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EXECUTIVE SUMMARY 

This study investigated several critical issues when using a LiDAR sensing solution to 

detect and analyze near-miss traffic events at signalized intersections and demonstrate a LiDAR-

based dynamic flashing yellow arrow. A near-miss refers to a “close call” where two vehicles (or 

a vehicle and a pedestrian) almost collide but avoid impact through last-second maneuvers. By 

identifying these events in real time, transportation agencies can proactively address safety 

concerns before crashes occur. 

 

The research had two main goals: (1) demonstrate how and whether LiDAR can instantly 

detect near-misses using high-resolution trajectory data without needing complex computations, 

and (2) demonstrate a LiDAR-based safety-centric traffic signal control strategy called Dynamic 

Flashing Yellow Arrow (D-FYA), which uses live pedestrian tracking to reduce conflicts with 

permissive left-turn vehicles. 

 

Despite hardware challenges and failures that impacted the full demonstration of D-FYA, 

the team successfully verified the LiDAR-based detection system through real-world testing and 

video validation. The system showed high accuracy and low latency (around 0.13 seconds). 

Hundreds of near-misses were identified per day at a single intersection, offering strong evidence 

for its potential. 

 

Based on findings, the researchers recommend UDOT consider wider deployment of 

LiDAR-based traffic detection systems at intersections to improve traffic safety. They also 

compare two different D-FYA strategies using actual behavior data and traditional push buttons to 

drive real-time signal control. Overall, the research highlights the promise of LiDAR in 

transforming intersection safety by detecting risks before crashes happen. 
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1 INTRODUCTION 

1.1 Problem Statement 

This research demonstrates a state-of-the-art LiDAR sensing technology designed to 

detect traffic near-misses—also known as traffic conflicts—in real time at signalized 

intersections. A near-miss is defined as a situation in which two or more travelers (vehicles, 

pedestrians, cyclists) are on a collision course but avoid a crash through last-second evasive 

maneuvers. Prior studies have established a strong correlation between the frequency of near-

misses and the likelihood of future crashes. Therefore, the identification of near-misses can serve 

as a proactive indicator of crash potential, enabling early intervention before actual collisions 

occur. 

Near-misses have two important dimensions: frequency and severity. Frequency refers to 

how often near-misses are observed at a given location; high frequency suggests a high risk of 

imminent crashes, necessitating prompt corrective measures. Severity is defined as the relative 

kinetic energy, based on the square of the relative velocity and the masses of the conflicting 

vehicles, integrated into the Crash Potential Index (CPI). This index combines the probability of 

a collision, derived from the Minimum Time to Collision (MTCC), with a severity factor to 

assess both the likelihood and potential impact of crashes in traffic simulations. Even if less 

frequent, severe near-misses warrant immediate attention due to their potential impact. Both 

aspects are critical for understanding safety conditions and formulating effective responses. 

In terms of traffic control, crash mitigation strategies at signalized intersections can be 

either “responsive” or “adaptive.” Responsive strategies are based on recently observed near-

misses (e.g., within the last five minutes), while adaptive strategies rely on short-term predictions 

(e.g., for the next five minutes). These strategies can further be classified as “collective” or 

“instantaneous.” Collective measures address general crash risk patterns, whereas instantaneous 

measures respond to specific near-miss events in real time. For example, a collective response 

may adjust time-of-day signal plans, while an instantaneous response could involve triggering an 

all-red interval to prevent a red-light violation by stopping predicted near-miss vehicles from 

entering the intersection. 



13 

This project evaluates and validates a novel method developed to identify instant near-

misses and their severity, as well as to predict potential crashes based on vehicle speeds and 

proximities with the deployed LiDAR system. The method uses high-resolution trajectory data 

but requires minimal computing power and avoids complex tracking algorithms. Initial results 

are promising and support the development of safety-centric traffic-signal control strategies 

designed to prevent crashes in real time. 

1.2 LiDAR Hardware Deployment 

The LiDAR hardware platform used in this study was inherited from a previous UTRAC 

research project focused on LiDAR applications at signalized intersections. The commercial 

hardware components, including LiDAR sensors and an edge computing unit, were 

manufactured by Koito-Cepton Inc. (formerly Cepton, Inc.). The specific sensor model, P6o, 

provides a horizontal field of view of 60 degrees. To achieve full intersection coverage, four 

LiDAR sensors were strategically deployed to provide comprehensive spatial monitoring. 

An edge computer installed in the roadside cabinet receives and fuses raw point cloud 

data from all mounted sensors. It processes the data in real time to extract trajectories of moving 

objects, including both vehicles and vulnerable road users. The software developed by the 

research team operates on this platform, synchronizing object detection with real-time traffic 

signal status. This integrated system enables the identification of relevant traffic events—such as 

near-misses—and supports both real-time interventions and post-analysis evaluations. 

For further details on the hardware configuration and foundational methods, readers are 

encouraged to consult UTRAC Research Report UT-22.26, titled “Utilizing LiDAR Sensors to 

Detect Pedestrian Movements at Signalized Intersections.”(1).  

1.3 Pilot Projects Using LiDAR for Traffic Signal Systems in North America 

As per UDOT’s request, the research team conducted a literature review and internet 

search to summarize the previous pilot projects on applying LiDAR to traffic signal systems in 

the US. It should be pointed out that the sources of this summary vary, ranging from the most 

credited news press website to LiDAR manufacturers’ own websites and casual user forums. 
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Therefore, readers are advised to further verify if some pilot projects are considered particularly 

interesting.  

1.3.1 Velodyne/Ouster Sensor/Perception + BlueCity.ai Traffic Analytics Software  

• In July 2021, Velodyne began a LiDAR-based traffic monitoring trial at the 

intersection of East 7th Street & Springdale Road in Austin, Texas — a known 

high‑injury location in the city’s Vision Zero network. The integration software 

was BlueCity.  

• In May 2021, Velodyne began piloting its Intelligent Infrastructure Solution (IIS), 

integrated with BlueCity AI, at several intersections in New Brunswick, New 

Jersey. 

• In August 2022, Michigan’s Michigan Mobility Funding Platform (MMFP) 

funded a pilot deployment for BlueCity and Velodyne, partnered with the 

University of Michigan and MCity to deploy BlueCity’s real-time traffic 

monitoring solution at five signalized intersections in Ann Arbor and surrounding 

areas. 

• In March 2024, the City of Chattanooga (alongside the University of Tennessee at 

Chattanooga’s Center for Urban Informatics & Progress) received a $2 million 

SMART “Planning & Prototyping” Stage 1 Grant through the U.S. Department of 

Transportation’s SMART program, funded by the Bipartisan Infrastructure Law, 

to deploy C‑V2X and ITS technologies, including LiDAR-enabled intersections, 

to improve pedestrian and multimodal safety around downtown and mid-block 

crossings.  

• In March 2025, Utah DOT selected Econolite to deploy the LiDAR system after 

evaluating multiple vendors. Econolite will integrate Ouster 3D digital LiDAR 

with the BlueCity AI platform, paired with Econolite’s Cobalt® controllers and 

EOS firmware. The initial phase includes 15 BlueCity-equipped systems, part of a 

5-year statewide project featuring dynamic signal actuation, vulnerable road user 

detection, and V2X messaging. The funding source is from UDOT’s operational 

budget.  
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1.3.2 Seoul Robotics Perception + BlueBand Traffic Analytics + Various LiDAR Sensors 

• In 2023, Seoul Robotics partnered with Chattanooga’s CUIP and FHWA for one 

of the largest U.S. smart intersection networks, then covering ~130 intersections 

from 2023–2024., creating a city-scale 3D perception network, funded through a 

$60 million FHWA award.  

• In March 2024, Seoul Robotics, in partnership with Gades Sales Company and 

BlueBand, deployed a LiDAR-controlled traffic signal in the U.S. at the 

intersection of State Street & 5900 South in Murray, Utah. The system used four 

corner-mounted LiDAR sensors feeding into SENSR-I, Seoul Robotics’ edge-

based 3D perception engine. BlueBand software translated the real-time perception 

data into NTCIP-compliant commands for an existing signal controller—no 

trenching or rewiring was required. The project was initiated under UDOT’s 

operational budget as a testbed for scalable smart intersection technology. 

• In April 2025, 5 additional intersections were deployed with the same solution. The 

locations are 7800 South and 2200 West, State Street and 6100 South, Redwood 

Road and 4700 South, Wall and 20th Street, and Wall and 23rd Street. 

1.3.3 The University of Nevada, Reno (UNR)+ Velodyne/Ouster LiDAR Sensors 

• In February 2017, UNR’s Civil & Environmental Engineering team—led by 

Associate Professor Hao Xu—installed what’s believed by many to be the world’s 

first roadside LiDAR sensor at Virginia Street & 15th Street in Reno. This 

Velodyne LiDAR setup created three-dimensional traffic trajectories, enabling 

detection of near-crashes, speeding, lane changes, and pedestrian movements. It 

was part of the Nevada Living Lab in partnership with Washoe County RTC and 

the City of Henderson, funded by state/regional transportation agencies, including 

NDOT and RTC Washoe County. 

• From 2018–2020, UNR expanded the network to eight sensors along Virginia 

Street and into Henderson, NV, as part of intelligent mobility projects. 
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1.3.4 The University of Texas at Arlington (UTA) + Cepton LiDAR Sensors 

• From 2020 to 2023, researchers at the University of Texas at Arlington (UTA)—

through the UTA’s internal funds and a USDOT-funded NITC study—deployed 

Cepton’s Helius® Smart LiDAR System at two high-pedestrian intersections: one 

in Arlington (between UTA campuses) and another in Irving (near a high school). 

This research led to many technology-transfer activities like webinars and seminars 

hosted by NITC UTC and FHWA.   

• From 2021–2022, UTA’s pilots in Texas led to a UDOT-sponsored collaborative 

pilot deployment with the University of Utah at 600 North & 300 West in Salt Lake 

City. It monitors pedestrian walking speeds, average waiting time, and effective 

perception-reaction to WALK to provide decision support for pedestrian facility 

design and evaluation.  

• The current project was kicked off in 2022 and extended the previous LiDAR 

project to near-miss evaluations and a D-FYA demonstration at the same 

intersection (600 North & 300 West in Salt Lake City).  

• From March 2025 to July 2025, UDOT supported the University of Texas at 

Arlington to deploy a separate edge computing device to connect Seoul Robotics’ 

output and collect driving behaviors during yellow and the first 10-second red at 

State Street and 5900 South in Murray, Utah. This data collection was for the 

FHWA pooled-fund study: “Yellow Change and Red Clearance Intervals 

(CCI)”(2).  The collected data formed the foundation of two manuscripts on this 

topic. The data collection system worked as expected until July 2025, when an 

unexpected hardware failure on the research edge computer caused UDOT’s 

LiDAR detection system to go offline for an extended period. After this incident, 

UDOT confirmed that the researchers had collected sufficient data for their studies 

and subsequently disconnected the research devices from the UDOT traffic 

network.  
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1.3.5 Texas DOT’s LiDAR Pilot Project  

• In 2024, Texas DOT (TxDOT) submitted a concept paper to the USDOT 

Intersection Safety Challenge (ISC) program. TxDOT was awarded for a prize and 

later flowed this fund to the University of Texas at Arlington via an Inter-Agency 

Contract (IAC) to further demonstrate and prototype the proposed full-spectrum 

LiDAR-based traffic safety solutions. This effort catalyzed the first pilot project of 

its kind in TxDOT. The adopted LiDAR sensors were Luminar’s IRIS sensor (120-

degree FOV), Seoul Robotics’ SENSR perception software. The university 

researchers will develop the proposed applications on top of SENSR. The project 

is expected to finish in the summer of 2026.  

