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16. Abstract

This project introduces an end-to-end framework for constructing integrated traffic network equilibrium models, which can serve
as lightweight travel demand models, directly from multi-day aggregate traffic state observations. Unknown components on both
the supply and demand sides are parameterized with computational graphs and embedded in a variational inequality to enforce user
equilibrium conditions. The approach flexibly incorporates model-based, model-free (e.g., neural networks), or hybrid components
and calibrates unknown parameters by minimizing discrepancies between observed and estimated traffic states.

The framework was validated through numerical experiments with synthetic networks and empirical data from the Ann Arbor
network. It demonstrated strong predictive accuracy for link flows under network changes and resilience to incomplete or noisy
data. In the Ann Arbor case study, the framework reduced link travel time prediction error from 83.6% in the benchmark model to
34.3% and successfully captured behavioral patterns such as reduced travel on weekends and snow days. The results also show
that the framework has strong potential for prescribing optimal improvement plans to reduce congestion, as it integrates learning
and optimization into a single data-to-decision pipeline.

Overall, the proposed end-to-end framework enables automated construction and calibration of transportation network equilibrium
models using cross-source data and supports the evaluation and prescription of strategies such as capacity expansion or congestion
pricing. In practice, the framework can improve the efficiency of transportation planning, reduce both capital and operational
costs, and guide more effective resource allocation to maximize public benefit.
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Executive Summary

The current travel demand models, whether developed using the conventional trip-based
four-step modeling approach or the state-of-the-art activity-based modeling approach,
are time-consuming and costly to establish and update. They are typically revised only

every five to ten years and often fail to accurately capture current travel behavior.

To address these challenges, this project introduces a unified, end-to-end learning
framework for constructing integrated transportation network equilibrium models,
which can serve as lightweight travel demand models, directly from empirical traffic
data. The framework learns both supply- and demand-side model components from
multi-day aggregate traffic state observations. Unknown components are parameterized
with computational graphs and embedded in a variational inequality to enforce user
equilibrium conditions. Each component can be model-based, model-free (e.g., neural
networks), or hybrid. By minimizing the difference between estimated and observed
traffic states, the framework simultaneously calibrates unknown supply- and demand-

side parameters.

To validate robustness and effectiveness of the proposed framework, numerical
experiments were conducted using both synthetic data from various networks and
empirical data from the Ann Arbor network. The framework demonstrated strong
predictive accuracy for link flows under changes in network topology and demonstrated
resilience to incomplete data and noisy inputs. In the Ann Arbor case study, the
framework reduced prediction error for link travel time from 83.6% in the benchmark
model to 34.3% and successfully captured variations in traffic patterns, such as reduced

travel on weekends and snow days.

A rigorous feasibility analysis of the end-to-end framework further identifies three
potential sources of error. Expressivity risk arises when imperfect prior knowledge
prevents accurate representation of real-world travel behavior. Generalization risk
occurs when models trained on limited data perform poorly on unseen inputs.

Optimization risk stems from the complexity of solving the inverse optimization



problem. The analysis shows that, with sufficiently large neural networks and adequate
data, the end-to-end framework achieves improved performance and mitigates these

prediction errors.

Another key advantage of the framework is its integration of learning and optimization
into a single data-to-decision pipeline. Applied to the Ann Arbor network, the framework
demonstrated potential for prescribing improvement plans and polices to alleviate
congestion. It can serve as a decision-support tool for policymakers considering
improvement strategies such as capacity expansion or congestion pricing. Automated
implementations of the framework could enable transportation agencies to plan and
operate traffic networks more efficiently, lowering both capital and operational costs.
By guiding more informed resource allocation, the framework helps policymakers avoid

unnecessary infrastructure investments and maximize public benefit.



1 Introduction

1.1 Background

Travel demand modeling is a fundamental tool in transportation planning, providing a
structured approach to forecast whether, where, and how people travel within a region.
At its core, it seeks to represent travelers’ decisions, such as whether to travel, choice of
destination, mode, departure time, and route based on land use, demographics, and
transportation system characteristics. These forecasts form the basis for evaluating the
impacts of policy interventions, infrastructure investments, and technological changes

on mobility, accessibility, and equity.

Traditionally, travel demand has been analyzed through a four-step modeling process.
The first step, trip generation, estimates the number of trips produced by and attracted to
each traffic analysis zone (TAZ). The second step, trip distribution, applies a destination
choice model to determine how these trips are spatially distributed, producing demand
between origin-destination (OD) pairs. The third step, mode choice, allocates OD-level
trips among available travel modes, yielding the number of vehicle trips. Finally, the
fourth step, traffic assignment, describes travelers’ route choices to distribute OD trips
across the network, resulting in link-level flows and measures of network performance.
These flow estimates provide benchmarks for assessing the effectiveness of proposed

system improvements.

Household survey data

e s ; ; T . Traffic
“ ? Trip Generation Trip Distribution Modal Split == A
Assignment

Figure 1 lllustration of traditional four-step travel demand modeling process

While the four-step model has long been the workhorse of transportation planning, its
aggregate and sequential structure limits behavioral realism. To address these

shortcomings, the field advanced to activity-based modeling (ABM). Unlike trip-based



approaches, ABMs view travel demand as derived from individuals’ and households’
need to participate in activities at different times and locations. By explicitly modeling
daily activity patterns, scheduling, and interdependencies among trips, ABMs offer a
richer behavioral foundation. This allows them to better capture heterogeneity across
population groups, sensitivity to land use and policy changes, and temporal dynamics

such as peak spreading.

Despite their differences, both the four-step and activity-based approaches share a
common limitation: they rely heavily on extensive data collection efforts such as
household travel surveys. Such efforts are costly, time-consuming, and resource-
intensive, making it difficult to update established travel demand models frequently. As
a result, metropolitan planning organizations (MPOs) often revise their regional travel
demand models only once every five to ten years. This infrequent updating limits the
ability of traditional models to reflect evolving travel behavior, rapid technological

change, and emerging mobility options.

In recent years, however, advancements in connectivity and sensing technologies have
made aggregate traffic state observations increasingly available. These states include
traffic volumes, speeds, travel times, and even route choice probabilities. Data sources
now extend beyond traditional loop detectors to include radar sensors, Bluetooth and
Wi-Fi tracking, GPS-enabled mobile devices, and high-resolution vehicle trajectory data
from connected and automated vehicles. The growing availability of these emerging
datasets, combined with recent advances in artificial intelligence, creates new

opportunities to rethink travel demand modeling.

Building on these opportunities, this project introduces a unified, end-to-end learning
framework for constructing integrated transportation network equilibrium models that
serve as lightweight yet behaviorally informed travel demand models, derived directly
from empirical traffic observations. The framework simultaneously learns OD travel
demand functions and route choice preferences while refining the link performance
function, which relates traffic volume to travel time. Once calibrated with empirical data,

it can not only reproduce observed traffic conditions with higher fidelity but also



prescribe optimal infrastructure improvements or policy interventions, offering decision-

makers actionable, evidence-based insights.

Unlike conventional approaches that rely on costly and infrequent surveys, the proposed
framework leverages passively collected traffic data to enhance behavioral realism and
predictive accuracy at a fraction of the cost. By minimizing dependence on resource-
intensive local data collection, it effectively democratizes access to advanced traffic
network diagnostics, enabling even resource-constrained agencies to benefit from
sophisticated modeling capabilities. The resulting system is a practical, deployable, and
adaptive tool for data-driven analysis, supporting both short-term traffic management
and long-term planning. More broadly, this framework represents a new generation of
travel demand modeling that unifies empirical data, machine learning, and equilibrium
theory into a single data-to-decision pipeline, laying the foundation for more responsive,

cost-effective, and behaviorally grounded transportation planning.

Vehicle trajectory data
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End-to-end learning

f

Figure 2 lllustration of “end-to-end” transportation network equilibrium modeling and

optimization
a. Objectives

The primary objective of this project is to establish a unified end-to-end framework for
transportation network equilibrium modeling. At its core, this framework leverages deep
learning to jointly model supply and demand components while directly estimating
equilibrium flow distributions from empirical data. A second objective of this project is
to rigorously demonstrate and validate the framework through case studies. Building on
this validation, the project identifies strategic enhancements that optimize system

performance. Finally, the project seeks to establish future research directions and

10



provide practical recommendations for MDOT, SEMCOG, and Washtenaw Area
Transportation Study (WATS) MPO, thereby laying the groundwork for continued

development of advanced, data-driven modeling practices.

b. Scope
The scope of this project is structured around five major tasks.
Task 1: Developing a research management plan.

This task focuses on creating a comprehensive plan to guide technical and administrative
activities. It includes coordination among the research team, project manager, and
advisory panel, as well as scheduling regular meetings with MDOT staff to ensure timely

progress, effective communication, and accountability.

Task 2: Developing a unified framework for end-to-end learning of network

equilibrium.

This task aims to advance our prototype end-to-end learning framework to
simultaneously model supply and demand components of network equilibrium. The
framework employs computational graphs with learnable parameters to approximate
unknown supply and demand relationships, embedding them within a variational
inequality formulation to enforce user equilibrium conditions. By minimizing
discrepancies between observed and estimated travel times, parameters on both the
supply and demand sides are updated jointly. This approach represents the first
integrated calibration of both components within a data-driven equilibrium framework,
unifying model-based and model-free elements for greater flexibility. A theoretical

analysis will also be conducted to assess the feasibility of this approach.

Task 3: Demonstrating the framework through a case study of Ann Arbor using GM

trajectory data.

In this task, we will apply GM’s vehicle trajectory data to enhance the behavioral realism

and predictive accuracy of the planning model maintained by WATS. The research team

11



will design algorithms to address data sparsity and subsampling issues inherent in GM’s

data.
Task 4: Prescribing improvement strategies.

This task investigates efficient solution algorithms to prescribe system improvement
strategies using the end-to-end framework. These algorithms will be demonstrated in the
Ann Arbor case study to evaluate their effectiveness in guiding transportation planning

decisions.
Task 5: Recommending next steps for future research and development.

The final task will outline future research directions and propose an operational
framework for potential adoption by MDOT and MPOs. This step will help advance the

long-term development of a practical modeling process.
1.2 Statement of Hypotheses

Before stating the specific hypotheses, we first outline the conceptual premises that
underlie this project: travel demand forecasting, the notion of user equilibrium, and the

idea of end-to-end learning.
Travel Demand Forecasting and Choice Preferences

Travel demand forecasting seeks to predict whether, where and how people will travel
in the future. Travelers’ decisions are governed by their choice preferences, which reflect
underlying trade-offs among time, cost, convenience, and other attributes. While
contextual factors evolve, the structural form of such preferences is generally stable over
forecasting horizons. By analyzing observed behaviors across these choice dimensions,
the proposed framework aims to infer the latent preferences that shape travel demand.
Once identified, these preferences provide a behavioral foundation that is assumed to
persist into the forecasting year, enabling the prediction of future travel patterns under

new conditions (e.g., changes in land use, pricing, or infrastructure).

Equilibrium as Benchmark and Approximation

12



Another premise is the role of equilibrium states in transportation network modeling.
Although exact equilibrium is rarely observed in practice, because of day-to-day
variability, bounded rationality, or information asymmetries, empirical traffic states tend
to cluster around equilibrium-like conditions. For planning, the notion of equilibrium
remains indispensable: it provides a consistent, reproducible benchmark against which
different policy or infrastructure scenarios can be fairly compared. Without such a
benchmark, evaluations risk being inconsistent or misleading. Accordingly, this project
adopts a data-driven approach to learn an equilibrium state that both reflects observed

traffic conditions and preserves the consistency required for planning analyses.
End-to-End Learning Perspective

Finally, the project embraces an end-to-end learning paradigm. Rather than
decomposing forecasting into separate, sequential modules (e.g., trip generation,
distribution, mode split, assignment), the framework integrates demand and supply
components within a unified learning architecture. Unknown model elements are
parameterized and jointly estimated by fitting observed traffic states, while equilibrium
constraints are embedded to ensure behavioral and network consistency. This end-to-
end approach offers both flexibility, accommodating model-based, data-driven, or
hybrid components, and rigor, as the learned equilibrium states serve as both predictive

tools and planning benchmarks.

The project is guided by the following hypotheses:

1. End-to-end learning improves predictive accuracy. By jointly
modeling supply and demand components from empirical trajectory and
auxiliary data, the proposed framework will achieve more accurate
predictions of network equilibrium flows compared with traditional four-

step models.

2. Data-driven integration enhances behavioral realism. Incorporating
vehicle trajectory data and other emerging data sources will allow the
framework to better capture traveler behaviors, including route choice

variability and responses to congestion.

13



3. Unified calibration reduces error propagation. Calibrating demand
and supply simultaneously within one framework will reduce cumulative
errors that typically arise from independent estimation in traditional

models.

4. Practical applicability to planning organizations. The framework can be
validated and adapted to support planning decisions within MDOT,
SEMCOG, and WATS MPO, enabling data-driven policy and system

improvement strategies.

These hypotheses frame the methodological innovations and expected
contributions of the project, while providing the foundation for empirical

validation through the case study.

2 Literature Review

2.1 Review of Previous Research
2.1.1 TImplicit Layer: Expressivity and Generalization

The foundation of the proposed end-to-end framework lies in parameterizing unknown
model components with neural networks and embedding user equilibrium conditions as
an implicit layer. The term implicit is used because the output of this layer is defined
implicitly: it cannot be computed through explicit rules as in conventional neural
networks (Travacca et al., 2020). Instead, it is obtained by solving a fixed-point problem.
The implicit layer was first proposed by Bai et al. (2019) and has since been applied to
domains such as power flow prediction (Fioretto et al., 2020) and auction mechanism
design (Feng et al., 2018). In this report, the term “neural network” refers broadly to
functions representable by directed acyclic computational graphs, where vertices
represent differentiable functions and edges represent function composition.
Accordingly, the terms “neural networks” and “computational graphs” are used

interchangeably.

