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Executive Summary 

The current travel demand models, whether developed using the conventional trip-based 

four-step modeling approach or the state-of-the-art activity-based modeling approach, 

are time-consuming and costly to establish and update. They are typically revised only 

every five to ten years and often fail to accurately capture current travel behavior.  

To address these challenges, this project introduces a unified, end-to-end learning 

framework for constructing integrated transportation network equilibrium models, 

which can serve as lightweight travel demand models, directly from empirical traffic 

data. The framework learns both supply- and demand-side model components from 

multi-day aggregate traffic state observations. Unknown components are parameterized 

with computational graphs and embedded in a variational inequality to enforce user 

equilibrium conditions. Each component can be model-based, model-free (e.g., neural 

networks), or hybrid. By minimizing the difference between estimated and observed 

traffic states, the framework simultaneously calibrates unknown supply- and demand-

side parameters. 

To validate robustness and effectiveness of the proposed framework, numerical 

experiments were conducted using both synthetic data from various networks and 

empirical data from the Ann Arbor network. The framework demonstrated strong 

predictive accuracy for link flows under changes in network topology and demonstrated 

resilience to incomplete data and noisy inputs. In the Ann Arbor case study, the 

framework reduced prediction error for link travel time from 83.6% in the benchmark 

model to 34.3% and successfully captured variations in traffic patterns, such as reduced 

travel on weekends and snow days. 

A rigorous feasibility analysis of the end-to-end framework further identifies three 

potential sources of error. Expressivity risk arises when imperfect prior knowledge 

prevents accurate representation of real-world travel behavior. Generalization risk 

occurs when models trained on limited data perform poorly on unseen inputs. 

Optimization risk stems from the complexity of solving the inverse optimization 



 

7 

problem. The analysis shows that, with sufficiently large neural networks and adequate 

data, the end-to-end framework achieves improved performance and mitigates these 

prediction errors. 

Another key advantage of the framework is its integration of learning and optimization 

into a single data-to-decision pipeline. Applied to the Ann Arbor network, the framework 

demonstrated potential for prescribing improvement plans and polices to alleviate 

congestion. It can serve as a decision-support tool for policymakers considering 

improvement strategies such as capacity expansion or congestion pricing. Automated 

implementations of the framework could enable transportation agencies to plan and 

operate traffic networks more efficiently, lowering both capital and operational costs. 

By guiding more informed resource allocation, the framework helps policymakers avoid 

unnecessary infrastructure investments and maximize public benefit.  
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1 Introduction 

1.1 Background 

Travel demand modeling is a fundamental tool in transportation planning, providing a 

structured approach to forecast whether, where, and how people travel within a region. 

At its core, it seeks to represent travelers’ decisions , such as whether to travel, choice of 

destination, mode, departure time, and route based on land use, demographics, and 

transportation system characteristics. These forecasts form the basis for evaluating the 

impacts of policy interventions, infrastructure investments, and technological changes 

on mobility, accessibility, and equity. 

Traditionally, travel demand has been analyzed through a four-step modeling process. 

The first step, trip generation, estimates the number of trips produced by and attracted to 

each traffic analysis zone (TAZ). The second step, trip distribution, applies a destination 

choice model to determine how these trips are spatially distributed, producing demand 

between origin-destination (OD) pairs. The third step, mode choice, allocates OD-level 

trips among available travel modes, yielding the number of vehicle trips. Finally, the 

fourth step, traffic assignment, describes travelers’ route choices to distribute OD trips 

across the network, resulting in link-level flows and measures of network performance. 

These flow estimates provide benchmarks for assessing the effectiveness of proposed 

system improvements. 

 

Figure 1 Illustration of traditional four-step travel demand modeling process  

While the four-step model has long been the workhorse of transportation planning, its 

aggregate and sequential structure limits behavioral realism. To address these 

shortcomings, the field advanced to activity-based modeling (ABM). Unlike trip-based 
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approaches, ABMs view travel demand as derived from individuals’ and households’ 

need to participate in activities at different times and locations. By explicitly modeling 

daily activity patterns, scheduling, and interdependencies among trips, ABMs offer a  

richer behavioral foundation. This allows them to better capture heterogeneity across 

population groups, sensitivity to land use and policy changes, and temporal dynamics 

such as peak spreading. 

Despite their differences, both the four-step and activity-based approaches share a 

common limitation: they rely heavily on extensive data collection efforts such as 

household travel surveys. Such efforts are costly, time-consuming, and resource-

intensive, making it difficult to update established travel demand models frequently. As 

a result, metropolitan planning organizations (MPOs) often revise their regional travel 

demand models only once every five to ten years. This infrequent updating limits the 

ability of traditional models to reflect evolving travel behavior, rapid technological 

change, and emerging mobility options. 

In recent years, however, advancements in connectivity and sensing technologies have 

made aggregate traffic state observations increasingly available. These states include 

traffic volumes, speeds, travel times, and even route choice probabilities. Data sources 

now extend beyond traditional loop detectors to include radar sensors, Bluetooth and 

Wi-Fi tracking, GPS-enabled mobile devices, and high-resolution vehicle trajectory data 

from connected and automated vehicles. The growing availability of these emerging 

datasets, combined with recent advances in artificial intelligence, creates new 

opportunities to rethink travel demand modeling.  

Building on these opportunities, this project introduces a unified, end-to-end learning 

framework for constructing integrated transportation network equilibrium models that 

serve as lightweight yet behaviorally informed travel demand models, derived directly 

from empirical traffic observations. The framework simultaneously learns OD travel 

demand functions and route choice preferences while refining the link performance 

function, which relates traffic volume to travel time. Once calibrated with empirical data, 

it can not only reproduce observed traffic conditions with higher fidelity but also 
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prescribe optimal infrastructure improvements or policy interventions, offering decision-

makers actionable, evidence-based insights. 

Unlike conventional approaches that rely on costly and infrequent surveys, the proposed 

framework leverages passively collected traffic data to enhance behavioral realism and 

predictive accuracy at a fraction of the cost. By minimizing dependence on resource-

intensive local data collection, it effectively democratizes access to advanced traffic 

network diagnostics, enabling even resource-constrained agencies to benefit from 

sophisticated modeling capabilities. The resulting system is a practical, deployable , and 

adaptive tool for data-driven analysis, supporting both short-term traffic management 

and long-term planning. More broadly, this framework represents a new generation of 

travel demand modeling that unifies empirical data, machine learning, and equilibrium 

theory into a single data-to-decision pipeline, laying the foundation for more responsive, 

cost-effective, and behaviorally grounded transportation planning.  

 

Figure 2 Illustration of “end-to-end” transportation network equilibrium modeling and 

optimization 

a. Objectives 

The primary objective of this project is to establish a unified end-to-end framework for 

transportation network equilibrium modeling. At its core, this framework leverages deep 

learning to jointly model supply and demand components while directly estimating 

equilibrium flow distributions from empirical data. A second objective of this project is 

to rigorously demonstrate and validate the framework through case studies. Building on 

this validation, the project identifies strategic enhancements that optimize system 

performance. Finally, the project seeks to establish future research directions and 
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provide practical recommendations for MDOT, SEMCOG, and Washtenaw Area 

Transportation Study (WATS) MPO, thereby laying the groundwork for continued 

development of advanced, data-driven modeling practices. 

 

b. Scope 

The scope of this project is structured around five major tasks.  

Task 1: Developing a research management plan.  

This task focuses on creating a comprehensive plan to guide technical and administrative 

activities. It includes coordination among the research team, project manager, and 

advisory panel, as well as scheduling regular meetings with MDOT staff to ensure timely 

progress, effective communication, and accountability.  

Task 2: Developing a unified framework for end-to-end learning of network 

equilibrium.  

This task aims to advance our prototype end-to-end learning framework to 

simultaneously model supply and demand components of network equilibrium. The 

framework employs computational graphs with learnable parameters to approximate 

unknown supply and demand relationships, embedding them within a variational 

inequality formulation to enforce user equilibrium conditions. By minimizing 

discrepancies between observed and estimated travel times, parameters on both the 

supply and demand sides are updated jointly. This approach represents the first 

integrated calibration of both components within a data-driven equilibrium framework, 

unifying model-based and model-free elements for greater flexibility. A theoretical 

analysis will also be conducted to assess the feasibility of this approach. 

Task 3: Demonstrating the framework through a case study of Ann Arbor using GM 

trajectory data.  

In this task, we will apply GM’s vehicle trajectory data to enhance the behavioral realism 

and predictive accuracy of the planning model maintained by WATS. The research team 
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will design algorithms to address data sparsity and subsampling issues inherent in GM’s 

data.  

Task 4: Prescribing improvement strategies.  

This task investigates efficient solution algorithms to prescribe system improvement 

strategies using the end-to-end framework. These algorithms will be demonstrated in the 

Ann Arbor case study to evaluate their effectiveness in guiding transportation planning 

decisions. 

Task 5: Recommending next steps for future research and development.  

The final task will outline future research directions and propose an operational 

framework for potential adoption by MDOT and MPOs. This step will help advance the 

long-term development of a practical modeling process. 

1.2 Statement of Hypotheses 

Before stating the specific hypotheses, we first outline the conceptual premises that 

underlie this project: travel demand forecasting, the notion of user equilibrium, and the 

idea of end-to-end learning. 

Travel Demand Forecasting and Choice Preferences 

Travel demand forecasting seeks to predict whether, where and how people will travel 

in the future. Travelers’ decisions are governed by their choice preferences, which reflect 

underlying trade-offs among time, cost, convenience, and other attributes. While 

contextual factors evolve, the structural form of such preferences is generally stable over 

forecasting horizons. By analyzing observed behaviors across these choice dimensions, 

the proposed framework aims to infer the latent preferences that shape travel demand. 

Once identified, these preferences provide a behavioral foundation that is assumed to 

persist into the forecasting year, enabling the prediction of future travel patterns under 

new conditions (e.g., changes in land use, pricing, or infrastructure) . 

Equilibrium as Benchmark and Approximation 
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Another premise is the role of equilibrium states in transportation network modeling. 

Although exact equilibrium is rarely observed in practice, because of day-to-day 

variability, bounded rationality, or information asymmetries, empirical traffic states tend 

to cluster around equilibrium-like conditions. For planning, the notion of equilibrium 

remains indispensable: it provides a consistent, reproducible benchmark against which 

different policy or infrastructure scenarios can be fairly compared. Without such a 

benchmark, evaluations risk being inconsistent or misleading. Accordingly, this project 

adopts a data-driven approach to learn an equilibrium state that both reflects observed 

traffic conditions and preserves the consistency required for planning analyses. 

End-to-End Learning Perspective 

Finally, the project embraces an end-to-end learning paradigm. Rather than 

decomposing forecasting into separate, sequential modules (e.g., trip generation, 

distribution, mode split, assignment), the framework integrates demand and supply 

components within a unified learning architecture. Unknown model elements are 

parameterized and jointly estimated by fitting observed traffic states, while equilibrium 

constraints are embedded to ensure behavioral and network consistency. This end-to-

end approach offers both flexibility, accommodating model-based, data-driven, or 

hybrid components, and rigor, as the learned equilibrium states serve as both predictive 

tools and planning benchmarks. 

The project is guided by the following hypotheses: 

1. End-to-end learning improves predictive accuracy. By jointly 

modeling supply and demand components from empirical trajectory and 

auxiliary data, the proposed framework will achieve more accurate 

predictions of network equilibrium flows compared with traditional four-

step models. 

2. Data-driven integration enhances behavioral realism. Incorporating 

vehicle trajectory data and other emerging data sources will allow the 

framework to better capture traveler behaviors, including route choice 

variability and responses to congestion. 
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3. Unified calibration reduces error propagation. Calibrating demand 

and supply simultaneously within one framework will reduce cumulative 

errors that typically arise from independent estimation in traditional 

models. 

4. Practical applicability to planning organizations. The framework can be 

validated and adapted to support planning decisions within MDOT, 

SEMCOG, and WATS MPO, enabling data-driven policy and system 

improvement strategies. 

These hypotheses frame the methodological innovations and expected 

contributions of the project, while providing the foundation for empirical 

validation through the case study. 

2 Literature Review 

2.1 Review of Previous Research 

2.1.1 Implicit Layer: Expressivity and Generalization 

The foundation of the proposed end-to-end framework lies in parameterizing unknown 

model components with neural networks and embedding user equilibrium conditions as 

an implicit layer. The term implicit is used because the output of this layer is defined 

implicitly: it cannot be computed through explicit rules as in conventional neural 

networks (Travacca et al., 2020). Instead, it is obtained by solving a fixed-point problem. 

The implicit layer was first proposed by Bai et al. (2019) and has since been applied to 

domains such as power flow prediction (Fioretto et al., 2020) and auction mechanism 

design (Feng et al., 2018). In this report, the term “neural network” refers broadly to 

functions representable by directed acyclic computational graphs, where vertices 

represent differentiable functions and edges represent function composition. 

Accordingly, the terms “neural networks” and “computational graphs” are used 

interchangeably. 

A central question in neural network research concerns their expressivity, or the ability 
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to approximate a wide class of functions. Standard neural networks, which stack linear 

and nonlinear activation layers and compute outputs explicitly, are known to have 

universal approximation capabilities. Foundational results (Kidger and Lyons, 2020; 

Pinkus, 1999) show that, with sufficient parameters, such networks can approximate any 

continuous function to arbitrary precision. The end-to-end framework, however, 

employs an implicit layer, and its expressivity is less well understood. Unlike explicit 

networks, the output of an implicit layer is defined by the solution to a fixed-point 

problem, raising questions about whether such layers can universally approximate 

equilibrium states, which may require infinitely deep standard networks to represent 

exactly. Recent results (Bai et al., 2019) indicate that implicit layers can replicate finite-

depth standard networks, but the question of universal equilibrium approximation 

remains open. 

Closely related to expressivity is generalization, the ability of trained networks to 

perform well on unseen data. Standard networks are known to generalize, though 

performance typically degrades with depth (Golowich et al., 2018). In the proposed 

framework, the implicit layer’s effective depth is determined by the number of forward 

iterations needed to reach equilibrium. Existing theory suggests that because this depth 

may be infinite, implicit layers could generalize poorly. Yet, empirical studies 

demonstrate that implicit layers often generalize well, contradicting theoretical 

expectations. This discrepancy highlights the need for new theory. Gao and Gao (2022) 

show that implicit layers can generalize when their output dimension grows with the 

number of training samples. However, in the end-to-end framework, output dimensions 

are tied to network topology and cannot be freely adjusted. This project provides the first 

demonstration that implicit layers can accurately approximate “well-posed” equilibria 

and generalize effectively to unseen data, even without adjustable output dimensions.  

2.1.2 Auto-Differentiation-Based Algorithms for Bi-Level Optimization  

The end-to-end framework requires solving a bi-level optimization problem, or more 

generally a Mathematical Program with Equilibrium Constraints (MPEC), using 

gradient descent. This process necessitates differentiation of equilibrium states with 
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respect to parameters, a challenge known as implicit differentiation or equilibrium 

sensitivity analysis. 

Several approaches to implicit differentiation have been proposed in the transportation 

literature. Tobin and Friesz (1988) selected non-degenerate extreme points of 

equilibrium path flow sets, while Yang and Huang (2005) identified linearly independent 

subsets of used paths. Both approaches rely on matrix inversion, which scales 

quadratically with problem dimension. Patriksson (2004) instead computed directional 

gradients by repeatedly solving auxiliary linear variational inequalities (VIs), but this 

method also suffers from scalability issues. 