1.3.6 SEYOND LiDAR and its own SIMPL Perception/Applications 

• In October 2024, Seyond launched its SIMPL platform in Columbia County, 

Florida, achieving 99% vehicle detection accuracy at a four-leg intersection with 

three lanes in each direction. 

• On October 25th, 2024, UDOT deployed the Seyond LiDAR solution at the 

intersection of 700 East and 1300 South; it has been fully operational ever since the 

deployment. 

• In May 2025, Peachtree Corners, Georgia (in partnership with Curiosity Lab), 

deployed SIMPL at Technology Parkway.  

• In May 2025, Seyond signed a distributing contract with Twincrest Technologies 

based in Texas. Twincrest has deployed Seyond’s turn-key solution at a few 

locations for demonstration.  

1.4 Objectives 

This project pursued two primary research objectives. (I) The first objective was to 

evaluate the concept of LiDAR-based, instantaneous near-miss identification at signalized 

intersections. This approach aims to detect potential collisions in real time, enabling proactive 

safety interventions before crashes occur. (II) The second objective was to assess an augmented 
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traffic control algorithm designed to separate crossing pedestrians from permissive left-turning 

vehicles. This algorithm modifies the flashing yellow arrow (FYA) operation on a cycle-by-cycle 

basis by delaying or canceling the FYA indication when necessary. The approach is referred to 

as Dynamic Flashing Yellow Arrow (D-FYA). 

Unlike existing systems, which typically assume pedestrian behavior based on static 

inputs, the adopted D-FYA algorithm in this project responds directly to observed pedestrian 

movements tracked by the LiDAR system. For example, pedestrians often change their intentions 

while waiting, such as crossing a different crosswalk that activates first or choosing not to cross 

at all. The D-FYA system accounts for these real-world behaviors and adjusts signal timing 

accordingly. In contrast, current push-button-based systems may be unresponsive to pedestrian 

presence (e.g., the “FYA Delay”) or unresponsive to pedestrian behavior (e.g., the “minus 

pedestrian call” logic in FYA configuration), resulting in less effective conflict mitigation 

between pedestrians and turning vehicles. 

1.5 Scope 

The scope of this research is divided into four tasks, including preliminary investigation 

(kick-off meeting, literature review, definition of context-aware conflict zones); LiDAR Sensor 

Latency Evaluation – assessing the responsiveness and timing accuracy of LiDAR data for real-

time applications; LiDAR-Based Near-Miss Identification – validating the detection of near-miss 

events through cross-referencing LiDAR-reported conflicts with synchronized video recordings; 

Demonstration of Dynamic Flashing Yellow Arrow (D-FYA) – implementing and evaluating the 

cycle-by-cycle decision algorithm for pedestrian-vehicle separation in a field setting. 

1.5.1 Preliminary Investigation 

The research team and members of the Technical Advisory Committee (TAC) discussed and 

confirmed the proposed project tasks during the initial kick-off meeting, including a review of 

the necessary resources to ensure successful execution. While most of the technical infrastructure 

was inherited from a previous UTRAC project, all key components were re-examined and 

verified for compatibility and readiness. The confirmed resources included: 
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• VPN access credentials for secure connection to traffic control equipment behind 

UDOT’s firewall. 

• A virtual server within UDOT’s traffic control network, configured to receive and 

archive data from deployed LiDAR sensors and host the central application software. 

• Verification of LiDAR sensor operational health and calibration status. 

Attendees of the kick-off meeting included project investigators from the University of Utah, 

the University of Maryland, and the University of Texas at Arlington; the UDOT research 

project manager; and members of the TAC, comprising staff from various UDOT divisions. 

1.5.2  Literature Review 

A literature review is conducted to understand the state of the art of traffic safety and 

traffic conflicts studies.  

1.5.3  Traffic Conflict Zone Design within Intersections 

Traffic conflicts within intersections are not isolated to single points but are better 

represented as zones derived from LiDAR-captured vehicle trajectories. Based on road geometry 

and vehicle kinematics, five distinct types of conflict zones are defined, covering both vehicle-

to-vehicle and vehicle-to-pedestrian interactions.  

1.5.4  Evaluating LiDAR Perception’s Latency 

Instantaneous near-miss identification requires low-latency LiDAR perception. This task 

developed a framework to evaluate LiDAR perception latency using synchronized video 

recordings.  

1.5.5  Verification of LiDAR-Reported Near-Miss with Recorded Video 

LiDAR-based near-miss identification relies on perceived object trajectories extracted 

from point clouds. To ensure accuracy and responsiveness, the LiDAR perception system 

aggressively filters out irrelevant objects and background noise, outputting only the target 

relevant objects, such as vehicles or pedestrians. However, this filtering process limits the 

availability of contextual information needed to fully investigate the causes of near-misses. This 
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task conducted a case study to demonstrate how LiDAR-reported near-misses can be verified 

using corresponding video recordings at intersections. 

1.5.6  Demonstration of an Advanced Dynamic Flashing Yellow Arrow (D-FYA) 

The dynamic flashing yellow arrow (D-FYA) in this context refers to a novel approach for 

separating crossing pedestrians from permissive left-turn vehicles, aiming to enhance safety 

without significantly reducing left-turn capacity. Unlike existing D-FYA systems, this 

implementation leverages LiDAR sensors to dynamically track pedestrian presence and 

movement during the WALK phase. The project team initially planned a comprehensive data 

collection effort and live demonstration of this D-FYA concept. However, due to repeated 

LiDAR sensor failures beginning in early 2023, this task could not be completed on schedule. 

The persistent hardware issues caused substantial project delays, and despite several major 

salvage attempts, the failures could not be resolved. As a result, UDOT approved a simplified 

scope for Task 4 to facilitate project closure. In light of the revised objectives, the project team 

has documented the D-FYA mechanism and provided a comparison with a newly developed 

push-button-based D-FYA system designed by UDOT's traffic signal group. The project team 

also explains how to implement similar operations on the current traffic signal systems. 

 

1.5.7  Recommendations and Conclusions 

The research team summarizes the key research findings and makes recommendations for 

a left-turn phasing design, based on the research outcomes. The research team also offers some 

suggestions on large-scale deployment of this technology to improve traffic safety.  

 1.5 Outline of Report  

This project report is organized with the following chapters: 

• Introduction 

• Literature review  

• Traffic conflict zone design 

• Latency evaluation of LiDAR perception 

• Verification of LiDAR-reported near-miss with recorded video 

• Demonstration of dynamic flashing yellow arrow (D-FYA) 

• Conclusions 



21 

2 LITERATURE REVIEW 

Traffic near-misses, or traffic conflicts in other literature, refer to potential crash 

situations when conflict vehicles are in an imminent situation of collision but take evasive 

actions to avoid it. The concept of traffic near-misses can be traced back to 1968 when Perkins 

and Harris from General Motors observed and summarized traffic conflicts at intersections (3). 

Other early studies include Older and Spicer, who categorized the observed traffic near-misses at 

various road locations into different types (4); Baker confirmed the close association between 

near-misses and crashes based on the data collected at 392 intersections and pointed out the 

benefits of traffic conflict analysis for traffic safety at rural areas (5); Glauz et al. conducted an 

extensive survey and summary on traffic conflict analysis and practice in the US (6; 7). Among 

those early studies, tabulating the numbers and frequencies of observed traffic near-misses and 

their association with real crashes is the main finding. To reveal the other element of traffic 

safety, it is required to understand the severity of each near-miss. Gettman and Head summarized 

seven indicators of near-miss severity (8): gap time (GT), encroachment time (ET), deceleration 

rate (DR), the proportion of stopping distance (PSD), post-encroachment time (PET), initially 

attempted post-encroachment time (IAPT) and time to collision (TTC). Among these indicators, 

TTC (9; 10) and PET (11) are the most popular because they can be easily measured from the 

vehicle trajectories. The difference between TTC and PET is whether the late following vehicle's 

(v2) deceleration is considered.  

There are also other variants of TTC, such as the modified time to collision or (Minimum 

Time to Collision) MTCC due to Ozbay et al. (12).  The data sources for near-miss identification 

include loop detectors (for longitudinal near-misses), video detection and tracking, radar, or 

LiDAR detectors. The algorithms used for near-miss identification and prediction include 

regression, Bayesian, and artificial intelligence techniques etc. As summarized by Hossain et al. 

(13), the literature on traffic near-miss studies are prolific and still an active research area.   

It becomes increasingly appealing for real-time estimation and prediction of traffic near- 

misses, rather than using historical data. Being “real-time” is a relative concept. It can refer to 

(I): A short period like a 5-minute time window or (II): instantaneous when the time window is 

approaching zero (e.g., less than 0.1 s). Achieving instantaneous identification is challenging and 
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restricted by many factors, such as computing resources and algorithms, but it can pave the road 

for novel safety-centric traffic control strategies.  

Cai et al. used a microscopic vehicle detection system on freeways to measure vehicles’ 

longitudinal maneuvers and identify near-misses. They applied a Bayesian multilevel logistic 

regression to estimate the possibilities of crashes using the Bernoulli distribution (14). Wang et 

al. adopted a similar framework, but they considered a more macroscopic feature, such as trip 

generation and socio-demographic information (15). Zheng and Sayed retrieved vehicle 

trajectories from video cameras at signalized intersections to identify near-misses and developed 

a generalized extreme value (GEV) model to predict at intersections. They also derived two new 

safety indices, the risk of crash (RC), and the return level of a cycle (RLC). The developed 

method was validated with observed crashes (16). Athanasios et al. used the loop detector data 

containing vehicle headways and speeds and crash records to generate a training data set. They 

also applied multiple machine learning and deep learning models to examine various models’ 

performance and concluded that the deep learning models perform better than the traditional 

machine learning models in crash prediction (17). Basso et al. used two deep-learning models to 

capture the nuanced difference among vehicles within video detections and developed a training 

data set to estimate crash potentials. They also adopted oversampling techniques to increase the 

importance of rare crash data to make the framework more effective (18). Yuan et al. applied the 

deep learning model not only to estimate the crash risk but also to predict the crash risk in the 

near-term future (19). They adopted a long short-term memory recurrent neural network (LSTM-

RNN) model and generated the training data set with oversampling techniques for the rare crash 

data.  

A feature in preparing the training data is that the input variables include the Bluetooth-

based travel time and automated traffic signal performance measure (ATSPM) data. The 

prediction accuracy is reported as 60%. Li et al. further enhanced this framework and increased 

the prediction accuracy up to 88% (20). Arash and Ahmed used the connected vehicle (CV) data 

and crash record to prepare the data set for training various logistic regression models to predict 

crashes from a rural CV testbed in Wyoming. The input variables include continuous and 

categorical ones, most of which were associated with speeds and volumes (21). To overcome the 

rare-event nature of crash records, Peng et al. adopted the Youden Index method to adjust the 

classification threshold in the crash prediction models and the experiments show better 
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performance and accuracy than the original data set (22). Li and Abdel-Aty expanded the crash 

prediction to secondary crashes. Using the spatio-temporal thresholds which are 15 minutes after 

a crash occurred and up to 1,600 meters from the crash site, secondary crashes are first 

identified. In the meantime, the corresponding traffic speed, volume, and lane occupancy were 

collected with roadside detectors on freeways. After the training data were generated for the 

XGBoost model, the reporting accuracy reached 80% (23). Thapa et al. divided road links into 

cell segments over time. The crash samples are aggregated into cell segments with small time 

windows. This is a new sampling technique and the results show they can reduce the samples by 

25% to achieve a similar performance, interpreted into a reduced computational load (24).  

