaminants (such as wet ice, icy conditions, packed snow, 
rough ice or packed snow, clear and wet, and clear and dry), friction class estimates 
through a hybrid criterion that considers meteorological factors including air 
temperature, precipitation, humidity, and wind velocity (Juga et al., 2013). 

In the United States, mobile RWIS models are employed by state highway agencies to 
monitor critical road and weather parameters: 

• Road parameters: including road conditions (e.g., dry, moist, wet, icy, snowy, 
chemically treated wet surfaces), road surface temperature, water film height, ice 
percentage, and friction levels. 

• Weather parameters: such as ambient air temperature, dew point temperature, 
and relative humidity. 

Several organizations and entities actively utilize and evaluate the Lufft MARWIS 
sensor for its innovative capabilities. These include the state DOTs of Arkansas, 



11  

Minnesota, Missouri, Indiana, North Dakota, Nevada, Ohio, New York City, and 
Colorado; the Michelin Tire Company for tire performance testing; and various school 
districts along the East Coast (El-Rayes and Ignacio, 2022). According to the OTT 
HydroMet website, the Maryland DOT leveraged MARWIS in 2022 to enhance the 
efficiency of winter maintenance operations, resulting in improved safety on Maryland 
roads and optimized operational effectiveness during inclement weather. Additionally, 
the California DOT retrofitted Caltrans’ Road weather stations in 2020 by integrating 
new stationary RWIS sensors into their existing infrastructure, as a valuable tool for 
improving roadway safety and facilitating data-driven decision-making under various 
weather. 

By providing real-time data on critical metrics such as surface temperature, ice 
percentage, and water film height, MARWIS assists DOTs in responding effectively to 
adverse weather. Furthermore, these advancements enhance the capabilities of 
Maintenance Decision Support Systems (MDSS. MDSS integrates weather forecasts, 
road condition data, maintenance practices, and resource allocation models, enabling 
winter maintenance professionals to devise precise and effective road treatment 
strategies. 

 

2.5 Summary 

Slippery roads can have a significant negative impact on highway safety. Although 
various works have been conducted for the identification of slippery road conditions, 
they were generally developed using weather sensors and vehicular data sets. Since 
state agencies collect PMS data regularly for their highway systems, this significant 
amount of surface condition data sets could be of great value for the prediction of 
slippery road surfaces to enhance safety. 
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Chapter 3. Field Data Collection and Processing 

 
3.1 Pilot Data Collection Sites 

This study considered multiple ice and rain events in January and February 2024 to 
gather field data in Oklahoma. The weather data was collected using MARWIS, while 
pavement surface characteristics and pavement geometry data were obtained using 
state-of-the-art laser imaging techniques Pave 3D 8K. Field data were collected from 
several state highways in Oklahoma, namely SH-177, and SH-33, and one county road 
connected with SH-33 and SH-51. In total, 51 miles of routes were selected for field data 
collection, as shown in Figures 1 and 2. The data collection process for ice events, rain 
events, pavement characteristics, and pavement geometry was conducted multiple 
times along these same routes at regular driving speeds. 

 

 
Figure 1 Field Data Collection Routes 

 

Figure 2 Example Field Data Display
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3.2 Field Data Collection Instruments 

Firstly, weather data was collected utilizing the MARWIS sensor (Figure 3), a mobile road 
weather information sensor from Lufft. Multiple DOTs have adopted MARWIS 
technology to support winter maintenance activities. The sensor was mounted on top of 
the testing vehicle at a specific angle and securely fastened to ensure stability during 
data collection, while also maintaining power and continuous internet connectivity. The 
MARWIS sensor emits lights within a 2-inch by 2-inch area to collect data at vehicle 
speed. The collected data is simultaneously uploaded to the cloud. MARWIS provides 
data on various parameters, including road surface temperature, dew point temperature, 
water film height, ice percentage, and estimated road conditions. The data collection 
frequency is set at 10Hz. 

