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Executive Summary 

This study presents a data-driven approach to evaluating pavement performance using long-term 

temperature measurements from thermocouple trees embedded in pavement structures at the 

MnROAD research facility. The research focuses on three flexible and two rigid pavement sections 

equipped with vertical arrays of thermocouples that record subsurface temperature fluctuations over 

time. These measurements offer critical insight into the thermal behavior of pavement layers and their 

interaction with environmental conditions. 

To address challenges related to missing or incomplete sensor data, a compressed sampling method was 

employed. Spectral analysis techniques—Fourier Transform and Wavelet Analysis—were used to extract 

frequency-dependent characteristics of heat flow, while a probabilistic framework based on the Markov 

Chain Monte Carlo (MCMC) method enabled the estimation of time-varying thermal diffusivities. The 

frequency response function (FRF) derived from these analyses provides a quantitative measure of each 

layer’s thermal response, which can be used to detect changes in material properties due to aging, 

moisture infiltration, or compaction. 

All computational methods were implemented in Python as a modular, object-oriented package and 

shared through a publicly accessible GitHub repository, along with reproducible examples in Jupyter 

notebooks. The findings demonstrate that thermocouple trees, when combined with robust spectral and 

probabilistic tools, can serve as reliable indicators of pavement condition, enabling the detection of 

degradation patterns and supporting long-term infrastructure management decisions. 

List of deliverables 

Deliverable Description 

Python codes An oriented-object python package for the treatment, processing, and 
analysis of time-series. 

Jupyter notebooks Functional examples implemented in Jupyter notebooks. 

Processed data Image and data used to analyze the behavior of the different sections. 
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Chapter 1:  Introduction 

1.1 Background 

The Minnesota Department of Transportation (MnDOT) and the University of Minnesota (UMN) have 

launched a collaborative data science initiative to leverage modern data analysis and machine learning 

techniques in support of pavement research and decision-making. Building on past MnDOT-UMN 

collaborations, this effort reflects MnDOT’s broader commitment to innovation and data-driven 

practices in pavement engineering, infrastructure management, and policy planning. 

Transportation agencies increasingly depend on large-scale sensor data, vehicle tracking systems, and 

other digital monitoring tools to evaluate infrastructure performance. However, converting these vast 

datasets into actionable insights remains a significant challenge. In response, MnDOT has partnered with 

UMN researchers to advance the use of data science and machine learning methods to predict 

pavement performance using temperature data. The collaboration focuses on improving the 

interpretability, quality, and utility of MnDOT’s Long-Term Pavement Performance (LTPP) datasets 

through targeted research aligned with current agency priorities. 

This project encompasses work conducted in 2024 and 2025 and builds on outcomes and lessons 

learned from previous efforts. The proposed work emphasizes the continued refinement and application 

of data processing pipelines, validation of data quality and trends, and the development of exploratory 

and predictive analytics tools to support MnDOT’s operational and research objectives. 

1.2 Objectives 

The primary objective of this project is to support MnDOT’s use of data science techniques to analyze 

and enhance the quality and utility of its transportation-related datasets. The research team aims to 

develop and refine methods for exploring large-scale sensor data, identifying meaningful patterns, and 

detecting anomalies or changes over time. This includes building pipelines to clean, preprocess, and 

organize raw data into formats suitable for further analysis. In addition, the team evaluates the 

consistency, completeness, and reliability of MnDOT’s datasets. Tasks include creating tools to visualize 

data gaps, outliers, and other quality issues, as well as establishing metrics to flag problematic data 

entries. Furthermore, the team seeks to implement spectral and probabilistic analysis methods to 

identify trends, support forecasting, and extract actionable insights from complex datasets. 
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Chapter 2:  Literature Review 

This chapter presents a comprehensive literature review of pavement monitoring tools and methods 

that utilize thermal data. The review covers the relationship between pavement materials and thermal 

conduction, modeling approaches for pavement thermal conditions, sensing technologies, and 

computational methods for pattern recognition in pavement monitoring data. 

2.1 Sensor Technologies in Pavement Monitoring  

Plankis and Heyliger (2013) identified four levels of damage identification for evaluating pavement 

conditions using sensor technology: detection of damage presence, localization of damage, assessment 

of damage severity, and prediction of the remaining service life of the structure. To address the first 

three levels, Yang (2014) categorized pavement condition monitoring into two types: global and local 

monitoring. The characteristics of these two approaches are summarized in Table 2.1. Current 

applications of pavement condition monitoring primarily rely on local monitoring techniques, in which 

wired or wireless sensors are embedded in the pavement structure to capture long-term strain and 

temperature variations resulting from combined traffic and environmental effects. 

Table 2.1 Characteristics of global and local pavement monitoring 

Properties Global monitoring Local monitoring 

Model properties • Resonant frequency, 

• Mode-shape vectors/curvatures, 

• Dynamic flexibility matrix, 

• Acoustic properties 

• Track damage progress, 

• Evaluation damage detection, 

• Cracks, defects, etc. 

Examples • Unmanned aerial vehicles (UVA) 
based LiDAR, 

• IRI measurement via vehicle-
mounted sensors 

• Sensors and gauges, 

• Thermocouples, moisture probes. 

Data resolution Lower resolution, general condition 
assessment 

High resolution, detailed structural 
analysis 

Cost Generally lower cost per mile Higher cost due to labor and 
equipment 

Key applications Pavement management systems • Structural evaluation,  
• Maintenance planning, 
• Forensic investigations 

Wired Sensor Applications 

Wired sensors have become an integral tool in pavement engineering, enabling real-time monitoring 

and assessment of pavement conditions. These sensors are embedded within or mounted on pavement 

structures to collect critical data on parameters such as strain, temperature, moisture, pressure, and 

deflection. Common types of wired sensors used in pavement monitoring include strain gauges, linear 

variable differential transformers (LVDTs), fiber optic sensors, piezoelectric sensors, and thermocouples. 

Since temperature measurements significantly influence pavement structural responses, they are often 
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paired with strain or displacement measurements to enable accurate interpretation and modeling of 

mechanical behavior. 

Wired sensors are typically installed during pavement construction or through post-installation methods 

such as coring. In post-installation, a core is drilled into the pavement, the sensor is placed inside, and 

the hole is sealed with resin to prevent sensor displacement (Barriera et al., 2020). These sensors are 

connected to data acquisition systems via physical cables that transmit the collected data to centralized 

monitoring units for analysis. This wired configuration ensures reliable, high-fidelity data transmission, 

making it well-suited for long-term pavement performance monitoring. Table 2.2 summarizes the 

unique mechanisms, functions, and specific applications of various wired sensors, offering a 

comprehensive overview of their roles in pavement engineering. 

Table 2.2 Comparison of wired sensors for pavement condition monitoring 

Sensor type Example Function Mechanism 

Strain gauges Electrical resistance 
strain gauges 

Measure strain in 
pavement layers 
under loads 

Measures electrical resistance 
change when strained 

Linear variable 
differential 
transformer 
sensors (LVDT) 

Displacement 
transducers 

Measures pavement 
deflection and 
displacement 

Uses magnetic induction to 
detect linear displacement 

Fiber optic 
sensors 

Fiber Bragg grating 
(FBG) sensors 

Measures strain, 
temperature, and 
cracks in pavement 

Uses light reflection and 
wavelength shifts in optical fibers 
to measure strain and 
temperature 

Temperature 
sensors 

• Thermocouples, 

• Resistance 
temperature 
detectors (RDTs) 

Assess thermal effects 
on pavement 
durability and ageing 

• Thermocouples: voltage changes 
due to temperature difference, 

• RDTs: electrical resistance 
changes with temperature 

Moisture sensors Time-domain 
reflectometry 
sensors 

Evaluates moisture 
damage and drainage 
efficiency 

Sends and electrical signal into 
the ground and measures the 
reflection time 

Zhao et al. (2014) developed monitoring system for the runway of Shanghai Pudong International 

Airport with strain gauges, multi-depth deflectometers, temperature and moisture sensors. From site 

experiences, it was suggested that optical technology ought to be used in the system because optical 

sensors delivered signals for long distances without signal loss. When installing the sensor in cement 

concrete runway, Zhao et al. (2014) suggested that all sensors should be installed on a frame and fixed 

on the base, to protect the sensors and keep the location. 

Cook et al. (2016) used strain gauges and thermocouples to determine the interlayer delamination at 

the intersection of Runway 4 R-22L and High-Speed Taxiway N (HST-N) at Newark Liberty International 

Airport. A critical signal indicator, Δε, which is the peak difference on the micro-strain curve, was 

selected as delamination-evident events, as presented in Figure 2.1. The total distributions of responses 

for all strain gauges were analyzed using the Kolmogorov-Smirnov test to compare the Δε values 
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between delamination and non-delamination evident responses. Results showed that the Δε values for 

the bonded events were statistically different with a degree of confidence of over 99.9%. 

 

Figure 2.1 Use of Δε as delamination evidence during strain data recognition (Cook et al. 2016) 

Duong et al. (2019) used strain gauges, temperature probes, and geophones to continuously monitor an 

asphalt pavement motorway for 18 months. The mechanical response was analyzed using both a 

classical multi-layer linear elastic pavement model and a viscoelastic model. The results showed that the 

pavement response exhibited significant variations with temperature. Notably, the degree of bonding 

between layers tended to decrease at high temperatures. In their analysis, Duong et al. (2018) also 

employed signal processing methods to select low-noise signals. 

Liu et al. (2021) analyzed the dynamic strain response of a typical asphalt pavement using fiber Bragg 

grating sensing technology. The fiber Bragg grating demodulator had a data sampling frequency of 1 

kHz, enabling the timely collection of strain data. The results indicated that the longitudinal strain at the 

bottom of the surface courses under dynamic loading followed a compressive–tensile–compressive 

alternating pattern. The peak of the dynamic strain response decreased with increasing depth of the 

surface course and increased with the thickness of the base course. 

Zhao et al. (2022) investigated the long-term strain characteristics of rubberized asphalt pavement 

containing reclaimed asphalt pavement (RAP) using an accelerated pavement tester. Strain sensors were 

embedded at the bottom of the surface layer. Within 700,000 wheel passes, it was observed that the 

maximum strain after 100,000 passes accounted for over 70% of the maximum strain recorded during 

the final loading cycle. For strain under the wheel tracks, horizontal strain demonstrated better recovery 

than vertical strain. 



5 

Zhao et al. (2023) compared the strain characteristics of flexible, semi-flexible, and rigid pavements 

under accelerated loading. They found that with an increasing number of accumulated wheel passes, 

flexible pavements exhibited the largest transverse micro-strain, while semi-flexible pavements showed 

the largest longitudinal strain. Correlation analyses revealed that the maximum micro-strain had a 

strong exponential relationship with the maximum rutting depth across all pavement types. 

Liu et al. (2024) conducted structural health monitoring on asphalt pavements using resistive sensors 

and fiber optic Bragg grating sensors. Two types of external loading—an accelerated pavement testing 

machine and a stationary falling weight—were applied to monitor strain at various pavement depths. To 

ensure data accuracy, the moving average method was used in signal processing. Additionally, it was 

noted that strain accumulated during the initial loading stage and produced a peak phase difference in 

the response. Liu et al. (2024) emphasized the necessity of subtracting baseline-adjacent data from the 

sensor output time history to obtain a corrected signal response curve. 

Wireless Sensor Applications 

The complex layout and installation requirements of thermocouple systems can limit their practical 

application in large-scale field monitoring, even though they are generally more cost-effective than 

wireless sensors. Additionally, fiber sensors are susceptible to breakage during construction and 

compaction. In contrast, online monitoring techniques—made increasingly attractive by advances on the 

Internet of Things—can overcome the limitations of wired sensor systems through their high flexibility. 

Wireless sensors offer distinct advantages in large-scale or hard-to-access pavement networks, where 

installing wired systems may be impractical or prohibitively expensive. Their ability to function without 

physical connections reduces the risk of damage during construction and enhances long-term reliability. 

Furthermore, wireless systems support scalable and adaptable monitoring solutions, making them 

suitable for both research and practical applications. Commonly used wireless sensors in research and 

field applications are listed in Table 2.3. 

Table 2.3 Comparison of wireless sensors for pavement condition monitoring, mechanisms 

Sensor type Measurement 
parameters 

Advantages  Limitations Mechanism 

Micro-electro-
mechanical 
systems 
(MEMS) 

• Strain, 

• Acceleration, 

• Displacement, 

• Pressure 

Small size, low 
power, 
consumption, 
real-time data 

Sensitivity to 
environmental 
factors, 
potential drift 
over time 

Uses microscale 
mechanical components 
and electrical signals 

Wireless strain 
gauges 

• Strain, 

• Stress 

No wiring 
needed, long-
term monitoring 
capability 

Limited battery 
life requires 
calibration 

Converts strain into 
electrical resistance 
changes, transmits 
wirelessly 

Piezoelectric 
sensors 

Traffic load and 
vibration 

High sensitivity, 
energy 
harvesting 
potential 

Limited 
accuracy in 
long-term 
applications 

Converts mechanical 
stress into an electrical 
charge 
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Sensor type Measurement 
parameters 

Advantages  Limitations Mechanism 

Radio 
frequency 
identification 
(FRID)-based 
sensors 

• Crack 
propagation, 

• Displacement 

Low power 
consumption and 
low maintenance 

Short reading 
range for 
passive RFID  

Uses passive or active 
RFID signals to transmit 
data 

To estimate truck weight under different pavement temperatures and varying environmental 

conditions, Bajwa et al. (2013) developed a wireless sensor network consisting of acceleration sensors 

and vehicle detection sensors. The network was installed on a cement concrete pavement. Using a 

composite one-dimensional Euler beam on Winkler foundation model, Bajwa et al. (2013) developed a 

layered elastic theory model to simulate the effect of temperature on pavement response, enabling the 

estimation of axle loads through pavement vibrations. The system achieved an accuracy of 15% for 

individual axle loads and 10% for total load, outperforming a nearby conventional Weigh-In-Motion 

(WIM) system. 