A central question in neural network research concerns their expressivity, or the ability
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to approximate a wide class of functions. Standard neural networks, which stack linear
and nonlinear activation layers and compute outputs explicitly, are known to have
universal approximation capabilities. Foundational results (Kidger and Lyons, 2020;
Pinkus, 1999) show that, with sufficient parameters, such networks can approximate any
continuous function to arbitrary precision. The end-to-end framework, however,
employs an implicit layer, and its expressivity is less well understood. Unlike explicit
networks, the output of an implicit layer is defined by the solution to a fixed-point
problem, raising questions about whether such layers can universally approximate
equilibrium states, which may require infinitely deep standard networks to represent
exactly. Recent results (Bai et al., 2019) indicate that implicit layers can replicate finite-
depth standard networks, but the question of universal equilibrium approximation

remains open.

Closely related to expressivity is generalization, the ability of trained networks to
perform well on unseen data. Standard networks are known to generalize, though
performance typically degrades with depth (Golowich et al., 2018). In the proposed
framework, the implicit layer’s effective depth is determined by the number of forward
iterations needed to reach equilibrium. Existing theory suggests that because this depth
may be infinite, implicit layers could generalize poorly. Yet, empirical studies
demonstrate that implicit layers often generalize well, contradicting theoretical
expectations. This discrepancy highlights the need for new theory. Gao and Gao (2022)
show that implicit layers can generalize when their output dimension grows with the
number of training samples. However, in the end-to-end framework, output dimensions
are tied to network topology and cannot be freely adjusted. This project provides the first
demonstration that implicit layers can accurately approximate “well-posed” equilibria

and generalize effectively to unseen data, even without adjustable output dimensions.
2.1.2 Auto-Differentiation-Based Algorithms for Bi-Level Optimization

The end-to-end framework requires solving a bi-level optimization problem, or more
generally a Mathematical Program with Equilibrium Constraints (MPEC), using

gradient descent. This process necessitates differentiation of equilibrium states with
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respect to parameters, a challenge known as implicit differentiation or equilibrium

sensitivity analysis.

Several approaches to implicit differentiation have been proposed in the transportation
literature. Tobin and Friesz (1988) selected non-degenerate extreme points of
equilibrium path flow sets, while Yang and Huang (2005) identified linearly independent
subsets of used paths. Both approaches rely on matrix inversion, which scales
quadratically with problem dimension. Patriksson (2004) instead computed directional
gradients by repeatedly solving auxiliary linear variational inequalities (VIs), but this

method also suffers from scalability issues.

More recently, automatic differentiation (AD) has enabled new algorithms for implicit
gradient approximation when equilibrium constraints are expressed as lower-level
optimization problems, thereby reducing MPECs to bi-level formulations. Two notable
approaches are iterative differentiation (ITD) and implicit differentiation (IMD). ITD
tracks the optimization trajectory of the lower-level problem and backpropagates
through it to approximate gradients. However, storing or unrolling long optimization
trajectories is computationally burdensome. IMD avoids this by using the implicit
function theorem, iteratively solving an auxiliary fixed-point problem to approximate
gradients. Originally developed for hyperparameter optimization and meta-learning
(Franceschi et al., 2018), both methods have demonstrated local convergence and

efficiency in diverse applications (Ghadimi and Wang, 2018; Ji et al., 2021).

This project investigates the efficiency and convergence of AD-based algorithms for
solving MPECs with constrained VIs, which present greater challenges than standard
bilevel problems. Prior studies have handled equilibrium constraints in different ways:
Liu et al. (2023) used decoupled projection for link-based constraints, while Li et al.
(2022) employed mirror descent for path-based constraints, proving asymptotic
convergence of a modified auto-differentiation-based method. Other heuristic
approaches ignore equilibrium constraints altogether, replacing the equilibrating process
with a single-step network loading (Guarda et al., 2023; Wu et al., 2018). This raises the

open question of whether enforcing user equilibrium confers advantages in solving
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MPECs. This project addresses this gap by demonstrating convergence rates of AD-
based gradient descent under explicit equilibrium constraints, highlighting the role of the

equilibrating process in achieving local convergence.
2.2 Summary of the State-of-the-Art

Research on travel pattern prediction from empirical observations has developed along
two main disciplinary lines. The traditional equilibrium-based approach, rooted in travel
demand modeling, views travel choices as outcomes of a congestion game and predicts
future demand as an equilibrium state. In contrast, recent supervised learning-based
approaches frame travel demand forecasting as a prediction task using machine learning.
After years of parallel development, these two perspectives increasingly converge, now

facing common challenges.
Equilibrium-Based Approach

In planning and “what-if” analyses, modelers require a benchmark state for comparing
design or policy alternatives. Equilibrium has long been adopted for this purpose because
of its independence from initial conditions, behavioral grounding, and mathematical
tractability. Traditional parametric network modeling thus relies on equilibrium to
calibrate and forecast flows. For example, Yang et al. (2001) used a logit-based
stochastic user equilibrium model to estimate OD demands and dispersion parameters

from link flow observations.

Significant efforts have focused on improving behavioral realism in route choice models,
thereby enhancing forecast accuracy. Examples include dynamic dispersion parameters
calibrated from empirical data (Wang et al., 2016) and advanced behavior models
(Guarda and Qian, 2022). However, increased realism often comes at the cost of higher
computational complexity. Recent studies have explored incorporating machine learning

tools, such as computational graphs and AD, to improve calibration and efficiency.

Early efforts include encoding trip generation, distribution, and path-based logit loading

with layered computational graphs for OD calibration (Ma et al., 2020; Wu et al., 2018).
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Other work integrates neural networks with discrete choice models, demonstrating that
neural networks can enhance both realism and interpretability in travel choice analysis
(Sifringer et al., 2020). On the supply side, Lu et al. (2023) introduced physics-informed
neural networks for calibrating queuing profiles from multi-source data. Nevertheless,
most existing studies calibrate supply and demand components independently,

neglecting their interactions.

More recent work extends computational-graph-based calibration to account for traveler
interactions in routing games. Guarda et al. (2023) calibrated both supply and demand
components jointly from real-world data by penalizing deviations from user equilibrium
in the loss function. In contrast, Li et al. (2020) and Heaton et al. (2021) explicitly
enforced equilibrium as fixed points, calibrating unknown components directly from
flow and time observations. Despite these advances, most approaches remain parametric,

with model forms pre-specified before calibration.
Supervised Learning-Based Approach

In parallel, a growing body of research applies deep learning to forecast traffic flows as
a supervised learning problem. Models such as Long Short-Term Memory (LSTM)
networks and Spatial-Temporal Graph Convolutional Networks (ST-GCNs) have
demonstrated strong performance in predicting short-term flows by capturing complex
spatiotemporal dependencies (Yao et al., 2019). However, these models rely on the
assumption that training and test data are identically distributed. This assumption fails
in long-term “what-if” scenarios, where changes in network topology alter traffic flow
distributions (Shen et al.). Although such changes affect network-level flows, it is
reasonable to assume that traveler preferences remain relatively stable, even under
altered network conditions. Consequently, supervised approaches should focus on
learning mappings from input features to stable behavioral parameters, rather than
directly mapping inputs to flows. This shift could enhance their ability to generalize

across different network topologies and planning scenarios.

To summarize, equilibrium-based and supervised learning-based approaches, once

developed in parallel, are now converging toward shared goals and challenges. Both face
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fundamental difficulties in accurately learning traveler behavior from limited
observations. Travel choices often reflect bounded rationality, and internal decision-
making processes remain unobservable. Researchers can only infer behavior from
outcomes. This intrinsic limitation of the data complicates the task of behaviorally
realistic prediction, underscoring the need for hybrid approaches that integrate

behavioral models with modern data-driven methods.
3 Methodology

This section presents the end-to-end learning framework to simultaneously estimate the
supply and demand components of a transportation network equilibrium model using
empirical data. The approach employs computational graphs with learnable parameters
to approximate the unknown supply and demand functions and embeds them in a
variational inequality that enforces user equilibrium conditions. By minimizing
discrepancies between estimated and observed travel times, the framework updates
parameters on both sides concurrently. To our knowledge, this is the first framework that
integrates the calibration of supply and demand components in a data-driven
transportation network equilibrium model. It unifies model-based and model-free
elements, enabling a flexible and adaptive approach to real-world transportation
networks. We also provide a theoretical analysis of the feasibility of the proposed
framework and end-to-end optimization framework that prescribes optimal network

expansion designs based on the learned end-to-end framework.
3.1 End-to-End Learning Framework

3.1.1 Neural-Network-Based User Equilibrium

We consider a case where partial aggregate traffic measures, such as link flow and link
time, at peak periods are observable for a long period. The general learning task is to
learn OD demand functions, travelers’ route choice preferences, and link performance
functions from multi-day observations. If prior knowledge is available, some
components can be pre-calibrated, and the end-to-end framework only focuses on the

remaining components.
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Path-based formulation

Mathematically, consider a network G = (I, A), where V' and A are the set of nodes
and links. Let R denote the set of OD pairs. Each OD pair r € R is connected by paths
that form a finite and nonempty feasible path set ... P represents the set of feasible paths
for all OD pairs. Let x[™ be the input features observed on day (sample) m. The input
features include traveler characteristics like income, road network attributes like free-
flow time, and contextual features like weather and gas price. Input features can vary
from day to day (or sample to sample). Throughout the report, the norm denotes the L2
norm, unless otherwise indicated. Superscript m associates sample-dependent variables

with the m-th sample.

We propose three continuous functions to approximate the unknown supply or demand-
side model components. The parameter of all components will be jointly learned and
thus we say all components are parametrized by 8 € ®. Each component can be model-
based, model-free (e.g., neural networks), or hybrid (e.g., physics-informed neural
networks). Therefore 0 represents neural network parameters in a model-free or hybrid

approach, or parameters of a given functional form in a model-based approach.

We will elaborate on the construction of each component, starting from the supply side.
The link performance function T, outputs the link travel time t[™ € T as a function of

path flow h™ € A and input features, defined as:
TgrH XX > T (D

where the input features x™! € X include contextual features and road network

attributes, such as link capacity and free-flow time; the feasible region H < Rﬂpl

requires path flow to be nonnegative and is the feasible region of link time.

On the demand side, travelers are free to switch paths to improve their utilities. Findings
from travel behavior research suggest that travel choice behaviors are much more

complicated than just choosing the shortest path. We use the cost function g to describe
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the perceived path cost given actual travel time. The cost function 1y outputs the
(perceived) path cost as a continuous function of link time and input features, defined

as:
mg:T XX = C (2)

where input features include traveler characteristics (e.g., income and travel purpose),

route attributes (e.g., number of left turns), and contextual features. The feasible set C ©

P . .
RlJr ! requires path cost as nonnegative.

In addition to route choice, travelers have the freedom to choose travel or not and switch

origin and/or destination to improve their utility. We assume the travel demand is upper
bounded by a maximum possible demand g € RLRl and introduce the excess demand as
elml = q-— IThtml Here, I' € RIPIXIRI represents the path-OD incidence matrix and [,
equals 1 if path p connects OD pair » and equals 0 otherwise. We use an inverse demand
function A4 to depict the equilibrium path cost u!™! € U as a function of excess demand

el™l € € and input features, namely,
Ag:EXX > U (3)

where the feasible region of excess demand is E ={e € RI®R:0 <e<qgland U = R|+]RI

is the feasible region of equilibrium path cost.

Assuming rational travelers try to maximize their own travel utilities, the multi-class
user equilibrium (UE) with elastic demand is formulated as a parametric VI, the solution
to which is the equilibrium path flow h*I™ and equilibrium excess demand e*™ for
sample m. To simplify notation, we introduce the response variable as y = (h,e) and

the generalized cost as z = (c,u). By defining the generalized cost function:
FooYxXxX —>2Z (5)

where Fg(y, x) = [1t§ (to(h,x),x),7A4 (e, x)]".
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Figure 3 illustrates the computational-graph-based generalized cost function for path-
based elastic UE. Supply and demand-side components are shown in blue and green
respectively. The dependence of variables on sample m is omitted to simplify the
notation. Each parametrized component can be model-based, model-free, or hybrid.

Then the parametric VI in Eq. (5) can be compactly reformulated as:

(Fo(y*ml, xImly, y — y*Imly >0, vyey (6)

To compactly represent the feasible region of the response variable, the feasible region
of the response variable becomes Y = {y = 0,I'"y = g} where ' is augmented path-

OD incidence matrix

If we consider a special case where the OD demands are observable for each sample, the
proposed framework can handle an inelastic demand setting. Let g™ be the OD
demands and link flows observed on sample m. Then the multi-class UE with inelastic
demand for sample m is formulated as a parameterized VI in Eq. (6). In this case, the

feasible path flow set becomes sample-dependent, i.e., K"l = {h € R"Pl:h > 0,2Th =

ﬁ[m]} requires the feasible path flows to be nonnegative and satisfy flow conservation.
Link-based formulation

The parametric VI defined in Eq. (6) requires the knowledge of feasible path set. This is
a common assumption for path-based UE formulation and methods for generating the
feasible path set are well-developed in the literature (Frejinger et al., 2009). If the
modelers believe the path cost is link-additive, the link-based elastic-UE formulation can

be used instead.

We introduce OD-specific link flows for OD pair r as and the vectorized OD-specific

link flows as v ={v,. },,ex EV S RLAMRI. In this case, the link performance function

becomes:
Tg: VXX - T. (7)

We slightly abuse the notation of path cost and define the OD-specific link cost ¢, ©
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R|+AI with its vectorized form as ¢ = {c¢, },ex. The link-based equilibrium condition for
sample m is formulated a following parametric VI, slightly adjust the notation for
generalized cost and response variable to bring the link-based and path-based
formulations under the same umbrella. For each OD pair », we define the response
variable as y, = (v,,e,) with its vectorized form given as y = {y, },yex € Y. The
generalized cost for OD pair r is represented as z,- = (¢,, u,-), and its vectorized form is

formulated as z = {z, },ecr € Z © RﬂAIH)XlRI.