More recently, automatic differentiation (AD) has enabled new algorithms for implicit 

gradient approximation when equilibrium constraints are expressed as lower-level 

optimization problems, thereby reducing MPECs to bi-level formulations. Two notable 

approaches are iterative differentiation (ITD) and implicit differentiation (IMD). ITD 

tracks the optimization trajectory of the lower-level problem and backpropagates 

through it to approximate gradients. However, storing or unrolling long optimization 

trajectories is computationally burdensome. IMD avoids this by using the implicit 

function theorem, iteratively solving an auxiliary fixed-point problem to approximate 

gradients. Originally developed for hyperparameter optimization and meta-learning 

(Franceschi et al., 2018), both methods have demonstrated local convergence and 

efficiency in diverse applications (Ghadimi and Wang, 2018; Ji et al., 2021). 

This project investigates the efficiency and convergence of AD-based algorithms for 

solving MPECs with constrained VIs, which present greater challenges than standard 

bilevel problems. Prior studies have handled equilibrium constraints in different ways: 

Liu et al. (2023) used decoupled projection for link-based constraints, while Li et al. 

(2022) employed mirror descent for path-based constraints, proving asymptotic 

convergence of a modified auto-differentiation-based method. Other heuristic 

approaches ignore equilibrium constraints altogether, replacing the equilibrating process 

with a single-step network loading (Guarda et al., 2023; Wu et al., 2018). This raises the 

open question of whether enforcing user equilibrium confers advantages in solving 
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MPECs. This project addresses this gap by demonstrating convergence rates of AD-

based gradient descent under explicit equilibrium constraints, highlighting the role of the 

equilibrating process in achieving local convergence. 

2.2 Summary of the State-of-the-Art 

Research on travel pattern prediction from empirical observations has developed along 

two main disciplinary lines. The traditional equilibrium-based approach, rooted in travel 

demand modeling, views travel choices as outcomes of a congestion game and predicts 

future demand as an equilibrium state. In contrast, recent supervised learning-based 

approaches frame travel demand forecasting as a prediction task using machine learning. 

After years of parallel development, these two perspectives increasingly converge, now 

facing common challenges. 

Equilibrium-Based Approach  

In planning and “what-if” analyses, modelers require a benchmark state for comparing 

design or policy alternatives. Equilibrium has long been adopted for this purpose because 

of its independence from initial conditions, behavioral grounding, and mathematical 

tractability. Traditional parametric network modeling thus relies on equilibrium to 

calibrate and forecast flows. For example, Yang et al. (2001) used a logit-based 

stochastic user equilibrium model to estimate OD demands and dispersion parameters 

from link flow observations. 

Significant efforts have focused on improving behavioral realism in route choice models, 

thereby enhancing forecast accuracy. Examples include dynamic dispersion parameters 

calibrated from empirical data (Wang et al., 2016) and advanced behavior models 

(Guarda and Qian, 2022). However, increased realism often comes at the cost of higher 

computational complexity. Recent studies have explored incorporating machine learning 

tools, such as computational graphs and AD, to improve calibration and efficiency.  

Early efforts include encoding trip generation, distribution, and path-based logit loading 

with layered computational graphs for OD calibration (Ma et al., 2020; Wu et al., 2018). 
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Other work integrates neural networks with discrete choice models, demonstrating that 

neural networks can enhance both realism and interpretability in travel choice analysis 

(Sifringer et al., 2020). On the supply side, Lu et al. (2023) introduced physics-informed 

neural networks for calibrating queuing profiles from multi-source data. Nevertheless, 

most existing studies calibrate supply and demand components independently, 

neglecting their interactions. 

More recent work extends computational-graph-based calibration to account for traveler 

interactions in routing games. Guarda et al. (2023) calibrated both supply and demand 

components jointly from real-world data by penalizing deviations from user equilibrium 

in the loss function. In contrast, Li et al. (2020) and Heaton et al. (2021) explicitly 

enforced equilibrium as fixed points, calibrating unknown components directly from 

flow and time observations. Despite these advances, most approaches remain parametric, 

with model forms pre-specified before calibration. 

Supervised Learning-Based Approach  

In parallel, a growing body of research applies deep learning to forecast traffic flows as 

a supervised learning problem. Models such as Long Short-Term Memory (LSTM) 

networks and Spatial–Temporal Graph Convolutional Networks (ST-GCNs) have 

demonstrated strong performance in predicting short-term flows by capturing complex 

spatiotemporal dependencies (Yao et al., 2019). However, these models rely on the 

assumption that training and test data are identically distributed. This assumption fails 

in long-term “what-if” scenarios, where changes in network topology alter traffic flow 

distributions (Shen et al.). Although such changes affect network-level flows, it is 

reasonable to assume that traveler preferences remain relatively stable, even under 

altered network conditions. Consequently, supervised approaches should focus on 

learning mappings from input features to stable behavioral parameters, rather than 

directly mapping inputs to flows. This shift could enhance their ability to generalize 

across different network topologies and planning scenarios.  

To summarize, equilibrium-based and supervised learning-based approaches, once 

developed in parallel, are now converging toward shared goals and challenges. Both face 
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fundamental difficulties in accurately learning traveler behavior from limited 

observations. Travel choices often reflect bounded rationality, and internal decision-

making processes remain unobservable. Researchers can only infer behavior from 

outcomes. This intrinsic limitation of the data complicates the task of behaviorally 

realistic prediction, underscoring the need for hybrid approaches that integrate 

behavioral models with modern data-driven methods. 

3 Methodology 

This section presents the end-to-end learning framework to simultaneously estimate the 

supply and demand components of a transportation network equilibrium model using 

empirical data. The approach employs computational graphs with learnable parameters 

to approximate the unknown supply and demand functions and embeds them in a 

variational inequality that enforces user equilibrium conditions. By minimizing 

discrepancies between estimated and observed travel times, the framework updates 

parameters on both sides concurrently. To our knowledge, this is the first framework that 

integrates the calibration of supply and demand components in a data-driven 

transportation network equilibrium model. It unifies model-based and model-free 

elements, enabling a flexible and adaptive approach to real-world transportation 

networks. We also provide a theoretical analysis of the feasibility of the proposed 

framework and end-to-end optimization framework that prescribes optimal network 

expansion designs based on the learned end-to-end framework. 

3.1 End-to-End Learning Framework 

3.1.1 Neural-Network-Based User Equilibrium 

We consider a case where partial aggregate traffic measures, such as link flow and link 

time, at peak periods are observable for a long period. The general learning task is to 

learn OD demand functions, travelers’ route choice preferences, and link performance 

functions from multi-day observations. If prior knowledge is available, some 

components can be pre-calibrated, and the end-to-end framework only focuses on the 

remaining components. 
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Path-based formulation 

Mathematically, consider a network 𝒢 = (𝒩, 𝒜), where 𝒩 and 𝒜 are the set of nodes 

and links. Let ℛ denote the set of OD pairs. Each OD pair 𝑟 ∈ ℛ is connected by paths 

that form a finite and nonempty feasible path set 𝒫𝑟. 𝒫 represents the set of feasible paths 

for all OD pairs. Let 𝑥[𝑚] be the input features observed on day (sample) 𝑚. The input 

features include traveler characteristics like income, road network attributes like free -

flow time, and contextual features like weather and gas price. Input features can vary 

from day to day (or sample to sample). Throughout the report, the norm denotes the L2 

norm, unless otherwise indicated. Superscript 𝑚 associates sample-dependent variables 

with the 𝑚-th sample.  

We propose three continuous functions to approximate the unknown supply or demand-

side model components. The parameter of all components will be jointly learned and 

thus we say all components are parametrized by θ ∈ Θ.  Each component can be model-

based, model-free (e.g., neural networks), or hybrid (e.g., physics-informed neural 

networks). Therefore θ represents neural network parameters in a model-free or hybrid 

approach, or parameters of a given functional form in a model-based approach. 

We will elaborate on the construction of each component, starting from the supply side. 

The link performance function 𝜏𝜃 outputs the link travel time 𝑡[𝑚] ∈ 𝒯 as a function of 

path flow ℎ[𝑚] ∈ ℋ and input features, defined as: 

𝜏𝜃: ℋ × 𝒳 → 𝒯 (1) 

where the input features 𝑥[𝑚] ∈ 𝒳  include contextual features and road network 

attributes, such as link capacity and free-flow time; the feasible region ℋ ⊆ 𝑅+
|ℙ|

 

requires path flow to be nonnegative and is the feasible region of link time.  

On the demand side, travelers are free to switch paths to improve their utilities. Findings 

from travel behavior research suggest that travel choice behaviors are much more 

complicated than just choosing the shortest path. We use the cost function 𝜋𝜃 to describe 
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the perceived path cost given actual travel time. The cost function 𝜋𝜃  outputs the 

(perceived) path cost as a continuous function of link time and input features, defined 

as: 

𝜋𝜃: 𝒯 × 𝒳 → 𝒞 (2) 

where input features include traveler characteristics (e.g., income and travel purpose), 

route attributes (e.g., number of left turns), and contextual features. The feasible set 𝒞 ⊆

𝑅+
|ℙ|

 requires path cost as nonnegative. 

In addition to route choice, travelers have the freedom to choose travel or not and switch 

origin and/or destination to improve their utility. We assume the travel demand is upper 

bounded by a maximum possible demand 𝑞 ∈ 𝑅+
|ℝ|

 and introduce the excess demand as 

𝑒[𝑚] = 𝑞 − Γ⊤ℎ[𝑚]. Here, Γ ∈ 𝑅|ℙ|×|ℝ| represents the path-OD incidence matrix and Γ𝑝𝑟 

equals 1 if path p connects OD pair r and equals 0 otherwise. We use an inverse demand 

function 𝜆𝜃 to depict the equilibrium path cost 𝑢[𝑚] ∈ 𝒰 as a function of excess demand 

𝑒[𝑚] ∈ ℰ and input features, namely, 

𝜆𝜃: ℰ × 𝒳 → 𝒰 (3) 

where the feasible region of excess demand is ℰ = {𝑒 ∈ 𝑅|ℝ|: 0 ≤ 𝑒 ≤ 𝑞} and 𝒰 ⊆ 𝑅+
|ℝ|

 

is the feasible region of equilibrium path cost. 

Assuming rational travelers try to maximize their own travel utilities, the multi -class 

user equilibrium (UE) with elastic demand is formulated as a parametric VI, the solution 

to which is the equilibrium path flow ℎ∗[𝑚] and equilibrium excess demand 𝑒∗[𝑚] for 

sample 𝑚. To simplify notation, we introduce the response variable as 𝑦 =  (ℎ, 𝑒) and 

the generalized cost as 𝑧 =  (𝑐, 𝑢). By defining the generalized cost function: 

𝐹θ: 𝒴 × 𝒳 → 𝒵 (5) 

where 𝐹𝜃(𝑦, 𝑥) = [πθ
⊤(τθ(ℎ, 𝑥), 𝑥), λθ

⊤(𝑒, 𝑥)]⊤. 
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Figure 3 illustrates the computational-graph-based generalized cost function for path-

based elastic UE. Supply and demand-side components are shown in blue and green 

respectively. The dependence of variables on sample m is omitted to simplify the 

notation. Each parametrized component can be model-based, model-free, or hybrid. 

Then the parametric VI in Eq. (5) can be compactly reformulated as: 

〈𝐹𝜃(𝑦∗[𝑚], 𝑥[𝑚]), 𝑦 −  𝑦∗[𝑚]〉 ≥ 0, ∀𝑦 ∈ 𝒴 (6) 

To compactly represent the feasible region of the response variable, the feasible region 

of the response variable becomes 𝒴 = {𝑦 ≥ 0, 𝛤̅𝑇𝑦 =  𝑞} where Γ̅ is augmented path-

OD incidence matrix 

If we consider a special case where the OD demands are observable for each sample, the 

proposed framework can handle an inelastic demand setting. Let 𝑞[𝑚]  be the OD 

demands and link flows observed on sample m. Then the multi-class UE with inelastic 

demand for sample m is formulated as a parameterized VI in Eq. (6). In this case, the 

feasible path flow set becomes sample-dependent, i.e., ℋ[𝓂] = {ℎ ∈ 𝑅|ℙ|: ℎ ≥ 0, Σ⊤ℎ =

𝑞
[𝑚]

} requires the feasible path flows to be nonnegative and satisfy flow conservation.  

 Link-based formulation 

The parametric VI defined in Eq. (6) requires the knowledge of feasible path set. This is 

a common assumption for path-based UE formulation and methods for generating the 

feasible path set are well-developed in the literature (Frejinger et al., 2009). If the 

modelers believe the path cost is link-additive, the link-based elastic-UE formulation can 

be used instead. 

We introduce OD-specific link flows for OD pair r as and the vectorized OD-specific 

link flows as 𝑣 = {𝑣𝑟}𝑟∈ℛ ∈ 𝒱 ⊆ 𝑅+
|𝔸|×|ℝ|

. In this case, the link performance function 

becomes: 

τθ: 𝒱 × 𝒳 → 𝒯. (7) 

We slightly abuse the notation of path cost and define the OD-specific link cost 𝑐𝑟 ⊆
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𝑅+
|𝔸|

 with its vectorized form as 𝑐 = {𝑐𝑟}𝑟∈ℛ. The link-based equilibrium condition for 

sample m is formulated a following parametric VI, slightly adjust the notation for 

generalized cost and response variable to bring the link-based and path-based 

formulations under the same umbrella. For each OD pair r, we define the response 

variable as 𝑦𝑟 = (𝑣𝑟 , 𝑒𝑟)  with its vectorized form given as 𝑦 = {𝑦𝑟}𝑟∈ℛ ∈ 𝒴 . The 

generalized cost for OD pair r is represented as𝑧𝑟 = (𝑐𝑟 , 𝑢𝑟), and its vectorized form is 

formulated as 𝑧 = {𝑧𝑟}𝑟∈ℛ ∈ 𝒵 ⊆ 𝑅+
(|𝔸|+𝟙)×|ℝ|

. 

To compactly formulate the feasible region for response variable y, we introduce the 

augmented link-node incidence matrix and vectorized demand constraint as follows. For 

the former, we add a number of |ℛ| dummy links connecting the origin and destination 

of each OD pair, with a number of 𝑒𝑟 travelers on each dummy link experiencing the 

equilibrium path cost 𝑢𝑟. Then we represent the augmented link-node incidence matrix 

including dummy link as Λ ∈ 𝑅(|𝔸|+𝟙)×|ℕ| where Λ𝑎𝑛 = 1 if link a originates from a and 

Λ𝑎𝑛 = −1 if link a terminates at node n. For each OD pair, we define a vectorized 

demand constraint, where 𝑑𝑟 ∈ 𝑅+
|𝔸|

 ;  𝑑𝑟𝑛 = 𝑞 if OD pair r originates at node 𝑛 and 

𝑑𝑟𝑛 = −𝑞 if OD pair r terminates at node 𝑛 and 𝑑𝑟𝑛 = 0 otherwise. Then the feasible 

region of the response variable can be compactly formulated as 𝒴 = {𝑦 ∈

𝑅(|𝔸|+𝟙)×|ℝ|: 𝑦 ≥ 0, Λ⊤𝑦𝑟 = 𝑑𝑟 , ∀𝑟 ∈ ℛ}. It is straightforward to validate that both the 

path-based equilibrium condition in and the link-based equilibrium condition align with 

the same compact parametric VI in Eq. (6). 