Ceylan et al. (2016) evaluated the early-age curling and warping behavior of cement concrete pavement 

using commercial off-the-shelf micro-electromechanical systems (MEMS). During the monitoring period, 

in addition to capturing weather and seasonal variations, the data accurately reflected events such as 

thunderstorms, heat waves, and seasonal temperature changes. However, in terms of sensor durability, 

it was found that more than 70% of the embedded sensors remained functional one month after the 

pavement was opened to traffic, while only 20% were still operational ten months after opening. 

Hasni et al. (2017) employed self-powered wireless sensors with non-constant injection rates to detect 

bottom-up cracking in asphalt concrete pavements. Sensor performance was evaluated through 

numerical and experimental studies on asphalt concrete specimens subjected to three-point bending. 

Crack detection was based on voltage amplitude deviations caused by damage events. It was observed 

that the slope of the strain/voltage versus number of applied cycles curves increased as damage 

progressed. Hasni et al. (2017) suggested that the percentage drop in voltage/strain could serve as a 

reliable indicator of damage progression, while gate number and activation were good indicators of 

damage severity. 

Bajwa et al. (2020) developed a cost-effective pavement performance assessment method using a 

wireless accelerometer system. Embedded in the road, the wireless sensor measured transient 

vibrations caused by applied loads to assess pavement displacement. A developed algorithm enabled 

direct evaluation of pavement condition and performance based on vibration data. Additionally, 

displacement data could be used to back-calculate pavement layer stiffness, facilitating long-term 

performance prediction. 

Shi et al. (2021) estimated vehicle speed from pavement stress responses using a novel wireless micro-

electromechanical sensor. An indoor accelerated pavement testing machine was used to replicate traffic 

loading patterns. The MEMS sensor reliably captured real-time stress-response data from the asphalt 

pavement. Using a loading interval approach, vehicle speed could be estimated based on stress wave 
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timing. The study suggested using the predominant frequency method for speed estimation in mixed 

and complex traffic conditions. 

Zhang et al. (2024) developed an in-situ dynamic modulus prediction model using a neural network 

trained on real-time sensing data. The SmartKli aggregate-sized wireless sensor was used to collect 

mechanical response data, including triaxial stress, acceleration, Euler angles, and temperature. Data 

were transmitted to the adapter system via Bluetooth Low Energy. The sensor’s external shell, made of 

3D-printed high-strength ABS nylon, demonstrated sufficient durability to withstand asphalt compaction 

temperatures ranging from 120°C to 150°C. 

2.2 Pavement Condition and Thermal Property  

Traditional structural health monitoring approaches for highway pavement infrastructure systems often 

involve full-scale test tracks instrumented with numerous sensors, such as strain gauges, pressure cells, 

displacement gauges, subgrade moisture sensors, and others. The primary motivation for constructing 

and operating a full-scale pavement test track is to study pavement response and behavior under 

realistic yet controlled conditions (Hugo and Epps, 2004). Table 2.4 summarizes the common types of 

sensors used in various test tracks. 

Table 2.4 Sensors used in traditional pavement health monitoring 

Projects Monitoring Systems Year Reference 

MnROAD • Over 9,500 sensors, 

• Including Linear Variable Differential 
Transformer (LVDT),  

• Strain gauges, dynamic soil pressure cells, 

• Moisture gauges, thermocouples etc. 

1991 (Tompkins and 
Khazanovich, 2007) 

Virginia Smart 
Road 

• Over 400 sensors, 

• Including weight-in-motion sensors (WIM),  

• Temperature, strain, vibration sensors. 

1997 (Al-Qadi et al. 2004) 

NCAT Test Track in 
Auburn University 

• Copper-based strain gauges temperature 
sensors, 

• Soil pressures, soil moisture sensors.  

2000 (Timm et al., 2004) 

Maine DOT • Over 50 sensors, 

• Including strain gauges, thermocouples, 

• Soil strain gauges, soil pressure cells, 

• Soil moisture gauges, frost resistivity probes. 

2005 (Swett et al. 2008) 

French Highway 
A41N 

• Over 40 sensors, 

• Including strain gauges, temperature probes. 

2012 (Gaborit et al. 2013) 

SMARTVIA • Over 90 sensing technologies, 

• Including temperature sensors, strain gauges, 
moisture tubes. 

2014 (Pouteau et al. 2016) 

Yavuzturk et al. (2005) developed a transient, two-dimensional finite-difference model to assess 

temperature fluctuations in asphalt pavements caused by thermal environmental conditions. The 

various asphalt layers were represented using a 25 mm grid increment in the direction normal to the 
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pavement surface, with variable specifications for the thermal and radiative absorptivity of asphalt 

mixes, surface convective conditions, and solar radiation. The study found that pavement thermal 

response was strongly influenced by climate conditions, the thermal and radiative properties of asphalt 

mixtures, surface convective conditions and geometry, and solar radiation. In contrast, the length and 

orientation of the asphalt segment had an insignificant effect. 

Yang (2014) used RFID tags and thermocouples to monitor temperature variations in a newly 

constructed jointed plain concrete pavement on U.S. Highway 30 from May 24, 2013, to April 1, 2014. 

RFID tags were deployed both in extended configurations to enhance transmission signals and in 

embedded configurations to ensure accurate temperature readings. All iButton thermocouples were 

embedded. Results showed that both RFID tags and thermocouples successfully captured the sharp 

temperature rise caused by the cement hydration reaction during the initial stage of concrete paving. 

DeDene et al. (2016) measured the thermal conductivity of reclaimed asphalt pavement (RAP) using a 

custom-built laboratory apparatus. As shown in Figure 2.2, the main components of the setup included 

two aluminum plates, each measuring 10 × 10 inches in area and 0.25 inches thick. These plates served 

as heat spreaders, providing uniform temperature boundary conditions on the top and bottom surfaces 

of the test specimen, which was placed between them. Sheet-type rubberized heating pads powered by 

an adjustable DC voltage source were attached to the rear face of each aluminum plate. A calibrated 

heat flux meter and a micro-thermocouple were affixed to the center of the front face to monitor heat 

transfer. Thermal conductivity was measured for RAP particles with the asphalt binder removed, as well 

as for pure asphalt binder subjected to varying degrees of aging. Results indicated that the thermal 

conductivity of the solid media was influenced by three key factors: (a) particle size distribution, (b) 

sample density, and (c) sample porosity. The thermal conductivities of the solid media ranged from 17 to 

30 W/m·°C, while those of the asphalt binder ranged from 0.17 and 0.19 W/m·°C. 

 

Figure 2.2 Schematic diagram of the experimental apparatus (DeDene et al. 2014) 

Hassan et al. (2016) investigated the influence of air void content on the thermal properties and 

temperature evolution of asphalt mixtures under both dry and wet conditions. Asphalt concrete slabs 

measuring 306 × 306 × 50 mm were prepared using a laboratory roller compactor at air void contents of 

4.5%, 13.0%, 17.0%, 21.0%, and 26.0%. A heat flux transducer and a J-type thermocouple were used to 

measure the heat conducted through the asphalt slabs. The study found that asphalt mixtures with 

lower air void content exhibited higher thermal conductivity. Under wet conditions, the thermal 
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conductivity of the asphalt mixture dropped sharply once the water available for evaporation was 

depleted. 

Li et al. (2018) developed a temperature prediction model that accounts for the cumulative effects of air 

temperature and solar radiation. At five different sites, thermocouples were installed to measure 

pavement temperatures at various depths. Using the collected data, relationships between cumulative 

time and depth were established and modeled as segmented linear regression functions. Based on these 

models, empirical temperature prediction equations were proposed. As shown in Figure 2.3, the 

temperature prediction model is expressed as a linear combination of average air temperature and total 

solar radiation. The weighting of average temperature is relatively small near the pavement surface but 

increases with depth, whereas the influence of total solar radiation decreases with depth. 

 

Figure 2.3 Relationship between depth and coefficients 

Godoy et al. (2018) utilized a set of prototype probes to capture temperatures at various pavement 

depths. Equipped with vehicle-to-infrastructure communication capabilities, auscultation vehicles were 

able to measure temperatures at multiple depths without stopping for drilling or direct surface 

measurements. The collected temperature data were used to verify the BELLS3 temperature model and 

to develop a neural network–based model for predicting pavement temperatures. Based on a year’s 

worth of data, the study demonstrated that the neural network model outperformed the traditional 

BELLS3 model in predicting pavement temperatures. 

Teltayev and Suppes (2019) employed temperature and moisture sensors to examine temperature 

variation and its influence on moisture distribution in the pavement and subgrade of a highway. As 

shown in Figure 2.4, they observed considerable noise in the temperature signals and identified similar 

variation trends between pavement and air temperatures. They concluded that the greater the absolute 

value of air temperature, the larger the discrepancy between air and pavement surface temperatures. In 

hot and warm seasons, this discrepancy is attributed to the dark color of asphalt concrete, which 

absorbs thermal radiation. In contrast, during the cold season, heat flow moves upward from the 

bottom layers due to the presence of a temperature gradient. Additionally, they found that daily 

temperature variation was absent at a depth of 35 cm, while at greater depths (140 cm and beyond), 

temperature variation occurred primarily on an annual cycle. 
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Figure 2.4 Variation of air temperature and temperature in asphalt concrete pavement (Teltayev and Suppes, 

2019) 

Using thermal cameras, Golrokh et al. (2021) developed an integrated system that combined infrared 

imaging, high-resolution visual imaging, real-time image processing, and data-rich analytics to evaluate 

pavement surface distress. Pavement cracks were characterized by measuring depths and widths with a 

digital caliper. Temperatures (in Kelvin) were normalized based on the mean temperature of the 

surrounding undamaged area and then correlated with crack depth and width measurements. A 70% 

reliability was found in the correlation between pointwise normalized temperature and crack depth; 

however, the correlation between crack width and normalized temperature was deemed unreliable. 

Ma et al. (2023) employed the SmartRock sensor for pavement health monitoring. Using the monitored 

modulus and temperature data, they proposed an improved genetic algorithm for back-calculating the 

pavement’s dynamic modulus. The evaluated moduli were then used to predict the residual rutting life 

and residual fatigue life of the pavement structure. To prolong the service life of SmartRock, Ma et al. 

(2023) suggested two approaches: (1) harvesting vibration energy using piezoelectric materials to 

generate electricity, and (2) setting the sensor to sleep mode when no vehicle is present. 

Podolsky et al. (2023, 2024) conducted a statistical analysis to assess the feasibility of using pavement 

temperature as a surrogate for performance prediction in both flexible and rigid pavements. Data were 

collected from thermocouple arrays embedded within the pavement structure. Various data science 

techniques—including natural neighbor interpolation, retiming, and linear regression modeling—were 

applied to an extensive dataset. For rigid pavements, thermocouple data were able to identify periods of 

excess moisture within the concrete layer and detect potential damage near pavement joints. For 

flexible pavements, air temperature was identified as the most significant predictor of pavement 

temperatures recorded by thermocouple sensors. Moreover, the embedded thermocouples served as 

indicators of changes in distress growth rates in flexible pavements. 

Initially, this section aimed to gather literature on how pavement condition could be assessed through 

thermal properties such as thermal conductivity, heat transfer characteristics, and pavement albedo. 

The goal was to understand how these properties correlate with pavement distress and overall 

structural integrity. However, a comprehensive review revealed that few studies have specifically 
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investigated the impact of distress on the thermal conductivity of pavement materials. Most existing 

research focuses on general pavement thermal behavior rather than how cracks, moisture infiltration, 

oxidation, or aging influence heat transfer properties. This gap in the literature underscores the novelty 

and significance of the current project. Understanding how distress alters thermal conductivity could 

add a new dimension to pavement condition monitoring, potentially improving predictive maintenance 

strategies and enhancing the accuracy of non-destructive evaluation methods. Given the growing 

interest in using thermal imaging and remote sensing for infrastructure assessment, further 

investigation in this area is both timely and necessary. 

2.3 Thermal Condition Modeling Approaches 

To model pavement temperature, Hermansson (2001) developed a finite-difference approximation 

model that considered convection, shortwave radiation, and longwave radiation. The model's inputs 

included hourly values of solar radiation, air temperature, and wind velocity. For heat transfer 

calculations, the porosity and degree of water saturation in the layers below the pavement surface were 

also incorporated. Validation using data from 12 different sections of the Long-Term Pavement 

Performance (LTPP) program showed an average error of less than 2°C for both asphalt concrete and 

cement concrete pavements. When model parameters were individually adapted to each section, the 

average error decreased to approximately 1°C. 

Herb et al. (2009) developed a one-dimensional finite difference heat transfer model to characterize 

pavement temperature variations on both diurnal and seasonal timescales. The model captured daily 

extreme temperatures, temperature gradients, diurnal cycling, and seasonal fluctuations. Results 

indicated that surface temperature gradients could reach up to 5 °C/cm, and the rate of temperature 

change could be as high as 40 °C/hour. Regarding diurnal temperature variations, the amplitude 

generally increased with rising mean temperatures; however, significant amplitudes were also observed 

under cold conditions. 