 

Figure 3 MARWIS-UMB Components 

 

The 3D laser imaging data were collected for pavement surface characteristics and road 
geometry data at the selected locations shown in Figure 4. This innovative technology 
utilizes high-precision 3D laser imaging to capture pavement surfaces in both 2D and 
3D representations. The Pave 3D 8K system offers a transverse resolution of 0.5 mm 
and features over 8000 pixels across the lane width, providing detailed and 
comprehensive data for pavement surface analysis. 

 

Figure 4 Data Collection on Pave 3D 8K with MARWIS in Ice Events
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After the completion of pavement field data collection, the raw data, consisting of high-
resolution 2D and 3D images of the pavement surface, was processed using customized 
software that utilized a deep learning framework to extract key pavement conditions 
parameters. The parameters of pavement include IRI, rut depth, texture indicators 
(mean profile depth - MPD, mean texture depth - MTD, Root Mean Square - RMS, 
skewness, kurtosis), crack density on Wheel Path (WP) and Non-wheel Path (NWP), 
crack area, cross slope, and grade. Thereafter, ice and rain data, pavement surface 
characteristics, and geometric data were compiled and aligned to a maximum distance 
of 0.05 miles which ensured that the weather data and pavement data aligned with the 
same locations. 

Finally, the research team concentrated on measuring pavement friction data along the 
specified data collection routes utilizing Grip Tester, a continuous friction measuring 
device. The Grip Tester calculates pavement friction by measuring the longitudinal 
friction coefficient between the road surface and the testing tire with a braked wheel at a 
constant slip rate of about 15%, close to the optimum level of the anti-blocking system. 
The slip rate generates the adhesive force, which is derived from the mechanical force 
between the two carrier wheels and the measuring wheel. The friction data collection is 
illustrated in Figure 5, in conjunction with the Pave 3D 8K vehicle. 

 

Figure 5 Pavement Friction Data Collection using Grip Tester 

 

3.3 Field Data Processing 

The three datasets collected using MARWIS, Pave 3D 8K, and grip tester were 
synchronized based on the nearest GPS coordinates. Rigorous and detailed coding in 
Python was performed to match the dataset. The data accumulation process 
determined that Grip Tester data served as the basis for the model, with data collected 
every 3 feet along the driving direction. To simplify the data-matching process, the 
research team defined sections measuring 0.05 miles (264 feet) in length. The Grip 
Tester data, processed as the final friction data (GN number), were recorded in a 
spreadsheet along with corresponding GPS coordinates. If multiple GN values were 
present in the dataset, the GN numbers were averaged. 
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The GN number data was matched with the weather data, specifically considering water 
film height. The MARWIS data, uploaded in real-time in Lufft’s cloud ViewMondo, was 
retrieved from the cloud database and matched with the GN number. The Pave 3D 8K 
data was processed using ADA 3D software, to extract pavement surface condition 
parameters. The GN number and water film height were matched with the 
comprehensive pavement surface conditions and geometric data, including IRI, rut 
depth, cracking, texture indicators, grade, and cross slope. 

 
In summary, Table 1 presents the list of pavement surface characteristic variables, 
derived and processed from collected field data. These variables will be utilized in 
Chapter 4 for model development. 

 
Table 1 List of pavement surface characteristic variables 

Variable Description 

IRI IRI, measurement of pavement smoothness. The lower the IRI value, 
the smoother the road surface 

Rut depth Permanent longitudinal surface depression in WP  for flexible pavement 
due to traffic passage 

Crack Density 
WP 

In-WP, longitudinal cracks outside and within 2ft of the pavement edge, 
referred to as fatigue cracking 

Crack Density 
NWP 

In the NWP , longitudinal cracking is not located in the defined wheel at 
each severity level. 

MPD) MPD average height of roughness of the surface, impact on 
permeability, and skid resistance 

RMS) RMS deviation of surface texture properties, may impact on interaction 
between tires and pave surface 

Texture 
Skewness 

Asymmetrical measures of surface texture may affect drainage, tire- 
pavement interaction, and ride quality. 