3.1.2 Learning Formulation 

We consider a smooth loss function 𝑙: 𝒴 × 𝒴 → 𝑅 that measures the distance between the 

estimated equilibrium states and corresponding observations. We also consider a 

regularization function 𝑟(𝜃). The training of the end-to-end framework can be formulated 

as the following MPEC. Each training sample 𝑚 corresponds to the pair Consider the 

dataset of 𝑀 samples, where each data point is drawn i.i.d. from an unknown probability 

distribution over 𝒳 × 𝒴. 
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min
𝜃

∑ 𝑙(𝑦∗[𝑚], 𝑦[𝑚])  𝑠. 𝑡.   〈𝐹𝜃(𝑦∗[𝑚], 𝑥[𝑚]), 𝑦 −  𝑦∗[𝑚]〉 ≥ 0, ∀𝑦 ∈ 𝒴

𝑀

𝑚=1

 (8) 

The end-to-end framework unifies the parameters of supply and demand-side 

components, either model-based, model-free or hybrid, into a generalized cost function 

and jointly learns 𝜃 during training. 

Remark 1 If the cost function is independent of input feature x and equals the sum of link 

travel times and an entropy term, the learning problem will reduce to the logit dispersion 

parameter calibration problem investigated by Yang et al. (2001). If the equilibrium 

constraints are removed, the learning problem would directly learn a mapping from the 

context features x to link flows v. In this case, the problem reduces to neural-network-

based short-term traffic flow prediction investigated in the literature (e.g., Yao et al. 

(2019)). 

The loss function is flexible to accommodate modelers’ needs and available data sources. 

It can include partial aggregate traffic state observations like link flow and travel time, 

path choice probabilities from trajectory data, and benchmark OD demands from planning 

agencies. The framework integrates multi-source data into a single loss function and 

effectively handles inconsistencies among different data sources.  

3.1.3 Neural Network Architecture 

This section discusses the design of the neural network architecture in the proposed end-

to-end learning framework. The architecture needs to accommodate the changes in the 

road network topology to facilitate “what-if” analysis. Moreover, it can be designed to 

ensure that the cost function possesses the desired properties to enable efficient training. 

We will illustrate it with the cost function with inelastic demand as an example. 

Hereinafter, we highlight that features/attributes are the concatenation of single 

features/attributes for all elements within one set. The design of the cost function requires 
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special consideration. We distinguish “feature” from “attribute” to avoid ambiguity: 

features refer to the input data of neural networks whereas attributes refer to the learned 

outputs of neural networks. 

Attribute Net 

We propose Attribute Net to learn the (path) attributes considered by travelers in their 

route choice decision process. As shown in, attributes 𝑠[𝑚] depend on path flows ℎ[𝑚] and 

road network features 𝑥𝒢. Attribute Net 𝐺θ learns a continuous mapping from path flows 

and road network features to attributes, defined as: 

𝐺θ: ℋ[𝓂] × 𝒳𝒢 → 𝒮. (9) 

One may construct the Attribute Net with fully connected layers and learn a global 

mapping from link flows to link costs (e.g. Heaton et al. (2021)). In this case, the input 

and output dimensions of fully connected layers depend on the number of links in the 

road network. However, in “what-if” analysis, a planning agency may change the road 

network topology by adding or removing links. The fully connected layers—by definition 

with fixed size input and output—are incapable of accommodating the change in the 

number of links. 

Inspired by the “kernel” concept in Convolution Neural Networks, we propose to learn 

the local attributes on the link, node, and path levels with three parallel, fully connected 

layers. As shown in Figure 3, the feature/attribute subscripts for enumerating the elements 

within a set and the superscripts for a sample m are omitted to facilitate presentation. The 

fully connected layers that learn link, node, and path attributes are called link, node, and 

path block respectively. The parameters of each block are shared among all elements of 

the same level to capture repeated patterns. Each block’s input and output dimensions are 

independent of road network topology, allowing for changeable input sizes. To facilitate 

the presentation, the superscripts for a sample m are omitted for the rest of this section. 
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We use the superscript 𝒜, 𝒩, and 𝒫 to distinguish the notations related to link, node, and 

path block. 

The detailed constructions of link, node, and path block are similar. Hence, we take the 

link block as an example. As opposed to accepting multiple links as input, the link block 

takes the single link flow and single link features of one link 𝑎 ∈  𝐴 as input and outputs 

the corresponding link attributes, defined as: 

𝑔θ
𝒜: 𝑅+ × 𝒳𝒶

𝒜 → 𝒮𝒶
𝒜 , (10) 

where |ℐ𝒜| is the number of features associated with one link; |𝒮𝒜| is the number of link 

attributes considered by travelers. Note the input and output dimensions of the link block 

are independent of link numbers.  

 

Figure 3 Illustration of Attribute Net 

Similarly, let node flow be the sum of link flows from all approaches at node. To capture 



 

27 

the interactions among link flows, node block 𝑔θ
𝒩: 𝑅+ × 𝒳𝓃

𝒩 → 𝑠𝑛
𝒩  maps the single node 

flow 𝑢𝑛 ∈ 𝑅+ and single node features of one node to its local node attributes. The node 

attributes are the concatenation of single node attributes.  

And the path block 𝑔θ
𝒫: 𝑅+ × 𝒳𝓅

𝒫 → 𝑠𝑝
𝒫  maps the single path flows and single path 

features one path to its path attributes. Finally, the attributes π are the concatenation of 

link attributes, node attributes and path attributes, defined as:   

𝑠 = {Λ𝑠𝒜,  Σ𝑠𝒩 ,  𝑠𝒫}, (11) 

where is Σ the path-node incidence matrix. 

To facilitate training and enhance model performance, we can fully or partially replace 

each block with a pre-calibrated function, if available. For instance, we can replace the 

link block with the link performance functions calibrated by a planning agency. In 

addition, our future study will explore the use of convolution layers to accommodate 

changeable input sizes. The challenge will be to ensure the desired properties of the 

learned cost function. 

Weight Net 

Weight Net is proposed to capture traveler heterogeneities and learn the OD-specific 

preferences over learned attributes. We treat all travelers between the same OD pair as a 

single class that shares the same preferences. It is straightforward to further classify 

travelers between one OD pair to be multiple classes to reflect the preference 

heterogeneity among them. Weight Net 𝐿𝜃 learns a mapping from traveler characteristics 

to OD-specific weights 𝑤 ∈  𝑊, defined as 𝐿θ: 𝒳ℛ → 𝒲. 

OD pairs can be added or removed in “what-if” analysis thus Weight Net also needs to 

accommodate the change in the number of OD pairs. Weight Net learns a function that 
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maps the single traveler characteristics of one OD pair 𝑥𝑟
ℛ  to its OD-specific weights 𝑤𝑟 . 

The parameters of neural network are shared among all OD-pairs to capture the repeated 

patterns in weights. Recent developments in interpretable neural-network-based discrete 

choice modeling can be incorporated into the proposed framework and guide the design 

of neural network architectures, particularly when behavior interpretability is desired.  

Cost Function and Regularization 

Subsequently, we assume that travelers choose routes to minimize their perceived path 

costs, which are represented as a weighted sum of attributes. Equivalently, let context 

features 𝟙 ∈ 𝑅|𝕊|  include traveler characteristics 𝑥ℛ  and road network feature 𝑥𝒢 . The 

cost function maps path flows and context features to path costs. The continuity of cost 

function ensures the existence of equilibria. However, stronger properties of the cost 

function may be desired to ensure the uniqueness of equilibrium or enable an efficient 

solution algorithm. In this section, we seek to entail the cost function with monotonicity 

and Lipschitz continuity via neural network regularization techniques. Both 

monotonicity, which suggests the path cost is non-decreasing as more travelers use this 

path, and Lipschitz continuity, which suggests a finite change in path flows results in a 

finite change in path costs, are mild assumptions but will largely enhance computational 

traceability. 

Theorem 1 shows sufficient conditions to entail the cost function with monotonicity and 

Lipschitz continuity. Note that only path flows are treated as variables in this case.  

Theorem 1 (Monotonicity and Lipschitz continuity of cost function) The cost function 

is maximal monotone and Lipschitz continuous with respect to path flows if weight is 

positive and link block, node block and path block are column-wise monotone. 

Recall that each block is composed of fully connected layers. Let 𝑦(𝑙−1)and σ(𝑙)  represent 

the input and activation function of the l-th layer respectively. We constrain the sign of 

weights as strict positive by using SoftPlus as the last layer of Weight Net. The column-
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wise monotonicity and Lipschitz continuity of attribute blocks, however, are more 

challenging to obtain. Most activation layers, such as ReLU and SoftPlus, are monotone 

and Lipschitz (Bibi et al., 2019) and both monotonicity and Lipschitz continuity are 

preserved via operator composition. Therefore, we only need to regularize the linear layer 

to entail the block with desired properties. Without loss of generality, we design a 

monotonic and Lipschitz continuous architecture that explicitly constrains the weights of 

the linear layers. More specifically, the weight of each linear layer is constrained to be 

positive to maintain monotonicity. The linear layer can be parameterized specifically if 

strict monotonicity or strong monotonicity are desired. The spectral normalization as 

proposed by Miyato et al. (2018) is applied to constrain the spectral norm of each 𝑊(𝑙)and 

maintain Lipschitz continuity. This explicit method is reliable, easy to implement, and 

shows satisfactory performances in our numerical experiments. Other regularization 

methods, such as adding heuristic penalty terms to the loss function or solving integral 

problems in forward propagation (Wehenkel and Louppe, 2019; Gouk et al., 2021) are 

open for exploration in our future study. 

3.1.4 Training 

We need to deal with two computational challenges to implementing implicit layers in 

the proposed framework. First, it requires efficiently solving a batch of VI problems in 

the forward propagation, as previous methods for solving VI may not necessarily be  

suitable for batch operations. Second, because solving VIs usually entails many iterations, 

explicit backpropagation through each iteration can be computationally expensive. 

Efficient differentiation through the implicit layer, i.e., the VI, is needed.  

This section presents an auto-differentiation-based gradient descent algorithm to solve 

the MPEC in Eq. (8). For simplicity, we explicitly formulate the dependence of the 

parameters while omitting input features. The optimality condition of the parametric VI 

in Eq. (6) can be recast as a fixed-point problem 𝑦 =  𝑔(𝜃, 𝑦) where 𝑔(𝜃, 𝑦) is the fixed-

point operator. We define the total loss function 𝑓 (𝜃, 𝑦)  = ℓ(𝑦(𝜃), 𝑦)  +  𝑟(𝜃). 

We consider the generalized cost function is strongly monotone and Lipschitz continuous 
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so that the equilibrium state is unique and is a continuous function of parameter θ 

(Dafermos, 1988). In a model-free modeling approach, neural networks can be 

regularized to ensure these desired properties. In this case, the proposed algorithm updates 

the parameter with its hypergradient in each training epoch. The hypergradient requires 

differentiating through the equilibrium state 𝑦∗(𝜃) to calculate the implicit gradient. To 

formally define the implicit gradient, we assume the following assumption holds.  

Assumption 1 The fixed-point operator 𝑔(𝜃, 𝑦)  is continuously differentiable with 

respect to 𝜃 and 𝑦 and the corresponding matrix is invertible. 

Supposing Assumption 1 holds, one can differentiate through the optimality condition 

and calculate the implicit gradient. Here we proceed to discuss the differentiability 

assumption in Assumption 1. If we assume the travelers follow the logit model when 

choosing their paths, the fixed-point operator is a logit loading function and is indeed 

differentiable. In a more general setting, the solution to VI can always be formulated as 

the fixed point of a gradient-projection operator. The gradient-projection operator is non-

differentiable at the boundary of the feasibility set. In this case, Assumption 1 implies 

that we are focusing on the differential region of the gradient-projection operator, 

thereby keeping it within the differential programming region for convergence analysis. 

This approach is also adopted by Li et al. (2022). How to tackle the non-differentiability 

at the boundary remains to be an open question. 

We consider training the end-to-end framework with K epochs. Each epoch handles 

two sub-problems: forward propagation, which finds an approximate optimal response 

variable via N iterations, and backpropagation, which employs auto-differentiation to 

approximate the hypergradient and update parameters. We will then elaborate on each 

subproblem. Subscript script k associates a variable with the 𝑘-th epoch and superscript 

𝑛  and 𝑞  associates a variable to the 𝑛 -th forward and 𝑞 -th backward iteration 

respectively. 

Forward: N-step Closed-Form Updates 
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Batched operation is essential for efficiently handling large empirical data sets when 

training the end-to-end framework. Specifically, forward propagation requires solving 

a batch of VIs in parallel, rather than solving a single constrained VI. Previous methods 

for solving VIs require repeatedly calling external optimization libraries to project onto 

the polyhedron constraint set of feasible path flows, and thus may not necessarily be 

suitable for batch operations (Li et al., 2020). To manage batch operations, we require 

a closed-form method for updating response variables so that we can encode this 

iterative process with computational graphs. These closed-form update rules also 

facilitate efficient auto-differentiation through equilibrium states during 

backpropagation (see Figure 4). We will discuss two types of solution algorithms, 

decoupled gradient-projection and mirror descent method, to handle link-based and 

path-based formulation respectively.  
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Figure 4 Illustration of the end-to-end learning framework 

We apply the decoupled gradient-projection method to deal with link-based 

equilibrium constraints. The forward propagation updates the response variable via 𝑁-

step gradient-projection operations.  In a link-based formulation, the feasibility set is 

the Minkowski sum of the feasibility set for each OD pair, namely, 𝒴 = ∑ 𝒴𝓇𝑟∈ℛ  

where 𝒴𝓇 = {𝑦𝑟: 𝑦𝑟 ≥ 0, Λ⊤𝑦𝑟 = 𝑑𝑟}. This allows us to break down the constraints by 

OD pairs and sequentially handle every pair on a large road network. Projecting directly 

onto the polyhedron constraint set, which requires repeatedly solving a batch of 

quadratic optimization problems. To tackle this efficiently, we leverage recent 

advancements in operator-splitting methods and decompose the polyhedron constraint 

set 𝒴𝓇 into two simpler sets: (i) one only involves inequality constraint 𝒴𝓇
1 = {𝑦𝑟: 𝑦𝑟 ⪰

0}and (ii) another only involves equality 𝒴𝓇
2 = {𝑦𝑟: Λ⊤𝑦𝑟 = 𝑑𝑟}. The projection onto 
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two simplier set 𝒴𝓇
1  and 𝒴𝓇

2  have closed-form solutions that can be encoded within 

computational graphs and then efficiently implemented in a batched manner. The 

convergence of this decoupled gradient-projection method has been demonstrated by 

Heaton et al. (2021). 

Starting with an initial point, the decoupled gradient projection repeats 𝑦𝑛+1 =

𝑔(𝜃𝑘 , 𝑦𝑛)for each step until the iteration step 𝑛  exceeds the maximum number of 

iterations 𝑁. The initial point is not necessarily feasible and will be projected onto the 

feasible region during the iteration. The selection of step size is vital. If the step size is 

too large, the iteration may diverge; if too small, the convergence can be extremely 

slow. The optimal step size depends on an unknown Lipschitz constant, the exact 

computation of which is NP-hard (Virmaux and Scaman, 2018). We thus explore two 

variants of decoupled gradient-projection iteration to adjust the step sizes and speed up 

the convergence: Anderson mixing (Walker and Ni, 2011) and weighted ergodic 

iteration (Davis and Yin, 2017). 