Alavi et al. (2014) proposed an alternative approach for predicting pavement temperature profiles using 

the finite control volume method. The partial differential equation of heat diffusion, along with surface 

and bottom boundary conditions, was solved using this method. In the model, control volumes at the 

pavement surface and bottom were aligned with the physical domain boundaries. Discontinuities in 

thermal properties within multilayer pavement systems were addressed by assigning appropriate 

properties to each control volume. These improvements enabled accurate temperature profile 

predictions at two LTPP sites: LTPP040113 in Kingman and LTPP300114 in Great Falls. 

Qin and Hiller (2014) simulated pavement systems with varying albedo levels and thermal inertia to 

evaluate the effects of surface and heat-storage modifications on instantaneous and cumulative sensible 

heat. They found that most absorbed heat was discharged as sensible heat and longwave radiation, 

while cumulative daily heat conduction accounted for approximately 5% of the absorbed energy. Results 

suggested that increasing surface albedo and enhancing evaporative flux were effective strategies for 

suppressing sensible heat and promoting cooler pavements. 
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Chen et al. (2019) reviewed theoretical models for temperature prediction and critical influencing 

factors. They noted that the finite difference method (FDM) and finite volume method (FVM) could be 

computationally more efficient than the finite element method (FEM), though FEM and FVM were more 

suitable for complex geometries. Regarding key climatic and pavement-related inputs, shortwave 

radiation at the pavement surface could be either measured or calculated using the solar constant and 

sun position. The convective heat transfer coefficient was typically derived from empirical equations 

involving wind speed. Net longwave radiation could be estimated via sky temperature or approximated 

using a factor representing surface absorptivity instead of emissivity. The authors emphasized the need 

to calibrate empirical equations and account for pavement surface material and age when determining 

albedo and emissivity. For example, asphalt pavement albedo increases over time as its color fades from 

black to lighter tones, whereas concrete pavement albedo initially rises with cement hydration but 

stabilizes within six weeks and later declines due to weathering. 

Sun et al. (2020) developed a microstructure-based multiscale finite element method to investigate the 

impact of temperature fields on damage initiation in asphalt pavement under traffic loading. The model 

incorporated thermal radiation, convection, and conduction mechanisms. Mechanical and thermal 

properties at both the pavement and mixture levels were integrated through a homogenization process. 

Digital image processing was used to construct representative volume elements (RVEs) of the asphalt 

concrete microstructure, and a bilinear cohesive zone model was applied to simulate damage initiation 

within these RVEs. The results demonstrated that the multiscale model provided valuable insights into 

the damage behavior of asphalt pavement under varying thermal conditions at both macroscopic and 

microscopic scales. 

Yelizarov (2023) developed a one-dimensional numerical heat transfer model incorporating snowmelt 

processes and tree shade effects to predict pavement surface temperature. The model was validated 

using historical weather data and thermocouple measurements. Although prediction accuracy was lower 

over a six-month period, the model performed well over a 10-hour window with minimal precipitation 

and a thin, dry snowpack. The average error compared to thermocouple measurements was 1.525%, 

with a root mean square error of 0.1525. 

2.4 Computational Approaches for Data Pattern Recognition  

Pavement condition assessment increasingly relies on sensor-derived signals to evaluate structural 

integrity, layer thickness, and subsurface defects. These signals, however, are often contaminated by 

what is traditionally considered “noise,” resulting from environmental interference, sensor inaccuracies, 

or mechanical vibrations. While some of this noise may obscure critical features. It is important to 

recognize that not all noise is meaningless, certain signal irregularities may carry valuable information 

about internal damage mechanisms or evolving structural deterioration.  

Signal processing techniques play a pivotal role, not only in enhancing the signal-to-noise ratio to clarify 

dominant features, but also in preserving or isolating potential damage-related patterns embedded 

within the noise. Techniques such as wavelet denoising adaptively filter high-frequency components 

while preserving transient peaks associated with structural reflections. Kalman filtering provides 
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dynamic signal estimation in real-time settings, allowing for the integration of sensor uncertainty and 

system dynamics. Fourier transform-based bandpass filtering removes out-of-band interference, and 

matched filtering enhances known signal patterns.  

For peak detection, envelope analysis and Hilbert transform-based demodulation are used to emphasize 

amplitude modulations in vibration signals, aiding in the identification of resonant frequencies 

associated with pavement degradation. This section explores signal processing methodologies 

specifically tailored to pavement engineering applications, with a focus on robustness in noisy 

environments and their role in converting raw sensor data into actionable indicators of structural health. 

Probabilistic Methods 

Unlike deterministic models that provide an exact serviceability value or pavement condition index 

based on historical data, probabilistic analysis and prediction models estimate pavement performance 

by assigning probabilities to different condition states. These models describe the potential outcomes of 

the pavement's condition as a random process (Durango, 2002). 

Gharaibeh and Darter (2003) applied survival analysis—a statistical method widely used in actuarial 

research—to determine the distribution of service lives and life expectancy for 1,402 Interstate and 

freeway sections in Illinois. Survival analysis is more appropriate than calculating a simple average life, 

especially when not all sections in the dataset have reached the end of their service lives. Both 

pavement age and traffic loading were found to influence survivability and were thus incorporated into 

the analysis, as shown in Figure 2.5. 

The survival curves were generated using the LIFETEST procedure in SAS software. Each data point on 

the curves represents the probability that a given pavement section will be overlaid upon reaching a 

specific age or cumulative ESAL (Equivalent Single Axle Load). The results in the figure indicate that D-

cracking significantly affects pavement performance, with performance reductions ranging from 32% to 

63% compared to non-D-cracked pavement. 

 
Figure 2.5 Survival curves for age and ESAL for 10-in. JRCP (Nasir and Michael, 2003) 

Li and Zhang (2007) proposed an ordered probit model and a sequential logit model to predict 

pavement conditions. The ordered probit model was used to construct a discrete pavement 

performance model, in which the observed pavement condition state was assumed to be linked to an 
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underlying latent pavement performance propensity. The sequential logit model, on the other hand, 

determined the condition state through a series of independent binary response models, where a 

pavement section transitions to the condition state with the highest utility. These probabilistic models 

were pilot-tested using pavement performance data from the AASHTO Road Test, yielding promising 

prediction results. 

Luo and Yin (2008) developed a cluster-wise regression model for pavement families to evaluate 

pavement distress ratings. They assumed that each pavement family dataset could be further divided 

into several clusters, each represented by a unique regression equation. Each cluster corresponded to a 

portion of the dataset that exhibited a consistent trend. A weighted regression function incorporating all 

clusters was introduced to account for both current and historical observations. At the network level, 

the proposed model significantly outperformed the conventional Markov model in terms of prediction 

accuracy. 

Recognizing that traditional deterministic models may not fully account for the influence of weather and 

traffic on pavement distress, Saha et al. (2017) employed a discrete-time Markov process to develop 

probabilistic prediction models for five distress indices: transverse cracking, longitudinal cracking, 

fatigue, rutting, and ride. An initial transition probability matrix—representing the likelihood that a 

pavement segment remains in a given condition state for a year—was established. Future condition 

states were then predicted by multiplying the initial state vector by the transition probability matrix 

raised to the power of t, where t is the number of years into the future. Although the Markov model 

captures condition changes probabilistically, it assumes the Markov property, that future states depend 

only on the current state, which may limit its ability to reflect the cumulative effects of prior conditions. 

An example of a Markovian deterioration model is shown in Figure 2.6. In a case study of low-volume 

roads in Colorado, 116 roads (totaling 2,022 miles) were segmented into 342 sections to create the 

dataset. Results showed that longitudinal cracking, fatigue, and rutting indices exhibited minimal 

deterioration over time, while transverse cracking and ride quality indices deteriorated more rapidly. 

 

Figure 2.6 Example of a Markovian deterioration model (Saha et al. 2017) 

Hassan et al. (2017) developed pavement surface distress deterioration models using logistic regression 

and Markov chains, with distress rating and surface age as model variables. Pavement condition data 
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were collected through visual inspection. Upon comparison, it was found that for the network modeled, 

the logistic regression models produced predictions that closely matched the actual average condition 

data across various pavement ages. Additionally, it was observed that predictions from most Markov 

chain models were higher than those from the logistic models and the actual average condition data. 

Yamany and Abraham (2021) introduced and validated a hybrid approach to incorporate the effects of 

preventive maintenance into probabilistic pavement performance models, particularly in cases where 

historical preventive maintenance data were unavailable. They developed a nonhomogeneous 

Markovian pavement model by estimating transition probabilities using the ordered probit method. The 

hybrid approach and resulting performance models were validated through cross-validation with out-of-

sample data and expert surveys conducted with pavement engineering professionals. Results indicated 

that the hybrid approach predicted pavement condition, including the effects of preventive 

maintenance, with an accuracy of 87%. 

Spectrum Analysis 

Spectrum analysis of sensor data—particularly through techniques like Fourier Transforms and Short-

Time Fourier Transforms (STFT)—has become a key method for extracting meaningful patterns from 

complex datasets. 

Bajwa et al. (2011) developed a wireless sensor network using vibration sensors embedded in pavement 

to classify vehicles based on axle count and spacing. Although the study does not explicitly describe the 

use of spectrum analysis, the reliance on vibration data for classification likely involves frequency-

domain techniques, given the common application of Fourier analysis in such contexts. This approach is 

significant for traffic monitoring and pavement load assessment, with potential implications for 

predicting pavement wear. 

Yan et al. (2020) conducted a field experiment on in-service pavements to characterize surface texture 

using spectral analysis, correlating the findings with friction values. Texture spectra were analyzed using 

third-octave bands, with key correlations identified at wavelengths between 1.25 and 12.5 mm for 

friction at speeds of 60 and 80 km/h. The study employed a stationary laser profilometer, highlighting 

the effectiveness of spectrum analysis in evaluating pavement safety and performance. 

Al-Omari et al. (2021) carried out a study on forecasting flexible pavement temperatures using Fourier 

series formulas in MATLAB. A total of 216,086 observations spanning a 26-year period (1991–2016) 

were analyzed on daily, monthly, and annual scales. A localized Fourier series approach was used to 

capture thermal trends over time: 36 Fourier series formulas were developed to predict maximum, 

minimum, and average monthly air temperatures for specific months and years; 9 formulas were 

created for daily predictions; and 3 for overall monthly estimates. The predicted temperatures were 

linked to Strategic Highway Research Program (SHRP) models for selecting performance-grade asphalt 

binders, demonstrating the utility of Fourier methods for long-term temperature forecasting (as shown 

in Figure 2.7). 
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Figure 2.7 Validation of the two-year average temperature formula with observation data recorded over five 

years (Al-Omari et al. 2021) 

Wu et al. (2025) introduced a deep learning model that integrates a spectrum-focused transformer layer 

for pavement distress recognition. The transformer layer processes signal spectra using the Fast Fourier 

Transform, concentrating on critical frequency components to enhance the detection of distress regions. 

Experiments conducted on a road pavement distress dataset achieved a test accuracy of 97.73%, 

demonstrating the effectiveness of combining spectrum analysis with deep learning. This approach is 

particularly notable for its ability to capture complex patterns, with ablation experiments indicating a 

0.98% improvement in accuracy over baseline models. 

To facilitate a structured comparison, Table 2.5 summarizes the spectrum analysis methods, their 

advantages, optimal applications in pavement engineering for long-term sensor data, and relevant 

references. 

Table 2.5 Spectrum analysis methods, advantages, and applications 

Method Advantages Best suited for References 

Fourier Transform 
(FT) 

• Efficient for stationary 
signals, 

• Good for identifying 
periodic components. 

• Temperature data with 
regular cycles, 

• Long-term data where the 
signal is relatively stable 

(Al-Omari et al. 
2021) 

Short-Time Fourier 
Transform (STFT) 

• Handles non-stationary 
signals, 

• Tracks frequency 
changes over time. 

• Strain data from dynamic 
loads (traffic) 

• Moisture data with varying 
patterns 

(Qiao and Qin, 
2018) 

Wavelet Transform • Better time-frequency 
localization than STFT, 

• Suitable for signals with 
abrupt changes. 

• Pavement texture analysis 

• Strain data with sudden 
changes 

(Kenneth et al. 
2018) 
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Other Methods 

Dai and Van Deusen (1996) developed a computer program based on statistical and signal processing 

theory to automatically detect peaks and valleys from sensor signals obtained during live heavy truck 

and falling-weight deflectometer testing. Statistical analysis was applied to each signal to characterize its 

nature and improve the efficiency of detecting maxima and minima. Noise effects were mitigated using 

filtering techniques, including Fast Fourier Transform (FFT) and time-domain filtering. The procedure 

proved effective and was used to process pavement response data collected at MnROAD between 1993 

and 1996. 

Dong et al. (2018) employed fiber Bragg grating (FBG) sensors to develop a wireless sensing network for 

airport asphalt pavement. Given the complex natural environment and aircraft loading conditions, they 

applied a moving average filter and FFT-based filter to process the sensor signals and extract critical 

dynamic response information. As shown in Figure 2.8, Dong et al. (2018) categorized the signal into 

aircraft-induced dynamic responses, temperature-affected responses, and unavoidable noise. They 

emphasized the importance of accounting for temperature variations when processing sensor data. 

 
Figure 2.8 Raw monitoring data of a longitudinal sensor on a specific day. (Dong et al. 2018) 

Concerned about the millions of data points generated during long-term monitoring, Manosalvas-

Paredes et al. (2019) developed a data compression method for strain data measured by piezoelectric 

sensors. Instead of relying on single measurements (e.g., longitudinal strains), which are highly 

dependent on external conditions, the proposed approach focused on cumulative pavement responses. 