Texture 
Kurtosis 

Distribution of texture heights and impact on surface characteristics; 
high kurtosis enhances friction. 

Cross slope 
(crsSlope) 

The cross slope may lead to multiple safety issues, including 
hydroplaning, loss of control, and run-off-road crashes (Alzraiee et al. 
2024) 

 

3.3.1 Descriptive Statistics 

Descriptive statistics presents measures of central tendency (i.e., mean and median) and 
dispersion (i.e., range, standard deviation, minimum, and maximum) for ice percentage, 
water film height, and nine explanatory variables, as shown in Table 2. The variability in 
road surface conditions, water film height, and ice percentage could have a significant 
impact on road safety and maintenance priorities. 
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Table 2 Descriptive Statistics of Variables 

Variable Mean Median Range SD Min Max 

Ice Percentage (%) 42.29 0 100 47.31 0 100 

Water Film Height (µm) 55.20 16.83 381.60 74.66 0 381.64 

IRI (in/mi) 109.07 91.75 1186.65 97.56 34.25 1220.93 

Rut Depth (mm) 1.920 1.26 15.65 2.35 0.46 16.04 

Crack Density WP (%) 0.99 0.48 5.50 1.20 0 5.50 

Crack Density NWP (%) 1.51 0.82 10.45 1.82 0 10.45 

crsSlope (%) 1.24 1.52 13.87 1.86 -6.45 6.97 

MPD (mm) 1.33 1.31 5.28 0.45 0.71 5.99 

RMS (mm) 2.81 2.40 14.98 1.64 0.92 15.89 

Skewness -0.31 -0.25 2.88 0.32 -2.43 0.45 

Kurtosis 2.51 2.28 8.98 0.83 1.73 10.72 

Table 2 provides insights into the variability and patterns across ice percentage and 
water film height. Ice percentage had a mean of 42.29%, indicating moderate ice 
coverage on average. Its skewed distribution, combined with a high standard deviation 
(47.31) and a wide range, indicated the sporadic occurrences of ice coverage. Similarly, 
Water Film Height displayed a mean of 55.20 µm and a median of 16.83 µm, indicating 
predominantly low values with occasional high readings. 

The IRI demonstrated significant variation in road conditions, with a mean of 109.07 
in/mi and a median of 91.75 in/mi. However, the wide range and high variance 
underscore diverse road roughness levels ranging from smooth to highly rough road 
conditions. The low mean and median of rut depth reflected shallow ruts, though the 
maximum rutting was 16.04 mm. Greater variability of crack density within NWP, as 
evidenced by its range of 10.45mm and standard deviation of 1.82, indicated that cracks 
were more prominent outside the WP. The MPD values were relatively consistent, with a 
narrow range and low standard deviation, while RMS showed a wider range. The 
slightly negative skewness suggested generally smooth road conditions with occasional 
deviations, while high kurtosis in some areas identified some critical locations. 

Besides the overall descriptive statistics of the surface characteristics, a glimpse of the 
collected data for each indicator is represented in the following figures for the four 
roadway segments. The road-specific examples were shown as follows: 

• For SH-177: Figure 6 describes ice percentage, Figure 7 shows water film 
height, Figure 8 illustrates pavement friction, and Figure 9 represents IRI. 
Pavement cracking and rutting are displayed in Figures 10 and 11, texture data 
is presented in Figure 12, and pavement geometry is illustrated in Figure 13. 