Anderson mixing updates 𝑦𝑛+1  as an optimal linear combination of τ previous 

iterations. The optimal step size solves a quadratic program where the objective 

function is to minimize the sum of optimality gap over τ iterations. Here 𝜙𝑛−𝑖+1 

represents the optimality gap defined as follows. 

Mirror descent method has shown good performance in dealing with path-based 

equilibrium constraints. We define the path choice probability σ𝑛 =
𝑦𝑛

Γ
⊤Γ

𝑦𝑛
 as auxiliary 

variables. The response variable is updated with a closed-form mirror descent operator. 

The constraint set of response variables becomes a probability simplex in path-based 

formulation and mirror descent has been shown efficient to deal with such a constraint 

set. This update rule can be viewed as a variant of the logit loading where the observed 

cost is scaled by the logarithm of route choice probability. The mirror descent iteration 

converges to the solution to the parametric VI in Eq.(2), as demonstrated in Li et al. 

(2022). 
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Additionally, solving for the auxiliary fixed point is equivalent to finding the root of 

𝑦∗ − 𝑔θ(𝑦∗, 𝑥) = 0 via a root-finding method. The projection operator is non-

differentiable at the boundary of a set and thus Newton s method may diverge. 

Therefore, we use Broyden’s method, a quasi-Newton method that does not require 

differentiability. Broyden’s method approximates Newton’s direction and updates the 

point as 𝑦𝑛+1 = 𝑦𝑛 − 𝑠𝑛. Let the initial guess be 𝑠0 = −𝐼 and the direction is updated 

as  𝑠𝑛+1 = 𝑠𝑛 +
Δ𝑦𝑛+1−𝑠𝑛Δϕ𝑛+1

Δ𝑦(𝑛+1)⊤𝑠𝑛Δϕ𝑛+1 Δ𝑦(𝑛+1)⊤𝑠𝑛, where Δ𝑦𝑛+1 = 𝑦𝑛+1 − 𝑦𝑛 and Δϕ𝑛+1 =

ϕ𝑛+1 − ϕ𝑛 .  

Backward: Approximate Hypergradient 

In forward propagation, we consider a practical setting where the parametric VI is 

solved with 𝑁 steps and terminated before reaching perfect equilibrium. Consequently, 

in backpropagation, we need to approximate the hypergradient at a non-optimal 

response variable. To avoid the computationally expensive matrix inversion in 

approximating the implicit gradient, we present two auto-differentiation-based methods 

to approximate the implicit gradient. 

Iterated Differentiation (ITD) memorizes the trajectory of N-step forward iterations and 

directly backpropagates through the equilibrating trajectory. In the N-th forward 

iteration, the response variable 𝑦𝑘
𝑁 depends on 𝜃𝑘 and 𝑦𝑘

𝑁−1, namely 𝑦𝑘
𝑁 = 𝑔(𝜃𝑘 , 𝑦𝑘

𝑁−1). 

Here we use the fixed-point operator g as the “unified” operator that includes both 

gradient-projection operator and mirror descent operator. By applying the chain rule, 

we obtain a computational tractable approximation for the implicit gradient under ITD.  

Inexact Implicit Differentiation (IMD) approximates the Hessian-inverse-vector 

product by solving an auxiliary fixed-point problem. Reformulating the definition of 

auxiliary variable suggests that it solves an auxiliary fixed-point problem. Then IMD 

recursively approximates the auxiliary variable using Q-step fixed-point iteration to 

approximate hypergradient under IMD. The auxiliary fixed-point iteration converges if 
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𝐼 − ∇𝑦𝑔(𝜃𝑘 , 𝑦𝑘
𝑁) is a stable matrix with a maximum eigenvalue that has a magnitude 

less than one. Previous studies show that these iterations typically are convergent in 

practice (Bai et al., 2019). 

There are other methods in the literature to reduce the computational difficulty by 

approximating the matrix inversion. First, the Jacobian-free backpropagation replaces 

the matrix inverse with one identity matrix. This method can be viewed as a 

preconditioned gradient and only requires backpropagating through the final forward 

step (Fung et al., 2021). Second, an inverse matrix can be approximated with truncated 

Neumann series, reducing the computational cost from matrix inversion to matrix-

matrix multiplications. 

Remark 2 Calculating the gradients of equilibrium flows with respect to demand or supply-side 

perturbations has been studied as equilibrium flow sensitivity analysis in the transportation 

literature. Tobin and Friesz (1988) showed that the Jacobian exists if the utilized path set remains 

the same with a small perturbation in parameters. Patriksson (2004) further suggested that the 

Jacobian exists if all unused paths remain unused with the perturbation. Li et al. (2020) pointed 

out the Jacobian exists if the cost function is strongly monotone in a neighborhood of h∗. These 

conditions may not hold in a general setting. However, the aforementioned numerical methods 

work well in our numerical experiments. 

To sum up, leveraging the hypergradient approximated under ITD and IMD, the 

parameter for epoch k is updated with learning rate 𝛽 >  0 as with gradient descent 

under approximate implicit gradient. Here we adopt a warm-start strategy by setting 

the initialization as the output of the preceding training epoch rather than initiating it 

with random values. 

3.2 Feasibility Analysis 

The primary goal of the end-to-end framework is to support downstream planning by 

conducting “what-if” analyses and comparing different planning or design options. To 
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ensure consistent comparisons, a reference or benchmark is required, for which the 

notion of equilibrium has long been utilized due to its independence from initial 

conditions, behavioral foundation, and mathematical traceability. However, real-world 

network states may never reach equilibria, and equilibrium states are rarely directly 

observable from empirical data but must be inferred. 

The above two points create a dilemma: on one hand, empirical observations do not 

reflect equilibrium while, on the other hand, the modeling paradigm requires 

equilibrium. To reconcile, we assume that empirical flow observations oscillate around 

an “ideal” equilibrium state or are perturbations from this state. Consequently, such an 

“ideal” equilibrium state is defined as the one that is the closest to all perturbed 

observations by a distance measure. The end-to-end learning framework seeks to learn 

this ideal state from finite observations. Conceptualized as a mathematical construct 

derived from empirical data, this “ideal” equilibrium state serves as a crucial 

benchmark, enabling consistent comparisons across different planning options. Our 

analysis in this chapter seeks to determine whether the proposed framework can learn 

this “ideal” equilibrium state from data. 

We proceed to evaluate the feasibility of the proposed end-to-end network equilibrium 

model by comparing its population risk against that of the target model. As illustrated, 

the difference between the two population risks can be decomposed into three distinct 

components: expressivity, generalization, and optimization risk. Each represents a 

unique challenge in the end-to-end process. 

We analyze each risk under the following two assumptions: 

Assumption 2 (Lipschitz continuity of the loss function) The loss function ℓ( ) is L-

Lipschitz continuous in y. 

Assumption 3 (Well-posed target cost function) The target cost function is continuous 

in x and µ-strongly monotone and L-Lipschitz continuous in y. 
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Following the compact parameterized VI formulation, this feasibility analysis applies 

to both path- and link-based formulations. While our primary focus is on the path-based 

formulation, both formulations are validated through numerical experiments. 

First, expressivity risk arises when modelers, using imperfect prior knowledge, fail to 

select a model component that accurately represents real-world processes. The end-to-

end framework is proven to be expressive: this framework, when parameterized with 

sufficiently large neural networks, can replicate any unique, differentiable equilibrium 

state that solves a “well-posed” VI.  Theorem 2 establishes that the expressivity risk 

becomes negligible when the augmented cost function is parameterized by a 

sufficiently expressive neural network. In other words, the end-to-end framework, 

supported by neural networks, can accurately replicate any unique, differentiable 

equilibrium flow that solves the “well-posed” VI. 

Theorem 2 (Expressivity risk) Suppose Assumptions 1, 2 and 3 hold. If the augmented 

cost function is parameterized by an infinite-depth neural network with a continuous 

nonpolynomial activation function δ, the expressivity risk is bounded by arbitrarily 

small ϵ > 0. 

Modelers may also pre-calibrate certain components using domain knowledge, leaving 

the remainder to the end-to-end framework. Such pre-calibration can reduce overall 

expressivity risk if it lowers the learning error in critical components. It is therefore 

essential to strategically choose which components to learn. Focusing on less important 

components will not reduce expressivity risk if significant errors persist in critical ones.  

To continue the analysis of generalization risk, generalization risk emerges when the 

framework, trained on a limited dataset, struggles to adapt to new, unseen data. This 

end-to-end framework is demonstrated to be able to generalize to unobserved data when 

trained with sufficient observations.  

Lemma 2 (Bounded approximate implicit gradient) Under Assumptions 3 and 4, the 

approximate implicit gradient is bounded above. 
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Building on Lemma 2, the following theorem provides an upper bound for the 

generalization risk. 

Theorem 3 (Generalization risk) Suppose there exists a parameterized model that 

yields zero loss on one sample, where the parameterized cost is L-Lipschitz continuous 

in θ and x, the generalization risk is bound above and decreases with the number of 

samples. 

As shown in Theorem 2, the generalization bound decreases at a rate of number of 

samples and scales with the feasible parameter set size. This suggests that larger 

training samples and simpler models help control generalization risk. 

Finally, optimization risk arises from the complexity of finding the optimal parameters, 

which involves solving a batch of VIs and differentiating through equilibrium states. 

Convergence analysis shows that ITD requires an iterative equilibrating process to 

guarantee local convergence, while IMD can compensate for the absence of an 

equilibrating process with additional information from the implicit function theorem.  

Table 1 Summary of trade-offs. Results marked with an asterisk (*) are suggested but not 

explicitly proven due to the complexity of finding global optima in MPEC. 

 # parameters |Θ|↑ # training samples |M|↑ Forward iterations N↑ 

Model risk ↓ = = 

Generalization risk ↑ ↓ = 

Optimization risk* ↑ ↑ ↓ 

Table 1 summarizes the trade-offs in inversely learning an end-to-end network 

equilibrium model. Increasing model parameters reduces expressivity risk but raises 

the likelihood of overfitting and training complexity. Expanding the training dataset 

improves generalization but may complicate optimization. Finally, increasing the 

number of forward iterations enhances the approximation of user equilibrium but incurs 

higher computational costs and potential numerical instability when N becomes very 

large. 
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The proposed end-to-end framework allows each model component to be parametric, 

semi-parametric, or end-to-end. Modelers may select specific functional forms for 

certain components, encoding them with computational graphs while leaving other 

components learnable. Compared to a fully end-to-end approach, parametric and semi-

parametric approaches offer greater interpretability but require stronger prior 

knowledge and correct model class selection, thereby heightening expressivity risk. 

Nonetheless, the analysis of generalization and optimization risk remains valid for both 

parametric and end-to-end settings under the stated assumptions. 

3.3 End-to-End Optimization 

We further investigate efficient solution algorithms to prescribe improvement strategies 

using the end-to-end learning framework, using a transportation design problem as an 

example. Transportation network design seeks to optimize road network expansion to 

accommodate anticipated travel demands in the future years. A central challenge is 

accounting for how travelers adapt their route choices in response to network 

expansion. These choices are inherently uncertain, influenced by supply-side factors 

such as weather-dependent link capacities and demand-side factors such as daily 

variations in travel demand. Traditional approaches to transportation network design 

under uncertainty typically begins by modeling these parameters—for example, link 

capacities or demands—as random variables following calibrated probability 

distributions. The resulting network design problem is formulated as a stochastic 

optimization (SO) problem with user equilibrium constraints. The objective is to 

minimize social cost, such as total system travel time or emissions, by selecting 

appropriate design variables, such as continuous capacity expansions. Initially, 

planners are often assumed to be risk-neutral and aim to minimize the expected total 

social cost (Patriksson, 2008). Later approaches extend this framework to incorporate 

more flexible risk attitudes, such as chance constraints (Lo and Tung, 2003). 

We focus on context-related uncertainty, which is particularly challenging. Consider a 

planning agency that seeks to allocate a budget to optimize continuous link capacity 
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expansions for long-term demand growth. The design vector 𝑧 ∈  𝑍  represents the 

proportion of capacity expansion for each link, subject to the budget constraint 𝑍 =

 {0 ≤  𝑧 ≤  1, 𝑠𝑇𝑧 ≤ s̅ }, where s̅ is the total budget and s is the per-project budget. 

Network expansion affects travelers’ route choices, as travelers can reoptimize their 

paths to minimize individual disutility in response to expanded capacity. Beyond route 

selection, network expansion represents long-term infrastructure investments that may 

influence broader travel decisions, such as whether and where to travel. 

In an idealized setting where the uncertain context is fully known, a risk-neutral planner 

aims to minimize the expected social cost ω(z, y) under contextual uncertainty: 

min
𝑧

∑ ω(𝑦∗[𝑚], 𝑧)

𝑀

𝑚=1

 𝑠 . 𝑡.  〈𝐹𝜃(𝑦∗[𝑚], 𝑧, 𝑥[𝑚]), 𝑦 −  𝑦∗[𝑚]〉 ≥ 0, ∀𝑦 ∈ 𝒴 (12) 

This bi-level formulation mirrors the structure of the end-to-end learning problem. 

Consequently, both can be addressed using the same class of solution algorithms. 

3.4 Equipment 

The Lab for Innovative Mobility Systems (LIMOS) at the University of Michigan 

utilizes the campus-wide Great Lakes High-Performance Computing (HPC) Cluster, a 

state-of-the-art resource supporting simulation, modeling, machine learning, data 

science, genomics, and other computationally intensive research. This Slurm-managed 

cluster comprises 380 nodes with a total of 13,000 processing cores, providing at least 

5 GB of RAM per core. Optimized for large-scale batch processing, the cluster is well-

suited for handling extensive, long-duration tasks requiring significant CPU, memory, 

or I/O resources. All experiments for this project were conducted on the Great Lakes 

cluster using a single NVIDIA A40 GPU (48 GB of memory), 8 CPU cores, and 64 GB of 

system memory. 
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4 Validation: Synthetic Data  

In this section, we validate the proposed end-to-end framework using three synthesized 

datasets from three benchmark networks widely used in the literature, i.e.,  Braess, Sioux 

Falls, and Chicago Sketch. We use the Braess example to validate the approximation 

guarantee of the end-to-end framework. Through the Sioux Falls example, we examine 

the effect of enforcing equilibrium constraints and provide practical guidelines for 

training. The Chicago Sketch example demonstrates the simultaneous learning of 

supply and demand-side components. We evaluate the framework performance using 

two key metrics: the empirical optimality gap, which measures the convergence of the 

parametric VI, and the Weighted Mean Absolute Percentage Error (WMAPE), which 

quantifies percentage differences in flow predictions. We define the empirical 

optimality gap as the sample-averaged inner product between the generalized cost 

function and the changes in the response variable across two successive. 