To compactly formulate the feasible region for response variable y, we introduce the
augmented link-node incidence matrix and vectorized demand constraint as follows. For
the former, we add a number of |R| dummy links connecting the origin and destination
of each OD pair, with a number of e, travelers on each dummy link experiencing the
equilibrium path cost u,.. Then we represent the augmented link-node incidence matrix
including dummy link as A € RUAIFDXINI where A,,, = 1 if link a originates from a and

Agn = —1if link a terminates at node n. For each OD pair, we define a vectorized

demand constraint, where d,. € Rlﬁl ; dyn = q if OD pair r originates at node n and
d,, = —q if OD pair r terminates at node n and d,,, = 0 otherwise. Then the feasible
region of the response variable can be compactly formulated as Y = {y €
RUAHDXIRI. , > 0, ATy, = d,,Vr € R}. It is straightforward to validate that both the
path-based equilibrium condition in and the link-based equilibrium condition align with

the same compact parametric VI in Eq. (6).

3.1.2 Learning Formulation

We consider a smooth loss function [: Y X Y — R that measures the distance between the
estimated equilibrium states and corresponding observations. We also consider a
regularization function 7 (8). The training of the end-to-end framework can be formulated
as the following MPEC. Each training sample m corresponds to the pair Consider the
dataset of M samples, where each data point is drawn i.i.d. from an unknown probability

distribution over X X Y.
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M

meinz Iy tml yiml) s ¢ (Fy(y* M, xm)),y — yiimly>0, vyey (&)

m=1

The end-to-end framework unifies the parameters of supply and demand-side
components, either model-based, model-free or hybrid, into a generalized cost function

and jointly learns 8 during training.

Remark 1 If the cost function is independent of input feature x and equals the sum of link
travel times and an entropy term, the learning problem will reduce to the logit dispersion
parameter calibration problem investigated by Yang et al. (2001). If the equilibrium
constraints are removed, the learning problem would directly learn a mapping from the
context features x to link flows v. In this case, the problem reduces to neural-network-
based short-term traffic flow prediction investigated in the literature (e.g., Yao et al.

(2019)).

The loss function is flexible to accommodate modelers’ needs and available data sources.
It can include partial aggregate traffic state observations like link flow and travel time,
path choice probabilities from trajectory data, and benchmark OD demands from planning
agencies. The framework integrates multi-source data into a single loss function and

effectively handles inconsistencies among different data sources.
3.1.3 Neural Network Architecture

This section discusses the design of the neural network architecture in the proposed end-
to-end learning framework. The architecture needs to accommodate the changes in the
road network topology to facilitate “what-if” analysis. Moreover, it can be designed to
ensure that the cost function possesses the desired properties to enable efficient training.
We will illustrate it with the cost function with inelastic demand as an example.
Hereinafter, we highlight that features/attributes are the concatenation of single

features/attributes for all elements within one set. The design of the cost function requires
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special consideration. We distinguish “feature” from “attribute” to avoid ambiguity:
features refer to the input data of neural networks whereas attributes refer to the learned

outputs of neural networks.
Attribute Net

We propose Attribute Net to learn the (path) attributes considered by travelers in their
route choice decision process. As shown in, attributes s depend on path flows h™ and
road network features x9. Attribute Net Gg learns a continuous mapping from path flows

and road network features to attributes, defined as:

Go: HI" x X9 - s. 9)

One may construct the Attribute Net with fully connected layers and learn a global
mapping from link flows to link costs (e.g. Heaton et al. (2021)). In this case, the input
and output dimensions of fully connected layers depend on the number of links in the
road network. However, in “what-if” analysis, a planning agency may change the road
network topology by adding or removing links. The fully connected layers—by definition
with fixed size input and output—are incapable of accommodating the change in the

number of links.

Inspired by the “kernel” concept in Convolution Neural Networks, we propose to learn
the local attributes on the link, node, and path levels with three parallel, fully connected
layers. As shown in Figure 3, the feature/attribute subscripts for enumerating the elements
within a set and the superscripts for a sample m are omitted to facilitate presentation. The
fully connected layers that learn link, node, and path attributes are called link, node, and
path block respectively. The parameters of each block are shared among all elements of
the same level to capture repeated patterns. Each block’s input and output dimensions are
independent of road network topology, allowing for changeable input sizes. To facilitate

the presentation, the superscripts for a sample m are omitted for the rest of this section.
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We use the superscript A, N, and P to distinguish the notations related to link, node, and
path block.

The detailed constructions of link, node, and path block are similar. Hence, we take the
link block as an example. As opposed to accepting multiple links as input, the link block
takes the single link flow and single link features of one link a € A as input and outputs

the corresponding link attributes, defined as:
g&- R, X XA > ST, (10)

where |7%| is the number of features associated with one link; |S*| is the number of link
attributes considered by travelers. Note the input and output dimensions of the link block

are independent of link numbers.
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Figure 3 Illustration of Attribute Net

Similarly, let node flow be the sum of link flows from all approaches at node. To capture
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the interactions among link flows, node block g@": R, x XY — s} maps the single node
flow u,, € R, and single node features of one node to its local node attributes. The node

attributes are the concatenation of single node attributes.

And the path block g&: R, XX;; - sg maps the single path flows and single path

features one path to its path attributes. Finally, the attributes m are the concatenation of

link attributes, node attributes and path attributes, defined as:

s = {As#, sV, 57}, (11)

where is X the path-node incidence matrix.

To facilitate training and enhance model performance, we can fully or partially replace
each block with a pre-calibrated function, if available. For instance, we can replace the
link block with the link performance functions calibrated by a planning agency. In
addition, our future study will explore the use of convolution layers to accommodate
changeable input sizes. The challenge will be to ensure the desired properties of the

learned cost function.
Weight Net

Weight Net is proposed to capture traveler heterogeneities and learn the OD-specific
preferences over learned attributes. We treat all travelers between the same OD pair as a
single class that shares the same preferences. It is straightforward to further classify
travelers between one OD pair to be multiple classes to reflect the preference
heterogeneity among them. Weight Net Ly learns a mapping from traveler characteristics

to OD-specific weights w € W, defined as Lg: X® —» W.

OD pairs can be added or removed in “what-if” analysis thus Weight Net also needs to

accommodate the change in the number of OD pairs. Weight Net learns a function that
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maps the single traveler characteristics of one OD pair x¥ to its OD-specific weights w,..

The parameters of neural network are shared among all OD-pairs to capture the repeated
patterns in weights. Recent developments in interpretable neural-network-based discrete
choice modeling can be incorporated into the proposed framework and guide the design

of neural network architectures, particularly when behavior interpretability is desired.
Cost Function and Regularization

Subsequently, we assume that travelers choose routes to minimize their perceived path
costs, which are represented as a weighted sum of attributes. Equivalently, let context
features 1 € R!S! include traveler characteristics x® and road network feature x9. The
cost function maps path flows and context features to path costs. The continuity of cost
function ensures the existence of equilibria. However, stronger properties of the cost
function may be desired to ensure the uniqueness of equilibrium or enable an efficient
solution algorithm. In this section, we seek to entail the cost function with monotonicity
and Lipschitz continuity via neural network regularization techniques. Both
monotonicity, which suggests the path cost is non-decreasing as more travelers use this
path, and Lipschitz continuity, which suggests a finite change in path flows results in a
finite change in path costs, are mild assumptions but will largely enhance computational

traceability.

Theorem 1 shows sufficient conditions to entail the cost function with monotonicity and

Lipschitz continuity. Note that only path flows are treated as variables in this case.

Theorem 1 (Monotonicity and Lipschitz continuity of cost function) The cost function
is maximal monotone and Lipschitz continuous with respect to path flows if weight is

positive and link block, node block and path block are column-wise monotone.

Recall that each block is composed of fully connected layers. Let y~Dand ¢® represent
the input and activation function of the 1-th layer respectively. We constrain the sign of

weights as strict positive by using SoftPlus as the last layer of Weight Net. The column-
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wise monotonicity and Lipschitz continuity of attribute blocks, however, are more
challenging to obtain. Most activation layers, such as ReLU and SoftPlus, are monotone
and Lipschitz (Bibi et al., 2019) and both monotonicity and Lipschitz continuity are
preserved via operator composition. Therefore, we only need to regularize the linear layer
to entail the block with desired properties. Without loss of generality, we design a
monotonic and Lipschitz continuous architecture that explicitly constrains the weights of
the linear layers. More specifically, the weight of each linear layer is constrained to be
positive to maintain monotonicity. The linear layer can be parameterized specifically if
strict monotonicity or strong monotonicity are desired. The spectral normalization as
proposed by Miyato et al. (2018) is applied to constrain the spectral norm of each W ®and
maintain Lipschitz continuity. This explicit method is reliable, easy to implement, and
shows satisfactory performances in our numerical experiments. Other regularization
methods, such as adding heuristic penalty terms to the loss function or solving integral
problems in forward propagation (Wehenkel and Louppe, 2019; Gouk et al., 2021) are

open for exploration in our future study.
3.1.4 Training

We need to deal with two computational challenges to implementing implicit layers in
the proposed framework. First, it requires efficiently solving a batch of VI problems in
the forward propagation, as previous methods for solving VI may not necessarily be
suitable for batch operations. Second, because solving VIs usually entails many iterations,
explicit backpropagation through each iteration can be computationally expensive.

Efficient differentiation through the implicit layer, i.e., the VI, is needed.

This section presents an auto-differentiation-based gradient descent algorithm to solve
the MPEC in Eq. (8). For simplicity, we explicitly formulate the dependence of the
parameters while omitting input features. The optimality condition of the parametric VI
in Eq. (6) can be recast as a fixed-point problem y = g(8,y) where g(8,y) is the fixed-
point operator. We define the total loss function f (0,y) = €(y(60),y) + r(6).

We consider the generalized cost function is strongly monotone and Lipschitz continuous
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so that the equilibrium state is unique and is a continuous function of parameter 6
(Dafermos, 1988). In a model-free modeling approach, neural networks can be
regularized to ensure these desired properties. In this case, the proposed algorithm updates
the parameter with its hypergradient in each training epoch. The hypergradient requires
differentiating through the equilibrium state y*(60) to calculate the implicit gradient. To

formally define the implicit gradient, we assume the following assumption holds.

Assumption 1 The fixed-point operator g(0,y) is continuously differentiable with

respect to 8 and y and the corresponding matrix is invertible.

Supposing Assumption 1 holds, one can differentiate through the optimality condition
and calculate the implicit gradient. Here we proceed to discuss the differentiability
assumption in Assumption 1. If we assume the travelers follow the logit model when
choosing their paths, the fixed-point operator is a logit loading function and is indeed
differentiable. In a more general setting, the solution to VI can always be formulated as
the fixed point of a gradient-projection operator. The gradient-projection operator is non-
differentiable at the boundary of the feasibility set. In this case, Assumption 1 implies
that we are focusing on the differential region of the gradient-projection operator,
thereby keeping it within the differential programming region for convergence analysis.
This approach is also adopted by Li et al. (2022). How to tackle the non-differentiability

at the boundary remains to be an open question.

We consider training the end-to-end framework with K epochs. Each epoch handles
two sub-problems: forward propagation, which finds an approximate optimal response
variable via N iterations, and backpropagation, which employs auto-differentiation to
approximate the hypergradient and update parameters. We will then elaborate on each
subproblem. Subscript script k associates a variable with the k-th epoch and superscript
n and g associates a variable to the n-th forward and g -th backward iteration

respectively.

Forward: N-step Closed-Form Updates
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Batched operation is essential for efficiently handling large empirical data sets when
training the end-to-end framework. Specifically, forward propagation requires solving
a batch of VlIs in parallel, rather than solving a single constrained VI. Previous methods
for solving VIs require repeatedly calling external optimization libraries to project onto
the polyhedron constraint set of feasible path flows, and thus may not necessarily be
suitable for batch operations (Li et al., 2020). To manage batch operations, we require
a closed-form method for updating response variables so that we can encode this
iterative process with computational graphs. These closed-form update rules also
facilitate efficient auto-differentiation through equilibrium states during
backpropagation (see Figure 4). We will discuss two types of solution algorithms,
decoupled gradient-projection and mirror descent method, to handle link-based and

path-based formulation respectively.
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Figure 4 lllustration of the end-to-end learning framework

We apply the decoupled gradient-projection method to deal with link-based
equilibrium constraints. The forward propagation updates the response variable via N-
step gradient-projection operations. In a link-based formulation, the feasibility set is
the Minkowski sum of the feasibility set for each OD pair, namely, Y = >X,.cx Y,
where Y,- = {y,:y, = 0,ATy, = d,.}. This allows us to break down the constraints by
OD pairs and sequentially handle every pair on a large road network. Projecting directly
onto the polyhedron constraint set, which requires repeatedly solving a batch of
quadratic optimization problems. To tackle this efficiently, we leverage recent
advancements in operator-splitting methods and decompose the polyhedron constraint
set Y, into two simpler sets: (i) one only involves inequality constraint Y1 = {y,:y, >

0}and (ii) another only involves equality Y2 = {y,: ATy, = d,.}. The projection onto
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two simplier set Y1 and Y2 have closed-form solutions that can be encoded within
computational graphs and then efficiently implemented in a batched manner. The
convergence of this decoupled gradient-projection method has been demonstrated by

Heaton et al. (2021).

Starting with an initial point, the decoupled gradient projection repeats y"*!l =

g(0,,y™) for each step until the iteration step n exceeds the maximum number of
iterations N. The initial point is not necessarily feasible and will be projected onto the
feasible region during the iteration. The selection of step size is vital. If the step size is
too large, the iteration may diverge; if too small, the convergence can be extremely
slow. The optimal step size depends on an unknown Lipschitz constant, the exact
computation of which is NP-hard (Virmaux and Scaman, 2018). We thus explore two
variants of decoupled gradient-projection iteration to adjust the step sizes and speed up
the convergence: Anderson mixing (Walker and Ni, 2011) and weighted ergodic
iteration (Davis and Yin, 2017).

n+1

Anderson mixing updates y as an optimal linear combination of t previous

iterations. The optimal step size solves a quadratic program where the objective
function is to minimize the sum of optimality gap over 7 iterations. Here ¢p" i+1

represents the optimality gap defined as follows.