The innovation lay in utilizing the cumulative loading time of piezoelectric voltage as a reliable indicator 

of damage progression. Additionally, variations in activation times for threshold levels were identified as 

strong indicators of damage severity. 

Dong et al. (2022) reviewed and discussed more than 40 data analysis methods used in pavement 

engineering. Among stochastic process methods, time series models—such as linear regression, moving 

averages, and exponential smoothing—were categorized under regression-based approaches for 

prediction. Dong et al. (2022) noted that time series modeling provides a straightforward means of 

forecasting future pavement performance based on historical data and has been widely applied to tasks 

such as smoothing pavement condition data, predicting rutting progression, and forecasting overall 

pavement performance. 
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Chapter 3:  Data and Methodology 

This chapter introduces the data collection methods and processing approaches used in the study. It 

begins with a description of the thermocouple sensors and their layout at MnROAD. Among the test 

cells examined, three are flexible pavements and two are rigid pavements. To address missing data from 

the thermocouples, a compressed sampling method is applied. Two spectral analysis techniques—

Fourier Transform Analysis and Wavelet Analysis—are introduced. Additionally, a probabilistic analysis 

approach using the Monte Carlo Markov Chain (MCMC) method is presented. 

All methods developed in this research were implemented in Python as an object-oriented package, 

facilitating code maintenance and integration with other platforms. The code is available through a 

GitHub repository and is accompanied by functional examples in a Jupyter notebook. 

3.1 Weather Instrumentation and Data Collection 

Thermocouple Sensors 

In the MnROAD test sections, wired sensor technology was used to capture pavement temperatures. As 

shown in Figure 3.1, thermocouple (TC) sensors were constructed on site using Type T (copper-

constantan) thermocouple extension cables to form a vertical thermocouple tree. TC sensors measure 

temperature through the junction of two dissimilar metal conductors, which generates a small voltage—

known as the Seebeck voltage—proportional to the temperature difference between the hot junction 

and a reference junction. 

 

Figure 3.1 Thermocouple tree instrumentation (Podolsky et al. 2023) 

Tested MnROAD Cells 

Temperature data were collected from TC sensors embedded in five MnROAD test sections, including 

three flexible pavements and two rigid pavements. As shown in Figure 3.2, the MnROAD facility consists 

of two roadway segments running parallel to Interstate 94 near Otsego, Minnesota. The site includes a 

3.5-mile mainline roadway that carries live interstate traffic and a 2.5-mile low-volume loop road where 
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controlled truck weights and traffic volumes simulate rural road conditions. MnROAD features more 

than 50 test cells, each up to 500 feet in length, paved with varying thicknesses of concrete, asphalt, and 

aggregate. These cells are distributed across both roadways to represent a wide range of pavement 

types, with different combinations of surface, base, subbase, subgrade, drainage, and compaction 

conditions.

 

Figure 3.2 The MnROAD facility layout (Barnes, 2010) 

As shown in Figures 3.3 and 3.4, TC sensor data were collected from cells 2, 3, 4, 12, and 13. Among 

these, cells 2, 3, and 4 are flexible pavements, while cells 12 and 13 are cement concrete pavements.

 

Figure 3.3 Cell layout, numbering, and pavement structure of flexible pavements 
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Cell 2 is 560 feet long and was constructed on a clay subgrade layer. Between 1994 and 2008, it 

consisted of 6.5 inches of hot mix asphalt over 4 inches of Class 6 base, which was placed on 28 inches of 

Class 4 base. After 2008, the cell was reconstructed on the same subgrade. The new structure consists of 

a 1-inch thin bonded wearing course (TBWC) over 2 inches of hot mix asphalt, on top of 6 inches of full-

depth reclamation (FDR) stabilized with engineer emulsion (EE), over 6 inches of FDR, and finally 26 

inches of aggregate base. Cell 3 is 454 feet long and was also constructed on a clay subgrade layer. 

Between 1994 and 2008, it consisted of 6 inches of hot mix asphalt over 4 inches of Class 5 base, on top 

of 33 inches of Class 3 base. After 2008, the cell was reconstructed on the same subgrade. The new 

structure consists of a 1-inch TBWC over 2 inches of hot mix asphalt, on 2 inches of FDR, 2 inches of 

Class 5 base, and 33 inches of Class 3 base. Cell 4 is 496 feet long and was constructed on a clay 

subgrade layer. Between 1991 and 2008, it consisted of 9.5 inches of hot mix asphalt over 4 inches of 

Class 6 base, on 28 inches of Class 4 base. After 2008, the cell was reconstructed on the same subgrade, 

with a structure consisting of a 1-inch TBWC over 2 inches of hot mix asphalt, on 9 inches of FDR 

stabilized with engineer emulsion (EE) and fly ash (FA). 

 

Figure 3.4 Cell layout, numbering, and pavement structure of rigid pavements 

Cells 12 and 13 are each approximately 500 feet long and were constructed on a clay subgrade layer. 

Both cells have the same vertical structure: 10 inches of Portland Cement Concrete (PCC) over 5 inches 

of Class 5 special aggregate base, resting on the clay subgrade. The only difference between the two 

cells is the dowel size—cell 12 uses 1.25-inch diameter dowels, while cell 13 uses 1.5-inch diameter 

dowels. The panels in both test sections are 12 feet wide, but their lengths differ: cell 12 panels are 15 

feet long, and cell 13 panels are 20 feet long. Another key difference is that cell 12 includes longitudinal 

edge drains at the shoulder joint adjacent to the driving lane, whereas cell 13 does not.  
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Weather Instrumentation 

MnROAD has had weather stations since 1990, measuring weather conditions at both ends of the site. 

Data are collected every 15 minutes. In this research, air temperature (°C), relative humidity (%), and 

precipitation (cm) were used to relate to pavement system temperature data collected from the 

thermocouple sensors. This amounted to approximately 1.6 million weather data values. Weather data 

from the AWS, CRREL, and NW weather stations were used, covering the period from December 1, 1994, 

to November 16, 2007.  

3.2 Data Treatment 

The analysis developed in this research project required an extensive assessment of the common types 

of data corruption found in the datasets, and in the signals acquired with the thermocouple trees, the 

following types were identified: 

• Noise 

• Random missing data 

• Random artifacts 

• Long missing gaps 

• Long train of artifacts 

Noise is the most common type of data corruption in signal processing tasks, as illustrated in Figure 3.5a. 

It is inherent to data acquisition in experimental campaigns and cannot be reduced simply by adding 

more data to the dataset (Der Kiureghian &. Ditlevsen, 2009). Both the spectral and probabilistic 

methodologies developed in this research project are designed to handle this condition without 

requiring special treatment. 

Next, sporadic missing data occurring at random time instants, as shown in Figure 3.5b, is also observed 

in the acquired signals. In this research, we found that a considerable portion of the signals was not 

acquired at a uniform sampling rate. Therefore, preprocessing is necessary to create a time-domain 

discretization with equal time increments Δt. Consequently, some entries of the acquired signal are 

assumed to be missing. To indicate these missing data points, we insert NaN (Not a Number) values, 

which will facilitate signal reconstruction at a later stage. 

It is evident that a signal with missing data at random locations violates the Nyquist sampling theorem 

(Shannon, 1949), which states that any signal can be perfectly reconstructed from measured samples if 

the sampling rate is at least twice the highest frequency component of the signal. Since the maximum 

frequency of the sampled signal depends on the time increment Δt—which is non-uniform when data 

are missing at random locations—one cannot determine the exact sampling frequency. To overcome 

this challenge, techniques capable of recovering missing data under such conditions are needed. 

Compressed sampling (CS) (Candes, 2008) emerges as a powerful signal processing tool that leverages 

sparsity concepts for this purpose. However, when long gaps of signals are missing, the applicability of 
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compressed sampling is limited, especially for reconstructing non-stationary signals, which is the focus 

of this research project. 

 

Figure 3.5 Temperature signal with a) noise, b) random missing data, and a c) long missing gap. 

Artifacts are another common type of data corruption observed in the datasets used. Artifacts are 

characterized by localized disturbances in the signals and are typically represented as isolated spikes 

(see Figure 3.6a), though they can also appear as a train of spikes (Figure 3.6b). In Figure 3.6b, it is also 

evident that artifacts may be interspersed with missing data, which makes reconstruction in that region 

of the time series challenging, if not impossible. Therefore, this research project proposes a 

methodology to identify regions of each time series that are suitable for reconstruction using 

compressed sampling, aiming to enable their effective use in both spectral and probabilistic analyses. 

 

Figure 3.6 Temperature signal with a prominent a) artifact (spike) and a b) of artifacts (spikes). 

Data segmentation and artifact removal  

The collected data was reformatted and cleaned of artifacts to prepare it for analysis. Numerous 

instances of missing entries and inconsistent collection intervals necessitated imposing a fixed 15-

minute time series across all sensor data. This normalization ensured a consistent temporal framework 

essential for subsequent analysis. In addition to correcting irregular time intervals and filling gaps, data 

artifacts—sensor readings identified as extreme outliers—were removed to improve data quality. 

Artifact removal was performed using the interquartile range (IQR) method for each sensor’s dataset. 

Specifically, for each temperature time series, the first and third quartiles (Q1 and Q3) were calculated, 

and any data points outside the range [𝑄1 − 1.5(𝐼𝑄𝑅), 𝑄3 + 1.5(𝐼𝑄𝑅)] were excluded. All data points 
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removed as artifacts, along with originally missing entries, were later reconstructed using the methods 

described in Section 3.2.2. 

After generating an equally spaced, time-normalized dataset, it is crucial to assess data quality to 

enhance the accuracy of the reconstruction process. The primary goal at this stage is to identify and 

exclude segments where reconstruction is impossible—such as those heavily affected by sensor 

malfunctions, extreme noise, or prolonged data gaps. While conventional artifact removal techniques 

effectively handle datasets with few outliers, they often fail when corrupted or noisy data is prevalent. 

In such challenging scenarios, a more robust framework is required to manage these worst-case data 

conditions effectively. 

The data quality assessment process involves the following steps: 

1. Read the equally spaced signal. 

2. Segment the data into overlapping time windows 𝑤𝑖 of one year for each sensor, with a six-

month overlap between consecutive windows. 

3. Within each window 𝑤𝑖, model the temperature signal using a sine function of the form: 

𝑇(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 +  𝜙) + 𝐷, where the parameters to be optimized are: amplitude (𝐴), 

frequency (𝜔), phase (𝜙), and a constant offset (𝐷). 

4. Predict the temperatures for the next six months using the optimized sine function. 

5. Evaluate the prediction quality by computing the Mean Square Error (MSE), coefficient of 

determination (𝑅2), and the Frobenius norm (‖𝐴𝐹‖). 

6. Set acceptable thresholds for MSE, 𝑅2, and ‖𝐴𝐹‖. 

7. Filter the equally spaced dataset by applying the thresholds and excluding windows that do not 

meet all three criteria. 

8. Recover the periods considered to contain healthy data based on the filtering results. 

Numerical experiments showed that the following thresholds yield reliable results: MSE ≤ 50, 𝑅2 ≥

0.78, and ‖𝐴𝐹‖ ≤ 1400. Figure 3.7 illustrates step 6, showing the fitted sine function alongside the 

measured temperatures over a one-year period. It is evident that the predicted temperatures closely 

capture the mean behavior of the measured data.  
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Figure 3.7 The predicted and measured temperatures. 

In addition, Figure 3.8 shows the result of the proposed filtering algorithm applied to Thermocouple 12, 

Sensor 41. This sensor was selected because the latter portion of its measured temperature time series 

is clearly dominated by noise, likely due to sensor malfunction or environmental interference. After 

applying the filtering process, the algorithm successfully isolates the healthy portion of the signal, which 

is retained for use in the subsequent data reconstruction procedure. 

 

Figure 3.8 The predicted and filtered temperatures. 

Data reconstruction 

Missing data can be attributed to factors such as sensor failure during long-term data acquisition 

campaigns, which may result from environmental conditions, power outages, or maintenance activities. 

In this task, the team developed an algorithm for recover random missing data in the measured 

temperatures. To this end, CS was employed. In the figure below, we observe that a time-history—such 

as the temperature measured by thermocouple trees—also has a representation in the frequency 

domain. This frequency representation is obtained through integral transformations, such as the Fourier 

and wavelet transforms.  
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Signals with well-defined central frequencies, such as the temperature data used in this research 

project, are classified as narrowband and exhibit a sparse representation in the frequency domain. They 

are considered sparse because most of the signal's power is concentrated within very narrow frequency 

bands. As illustrated at the top of Figure 3.9, the signal is not sparse in the time domain, but its power is 

concentrated in a few large spikes in the frequency domain—indicating sparsity in that domain. 

However, in practical applications, acquired signals are often corrupted by noise, and some data entries 

may be missing. When the noise magnitude is low, it typically appears as small, distributed spikes across 

the frequency domain (as shown at the top of Figure 3.9). But when the noise magnitude is high relative 

to the power of the underlying signal, the distinction between the signal and noise diminishes, and the 

sparse representation in the frequency domain is lost. In such cases, the spikes associated with the 

signal become indiscernible from those caused by noise. Therefore, the intensity of noise plays a critical 

role in the success of signal reconstruction.  

 

Figure 3.9 Representation of a complete signal in the time and frequency domains, its measured version 

contained missing data, and its reconstruction using its sparsity in the frequency domain. 