4.1 Example 1: Learn Demand Component on Braess 

The Braess network has five links, four nodes, and a single OD pair from node 1 to 

node 4 with three feasible paths. With a maximum possible demand of q = 5, the 

ground-truth demand function for OD pair r follows and exponential function using 𝑥𝑟 

represents OD-specific features; 𝑥[𝑚]  is a one-dimensional sample-dependent 

contextual feature; 𝛼𝑢 = 2 and 𝛽𝑢 = 4 are functional parameters. We use the standard 

BPR function as link performance functions and assume travelers only consider travel 

time when selecting their paths. The dataset includes 1024 training, 258 validation, and 

258 testing samples. 

We will focus on learning the inverse demand function in this example and assume 

both link performance and cost functions are given. We consider that multi-day link 

flows are observable, and the loss function measures the Mean Square Error (MSE) 

between predicted and observed link flow distributions. The framework is trained using 

the Adam optimizer over 𝐾 =  500 epochs with early stopping implemented if there 
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is no improvement in the training MSE over twenty consecutive epochs. The forward 

propagation uses mirror descent with 𝑁 =  100  iterations, while backpropagation 

employs the ITD method. 

We evaluate both model-free and model-based end-to-end frameworks under the 

following scenarios, fine-tuning the learning rate and step sizes via grid search for each 

setting. 

• Benchmark: We use a grid search to identify a constant demand that best 

matches all testing samples, which is 2.4 in this case. 

• Functional: Assuming the functional form is known and encoded with 

computational graphs, the framework learns two parameters: 𝛼𝑢 and 𝛽𝑢. 

• Constant: The framework learns a context-independent fixed demand, with 

neural networks using only excess demand and OD-specific features as input. 

• Linear: The neural network includes a single linear layer. 

• Nonlinear: The neural network combines a linear part (as in the Linear scenario) 

and a nonlinear part, comprising three layers with eight neurons each. 

• Residual: The neural network includes three layers with eight neurons each and 

employs a residual strategy between layers. 

Each neural network is designed to accommodate potential changes in the number of 

OD pairs during “what-if” analyses. The input dimension of these neural networks only 

depends on the number of input features, which in this case, is three. In the Nonlinear 

and Residual scenarios, neural networks are regularized to be monotone and Lipschitz 

continuous. 

Table 2 presents the WMAPE under different learning scenarios. WMAPE is shown in 
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percentage, and parentheses display the relative reduction in WMAPE. The optimal 

scenario is highlighted with a star. Same for the following tables. In Benchmark 

scenario, the link flow WMAPE is remarkably high at 72.1%. This error drops to 4.2% 

when we embed the ground-truth functional form in the framework and adjust the 𝛼𝑢  

and 𝛽𝑢. The non-zero error can be attributed to the nonconvexity of the MPEC, which 

can trap the training process at a local minimum. The model-free Constant scenario 

learns context-independent demands and yields an error of 72.3%, comparable to 

Benchmark. The Residual scenario knows contextual information but has no 

information about the functional form of the inverse demand function. By exploring 

the representation power of neural networks, the model-free framework still yields a 

WMAPE of 4.7%, comparable to the Functional scenario. This result confirms that the 

end-to-end framework can generate reliable flow distributions without knowing each 

component’s functional form. The Residual scenario provides the best performance 

since the residual strategy helps avoid the gradient vanishing when N becomes large. 

Table 2 WMAPE under different scenarios 

Model # Parameters Link flow Link time Demand 

Benchmark / 72.1 31.2 71.9 

Functional 2 4.2 (-94.1%) 1.6 (-94.9%) 3.9 (-94.6%) 

Constant 109 72.3 (+ 2.8 %) 31.28 (+2.5%) 72.4 (+ 7.0%) 

Linear 4 15.5 (-78.5%) 5.6 (-82.1%) 12.9 (-82.0%) 

Nonlinear 117 6.3 (-91.2%) 4.3 (-86.2%) 6.2 (-91.3%) 

Residual * 112 4.7 (-93.5%) 3.2 (-89.7%) 4.6 (-93.6%) 
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4.2 Example 2: Learn Demand Component on Sioux Falls 

Sioux Falls network has 76 links, 28 nodes, and 528 OD pairs. We scaled the default 

demand in Stabler (2023) by a factor of three to serve as the maximum possible OD 

demand q. The rest of the ground-truth setting follows the Braess example. The dataset 

is divided into 1,024 training, 258 validation, and 258 testing samples. We consider a 

link-based formulation using the decoupled gradient-projection method in forward 

propagation. With known link performance and cost functions, our focus is on learning 

the inverse demand function. 

We first investigate the framework performance with different forward steps. Figure 5 

shows that increasing 𝑁 from 1 to 50 enables faster and better training under both IMD 

and ITD. A larger 𝑁  requires more iterations for both forward and backward 

propagation and notably increases computation time under ITD. By contrast, IMD 

avoids the differentiation along the equilibrating trajectory and the computation time 

changes relatively minimally when 𝑁 varies. 

 

Figure 5: Framework performances with different forward iterations under (a) ITD and (b) 

IMD. 
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Moreover, Figure 5 shows that the training process under ITD stops prematurely with 

𝑁 =  1 , resulting in a high training MSE of 4e3. This highlights an iterative 

equilibrium process is necessary to ensure local convergence under ITD. By contrast, 

IMD keeps reducing the training MSE with 𝑁 =  1 because it uses extra information 

from the implicit function theorem to correct auto-differentiation. Both ITD and IMD 

manage to avoid getting stuck when 𝑁 increases to 10. ITD outperforms IMD in finding 

better local optima when 𝑁 increases to 50. 

 

(a) (b) (c) 

Figure 6 Framework performances using different backward method with (a) N = 1, (b) N = 10, 

and (c) N = 50 

 

Next, we examine whether penalizing the empirical optimality gap in the loss function 

can replace the need for enforcing equilibrium conditions during training. As illustrated 

in Figure 7, Scenarios with optimality gap regularization are represented by solid lines, 

while those without are denoted by dotted lines. When the equilibrium constraints are 

poorly approximated with N = 1, the optimality gap regularization indeed steers the 

parametric VI towards a smaller empirical optimality gap. As the training proceeds, the 

optimality gap MSE converges towards zero. Similar findings have been found in 

(Guarda et al., 2023). By contrast, when the equilibrium constraints are well-

approximated with N = 50, the optimality gap regularization has little impact on 
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framework performance. 

 

  

(a) (b) 

Figure 7 (a) Testing optimality gap and (b) training optimality gap MSE with respect to epochs. 

Despite guiding the training process towards an equilibrium state, the optimality gap 

regularization fails to lead the framework to find suitable parameters. As shown in 

Figure 7(b), the training MSE with optimality regularization and 𝑁 =  1 remains 

noticeably higher than that with 𝑁 =  50. The link flow prediction error with 𝑁 =  1 

is also significantly larger. This suggests that “softly” penalizing the optimality gap in 

the loss function is not a viable alternative to the “hard” enforcement of equilibrium 

conditions. Therefore, it is essential to at least roughly approximate the equilibrium 

conditions to facilitate effective end-to-end learning. 

Finally, we experiment with two enhanced training strategies: 

• Adaptive N (denoted as A): Increases the number of forward iterations linearly 

during training, from 50 to 150 in our case. 

• Two-stages training (denoted as T): Initially, the linear part of the neural 

network is trained while keeping the nonlinear part fixed. Once the linear part 

converges, both parts are trained jointly in the second stage. 
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(a) (b) 

Figure 8 (a) Training link flow MSE and (b) testing link flow WMAPE with respect to epochs. 

In the Benchmark scenario, we proportionally scaled the maximum possible OD 

demands q and use grid search to determine the optimal scale that best matches all 

observations, which is 1.2 in this case. The remaining Functional, Nonlinear, and 

Residual scenarios follow the Braess example with 𝑁 =  50  and ITD as the 

backpropagation method. Table 3 indicates that the adaptive 𝑁 strategy improves the 

model’s performance because a rough estimation of equilibria is sufficient when the 

parameters are considerably off-target during the initial training epochs. The two-stage 

training strategy also enhanced performance because it trains a shallow linear network 

in the first stage. On one hand, a linear approximation of the monotone generalized cost 

function is relatively good. On the other hand, shallow neural networks mitigate 

vanishing or exploding gradients during training. Thus, incorporating both strategies, 

our end-to-end framework achieves the best performance of 4.3%, comparable to the 

Functional scenario (i.e., 1.3%). 

In this example, we calculate WMAPE only for flows over 0.001 to avoid infinite 

WMAPE due to zero ground-truth flows in training samples. Thus, despite Sioux Falls’ 

larger size, its WMAPE is numerically smaller than Braess. Since our main concern is 

the relative WMAPE reduction, rendering this should be insignificant to our 

conclusions. 

4.3 Example 3: Learn Behavior Component on Sioux Falls 
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In this case study, each OD pair r is assumed to have one continuous feature denoting 

income and one binary feature denoting travel purpose, which equals 1 if the destination 

of OD pair r is a commercial area and equals 0 otherwise. We assume the path travel 

time includes two parts: link travel times and node delays. 

The link travel time on link a follows the BPR function. The node delay on node follows 

an exponential form as proposed by Jeihani et al. (2006), Moreover, pavement surface 

conditions, such as roughness, are the main feature that decides user comfort (Hawas, 

2004; Yin et al., 2008). We classify the links as good and bad pavement conditions and 

assume travelers experience a non-link-additive discomfort on bad-condition links. Let 

𝑥𝑝  denote the proportion of bad-condition link length to the total path length. The 

discomfort follows the exponential form and increases with the bad-condition link 

proportion. We set the discomfort is zero if path p only includes good condition links. 

Table 3 WMAPE under different training settings 

Scenario # Parameters Link flow  Link time Demand 

Benchmark / 50.9 97.6 59.3 

Functional 2 1.3 (-97.4%) 3.7 (-96.2%) 1.3 (-97.8%) 

Linear 4 14.1 (-72.3%) 40.9 (-58.1%) 6.4 (-89.2%) 

Nonlinear 117 10.2 (-80.0%) 12.1 (-87.6%) 6.8 (-88.5%) 

Nonlinear (+ T) 117 9.0 (-82.3%) 24.4 (-75.0%) 5.6 (-90.6%) 

Nonlinear (+ A) 117 7.9 (-84.5%) 22.1 (-77.4%) 4.9 (-91.7%) 

Nonlinear (+ T + A) * 177 4.3 (-91.5%) 9.2 (-90.5%) 2.7 (-95.4%) 
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Residual 112 12.8 (-74.9%) 37.8 (-61.4%) 7.2 (-87.9%) 

Residual (+ A) 112 8.3 (-83.7%) 24.4 (-75.0%) 5.2 (-91.2%) 

The “ground-truth” cost for travelers of OD pair 𝑟 to use path 𝑝 is a weighted sum of 

link travel times, node delays, and a discomfort constant. This suggests that travelers 

with higher incomes have higher weights on both node delays and discomfort. 

Travelers traveling to commercial areas have higher weights on discomfort yet lower 

weights on node delays. 

The feasible path set includes the top three paths with the shortest free-flow time. If one 

OD pair has fewer than three feasible paths, its path flows are padded to a dimension 

of three and the padded path flows are nullified with the mask trick during training. 

Three demand levels are considered: (i) base scenario, (ii) uncongested scenario with 

base demand reduced by 50%, and (iii) congested scenario with base demand increased 

by 50%. For each scenario, we randomly sample travel demands from a uniform 

distribution between 0.5 and 1.5 base demand. The equilibrium flow is solved for each 

sampled demand given the ground-truth cost. The training and test sets include 1, 536 

and 512 samples respectively. So far, all links are assumed to be observable. 

The link block is replaced with pre-calibrated BPR functions. Weight Net, node block, 

and path block are composed of three fully connected layers with four neurons and with 

LeaklyReLu as the activation function. Normalization layers are added to enhance 

training stability. The input of the node block includes node flows and intersection 

parameters. The proportion of bad-condition links is the input of the path block. The 

input and output dimensions are as follows: Weighted ergodic iteration and IMD are 

used as the default forward and backward methods respectively. The model is trained 

with Adam optimizer with Mean Square Error as the loss function under the learning 

rate of 0.1. Early stop is enabled if no loss descent is observed in five consecutive 

epochs. To illustrate the feasibility and importance of learning route choice preferences, 

we benchmark our model with three well-established network equilibrium models. 
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First, the cost function is assumed to be link travel time and travelers choose the paths 

with minimum travel time, yielding conventional Deterministic User Equilibrium 

(denoted as DUE). The second behavior model assumes travelers’ path choices follow 

a logit model and thus results in a Stochastic User Equilibrium (denoted as SUE). In 

this case, the dispersion parameter is calibrated, similar to Yang et al. (2001). The third 

model keeps the same path choice model but assumes the cost function is a linear 

combination of link travel time and the proportion of bad-condition links (denoted as 

SUE-2). Two linear coefficients are calibrated in this case, similar to Guarda and Qian 

(2022). 

We compare the efficiency and robustness of different forward algorithms. The first 

type includes decoupled gradient-projection iteration (F) and its accelerated variant: 

Anderson mixing (FA) and weighted ergodic iteration (FW). The second type is 

Broyden’s method (R). We also explore the combinations of two types (denoted as F-

R, FA-R, FW-R), which use decoupled gradient-projection iterations initially and 

switch to the root-finding when the relative residential is sufficiently small. We 

consider two types of tests: in-distribution and out-of-distribution. In in-distribution 

tests, the model is trained on observations from the Sioux Falls network and tested on 

the same road network. By contrast, in out-of-distribution tests, the trained model is 

tested on a partially changed road network. In our experiments, four links are added to 

the original Sioux Falls network and 25% links are randomly selected to increase or 

decrease their capacities by 50%. Decreasing the capacities under congested demand 

generates unreasonable training sets and is excluded in later analysis. 

Performance comparisons 

Table 4 compares the MAPE of different network equilibrium models. The proposed 

end-to-end learning framework is denoted as “Implicit”. We use DUE as the baseline 

and denote its MAPE as 𝜂0. The change in MAPE of other models is denoted as ∆𝜂 =

 𝜂 −  𝜂0. Note that the behavioral assumptions of SUE are different from the ground 

truth. Although SUE can reduce the in-distribution MAPE by 18.2%, it shows inferior 

performance in out-of-distribution tests, increasing the MAPE by 9.2%. This suggests 
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inaccurately assuming an SUE behavior model can cause bias in parameter estimation, 

misleading the flow prediction in subsequent “what-if” analysis. Similar results have 

been shown in Torres et al. (2011) and Van Der Pol et al. (2014). In comparison, SUE-

2 performs better, because it happens to capture the impact of discomfort from the bad-

condition links. The performance of SUE-2 is still less satisfactory compared with the 

end-to-end framework because the former learns linear combinations by assumption 

whereas the latter can deal with nonlinear patterns. Since neural networks include more 

parameters than baseline models and offer greater flexibility to recover the complicated 

ground truth cost function, the proposed framework has the best performance in both 

in-distribution and out-of-distribution tests as expected, reducing the benchmark 

MAPE by 61.5% and 55.1% respectively. 

Table 4 MAPE of different network equilibrium models. 