Yu et al. developed a new tensor structure to construct the inputs of training data sets and 

adopted refined-focal loss functions for the imbalanced data issue. Using the collected data, the 

proposed model obtained 67% accuracy and four false alarm rate (25). Using 28,000 

investigation results of frontal vehicle collisions, Wang et al. adopted a deep neural network 

model to extract kinematic features and then predict crash risk with a support vector machine or 

SVM model accordingly (26). The prediction accuracy was reportedly 85.4% with a latency of 

less than 1.2 milliseconds. Shuangguan et al. predicted crash risks by observing and extracting 

drivers’ behaviors. Using the naturalistic data set and four machine learning models (XGBoost, 

SVM, RF, and MLP), drivers’ crash potentials are predicted (27).   

There is additional research literature on real-time crash prediction.  The review in this 

paper is recent and selective. Nonetheless, a common pattern that is found is that most literature 

is driven by big data sets and various regression, machine learning, and deep learning models. 

The output will be the predicted overall/statistical collision risk (e.g., five minutes ahead) for all 

vehicles. While this information is important to support traffic managers in reducing crashes, it 

may not necessarily identify and predict individual imminent crashes and their severity. In the 

meantime, the real-time near-miss events would be a fundamental input for safety-centric traffic 

signal systems at intersections. This paper distinguishes itself from other literature by presenting 

a method to identify instantaneous near-misses and predict crash severity based on state-of-the-

art LiDAR-tracked trajectories, including both vehicles and vulnerable road users (VRUs).  
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3 TRAFFIC CONFLICT ZONES WITHIN INTERSECTIONS 

3.1 Conflict Points vs. Conflict Zones at Intersections  

Collisions at intersections occur more frequently than those on highway segments because 

there are more traffic conflicts at intersections. Traffic conflict point analysis (TCPA) is the 

foundation of traffic safety analysis and control design for intersections. While it is commonly 

accepted by practitioners and academia, the TCPA method, by nature, ignores vehicles’ lateral 

maneuvers and drivers’ random decisions to change lanes while moving within intersections.  

Conflict 
zones

Vehicle lateral 
movements and 

lane changing

N

(a) (b)

 

Figure 3-1 Demonstration of conflict zones due to random driving behaviors and lateral 

maneuvers 

Fig. 3-1-a demonstrates one of the conflict zones between permissive left-turn vehicles and 

opposing through vehicles. In the real world, approaching vehicles make random maneuvers 

within intersections, creating “conflict zones” instead of “conflict points.” Fig. 3-1-b is a plot of 

1% of hourly trajectories of all approaching vehicles to an intersection in Salt Lake City (Utah). It 

clearly shows the random maneuvers of vehicles and the existence of “conflict zones.” In light of 

these thoughts, we derive a new definition of traffic conflicts or traffic near-misses based on the 

conflict zones in this study, referred to as the traffic conflict zone analysis (TCZA) method. Each 

traditional conflict point will be stretched into a conflict zone based on random maneuvers of 

conflicting vehicles.  
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 3.2 Conflict Types at Intersections 

A traffic conflict or “a near-miss” occurs when conflicting vehicles are too close to avoid 

collisions comfortably. There are two causes for near-misses: (I) Ignorance and (ii) 

Misperception. Ignorant drivers may fail to see conflicting vehicles or pedestrians in time, and so 

they must make hard brakes to avoid collisions, such as near-misses between permissive right-turn 

vehicles and crossing pedestrians or between permissive left-turn vehicles and crossing 

pedestrians. On the other hand, drivers may also misperceive imminent traffic conflicts, causing 

small gaps between conflicting vehicles, such as near-misses between permissive left-turn vehicles 

and opposing through traffic or red-light running (failing to pass the stop line before the yellow’s 

expiration).  

The near-misses due to ignorance can occur regardless of vehicles’ instantaneous speeds, while 

the near-misses due to misperception often occur at relatively high speeds. Therefore, we 

distinguish the ignorance-type near-misses from misperception-type near-misses in this study. The 

near-misses of interest at intersections are grouped as follows:  

• Near-misses due to ignorance:  

o Permissive right-turn vehicles vs. crossing pedestrians (Fig.3-2 (a)) 

o Permissive left-turn vehicles vs. crossing pedestrians (Fig.3-2 (c)) 

o Permissive right-turn on red vs. crossing pedestrians (Fig.3-2 (f)) 

o U-turn vs permissive RT vehicles (Fig.3-2 (e)) 

• Near-misses due to misperception:  

o Permissive left-turn vehicles vs. opposing through vehicles (Fig.3-2 (b)) 

o Red-light running (entering intersections after the yellow expires) (Fig.3-2 (d))  

Note that, even though frequent near-misses suggest potential collisions, an individual collision 

may not necessarily have a corresponding near-miss occurrence. Near-misses are the result of 

drivers trying their best to avoid collisions, whereas the causes of real collisions are much more 

complicated.  
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Figure 3-2 Demonstration of near-misses of interest at intersections 

 3.3 Kinematics Analysis for Near-Misses at Intersections 

3.3.1 Near-Misses between Permissive Right-Turn Vehicles and Crossing Pedestrians 

Right-turning (RT) vehicles should unconditionally yield to pedestrians and stop when a 

pedestrian is crossing. Assuming an RT vehicle fails to see a concurrent pedestrian and passes the 

stop line at speed 𝑣0 (miles per hour), then its (linearized) stopping distance can be calculated as 

(28; 29):  

𝑑 = 1.47𝑣0𝑡0 +
𝑣0

2

30(
11.2

32.2
∓𝐺)

       (3-1) 

Where: 𝑑  is the total stopping distance; 𝑡0  is the perception-reaction time; G is the grade in 

percentage; 11.2 (𝑓𝑡/𝑠2) is the maximal deceleration rate recommended by AASHTO and 33.2 

(𝑓𝑡/𝑠2) is the gravitational acceleration rate. As shown in Fig. 3-2-a, the shortest stopping distance 

in the buffer zone will be 
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𝑑𝑚𝑖𝑛 = √(
𝑑1

2
)

2
+ (

𝑑2

2
)

2
       (3-2) 

Where 𝑑1, 𝑑2 are the lengths from curbs to the centerline of the outermost lanes, if 𝑑 > 𝑑𝑚𝑖𝑛Then 

the RT vehicle cannot stop out of the conflict area, and it generates a near-miss.   

3.3.2 Near-Misses Between Permissive Left-Turn (LT) Vehicles and Crossing Pedestrians  

This type of near-miss is illustrated in Fig. 3-2-c, for an imminent conflict with the 

concurrent crossing pedestrians, the LT vehicle will either brake very late or not brake at all due 

to concerns of right-angle collisions. In this case, if a crossing pedestrian and an LT vehicle appear 

in the conflict zone at the same time, a near-miss event occurs.  

3.3.3 Near-Misses Between Permissive Left-Turn Vehicles and Opposing Through Vehicles 

A permissive left-turn vehicle becomes in conflict with opposing through vehicles when 

its front end enters the opposing through lanes until its rear end leaves that area. During this 

hazardous process, the left-turn vehicle’s total (linearized) travel distance D and travel time t can 

be roughly estimated as:  

𝐷 = 𝛿(𝐿 + 𝑁 × 𝑤); 𝑡 = 𝑑/𝑣0      (3-3) 

Where 𝐿 is a vehicle’s length, 𝑁 is the number of lanes, 𝑤 is the lane width, 𝛿 is an empirical 

factor to consider the LT vehicle’s curvy movement and curb spaces; and 𝑣0 is the LT vehicle’s 

speed.   

Whenever an LT vehicle starts to turn, we assume that the driver has perceived acceptable 

gaps and decided on a safe crossing speed. It is also reasonable to assume that the LT vehicle has 

no chance to adjust its decision during its turning maneuvers due to the impact of centrifugal force 

and limited vision, etc. Therefore, if the LT vehicle’s perception is wrong, then collision avoidance 

will mostly rely on the responses of the opposing through vehicles. When an opposing through 

(TH) vehicle perceives a potential collision with a permissive LT vehicle, the TH vehicle will slow 

down to ensure it takes at least 𝑡 before entering the conflict zone. Assuming the TH vehicle takes 

the maximal deceleration rate, its total travel distance 𝑑 during 𝑡 is at least:  

𝑑 = 1.47𝑣0𝑡0 +
(𝑣0

2−(𝑣0−11.2 (𝑡−𝑡0))
2

)

30(
11.2

32.2
∓𝐺)

         (3-4) 
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 From Eq. (3-4), an opposing through vehicle approaching at 𝑣0 will need at least 𝑑 from the 

conflict zone to avoid a collision. (See Fig. 3-2b).  

 3.3.4 Red-Light Running (RLR), a Special “Near-Miss” with Yellow 

RLR is a special traffic conflict at signalized intersections, and we consider a red-light 

runner has a “near-miss” with the yellow. As shown in Fig. 3-2-d, if a through vehicle enters the 

conflict zone at a speed that is too high for turning maneuvers during red, then this vehicle becomes 

a red-light runner and generates an RLR event.  

3.3.5 Near-Misses Between U-Turn Vehicles and Permissive Left-Turn Vehicles 

Vehicles may perform U-turns during either the flashing yellow arrow phase or the 

protected left-turn phase. Simultaneously, vehicles from the opposing approach may execute 

permissive right turns. In practice, such scenarios often lead to near-miss events, where drivers 

are forced to make abrupt maneuvers to avoid collisions, even at low travel speeds. As shown in 

Fig.3-3e, a near-miss can be identified once it enters the conflict zone at the same time.  

 3.4 Identify the Severity of Near-Misses by Scoping the Conflict Zone with TTC and PET 

The severity of near-misses may or may not be associated with conflicting objects’ speeds. 

For near-misses involving slow VRUs or vehicles, the severity of near-misses between vehicles 

and VRUs can be solely determined by their proximity. If the conflict zone is scoped small, then 

only those dangerously proximate near-misses will be captured. With a larger conflict zone, more 

near-misses will be captured, including both severe and less severe near-misses.  

For high-speed, vehicle-to-vehicle near-misses (e.g., permissive LT vehicles vs. opposing 

through vehicles), the near-misses are evaluated by whether the vehicle(s) must take evasive 

actions to avoid collision. This criterion involves both proximity and speed. The severity of high-

speed near-misses is important to estimate the vehicle-to-vehicle crash risks. For instance, a 

“bumper-to-bumper” near-miss is more dangerous than one with two seconds of PET1. Given that 

 
1 Post Encroachment Time (PET) is a traffic safety indicator that measures the time interval between a leading 

vehicle leaving a conflict zone and a following vehicle entering that same zone, essentially measuring how close two 

vehicles came to a collision without actually crashing. 
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state-of-the-art roadside sensors can only directly measure vehicle positions and speeds but need 

to derive accelerations, it makes sense to choose the time-to-collision (TTC) and post-

encroachment time (PET) to measure the near-miss severity. As shown in Fig. 3-3, TTC is the 

elapsed time from when the first conflicting vehicle leaves the conflict zone to when the second 

conflicting vehicle is projected to arrive at the conflict zone without deceleration. PET is the time 

gap between when the first conflicting vehicle leaves the conflict zone and when the second 

conflicting vehicle arrives at the conflict zone, with an attempt to avoid a collision by deceleration. 

Therefore, PET is always equal to or greater than TTC in the same scenario.   

Time

Distance
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point

t1 t2 t3

TTC

PET
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Figure 3-3 Demonstration of time to collision (TTC) and post-encroachment time (PET) 

(adapted from (8)) 

TTC and PET are, in essence, the safety buffer between conflicting vehicles. The 

aforementioned kinematic analysis in Section 3 is a special case in which both TTC and PET are 

set to zero. In other words, if the kinematic analysis is used to scope the conflict zone, then any 

captured near-misses will be of “bumper-to-bumper” types. We should hold the same interest in 

less severe near-misses because the highly dangerous near-misses will be similarly rare as real 

crashes.  