• For SH-33: Figures 14 to 21 follow the same flow. 
• For SH-51: Figures 22 to 29 depict the collected data. 
• For the county road: Figures 30 to 37 provide an overview of data collection 

following the same structure. 
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Figure 6 Ice Percent - MARWIS on SH-177 in Ice Events 

 

 

Figure 7 Water Film Height - MARWIS on SH-177 in Rain Events
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Figure 8 Pavement Friction – Grip Tester on SH-177 

 

Figure 9 IRI – OSU Pave 3D 8K on SH-177
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Figure 10 Crack Density – OSU Pave 3D 8K on SH-177 

 

 
Figure 11 Rut Depth – OSU Pave 3D 8K on SH-177



20  

 

 
Figure 12 Pavement Texture – OSU Pave 3D 8K on SH-177 

 

 
Figure 13 Pavement Geometry – OSU Pave 3D 8K on SH-177
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Figure 14 MARWIS on SH-51 in Ice Events 

 

Figure 15 Water Film Height - MARWIS on SH-51 in Rain Events
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Figure 16 Pavement Friction – Grip Tester on SH-51 

 

 

Figure 17 IRI – OSU Pave 3D 8K on SH-51
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Figure 18 Crack Density – OSU Pave 3D 8K on SH-51 

 

Figure 19 Rut Depth – OSU Pave 3D 8K on SH-51
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Figure 20 Pavement Texture – OSU Pave 3D 8K on SH-51 

 

 

Figure 21 Pavement Geometry – OSU Pave 3D 8K on SH-51
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Figure 22 Ice Percent - MARWIS on SH-33 in Ice Events 

 

 

Figure 23 Water Film Height - MARWIS on SH-33 in Rain Events
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Figure 24 Pavement Friction – Grip Tester on SH-33 

 

Figure 25 IRI – OSU Pave 3D 8K on SH-33
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Figure 26 Crack Density – OSU Pave 3D 8K on SH-33 

 
 

 

Figure 27 Rut Depth – OSU Pave 3D 8K on SH-33
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Figure 28 Pavement Texture – OSU Pave 3D 8K on SH-33 

 
 

 

Figure 29 Pavement Geometry – OSU Pave 3D 8K on SH-33
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Figure 30 Ice Percent - MARWIS on County Road in Ice Events 

 

Figure 31 Water Film Height - MARWIS on County Road in Rain Events
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Figure 32 Pavement Friction – Grip Tester on County Road 

 

Figure 33 IRI – OSU Pave 3D 8K on County Road
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Figure 34 Crack Density – OSU Pave 3D 8K on County Road 

 

Figure 35 Rut Depth – OSU Pave 3D 8K on County Road
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Figure 36 Pavement Texture – OSU Pave 3D 8K on County Road 

 

 

Figure 37 Pavement Geometry – OSU Pave 3D 8K on County Road
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Chapter 4. Slippery Conditions Prediction Models 

 
4.1 Response and Independent Variables 

Three response variables that relate to the roadway surface slippery conditions were 
chosen for modeling: ice percentage, water film height (expressed in micrometers, um), 
and pavement friction. All the variables were categorized into low and high levels based 
on the percentiles of the data sets collected. Nine variables, as discussed in Chapter 3 
associated with weather conditions, roadway geometry, and pavement surface 
conditions, were included in the model development as independent variables. 

 

4.2 Machine Learning Model Development 

Using Python, two tree-based machine learning algorithms—random forest and gradient 
boosting—were applied due to their ability to interpret feature importance, manage non-
linear relationships, and resist overfitting, thus offering reliable insights into the factors 
affecting selected pavement measures. These algorithms were selected because of 
their capacity for producing interpretable results to determine feature importance and 
handle non-linear relationships. Also, these models provide robust techniques for 
assessing the significance of various features and are less likely to overfit the data, 
thereby producing more reliable outcomes. 

 
The Random Forest model, introduced by Breiman (2001), executes as an ensemble 
machine learning algorithm for classification and regression tasks. It operates by adding 
decisions from different decision trees to derive outcomes. Constructing multiple 
decision trees across different data sets enables the model to generate results for each 
tree, which are then combined through a voting mechanism to determine the optimal 
outcomes. In both categorical and continuous data, this algorithm can effectively 
address overfitting issues for enhanced precision. In this study, the research team 
applied 500 decision trees. 