Mirror descent method has shown good performance in dealing with path-based

n
equilibrium constraints. We define the path choice probability o™ = - Tyf as auxiliary
r yn

variables. The response variable is updated with a closed-form mirror descent operator.
The constraint set of response variables becomes a probability simplex in path-based
formulation and mirror descent has been shown efficient to deal with such a constraint
set. This update rule can be viewed as a variant of the logit loading where the observed
cost is scaled by the logarithm of route choice probability. The mirror descent iteration
converges to the solution to the parametric VI in Eq.(2), as demonstrated in Li et al.

(2022).
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Additionally, solving for the auxiliary fixed point is equivalent to finding the root of
v* — go(y*,x) = 0 via a root-finding method. The projection operator is non-
differentiable at the boundary of a set and thus Newton s method may diverge.
Therefore, we use Broyden’s method, a quasi-Newton method that does not require
differentiability. Broyden’s method approximates Newton’s direction and updates the

point as y"t1 = y™ — g™ Let the initial guess be s® = —I and the direction is updated

Ayn+1_SnA¢n+1
Ay(n+1)TsnA¢n+1

as sl =g" 4 Ay(n+1)TSn, where Ayn+1 — yn+1 _ yn and A¢n+1 —

q)n+1 _ q)n_
Backward: Approximate Hypergradient

In forward propagation, we consider a practical setting where the parametric VI is
solved with N steps and terminated before reaching perfect equilibrium. Consequently,
in backpropagation, we need to approximate the hypergradient at a non-optimal
response variable. To avoid the computationally expensive matrix inversion in
approximating the implicit gradient, we present two auto-differentiation-based methods

to approximate the implicit gradient.

Iterated Differentiation (ITD) memorizes the trajectory of N-step forward iterations and
directly backpropagates through the equilibrating trajectory. In the N-th forward

iteration, the response variable y} depends on 8, and y 1, namely yY = g(8,,yY ™).

Here we use the fixed-point operator g as the “unified” operator that includes both
gradient-projection operator and mirror descent operator. By applying the chain rule,

we obtain a computational tractable approximation for the implicit gradient under ITD.

Inexact Implicit Differentiation (IMD) approximates the Hessian-inverse-vector
product by solving an auxiliary fixed-point problem. Reformulating the definition of
auxiliary variable suggests that it solves an auxiliary fixed-point problem. Then IMD
recursively approximates the auxiliary variable using Q-step fixed-point iteration to

approximate hypergradient under IMD. The auxiliary fixed-point iteration converges if
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1 —V,g9(6, y&) is a stable matrix with a maximum eigenvalue that has a magnitude

less than one. Previous studies show that these iterations typically are convergent in

practice (Bai et al., 2019).

There are other methods in the literature to reduce the computational difficulty by
approximating the matrix inversion. First, the Jacobian-free backpropagation replaces
the matrix inverse with one identity matrix. This method can be viewed as a
preconditioned gradient and only requires backpropagating through the final forward
step (Fung et al., 2021). Second, an inverse matrix can be approximated with truncated
Neumann series, reducing the computational cost from matrix inversion to matrix-

matrix multiplications.

Remark 2 Calculating the gradients of equilibrium flows with respect to demand or supply-side
perturbations has been studied as equilibrium flow sensitivity analysis in the transportation
literature. Tobin and Friesz (1988) showed that the Jacobian exists if the utilized path set remains
the same with a small perturbation in parameters. Patriksson (2004) further suggested that the

Jacobian exists if all unused paths remain unused with the perturbation. Li et al. (2020) pointed

out the Jacobian exists if the cost function is strongly monotone in a neighborhood of h*. These
conditions may not hold in a general setting. However, the aforementioned numerical methods

work well in our numerical experiments.

To sum up, leveraging the hypergradient approximated under ITD and IMD, the
parameter for epoch k is updated with learning rate § > 0 as with gradient descent
under approximate implicit gradient. Here we adopt a warm-start strategy by setting
the initialization as the output of the preceding training epoch rather than initiating it

with random values.
3.2 Feasibility Analysis

The primary goal of the end-to-end framework is to support downstream planning by

conducting “what-if”” analyses and comparing different planning or design options. To
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ensure consistent comparisons, a reference or benchmark is required, for which the
notion of equilibrium has long been utilized due to its independence from initial
conditions, behavioral foundation, and mathematical traceability. However, real-world
network states may never reach equilibria, and equilibrium states are rarely directly

observable from empirical data but must be inferred.

The above two points create a dilemma: on one hand, empirical observations do not
reflect equilibrium while, on the other hand, the modeling paradigm requires
equilibrium. To reconcile, we assume that empirical flow observations oscillate around
an “ideal” equilibrium state or are perturbations from this state. Consequently, such an
“ideal” equilibrium state is defined as the one that is the closest to all perturbed
observations by a distance measure. The end-to-end learning framework seeks to learn
this ideal state from finite observations. Conceptualized as a mathematical construct
derived from empirical data, this “ideal” equilibrium state serves as a crucial
benchmark, enabling consistent comparisons across different planning options. Our
analysis in this chapter seeks to determine whether the proposed framework can learn

this “ideal” equilibrium state from data.

We proceed to evaluate the feasibility of the proposed end-to-end network equilibrium
model by comparing its population risk against that of the target model. As illustrated,
the difference between the two population risks can be decomposed into three distinct
components: expressivity, generalization, and optimization risk. Each represents a

unique challenge in the end-to-end process.

We analyze each risk under the following two assumptions:

Assumption 2 (Lipschitz continuity of the loss function) The loss function €( ) is L-

Lipschitz continuous in y.

Assumption 3 (Well-posed target cost function) The target cost function is continuous

in x and u-strongly monotone and L-Lipschitz continuous in y.
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Following the compact parameterized VI formulation, this feasibility analysis applies
to both path- and link-based formulations. While our primary focus is on the path-based

formulation, both formulations are validated through numerical experiments.

First, expressivity risk arises when modelers, using imperfect prior knowledge, fail to
select a model component that accurately represents real-world processes. The end-to-
end framework is proven to be expressive: this framework, when parameterized with
sufficiently large neural networks, can replicate any unique, differentiable equilibrium
state that solves a “well-posed” VI. Theorem 2 establishes that the expressivity risk
becomes negligible when the augmented cost function is parameterized by a
sufficiently expressive neural network. In other words, the end-to-end framework,
supported by neural networks, can accurately replicate any unique, differentiable

equilibrium flow that solves the “well-posed” VI.

Theorem 2 (Expressivity risk) Suppose Assumptions 1, 2 and 3 hold. If the augmented
cost function is parameterized by an infinite-depth neural network with a continuous
nonpolynomial activation function o, the expressivity risk is bounded by arbitrarily

small € > 0.

Modelers may also pre-calibrate certain components using domain knowledge, leaving
the remainder to the end-to-end framework. Such pre-calibration can reduce overall
expressivity risk if it lowers the learning error in critical components. It is therefore
essential to strategically choose which components to learn. Focusing on less important

components will not reduce expressivity risk if significant errors persist in critical ones.

To continue the analysis of generalization risk, generalization risk emerges when the
framework, trained on a limited dataset, struggles to adapt to new, unseen data. This
end-to-end framework is demonstrated to be able to generalize to unobserved data when

trained with sufficient observations.

Lemma 2 (Bounded approximate implicit gradient) Under Assumptions 3 and 4, the

approximate implicit gradient is bounded above.
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Building on Lemma 2, the following theorem provides an upper bound for the

generalization risk.

Theorem 3 (Generalization risk) Suppose there exists a parameterized model that
yields zero loss on one sample, where the parameterized cost is L-Lipschitz continuous
in 0 and x, the generalization risk is bound above and decreases with the number of

samples.

As shown in Theorem 2, the generalization bound decreases at a rate of number of
samples and scales with the feasible parameter set size. This suggests that larger

training samples and simpler models help control generalization risk.

Finally, optimization risk arises from the complexity of finding the optimal parameters,
which involves solving a batch of VIs and differentiating through equilibrium states.
Convergence analysis shows that ITD requires an iterative equilibrating process to
guarantee local convergence, while IMD can compensate for the absence of an

equilibrating process with additional information from the implicit function theorem.

Table 1 Summary of trade-offs. Results marked with an asterisk (*) are suggested but not
explicitly proven due to the complexity of finding global optima in MPEC.

# parameters |®|1| # training samples [M|T |Forward iterations N7

Model risk ! = =

Generalization risk 1 !
T

Optimization risk* )

Table 1 summarizes the trade-offs in inversely learning an end-to-end network
equilibrium model. Increasing model parameters reduces expressivity risk but raises
the likelihood of overfitting and training complexity. Expanding the training dataset
improves generalization but may complicate optimization. Finally, increasing the
number of forward iterations enhances the approximation of user equilibrium but incurs
higher computational costs and potential numerical instability when N becomes very

large.
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The proposed end-to-end framework allows each model component to be parametric,
semi-parametric, or end-to-end. Modelers may select specific functional forms for
certain components, encoding them with computational graphs while leaving other
components learnable. Compared to a fully end-to-end approach, parametric and semi-
parametric approaches offer greater interpretability but require stronger prior
knowledge and correct model class selection, thereby heightening expressivity risk.
Nonetheless, the analysis of generalization and optimization risk remains valid for both

parametric and end-to-end settings under the stated assumptions.

3.3 End-to-End Optimization

We further investigate efficient solution algorithms to prescribe improvement strategies
using the end-to-end learning framework, using a transportation design problem as an
example. Transportation network design seeks to optimize road network expansion to
accommodate anticipated travel demands in the future years. A central challenge is
accounting for how travelers adapt their route choices in response to network
expansion. These choices are inherently uncertain, influenced by supply-side factors
such as weather-dependent link capacities and demand-side factors such as daily
variations in travel demand. Traditional approaches to transportation network design
under uncertainty typically begins by modeling these parameters—for example, link
capacities or demands—as random variables following calibrated probability
distributions. The resulting network design problem is formulated as a stochastic
optimization (SO) problem with user equilibrium constraints. The objective is to
minimize social cost, such as total system travel time or emissions, by selecting
appropriate design variables, such as continuous capacity expansions. Initially,
planners are often assumed to be risk-neutral and aim to minimize the expected total
social cost (Patriksson, 2008). Later approaches extend this framework to incorporate

more flexible risk attitudes, such as chance constraints (Lo and Tung, 2003).

We focus on context-related uncertainty, which is particularly challenging. Consider a

planning agency that seeks to allocate a budget to optimize continuous link capacity
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expansions for long-term demand growth. The design vector z € Z represents the
proportion of capacity expansion for each link, subject to the budget constraint Z =
{0 < z < 1,sTz <5}, whereSis the total budget and s is the per-project budget.
Network expansion affects travelers’ route choices, as travelers can reoptimize their
paths to minimize individual disutility in response to expanded capacity. Beyond route
selection, network expansion represents long-term infrastructure investments that may

influence broader travel decisions, such as whether and where to travel.

In an idealized setting where the uncertain context is fully known, a risk-neutral planner

aims to minimize the expected social cost w(z, y) under contextual uncertainty:

M
min 2 w(¥ M, 2) s.t. (Fo(y ™, z,xlm),y — ymly >0, vyey U2

m=1

This bi-level formulation mirrors the structure of the end-to-end learning problem.

Consequently, both can be addressed using the same class of solution algorithms.
3.4 Equipment

The Lab for Innovative Mobility Systems (LIMOS) at the University of Michigan
utilizes the campus-wide Great Lakes High-Performance Computing (HPC) Cluster, a
state-of-the-art resource supporting simulation, modeling, machine learning, data
science, genomics, and other computationally intensive research. This Slurm-managed
cluster comprises 380 nodes with a total of 13,000 processing cores, providing at least
5 GB of RAM per core. Optimized for large-scale batch processing, the cluster is well-
suited for handling extensive, long-duration tasks requiring significant CPU, memory,
or I/O resources. All experiments for this project were conducted on the Great Lakes
cluster using a single NVIDIA A40 GPU (48 GB of memory), 8 CPU cores, and 64 GB of

system memory.
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4 Validation: Synthetic Data

In this section, we validate the proposed end-to-end framework using three synthesized
datasets from three benchmark networks widely used in the literature, i.e., Braess, Sioux
Falls, and Chicago Sketch. We use the Braess example to validate the approximation
guarantee of the end-to-end framework. Through the Sioux Falls example, we examine
the effect of enforcing equilibrium constraints and provide practical guidelines for
training. The Chicago Sketch example demonstrates the simultaneous learning of
supply and demand-side components. We evaluate the framework performance using
two key metrics: the empirical optimality gap, which measures the convergence of the
parametric VI, and the Weighted Mean Absolute Percentage Error (WMAPE), which
quantifies percentage differences in flow predictions. We define the empirical
optimality gap as the sample-averaged inner product between the generalized cost

function and the changes in the response variable across two successive.
4.1 Example 1: Learn Demand Component on Braess

The Braess network has five links, four nodes, and a single OD pair from node 1 to
node 4 with three feasible paths. With a maximum possible demand of g = 5, the
ground-truth demand function for OD pair » follows and exponential function using x,-
represents OD-specific features; x!™ is a one-dimensional sample-dependent
contextual feature; a,, = 2 and (3,, = 4 are functional parameters. We use the standard
BPR function as link performance functions and assume travelers only consider travel
time when selecting their paths. The dataset includes 1024 training, 258 validation, and

258 testing samples.

We will focus on learning the inverse demand function in this example and assume
both link performance and cost functions are given. We consider that multi-day link
flows are observable, and the loss function measures the Mean Square Error (MSE)
between predicted and observed link flow distributions. The framework is trained using

the Adam optimizer over K = 500 epochs with early stopping implemented if there
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is no improvement in the training MSE over twenty consecutive epochs. The forward
propagation uses mirror descent with N = 100 iterations, while backpropagation

employs the I'TD method.