Constructing the power spectrum from signals with missing data is generally prohibitive because it 

violates the Shannon–Nyquist sampling theorem. However, under appropriate assumptions, it is 

possible to recover the missing data with high probability when the signal is 𝑘-sparse—meaning its 

projection onto a basis that is incoherent with the observation space (e.g., Fourier or Generalized 

Harmonic Wavelet (GHW) bases) contains only 𝑘 non-zero coefficients—and when the Restricted 

Isometry Property (RIP) holds. These are the two main principles of CS, also known as compressive 

sampling theory (Candes, 2008). 

Since the temperature data were acquired over several years (e.g., 10 years), the resulting signals are 

very long. Consequently, representing them as an expansion over a basis of oscillating functions—such 

as the Fourier or wavelet basis—is computationally intensive due to the memory required to store the 

basis matrix, whose number of rows and columns is equal to the length of the acquired signal. 
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Let us assume that the acquired signal from each sensor in the thermocouple tree is denoted as 𝑇𝑖
(𝑗)

=

𝑇(𝑗)(𝑡𝑖), where 𝑗 is the index of the sensor in the thermocouple tree and 𝑖 is the index of the time 

instant such that time 𝑡 is discretized as [𝑡1, 𝑡 2, . . . , 𝑡𝑁], with uniform spacing 𝑡𝑖+1 − 𝑡𝑖 = Δ𝑡 = 900𝑠. 

Thus, each signal 𝑇𝑖
(𝑗)

 can be represented as a column vector. In the approach developed in this 

research project, we assume that the real signal 𝑇(𝑗)(𝑡), which is continuous in the time domain, is 

acquired in a sampled form by the sensors. However, it is not uncommon that this signal is acquired with 

several missing data, which is represented in Figure 3.10 as the red dots.  

 

Figure 3.10 Recovery of missing data based on a rolling window strategy. 

To reduce memory usage during the recovery of missing data in the signals acquired by each sensor in a 

thermocouple tree, we employed a windowing strategy. This strategy involves using a rolling window 

with 50% overlap to extract segments of the signal. Compressed sampling is then applied to each 

segment, which reduces computational cost while ensuring continuity in the reconstructed signal. 

Therefore, with the rolling window approach, we can extract the segment 𝑇𝑙
(𝑗)

= [𝑇𝑙
(𝑗)

, 𝑇𝑙+1
(𝑗)

, … , 𝑇𝑙+𝑤
(𝑗)

] of 

the signal 𝑇(𝑗) = [𝑇1
(𝑗)

, 𝑇2
(𝑗)

, … , 𝑇𝑁
(𝑗)

], where 𝑤 is the length of the window starting at the index 𝑙 of the 

vector of time.  

In this methodology, we assume that the column vector  𝑇𝑙
(𝑗)

 is acquired with a fixed sampling rate of 1 

sample at each 900 s (15 minutes). Therefore, if any entry 𝑇𝑖
(𝑗)

 of this vector is missing, its value is 

represented as a NaN, as shown in Figure 3.11. Next, we employ CS to recover the missing data at each 

segment.  
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Figure 3.11 Numeric representation of a signal with missing data. 

3.2.2.1 Compressed sampling 

In CS, we assume that the signal 𝑇𝑙
(𝑗)

 with length 𝑤 is sparse either in the frequency or in the joint time-

frequency domain. By assuming that the signal is acquired with a uniform sampling rate, a projection of 

𝑇𝑙
(𝑗)

 on a basis represented by the 𝑤 × 𝑤 matrix 𝑩 is obtained by solving the linear system 𝑇𝑙
(𝑗)

= 𝑩𝑥  

(see Figure 3.12) to obtain the vector of coefficients 𝑥 with length 𝑤, which is in fact the representation 

𝑇𝑙
(𝑗)

 either in the frequency or in the joint time-frequency domain.  

 

Figure 3.12 Projection of the temperature measurement onto an orthonormal basis. 

However, when 𝑇𝑙
(𝑗)

 has missing data, we can remove the corresponding NaNs, such that the vector of 

measured data 𝑇̅𝑙
(𝑗)

 has length 𝑤 − 𝑀, where 𝑀 is the number of missing data, as we observe in Fig. 

3.13. Thus, to obtain a consistent linear system 𝑇̅𝑙
(𝑗)

= 𝑩̅𝑥, the (𝑤 − 𝑀) × 𝑤 matrix 𝑩̅ is constructed by 

removing the rows at the same locations of the 𝑀 missing data in 𝑇𝑙
(𝑗)

 (see Figure 3.13).  

 

Figure 3.13 Construction of an indeterminate linear system of equations to be solved with CS. 
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Consequently, the linear system of equation 𝑇̅𝑙
(𝑗)

= 𝑩̅𝑥 becomes indeterminate, and it possess infinite 

solutions 𝑥. One of the solutions is obtained by solving it in the 𝑙2-norm sense via least squares, such 

that: 

𝑥𝑙2
= min‖𝑥‖𝑙2

= [𝑩̅𝑇(𝑩̅𝑩̅𝑻)
−1

] 𝑇̅𝑙
(𝑗)

 (1) 

where the term in the brackets is also known as pseudo-inverse of  𝑩̅. However, the theory of 

compressed sampling demonstrates that this is not the sparser solution. Therefore, could produce a 

noisy reconstruction 𝑇𝑙
(𝑗)

= 𝑩𝑥𝑙2
. In fact, the sparser solution is achieved by solving the linear system of 

equations in the 𝑙0-norm sense, where the pseudo-norm 𝑙0 return the number of non-zero entries in the 

vector. However, solving the norm minimization problem using the 𝑙0-norm is computationally 

intractable because it becomes a combinatorial problem. Therefore, the requirement of sparsity is 

relaxed to include the norm 𝑙1, which return the sum of the absolute values of the entries of a vector, 

which could serve as a proxy for the 𝑙0-norm. In fact, the theory of compressed sampling demonstrates 

that under mild conditions, the sparser solution the linear system 𝑇𝑙
(𝑗)

= 𝑩𝑥 can be obtained in the  𝑙1-

norm sense. Therefore, the solution 𝑥𝑙1
 is obtained by solving the following unconstrained optimization 

problem: 

𝑥𝑙1
= min [‖𝑥‖𝑙1

+ 𝜆 ‖𝑇̅𝑙
(𝑗)

− 𝑩̅𝑥‖
𝑙2

] (2) 

where 𝜆 is a regularization variable. This problem is also known as Lasso (least absolute shrinkage and 

selection operator) (Tibshirani, 1996). 

Two examples of recovered signals are presented next. First, we can see in Figure 3.14 a segment of the 

data acquired with the first sensor in the thermocouple tree installed in cell 13. In Figure 3.15, we 

observe a closer look at a segment of the signal acquired by the first sensor of thermocouple 1 installed 

in cell 2. In both cases, we observe that CS can reliably recover the missing data in the acquired time 

series, while preserving the more significant spectral contents. 

 

Figure 3.14 Segment of the signals acquired with the first sensor of the thermocouple tree in cell 13. 
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Figure 3.15 Segment of the signals acquired with the first sensor of the thermocouple tree 1 in cell 2. 

3.3 Data Analysis 

In this research project, we found that accurately determining the time-dependent behavior of the 

thermal properties of both rigid and flexible pavements requires advanced data analysis techniques. 

These are essential for efficiently interpreting the relationship between temperature fluctuations and 

pavement performance. Furthermore, the dynamic behavior of the temperature field in both spatial and 

temporal domains contains rich information about slowly varying and/or transient thermal phenomena. 

These are often linked to changes in pavement properties and environmental interactions, including 

extreme events such as heat waves and severe precipitation. 

Thus, a comprehensive understanding of the temperature field's behavior across space and time is 

crucial for developing advanced and cost-effective pavement sensing methodologies based on 

temperature data. To address this need, we proposed two innovative approaches—one spectral and one 

probabilistic—for analyzing the relationship between pavement life-cycle performance and temperature 

dynamics. These methods are based on temperature measurements from thermocouple trees installed 

at five MnROAD test sections. In the following section, we present a comprehensive summary of the 

developed techniques for effectively modeling and analyzing both rigid (Sections 12 and 13) and flexible 

(Sections 2, 3, and 4) pavements. 

Spectral Analysis 

In this project, the time-varying behavior of pavement temperature is characterized by its daily and 

yearly fluctuations. In this project, we can focus on the spectral properties of the daily temperature 

fluctuations along the pavement depth. This allows us to identify time-localized properties of a 

mathematical model representing the pavement system. Determining these localized properties 

facilitates the analysis of their evolution on a coarser time scale. Consequently, it becomes possible to 

track how these properties change over the years with high accuracy.  
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3.3.1.1 Filter modeling 

In this project, we model temperature fluctuations as time histories that are filtered by the pavement 

layers along their depth (see Figure 3.16). This interpretation enables the development of 

methodologies for analyzing key properties—such as the gain and phase shift—of a filter that represents 

the dynamic behavior of temperature fluctuations between two distinct layers of the pavement 

structure. These properties serve as indicators of slow, time-dependent changes in the thermal 

characteristics of the materials, which may result from processes such as degradation, densification, or 

localized anomalies caused by extreme events like severe precipitation. 

 

Figure 3.16 Measurement from adjacent sensors used to model a filter encoding the dynamics of the thermal 

properties of pavements.  

Any system that produces an output time history in response to an input signal can be mathematically 

modeled as a filter—either in the frequency domain, assuming the system is time-invariant, or in the 

joint time-frequency domain, assuming the system is time-variant. In this context, the time-varying 

behavior of the system is primarily characterized by changes in the spectral content of both the input 

and output signals. 

In this project, we model the pavement as a cascade of filters (see Figure 3.17), where spectral 

properties such as gain and phase are largely determined by the thermal properties of the medium. 

Specifically, the state of each filter in the cascade corresponds to the properties of the material between 

two consecutive sensors in a thermocouple tree. Since the first sensor is embedded in the surface layer, 

other heat transfer mechanisms—such as convection or albedo—are not considered. 

Given that heat conduction governs the filter behavior, we can identify the filter characteristics in both 

the frequency, and joint time-frequency domains based on temperature readings from the 

thermocouple sensors. The identified filter state thus serves as a time-varying indicator of the thermal 

properties of the pavement layers. This, in turn, provides insight into pavement condition, as changes in 

thermal conductivity are closely linked to material aging, structural damage, and exposure to extreme 

environmental conditions. 
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Figure 3.17 Filter cascade used to model multiple segments of the pavement structure. 

In the proposed filter modeling and identification through an appropriate spectral analysis, we assume 

that the temperature fluctuations at a given sensor 𝑗  are represented as a time-history 𝑇(𝑗)(𝑡) with 

components at several frequencies. As the temperature fluctuates with well-defined daily and yearly 

periods, we can easily determine the central frequencies of the spectral components with most 

prominent power. To this end, we first determine the sampling rate of the signals acquired by the 

sensors installed at the thermocouple trees. In this regard, the time interval between measurements is 

equal to 15 mins, which gives a sampling period equal to 900 s. Furthermore, one day has a period equal 

to 86,400 s, which means that the main frequency of daily fluctuations is equal to 1.157 × 10−5𝐻𝑧. 

Moreover, the temperature fluctuations in a year have a frequency equal to 3.1688 × 10−8𝐻𝑧. As we 

observe, the frequencies of both daily and yearly fluctuations are very low, but the fact that they are 

well-defined is relevant for performing the filter modeling and identification.  

To construct the proposed methodology, we focus on two adjacent sensors (see Fig. 3.17), where the 

input 𝑇(𝑗)(𝑡) and output 𝑇(𝑗+1)(𝑡) signals, corresponding to sensors 𝑗 and 𝑗 + 1, respectively, are 

represented in a discretized form as the time-series 𝑇𝑖
(𝑗)

= 𝑇(𝑗)(𝑡𝑖) and 𝑇𝑖
(𝑗+1)

= 𝑇(𝑗+1)(𝑡𝑖), where the 

time 𝑡 is discretized as [𝑡1, 𝑡 2, . . . , 𝑡𝑁], where 𝑡𝑖+1 − 𝑡𝑖 = Δ𝑡 = 900𝑠. In this regard, the signals after an 

appropriate data treatment, have a length equal to 𝑁, such that it covers a long period 𝑡𝑓 = (𝑁 − 1)Δ𝑡 

of the pavement life-cycle. 

Next, using both input 𝑇𝑖
(𝑗)

 and output 𝑇𝑖
(𝑗+1)

 signals, we can proceed with the determination of the 

frequency response function 𝐻(𝜔) (or 𝐻(𝜔, 𝑡) for a time-variant filter) of an hypothetical black-box 

system modeled as a filter, and whose gain and phase shift will be associated with the thermal 

performance of the layers of the pavement with respect to heat conduction.  

The primary objective of analyzing the properties of the identified filter as a proxy for pavement 

performance lies in its sensitivity to both abrupt and gradual changes in the pavement's thermal 

properties. These changes are associated with short-term extreme events—such as heat waves and 
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severe precipitation—as well as long-term processes like aging and damage accumulation throughout 

the pavement's life cycle. Additionally, the filter model captures the natural evolution of material 

properties over time, such as densification. 

The following sections present a summary of the two techniques developed for this analysis. The first 

technique is based on the Fourier transform and assumes that the signal is stationary within predefined 

time intervals. It produces a time-independent filter for each interval. The second technique uses 

wavelet analysis and employs a specialized wavelet known as the Generalized Harmonic Wavelet (GHW), 

which eliminates the need to assume stationarity over fixed intervals. Furthermore, GHW enables 

spectral analysis over fixed frequency bandwidths—something not feasible with conventional wavelets 

such as the Morlet wavelet. 