In-distribution test 

Demand Capacity DUE 𝜂0 SUE ∆𝜂 SUE-2 ∆𝜂 Implicit ∆𝜂 

Base Default 20.6 -4.7 -11.8 -15.0 

Uncongested Default 12.5 -3.1 -0.2 -3.4 

Congested Default 13.41 -0.6 -4.4 -10.2 

Mean 15.5 -2.8 (-18.2%) -5.4 (-35.1%) -9.5 (-61.5%) 

Out-of-distribution test 

Demand Capacity DUE 𝜂0 SUE ∆𝜂 SUE-2 ∆𝜂 Implicit ∆𝜂 

 Default 22.3 -7.3 -14.4 -16.6 

Base -50% 11.3 +13.4 -1.6 -7.9 

 +50% 8.1 +4.8 -1.0 -1.3 

 Default 23.4 -8.5 -15.6 -14.9 
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As shown in Table 5, FW and FW-R achieve the smallest MAPE of 5.7% in in-

distribution tests whereas FW-R slightly outperforms FW by 1% in out-of-distribution 

tests. Forward algorithms involving Anderson mixing, such as FA and FA-R, can be 

the most unstable. By contrast, forward algorithms involving weighted ergodic 

iteration, such as FW and FW-R, are more stable as they consistently shrink the step 

size during iterations. 

 

Figure 9 Training process of different forward algorithms. 

Figure 10 compares the performance of three backpropagation methods: Jacobian-Free 

(JF) approximation, Newman Approximation (NA), and Inexact Implicit 

Differentiation (FA) under different demand levels. FA has the best performance 

among the three proposed backward methods. JF significantly hurts the learning 

process. Similar results have been found by Huang et al. (2021). 

Uncongested -50% 12.1 +12.6 -2.4 -4.1 

 +50% 10.4 +2.5 -3.3 -1.1 

Congested 

Default 13.8 -3.5 -6.3 -10.1 

+50% 11.9 -3.5 -5.2 -6.4 

Mean 14.2 +1.3 (+9.2%) -6.2 (-44.0%) -7.8 (-55.1%) 
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The effects of spectral normalization are shown in Figure 11. “w” suggests ”with 

spectral normalization” and ”w/o” suggests ”without spectral normalization”. Although 

requiring additional computation, the spectral normalization constrains the Lipshitz 

constant of the cost function within a reasonable range and speeds up the convergence 

by three to four times under all demand levels. 
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Table 5 MAPE of proposed forward algorithms. 

In-distribution test 

Demand Capacity F FA FW R F-R FA-R FW-R 

Base Default 8.4 5.6∗ 5.7 8.0 8.7 6.2 6.0 

Uncongested Default 9.5 9.1 8.1 9.5 8.3 8.5 8.0∗ 

Congested Default 6.1 3.2 3.2 6.2 11.0 4.5 3.1∗ 

Mean 8.0 6.0 5.7∗ 7.9 9.3 6.4 5.7∗ 

Std 1.8 3.0 2.4 1.7 1.4 2.0 2.5 

Out-of-distribution test 

Scenario Capacity F FA FW R F-R FA-R FW-R 

 Default 7.5 5.7∗ 5.8 7.2 7.7 6.4 6.0 

Base -50% 4.5 3.4∗ 3.4∗ 5.0 4.8 3.6 3.4∗ 

 +50% 9.1 6.9∗ 7.0 10.2 9.3 8.8 7.4 

 Default 8.3 8.5 7.6 8.1 8.0 8.2 7.5∗ 

Uncongested -50% 9.5 8.0 7.3 9.9 7.6 14.4 6.9∗ 

 +50% 8.4 9.4 7.9∗ 8.4 8.2 7.9∗ 7.9∗ 

Congested 

Default 5.7 3.6∗ 3.8 5.1 10.2 4.3 3.6∗ 

+50% 8.8 5.5∗ 5.7 6.2 11.9 6.1 5.5∗ 

Mean 7.7 6.4 6.1 7.5 8.5 7.5 6.0∗ 

Std 1.8 2.2 1.7 2.0 2.1 3.4 1.7 
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Robustness analysis 

In this section, we examine the robustness of the proposed framework by relaxing 

model assumptions. FW, R, and FW-R have the best performance and are thus selected. 

Since in-distribution and out-of-distribution performances have similar trends, all the 

following analyses are based on in-distribution tests. 

 

(a) (b) (c) 

Figure 10 Performances of different backpropagation methods under (a) base, (b) uncongsted, 

(c) congested demand. 

 

`    

(a) (b) (c) 

Figure 11 Effects of spectral normalization under (a) base, (b) uncongested, and (c) congested 

demand. 

All links are assumed to be observable in previous analyses. We relax this assumption 

by randomly observing a proportion of links. FW-R is the most stable when only a 
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proportion of links are equipped with sensors. For example, Figure 12 shows the MAPE 

of FW-R slightly increases from 8.0% to 11.5% when the proportion of observable 

links decreases from 100% to 20% under uncongested demand. Since approximation 

errors can accumulate in both forward propagation, where iterations terminate with 

residuals, and backward propagation, where the gradients are approximated, the 

training of the proposed framework can stop at local optimums. Previous studies have 

shown the training process and final performances of models involving implicit layers 

can be relatively noisy and require more hyperparameter tuning (Huang et al., 2021; Li 

et al., 2020). 

Usually, there are no direct observations of OD demands in urban road networks. OD 

demands need to be estimated and thus prone to estimation errors. We examine the 

model performances when the input OD demands are different from the ground truth. 

More specifically, random observation noises, which are proportional to the ground 

   

(a) (b) (c) 

Figure 12 Model performances with different sensor coverage rates under (a) base, (b) 

uncongested, and (c) congested demand. 

truth, are added to all demands. As shown in Figure 13, FW is the most stable in the 

case of demand noises. Given a noise scale of 100%, the increase in its MAPE ranges 

from 12.5% to 22.2% under different demand levels. Note that if we consider an elastic 

demand user equilibrium, the travel demand function can also be approximated with 

another neural network and learned with the proposed framework. The simultaneous 
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learning of route choice preferences and demand functions will be explored in our 

future study. 

  

 

(a) (b) (c) 

Figure 13 Model performances with demand noises under (a) base, (b) uncongested, and (c) 

congested demand. 

The selection of feasible path sets can be tricky when no information about path choices 

is available. We examine the model performances when the selection of feasible paths 

is different from travelers’ actual path choices. There are 1,587 paths in the ground-

truth path set and we consider two scenarios: one with an incomplete path set of 1,058 

paths and the other with a redundant path set of 2,645 paths. FW-R has the best 

performance when the selection of feasible paths is inaccurate. As shown in Figure 14, 

an incomplete path set increases the MAPE by 8.0% under base demand, compared 

with an increase of 2.9% induced by a redundant path set. Since an incomplete path set 

yields more negative effects, one can start with a large feasible set with sufficient 

feasible paths and gradually reduce it during training. 
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`    

(a) (b) (c) 

Figure 14 Effects of inaccurate feasible path sets under (a) base, (b) uncongested, and (c) 

congested demand. 

To sum up, the proposed framework is robust to incomplete observations and input 

noises. More specifically, the combined method (i.e., FW-R) is more robust when only 

a proportion of links are equipped with sensors or no information about path choice is 

available. The fixed-point iteration method (i.e., FW) is preferred when the input OD 

demands are poorly estimated. 

4.4 Example 4: Learn Demand and Supply component on Chicago Sketch 

We consider a path-based formulation on the Chicago Sketch with 2,950 links, 933 

nodes, and 2,493 OD pairs. Each OD pair has three feasible paths, and the feasible path 

set is assumed as prior information. We scale the default demand in Stabler (2023) by 

a factor of five and use it as the maximum possible OD demand. The following inverse 

demand function is used and the ground-truth BPR function is assumed with a context-

dependent capacity for each link 𝑎 ∈  𝐴: 

𝑐𝑎𝑝𝑎(𝑥) = 𝑐𝑎𝑝𝑎
0 ⋅ (α𝑐 ⋅ 𝑒𝑥 + β𝑐) 

where 𝑐𝑎𝑝𝑎
0 is the default capacity; 𝛼𝑐 = 1.5 and 𝛽𝑐 = 1.4. The dataset contains 258 

training, 64 validation, and 64 testing samples. We assume the cost function is known 

and focus on learning the inverse demand function and link performance function. 

Mirror descent with a forward step of  𝑁 =  10 and ITD are used in training. 
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The end-to-end framework is set to learn the inverse demand function, the link 

performance function, or both, using either a model-based or a model-free approach. In 

the model-free setting, the inverse demand function is approximated using the residual 

neural networks specified in the Sioux Falls example. We employ a physics-informed 

neural network to learn the link-performance function. We retain the functional form 

of the BPR function and approximate the context-dependent capacities using neural 

networks with three layers and eight neurons each. Additionally, both link time and 

flows are assumed observable, enabling modelers to include either or both of these 

observations in the loss function We consider two benchmarks with fixed capacities in 

the standard BPR function. Benchmark-1 scales the default demand with a factor of 

3.56 and achieves the best match to observed flows (29.5%) with a high time error of 

160.5%. Benchmark-2 scales the default demand with a factor of 1.4 and achieves the 

best match to observed time (5.1%) with a high flow error of 68.9%. 

Table 6 shows the performance of the end-to-end framework with different learnable 

components and loss functions. Scenarios yielding the lowest errors are marked: a 

single star denotes the best model-free scenario, while double stars indicate the best 

model-based one. The joint calibration of supply and demand-side components proves 

important. Both Functional and Residual scenarios, when adjusting both sides, yield 

the lowest time and demand errors. The Functional scenario has the lowest flow error 

of 18.1% and time error of 2.6%, while the Residual scenario generates comparable 

results of 23.3% and 8.2%. Incorporating flow observations into the loss function in 

general outperforms the use of link time. Nevertheless, using link time observations 

can help avoid overfitting when the link performance function can be adjusted. Overall, 

the complexity of training escalates with the size of the road network. The Chicago 

sketch example has higher errors than Sioux Falls and Braess, regardless of the 

approach used. 
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Table 6 WMAPE under different training settings. 

Component Approach Loss function Link flow  Link time  Demand  

Benchmark-1 / / 29.5 160.5 21.5 

Benchmark-2 / / 68.9 5.1 68.3 

  Flow 22.1 27.1 14.2 

 Functional Time 28.3 9.2 21.9 

𝜆𝜃 
 Flow + time 22.1 27.1 14.1 

 Flow 23.5 64.8 15.3 

 Residual Time 23.5 54.2 16.2 

  Flow + time 23.3 * 65.8 15.1 

  Flow 32.9 1751.8 19.6 

 Functional Time 39.3 8.6 19.6 

𝜏𝜃 
 Flow + time 32.8 1734.3 19.6 

 Flow 34.1 15.8 19.6 

 Residual Time 36.5 16.0 19.6 

  Flow+ time 32.8 15.9 19.6 

  Flow 18.1 ** 2.6 ** 7.7 ** 

 Functional Time 22.3 5.1 9.5 

𝜆𝜃 and  

𝜏𝜃 

 Flow + time 18.3 2.6 7.9 

 Flow 26.9 8.2 * 13.6 * 

 Residual Time 37.6 10.4 19.0 

  Flow + time 25.0 193.9 13.9 
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5 Validation: Empirical Data from Ann Arbor  

5.1 Data Processing 

This section outlines the crowdsourced data processing steps. We first construct a 

hypothetical graph using the trip-based travel demand model from the Southeast 

Michigan Council of Governments (SEMCOG) 2050 Regional Forecast, using year of 

2025 as base year. We then extract traveler patterns from vehicle telemetric data 

provided by General Motors (GM) during evening peak hours.   

Constructing the Hypothetical Graph  

The Ann Arbor road network is derived from the trip-based travel demand forecast 

model in the SEMCOG 2050 Regional Forecast, using 2025 as the base year. The 

SEMCOG network includes highways and primary roads to capture major travel 

patterns. For this study, the network topology was provided in shapefile format, and the 

Ann Arbor subnetwork was selected. Two categories of link features were extracted: 

(i) free-flow speed and capacity, and (ii) traffic volume and travel time from the trip-

based assignment outputs. 

A total of 259 TAZs within Ann Arbor were initially included, along with boundary 

TAZs to capture cross-boundary trips (see Figure 15). Geometric and socio-economic 

attributes of the TAZs were extracted from the SEMCOG model. After merging TAZs 

with no connected links, 178 TAZs were retained for analysis, each connected with 

artificial connectors. The resulting graph consists of 810 nodes (178 centroids and 632 

intersections) and 2,847 links (1,583 road segments and 1,264 connectors). Based on 

aggregated OD demand from the trip-based model, the Ann Arbor road network 

includes 31,668 OD pairs, of which 7,952 involve at least one boundary TAZ. 
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Figure 15 Data processing pipeline. 

Trajectory Data and Map Matching  

Crowdsourced vehicle telemetric data were provided by GM, covering evening peak 

hours (3:00–6:00 PM) between January 1 and December 31, 2022. To match raw 

trajectories with the Ann Arbor road network, we applied the map-matching algorithm 

from Wang et al. (2023). This process converts raw sequences of (latitude, longitude, 

timestamp) into link-level trajectories, recording travel times, speeds, and stop delays. 
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Since residential roads are excluded from the network, trajectories sometimes only 

partially cover links, which can lead to underestimation of travel times. To address this, 

link travel time was estimated using link length divided by average speed rather than 

raw observations. 

 

Figure 16 (Left) raw trajectory, (middle) matched trajectory using Wang et al. (2023), and 

(right) filtered result. Color indicates time progression, with darker colors representing earlier 

timestamps. 

The algorithm in Wang et al. (2023) is optimized for lane-level and signal-control 

analysis but is less effective for capturing trip-level behavior. A trip is defined as the 

full sequence of links traversed between an origin and destination. As illustrated in 

Figure 16, raw trajectories often contain detours through residential roads (e.g., a 

shopping mall), which manifest as loops. To better capture trip-level behavior, we 

implemented a filtering process. We retained only link-level trajectories with 

sufficiently low matching error and removed those where the time difference from the 

preceding link was shorter than the free-flow travel time. When filtering disconnected 

a trip, the fastest path was appended to reconnect the sequence. This procedure removed 

approximately 9.8% of the matched link-level trajectories, producing cleaner trip-level 

representations. 

Each record in the crowdsourced dataset corresponds to an engine start-to-stop interval, 

which may include multiple trips. Detours into residential roads—interpreted as access to 

activities—were used as splitting points. In practice, such detours often create short self-

loops of length two (A–B–A). These loops were treated as access trips and used to 

segment longer records into subtrips. For example, Figure 17 shows a residential-to-
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school pickup round trip segmented into two trips. To ensure data quality, we also 

removed any path whose travel time exceeded three times the shortest-path travel time 

for the corresponding OD pair and time slot. After processing, we identified a total of 

9,382 subtrips per day during the three-hour evening peak. 

 

Figure 17 (Left) Raw trip with a detour to residential roads (red circle); (middle) first subtrip; 

(right) second subtrip. Color indicates time progression, with darker colors representing earlier 

timestamps. 

This case study focuses on the Ann Arbor, Michigan road network. As shown in Figure 

18, the network consists of 810 nodes (178 TAZ centroids and 632 intersections) and 

2,847 links (1,583 road segments and 1,264 connectors). The network topology, zone 

attributes, and OD matrix are derived from the SEMCOG 2050 Regional Forecast. 
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Figure 18 Ann Arbor network. Traffic analysis zones are shaded by area type; darker colors 

correspond to higher area type indices 

GM crowdsourced trajectory data were collected during the evening peak hour (4:30–

5:30 PM) throughout 2022. After applying the map-matching algorithm Wang et al. 