We evaluate both model-free and model-based end-to-end frameworks under the
following scenarios, fine-tuning the learning rate and step sizes via grid search for each

setting.

e Benchmark: We use a grid search to identify a constant demand that best

matches all testing samples, which is 2.4 in this case.

e Functional: Assuming the functional form is known and encoded with

computational graphs, the framework learns two parameters: a,, and S,,.

e (Constant: The framework learns a context-independent fixed demand, with

neural networks using only excess demand and OD-specific features as input.

e Linear: The neural network includes a single linear layer.

e Nonlinear: The neural network combines a linear part (as in the Linear scenario)

and a nonlinear part, comprising three layers with eight neurons each.

e Residual: The neural network includes three layers with eight neurons each and

employs a residual strategy between layers.

Each neural network is designed to accommodate potential changes in the number of
OD pairs during “what-if”” analyses. The input dimension of these neural networks only
depends on the number of input features, which in this case, is three. In the Nonlinear
and Residual scenarios, neural networks are regularized to be monotone and Lipschitz

continuous.

Table 2 presents the WMAPE under different learning scenarios. WMAPE is shown in
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percentage, and parentheses display the relative reduction in WMAPE. The optimal
scenario is highlighted with a star. Same for the following tables. In Benchmark
scenario, the link flow WMAPE is remarkably high at 72.1%. This error drops to 4.2%
when we embed the ground-truth functional form in the framework and adjust the «,,
and f,,. The non-zero error can be attributed to the nonconvexity of the MPEC, which
can trap the training process at a local minimum. The model-free Constant scenario
learns context-independent demands and yields an error of 72.3%, comparable to
Benchmark. The Residual scenario knows contextual information but has no
information about the functional form of the inverse demand function. By exploring
the representation power of neural networks, the model-free framework still yields a
WMAPE of 4.7%, comparable to the Functional scenario. This result confirms that the
end-to-end framework can generate reliable flow distributions without knowing each
component’s functional form. The Residual scenario provides the best performance

since the residual strategy helps avoid the gradient vanishing when N becomes large.

Table 2 WMAPE under different scenarios

Model # Parameters Link flow Link time Demand
Benchmark / 72.1 31.2 71.9
Functional 2 4.2 (-94.1%) 1.6 (-94.9%) 3.9 (-94.6%)
Constant 109 72.3 (+ 2.8 %) 31.28 (+2.5%)  72.4 (+ 7.0%)
Linear 4 15.5 (-78.5%) 5.6 (-82.1%) 12.9 (-82.0%)
Nonlinear 117 6.3 (-91.2%) 4.3 (-86.2%) 6.2 (-91.3%)
Residual * 112 4.7 (-93.5%) 3.2 (-89.7%) 4.6 (-93.6%)
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4.2 Example 2: Learn Demand Component on Sioux Falls

Sioux Falls network has 76 links, 28 nodes, and 528 OD pairs. We scaled the default
demand in Stabler (2023) by a factor of three to serve as the maximum possible OD
demand g. The rest of the ground-truth setting follows the Braess example. The dataset
is divided into 1,024 training, 258 validation, and 258 testing samples. We consider a
link-based formulation using the decoupled gradient-projection method in forward

propagation. With known link performance and cost functions, our focus is on learning

the inverse demand function.

We first investigate the framework performance with different forward steps. Figure 5
shows that increasing N from 1 to 50 enables faster and better training under both IMD
and ITD. A larger N requires more iterations for both forward and backward
propagation and notably increases computation time under ITD. By contrast, IMD
avoids the differentiation along the equilibrating trajectory and the computation time

changes relatively minimally when N varies.

N=1
ol N=10 6x 10°
N =50
o 9 4x103
= > :
o = 3x10°
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=] =
g §2x10°
103+ N=10
1024 N=50
100 10! 102 103 10! 102
CPU time (s) CPU time (s)
(a) (b)

Figure 5: Framework performances with different forward iterations under (a) ITD and (b)
IMD.
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Moreover, Figure 5 shows that the training process under ITD stops prematurely with
N = 1, resulting in a high training MSE of 4e3. This highlights an iterative
equilibrium process is necessary to ensure local convergence under ITD. By contrast,
IMD keeps reducing the training MSE with N = 1 because it uses extra information
from the implicit function theorem to correct auto-differentiation. Both ITD and IMD
manage to avoid getting stuck when N increases to 10. I'TD outperforms IMD in finding

better local optima when N increases to 50.
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Figure 6 Framework performances using different backward method with (a) N = 1, (b) N = 10,
and (c) N = 50

Next, we examine whether penalizing the empirical optimality gap in the loss function
can replace the need for enforcing equilibrium conditions during training. As illustrated
in Figure 7, Scenarios with optimality gap regularization are represented by solid lines,
while those without are denoted by dotted lines. When the equilibrium constraints are
poorly approximated with N = 1, the optimality gap regularization indeed steers the
parametric VI towards a smaller empirical optimality gap. As the training proceeds, the
optimality gap MSE converges towards zero. Similar findings have been found in
(Guarda et al., 2023). By contrast, when the equilibrium constraints are well-

approximated with N = 50, the optimality gap regularization has little impact on
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framework performance.
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Figure 7 (a) Testing optimality gap and (b) training optimality gap MSE with respect to epochs.

Despite guiding the training process towards an equilibrium state, the optimality gap
regularization fails to lead the framework to find suitable parameters. As shown in
Figure 7(b), the training MSE with optimality regularization and N = 1 remains
noticeably higher than that with N = 50. The link flow prediction error with N = 1
is also significantly larger. This suggests that “softly” penalizing the optimality gap in
the loss function is not a viable alternative to the “hard” enforcement of equilibrium
conditions. Therefore, it is essential to at least roughly approximate the equilibrium

conditions to facilitate effective end-to-end learning.

Finally, we experiment with two enhanced training strategies:

e Adaptive N (denoted as A): Increases the number of forward iterations linearly

during training, from 50 to 150 in our case.

e Two-stages training (denoted as T): Initially, the linear part of the neural
network is trained while keeping the nonlinear part fixed. Once the linear part

converges, both parts are trained jointly in the second stage.
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Figure 8 (a) Training link flow MSE and (b) testing link flow WMAPE with respect to epochs.

In the Benchmark scenario, we proportionally scaled the maximum possible OD
demands q and use grid search to determine the optimal scale that best matches all
observations, which is 1.2 in this case. The remaining Functional, Nonlinear, and
Residual scenarios follow the Braess example with N = 50 and ITD as the
backpropagation method. Table 3 indicates that the adaptive N strategy improves the
model’s performance because a rough estimation of equilibria is sufficient when the
parameters are considerably off-target during the initial training epochs. The two-stage
training strategy also enhanced performance because it trains a shallow linear network
in the first stage. On one hand, a linear approximation of the monotone generalized cost
function is relatively good. On the other hand, shallow neural networks mitigate
vanishing or exploding gradients during training. Thus, incorporating both strategies,
our end-to-end framework achieves the best performance of 4.3%, comparable to the

Functional scenario (i.e., 1.3%).

In this example, we calculate WMAPE only for flows over 0.001 to avoid infinite
WMAPE due to zero ground-truth flows in training samples. Thus, despite Sioux Falls’
larger size, its WMAPE is numerically smaller than Braess. Since our main concern is
the relative WMAPE reduction, rendering this should be insignificant to our

conclusions.

4.3 Example 3: Learn Behavior Component on Sioux Falls
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In this case study, each OD pair r is assumed to have one continuous feature denoting
income and one binary feature denoting travel purpose, which equals 1 if the destination
of OD pair r is a commercial area and equals 0 otherwise. We assume the path travel

time includes two parts: link travel times and node delays.

The link travel time on link a follows the BPR function. The node delay on node follows
an exponential form as proposed by Jeihani et al. (2006), Moreover, pavement surface
conditions, such as roughness, are the main feature that decides user comfort (Hawas,
2004; Yin et al., 2008). We classify the links as good and bad pavement conditions and
assume travelers experience a non-link-additive discomfort on bad-condition links. Let
Xp denote the proportion of bad-condition link length to the total path length. The
discomfort follows the exponential form and increases with the bad-condition link

proportion. We set the discomfort is zero if path p only includes good condition links.

Table 3 WMAPE under different training settings

Scenario # Parameters  Link flow Link time Demand
Benchmark / 50.9 97.6 59.3
Functional 2 1.3 (-97.4%)  3.7(-96.2%) 1.3 (-97.8%)
Linear 4 14.1 (-72.3%) 40.9 (-58.1%) 6.4 (-89.2%)
Nonlinear 117 10.2 (-80.0%) 12.1 (-87.6%) 6.8 (-88.5%)
Nonlinear (+ T) 117 9.0 (-82.3%)  24.4 (-75.0%) 5.6 (-90.6%)
Nonlinear (+ A) 117 7.9 (-84.5%)  22.1 (-77.4%) 4.9 (-91.7%)
Nonlinear (+ T+ A) * 177 4.3 (-91.5%)  9.2(-90.5%) 2.7 (-95.4%)
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Residual 112 12.8 (-74.9%) 37.8 (-61.4%) 7.2 (-87.9%)

Residual (+ A) 112 8.3 (-83.7%)  24.4 (-75.0%) 5.2 (-91.2%)

The “ground-truth” cost for travelers of OD pair r to use path p is a weighted sum of
link travel times, node delays, and a discomfort constant. This suggests that travelers
with higher incomes have higher weights on both node delays and discomfort.
Travelers traveling to commercial areas have higher weights on discomfort yet lower

weights on node delays.

The feasible path set includes the top three paths with the shortest free-flow time. If one
OD pair has fewer than three feasible paths, its path flows are padded to a dimension
of three and the padded path flows are nullified with the mask trick during training.
Three demand levels are considered: (i) base scenario, (i1) uncongested scenario with
base demand reduced by 50%, and (iii) congested scenario with base demand increased
by 50%. For each scenario, we randomly sample travel demands from a uniform
distribution between 0.5 and 1.5 base demand. The equilibrium flow is solved for each
sampled demand given the ground-truth cost. The training and test sets include 1, 536

and 512 samples respectively. So far, all links are assumed to be observable.

The link block is replaced with pre-calibrated BPR functions. Weight Net, node block,
and path block are composed of three fully connected layers with four neurons and with
LeaklyReLu as the activation function. Normalization layers are added to enhance
training stability. The input of the node block includes node flows and intersection
parameters. The proportion of bad-condition links is the input of the path block. The
input and output dimensions are as follows: Weighted ergodic iteration and IMD are
used as the default forward and backward methods respectively. The model is trained
with Adam optimizer with Mean Square Error as the loss function under the learning
rate of 0.1. Early stop is enabled if no loss descent is observed in five consecutive
epochs. To illustrate the feasibility and importance of learning route choice preferences,

we benchmark our model with three well-established network equilibrium models.
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First, the cost function is assumed to be link travel time and travelers choose the paths
with minimum travel time, yielding conventional Deterministic User Equilibrium
(denoted as DUE). The second behavior model assumes travelers’ path choices follow
a logit model and thus results in a Stochastic User Equilibrium (denoted as SUE). In
this case, the dispersion parameter is calibrated, similar to Yang et al. (2001). The third
model keeps the same path choice model but assumes the cost function is a linear
combination of link travel time and the proportion of bad-condition links (denoted as
SUE-2). Two linear coefficients are calibrated in this case, similar to Guarda and Qian

(2022).

We compare the efficiency and robustness of different forward algorithms. The first
type includes decoupled gradient-projection iteration (F) and its accelerated variant:
Anderson mixing (FA) and weighted ergodic iteration (FW). The second type is
Broyden’s method (R). We also explore the combinations of two types (denoted as F-
R, FA-R, FW-R), which use decoupled gradient-projection iterations initially and
switch to the root-finding when the relative residential is sufficiently small. We
consider two types of tests: in-distribution and out-of-distribution. In in-distribution
tests, the model is trained on observations from the Sioux Falls network and tested on
the same road network. By contrast, in out-of-distribution tests, the trained model is
tested on a partially changed road network. In our experiments, four links are added to
the original Sioux Falls network and 25% links are randomly selected to increase or
decrease their capacities by 50%. Decreasing the capacities under congested demand

generates unreasonable training sets and is excluded in later analysis.

Performance comparisons

Table 4 compares the MAPE of different network equilibrium models. The proposed
end-to-end learning framework is denoted as “Implicit”. We use DUE as the baseline
and denote its MAPE as 1. The change in MAPE of other models is denoted as An =
n — 1no. Note that the behavioral assumptions of SUE are different from the ground
truth. Although SUE can reduce the in-distribution MAPE by 18.2%, it shows inferior
performance in out-of-distribution tests, increasing the MAPE by 9.2%. This suggests
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inaccurately assuming an SUE behavior model can cause bias in parameter estimation,

misleading the flow prediction in subsequent “what-if”” analysis. Similar results have

been shown in Torres et al. (2011) and Van Der Pol et al. (2014). In comparison, SUE-

2 performs better, because it happens to capture the impact of discomfort from the bad-

condition links. The performance of SUE-2 is still less satisfactory compared with the

end-to-end framework because the former learns linear combinations by assumption

whereas the latter can deal with nonlinear patterns. Since neural networks include more

parameters than baseline models and offer greater flexibility to recover the complicated

ground truth cost function, the proposed framework has the best performance in both

in-distribution and out-of-distribution tests as expected, reducing the benchmark

MAPE by 61.5% and 55.1% respectively.

Table 4 MAPE of different network equilibrium models.

In-distribution test

Demand Capacity | DUE n, SUE An SUE-2 An Implicit An
Base Default 20.6 -4.7 -11.8 -15.0
Uncongested | Default 12.5 -3.1 -0.2 -3.4
Congested Default 13.41 -0.6 -4.4 -10.2

Mean 15.5 -2.8 (-18.2%) | -5.4 (-35.1%) | -9.5 (-61.5%)
Out-of-distribution tes

Demand Capacity | DUE n, SUE An SUE-2 An Implicit An
Default 22.3 -7.3 -14.4 -16.6
Base -50% 11.3 +13.4 -1.6 -7.9
+50% 8.1 +4.8 -1.0 -1.3
Default 23.4 -8.5 -15.6 -14.9
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Uncongested -50% 12.1 +12.6 -2.4 -4.1
+50% 10.4 +2.5 -3.3 -1.1
Default 13.8 -3.5 -6.3 -10.1
Congested
+50% 11.9 -3.5 -5.2 -6.4
Mean 14.2 +1.3 (+9.2%) | -6.2 (-44.0%) | -7.8 (-55.1%)

As shown in Table 5, FW and FW-R achieve the smallest MAPE of 5.7% in in-
distribution tests whereas FW-R slightly outperforms FW by 1% in out-of-distribution
tests. Forward algorithms involving Anderson mixing, such as FA and FA-R, can be
the most unstable. By contrast, forward algorithms involving weighted ergodic
iteration, such as FW and FW-R, are more stable as they consistently shrink the step

size during iterations.
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Figure 9 Training process of different forward algorithms.