 
Secondly, the gradient boosting model, proposed by Friedman (2001) is another 
ensemble of machine learning algorithms widely utilized for classification and regression 
tasks. It employs a sequence of decision trees to predict results iteratively. The 
fundamental principle of gradient boosting is to progressively strengthen a weak learner 
to a strong one by technically resampling and creating models that minimize 
differentiable loss functions, such as cross-entropy or the sum of squared error. The key 
advantages of this model include reducing both bias and variance, however, overfitting 
remains a potential drawback. In this study, the gradient boosting model consists of 500 
decision trees with a 0.1 learning rate. 

 
To construct classification models, it was necessary to transform continuous pavement 
condition data into categorical data. Traditionally, the process follows an established 
rating system from existing literature. The collected ice percentage data were mostly  
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within two ranges, one being 0 to 10 percent, which was classified as lower than 50 
percentiles, and another one being close to 100% which was referred to as greater than 
50 percentiles. Similarly, the collected water film height data were divided into two parts, 
one being 0 to 30μm which was referred to as lower than 50 percentiles, and the other 
water film height greater than 50μm to more than 200μm, noted as greater than 50 
percentiles. Chatterjee et al., (2024) employed similar data binning techniques for 
enhancing pavement performance modeling. The models were constructed using a 10-
fold cross- validation method, and the variable importance was evaluated by averaging 
the importance scores across the cross-validation iterations. 

 

4.3 Ice Percentage Model and Results 

For ice percentage, the random forest multi-class classification model, employing a 0.1-
mile data sampling interval, achieved an accuracy of 75.79%. Figure 38 and Table 3 
display the significant parameters influencing ice percentage, including crack density in 
the NWP (0.19), IRI (0.16), crsSlope (0.13), MPD (0.10), Rut Depth (0.09), RMS (0.07), 
crack density in the WP (0.07), kurtosis (0.07), and skewness (0.06). 

 
Similarly, the gradient-boosting multi-class classification model, using a 0.05 mile as a 
sampling interval, exhibited an accuracy of 71.76%. Figure 38 identifies the important 
features, including crack density on the NWP, IRI, crsSlope, Rut Depth, MPD, RMS, 
crack density in the WP, skewness, and kurtosis, with their respective importance value. 

 
The feature importance values shown in Figure 38 were measured based on the mean 
decrease in impurity, which is also known as Gini importance. The metric calculates 
each feature's contribution to reducing variance across all decision trees in the 
ensembles. Those features contribute to larger reductions in prediction error, attain 
higher importance scores. The feature scores describe the importance of these 
parameters. The importance scores are normalized and sum to 1 across all features.  
 
A comparison of the two models revealed that skewness was the least important 
parameter in the Random Forest model, while kurtosis was the least important in the 
GB model. Also, several changes were observed in importance value; for example, 
MPD in the Random Forest model had an importance value of 0.11, as compared to 
0.08 in the GB model.  
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Random Forest Model  Gradient Boosting Model 

 
Figure 38 Feature Importance for Ice Percentage Model 

Table 3 Feature Importance Number for Ice Percentage ML Models (Random Forest) 

Random Forest 
(Average Cross-Validation Score: 75.79) 

Variable Feature Importance 

Crack Density NWP 0.1991 

IRI 0.1656 

crsSlope 0.1320 

MPD 0.1091 

Rut Depth 0.0942 

RMS 0.0798 

Crack Density WP 0.0791 

Kurtosis 0.0720 

Skewness 0.0692 

 
Table 4 Feature Importance Number for Ice Percentage ML Models (Gradient Boosting) 

Gradient Boosting 
(Average Cross-Validation Score: 71.76) 

Variable Feature Importance 

Crack Density NWP 0.2614 

IRI 0.2317 

crsSlope 0.1328 

Rut Depth 0.1020 

MPD 0.0881 

RMS 0.0537 

Crack Density WP 0.0532 

Skewness 0.0385 

Kurtosis 0.0385 
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4.4 Water Film Height Model and Results 

The water film height model is illustrated in Figure 7 for both the Random Forest and 
gradient- boosting models, developed using a 0.05-mile sampling interval. The gradient-
boosting model achieved higher accuracy at 65.19% compared to the random forest 
model, which displayed an accuracy of 63.27%. On average, the cross-validation 
accuracy for random forests was 71.682%, while gradient boosting achieved 68.145%. 