3.3.1.2 Fourier Transform Analysis 

The Fourier transform is employed in signal processing to map signals from the time and frequency 

domains. In this regard, we use this approach to determine the FRF 𝐻(𝜔) of a linear time-invariant 

system (LTI) modeling the relation between the signals of two adjacent sensors in the thermocouple 

tree, as described in the previous section. To this end, we assume that the filter is a black-box that 

receives the input signal 𝑇𝑖
(𝑗)

 and “produces” the signal 𝑇𝑖
(𝑗+1)

 as an output, which corresponds to the 

temperature read by the sensor 𝑗 + 1 at a position right below the sensor 𝑗.   

The Fourier transform and its inverse are given by the following expressions (Oppenheim et al., 1996): 

𝑇(𝑗)(𝜔) = ∫ 𝑇(𝑗)(𝑡)𝑒−𝑗̂𝜔𝑡𝑑𝑡
∞

−∞
  (3) 

𝑇(𝑗)(𝑡) = ∫ 𝑇(𝑗)(𝜔)𝑒𝑗̂𝜔𝑡𝑑𝜔
∞

−∞
  (4) 

where 𝑗̂ = √−1. The Fourier transform is necessary to determine a representation of the signal in the 

frequency domain. However, to determine 𝐻(𝜔), we need to find how the power of each signal 

component is distributed in the frequency domain. To this end, the auto- and cross- power spectra of 

the input and output signals must be determined.  

In this methodology, the input 𝑇𝑖
(𝑗)

 and output 𝑇𝑖
(𝑗+1)

 signals cover a long period 𝑡𝑓 of the pavement 

life-cycle (e.g., 10 years). Therefore, as we are interested in determining how the properties of the filter 

changes over time, we divide the signal with length 𝑁 into 𝑘 smaller sub-intervals of length 𝑁𝑘, which 

could correspond, for example, to a period of 14 days (e.g., 𝑁𝑘 = 12,600). Thus, for each sub-interval, 

we determine the auto power spectrum 𝑆𝑇(𝑗)𝑇(𝑗)(𝜔) of the input signals 𝑇𝑘,𝑖
(𝑗)

, the auto-power spectrum 

𝑆𝑇(𝑗+1)𝑇(𝑗+1)(𝜔) of the output signal 𝑇𝑘,𝑖
(𝑗+1)

, and the cross-power spectrum 𝑆𝑇(𝑗+1)𝑇(𝑗)(𝜔) for both input 

and output signals, are given by the following expressions: 



33 

𝑆𝑇(𝑗)𝑇(𝑗)(𝜔) =
𝔼[𝑇(𝑗)(𝜔)𝑇̅(𝑗)(𝜔)] 

𝑁𝑘 Δ𝜔
  (5) 

𝑆𝑇(𝑗+1)𝑇(𝑗+1)(𝜔) =
𝔼[𝑇(𝑗+1)(𝜔)𝑇̅(𝑗+1)(𝜔)] 

𝑁𝑘 Δ𝜔
  (6) 

𝑆𝑇(𝑗+1)𝑇(𝑗)(𝜔) =
𝔼[𝑇(𝑗+1)(𝜔)𝑇̅(𝑗)(𝜔)] 

𝑁𝑘 Δ𝜔
  (7) 

 

respectively, where 𝑇̅ is the complex conjugate of 𝑇 and 𝔼[∙] is the expectation operator, which is 

employed as a smoothening operator. Therefore, with the estimated power spectra, we can proceed 

with the determination of the LTI-FRF and the coherence, which serve as an indicator of the modeling 

error, providing information about the “goodness-of-fit” of the model subject to the measured data. A 

coherence close to one, means that the linear model is valid; otherwise, if the coherence gets close to 

zero, the linear model is not reliable enough.  

 

The LTI-FRF is given by the expression  

𝐻𝑘
(𝑗,𝑗+1)(𝜔) =

𝑆
𝑇(𝑗+1)𝑇(𝑗)(𝜔)

𝑆
𝑇(𝑗)𝑇(𝑗)(𝜔)

  (8) 

and the coherence is given by 

(𝛾𝑘
(𝑗,𝑗+1)

)
2

(𝜔) =
|𝑆

𝑇(𝑗+1)𝑇(𝑗)(𝜔)|
2

𝑆
𝑇(𝑗+1)𝑇(𝑗+1)(𝜔)𝑆

𝑇(𝑗)𝑇(𝑗)(𝜔)
  (9) 

Thus, as the LTI-FRF is complex-valued, we can determine the filter gain 𝐴𝑘
(𝑗,𝑗+1)

(𝜔) and phase shift 

𝜙𝑘
(𝑗,𝑗+1)

(𝜔) as follows: 

𝜙𝑘
(𝑗,𝑗+1)

(𝜔) = atan [
Im(𝐻𝑘

(𝑗,𝑗+1)
(𝜔))

Re(𝐻𝑘
(𝑗,𝑗+1)

(𝜔))
]  (10) 

𝐴𝑘
(𝑗,𝑗+1)

(𝜔) = |𝐻𝑘
(𝑗,𝑗+1)

(𝜔)|
2
  (11) 
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where  Im(∙) and Re(∙) are the imaginary and real parts of a complex number. Therefore, with this 

approach we can have a coarse representation of the time-dependent behavior, as determined by the 

sub-interval 𝑘, of both phase 𝜙𝑘
(𝑗,𝑗+1)

(𝜔) and gain 𝐴𝑘
(𝑗,𝑗+1)

(𝜔).  

The mechanization of the proposed Fourier analysis is outlined below: 

1. Select two adjacent sensors in the thermocouple tree, such as at the interface between two 

layers of the pavement structure. 

2. Determine the time discretization such that 𝑡𝑖 = (𝑖 − 1)Δ𝑡 and 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑁].  

3. Consider that the first sensor is above the second one and assume that the input signal is the 

temperature measured by the first sensor and the output signal is the temperature measured in 

the second sensor, such that 𝑇𝑖
(𝑗)

 corresponds to the temperature measured by the sensor 𝑗 at 

the time instant 𝑡𝑖. 

4. Divide the time histories 𝑇(𝑗) and 𝑇(𝑗+1) of length 𝑁 of sensors 𝑗 and 𝑗 + 1 into 𝑘 sub-intervals. 

5. For each sub-interval 𝑘, compute 𝐻𝑘
(𝑗,𝑗+1)(𝜔) and (𝛾𝑘

(𝑗,𝑗+1)
)

2
(𝜔). 

6. If for the central frequency (𝑓𝑑 = 1.157 × 10−5𝐻𝑧) of the daily fluctuation (𝛾𝑘
(𝑗,𝑗+1)

)
2

(𝜔) >

0.5, accept the linear model and compute 𝜙𝑘 (
𝑓𝑑

2𝜋
) and 𝐴𝑘 (

𝑓𝑑

2𝜋
). 

7. Use 𝜙𝑘 (
𝑓𝑑

2𝜋
) and 𝐴𝑘 (

𝑓𝑑

2𝜋
) to infer about the time evolution of these parameters to track the 

ageing of the pavement. 

3.3.1.3 Wavelet Analysis 

One of the main limitations of using the Fourier transform to analyze naturally time-variant systems is 

the assumption that the signal remains stationary within a sub-interval 𝑘 of the time domain. As a result, 

this technique fails to accurately localize transient thermal phenomena—such as those associated with 

severe weather events—because it relies on estimating the average signal power within each sub-

interval, thereby smoothing out short-lived events. 

To address the spectral estimation of non-stationary time series, several techniques have been 

developed, including traditional methods like the Short-Time Fourier Transform (STFT) (Allen and 

Rabiner, 1977) and the Wigner–Ville Distribution (WVD) (Ville, 1948). However, STFT suffers from 

limited time-frequency localization due to the uncertainty principle inherent in the Fourier transform, 

which particularly hinders its ability to analyze low-frequency components. Meanwhile, the 

performance of the Wigner–Ville Distribution deteriorates when applied to multi-component or 

nonlinear frequency-modulated mono-component signals (Pachori and Nishad, 2016). 

As an alternative, wavelets have been widely used in multiresolution analysis of signals in the joint time-

frequency domain. Wavelets constitute a family of orthogonal functions that offer strong localization 

properties in both time and frequency domains. The concept of wavelets was originally introduced by 

Morlet for geophysical data analysis, and a rigorous mathematical foundation was later developed in the 
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field of harmonic analysis (Daubechies, 1992), focusing on the representation of square-integrable 

functions—such as continuous-time signals—in terms of an orthonormal basis in Hilbert space. 

To overcome the limitations, we propose using a special class of wavelets known as Generalized 

Harmonic Wavelets (GHW) to identify a linear time-variant filter capable of capturing the non-stationary 

behavior of both input and output signals. GHWs are defined by two scale parameters, 𝑚 and 𝑛, which 

independently control the central frequency and bandwidth at each scale in the frequency domain, and 

a parameter kk that controls the wavelet's time localization. A significant advantage of GHWs is their 

ability to provide enhanced frequency localization—particularly at low frequencies—thanks to the 

decoupling of scale parameters from the central frequency. This is not typically possible with 

conventional wavelet families such as the Morlet wavelet (Morlet, 1982). 

Unlike the dyadic partitioning of the time-frequency grid employed by standard wavelets (e.g., Morlet, 

1982; Mallat, 1999), GHWs allow flexible and adaptive resolution tailored to the frequency range of 

interest, offering improved localization in the time-frequency domain (see Figure 3.18). 

 

Figure 3.18 Wavelet-based joint time-frequency domain partition; GHW-based enhanced localized frequency 

resolution, compared with standard dyadic wavelet partition (Miller et al., 2020). 

Additionally, GHWs feature a non-overlapping, box-shaped frequency spectrum, which provides 

favorable orthogonality properties for analytical and mathematical derivations (see Figure 3.19). 

Specifically, the scale (𝑚, 𝑛) and time localization (𝑘) determine a wavelet with bandwidth 𝑚Δ𝜔 ≤ 𝜔 <

𝑛Δ𝜔 and with the following representation in the frequency domain: 

Ψ(𝑚,𝑛),𝑘
𝐺 (𝜔) = {

1

(𝑚−𝑛)Δ𝜔
𝑒−𝑗̂𝜔

𝑘𝑇0
𝑚−𝑛,   if 𝑚Δ𝜔 ≤ 𝜔 < 𝑛Δ𝜔

0, otherwise
  (12) 

 

where 𝑇0 is the time length of the signal being analyzed, Δ𝜔 = 2𝜋/𝑇0.  
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Figure 3.19 A generalized harmonic wavelets basis example spanning non-overlapping intervals of arbitrary 

bandwidths in the frequency domain (Kougioumtzoglou, 2013). 

Therefore, the GHW transform of a signal 𝑇(𝑗)(𝑡) is given by (Newland, 1994) 

W(𝑚,𝑛),𝑘
𝐺 [𝑇(𝑗)(𝑡)] =

𝑛−𝑚

𝑇0
∫ 𝐼𝐹𝑇̅̅ ̅̅ ̅[Ψ(𝑚,𝑛),𝑘

𝐺 (𝜔)]𝑇(𝑗)(𝑡)𝑑𝑡
∞

−∞
  (13) 

where 𝐼𝐹𝑇̅̅ ̅̅ ̅[Ψ(𝑚,𝑛),𝑘
𝐺 (𝜔)] is the complex conjugate of the inverse Fourier transform of Ψ(𝑚,𝑛),𝑘

𝐺 (𝜔). 

Therefore, the Perseval’s theorem (Oppenheim and Schaffer, 2010) combined with the non-overlapping 

characteristics of the wavelet ensure the estimation of the auto- and cross- spectra of the input and 

output signals in the joint time-frequency domain as follows:  

𝑆𝑇(𝑗)𝑇(𝑗)(𝜔, 𝑡) = 𝑆(𝑚,𝑛),𝑘
(𝑗,𝑗)

=
𝔼[W(𝑚,𝑛),𝑘

𝐺 [𝑇(𝑗)(𝑡)]W̅̅̅(𝑚,𝑛),𝑘
𝐺 [𝑇(𝑗)(𝑡)]] 

 (𝑛−𝑚)Δ𝜔
  (14) 

𝑆𝑇(𝑗+1)𝑇(𝑗+1)(𝜔, 𝑡) = 𝑆(𝑚,𝑛),𝑘
(𝑗+1,𝑗+1)

=
𝔼[W(𝑚,𝑛),𝑘

𝐺 [𝑇(𝑗+1)(𝑡)]W̅̅̅(𝑚,𝑛),𝑘
𝐺 [𝑇(𝑗+1)(𝑡)]] 

(𝑛−𝑚) Δ𝜔
  (15) 

𝑆𝑇(𝑗+1)𝑇(𝑗)(𝜔, 𝑡) = 𝑆(𝑚,𝑛),𝑘
(𝑗+1,𝑗)

=
𝔼[W(𝑚,𝑛),𝑘

𝐺 [𝑇(𝑗+1)(𝑡)]W̅̅̅(𝑚,𝑛),𝑘
𝐺 [𝑇(𝑗)(𝑡)]] 

(𝑛−𝑚) Δ𝜔
  (16) 

where each wavelet is localized in 
𝑘𝑇0

𝑛−𝑚
≤ 𝑡 <

(𝑘+1)𝑇0

𝑛−𝑚
. Therefore, we do not need to break the full time-

histories into smaller segments to determine the time evolution of the FRF. In this regard, the LTV-FRF 

𝐻(𝑗,𝑗+1)(𝜔, 𝑡) is obtained in the joint time-frequency domain, which aids the estimation of time 

dependent phase shift 𝜙(𝑗,𝑗+1)(𝜔, 𝑡) and gain 𝐴(𝑗,𝑗+1)(𝜔, 𝑡). Furthermore, the localization 

characteristics of the GHW enables the determination of LTV-FRF 𝐻(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

, the phase shift 𝜙(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

, and 

gain 𝐴(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

 only at the scale of interest in the wavelet domain determined by the scale (𝑚, 𝑛) and time 

localization (𝑘). Therefore, the LTV-FRF in the GHW domain is given by the expression 
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𝐻(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

=
𝑆(𝑚,𝑛),𝑘

(𝑗+1,𝑗)

𝑆(𝑚,𝑛),𝑘
(𝑗,𝑗)   (17) 

and the coherence is given by 

(𝛾(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

)
2

=
|〈𝑆(𝑚,𝑛),𝑘

(𝑗+1,𝑗)
〉|

2

〈𝑆(𝑚,𝑛),𝑘
(𝑗+1,𝑗+1)

〉〈𝑆(𝑚,𝑛),𝑘
(𝑗,𝑗)

〉
  (18)  

where 〈∙〉 is a smoothing operator, for example a Gaussian filter. Thus, as the LTI-FRF is complex-valued, 

we can determine the filter gain 𝐴𝑘(𝜔) and phase shift 𝜙𝑘(𝜔) as follows: 

𝜙(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

= atan [
Im(𝐻(𝑚,𝑛),𝑘

(𝑗,𝑗+1)
)

Re(𝐻
(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

)
]  (19) 

𝐴(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

= |𝐻(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

|
2
  (20) 

where  Im(∙) and Re(∙) are the imaginary and real parts of a complex number. Therefore, with this 

approach we can have a fine representation of the time-dependent behavior of both phase 

𝜙(𝑗,𝑗+1)(𝜔, 𝑡)  and gain 𝐴(𝑗,𝑗+1)(𝜔, 𝑡). 