Figure 10 compares the performance of three backpropagation methods: Jacobian-Free
(JF) approximation, Newman Approximation (NA), and Inexact Implicit
Differentiation (FA) under different demand levels. FA has the best performance
among the three proposed backward methods. JF significantly hurts the learning

process. Similar results have been found by Huang et al. (2021).
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2

The effects of spectral normalization are shown in Figure 11. “w” suggests “with
spectral normalization” and ”w/0” suggests without spectral normalization”. Although
requiring additional computation, the spectral normalization constrains the Lipshitz
constant of the cost function within a reasonable range and speeds up the convergence

by three to four times under all demand levels.
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Table 5 MAPE of proposed forward algorithms.

In-distribution test

Demand Capacity F FA FWwW R F-R FA-R FW-R
Base Default 8.4 5.6x 5.7 8.0 8.7 6.2 6.0
Uncongested Default 9.5 0.1 8.1 9.5 8.3 8.5 8.0x
Congested Default 6.1 3.2 3.2 6.2 11.0 4.5 3.1%
Mean 80 6.0 57« 7.9 9.3 6.4 5.7
Std 1.8 3.0 2.4 1.7 1.4 2.0 2.5

Out-of-distribution test

Scenario Capacity F FA FW R F-R  FA-R FW-R
Default 7.5 5.7+« 5.8 7.2 7.7 6.4 6.0
Base -50% 45 34« 34%x 50 4.8 3.6 3.4%
+50% 9.1 69« 7.0 102 93 8.8 7.4
Default 83 85 7.6 8.1 8.0 8.2 7.5%
Uncongested -50% 9.5 8.0 7.3 9.9 7.6 14.4 6.9
+50% 84 94 79« 84 8.2 7.9% 7.9%
Default 57 3.6x 3.8 5.1 10.2 4.3 3.6%

Congested

+50% 88 55+« 57 6.2 11.9 6.1 5.5%
Mean 7.7 6.4 6.1 7.5 8.5 7.5 6.0
Std 1.8 2.2 1.7 2.0 2.1 3.4 1.7
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Robustness analysis

In this section, we examine the robustness of the proposed framework by relaxing
model assumptions. FW, R, and FW-R have the best performance and are thus selected.
Since in-distribution and out-of-distribution performances have similar trends, all the

following analyses are based on in-distribution tests.
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Figure 10 Performances of different backpropagation methods under (a) base, (b) uncongsted,
(c) congested demand.
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Figure 11 Effects of spectral normalization under (a) base, (b) uncongested, and (c) congested
demand.

All links are assumed to be observable in previous analyses. We relax this assumption

by randomly observing a proportion of links. FW-R is the most stable when only a
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proportion of links are equipped with sensors. For example, Figure 12 shows the MAPE
of FW-R slightly increases from 8.0% to 11.5% when the proportion of observable
links decreases from 100% to 20% under uncongested demand. Since approximation
errors can accumulate in both forward propagation, where iterations terminate with
residuals, and backward propagation, where the gradients are approximated, the
training of the proposed framework can stop at local optimums. Previous studies have
shown the training process and final performances of models involving implicit layers
can be relatively noisy and require more hyperparameter tuning (Huang et al., 2021; Li
et al., 2020).

Usually, there are no direct observations of OD demands in urban road networks. OD
demands need to be estimated and thus prone to estimation errors. We examine the
model performances when the input OD demands are different from the ground truth.

More specifically, random observation noises, which are proportional to the ground
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Figure 12 Model performances with different sensor coverage rates under (a) base, (b)
uncongested, and (c) congested demand.

truth, are added to all demands. As shown in Figure 13, FW is the most stable in the
case of demand noises. Given a noise scale of 100%, the increase in its MAPE ranges
from 12.5% to 22.2% under different demand levels. Note that if we consider an elastic
demand user equilibrium, the travel demand function can also be approximated with

another neural network and learned with the proposed framework. The simultaneous
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learning of route choice preferences and demand functions will be explored in our

future study.
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Figure 13 Model performances with demand noises under (a) base, (b) uncongested, and (c)
congested demand.

The selection of feasible path sets can be tricky when no information about path choices
is available. We examine the model performances when the selection of feasible paths
is different from travelers’ actual path choices. There are 1,587 paths in the ground-
truth path set and we consider two scenarios: one with an incomplete path set of 1,058
paths and the other with a redundant path set of 2,645 paths. FW-R has the best
performance when the selection of feasible paths is inaccurate. As shown in Figure 14,
an incomplete path set increases the MAPE by 8.0% under base demand, compared
with an increase of 2.9% induced by a redundant path set. Since an incomplete path set

yields more negative effects, one can start with a large feasible set with sufficient

feasible paths and gradually reduce it during training.
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Figure 14 Effects of inaccurate feasible path sets under (a) base, (b) uncongested, and (c)
congested demand.

To sum up, the proposed framework is robust to incomplete observations and input
noises. More specifically, the combined method (i.e., FW-R) is more robust when only
a proportion of links are equipped with sensors or no information about path choice is
available. The fixed-point iteration method (i.e., FW) is preferred when the input OD

demands are poorly estimated.

4.4 Example 4: Learn Demand and Supply component on Chicago Sketch

We consider a path-based formulation on the Chicago Sketch with 2,950 links, 933
nodes, and 2,493 OD pairs. Each OD pair has three feasible paths, and the feasible path
set is assumed as prior information. We scale the default demand in Stabler (2023) by
a factor of five and use it as the maximum possible OD demand. The following inverse
demand function is used and the ground-truth BPR function is assumed with a context-

dependent capacity for each link a € A:

capq(x) = capg - (ac - e* + Bc)

where cap? is the default capacity; a. = 1.5 and S, = 1.4. The dataset contains 258
training, 64 validation, and 64 testing samples. We assume the cost function is known
and focus on learning the inverse demand function and link performance function.

Mirror descent with a forward step of N = 10 and ITD are used in training.
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The end-to-end framework is set to learn the inverse demand function, the link
performance function, or both, using either a model-based or a model-free approach. In
the model-free setting, the inverse demand function is approximated using the residual
neural networks specified in the Sioux Falls example. We employ a physics-informed
neural network to learn the link-performance function. We retain the functional form
of the BPR function and approximate the context-dependent capacities using neural
networks with three layers and eight neurons each. Additionally, both link time and
flows are assumed observable, enabling modelers to include either or both of these
observations in the loss function We consider two benchmarks with fixed capacities in
the standard BPR function. Benchmark-1 scales the default demand with a factor of
3.56 and achieves the best match to observed flows (29.5%) with a high time error of
160.5%. Benchmark-2 scales the default demand with a factor of 1.4 and achieves the
best match to observed time (5.1%) with a high flow error of 68.9%.

Table 6 shows the performance of the end-to-end framework with different learnable
components and loss functions. Scenarios yielding the lowest errors are marked: a
single star denotes the best model-free scenario, while double stars indicate the best
model-based one. The joint calibration of supply and demand-side components proves
important. Both Functional and Residual scenarios, when adjusting both sides, yield
the lowest time and demand errors. The Functional scenario has the lowest flow error
of 18.1% and time error of 2.6%, while the Residual scenario generates comparable
results of 23.3% and 8.2%. Incorporating flow observations into the loss function in
general outperforms the use of link time. Nevertheless, using link time observations
can help avoid overfitting when the link performance function can be adjusted. Overall,
the complexity of training escalates with the size of the road network. The Chicago
sketch example has higher errors than Sioux Falls and Braess, regardless of the

approach used.
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Table 6 WMAPE under different training settings.

Component |[Approach | Loss function |Link flow Link time Demand
Benchmark-1 / / 29.5 160.5 21.5
Benchmark-2 / / 68.9 5.1 68.3

Flow 22.1 27.1 14.2
Functional Time 28.3 9.2 21.9
Flow + time 22.1 27.1 14.1
Ao
Flow 23.5 64.8 15.3
Residual Time 23.5 54.2 16.2
Flow + time 23.3 * 65.8 15.1
Flow 32.9 1751.8 19.6
Functional Time 393 8.6 19.6
Flow + time 32.8 1734.3 19.6
e Flow 34.1 15.8 19.6
Residual Time 36.5 16.0 19.6
Flow+ time 32.8 159 19.6
Flow 18.1 ** 2.6 ** 7.7 **
Functional Time 223 5.1 9.5
Ag and Flow + time 18.3 2.6 7.9
To Flow 26.9 8.2 * 13.6 *
Residual Time 37.6 10.4 19.0
Flow + time 25.0 193.9 13.9




5 Validation: Empirical Data from Ann Arbor
5.1 Data Processing

This section outlines the crowdsourced data processing steps. We first construct a
hypothetical graph using the trip-based travel demand model from the Southeast
Michigan Council of Governments (SEMCOG) 2050 Regional Forecast, using year of
2025 as base year. We then extract traveler patterns from vehicle telemetric data

provided by General Motors (GM) during evening peak hours.
Constructing the Hypothetical Graph

The Ann Arbor road network is derived from the trip-based travel demand forecast
model in the SEMCOG 2050 Regional Forecast, using 2025 as the base year. The
SEMCOG network includes highways and primary roads to capture major travel
patterns. For this study, the network topology was provided in shapefile format, and the
Ann Arbor subnetwork was selected. Two categories of link features were extracted:
(1) free-flow speed and capacity, and (ii) traffic volume and travel time from the trip-

based assignment outputs.

A total of 259 TAZs within Ann Arbor were initially included, along with boundary
TAZs to capture cross-boundary trips (see Figure 15). Geometric and socio-economic
attributes of the TAZs were extracted from the SEMCOG model. After merging TAZs
with no connected links, 178 TAZs were retained for analysis, each connected with
artificial connectors. The resulting graph consists of 810 nodes (178 centroids and 632
intersections) and 2,847 links (1,583 road segments and 1,264 connectors). Based on
aggregated OD demand from the trip-based model, the Ann Arbor road network
includes 31,668 OD pairs, of which 7,952 involve at least one boundary TAZ.
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Figure 15 Data processing pipeline.

Trajectory Data and Map Matching

Crowdsourced vehicle telemetric data were provided by GM, covering evening peak
hours (3:00-6:00 PM) between January 1 and December 31, 2022. To match raw
trajectories with the Ann Arbor road network, we applied the map-matching algorithm
from Wang et al. (2023). This process converts raw sequences of (latitude, longitude,

timestamp) into link-level trajectories, recording travel times, speeds, and stop delays.
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Since residential roads are excluded from the network, trajectories sometimes only
partially cover links, which can lead to underestimation of travel times. To address this,
link travel time was estimated using link length divided by average speed rather than

raw observations.
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Figure 16 (Left) raw trajectory, (middle) matched trajectory using Wang et al. (2023), and
(right) filtered result. Color indicates time progression, with darker colors representing earlier
timestamps.

The algorithm in Wang et al. (2023) is optimized for lane-level and signal-control
analysis but is less effective for capturing trip-level behavior. A trip is defined as the
full sequence of links traversed between an origin and destination. As illustrated in
Figure 16, raw trajectories often contain detours through residential roads (e.g., a
shopping mall), which manifest as loops. To better capture trip-level behavior, we
implemented a filtering process. We retained only link-level trajectories with
sufficiently low matching error and removed those where the time difference from the
preceding link was shorter than the free-flow travel time. When filtering disconnected
a trip, the fastest path was appended to reconnect the sequence. This procedure removed
approximately 9.8% of the matched link-level trajectories, producing cleaner trip-level

representations.

Each record in the crowdsourced dataset corresponds to an engine start-to-stop interval,
which may include multiple trips. Detours into residential roads—interpreted as access to
activities—were used as splitting points. In practice, such detours often create short self-
loops of length two (A—B—A). These loops were treated as access trips and used to

segment longer records into subtrips. For example, Figure 17 shows a residential-to-
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school pickup round trip segmented into two trips. To ensure data quality, we also
removed any path whose travel time exceeded three times the shortest-path travel time
for the corresponding OD pair and time slot. After processing, we identified a total of

9,382 subtrips per day during the three-hour evening peak.
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Figure 17 (Left) Raw trip with a detour to residential roads (red circle); (middle) first subtrip;
(right) second subtrip. Color indicates time progression, with darker colors representing earlier
timestamps.

This case study focuses on the Ann Arbor, Michigan road network. As shown in Figure
18, the network consists of 810 nodes (178 TAZ centroids and 632 intersections) and
2,847 links (1,583 road segments and 1,264 connectors). The network topology, zone
attributes, and OD matrix are derived from the SEMCOG 2050 Regional Forecast.
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Figure 18 Ann Arbor network. Traffic analysis zones are shaded by area type; darker colors
correspond to higher area type indices

GM crowdsourced trajectory data were collected during the evening peak hour (4:30—
5:30 PM) throughout 2022. After applying the map-matching algorithm Wang et al.
(2023), the dataset yielded an average of 3,127 observed trips per day. Each trip reports
with starting/ending time, staring/ending location, list of traversed link segments and
per link arrival time. These trajectories reveal variability in travel patterns, which

allows us to demonstrate the proposed end-to-end framework using Ann Arbor as a

The processed crowdsourced trajectory data offers insights into travel patterns in two

novel ways. First, compared with traditional fixed traffic sensors such as loop detectors
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or cameras, trajectory data provides more detailed information about individual travel
behavior. This enables the analysis of spatial-temporal travel patterns at multiple levels
of spatial aggregation, including the link, OD, activity-chain, and network levels.
Second, crowdsourced trajectory data is passively collected, allowing for continuous
observation over an extended period. The one-year duration enables us to capture and
analyze daily variations in travel patterns and to relate these variations to external
context features. We consider three categories of contextual features: weather-related,
weekday-related, and accident-related. Specifically, we collect daily snow and
precipitation data to represent average weather conditions and retrieve extreme weather
and hazard event reports from the RITIS platform. Below, we examine spatial-temporal
travel patterns revealed by the one-year crowdsourced trajectory data at the link, OD,

activity-chain, and network levels.