For the random forest model, Figure 39 and Table 4 highlight the importance of 
variables, including IRI (0.13), MPD (0.13), crsSlope (0.13), RMS (0.12), rut depth 
(0.12), crack density in the NWP (0.11), crack density in the WP (0.10), kurtosis (0.09), 
and skewness (0.08). Similarly, the gradient-boosting model identified MPD, crsSlope, 
IRI, crack density in NWP, rut depth, RMS, crack density in WP, kurtosis, and skewness 
as key variables, with their respective importance values. A comparison of the two 
models indicates that IRI was the top parameter in the Random Forest model, while 
MPD ranked highest in the GB model. 

 

  

              Random Forest Model          Gradient Boosting Model 

                             
Figure 39 Feature Importance for Water Film Height Model
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Table 5 Feature Importance Number for Water Film Height Models (Random Forest) 

Random Forest 
(Average Cross-Validation Score: 63.26) 

Variable Feature Importance 

IRI 0.1269 

MPD 0.1248 
crsSlope 0.1241 

RMS 0.1168 

Rut Depth 0.1164 
Crack Density NWP 0.1057 

Crack Density WP 0.1020 

Kurtosis 0.0960 

Skewness 0.0874 

 
Table 6 Feature Importance Number for Water Film Height Models (Gradient Boosting) 

Gradient Boosting 
(Average Cross-Validation Score: 65.19) 

Variable Feature Importance 

MPD 0.1616 

crsSlope 0.1450 

IRI 0.1399 

Crack Density NWP 0.1187 

Rut Depth 0.1109 

RMS 0.0971 

Crack Density WP 0.0908 

Kurtosis 0.0753 
Skewness 0.0608 

 

 

4.5 Pavement Friction Model and Results 

The pavement friction model, illustrated in Figure 40 and Table 5, was developed using 
both the random forest and gradient-boosting models with a 0.05-mile sampling interval. 
The gradient- boosting model achieved a lower accuracy of 68.14% compared to the 
random forest model, which demonstrated an accuracy of 71.68%. 

In Figure 18, the random forest model identified significant variables, including water film 
height (0.13), MPD (0.13), kurtosis (0.10), IRI (0.10), crsSlope (0.09), crack density in 
the WP (0.08), crack density in the NWP (0.08), rut depth (0.08), and RMS (0.08). 
Similarly, the gradient-boosting model highlighted significant variables, including MPD 
(0.16), water film height (0.15), crsSlope (0.12), kurtosis (0.11), IRI (0.09), crack density 
in the WP (0.08), rut depth (0.08), RMS (0.07), and crack density in the NWP (0.05). 
When combining the results of both models, MPD and water film height emerged as the 
most important variables, while other variables were similar in significance but varied in 
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their rankings and importance values. 

 

  

Random Forest Model Gradient Boosting Model 

 
Figure 40 Feature Importance for Pavement Friction Model 

Table 7 Feature Importance Number for Pavement Friction Model (Random Forest) 

Random Forest 
(Average Cross-Validation Score: 71.68) 

Variable Feature Importance 

Water Film Height 0.1370 

MPD 0.1322 

Kurtosis 0.1095 

IRI 0.1048 

crsSlope 0.1044 

Crack Density WP 0.0947 

Rut Depth 0.0864 

Crack Density NWP 0.0812 

RMS 0.0800 

Skewness 0.0698 
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Table 8 Feature Importance Number for Pavement Friction Model (Gradient Boosting) 

Gradient Boosting 
(Average Cross-Validation Score: 68.15) 