Let 𝑇𝑇𝑇𝐶  and 𝑇𝑃𝐸𝑇  denote the minimally acceptable safety clearance (i.e., minimal allowed 

proximity between conflict vehicles). Then conflict zones defined in Section 4 can be extended to 

accommodate the TTC or PET. Once two fast, conflicting vehicles appear in an expanded conflict 

zone at the same time, it means they are proximate enough to generate a near-miss. For the four 

conflict zones: 

• Conflict Zones Between the RT Vehicles and VRUs: The RT vehicle is supposed to unconditionally 

yield to VRUs. Therefore, TTC and PET are not considered. Using smaller conflict zones will ensure 

focusing on the most dangerous near-misses only. Using larger zones will reflect a strict protection rule 

for the VRUs.    
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• Conflict Zones Between the Permissive LT Vehicles and Concurrent Pedestrians: Since the permissive 

LT vehicles are unlikely to decelerate, the conflict zone can be expanded according to the TTC 

threshold as shown in FIG. 4. Assuming a concurrent VRU enters the intersection at the WALK onset, 

𝑡0 , and reaches the median at 𝑡1 , a near-miss can be identified if a permissive LT vehicle and a 

pedestrian appear in the expanded conflict zone between 𝑡0  and 𝑡1 , meaning they are dangerously 

proximate. Whenever a permissive LT vehicle enters the extended conflict zone with concurrent VRUs 

(the blue area) at 𝑡, the vehicle’s predicted arriving time to the crossing (the red area) will be predicted, 

𝑡2. If 𝑡2 is sooner than 𝑡1 + 𝑇𝑇𝐶, then a near-miss can be identified. Note that VRUs take much longer 

to clear the conflict zone. Therefore, it is almost certain that a near-miss can be identified whenever 

permissive LT vehicles and concurrent crossing pedestrians are identified at the same time within the 

extended conflict zone. The average length of the extended conflict zone can be jointly determined by 

the prevailing LT speed, intersection layouts, and target predicting time window (i.e., how many 

seconds in advance?).   
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Figure 3-4 Conflict Zone extension to accommodate TTC and PET 

• Conflict Zones Between Permissive LT Vehicles and Opposing Through Vehicles: If we assume that 

only the opposing through vehicles will decelerate, the conflict zone can be expanded according to PET 

from Eq. (3-4). As shown in FIG. 5, whenever a permissive LT vehicle 𝑣1 enters the conflict zone at 

𝑡 = 𝑡0  and leaves at 𝑡 = 𝑡1  (calculated according to measured instantaneous vehicle speed, vehicle 

length, and projected lateral path). This vehicle blocks the through lanes for (𝑡1 + 𝑃𝐸𝑇 − 𝑡0) seconds. 

If an opposing vehicle 𝑣3 is far enough (𝑑2 or further) at 𝑡0then it does not need to respond to the lane 
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blockage. If an opposing vehicle is proximate, then it must decelerate to arrive at the conflict zone no 

earlier than 𝑡2 to avoid a near-miss. The more proximate they are, the longer the braking action needs 

to be. When the opposing vehicle must take the maximal deceleration, 11.2
𝑓𝑡

𝑆2  recommended by 

AASHTO (30), then its instantaneous distance 𝑑1  is the minimal distance closer than which the 

opposing vehicle must brake evasively. An opposing through vehicle will experience a near-miss with 

the permissive LT vehicle if it is closer to the conflict zone than 𝑑1 at 𝑡. 

The shortest distance 𝑑1 can be calculated as Eq. (3-5) where 𝑣0 is the opposing through vehicle’s 

instantaneous speed at 𝑡0𝑇 is the perception-reaction or P-R time. 

 

𝑑1 = 1.47𝑣0𝑇 +
𝑣0

2−(𝑣0−11.2∗max(0,𝑡2−𝑇−𝑡0))2

30(
11.2

32.2
∓𝐺)

     (3-5) 

Note that the P-R time may not apply because the through vehicle driver may have noticed the likely 

LT maneuvers even before lane blockage (See Eq. (6)). 𝑑1 > 𝑑1
′  And so, we should always adopt Eq. 

(3-5) to scope the conflict zones.  

𝑑1
′ =

𝑣0
2−(𝑣0−11.2∗max(0,𝑡2−𝑡0))2

30(
11.2

32.2
∓𝐺)

       (3-6) 
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Figure 3-5 Extended conflict zones to accommodate TTC and PET 

According to Eq. (5), if an opposing vehicle’s P-R time T is longer than 𝑡2then it may not be able to 

respond to the near-miss and keep moving at 𝑣0 until it reaches the conflict zone.  

• Red-Light Running: There are no associated TTC or PET for this special near-miss. So, the conflict 

zone is not expanded.  
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• Conflict Zones for Permissive LT Vehicles and U-Turn Vehicles: The near-miss will be caused by 

drivers’ negligence, and vehicles are relatively slow. The near-miss can be solely determined by the 

proximity. 

3.5 Evaluating High-Speed Near-Misses at Intersections 

There is only one type of high-speed vehicle-to-vehicle near-misses at intersections: 

permissive LT vehicles vs. opposing through vehicles. The conflict zone will be scoped as 

illustrated in FIG. 5, covering both the crash zone and the expanded area for PET. Given the 

target PET and prevailing approaching speed, the shortest distance from the crash zone, 𝑑1, can 

be calculated with Eq. (3-5).  Other conditions for identifying a high-speed near-miss include:  

• Permissive LT vehicles should enter the conflict zone before the opposing through vehicle to 

make the opposing through vehicle apply heavy braking to avoid a collision, even though it has 

the right of way during the permissive left-turn phase.  

• The opposing through vehicle should be faster than the design speed in Eq. (5), which should be 

decided based on collected approaching speed samples (e.g., 50th percentile time-of-day speed). 

Slow-approaching vehicles do not necessarily need to brake hard to avoid a crash.  

During a permissive left-turn phase (e.g., Flashing Yellow Arrow), whenever an opposing 

through vehicle enters the conflict zone at t (𝑡0 < 𝑡 < 𝑡2), 𝑑1feet away from the crash zones, it 

will check the following conditions (illustrated in FIG. 5): 

1. Is this vehicle faster (𝑣1) than the designed approaching speed (𝑣0) to be considered?  

2. Is there a blocking permissive LT vehicle that enters the conflict zone earlier at 𝑡0 and blocks the 

through lanes until 𝑡2 (considering its lane-occupying time plus PET).  

If the above two conditions are met and the through vehicle is willing to keep taking 𝑎𝑚𝑎𝑥 =

−11.2 
𝑓𝑡

𝑠2 deceleration until it arrives at the crash zone at 𝒕𝒙 , then 𝒕𝒙 can be calculated as:  

𝑑1 = 𝑣1𝑇 +
𝑣1

2−(𝑣1−𝑎𝑚𝑎𝑥(𝑡𝑥−𝑡−𝑇))
2

2𝑎𝑚𝑎𝑥
→ 𝒕𝒙 =

(𝑣1− √𝑣1
2−2𝑎𝑚𝑎𝑥(𝑑1−𝑣1𝑇)

2
)

𝑎𝑚𝑎𝑥
+ 𝑡 + 𝑇 (3-7) 

Discussion:  

• If the P-R time 𝑇 is large, then it will be possible that the subject vehicle will keep moving at 𝑣1 

until it reaches the crash zone at 𝒕𝒙 = 𝑡 +
𝑑1

𝑣1
.  
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• If 𝑡𝑥 < 𝑡2 (e.g., the through vehicle is fast), then two vehicles will either crash or generate a near-

miss. By selecting various target PET values, we can selectively capture the near-misses 

according to the level of severity.  

In this case,  

𝑇𝑇𝐶 = max (0, 𝑡 +
𝑑1

𝑣1
− 𝑡1)) and 𝑃𝐸𝑇 = max(0, 𝑡2 − 𝑡𝑥)    (3-8) 
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4 LATENCY EVALUATION OF LIDAR SENSORS IN THE FIELD 

4.1 Introduction  

The objective of this task is to evaluate the feasibility of using LiDAR sensors to capture 

multiple types of near-misses at intersections. As the near-misses occur and then disappear 

instantaneously, capturing such events accurately requires rather low latency. It is critical to 

evaluate the latency (i.e., the time lag) between when the near-misses occur and when they are 

captured and reported by the LiDAR sensors.  

The latency of near-miss capturing is composed of two parts: (a) Data processing time, 

including perceiving, identifying conflict vehicles, identifying the current traffic signal status, and 

timestamping near-miss records; (b) Near-miss reporting time, such as uploading to servers after 

an intended delay. The latency in this context refers to the first part and contains three parts:  

• First, all LiDAR sensors, including those installed at the test intersection, can continuously 

scan and perceive new vehicles appearing in the conflict zones at an interval of 0.1 seconds 

(10 Hz). The latency of this step will be up to 0.1 seconds (e.g., a new vehicle enters the 

conflict zone right after scanning, and it will be captured during the next round of scanning 

in 0.1 seconds). The latency at this step is caused by the inherent scanning/sampling 

frequency of LiDAR sensors and cannot be avoided. 

• Second, the list of perceived vehicles in a conflict zone will be sent over to the near-miss 

capturing algorithm. The algorithm will determine the turning movement of each perceived 

vehicle and identify conflicting vehicles. If the conflicting vehicles meet the required 

conditions for near-misses, then the near-misses will be identified and timestamped 

according to when the perceived vehicles first enter the conflict zones. The latency at this 

step can be minimized through algorithm optimization. 

• Third, for the sake of the evaluation, the captured near-misses need to be displayed on the 

computer screen. The algorithm’s host computer (the LiDAR processor) and the 

monitoring laptop are connected via the Secure Shell (SSH), and therefore, transmitting 

near-miss events from the LiDAR processor to the laptop’s screen will generate additional 

latencies. Note that this step exists only for the latency evaluation, and it will be skipped 
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when the LiDAR solution is fully deployed. Therefore, this experiment may slightly 

overestimate the latency of near-miss identification.  

The challenge in this task is how to identify the “groundtruth” time when a near-miss occurs. 

A natural approach is to observe and record the groundtruth near-miss occurrences via a pro-

quality camera in the field. After investigating a few available options, the researchers decided to 

use one researcher’s iPhone-13 Max-Pro smartphone to serve this purpose. The Iphone-13 Max-

Pro smartphone was wired to a laptop and coupled via a software tool called “Camo”2. This 

configuration can retrofit the smartphone into a high-resolution (4K), high-speed (60 fps) computer 

camera. Through indoor experiments, the researchers did not observe any noticeable latencies 

between real activities and what was displayed on the laptop screen.  

Another challenge is how to synchronize three clocks to calculate the accurate latency: the 

smartphone clock, the laptop clock, and the LiDAR processor’s clock. To solve this problem, the 

researchers installed a millisecond-level clock in the monitoring laptop to display a uniform 

reference time clock on the screen.  

 

Figure 4-1 The millisecond clock as the time reference 

 4.2 Experiment Design 

The regular near-miss identification by the LiDAR sensing solution includes two steps:  

(I) Perceiving vehicles in conflict zones with the LiDAR perception software and then 

identifying their turning movements according to their origins with the application 

algorithms.  

 
2 https://apps.apple.com/us/app/camo-webcam-for-mac-and-pc/id1514199064  

https://apps.apple.com/us/app/camo-webcam-for-mac-and-pc/id1514199064
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(II) Identifying conflicting vehicles and near-misses among conflicting vehicles with the 

application algorithms. 

Step One causes most of the latency for the entire near-miss identification, whereas the 

computing latency at Step Two (mostly composed of a few “IF-THEN” rules) can be safely 

ignored.  The experiment focused on capturing the latency in Step One.  

The researchers customized the application algorithm to duplicate the computing process of 

Step One and report the computing time (latency) to identify vehicles with turning information. 