(2023), the dataset yielded an average of 3,127 observed trips per day. Each trip reports 

with starting/ending time, staring/ending location, list of traversed link segments and 

per link arrival time. These trajectories reveal variability in travel patterns, which 

allows us to demonstrate the proposed end-to-end framework using Ann Arbor as a 

case study with GM’s vehicle telemetric data. 

5.2 Data Analysis  

The processed crowdsourced trajectory data offers insights into travel patterns in two 

novel ways. First, compared with traditional fixed traffic sensors such as loop detectors 
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or cameras, trajectory data provides more detailed information about individual travel 

behavior. This enables the analysis of spatial-temporal travel patterns at multiple levels 

of spatial aggregation, including the link, OD, activity-chain, and network levels. 

Second, crowdsourced trajectory data is passively collected, allowing for continuous 

observation over an extended period. The one-year duration enables us to capture and 

analyze daily variations in travel patterns and to relate these variations to external 

context features. We consider three categories of contextual features: weather-related, 

weekday-related, and accident-related. Specifically, we collect daily snow and 

precipitation data to represent average weather conditions and retrieve extreme weather 

and hazard event reports from the RITIS platform. Below, we examine spatial-temporal 

travel patterns revealed by the one-year crowdsourced trajectory data at the link, OD, 

activity-chain, and network levels. 

Link-level 

On the link-level, Figure 19 shows that approximately 70% of physical road segments 

included in the graph are observed on weekdays, compared to about 60% on weekends. 

The average link stop delay weighted by the number of observations and averaged 

across the network, and the total system travel time are both significantly higher on 

weekdays. Total system travel time peaks around 17:00 on weekdays and around 15:30 

on weekends. 

 

Figure 19 (a) Number of observed links, (b) average stop delay per link, and (c) total system travel 

time on weekdays and weekends. 
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Figure 20(a) shows the correlations among four link features, including curvature, 

highway classification, length, and maximum speed, and observed link travel patterns. 

Roads with higher speed limits (and thus more likely to be highways) are observed 

more frequently. As illustrated in Figure 20(b), highways experience an average 

reduction of 7.68 seconds in link travel time under snow conditions, while non-

highways show a reduction of only 3.82 seconds. 

 

Figure 20 (a) Correlations between link-level features and observed travel behavior. (b) 

Comparison of snow-related reductions in link travel time for highway and non-highway segments 
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5.2.1 OD-level 

 

Figure 21 (a) Total number of observed trips, and (b) number of unique OD pairs. 

At the OD level, Figure 21 shows that travel activity is significantly higher on weekdays 

than on weekends, with approximately 10,000 trips observed over three hours on 

weekdays, compared to around 5,000 on weekends. On weekdays, travel demand peaks 

first at 15:00 and again at 17:00, while on weekends, the peak occurs around 15:00. 

Across both cases, between 4,000 and 6,000 OD pairs are observed in the trajectory 

data over the three-hour period. 
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Figure 22 Spatial distribution of trip attraction (top row) and production (bottom row) on 

weekdays (left) and weekends (right). Darker colors indicate higher aggregated trip counts. 
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Figure 23 Temporal distribution of (a) internal and (b) external trips. 

 

Figure 26 explores how characteristics of origin and destination TAZs influence 

internal and external travel demand. Internal trips are more sensitive to area type, 

especially that of the destination, while external trips are more strongly associated with 

specific land uses such as retail, trade, healthcare, and social services. On weekdays, 

management and entertainment-related activities show a strong association with 

external travel. Notably, retail-related features at the origin have a greater impact on 

internal travel during weekends. These features are used to select the OD pairs included 

in the Ann Arbor case study. 
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Figure 24 Mean number of OD observations for top internal and external trips by weekday 
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Figure 25 Mean number of observed dates for top internal and external trips by weekday 
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Figure 26 Correlation between OD demands and origin/destination TAZ characteristics. 
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One commonly used assumption in travel demand forecast is that travelers seek to 

minimize their travel time, resulting in route choices that follow the shortest or quickest 

path. This principle has long been used in travel demand modeling and planning. With 

trajectory data, we can directly observe the paths chosen by travelers and their 

experienced travel times, enabling us to empirically examine whether travelers follow 

shortest paths or conform to Wardrop’s equilibrium behavior. 

Specifically, we evaluate the equilibrium gap for each OD pair r ∈ R. The observed 

variables include: the set of observed paths 𝑃𝑟; the sampled path flow ℎ𝑝 for each path 

𝑝 ∈  𝑃𝑟, where the total sampled OD demand is 𝑞𝑟 = ∑ ℎ𝑝𝑝 ∈ 𝑃𝑟
; the travel time 𝑡𝑝 for 

each path  𝑝 ∈  𝑃𝑟 . The shortest observed path time is defined as 𝑡𝑟
∗. The OD-level 

equilibrium gap is then calculated as the percentage absolute different between the used 

path and shortest path. At the network level, the equilibrium gap is computed as a 

demand-weighted average. 

 

Figure 27 Network-level equilibrium gap. 

Figure 27 shows that the average network-level equilibrium gap on Ann Arbor ranges 

from 1.5 to 2.0, indicating that travelers often select routes that are 50% to 100% longer 

than the shortest available path. This suggests that travelers may not be switching to 

alternative paths even when current paths are congested, possibly due to limited 

knowledge of the network or a preference for familiar paths. Interestingly, the equilibrium 

gap is larger on weekdays, despite the fact that more trips are likely to be routine 

commutes. Previous studies using taxi data from 2009 and 2014, collected over a one-
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month period in the large cities of Wuhan and Shenzhen, report lower equilibrium gaps 

(1.2–1.4) (Chen et al., 2024). This difference is likely attributable to the use of taxi data, 

as taxi drivers are generally more familiar with the road network than the average 

commuter. Additionally, Ann Arbor is much smaller than Shenzhen and Wuhan. 

Therefore, an increase of 100% over the shortest path in Ann Arbor may correspond to 

only a 5-minute difference, whereas in larger cities, even a 40% increase could result in 

a substantially longer delay. 

Figure 28 compares the equilibrium gaps for the top 30 internal and external OD pairs on 

weekdays and weekends. Longer trips tend to exhibit smaller equilibrium gaps, often 

below 1.2. Our analysis also finds a positive correlation between OD demand and the 

equilibrium gap, suggesting that higher sampled demand may be associated with greater 

deviation from the shortest path. 

5.2.2 Activity-chain-level 

One advantage of trajectory data is its ability to reveal the activity chains that travelers 

follow, offering deeper insight into how multiple trips are conducted. Figure 29 shows 

the correlation between TAZ features and activity chains. On weekdays, higher university 

enrollment and a higher ratio of autos to workers are positively associated with chain 

travel generation. On weekends, TAZs where more than 50% of households own two or 

more vehicles are more likely to originate chain trips. On weekdays, such TAZs are more 

likely to be destinations for chain travel. Additionally, weekend chains often include trips 

that enter and exit the Ann Arbor region, as indicated by the external flow variable. Figure 

29 shows that the area types of the origin and destination are the most important factors 

correlated with activity chains. 

5.2.3 Network-level 

To conclude, Figure 30 illustrates how contextual features, including the number of 

accidents, hazardous weather events, precipitation, and snowfall, impact network-level 

travel patterns. On the demand side, snowfall significantly reduces the number of 
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observed internal and external trips, particularly on weekends. Accidents and hazardous 

weather events also contribute to reduced weekday demand. Meanwhile, accidents 

significantly increase network-level stop delays and total system travel time on weekdays. 

This analysis informs the selection of contextual features used in the Ann Arbor case 

study. 

 

Figure 28 Mean equilibrium gap for internal and external trips by day type: (top row) weekdays, 

(bottom row) weekends. 
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Figure 29 Correlation between chain travel demand and TAZ-level features on weekdays and 

weekends. 
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Figure 30 Correlation between network travel patterns and context features on (a) weekday 

 

5.3 Experiment Settings 

In this section, we specify the basic setting of the Ann Arbor case study. Figure 31(a) 

compares the numbers of observed trips on snow and non-snow days, where the x-axis 

represents the number of average trips between an OD pair and the y-axis indicates the 

number of observed OD pairs. Fewer trips are observed on snow days, and similarly on 

weekends, as shown in Figure 31(b). To capture these effects, context features include 

indicators for non-snow days and weekdays. 
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Figure 31 Differences in observed trips between (a) snow and non-snow days, and (b) weekdays 

and weekends.  

We consider two settings covering the top 20% and 65% of total OD demands, 

respectively. To improve scalability and computational efficiency, we further reduce the 

number of links considered per OD pair by leveraging observed trajectories. Although the 

Ann Arbor network contains 2,847 links, travelers typically use only a subset of them. 

Empirical data indicate that travelers may deviate from the shortest path. Therefore, for 

each OD pair, we select the top six fastest paths to construct a subset of active links 

considered by travelers when choosing routes. This subset can be further refined by 

calibrating a perturbed utility model (Fosgerau et al., 2022), though estimating active link 

sets is beyond the scope of this project and is not discussed in detail. As shown in Table 

7, using a subset of active links significantly reduces the number of variables.  

Table 7 Observation statistics by number of OD pairs. 

Scenario # ODs Max #active links Avg # active links Avg # ODs observed 

20% 1,817 73 25.5 761.6 

65% 10,418 86 27.8 1,525.2 

We consider the following functional forms for the cost functions. For a physical link, the 

link performance function can be either linear or quadratic function of the link flow and 

capacity ratio plus free flow time. The free-flow travel time is computed as the link length 

divided by the maximum speed. The maximum speed is defined as the posted speed limit 
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plus 5 mph, reflecting typical driving behavior in Michigan. The context denotes the 

normalized snow depth to account for winter weather effects, and 𝑐𝑎𝑝𝑎  is the link 

capacity. Higher-order polynomial functions, such as the 4th-degree polynomial used in 

the standard BPR function, were also considered but are not listed here due to their poor 

empirical performance. One possible explanation is that the observed flows do not fall 

within the region where the flow-to-capacity ratio approaches 1. 

For virtual links, the cost of the inverse demand function is selected from different forms 

plus the free-flow travel time of the shortest path for each OD pair. The other context 

vector represents normalized context features and OD-specific features. The dataset is 

divided into 237 training samples, 64 validation samples, and 64 testing samples. We use 

three-fold cross-validation and report the average performance and standard deviation 

across the three runs unless stated otherwise. 

5.4 Presentation of Results 

Because trajectory data are sampled, link travel times are more reliably observed than 

link flows. Therefore, Table 8 reports the link time MAPE across different numbers of 

OD pairs (referred to as “scenarios”) and different choices of basis functions (referred 

to as “settings”). The benchmark context-independent flow prediction from the 

benchmark trip-based demand forecast model yields a link time MAPE of 83.6%. 

Incorporating context features and estimating context-dependent user equilibrium 

substantially reduces the MAPE, and prediction accuracy improves as the number of 

OD pairs increases. The best performance is achieved in Setting 2, which uses a linear 

link performance function and a quadratic inverse demand function, resulting in a 

MAPE of 34.3%. The reported MAPE of 34.3% also includes error due to the observed 

flows not strictly adhering to user equilibrium conditions. In addition, the parallel block 

coordinate descent algorithm scales efficiently and completes within 10 minutes. 

In addition to prediction accuracy, we also examine the link and demand parameters 

learned under different settings. For the remainder of the discussion, we focus on the 
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second scenario, which covers 65% of the total demand, due to its higher accuracy. 

Table 9 presents the three parameters of the link performance function under different 

settings. The strictly positive parameters across all settings suggest that snow reduces 

link capacity, with a stronger impact on links with higher maximum speeds. 

 

Table 8 Model performance across different scenarios and settings. Link time MAPEs are 

reported as percentages with standard deviations in parentheses. 

Scenario Setting Link performance Inverse demand Link time MAPE 
Time 

(min) 

   Benchmark 83.6 / 

 1 Linear Linear 36.6 (1.8) 0.6 

 2 Linear Quadratic 36.1 (2.0) 0.3 

 3 Linear Linear + entropy 35.3 (1.9) 0.1 

20% 

4 

5 

Linear 

Quadratic 

Quadratic + entropy 

Linear 

37.2 (1.2) 

35.0 (1.0) 

0.7 

0.5 

 6 Quadratic Quadratic 35.6 (2.1) 0.6 

 7 Quadratic Linear + entropy 35.6 (1.4) 0.3 

 8 Quadratic Quadratic + entropy 36.3 (1.1) 0.7 

 1 Linear Linear 35.5 (3.4) 2.4 

 2 Linear Quadratic 34.3 (1.9) 1.9 

 3 Linear Linear + entropy 41.4 (3.6) 1.1 

65% 

4 

5 

Linear 

Quadratic 

Quadratic + entropy 

Linear 

36.4 (3.0) 

37.6 (2.5) 

1.4 

3.9 

 6 Quadratic Quadratic 36.1 (2.2) 4.2 

 7 Quadratic Linear + entropy 45.0 (4.5) 1.1 

 8 Quadratic Quadratic + entropy 36.1 (1.6) 8.2 

 

Table 10 shows the non-zero parameters of the inverse demand function under different 

settings. In Setting 2, which achieves the highest predictive accuracy, the positive 

coefficient of 0.22 for the “Destination # veh” feature suggests that an increase in the 
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number of vehicles at the destination raises the inverse demand cost, resulting in higher 

travel demand. Similarly, the positive coefficient of 0.22 for the “Non-snow” feature 

indicates that demand is generally higher on non-snow days. 

Setting 3, while yielding a higher link time MAPE (increasing from 34.3% to 41.4%), 

better captures the influence of context features. The positive coefficient of 0.11 for the 

“Weekday” feature in Setting 3 indicates that the end-to-end framework, in addition to 

recognizing reduced demand on snow days, also learns that travel demand is lower on 

weekends, echoing empirical trends shown. Furthermore, the greater number of non-

zero parameters in Setting 3 suggests an enhanced ability to capture variations in travel 

patterns associated with different OD features. 

Table 9 Parameters of link performance function under different settings. 

Setting 
Link 

performance 

Inverse 

demand 
Link basis 

𝜃1 (max 

speed) 
𝜃2 (snow)  

𝜃3 (max speed × 

snow) 

1 Linear Linear Quadratic 1.00 0.28 0.03 

2 Linear Quadratic Quadratic 1.00 0.37 0.09 

3 Linear 
Linear + 

entropy 
Quadratic 1.00 0.14 0.03 

4 Linear 
Quadratic + 

entropy 
Quadratic 1.00 0.06 0.00 

5 Quadratic Linear Polynomial 1.00 0.21 0.03 

6 Quadratic Quadratic Polynomial 1.00 0.17 0.03 

7 Quadratic 
Linear + 

entropy 
Polynomial 1.00 0.27 0.08 

8 Quadratic 
Quadratic + 

entropy 
Polynomial 1.00 0.14 0.03 
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Table 10 Non-zero parameters of the inverse demand function under different settings. 