Variable Feature Importance 

MPD 0.1684 

Water Film Height 0.1580 

crsSlope 0.1253 

Kurtosis 0.1132 

IRI 0.0943 

Crack Density WP 0.0875 

Rut Depth 0.0869 

RMS 0.0705 

Crack Density NWP 0.0552 

Skewness 0.0407 

 

 

4.6 Potential Implementation of Research Findings 

ODOT collects annual pavement condition data, which is aggregated into a Pavement 
Quality Index (PQI). The PQI evaluates overall pavement surface conditions on a scale 
of 0 to 100, with 100 representing the best condition. For each pavement type, several 
summary condition indices are calculated based on aggregated subsection pavement 
distress data. These indices are weighted and combined to derive the overall PQI. 

This data is stored in ODOT’s PMS database, a comprehensive repository supporting 
planning, maintenance, and decision-making. The PMS database includes critical 
information such as route numbers, lane details, surface and pavement types, and 
various surface condition parameters. Cracking is classified into categories such as 
transverse, longitudinal, alligator, patching, and raveling. Pavement texture, primarily 
represented by macrotexture in terms of MPD, is also recorded, along with road 
geometry data, including grade and curve radius. Additionally, measurements for IRI, 
rutting, and faulting are collected. 

 
Table 6 summarizes the most significant variables and their feature importance values. 
Among the ten identified variables, six are included in ODOT’s PMS database. For the 
three Random Forest models—ice percentage, water film height, and pavement 
friction—the combined feature importance values of these six significant variables are 
0.7791, 0.6999, and 0.6037, respectively. In a Random Forest model, the feature 
importance values for all features in the model sum up to 1.0. Feature importance in 
Random Forest measures the relative contribution of each feature in reducing the 
model's overall error, such as Gini impurity (for classification) or  
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mean squared error (for regression). These high feature importance values indicate that 
ODOT’s PMS data can be confidently used to estimate ice percentage, water film 
height, and surface friction when focusing on the most critical features. In other words, 
the existing ODOT PMS data allows for reasonably accurate estimation of variables 
closely associated with pavement slipperiness. Notably, aside from the six variables 
collected by ODOT, RMS is a key variable for the water film height model. For the 
pavement friction model, kurtosis and water film height are the most significant 
variables; however, these are not currently reported in ODOT’s PMS database. 

 
Table 9 Feature Importance of Significant Variables in the Random Forest Models 

Variable Ice Percent 
Water 
Film 
Height 

Paveme
nt 
Friction 

Included in 
the ODOT 
PMS 
Database 

IRI 0.1656 0.1269 0.1048 Yes 

Rut Depth 0.0942 0.1164 0.0864 Yes 

crsSlope 0.1320 0.1241 0.1044 Yes 

Crack Density WP 0.0791 0.1020 0.0947 Yes 

Crack Density NWP 0.1991 0.1057 0.0812 Yes 

MPD 0.1091 0.1248 0.1322 Yes 

RMS 0.0798 0.1168 0.0800 No 

Skewness 0.0692 0.0847 0.0698 No 

Kurtosis 0.0720 0.0960 0.1095 No 

Water Film Height NA NA 0.1370 No 

Sum of Feature 
Importance: ODOT PMS 
Indicators 

 
0.7791 

 
0.6999 

 
0.6037 

 

 

4.7 Summary 

This analysis provides valuable insights into identifying the key parameters that 
influence pavement safety during winter and adverse weather conditions. It also 
demonstrates the potential for supporting an MDSS. However, it is important to note that 
the models developed in this study were based on limited data collected from a small 
roadway network. It is expected that more extensive datasets will become available for 
future network-wide surveys. 

 
Additionally, incorporating a broader range of weather parameters, such as surface 
temperature and dew point temperature, is recommended to better understand their 
effects on pavement safety under adverse weather conditions. It is worth mentioning 
that during the one-year study period, only one extreme weather event involving snow 
and one involving ice were observed. As a result, many weather-related parameters 
were not included in the analysis. 
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