As shown in Fig. 4-2, Zone D at INT 7122 is selected to evaluate the latency. Whenever a vehicle 

enters Zone D, it is either speeding up or maintaining a relatively high speed (except for the NBR 

vehicles). Therefore, most vehicles’ maneuvers in Zone D are like those in conflict zones. 

Whenever a new vehicle in Zone D is identified, the special application algorithm will first check 

three origin zones (Zone A, B, and C) to determine this vehicle’s movement. For example, if a 

vehicle holding the same temporary ID enters the intersection from Zone A and leaves the 

intersection through Zone D, then this vehicle’s movement is South-Bound-Left. The time 

difference between when a vehicle enters Zone D and when this vehicle is identified and reported 

by the algorithm is the latency of Step One, approximately equal to the total latency of near-miss 

identification.  

(Exit) Zone for 
latency study

(Entrance) zone 
for SBL vehicles

(Entrance) zone 
for EBT vehicles

(Entrance) zone 
for NBR vehicles

A

B

C

D

Conflict zone 
(Perm NBL vs. SBT)

 

Figure 4-2 Zone Layouts at INT 7122 in Salt Lake City, Utah 
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 4.3 Data Collection in the Field  

The raw data collection system was configured as in Fig. 4-3. The pro-quality camera 

(smartphone) is aimed at Zone D and sends high-speed video(s) (60 frames per second) back to 

the monitoring laptop. In the meantime, the researcher remotely logged in to the live LiDAR 

processor in the traffic signal cabinet and ran the customized application algorithm to display any 

newly captured vehicles in Zone D on a remote console in the monitoring laptop.   

Pro-quality 
Camera

Laptop for 
recording

LiDAR 
Processor

 

Figure 4-3 Configuration of raw data collection system 

The camera’s live image and the LiDAR console were aligned on the screen of the 

monitoring laptop in conjunction with the referenced millisecond clock. During the data collection 

process, the researchers recorded the laptop screen with three programs aligned. The recorded 

video clip is the raw data for further latency evaluation in this context. The computing latency was 

calculated for each identified vehicle entering Zone D. As shown in Fig.4-4, whenever a vehicle’s 

front bumper was observed to enter Zone D, its groundtruth time entering Zone D was stamped 

according to the millisecond clock at the top right corner (Fig. 4-4A); if this vehicle was reported 

by the application algorithm later (Fig. 4-4B), then this event was timestamped again. The latency 

for this vehicle was calculated as the difference between two timestamps.  
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Reported by 
the algorithm

A

B

 

Figure 4-4 Demonstration of computing latency calculation for zone-based near-miss 

identification 

4.4 Results Summary and Analysis Performance of Identifying Vehicles 

The raw data were collected (recorded) in the afternoon of Feb. 27, 2023, for an hour. There 

were a total of 145 vehicles from three directions (SBL, NBR, and EBT) that were observed, and 
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144 were reported by the application algorithm. The identifying accuracy was 99.3%. Table 4-1 

summarizes the performance of vehicle capturing.  

 Table 4-1 Performance of Vehicle Capturing with the Application Algorithm. 

 

Actual Observation The algorithm reports 

EB NBR SBL EB NBR SBL 

2:14-2:29 35 3 1 34 3 1 

2:29-2:44 29 7 1 29 7 1 

2:44-2:59 26 9 1 28 9 1 

2:59-3:14 27 3 3 27 3 3 

 

Latency Analysis 

Based on frame-by-frame observation from the recorded raw data, the average latency of 

vehicle identification is 0.126 seconds among 144 identified vehicles. The latency distribution is 

shown in Fig. 4-5. From Fig. 4-5, more than 80% of latencies were lower than 0.15 seconds. For 

those identifications with high latencies, they were mostly the slow NBR vehicles. It should be 

pointed out that the actual latency may be lower than the calculated values because it took extra 

time to send information from the LiDAR processor to the remote console screen in the laptop.  

 

Figure 4-5 Algorithm’s latency distribution to identify vehicles  
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4.5 Remarks and Discussion 

Although the researchers consider the above experiment valid and effective, it is not perfect 

due to the limitations of the equipment. For example, latencies exist when the live images are 

processed and transmitted from the camera (smartphone) to the laptop, making the perceived 

“groundtruth” a little behind. Transmitting the captured information from the LiDAR processor to 

the console screen of the laptop may have taken extra time, which may be relatively nontrivial. 

The vehicles’ arrival timestamps at Zone D were judged not by advanced video analytic tools but 

arbitrarily by the researchers. Thus, the criteria may vary from person to person and from time to 

time. Nonetheless, the latencies of LiDAR sensors were low enough to accurately identify near-

misses, including red-light running at intersections.  
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5 VALIDATIONS OF LIDAR-REPORTED NEAR-MISSES WITH 

THE PTZ CAMERA 

5.1 Introduction  

The overarching goal of this chapter is to collect and validate the LiDAR-reported near-

misses based on the previously described near-miss identification method using recorded video. 

To avoid bias, multiple types of unfiltered near-misses identified by LiDAR were evaluated. Those 

reported near-misses were manually evaluated by researchers with the corresponding video clips. 

In practice, the accuracy and reliability of LiDAR-based near-miss identification are critical to 

inform the potential safety issues at intersections.  

5.2 Workflow  

For each type of near-miss, the validating process is shown as in Figure 5-1. First, the 

conflict zone is designed according to the methods described in Chapter 3. Second, various types 

of LiDAR-reported near-misses were collected for a few days to estimate the frequency and 

spatiotemporal distribution of near-misses. This information was used to determine how many 

hours of synchronous traffic videos should be recorded for validation. At last, the LiDAR-reported 

near-misses were verified from the synchronous traffic videos according to their synchronous 

timestamps.  

Conflict Zone 
Design

Collecting near-
misses with LiDAR

Decide the duration of 
traffic video recording

Verify LiDAR-reported 
Near-misses  from Video

Speed profile 
construction

 

Figure 5-1 Workflow of capturing and validation of near-misses via the LiDAR solution 

5.3 Conflict Zone Layout 

Without loss of generality, five conflict zones were designed as illustrated in Fig. 5-2. Zone 

1 is the conflict zone between permissive NBL and SBT traffic during the flashing yellow arrows 

(FYA); Zone 2 is the conflict zone between permissive EBR vehicles and concurrent pedestrians; 

Zone 3 is the conflict zone to capture NBT red-light runners; Zone 4 is the conflict zone between 



42 

permissive NBL and concurrent crossing pedestrians; and Zone 5 is the conflict zone between EBR 

vehicles and NB U-turn vehicles. The exact scope of each conflict zone will be calculated based 

on the method described in Chapter 3. Whenever two conflicting vehicles or pedestrians appear in 

the conflict zone at the same time and the speed thresholds (for vehicle-to-vehicle conflicts) are 

met, a near-miss of the corresponding type will be reported.  

 1

4

 5
2

3

N

Speed sampling points for 
Perm NBL and SBT 

vehicles

 

Figure 5-2 Illustrative layouts of five types of conflict zones at intersections 

5.4 Vehicle Speed Profiles Within Intersections 

Vehicles’ prevailing speeds within the intersections are critical to determining the conflict 

zone layouts, especially for vehicle-to-vehicle conflicts. To address this issue, the project team 

developed a special LiDAR program to collect approaching vehicles’ speeds within intersections. 

Special attention was paid to the prevailing speeds of permissive NBL vehicles and SBT vehicles 

as their near-misses mostly occur at high speeds due to misperceiving the gaps (See Zone 1 in Fig. 

3-2). For both permissive NBL vehicles and SBT vehicles, 300 samples of speed were collected, 

respectively, during the off-peak hours when vehicles move faster and are more prone to crashes. 

Accordingly, the researchers constructed speed profiles for permissive NBL vehicles and SBT 

vehicles in Fig. 5-3.  

The researchers also noticed that four permissive left-turn vehicles (NBL, SBL, EBL, and 

WBL) and four through vehicles revealed different speed profiles within the same intersection. 
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Multiple reasons can cause such differences, including but not limited to variable speed limits, the 

number of opposing traffic lanes, conflict pedestrian volumes, and/or surrounding street layouts. 

Therefore, it is recommended that constructing comprehensive speed profiles within intersections 

should be done first to capture near-misses properly.    
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Figure 5-3 Speed profiles of conflicting permissive NBL and SBT vehicles 

5.5 Scope of Conflict Zones at Intersection 7122 

5.5.1 Conflict Zone Design for Near-Misses Between Permissive NBL and SBT Vehicles Due to 

Drivers’ Misperception 

At Intersection 7122, the permissive NLT vehicle’s dwelling time in the conflict zone will 

be: 𝑡 =
(𝛿(𝐿+𝑁×𝑤))

𝑣𝑜 
=

1.2∗(14+3∗12)

13∗1.47
≈ 3.1 s. For this calculation, the standard vehicle length is set 

to 14 feet (4.3 meters), the lane width is 12 feet (3.7 meters), N is equal to 3 (lanes), 𝛿 is empirically 



44 

set to 1.2 to accommodate the vehicle’s curvy maneuvers; 𝑣𝑜 Is set as 10 MPH (4.47 meters/s), the 

5 percentile speed of permissive NLT vehicles, representing the relatively slow vehicles that may 

dwell in the conflict zone longer. During this 3.1 s, a permissive NLT vehicle may block 

approaching opposing through vehicles.  

For the opposing SBT vehicles, the scope of the expanded conflict zone depends on the adopted 

approaching speed. The higher the approaching speed we use, the larger the conflict zone will be. 

While capturing high-speed near-misses means preventing severe crashes, the researchers found 

two challenges in adopting high prevailing speeds (e.g., 95th percentile) to design the conflict 

zones.  

• If a southbound through vehicle enters the conflict zone at a speed below the predefined 

threshold, the algorithm assumes the vehicle will maintain its speed or decelerate slightly 

when approaching the intersection. Under this assumption, the vehicle is expected to reach 

the stop bar after the northbound left-turning vehicle has left the conflict zone, and thus no 

near-miss is reported. However, in real-world scenarios, the southbound vehicle may 

instead accelerate while entering the zone due to the driver’s misjudgment, then perceive 

an imminent collision with the permissive left-turn vehicle. This can trigger sudden evasive 

braking to avoid a crash, potentially resulting in a near-miss if not a real collision. The 

likelihood of such incidents increases when the conflict zone is large, providing more 

spatial and temporal allowance for changes in vehicle behavior and decision-making.  

• The conflict zone may become excessively long when the speed of approaching vehicles 

is high. For instance, if an additional 2 seconds is allocated as the post-encroachment time 

(PET) for the permissive northbound left-turn vehicle, then the system must begin 

evaluating the southbound through vehicle’s speed at least 5 seconds upstream from the 

stop bar. At an approaching speed of 45 MPH, this corresponds to approximately 330 feet. 

However, vehicles at this distance are often not fully aligned with their final travel paths 

(i.e., not yet channelized), increasing the likelihood of inaccurate trajectory predictions and 

resulting in a higher rate of false near-miss alarms.   

After identifying these challenges, the researchers recognized that the popular concepts of 

traffic conflicts like time-to-collision or post-encroachment-time originally root from freeway 

operations. Thus, they must be modified in the context of intersections. To address this issue, the 

far edge of the conflict zone should be drawn closer to the stop bar to capture only the final 
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maneuvers of the southbound vehicle before they arrive. This ensures the algorithm focuses on the 

most relevant interactions with permissive left-turn vehicles when both vehicles enter the conflict 

zone simultaneously. 

According to this rationale, the researchers selected the 5th percentile speed of SB opposing 

vehicles, 19 MPH (28 feet per second), to design the conflict zone. Given the low-speed threshold, 

more than 95% of approaching vehicles will be evaluated whenever they enter the conflict zone.  