Setting Link perform Inverse demand Demand basis OD feature Parameter 

1 Linear Linear Quadratic 
External OD 

Origin # retail 

1.00 

0.10 

2 Linear Quadratic Polynomial 

Destination # veh 

External  

Non -snow 

0.03 

1.00 

0.22 

    Destination # veh 0.79 

    Destination area type 0.81 

    
Destination # 

household 
0.34 

    Destination # retail 0.34 

3 Linear Linear + entropy Linear External OD 1.00 

    Origin area type 0.48 

    Origin # retail 0.39 

    Non-snow 0.66 

    Weekday 0.11 

   
Quadratic 

Destination # veh 0.26 

   Non-snow 0.01 

4 Linear 
Quadratic + 

entropy 

 

Entropy 

Destination # 

household 

Destination # retail 

External OD 

0.52 

1.00 

0.05 

    Origin # retail 0.76 

5 Quadratic Linear Quadratic External OD 1.00 

6 Quadratic Quadratic Polynomial External OD 1.00 

    Destination # veh 0.79 

    Destination area type 0.81 

    
Destination # 

household 
0.34 
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    Destination # retail 0.34 

7 Quadratic Linear + entropy Linear External OD 1.00 

    Origin area type 0.48 

    Origin # retail 0.39 

    Non-snow 0.66 

    Weekday 0.11 

   
Quadratic 

Destination # veh 0.01 

   Non-snow 0.01 

8 Quadratic 
Quadratic + 

entropy 

 

Entropy 

Destination # 

household 

Destination # retail 

External OD 

0.19 

1.00 

0.24 

    Origin # retail 0.65 

 

To identify potential infrastructure improvement projects, we begin by selecting the top 

20 most congested links in the network. Each selected link is assumed to allow a 

maximum of 50% capacity expansion. The construction cost for each link is assumed 

to be proportional to its maximum speed, scaled by a factor of 0.1. These candidate 

links are highlighted in blue in Figure 32. The total estimated cost for upgrading all 20 

links is 44.93 (in units of $10,000). For this experiment, the budget constraint is set to 

20, introducing a hard limit for investment planning. To simulate realistic variability in 

travel conditions, context features are randomly sampled from a normal distribution 

truncated to the interval [0, 1]. 
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Figure 32 Candidate links for capacity expansion. 

 

Figure 33 presents the reduction in total system travel time achieved through the 

proposed link upgrades. The design based on the learned model results in measurable 

improvement in overall network efficiency. 
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Figure 33 System travel time before and after design implementation 

 

Using the learned inverse demand function and subject to the budget constraint, the 

recommended infrastructure design is illustrated in Figure 34. The color map visualizes 

the investment allocation across candidate links, with intensity representing relative 

importance under the optimization. 

 

Figure 34 Recommended investment levels across candidate links 
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6 Discussion 

6.1 Validity of hypotheses 

The results of this project provide strong evidence supporting the proposed hypotheses.  

Hypothesis 1: End-to-end learning improves predictive accuracy. 

The findings confirm that the end-to-end framework significantly improves predictive 

performance relative to traditional four-step models. In the Ann Arbor case study, the 

framework reduced link travel time prediction errors from 83.6% in the benchmark 

model to 34.3%. The ability to simultaneously estimate supply- and demand-side 

parameters led to consistent accuracy across varying network conditions, including 

changes in topology, incomplete data, and noisy inputs. 

Hypothesis 2: Data-driven integration enhances behavioral realism. 

Empirical analyses on Ann Arbor dataset demonstrate that the framework effectively 

captures traveler behavior, particularly variations in route choice and responses to 

congestion. By incorporating trajectory and multi-source data, the model successfully 

identified travel reductions on weekends and during snow events, patterns that 

conventional models often fail to capture. This validates the role of emerging data 

sources in enriching behavioral representation. 

Hypothesis 3: Unified calibration reduces error propagation. 

The simultaneous calibration of supply and demand components minimized the 

cascading errors common in traditional sequential models. By embedding both 

components within a single optimization structure, the framework produced more 

stable and consistent equilibrium estimates. This reduction in error propagation 

strengthens the reliability of the predictions. 
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Hypothesis 4: Practical applicability to planning organizations. 

The end-to-end framework demonstrates direct applicability to planning agencies such 

as MDOT, SEMCOG, and WATS MPO. The Ann Arbor case study illustrates its 

potential as a decision-support tool, capable of evaluating strategies including capacity 

expansion. The ability to integrate multi-source data and automate calibration enhances 

its practicality for operational use, offering planning organizations a means to make 

more informed, data-driven policy decisions. 

Overall, the empirical findings validate the core hypotheses, showing that the proposed 

end-to-end framework not only advances methodological innovation but also provides 

practical value for transportation planning and management. 

6.2 Factors affecting the results 

Several factors influence the performance of the proposed learning and design 

framework. First, random noise in link flow observations poses challenges for 

parameter estimation. Because multiple parameter configurations may approximate 

observed data equally well, stochastic variability can lead to deviations in the estimated 

parameters and, consequently, in model predictions. 

Second, the availability of multi-day observations strongly impacts generalizability. In 

principle, the framework can generalize effectively if it observes diverse context 

features and travel patterns across multiple cities and over sufficiently long periods. In 

practice, however, assembling such comprehensive datasets may require years of data 

collection. Given current crowdsourced data availability, one strategy can enhance 

generalization for “what if” analyses: leveraging existing travel demand forecast 

models, like the SEMCOG benchmark model used in the Ann Arbor case study. 

Third, the richness and diversity of context features directly affect identifiability. 

Networks with limited variability in contextual factors (e.g., weather, demand 

fluctuations, special events) may restrict the framework’s ability to distinguish between 
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competing behavioral responses, thereby reducing the discriminatory power of the 

learning process. 

6.3 Implications 

The results have important implications for both methodological development and 

policy design.  

Automated Model Construction with Crowdsourced Data. 

The proposed framework demonstrates that readily available crowdsourced data can be 

systematically leveraged to automate the calibration of supply- and demand-side 

components. This reduces the reliance on costly, time-consuming data collection efforts 

and enables agencies to build and update models more efficiently.  

Vehicle connectivity and automation will make trajectory data more readily available. 

Leveraging this dataset, the proposed modeling paradigm, if successful, can potentially 

help metropolitan planning organizations and traffic authorities in the US better plan 

and manage their traffic networks to reduce traffic congestion and vehicle emissions, 

without requiring new investment in expanding the existing infrastructure. With more 

and more connected vehicles, we believe that the solution would transform the existing 

paradigm of transportation systems planning and management and has a great potential 

for widespread market adoption. 

Enhanced Predictive Accuracy in Travel Demand Forecasting. 

By integrating multi-source data and jointly estimating supply and demand, the 

framework substantially improves the accuracy of network equilibrium predictions. 

Improved forecasts of travel demand and network performance allow planners to better 

anticipate congestion patterns and evaluate the impacts of alternative policy or 

infrastructure scenarios. 
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Support for More Robust Transportation Network Planning 

The framework functions as a decision-support tool for planning organizations such as 

MDOT, SEMCOG, and WATS MPO. Its ability to combine data-driven learning with 

equilibrium modeling provides a rigorous basis for evaluating strategies such as 

capacity expansion, congestion pricing, and demand management, ultimately enabling 

more resilient and cost-effective transportation planning. 

6.4 Limitations and future work 

While the proposed framework shows promise, several limitations remain and present 

opportunities for future research. 

Time of Day and Travel Mode Modeling. 

The current framework produces only a single average travel pattern and does not 

capture time-of-day variations in traffic congestion. This limitation reduces its 

effectiveness for applications that require a more detailed understanding of travel 

dynamics, and the formation and dissipation of traffic congestion. Capturing these 

dynamics is essential for improving the realism and policy relevance of the end-to-end 

learning framework. Another valuable direction for future research would be to 

integrate this framework as an input into dynamic traffic assignment (DTA) or 

microsimulation models. 

While the proposed framework is primarily developed for vehicle assignment, future 

work could explore its applicability to transit and non-motorized travel data, as well as 

its extension to multimodal metropolitan transportation planning by encoding Logit 

models as softmax layer. 

Computational Efficiency and Software Development. 

Although the framework achieves strong predictive accuracy, computational efficiency 
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remains a challenge, particularly for large-scale networks and scenario analyses. Future 

work will focus on improving algorithmic efficiency and developing a robust, user-

friendly software package that can be readily applied by planning organizations. Such 

tools would facilitate adoption in practice and reduce the technical burden for agencies.  

Data Limitations and Robust Policy Making. 

The present study is constrained by the availability and quality of empirical data. As 

more comprehensive multi-day and multi-source datasets become available, the 

framework can be refined to deliver more reliable insights. A promising direction is to 

extend the methodology toward robust policy making, where the framework not only 

estimates current conditions but also prescribes improvement schemes—such as 

capacity expansion or congestion pricing—under data uncertainty. This raises 

additional challenges in solving end-to-end optimization problems with discrete 

decision variables (e.g., selecting projects to build or upgrade), which will require 

methodological innovations in optimization and machine learning. Moreover, an 

additional limitation is representativeness of data.  Traditional household travel survey 

data can be compared to Census data to understand representativeness.  Relying on a 

single vehicle manufacturer may miss many different types of users and can present 

bias that is hard to identify and correct. There is also value in evaluating how effectively 

the proposed framework performs in forecasting and scenario analysis. 

There would be value in testing how well this tool performs in forecasting and scenario 

analysis. Beyond adjustments to the network, future work could also explore how 

planners can best utilize this tool to evaluate different future scenarios.  

7 Conclusions 

This project advances travel demand forecast model by introducing an end-to-end 

framework that directly constructs lightweight travel demand models or integrated 

network equilibrium models from aggregate traffic observations.  
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The outputs, outcomes, and impacts of this study are summarized as follows: 

Research Outputs 

• Publication:  Liu, Zhichen, and Yafeng Yin. "End-to-end learning of user 

equilibrium: Expressivity, generalization, and optimization." Transportation 

Science (2025).

• Poster: End-to-end learning of user equilibrium: Expressivity, generalization, 

and optimization. Transportation Research Board Annual Meeting. Washington, 

D.C. 2024.

Research Outcomes 

The framework encodes unknown supply- and demand-side components as 

parameterized computational graphs and embeds them within a VI to enforce user 

equilibrium. During forward propagation, the traffic state is iteratively updated until 

equilibrium is reached; during backpropagation, discrepancies between estimated and 

observed states are used to simultaneously calibrate all parameters through auto-

differentiation. 

A key strength of the framework is its ability to integrate the four-step travel demand 

forecast within a single automated pipeline by combining domain knowledge with the 

representational power of neural networks. From a methodological perspective, the 

study addresses the main challenges of training such a unified framework. An auto-

differentiation-based gradient descent algorithm was developed, leveraging 

computational graphs for efficiency. Forward propagation employs operator-splitting 

methods and differential optimization to solve batches of VI problems, while 

backpropagation applies iterated and inexact implicit differentiation to differentiate 
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through equilibrium states. Together, these advances ensure that the framework is both 

computationally feasible and adaptable to real-world planning contexts. 

Validation on synthetic networks (Braess, Sioux Falls, and Chicago Sketch) and 

empirical data from the Ann Arbor network confirms the robustness and accuracy of 

the framework. The model achieved strong predictive performance under changes in 

network topology and maintained resilience in the presence of incomplete data and 

noisy inputs. In the Ann Arbor case study, the framework substantially reduced 

prediction errors in link travel time and successfully captured behavioral patterns, such 

as reduced travel on weekends and snow days. 

A feasibility analysis further highlighted three sources of potential error: expressivity 

risk (misrepresentation of real-world behavior due to imperfect prior knowledge), 

generalization risk (poor performance on unseen data), and optimization risk 

(challenges in solving inverse optimization problems). Results show that, with 

sufficiently large neural networks and adequate data, these risks can be mitigated, 

leading to improved predictive performance. 

Moreover, the framework represents a methodological and practical step forward in 

transportation planning. By unifying learning and optimization in a single data-to-

decision pipeline, it offers a powerful tool for policymakers. Applied to the Ann Arbor 

case, the framework demonstrated the potential to reduce congestion, evaluate 

strategies such as capacity expansion or congestion pricing, and support more efficient 

resource allocation. With automated implementation, the approach can improve 

operational efficiency within transportation agencies, reduce costs, and guide 

investment decisions that maximize public benefit. 

Research Impacts 

From an implementation perspective, the proposed framework can be incorporated into 

existing transportation planning workflows to complement, rather than replace, 

conventional travel demand models. Whereas conventional models are resource-
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intensive to construct and infrequently updated, the proposed framework produces 

lightweight demand models directly from passively collected data. These models can 

be refreshed more frequently, enabling planners to conduct light-duty analyses such as 

diagnosing network performance, identifying emerging congestion patterns, and 

prescribing short- to medium-term improvement plans and policy interventions. In this 

way, the framework adds agility to planning practice while preserving the value of 

comprehensive models for more in-depth analyses. 

Agencies may consider the following phased implementation plan: 

• Data Integration. Collect and organize traffic data along with relevant 

contextual features (e.g., weather conditions, day-of-week patterns, and 

socioeconomic indicators). These datasets provide the foundation for calibrating 

the framework and enhancing its predictive power. Another promising direction 

is the integration of multisource data to leverage existing survey datasets, 

thereby enhancing interpretability and mitigating bias. 

• Model Training and Enhancement. Apply the end-to-end framework to refine 

and augment existing travel demand forecasting models. For example, 

benchmark models can be enhanced with physics-informed neural network 

components, thereby improving predictive accuracy while maintaining 

interpretability and consistency with established practices. Alternatively, 

specific elements such as travel time functions or route choice preferences can 

be calibrated directly using techniques from the proposed framework, yielding 

incremental improvements without the need to rebuild full models.  

• Decision Support and Scenario Evaluation. Leverage the trained framework to 

construct lightweight travel demand models capable of rapidly prescribing and 

comparing candidate projects or policy interventions. Promising candidates 

identified through this process can then be subjected to deeper investigation 

using full-scale demand models. Outputs from the lightweight framework can 

also be incorporated into multi-criteria decision-making processes to evaluate 
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trade-offs among efficiency, equity, and resilience in project selection. 

In practice, the framework can serve as a decision-support tool at multiple scales. Its 

lightweight models allow agencies to rapidly evaluate emerging conditions and update 

forecasts, while comprehensive, full-scale models remain valuable for in-depth, long-

range analysis. Together, this dual approach offers transportation agencies a more 

flexible, data-driven planning toolkit to prioritize cost-effective investments, anticipate 

the impacts of context-specific conditions, and ultimately improve the performance and 

sustainability of transportation systems. 

Future research may extend the proposed framework along several promising 

directions. First, incorporating time-of-day modeling would enable the analysis of 

temporal variations in travel demand and congestion, thereby advancing beyond the 

prediction of a single average traffic pattern to capture the dynamic evolution of traffic 

states. Second, extending the framework to a multimodal setting would allow for the 

integration of mode choice behavior and the interactions among diverse transportation 

modes, thereby broadening its scope beyond traffic networks to multimodal 

transportation networks where public transit, walking, cycling, and emerging mobility 

services play critical roles. Third, incorporating richer behavioral heterogeneity, such 

as differences in value of time, risk attitudes, and route choice preferences, would 

enhance the behavioral realism of the demand model and improve its predictive 

accuracy. Fourth, expanding empirical validation to larger and more diverse 

metropolitan areas would strengthen both the robustness and the generalizability of the 

framework across heterogeneous urban contexts. Finally, exploring more realistic and 

nonlinear cost structures for infrastructure investments would generate network design 

recommendations that better align with the complexities, trade-offs, and 

implementation challenges inherent in real-world decision-making. 
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