The mechanization of the proposed GHW analysis is outlined below: 

1. Select two adjacent sensors in the thermocouple tree, such as at the interface between two 

layers of the pavement structure. 

2. Determine the time discretization such that 𝑡𝑖 = (𝑖 − 1)Δ𝑡 and 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑁].  

3. Consider that the first sensor is above the second one and assume that the input signal is the 

temperature measured by the first sensor and the output signal is the temperature measured in 

the second sensor, such that 𝑇𝑖
(𝑗)

 corresponds to the temperature measured by the sensor 𝑗 at 

the time instant 𝑡𝑖. 

4. Determine 𝑚 and 𝑛 such that the central frequency (𝑓𝑑 = 1.157 × 10−5𝐻𝑧) of the daily 

fluctuation is the central frequency of the wavelet, which is given by 

 
𝑓𝑑

2𝜋
= 𝜔𝑑 =

𝑛+𝑚

2
Δ𝜔. 

5. Compute the auto power spectra 𝑆(𝑚,𝑛),𝑘
(𝑗,𝑗)

 and 𝑆(𝑚,𝑛),𝑘
(𝑗+1,𝑗+1)

 of 𝑇(𝑗) and 𝑇(𝑗+1), respectively, as well 

as the  cross power spectrum 𝑆(𝑚,𝑛),𝑘
(𝑗+1,𝑗)

. 

6. Compute 𝐻(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

 and (𝛾(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

)
2

. 



38 

7. If for the central frequency 𝑓𝑑 (𝛾(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

)
2

> 0.5, accept the linear model and compute 𝜙(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

 

and 𝐴(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

. 

Use 𝜙(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

 and 𝐴(𝑚,𝑛),𝑘
(𝑗,𝑗+1)

 to infer about the time evolution of these parameters to track the ageing of 

the pavement. 

Probabilistic Analysis 

The objective of the probabilistic analysis in this study is twofold. First, we aim to validate the 

results obtained through spectral analysis. Second, we seek to develop an inverse analysis tool for 

estimating the thermal properties of pavement materials, which serve as a proxy for assessing pavement 

condition. Special emphasis is placed on characterizing the heat conduction mechanisms between 

adjacent pavement layers, as these interactions are directly influenced by the thermal diffusivity and 

conductivity of the constituent materials. 

To this end, we model the heat transfer process in pavements using a simplified thermal conduction 

model based on the one-dimensional heat equation. This simplification is chosen to facilitate the use 

of Bayesian inference techniques, which allow for the estimation of thermal parameters from 

temperature measurements recorded across both space and time. The probabilistic framework provides 

a robust mechanism for quantifying uncertainties in the estimated parameters, especially in the 

presence of measurement noise and model imperfections. 

In this research, we employed the Markov Chain Monte Carlo (MCMC) method, specifically using 

the Metropolis-Hastings algorithm, within a Bayesian inference framework to estimate the thermal 

diffusivity coefficient of pavement layers. The forward problem is governed by the heat equation, which 

describes the evolution of temperature in a thermally conducting medium. Observed temperature data 

from thermocouple arrays installed within the pavement structure were used to inform the inverse 

analysis. 

Bayesian inference offers a principled approach to update prior knowledge about uncertain parameters 

based on empirical observations, resulting in a posterior probability distribution that incorporates both 

prior beliefs and measurement data. The inverse heat conduction problem (IHCP) is a classic example 

where such Bayesian approaches excel. It involves estimating unknown parameters—such as thermal 

diffusivity, thermal conductivity, boundary heat flux, or initial temperature distributions—from internal 

temperature measurements. MCMC methods are ideal for this task, as they generate samples from the 

posterior distribution, enabling not only parameter estimation but also credible interval computation. 

For example, Wang and Zabaras (2004) applied an MCMC framework with a Markov Random Field 

(MRF) prior to estimate boundary heat fluxes from interior temperature observations. Their forward 

model solved the heat equation under the assumption of additive white Gaussian noise in the 

measurements. Their results demonstrated high accuracy and effective uncertainty quantification in 

both 1D and 2D configurations. Similarly, Gnanasekaran and Balaji (2013) applied MCMC techniques to 

estimate the thermal diffusivity 𝛼 in a controlled laboratory heat transfer experiment. They reported 



39 

posterior estimates along with standard deviations, showcasing the strength of Bayesian methods in 

delivering parameter estimates with explicit uncertainty quantification—an essential feature for robust 

decision-making in engineering diagnostics. 

3.3.2.1 Mathematical model: heat equation 

The objective of this task is to find an appropriate mathematical model describing the dynamics of the 

heat conduction in pavements. To this end, we assume that a pavement is a heterogeneous medium 

whose thermal properties changes along in space and time. Therefore, since the sensors are embedded 

in the pavement structure, the physics of this problem is governed by the heat conduction expressed by 

the following equation: 

𝜕𝑇(𝑦,𝑡)

𝜕𝑡
= 𝛼(𝑦, 𝑡)

𝜕𝑇2(𝑦,𝑡)

𝜕𝑦2   (21)  

with initial and boundary conditions {

𝑇(𝑦, 0) = 𝑇0(𝑦)

𝑇(0, 𝑡) = 𝑇(0)(𝑡)

𝑇(𝐿, 𝑡) = 𝑇(𝑠)(𝑡)

  

where 𝑦 is the depth, 𝑡 is the time, 𝛼(𝑦, 𝑡) is the thermal diffusivity, 𝐿 is the distance between the first 

and the last sensor mounted in the thermocouple tree. Furthermore, we have assumed a 

unidimensional model with Dirichlet boundary conditions 𝑇(0)(𝑡) and 𝑇(𝑠)(𝑡) and initial condition 

𝑇(0)(𝑡), because the thermocouple tree measures the temperature along a line through the pavement 

depth, as represented by the rod in Figure 3.20 for cell 12. In this figure, the sensors are the points along 

the depth where the temperature field is measured. Therefore, for a given thermocouple tree with 𝑠 

sensors, we have predetermined depths 𝑦𝑗 ∈ [𝑦1, 𝑦2, … , 𝑦𝑠]. Therefore, the measured temperature field 

is mathematically represented as 𝑇𝑖
(𝑗)

= 𝑇(𝑦𝑗, 𝑡𝑖), where the discretize vector of time is given by 𝑡𝑖 ∈

[𝑡1, 𝑡2, … , 𝑡𝑁]. Additionally, we have assumed that thermal diffusivity 𝛼 is constant within each layer of 

the pavement, since we are assuming a homogeneous thermal characteristic for a layer composed by 

the same material. In the example shown in Figure 3.20, we observe that Cell 12 is composed with three 

layers, and therefore our rod model contains three sections made of materials with three distinct 

thermal diffusivities 𝛼1(𝑡), 𝛼2(𝑡), and 𝛼3(𝑡).   
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Figure 3.20 Model for the thermal conduction along the pavement depth. 

However, determining time-dependent thermal diffusivities is a challenging task due to the complexity 

and ill-posed nature of the inverse problem. To reduce this complexity, we assume that changes in the 

thermal properties of the pavement occur gradually over time. Consequently, within a single day, the 

thermal diffusivity coefficients 𝛼𝑗(𝑡) can be reasonably approximated as constants. This assumption 

allows us to perform the inverse analysis on a day-by-day basis, using temperature data collected daily. 

In this project, we applied this assumption to evaluate the feasibility of using a Markov Chain Monte 

Carlo (MCMC) approach for estimating the posterior distributions of the thermal diffusivity 

coefficients 𝛼𝑗 . The results demonstrate the potential of MCMC methods for capturing the underlying 

parameter uncertainties in pavement thermal characterization. 

In the following section, we provide a brief overview of a numerical scheme used to solve the heat 

equation numerically and of the MCMC methodology used in this analysis. 

3.3.2.2 Numerical solution of the heat equation 

The Markov Chain Monte Carlo (MCMC) method requires repeated evaluation of the forward model 

defined by Eq. (19). To solve this equation numerically, we employed the Crank–Nicolson Method 

(CNM)—a finite difference technique well-suited for one-dimensional transient heat conduction 

problems (Crank and Nicolson, 1947). The CNM is an implicit time integration scheme that 

achieves second-order accuracy in both time and space, offering a favorable trade-off between 

numerical accuracy and stability. One of its key advantages is its unconditional stability, which makes it 

particularly robust for long-time simulations and inverse problems involving noisy data. 

A distinctive feature of CNM is its ability to accommodate nonuniform spatial meshes, which is 

especially beneficial for modeling multilayer systems such as pavements. When prior knowledge 

indicates that the temperature gradient changes rapidly near material interfaces or boundaries, 

localized mesh refinement can significantly enhance solution accuracy without introducing a prohibitive 

computational burden. This makes CNM an ideal numerical solver for inverse heat conduction 
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problems in heterogeneous, multilayered domains. The CNM discretization stencil is illustrated in Figure 

3.21. The method is derived by averaging the Forward-Time Centered-Space (FTCS) and Backward-Time 

Centered-Space (BTCS) schemes. The resulting discretized form of the heat equation is expressed as: 

𝑇𝑖+1,𝑗−𝑇𝑖,𝑗

Δ𝑡
=

𝛼𝑗

2
(

𝑇𝑖,𝑗+1−2𝑇𝑖,𝑗+𝑇𝑖,𝑗−1

Δ𝑦2 +
𝑇𝑖+1,𝑗+1−2𝑇𝑖+1,𝑗+𝑇𝑖+1,𝑗−1

Δ𝑦2 )  (22)  

where 𝑇𝑖+1,𝑗 is the temperature at spatial node 𝑗 and time step 𝑖, Δ𝑦 is the spatial step size along the 

depth of the pavement, Δ𝑡 is the time step size (see Fig. 3.21). Next, after multiplying both sides by Δ𝑡, 

we can rearrange the terms of the expression above to obtain 

−
𝑟

2
𝑇𝑖+1,𝑗−1 + (1 + 𝑟)𝑇𝑖+1,𝑗 −

𝑟

2
𝑇𝑖+1,𝑗+1 =

𝑟

2
𝑇𝑖,𝑗−1 + (1 − 𝑟)𝑇𝑖,𝑗 +

𝑟

2
𝑇𝑖,𝑗+1  (23) 

where 𝑟 =
𝛼Δ𝑡

Δ𝑦2 is a dimensionless parameter. The time evolution equation can be written as a 

tridiagonal matrix system in the form 𝐀𝑇𝑖+1 = 𝐁𝑇𝑖 + 𝑏, where 𝐀 is a tridiagonal matrix with coefficients 

−
𝑟

2
, 1 + 𝑟, and −

𝑟

2
; 𝐁 is a tridiagonal matrix with coefficients 

𝑟

2
, 1 − 𝑟; and 

𝑟

2
. 𝑇𝑛+1 and 𝑇𝑛 are 

temperature vectors at times 𝑡𝑖+1 and 𝑡𝑖, respectively. Finally, 𝑏 is a vector that includes contributions 

from the boundary conditions (See Crank and Nicolson (1947) for a detailed description of this method).  

In the pavement sections analyzed in this study, we use a discretization in both time and space to solve 

the heat equation numerically. At the interfaces between layers, we enforce continuity of the 

temperature field and heat flux, ensuring physically consistent transitions across material boundaries 

accomplished by matching the temperature and flux from both sides of the interface.  

Regarding the boundary conditions, we prescribe the measured temperatures at the topmost and 

bottommost sensors as Dirichlet conditions. The initial temperature profile is defined using the 

measurements from all sensors in the thermocouple array at the initial time 𝑡 = 𝑡0. The forward model 

then simulates the temperature field over a 24-hour period, enabling comparison between observed 

and predicted values, which is useful for inverse modeling and uncertainty quantification.  