According to the AASHTO mandate, braking-involved perception-reaction time, 𝑡0, is 2.5 s. If we 

set 𝑡𝑃𝐸𝑇 = 1, the far edge of the conflict zone can be calculated following Eq. (3-5) as: 

𝑑1 = 1.47 ∗ 19 ∗ 2.5 +
282 − (28 − 11.2 ∗ max (0,   1 + 3.1 − 2.5)2

30 (
11.2
32.2)

= 134 𝑓𝑡 

 

Conflict Zone for 
Perm NBL and SBT

 

Figure 5-4 Scope of conflict zone for the permissive NBL and SBT vehicles 

5.5.2 Other Conflict Zones Due to the Driver's Inattention   

All other types of conflicts are caused by drivers’ negligence, and so they can occur at any 

speed. Therefore, conflict zones of other near-misses focus on the areas where conflicting vehicles 

and pedestrians appear at the same time, regardless of their speeds, specifically, for the conflicts 

between permissive RT vehicles and concurrent pedestrians. The conflict zone is along the 

pedestrian crossing with slight expansion (Zone 2 in Fig. 5-2); the conflict zone for red-light 

running is right after the stop bar to check if the through vehicles appear over there after the yellow 
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expires (Zone 3); the conflict zone between permissive LT vehicles and concurrent crossing 

pedestrians is composed of pedestrian crossing plus the available space for vehicles to turn left 

(Zone 4); and the conflict zone between permissive RT vehicles and U-turn vehicles is on the 

outermost lane right after the intersections and a RT vehicle and a U-turn vehicle will be too close 

if they appear in Zone 5 at the same time.  

5.6 Collecting Near-Misses Using the LiDAR Sensors in the Field  

The researchers deployed the near-miss identification algorithm to capture all five near-

misses. Without loss of generality, the research team attempted to collect near-misses between 

permissive NBL vehicles and SBT vehicles (Type I); between permissive EBR vehicles vs. 

concurrent pedestrians (Type II); NB red-light running vehicles (Type III); permissive NBT 

vehicles vs. concurrent pedestrians (Type IV); and permissive EBR vehicles vs. NB U-turn 

vehicles. In other words, this experiment was associated with the NB approach of Intersection 

7122, while the other three approaches can be configured similarly.  

Two highlights of this experiment are: it will report multiple types of near-misses in real 

time; it can reveal under what traffic signal operations (instantly retrieved from the traffic signal 

controller) a near-miss occurred. For instance, if a Type-I near-miss was caught, then this near-

miss occurred during the permissive NB left-turn operations (i.e., NB FYA).  

Each captured near-miss includes the following information:  

• Intersection ID: UDOT’s internal intersection IDs. In this case, it is 7122. 

• Conflict type: There are a total of 5 types of near-misses defined in the algorithm. 

• Conflict Zone: the zone ID defined in the LiDAR user interface (refer to Figure 5-4). 

• Phase ID: the current green phase when a near-miss occurred. 

• Epoch time: the near-miss’ timestamp in the form of Epoch time (total seconds since midnight 

Jan-01-1970). 

• Local time: the near-miss’ timestamp in the form of ASCII time (human-readable);  

• Origin Zone 1: The origin of the first vehicle in conflict. The zone ID was defined in the LiDAR 

perception user interface (refer to Figure 5-4). 

• Origin Zone 2: the origin of the second vehicle in conflict. The zone ID was defined in the 

LiDAR perception user interface (refer to Figure 3-4). “-999” means “not applicable” for the red-
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light running (the Type-III near-miss) as the red-light runners do not conflict with other vehicles 

but miss the yellow end.  

• Day-of-Week: the day of the week when the near-miss occurred.  

The captured near-misses were stored in the LiDAR process in the field temporarily and then 

were uploaded to the central MySQL server hosted in a UDOT computer at 1 AM every day. The 

results could also be reviewed from the dashboard program, UTA-in-Motion. In a nutshell, the 

near-misses between permissive NBL vehicles and SBT vehicles (Type I) and NB red-light 

running (Type III) contributed to most near-misses, where other types were relatively rare. After 

several rounds of fine-tuning to remove the “false alarms,” it was estimated that the total near-

misses of all types associated with the NB approach would range from 400 to 600 per day. The 

researchers estimated the total near-misses could be around 2,000 per intersection per day. From 

Fig. 5-6, the near-misses appear intense and continuous except for the period from midnight to the 

early morning (before the AM peak hours start).  

Note that the above near-misses and conflict zones only reflect the researchers’ engineering 

judgment of conflict zones for near-miss identification. The definition of near-misses is by nature 

subjective, and so the frequency can significantly change if users perceive the conflict and design 

the conflict zone differently. In practice, the number of captured near-misses can change depending 

on the scope and skewness of conflict zones to reflect local regulations and agencies’ opinions on 

near-misses. For instance, at intersections with high pedestrian crashes, it is recommended to draw 

big conflict zones between vehicles and pedestrians to increase the sensitivity of near-miss 

identification. It is also possible to draw skewed conflict zones to reflect customized definitions of 

near-misses. If the conflict zones are drawn very small, then only the most severe near-misses 

(e.g., bumper-to-bumper) will be captured.  
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Figure 5-5 A snapshot of archived near-misses in the MySQL database 

 

Figure 5-6 The time-of-day summary of all near-misses (5 types) associated with the NB 

approach 
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5.7 Near-Miss Capturing and Validation with Videos  

It is critical to validate the above results to offer meaningful recommendations for traffic 

safety improvement. Therefore, the researchers conducted extensive experiments to evaluate the 

accuracy of the near-miss capturing algorithm.  

5.7.1 The Preliminary Experiment 

Preliminary validation was first conducted on the LiDAR perception software user 

interface (UI). Most LiDAR manufacturers or independent perception software vendors provide a 

web interface for users to set up their applications. Using a special version of the developed 

algorithm software, the researchers could observe and verify the tracked vehicle maneuvers, their 

occupancies of zones, and the reported near-misses by the algorithm.  

The purpose of this preliminary experiment was to determine the experiment plan for 

validation with the installed Pan-Tilt-Zoom cameras at Intersection 7122, such as how long the 

researchers need to record the video to capture sufficient near-misses. Out of this preliminary 

experiment, it was found that it is more reliable in capturing the near-misses among moving 

vehicles (e.g., permissive NBL vehicles vs. SBT vehicles) than capturing the near-misses between 

vehicles and pedestrians, especially the right-turn vehicles and the corresponding concurrent 

pedestrians. The reason for this pattern could be that relatively slow right-turn vehicles, while 

making turning maneuvers, are tracked at the far ends of all LiDAR sensors, and therefore, the 

tracking reliability slightly deteriorates. In addition, tracking pedestrians at street corners is more 

challenging than tracking vehicles due to the small size and random behaviors of pedestrians. The 

researchers think that this inferior performance is rooted in the inefficiency of LiDAR sensors’ 

point cloud and the perception algorithm. Solving the perception problem is beyond the scope of 

this research. Nonetheless, this problem of the perception software is anticipated to be effectively 

resolved soon, based on the recent demonstration of commercial LiDAR hardware/software 

development for the smart infrastructure3. There are two types of computing technologies for 

LiDAR perception: CPU-based and GPU-based. CPU-based perceptions consume fewer 

computing resources while it is often less accurate to perceive closely spaced objects such as 

 
3 This finding was formed in 2023. As of 2025, this problem has been solved with satisfaction among most 

commercial perception software solutions.  



50 

queueing vehicles or crowded pedestrians. By contrast, the GPU-based solutions consume much 

more computing resources, but they perform better in detecting waiting vehicles and crowded 

pedestrians.  

 

 

Figure 5-7 Observing and verifying the captured near-misses using the LiDAR UI 

5.7.2 Near-Miss Validation with the Pan-Tilt-Zoom Camera 

The researchers were requested to validate at least 100 LiDAR-reported near-misses by 

observing and comparing the synchronous videos recorded at Intersection 7122. A high-resolution 

Pan-Tilt-Zoom (PTZ) camera was installed at the NW corner of Intersection 7122 and well-

positioned to capture the near-misses associated with the NB approach. The PTZ camera is 

watermarked with timestamps as well.  Note that the video had to be recorded multiple times 

because the PTZ camera’s largest field of view could not cover all the conflict areas with near-

misses. Fig. 5-8 demonstrates the approximate conflicting areas where the researchers verified the 

LiDAR-reported near-misses from the recorded videos. According to the timestamps of LiDAR-

reported near-misses and their types, the researchers replayed the recorded video clips around the 
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same timestamp (watermarked at the top right corner of the video clips) and verified whether there 

were conflicting vehicles and/or pedestrians that were too close. If so, then the LiDAR-reported 

near-miss was identified. If not, then it was not verified.  

Type II near-misses (EBR vehicles vs. pedestrians) turned out to be rare, and the 

researchers had to make the conflict zone larger to let the LiDAR report the Type II near-miss 

(Fig. 5-8). 

Type III near-misses (the red-light running) identification requires the traffic signal status. 

The researchers used the opposing traffic light (phase 6) to verify the red-light runners of phase 2 

because phases 2 and 6 start and end yellow at the same time. (Fig. 5-9) 

Although the researchers did observe the NB U-turn vehicles from the PTZ cameras 

occasionally, the NB U-turn movement was prohibited at Intersection 7122. The occurrence of 

Type-V near-misses was very rare (less than 20 per month according to the LiDAR report), and 

there were no LiDAR-reported Type-V near-misses (U-turn vehicles vs. permissive right-turn 

vehicles) when the live stream videos were recorded.   

 

Figure 5-8 Extended Conflict Zone for Type-II near-miss verification 
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Figure 5-9 Videos and the corresponding conflict zones 

Table 5-1 shows the summary of the verification of 103 LiDAR-reported near-misses. 

The ground truth was from the researchers’ manual observation and verification from the 

recorded videos, according to the timestamps of LiDAR-reported near-misses. The short video 

clips can be accessed from the following YouTube links: 

https://youtu.be/dsOerookmTM?t=2 

https://youtu.be/P38_1c-mvKs 

Table 5-1 Summary of LiDAR-reported near-miss verification. 

Near-miss Type Description Total Verified False Alarm Accuracy (%) 

Type I 
Perm LT vehs vs. 

thru traffic 
53 48 5 90.6 

Type II 
Perm RT vehs vs. 

pedestrians 
4 3 1 75 

Type III Red-light runner 40 38 2 95 

Type IV 
Perm LT vehicles vs. 

pedestrians 
6 4 2 66.7 

Type V U-turn vs. right turn 0 0 0 - 

 

Table 5-1 reveals the following information, accompanied by the researchers’ reasoning 

and explanations.  

Type I (permissive LT traffic vs. opposing through traffic) and Type III (red-light running) 

near-misses dominate the overall near-misses at intersections. The conflicting objects are vehicles 

that meet the minimal speed thresholds.  

The researcher furthermore investigated the causes of the false alarms. A noticeable reason 

for Type-I false alarms is that there was an exceptionally high ratio of heavy-duty trucks at 

https://youtu.be/dsOerookmTM?t=2
https://youtu.be/P38_1c-mvKs
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intersection 7122. Excessive Class 7 to Class 13 heavy-duty trucks (according to the Federal 

Highway Administration’s definition)4 passed that intersection every day because of the nearby 

quarry and oil refineries. The LiDAR perception software had a hard time identifying and binding 

those vehicles. The perceived heavy-duty trucks also overreached multiple zones within the 

intersections and triggered false alarms.  

The red-light running (Type III): There is a through-right shared lane on the NB approach. 