Link-level

On the link-level, Figure 19 shows that approximately 70% of physical road segments
included in the graph are observed on weekdays, compared to about 60% on weekends.
The average link stop delay weighted by the number of observations and averaged
across the network, and the total system travel time are both significantly higher on
weekdays. Total system travel time peaks around 17:00 on weekdays and around 15:30

on weekends.
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Figure 19 (a) Number of observed links, (b) average stop delay per link, and (c) total system travel
time on weekdays and weekends.
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Figure 20(a) shows the correlations among four link features, including curvature,
highway classification, length, and maximum speed, and observed link travel patterns.
Roads with higher speed limits (and thus more likely to be highways) are observed
more frequently. As illustrated in Figure 20(b), highways experience an average
reduction of 7.68 seconds in link travel time under snow conditions, while non-

highways show a reduction of only 3.82 seconds.
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Figure 20 (a) Correlations between link-level features and observed travel behavior. (b)
Comparison of snow-related reductions in link travel time for highway and non-highway segments
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5.2.1 OD-level
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Figure 21 (a) Total number of observed trips, and (b) number of unique OD pairs.

Atthe OD level, Figure 21 shows that travel activity is significantly higher on weekdays

than on weekends, with approximately 10,000 trips observed over three hours on

weekdays, compared to around 5,000 on weekends. On weekdays, travel demand peaks

first at 15:00 and again at 17:00, while on weekends, the peak occurs around 15:00.

Across both cases, between 4,000 and 6,000 OD pairs are observed in the trajectory

data over the three-hour period.
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Figure 22 Spatial distribution of trip attraction (top row) and production (bottom row) on
weekdays (left) and weekends (right). Darker colors indicate higher aggregated trip counts.
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Figure 23 Temporal distribution of (a) internal and (b) external trips.

Figure 26 explores how characteristics of origin and destination TAZs influence
internal and external travel demand. Internal trips are more sensitive to area type,
especially that of the destination, while external trips are more strongly associated with
specific land uses such as retail, trade, healthcare, and social services. On weekdays,
management and entertainment-related activities show a strong association with
external travel. Notably, retail-related features at the origin have a greater impact on
internal travel during weekends. These features are used to select the OD pairs included

in the Ann Arbor case study.
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Figure 24 Mean number of OD observations for top internal and external trips by weekday
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One commonly used assumption in travel demand forecast is that travelers seek to
minimize their travel time, resulting in route choices that follow the shortest or quickest
path. This principle has long been used in travel demand modeling and planning. With
trajectory data, we can directly observe the paths chosen by travelers and their
experienced travel times, enabling us to empirically examine whether travelers follow

shortest paths or conform to Wardrop’s equilibrium behavior.

Specifically, we evaluate the equilibrium gap for each OD pair » € R. The observed
variables include: the set of observed paths P,; the sampled path flow h,, for each path
p € P, where the total sampled OD demand is g, = X, ¢ p, hp; the travel time ¢, for
each path p € P,.. The shortest observed path time is defined as t,;. The OD-level
equilibrium gap is then calculated as the percentage absolute different between the used
path and shortest path. At the network level, the equilibrium gap is computed as a

demand-weighted average.
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Figure 27 Network-level equilibrium gap.

Figure 27 shows that the average network-level equilibrium gap on Ann Arbor ranges
from 1.5 to 2.0, indicating that travelers often select routes that are 50% to 100% longer
than the shortest available path. This suggests that travelers may not be switching to
alternative paths even when current paths are congested, possibly due to limited
knowledge of the network or a preference for familiar paths. Interestingly, the equilibrium
gap is larger on weekdays, despite the fact that more trips are likely to be routine

commutes. Previous studies using taxi data from 2009 and 2014, collected over a one-
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month period in the large cities of Wuhan and Shenzhen, report lower equilibrium gaps
(1.2—1.4) (Chen et al., 2024). This difference is likely attributable to the use of taxi data,
as taxi drivers are generally more familiar with the road network than the average
commuter. Additionally, Ann Arbor is much smaller than Shenzhen and Wuhan.
Therefore, an increase of 100% over the shortest path in Ann Arbor may correspond to
only a 5-minute difference, whereas in larger cities, even a 40% increase could result in

a substantially longer delay.

Figure 28 compares the equilibrium gaps for the top 30 internal and external OD pairs on
weekdays and weekends. Longer trips tend to exhibit smaller equilibrium gaps, often
below 1.2. Our analysis also finds a positive correlation between OD demand and the
equilibrium gap, suggesting that higher sampled demand may be associated with greater

deviation from the shortest path.

5.2.2 Activity-chain-level

One advantage of trajectory data is its ability to reveal the activity chains that travelers
follow, offering deeper insight into how multiple trips are conducted. Figure 29 shows
the correlation between TAZ features and activity chains. On weekdays, higher university
enrollment and a higher ratio of autos to workers are positively associated with chain
travel generation. On weekends, TAZs where more than 50% of households own two or
more vehicles are more likely to originate chain trips. On weekdays, such TAZs are more
likely to be destinations for chain travel. Additionally, weekend chains often include trips
that enter and exit the Ann Arbor region, as indicated by the external flow variable. Figure
29 shows that the area types of the origin and destination are the most important factors

correlated with activity chains.

5.2.3 Network-level

To conclude, Figure 30 illustrates how contextual features, including the number of
accidents, hazardous weather events, precipitation, and snowfall, impact network-level

travel patterns. On the demand side, snowfall significantly reduces the number of
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observed internal and external trips, particularly on weekends. Accidents and hazardous
weather events also contribute to reduced weekday demand. Meanwhile, accidents
significantly increase network-level stop delays and total system travel time on weekdays.
This analysis informs the selection of contextual features used in the Ann Arbor case

study.

0D equilibrium gap (weekday, internal oxs) 0D equilibrium gap (weekday, external ods)

(a) Weekday - Internal (b) Weekday - External

0D equilibrium gap (weekend, internal ods) 00 equilibrium gap (weekend, external ods)

(c) Weekend - Internal (d) Weekend - External

Figure 28 Mean equilibrium gap for internal and external trips by day type: (top row) weekdays,
(bottom row) weekends.
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Figure 30 Correlation between network travel patterns and context features on (a) weekday

5.3 Experiment Settings

In this section, we specify the basic setting of the Ann Arbor case study. Figure 31(a)
compares the numbers of observed trips on snow and non-snow days, where the x-axis
represents the number of average trips between an OD pair and the y-axis indicates the
number of observed OD pairs. Fewer trips are observed on snow days, and similarly on
weekends, as shown in Figure 31(b). To capture these effects, context features include

indicators for non-snow days and weekdays.
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Figure 31 Differences in observed trips between (a) snow and non-snow days, and (b) weekdays
and weekends.

We consider two settings covering the top 20% and 65% of total OD demands,
respectively. To improve scalability and computational efficiency, we further reduce the
number of links considered per OD pair by leveraging observed trajectories. Although the
Ann Arbor network contains 2,847 links, travelers typically use only a subset of them.
Empirical data indicate that travelers may deviate from the shortest path. Therefore, for
each OD pair, we select the top six fastest paths to construct a subset of active links
considered by travelers when choosing routes. This subset can be further refined by
calibrating a perturbed utility model (Fosgerau et al., 2022), though estimating active link
sets is beyond the scope of this project and is not discussed in detail. As shown in Table

7, using a subset of active links significantly reduces the number of variables.

Table 7 Observation statistics by number of OD pairs.

Scenario # ODs | Max #active links Avg # active links Avg # ODs observed
20% 1,817 73 25.5 761.6
65% 10,418 86 27.8 1,525.2

We consider the following functional forms for the cost functions. For a physical link, the
link performance function can be either linear or quadratic function of the link flow and
capacity ratio plus free flow time. The free-flow travel time is computed as the link length

divided by the maximum speed. The maximum speed is defined as the posted speed limit
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plus 5 mph, reflecting typical driving behavior in Michigan. The context denotes the
normalized snow depth to account for winter weather effects, and cap, is the link
capacity. Higher-order polynomial functions, such as the 4th-degree polynomial used in
the standard BPR function, were also considered but are not listed here due to their poor
empirical performance. One possible explanation is that the observed flows do not fall

within the region where the flow-to-capacity ratio approaches 1.

For virtual links, the cost of the inverse demand function is selected from different forms
plus the free-flow travel time of the shortest path for each OD pair. The other context
vector represents normalized context features and OD-specific features. The dataset is
divided into 237 training samples, 64 validation samples, and 64 testing samples. We use
three-fold cross-validation and report the average performance and standard deviation

across the three runs unless stated otherwise.

5.4 Presentation of Results

Because trajectory data are sampled, link travel times are more reliably observed than
link flows. Therefore, Table 8 reports the link time MAPE across different numbers of
OD pairs (referred to as “scenarios’) and different choices of basis functions (referred
to as “settings”). The benchmark context-independent flow prediction from the
benchmark trip-based demand forecast model yields a link time MAPE of 83.6%.
Incorporating context features and estimating context-dependent user equilibrium
substantially reduces the MAPE, and prediction accuracy improves as the number of
OD pairs increases. The best performance is achieved in Setting 2, which uses a linear
link performance function and a quadratic inverse demand function, resulting in a
MAPE 0f34.3%. The reported MAPE of 34.3% also includes error due to the observed
flows not strictly adhering to user equilibrium conditions. In addition, the parallel block

coordinate descent algorithm scales efficiently and completes within 10 minutes.

In addition to prediction accuracy, we also examine the link and demand parameters

learned under different settings. For the remainder of the discussion, we focus on the
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second scenario, which covers 65% of the total demand, due to its higher accuracy.
Table 9 presents the three parameters of the link performance function under different
settings. The strictly positive parameters across all settings suggest that snow reduces

link capacity, with a stronger impact on links with higher maximum speeds.

Table 8 Model performance across different scenarios and settings. Link time MAPEs are
reported as percentages with standard deviations in parentheses.

Scenario | Setting Link performance Inverse demand |Link time MAPE Z:ES

Benchmark 83.6 /

1 Linear Linear 36.6 (1.8) 0.6

2 Linear Quadratic 36.1 (2.0) 0.3

3 Linear Linear + entropy 353 (1.9) 0.1

4 Linear Quadratic + entropy 37.2(1.2) 0.7

20% 5 Quadratic Linear 35.0 (1.0) 0.5
6 Quadratic Quadratic 356 (2.1) 0.6

7 Quadratic Linear + entropy 356 (1.4) 0.3

8 Quadratic Quadratic + entropy 36.3 (1.1) 0.7

1 Linear Linear 355@34) 24

2 Linear Quadratic 343 (1.9) 1.9

3 Linear Linear + entropy 41.4 (3.6) 1.1

4 Linear Quadratic + entropy 36.4 (3.0) 1.4

6% 5 Quadratic Linear 37.6 (2.5) 3.9
6 Quadratic Quadratic 36.1 (2.2) 4.2

7 Quadratic Linear + entropy 45.0 (4.5) 1.1

8 Quadratic Quadratic + entropy 36.1 (1.6) 8.2

Table 10 shows the non-zero parameters of the inverse demand function under different
settings. In Setting 2, which achieves the highest predictive accuracy, the positive

coefficient of 0.22 for the “Destination # veh” feature suggests that an increase in the
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number of vehicles at the destination raises the inverse demand cost, resulting in higher
travel demand. Similarly, the positive coefficient of 0.22 for the “Non-snow” feature

indicates that demand is generally higher on non-snow days.

Setting 3, while yielding a higher link time MAPE (increasing from 34.3% to 41.4%),
better captures the influence of context features. The positive coefficient of 0.11 for the
“Weekday” feature in Setting 3 indicates that the end-to-end framework, in addition to
recognizing reduced demand on snow days, also learns that travel demand is lower on
weekends, echoing empirical trends shown. Furthermore, the greater number of non-
zero parameters in Setting 3 suggests an enhanced ability to capture variations in travel

patterns associated with different OD features.

Table 9 Parameters of link performance function under different settings.

‘ Link Inverse ) | 81 (max 05 (max speed X
Setting Link basis 0, (snow)
performance demand speed) Snow)
1 Linear Linear Quadratic 1.00 0.28 0.03
2 Linear Quadratic | Quadratic 1.00 0.37 0.09
Linear +
3 Linear Quadratic 1.00 0.14 0.03
entropy
) Quadratic + ‘
4 Linear Quadratic 1.00 0.06 0.00
entropy
5 Quadratic Linear Polynomial | 1.00 0.21 0.03
6 Quadratic  Quadratic | Polynomial| 1.00 0.17 0.03
Linear +
7 Quadratic Polynomial| 1.00 0.27 0.08
entropy
~ Quadratic + )
8 Quadratic Polynomial| 1.00 0.14 0.03
entropy
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Table 10 Non-zero parameters of the inverse demand function under different settings.