From time to time, the permissive right-turn vehicles also met all the conditions set for the red-

light running of the NBT vehicles (origin zone, conflict zone, minimal speed threshold, turning 

during red, etc.). To minimize such false alarms, the researchers moved the conflict zone for 

identifying the red-light runners further into the intersection to prevent the NRT vehicles from 

reaching it. While this approach can exclude the false red-light running by the permissive RT 

vehicles, it also increases the chance of identifying the normal vehicles that had left the stop line 

before the expiration of the yellow, such as the red-light runners. Fig. 5-10 demonstrates the 

dilemma of red-light running with the presence of a shared through-right lane. A red-light runner 

can be identified if a vehicle reaches the conflict zone but has not completely left the origin zone 

when the yellow expires. With the presence of a through-right shared lane, the permissive RT 

vehicle during red may trigger a false red-light running if the conflict zone is close to the stop line. 

On the other hand, if the conflict zone is placed further into the intersection, the false alarm caused 

by permissive right-turn (RT) vehicles will be minimized. However, a small percentage of through 

vehicles are likely to be mistaken for red-light runners when they reach the conflict zone (When 

this vehicle is examined for if it is running the red light). The researchers verified these 

speculations by observing the red-light running videos. Some passenger cars, which had left the 

stop bar before the yellow expired, were still identified as red-light runners when they ran into the 

conflict zone during the all-red. However, all red-light running trucks were verified as they could 

reach out origin and conflict zones at the same time. In this situation, additional zones (s) other 

than the origin and conflict zones must be introduced into the red-light-running capturing 

algorithm. The improvement of the red-light-running capturing algorithm will be left for further 

development.  

 
4 https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm  

https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm
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Figure 5-10 False zone red-light running capturing with the presence of through-right 

shared lane 

The sample sizes of Type-II and Type-IV pedestrian-involved near-misses were too low 

for meaningful statistical analysis. Some near-misses were indeed verified, though. The low 

accuracy was caused by the perception software’s inefficiency instead of the algorithms developed 

by the researchers5. The perception software had some difficulties identifying the conflicting 

vehicles and pedestrians. In such situations, the pedestrians were mostly occluded by conflicting 

vehicles, generating a unique challenge for the perception software. Solving this problem will rely 

on the improvement of LiDAR perception software, either by the robotics research community or 

the LiDAR industry. In general, all LiDAR perception solutions are derived either from the open-

source platform of robotics operation systems (ROS)/ROS2 or from Apollo (Seyond SIMPL). 

These platforms were originally developed for robotics and autonomous vehicles.   

Lastly, it needs to be pointed out that the experiment designed for this task has limitations. 

It can only identify the accuracy rate and false alarms of LiDAR-reported near-misses. If the 

algorithm missed a near-miss, the experiment could not know and re-identify the missing near-

miss, either. In other words, this validation can only evaluate the false alarm rate but not the 

missing rate. To address this issue, it will be necessary to engage multiple near-miss identification 

solutions, such as AI video analytics, to cross-compare and verify the different outputs. One 

example is the AI-Empowered Video Analytics for Smart Transportation, or AVAST, developed 

by the University of Texas, Arlington. The researchers on this project explored the possibility of 

capturing near-misses from one of the recorded (offline) video clips, and AVAST also captured 

many near-misses. The list of near-misses captured by the two systems can be compared to see if 

 
5 Note that the latest perception software on the market (2015) can handle such challenges better than before.  
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the LiDAR-based system missed any near-misses. Nonetheless, this effort is out of the scope of 

this project and will be reserved for the future.  

 

Figure 5-11 Near-miss capturing at UDOT Intersection 7122 using AVAST6 

 
6 AVAST is an alternative safety-centric traffic detection solution based on AI and video streams developed by the 

University of Texas at Arlington.  
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6 EVALUATIONS OF A NOVEL DYNAMIC FLASHING 

YELLOW ARROW STRATEGY (D-FYA) BASED ON LIDAR 

TRACKING 

6.1 Background 

Flash yellow arrow (FYA) is widely adopted for permissive left-turn movements after the 

related research concluded that the FYA would improve traffic safety (Noyce et al., 2014). 

However, the current FYA mechanism does not separate permissive left-turn vehicles from 

concurrent crossing pedestrians. As a result, pedestrian crashes reportedly increased at certain 

locations after the implementation of FYA. To address this issue, agencies either turn the FYA off 

or adopt a special feature in some brands of traffic signal controllers, referred to as “minus 

pedestrian.” The concept is temporarily suppressing the FYA for a cycle if the corresponding 

pedestrian phase is called. Fig. 6-1 shows the concepts of FYA and the “minus pedestrian.” 

Although the “minus pedestrian” feature separates left-turn vehicles from concurrent crossing 

pedestrians and has been broadly adopted, it also eliminates most permissive left-turn capability 

for that cycle. This mechanism often creates excessive left-turn queues during peak hours when 

both pedestrian volumes and left-turn vehicle volumes are high.   

 

Figure 6-1 Demonstrations of FYA and “minus pedestrian” 

Other ideas of delaying or canceling FYA were also reported but limited to pilot studies, 

including but not limited to: (1) canceling FYA or changing to a protected-only left-turn phase if 

the opposing traffic volume is too high in the last x minutes and recover after the volume comes 

down; (2) Delaying or canceling FYA if the opposing waiting left-turn vehicles block the driver’s 

vision of this left-turn vehicle to find gaps.  Note that canceling or delaying FYA is not a standard 

(a): No 
ped call

(b): with 
ped call
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function in traffic signal controllers right now, while some controller manufacturers offer their 

proprietary method to realize this function. Therefore, this function can be safely implemented at 

an intersection controlled by certain brands of controllers.  

In this research, the researchers aim to demonstrate an advanced algorithm developed by 

the University of Texas at Arlington to predict and respond to pedestrians’ crossing intent based 

on tracking their behavior. Then it notifies the controller to delay or cancel FYA until the crossing 

pedestrians are safe. It is observed that pedestrians make or change their crossing decisions much 

more randomly than vehicles. To name a few, if a pedestrian wishes to go to the diagonal corner 

at an intersection, he or she may push both pedestrian buttons. The pedestrian will use the first 

activated pedestrian phase and “ghost” the second one. A pedestrian may push the button but 

change their mind and walk away. The latched pedestrian call will still activate the pedestrian 

phase even without pedestrians. Or a pedestrian pushes the button for the wrong crosswalk, and so 

he or she decides to ignore that pedestrian phase and wait for the right one. Such random decisions 

create a huge challenge for pedestrian-involved D-FYA operations driven by traditional pedestrian 

push buttons. By nature, the push buttons are just used to tell the controller the presence of waiting 

pedestrians. Then the controller carries out the programmed D-FYA operations following strong 

assumptions about pedestrian behaviors. Since the push buttons cannot detect and respond to 

pedestrians’ unexpected behaviors, the corresponding D-FYA operations will likely be less 

effective than expected in practice.  

6.2 Challenges and Mitigations 

In the middle of this research task, the installed LiDAR sensors began to fail repeatedly. 

As a result, the proposed demonstration could not be finished despite many salvage efforts. UDOT 

acknowledged this issue and agreed to rescope this research task to be more instructive and 

introductory. The new scope includes: an introduction of LiDAR-based D-FYA operation and 

report on a previous evaluation before this project; a summary of a similar D-FYA operation 

designed by UDOT. UDOT’s D-FYA is driven by traditional pedestrian push buttons.  
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6.3 Dynamic D-FYA Operations Based on LiDAR Tracking 

 The LiDAR-based D-FYA operation is based on tracking pedestrians (31). As shown in 

Fig. 6-2, concurrent crossing pedestrians have a conflict with left-turn vehicles only when they are 

within the so-called “hazard zone.” 

6.3.1 “Three-Zone” Pedestrian Tracking with LIDAR Sensors 

In reality, many pedestrians push the pedestrian buttons, become impatient, and then 

choose to cross or “jaywalk” before the “WALK” sign starts. As a result, neither the pedestrian 

phase nor FYA suppression is needed for that cycle. In addition, the D-FYA can (and should) only 

protect those pedestrians who follow traffic lights, as overprotecting both legitimate and 

illegitimate crossing pedestrians will considerably interrupt traffic signal operations for vehicles. 

To address these issues, we design a “three-zone” method to filter and only track those legitimate 

crossing pedestrians as shown in Fig. 6-2. A pedestrian needs to enter the wait zone first and push 

the pedestrian button to be considered legitimate. The waiting zones (Zone 1 and Zone 1') of each 

pedestrian phase are defined as “far-end” (Zone 1) and “near-end” (Zone 1’) according to their 

distances to the permissive left-turn vehicles. During WALK, if a pedestrian in Zone 1(far-end) 

and/or Zone 1’(near-end) enters the boundary zones (Zone 2 and Zone 3), then this pedestrian is 

considered a legitimate pedestrian. If the same pedestrian reaches the other end, then this 

pedestrian crossing is considered finished. If a ped call is placed (either by push buttons or recalls) 

but no legitimate pedestrians enter the intersection, the pedestrian request is then considered void 

and ignored. The three-zone method will discard those “jaywalking” pedestrians by default. 

However, if agencies wish to consider such jaywalkers as well, they can simply extend the waiting 

zones, boundary zones, and hazard zones according to observed jaywalking activities (e.g., 

extending further back from the intersection). This configuration is in essence a retrofit to the 

standard algorithm with the same logic to cover more legitimate and illegitimate pedestrians.   
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Figure 6-2 Three-zone pedestrian detection method at intersections: a: demonstration, b: 

zone settings in the field about WB left-turn vehicles (City of Irving, TX) 

6.3.2 Dynamic Flash Yellow Arrow (D-FYA) Based on Pedestrian Tracking  

Whenever a signal phase enters yellow, the controller will report what the next phase is. This 

mechanism allows the D-FYA algorithm to identify whether a FYA of interest is about to start. 

For instance, at Intersection 7122, if the next phase is phase 2, then FYA 1 is about to start. Then 

the algorithm will immediately perform the following actions: 

• STEP 1: Check if this phase has a concurrent pedestrian phase. If yes, go to Step 2. If no, 

STOP 

• STEP 2: Check if the pedestrian button is pushed or the pedestrian phase is called/recalled. 

If yes, go to Step 3. If no, STOP 

• STEP 3: Examine the existence of pedestrians in far-end and near-end waiting zones. There 

are two scenarios: 

o No pedestrians are detected at either waiting zone, the D-FYA algorithm will keep 

the original FYA settings. Then go to STEP 4. 

o Pedestrians are detected at one or two waiting zones, then the D-FYA algorithm 

will hold FYA temporarily. Then go to STEP 4.  

o When green or WALK starts, the D-FYA algorithm will check STEP 4 to make the 

final decision on FYA for this cycle. 

• STEP 4: At this step, there are four possibilities for pedestrians to enter the intersection 

from the two sides of the waiting zones:   

o During the WALK time, if pedestrians in the far-end waiting zone (e.g., Zone 1 in 

Fig. 6-2) enter the intersection (e.g., Zone 2 in Fig. 6-2), but no pedestrians in the 

near-end waiting zone (e.g., Zone 1' in Fig. 6-2) enter (e.g., Zone 3 in Fig. 6-2). The 

FYA is suspended until all pedestrians have left the “hazard zone” (See Fig. 6-2). 

Then the FYA is reactivated until the current phase ends.  

1 3

Waiting zone: 1: far-
end; 1': near-end

boundary zone

Hazard zone

2 LIDAR
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1'
Boundary 
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(b)
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o During the WALK time, if pedestrians in the near-end waiting zone enter the 

intersection while no pedestrians in the far-end waiting zone enter, then the FYA is 

suspended until all near-end pedestrians reach the other side of the intersection 

(e.g., enter the boundary zone on the other side). Then the FYA is reactivated until 

the current phase ends. 

o During the WALK time, if pedestrians enter the intersection from both sides, the 

FYA is suspended until all pedestrians reach the other side.  

o During the WALK time, if no pedestrians enter from either side, the FYA is 

activated until the current phase ends.  

Step 4 is the final step of this algorithm for each phase. 

Discussion: 

1. The decisions on FYA at Step 3 are temporary because a detected person in the waiting 

zones may not cross, or a pedestrian may mistakenly push a pedestrian button. The final 

decision of keeping or suspending an FYA will be determined after the green/WALK 

starts.  

2. Note that the decision to activate FYA can be made only once for each phase in each cycle. 

This request is mandated by the MUTCD and monitored by MMU.  

3. If a pedestrian “jaywalks” and gets out of the boundary zone when reaching the 

intersection's other side, LIDAR sensors will lose tracking of it. The missing pedestrian 

will be allocated the longest walking time beyond which this person is considered to have 

crossed. 

4. The proposed D-FYA is particularly effective when the associated green is much longer 

than the needed pedestrian crossing time. Once all pedestrians are cleared, the FYA is 

reactivated and can provide a significant permissive capacity for left-turn vehicles. By 

contrast, the current “minus pedestrian” mechanism will delay the FYA according to the 

predetermined timing (i.e., following strong assumptions of pedestrian behaviors). It may 

not be able to protect the slowest crossing pedestrians who are most vulnerable in this 

context.  

6.3.3 Evaluation of D-FYA’s Performance in the “Shadow” Mode  

In this experiment, we evaluated the performance of the proposed D-FYA algorithm in the 

field by verifying its real-time decisions according to the observed pedestrian behaviors. The 

“shadow” mode means all the traffic signal inputs and pedestrian behaviors are instantaneously 
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collected in real time to determine whether and when to activate FYA. However, the D-FYA 

decisions are not implemented in the controller but just logged for observers to evaluate. The 

purpose of this experiment is to evaluate the algorithm’s reliability and accuracy in the field. The 

selected intersection was Cooper Street at UTA Blvd, a major intersection connecting two urban 

campuses of the University of Texas at Arlington. The daily pedestrians crossing Cooper Street 

(mainline) range from 1,000 to 1,500 in a school day. The phasing sequence and pedestrian 

tracking zones are shown in Fig.6-3. There are four flashing yellow arrows on all four approaches. 

Whenever a phase starts, the D-FYA algorithm will run and report its findings (e.g., the presence 

of waiting pedestrians) and decisions (e.g., holding or activating an FYA) on the console screen. 

At the same time, a researcher compared the reported decisions on screen with his observations in 

the field. For example, if the researcher saw that two pedestrians were waiting to cross in the far-

end zone, he would expect the algorithm will report the same finding and propose delaying the 

FYA once the last phase entered yellow. The observation was carried out over 100 signal cycles 

with pedestrian crossings. Table 6-1 demonstrates how the D-FYA decisions were recorded and 

verified, using 5 cycles as an example.  

 

Figure 6-3 Phasing sequence (a) and pedestrian-sensing zone layout (b) Cooper Street at 

UTA Blvd, Arlington, TX  
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Table 6-1 Records and Verification of Shadow-\Mode D-FYA Decisions. 

Signal 

Cycle 

Corresponding 

signal phases 

near-

end ped 

presence 

far-end 

ped 

presence 

Both-

ends ped 

presence 

No ped 

presence 

FYA 

started as 

scheduled 

FYA 

delayed 

FYA 

cancelled 
Comment 

1 8 1 0 0 0 0 0 1 1* 

2 4 1 0 0 0 0 1 0 1* 

3 4 0 0 0 1 1 0 0 2* 

4 4 1 0 0 0 0 1 0 1* 

5 4 0 1 0 0 0 1 0 1* 

Note: 1*: verified by the researcher in the field; 2* verified a ped phase call and the pedestrian presence 

The case study was conducted for 100 cycles in the field. There were 70 cycles for which 

at least one pedestrian phase was called. Among those 70 cycles, 25 cycles only had near-end 

pedestrians, 25 cases had far-end pedestrians, and 9 cases had pedestrians on both sides. 

Comparing the D-FYA reported on the screen with what we observed in the field, we concluded 

that the D-FYA algorithm could make correct decisions in 93 out of 100 cycles. Table 6-2 

summarizes the D-FYA’s performance under various scenarios.  

Table 6-2 Performance Summary of D-FYA Algorithm Under Different Scenarios. 

Cycles with 

no ped calls 

Cycles only with 

near-end peds 

Cycles only with 

far-end peds 

Cycles with 

both-end peds 

Cycles with ped calls 

but no ped presence 

The accuracy rate of 

the D-FYA algorithm 

30 25 25 9 11 93% 

After finishing the experiment in the field, we further analyzed the recorded video and 

identified the possible reasons for incorrect D-FYA decisions. In those failed cases, the pedestrians 

either leaned on traffic light poles or multiple pedestrians stood too close for the LIDAR tracking 

algorithm to separate them effectively. This accuracy rate should further increase if the LIDAR 

tracking algorithm can improve in the future.  

6.4 UDOT’s D-FYA Operation Based on Pedestrian Push Buttons and Logic Processors in 

Controllers 

In parallel to this research task, UDOT’s traffic signal group also developed a similar D-FYA 

operation based on traditional pedestrian push buttons. UDOT’s signal engineer, Matthew 
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Luker7, used a special configuration of pedestrian push buttons and the Logic Processor function 

in Econolite/Q-Free controllers to identify not only the called pedestrian phase but also the street 

corner where the pedestrian stands. The programs, in the form of a spreadsheet, are appended to 

this report’s appendix. At a high level, this approach is summarized as follows:  

1. The default pedestrian phase terminal in traffic signal cabinets can only accept up to 4 

inputs from push buttons, while this special D-FYA operation requires 8 inputs (two 

distinguishable inputs at each street corner). To address this issue, UDOT split the wire of 

one pedestrian phase (two push buttons) and connected it to the cabinet’s back panel for 

vehicle detector inputs. The detector panel is only used when the traditional inductive 

loop detectors are used; they are not used for more recent vehicle detectors like video, 

radar, or LiDAR. This is the case in Utah. Note that these channels must not be used by 

any other platforms, like a connected vehicle system.  

2. Using the proprietary Logic Processors in controllers, whenever a pedestrian pushes a 

pedestrian button, the controller will understand which pedestrian phase is called and at 

which street corner. In light of Fig. 6-2, a pedestrian at the far end needs to pass the 

hazard zone to be completely separate from the left-turn vehicles, while a pedestrian at 

the near end needs to cross the entire crosswalk to be safe. As a result, the corresponding 

FYA delay time is different. UDOT calculates the needed time for both directions (from 

far to near and from near to far) of a pedestrian phase to be separated from left-turn 

vehicles. Whenever a push button is pressed, the programmed Logic Processor will delay 

the corresponding time to the corresponding FYA according to the calculation.  

Fig. 6-3 is an illustration of UDOT-FYA based on split buttons and logic processors. 

According to the UDOT’s internal memorandums, limitations are recognized, including but not 

limited to:  

1. UDOT D-FYA operation is based on Logic Processors in the controller, which are 

provided for simple add-on features, such as peer-to-peer communications and virtual 

detector mappings. The UDOT D-FYA operation is beyond the normal usage of Logic 

Processors. 52 Logic processors were used out of the total provided 100 Logic Processors 

 
7 Mr. Luker is the ITS manager of Utah DOT as of 2025.  
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in each controller. As a result, it may be difficult to apply the UDOT D-FYA operations 

together with other logic-processor-based operations in one controller. 

2. When the controller runs in the coordination mode, the coordination phase must disable 

WALK-REST and WALK-RECYCLE. In the coordination mode, WALK-REST can 

extend WALK to a very long duration during which pedestrians are allowed to enter the 

crosswalk legitimately. In the meantime, the FYA delay should only be reasonably long 

to avoid losing the respect of drivers or causing excessive delays. WALK-RECYCLE 

also turns on WALK multiple times during the coordination phase to allow pedestrians to 

cross. In these cases, FYA delay cannot fully separate later crossing pedestrians from 

left-turn vehicles.   

3. FYA delay by the Logic Processors in controllers has a maximum value of 25.5 seconds. 

So, if the intersection is very large, then 25.5 seconds may not be sufficient for 

pedestrians to walk from one side to the other (e.g., from near to far). As such, adopting 

the UDOT D-FYA operation needs to be carefully evaluated if the intersection is very 

large (e.g., 8+ lanes wide).  
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Figure 6-4 Illustration of UDOT D-FYA based on split push buttons and logic processors 

(Source: UDOT) 

6.5 Remarks  

Since the LiDAR-based D-FYA adopts modern programming methods and is based on 

traffic control standards, it does not have the No. 1 and No. 3 limitations in the UDOT D-FYA 

operation. However, it also requires disabling WALK-REST and WALK-RECYCLE to avoid 

delaying FYA for too long unless an internal timer is set up to limit the identification of 

legitimate crossing pedestrians only during the programmed WALK and the first few seconds of 

pedestrian clearance. After the timer expires, later arriving pedestrians will be discarded in the 

algorithm’s decision process even if they enter during (extended) WALK.  

By nature, both UDOT D-FYA and LiDAR-based D-FYA aim to protect the concurrent 

crossing pedestrians who have been waiting and will enter the crosswalk during the programmed 

WALK time and the first few seconds of pedestrian clearance.  
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7 SUMMARY OF RESEARCH FINDINGS 

This chapter presents key takeaways and actionable recommendations derived from this 

multi-year research on using LiDAR sensors to detect traffic near-misses and enable safety-

centric traffic control. 

7.1 Key Findings 

1. LiDAR-Based Near-Miss Detection Works: 

• The system reliably detected multiple types of near-misses in real-time. 

• Verified through synchronized PTZ camera footage. 

• Achieved over 99% object detection accuracy with average latency of just 0.13 

seconds. 

2. Near-Miss Frequency is High: 

• One intersection experienced 400–600 near-misses per approach per day. 

• Conflicts between permissive left-turn vehicles and opposing through vehicles 

(Type I), and red-light running (Type III), were most common. 

3. Dynamic Conflict Zone Design Matters: 

• Traditional point-based conflict models are insufficient. 

• The study proposed "conflict zones" shaped by real trajectory data and vehicle 

kinematics. 

• Severity of near-misses assessed using time-to-collision (TTC) and post-

encroachment time (PET). 

4. D-FYA Concept is Promising but Needs Reliable Hardware and Better Perception 

• Intended to dynamically cancel or delay flashing yellow arrows based on real 

pedestrian movements. 

• Could not be fully demonstrated due to LiDAR hardware failures in Utah. 

• Concept documented and compared with UDOT's push-button-based logic. 
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7.2 Recommendations 

1. Design Guidelines for Conflict Zones: 

• Develop standard but customizable templates for conflict zone layouts. 

• Use TTC and PET thresholds to capture both high- and low-severity near-misses. 

2. Further integrate with Signal Control Systems: 

• Link LiDAR-derived data with Adaptive Traffic Signal Control or ATSPM. 

• Allow signals to react to emerging traffic conflicts and traveler risks in real time. 

3. Leverage Near-Miss Data for Proactive Safety Planning: 

• Use collected near-miss metrics to guide engineering decisions, prioritization of 

safety projects, and education campaigns. 

 

In conclusion, this research confirms that LiDAR systems offer a new and powerful way 

to identify and mitigate traffic risks before crashes occur. With further deployment and 

integration, they can become central tools in proactive intersection safety management. 
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Appendix A: UDOT Dynamic FYA Implementation with 

Controllers’ Logic Processors 

• Intersection 7122 (Q-Free MAXTIME) 

• Intersection 7335 (Econolite ASC/3 or Cobalt) 
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