Setting Link perform Inverse demand [Demand basis OD feature Parameter
External OD 1.00
1 Li Li drati
inear inear Quadratic Origin # retail 0.10
Destination # veh 0.03
2 Linear Quadratic Polynomial External 1.00
Non -snow 0.22
Destination # veh 0.79
Destination area type 0.81
Destination #
0.34
household
Destination # retail 0.34
3 Linear = Linear + entropy Linear External OD 1.00
Origin area type 0.48
Origin # retail 0.39
Non-snow 0.66
Weekday 0.11
Destination # veh 0.26
.
Quadratic Non-snow 0.01
Destination #
0.52
Quadratic + household
4 Linear . ) 1.00
entropy Entropy Destination # retail
0.05
External OD
Origin # retail 0.76
5 Quadratic Linear Quadratic External OD 1.00
6 Quadratic Quadratic Polynomial External OD 1.00
Destination # veh 0.79
Destination area type 0.81
Destination #
0.34

household
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Destination # retail 0.34
7 Quadratic Linear + entropy Linear External OD 1.00
Origin area type 0.48
Origin # retail 0.39
Non-snow 0.66
Weekday 0.11
Destination # veh 0.01
Quadratic Non-snow 0.01
Destination #
0.19
Quadratic + household

8 Quadratic . ) 1.00
entropy Entropy Destination # retail 024

External OD '
Origin # retail 0.65

To identify potential infrastructure improvement projects, we begin by selecting the top

20 most congested links in the network. Each selected link is assumed to allow a

maximum of 50% capacity expansion. The construction cost for each link is assumed

to be proportional to its maximum speed, scaled by a factor of 0.1. These candidate

links are highlighted in blue in Figure 32. The total estimated cost for upgrading all 20

links is 44.93 (in units of $10,000). For this experiment, the budget constraint is set to

20, introducing a hard limit for investment planning. To simulate realistic variability in

travel conditions, context features are randomly sampled from a normal distribution

truncated to the interval [0, 1].
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Figure 32 Candidate links for capacity expansion.

Figure 33 presents the reduction in total system travel time achieved through the
proposed link upgrades. The design based on the learned model results in measurable

improvement in overall network efficiency.
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Figure 33 System travel time before and after design implementation

Using the learned inverse demand function and subject to the budget constraint, the
recommended infrastructure design is illustrated in Figure 34. The color map visualizes
the investment allocation across candidate links, with intensity representing relative

importance under the optimization.
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Figure 34 Recommended investment levels across candidate links
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6 Discussion

6.1 Validity of hypotheses

The results of this project provide strong evidence supporting the proposed hypotheses.

Hypothesis 1: End-to-end learning improves predictive accuracy.

The findings confirm that the end-to-end framework significantly improves predictive
performance relative to traditional four-step models. In the Ann Arbor case study, the
framework reduced link travel time prediction errors from 83.6% in the benchmark
model to 34.3%. The ability to simultaneously estimate supply- and demand-side
parameters led to consistent accuracy across varying network conditions, including

changes in topology, incomplete data, and noisy inputs.

Hpypothesis 2: Data-driven integration enhances behavioral realism.

Empirical analyses on Ann Arbor dataset demonstrate that the framework effectively
captures traveler behavior, particularly variations in route choice and responses to
congestion. By incorporating trajectory and multi-source data, the model successfully
identified travel reductions on weekends and during snow events, patterns that
conventional models often fail to capture. This validates the role of emerging data

sources in enriching behavioral representation.

Hypothesis 3: Unified calibration reduces error propagation.

The simultaneous calibration of supply and demand components minimized the
cascading errors common in traditional sequential models. By embedding both
components within a single optimization structure, the framework produced more
stable and consistent equilibrium estimates. This reduction in error propagation

strengthens the reliability of the predictions.
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Hypothesis 4: Practical applicability to planning organizations.

The end-to-end framework demonstrates direct applicability to planning agencies such
as MDOT, SEMCOG, and WATS MPO. The Ann Arbor case study illustrates its
potential as a decision-support tool, capable of evaluating strategies including capacity
expansion. The ability to integrate multi-source data and automate calibration enhances
its practicality for operational use, offering planning organizations a means to make

more informed, data-driven policy decisions.

Overall, the empirical findings validate the core hypotheses, showing that the proposed
end-to-end framework not only advances methodological innovation but also provides

practical value for transportation planning and management.

6.2 Factors affecting the results

Several factors influence the performance of the proposed learning and design
framework. First, random noise in link flow observations poses challenges for
parameter estimation. Because multiple parameter configurations may approximate
observed data equally well, stochastic variability can lead to deviations in the estimated

parameters and, consequently, in model predictions.

Second, the availability of multi-day observations strongly impacts generalizability. In
principle, the framework can generalize effectively if it observes diverse context
features and travel patterns across multiple cities and over sufficiently long periods. In
practice, however, assembling such comprehensive datasets may require years of data
collection. Given current crowdsourced data availability, one strategy can enhance
generalization for “what if” analyses: leveraging existing travel demand forecast

models, like the SEMCOG benchmark model used in the Ann Arbor case study.

Third, the richness and diversity of context features directly affect identifiability.
Networks with limited variability in contextual factors (e.g., weather, demand

fluctuations, special events) may restrict the framework’s ability to distinguish between
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competing behavioral responses, thereby reducing the discriminatory power of the

learning process.

6.3 Implications

The results have important implications for both methodological development and

policy design.

Automated Model Construction with Crowdsourced Data.

The proposed framework demonstrates that readily available crowdsourced data can be
systematically leveraged to automate the calibration of supply- and demand-side
components. This reduces the reliance on costly, time-consuming data collection efforts

and enables agencies to build and update models more efficiently.

Vehicle connectivity and automation will make trajectory data more readily available.
Leveraging this dataset, the proposed modeling paradigm, if successful, can potentially
help metropolitan planning organizations and traffic authorities in the US better plan
and manage their traffic networks to reduce traffic congestion and vehicle emissions,
without requiring new investment in expanding the existing infrastructure. With more
and more connected vehicles, we believe that the solution would transform the existing
paradigm of transportation systems planning and management and has a great potential

for widespread market adoption.

Enhanced Predictive Accuracy in Travel Demand Forecasting.

By integrating multi-source data and jointly estimating supply and demand, the
framework substantially improves the accuracy of network equilibrium predictions.
Improved forecasts of travel demand and network performance allow planners to better
anticipate congestion patterns and evaluate the impacts of alternative policy or

infrastructure scenarios.
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Support for More Robust Transportation Network Planning

The framework functions as a decision-support tool for planning organizations such as
MDOT, SEMCOG, and WATS MPO. Its ability to combine data-driven learning with
equilibrium modeling provides a rigorous basis for evaluating strategies such as
capacity expansion, congestion pricing, and demand management, ultimately enabling

more resilient and cost-effective transportation planning.

6.4 Limitations and future work

While the proposed framework shows promise, several limitations remain and present

opportunities for future research.

Time of Day and Travel Mode Modeling.

The current framework produces only a single average travel pattern and does not
capture time-of-day variations in traffic congestion. This limitation reduces its
effectiveness for applications that require a more detailed understanding of travel
dynamics, and the formation and dissipation of traffic congestion. Capturing these
dynamics is essential for improving the realism and policy relevance of the end-to-end
learning framework. Another valuable direction for future research would be to
integrate this framework as an input into dynamic traffic assignment (DTA) or

microsimulation models.

While the proposed framework is primarily developed for vehicle assignment, future
work could explore its applicability to transit and non-motorized travel data, as well as
its extension to multimodal metropolitan transportation planning by encoding Logit

models as softmax layer.

Computational Efficiency and Software Development.

Although the framework achieves strong predictive accuracy, computational efficiency
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remains a challenge, particularly for large-scale networks and scenario analyses. Future
work will focus on improving algorithmic efficiency and developing a robust, user-
friendly software package that can be readily applied by planning organizations. Such

tools would facilitate adoption in practice and reduce the technical burden for agencies.

Data Limitations and Robust Policy Making.

The present study is constrained by the availability and quality of empirical data. As
more comprehensive multi-day and multi-source datasets become available, the
framework can be refined to deliver more reliable insights. A promising direction is to
extend the methodology toward robust policy making, where the framework not only
estimates current conditions but also prescribes improvement schemes—such as
capacity expansion or congestion pricing—under data uncertainty. This raises
additional challenges in solving end-to-end optimization problems with discrete
decision variables (e.g., selecting projects to build or upgrade), which will require
methodological innovations in optimization and machine learning. Moreover, an
additional limitation is representativeness of data. Traditional household travel survey
data can be compared to Census data to understand representativeness. Relying on a
single vehicle manufacturer may miss many different types of users and can present
bias that is hard to identify and correct. There is also value in evaluating how effectively

the proposed framework performs in forecasting and scenario analysis.

There would be value in testing how well this tool performs in forecasting and scenario
analysis. Beyond adjustments to the network, future work could also explore how

planners can best utilize this tool to evaluate different future scenarios.

7 Conclusions

This project advances travel demand forecast model by introducing an end-to-end
framework that directly constructs lightweight travel demand models or integrated

network equilibrium models from aggregate traffic observations.
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The outputs, outcomes, and impacts of this study are summarized as follows:

Research Outputs

e Publication: Liu, Zhichen, and Yafeng Yin. "End-to-end learning of user
equilibrium: Expressivity, generalization, and optimization." Transportation

Science (2025).

e Poster: End-to-end learning of user equilibrium: Expressivity, generalization,
and optimization. Transportation Research Board Annual Meeting. Washington,

D.C. 2024.

Research Outcomes

The framework encodes unknown supply- and demand-side components as
parameterized computational graphs and embeds them within a VI to enforce user
equilibrium. During forward propagation, the traffic state is iteratively updated until
equilibrium is reached; during backpropagation, discrepancies between estimated and
observed states are used to simultaneously calibrate all parameters through auto-

differentiation.

A key strength of the framework is its ability to integrate the four-step travel demand
forecast within a single automated pipeline by combining domain knowledge with the
representational power of neural networks. From a methodological perspective, the
study addresses the main challenges of training such a unified framework. An auto-
differentiation-based gradient descent algorithm was developed, Ileveraging
computational graphs for efficiency. Forward propagation employs operator-splitting
methods and differential optimization to solve batches of VI problems, while

backpropagation applies iterated and inexact implicit differentiation to differentiate
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through equilibrium states. Together, these advances ensure that the framework is both

computationally feasible and adaptable to real-world planning contexts.

Validation on synthetic networks (Braess, Sioux Falls, and Chicago Sketch) and
empirical data from the Ann Arbor network confirms the robustness and accuracy of
the framework. The model achieved strong predictive performance under changes in
network topology and maintained resilience in the presence of incomplete data and
noisy inputs. In the Ann Arbor case study, the framework substantially reduced
prediction errors in link travel time and successfully captured behavioral patterns, such

as reduced travel on weekends and snow days.

A feasibility analysis further highlighted three sources of potential error: expressivity
risk (misrepresentation of real-world behavior due to imperfect prior knowledge),
generalization risk (poor performance on unseen data), and optimization risk
(challenges in solving inverse optimization problems). Results show that, with
sufficiently large neural networks and adequate data, these risks can be mitigated,

leading to improved predictive performance.

Moreover, the framework represents a methodological and practical step forward in
transportation planning. By unifying learning and optimization in a single data-to-
decision pipeline, it offers a powerful tool for policymakers. Applied to the Ann Arbor
case, the framework demonstrated the potential to reduce congestion, evaluate
strategies such as capacity expansion or congestion pricing, and support more efficient
resource allocation. With automated implementation, the approach can improve
operational efficiency within transportation agencies, reduce costs, and guide

investment decisions that maximize public benefit.

Research Impacts

From an implementation perspective, the proposed framework can be incorporated into
existing transportation planning workflows to complement, rather than replace,

conventional travel demand models. Whereas conventional models are resource-
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intensive to construct and infrequently updated, the proposed framework produces

lightweight demand models directly from passively collected data. These models can

be refreshed more frequently, enabling planners to conduct light-duty analyses such as

diagnosing network performance, identifying emerging congestion patterns, and

prescribing short- to medium-term improvement plans and policy interventions. In this

way, the framework adds agility to planning practice while preserving the value of

comprehensive models for more in-depth analyses.

Agencies may consider the following phased implementation plan:

Data Integration. Collect and organize traffic data along with relevant
contextual features (e.g., weather conditions, day-of-week patterns, and
socioeconomic indicators). These datasets provide the foundation for calibrating
the framework and enhancing its predictive power. Another promising direction
is the integration of multisource data to leverage existing survey datasets,

thereby enhancing interpretability and mitigating bias.

Model Training and Enhancement. Apply the end-to-end framework to refine
and augment existing travel demand forecasting models. For example,
benchmark models can be enhanced with physics-informed neural network
components, thereby improving predictive accuracy while maintaining
interpretability and consistency with established practices. Alternatively,
specific elements such as travel time functions or route choice preferences can
be calibrated directly using techniques from the proposed framework, yielding

incremental improvements without the need to rebuild full models.

Decision Support and Scenario Evaluation. 1Leverage the trained framework to
construct lightweight travel demand models capable of rapidly prescribing and
comparing candidate projects or policy interventions. Promising candidates
identified through this process can then be subjected to deeper investigation
using full-scale demand models. Outputs from the lightweight framework can

also be incorporated into multi-criteria decision-making processes to evaluate
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trade-offs among efficiency, equity, and resilience in project selection.

In practice, the framework can serve as a decision-support tool at multiple scales. Its
lightweight models allow agencies to rapidly evaluate emerging conditions and update
forecasts, while comprehensive, full-scale models remain valuable for in-depth, long-
range analysis. Together, this dual approach offers transportation agencies a more
flexible, data-driven planning toolkit to prioritize cost-effective investments, anticipate
the impacts of context-specific conditions, and ultimately improve the performance and

sustainability of transportation systems.

Future research may extend the proposed framework along several promising
directions. First, incorporating time-of-day modeling would enable the analysis of
temporal variations in travel demand and congestion, thereby advancing beyond the
prediction of a single average traffic pattern to capture the dynamic evolution of traffic
states. Second, extending the framework to a multimodal setting would allow for the
integration of mode choice behavior and the interactions among diverse transportation
modes, thereby broadening its scope beyond traffic networks to multimodal
transportation networks where public transit, walking, cycling, and emerging mobility
services play critical roles. Third, incorporating richer behavioral heterogeneity, such
as differences in value of time, risk attitudes, and route choice preferences, would
enhance the behavioral realism of the demand model and improve its predictive
accuracy. Fourth, expanding empirical validation to larger and more diverse
metropolitan areas would strengthen both the robustness and the generalizability of the
framework across heterogeneous urban contexts. Finally, exploring more realistic and
nonlinear cost structures for infrastructure investments would generate network design
recommendations that better align with the complexities, trade-offs, and

implementation challenges inherent in real-world decision-making.
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