 

Figure 3.21 Crank-Nicolson Method discretization scheme. 
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3.3.2.3 Mathematical formulation of MCMC for inverse problems 

We have mentioned earlier that the MCMC is used to perform the identification of the thermal diffusivities 

of the pavement layers. The MCMC relies on the Bayes’ theorem, which constitutes the core of Bayesian 

inference, and it is defined through the following expression: 

𝑃(𝛼|𝑇) =
𝑝(𝑌|𝛼)𝑝(𝛼)

𝑃(𝑇)
  (24) 

In this expression, we are interested in determining the probability distribution 𝑝(𝛼|𝑇), also known as 

posterior, of the parameters 𝛼 of a given model ℳ(∙) (i.e., heat equation), such that 𝑇 = ℳ(𝛼) + 𝜀, 

where 𝑇 are the model outputs (temperature) and 𝜀 is the noise representing an aleatoric uncertainty. 

Therefore, we want to find a probabilistic model for the parameters that maximize the likelihood 𝑝(𝑇|𝛼) 

that the data 𝑌 was generated by the model with parameters 𝛼. To this end, we have to assume a prior 

knowledge of the probability distribution 𝑝(𝛼) of the parameters in order to create an updating scheme 

based on the Bayes’ theorem in order to obtain the posterior distribution, where 𝑝(𝑇) denotes the 

probability distribution of the data. 

To this end, MCMC generates a sequence of samples that approximates the posterior distribution by 

constructing a Markov chain with the posterior as its stationary distribution. One of the most widely 

used sampling algorithms is the Metropolis-Hastings algorithm, which proceeds as follows: 

1. Initialize with a starting parameter 𝛼0; 

2. At iteration 𝑘, propose a new parameter 𝛼∗ from a proposal distribution 𝑞(𝛼∗|𝛼𝑖); 

3. Compute the acceptance ratio as: 

𝐴(𝛼∗|𝛼𝑘) = min [1,
𝑃(𝑌|𝜃∗)𝑝(𝜃∗)𝑞(𝜃∗|𝜃𝑖)

𝑃(𝑌|𝜃𝑖)𝑝(𝜃𝑖)𝑞(𝜃𝑖|𝜃∗)
]  (25) 

4. Accept 𝛼∗ as 𝛼𝑘+1with probability 𝐴(𝛼∗, 𝛼𝑖); otherwise, set 𝛼𝑖+1 = 𝛼𝑖. 

The chain converges to the posterior distribution after sufficient iterations, enabling parameter 

estimation (e.g., posterior mean value) and uncertainty quantification (e.g., credible intervals). In the 

context of inverse problems, the likelihood function 𝑝(𝑇|𝛼) is defined based on the forward model that 

relates the physical real-world behavior and the observed data to the unknown parameters.  
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Chapter 4:  Spectral Analysis for Temperature Data 

In this task, the research team applied two spectral analysis techniques to investigate the temperature 

data collected over the past 20 years from thermocouple trees installed in selected pavement sections. 

The analysis focused on both flexible pavements (cells 2, 3, and 4) and rigid pavements (cells 12 and 13), 

as detailed in Chapter 3. However, the analysis in this report will focus only on cell 2, 12, and 13, 

because the observations based on these cells are easily extended to the other sections. Thus, although 

a detailed analysis on the other cells is not presented here, the processed signals and filter data are 

available for future investigations. 

The objective of this task is to examine the relationship between the thermal performance of 

pavements and the spectral properties of temperature fluctuations, with the goal of identifying 

potential indicators for assessing the life-cycle performance of pavement structures. To ensure the 

robustness of the conclusions drawn, both Fourier and wavelet analyses were employed. By leveraging 

the strengths of each method, we aim to achieve consistent and reliable results. We expect both 

techniques to yield similar patterns and trends in the spectral properties of the temperature field. 

Using the filter modeling approach described in Section 3.3.1.1, we treated the temperature fluctuation 

recorded by adjacent thermocouples as input and output signals of a dynamic system. Specifically, the 

signal measured at the top of a pavement segment is considered the input, and the signal at the bottom 

is the output—resulting in a linear filter model representing heat conduction behavior. By computing 

the FRF either in the frequency domain (via Fourier analysis) or in the joint time-frequency domain (via 

wavelet analysis), we extracted the amplitude, phase shift, and coherence functions of the temperature 

signals. These quantities were further analyzed to study their temporal evolution, with Fourier 

analysis offering a coarser time resolution and wavelet analysis providing finer, more localized time-

frequency insights. 

For each pavement section, FRFs were calculated for every pair of adjacent thermocouples within the 

corresponding thermocouple tree.  

Table 4.1 summarizes the number of thermocouples available per cell over two distinct time periods 

used for spectral analysis. It is important to note that temperature signals containing extensive data 

gaps were excluded from the analysis presented in this report. Furthermore, Table 4.2 lists the sensors 

that were not used due to significant data corruption, for example, due to the presence of large missing 

segments of the signal. An example of a signal with missing gaps that are too large to be reliably 

recovered is presented in Figure 4.1. This signal corresponds to the measurement of sensor 113 in cell 2.  
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Table 4.1 Number of thermocouples per cell. 

Cell Number of thermocouples 
1998-2008 2008-2022 (2015 for cell 2)  

2 1 1 

3 1 1 

4 7 1 

12 4 4 

13 1 1 

 

Table 4.2 Sensors not used in the present analysis due to the presence of large missing segments. 

Cell Dismissed sensor data 
1998-2008 2008-2022 (2015 for cell 2)  

2 None 113 

3 1, 2, 11 None 

4 1, 2, 11, 21, 22, 40-53 None 

12 38, 41, 42 38, 41, 42 

13 None None 

 

 

Figure 4.1 Signal containing large missing segments. 

The first step of this analysis consisted in the identification of the signal that can be reconstructed using 

compressed sensing and with the removal of artifacts. After the identification of the “healthy” signals, 

we proceed with the reconstruction of the signals with missing data. Additionally, we include the 

precipitation data for the corresponding time periods as a reference to aid the determination of 

potential influences on the time-varying behavior of the phase shift. Next, the recovered signals are 

used in the spectral analysis developed by the research team. In this report, we present the spectral 

analyses corresponding to cells 2, 12, and 13.  
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In the ensuing analysis, we consider that a negative phase shift between the input and the output 

signals means that the output is delayed in comparison to the input signal. In Figure 4.2, where the 

horizontal axis represents the time domain, we can assume that the red oscillating function is the input 

signal and that the blue oscillating function is the output, which has a delay equal to 𝜃. 

 

Figure 4.2 Delay between the input (red) and the output (blue) signal representing a negative phase shift. 

4.1 Flexible pavement 

The data from cells 2, 3, and 4 are divided into two groups. Group A corresponds to data acquired 

between 1998 and 2008, while Group B includes data collected between 2008 and 2022. The only 

exception is cell 2, where Group B includes data only from 2008 to 2015. Fourier and wavelet analyses 

were performed to characterize the time-varying behavior of the FRF properties derived from filter 

models of pavement segments. The results for magnitude, phase shift, and coherence are presented for 

the selected cells and thermocouple trees, beginning with cell 2 (Groups A and B). Furthermore, the 

figures included in this section show a comparison of the coherence, magnitude (gain), and phase shift 

of the filters estimated using the temperature time histories. Figures (a) present the results obtained 

from the Fourier analysis described in Section 3.3.1.2, while figures (b) show the results from the 

wavelet analysis introduced in Section 3.3.1.3. The objective of this comparison is twofold. On the one 

hand, we aim to validate the results by demonstrating that similar outcomes can be achieved using two 

distinct methods. On the other hand, we seek to determine which technique offers better resolution in 

the time domain. 

Figure 4.3 and Figure 4.4 show the coherence functions obtained using both methods for all modeled 

filters in cell 2, Group A and Group B, respectively. We observe that both Fourier and wavelet 

techniques yield comparable coherence results. However, the wavelet analysis offers superior temporal 

resolution, making it more effective in identifying time-localized behaviors. Additionally, we note that 

the coherence function is strongly material-dependent. For instance, in Figure 4.3 (cell 2, Group 

A), filters 1 and 2, which model the asphalt layer, exhibit high and relatively uniform coherence. This 

behavior reflects the fact that asphalt is less sensitive to heat conduction compared to the granular base 

and subgrade layers. In contrast, the base and clay layers display greater sensitivity to precipitation, 

resulting in periodic losses of linearity in the filter model. This phenomenon manifests as oscillations in 

the coherence function, and similar behavior is observed in the FRF magnitude and phase shift. 
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This analysis was repeated for the data in Group B (see Figure 4.4a and Figure 4.4b), and the results 

were consistent with those of Group A. These findings confirm the sensitivity and reliability of the filter 

modeling approach in capturing the characteristics of heat conduction across different pavement layers. 

The coherence function proves to be an effective indicator of the thermal behavior of multilayer 

pavement structures. Next, we present the magnitude and phase shift of the FRF, demonstrating that 

these quantities carry rich information about the thermal properties of the individual pavement layers. 

 

Figure 4.3 Coherence for cell 2 (1998-2008): a) Fourier and b) wavelet analyses. 
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Figure 4.4 Coherence for cell 2 (2008-2015): a) Fourier and b) wavelet analyses. 

Next, we compare the behavior of the magnitude of the FRF and the phase shift across different 

pavement layers. First, it is evident that both the magnitude and phase shift exhibit time-dependent 

behavior, which may be attributed to the aging and densification of materials, along with changes in 

their thermal properties. Additionally, each layer demonstrates a distinct temporal pattern and 

responds differently to variations in average temperature and precipitation regimes. 
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While these observations are promising, further investigation is necessary to clarify potential 

correlations between filter properties and environmental conditions. Based on the results presented 

in Figure 4.5, filters 2 and 3—located within the asphalt layer—exhibit a slight decrease in FRF magnitude 

over time. This trend could be associated with the evolving mechanical and thermal properties of 

asphalt. A reduction in the phase shift magnitude suggests a potential decrease in heat conduction 

through the asphalt. However, additional analysis is needed to validate this hypothesis. 

 

Figure 4.5 FRF magnitude for cell 2 (1998-2008) : a) Fourier and b) wavelet analyses. 
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Notably, filter 3, which corresponds to the interface between the asphalt and the base, shows a 

significant increase in FRF magnitude over time. This trend indicates an increase in thermal 

conductivity at the interface. Moreover, the base layer appears to show an inverse correlation with 

precipitation—becoming more thermally conductive during wetter periods—whereas 

the subgrade appears less sensitive to weather conditions. 

 

Figure 4.6 FRF magnitude for cell 2 (2008-2015): a) Fourier and b) wavelet analyses. 

After the pavement was reconstructed, the spectral properties of heat transport changed markedly. 

Despite this shift, the individual behaviors of each layer remain distinguishable, particularly when 

analyzing the FRF magnitude profiles. 
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Figure 4.7 FRF phase shift for cell 2 (1998-2008): a) Fourier and b) wavelet analyses. 

The evolution of the phase shift, as illustrated in Figure 4.7 (Group A) and Figure 4.8 (Group B), also 

reveals significant insights. For example, during the 1998–2008 period, the interface between the 

asphalt and base layers plays a prominent role in the conduction process, as evidenced by a positive 

phase shift. Additional investigation is warranted to understand the physical mechanisms driving this 

phenomenon. After reconstruction, the overall phase shift profile changes considerably; however, 

the distinct thermal characteristics of each layer remain apparent (see Figure 4.8). Notably, the base 

layer becomes less sensitive to environmental variability over time, as indicated by the diminished 
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amplitude of phase shift oscillations in filters 7 through 10. This trend could reflect changes in base 

compaction or moisture retention and should be explored further. 

 

Figure 4.8 FRF phase shift for cell 2 (2008-2015): a) Fourier and b) wavelet analyses. 

To complement these observations, Figure 4.9 (Group A) and Figure 4.10 (Group B) present three sets of 

quantities derived using both Fourier and wavelet analyses. In each figure: The left panel displays 

the slope of the phase shift over time for sensors placed at various pavement depths. The right 
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panel presents the mean phase shift over time across the same sensor set. The center panel shows 

the mean FRF magnitude over time for all sensors in the thermocouple tree. 

These plots collectively define a filter profile of the pavement, which may serve as a diagnostic 

signature for detecting structural anomalies or degradation over time. Comparing the two figures, we 

observe that after reconstruction, the upper layers of the pavement exhibit a flattened filter profile, 

suggesting increased thermal conductivity near the surface. This outcome highlights the potential of 

spectral filtering methods to track changes in thermal performance due to structural modifications or 

environmental influences. 

 

Figure 4.9 Slope of the phase shift (left), mean FRF amplitude (middle), mean phase shift (right) for cell 2 (1998-

2008): Fourier (red dashed line) and wavelet analyses (black solid line). 

 

Figure 4.10 Slope of the phase shift (left), mean FRF amplitude (middle), mean phase shift (right) for cell 2 (2008-

2015): Fourier (red dashed line) and wavelet analyses (black solid line). 



53 

4.2 Rigid Pavement 

The analysis presented in the previous section provides key insights into the dynamics of thermal 

conduction in flexible pavements. In this section, we focus on cells 12 and 13. Although the analysis was 

conducted using data from all thermocouples in cell 12, only the data from the first thermocouple is 

used here to introduce the developed methodology. Moreover, since the results obtained with Fourier 

analysis are similar to those from wavelet analysis, we present only the wavelet-based graphics in this 

section due to their superior time-domain localization. 

Figure 4.11 shows the coherence, FRF magnitude, and phase shift for all filters modeling the heat 

conduction dynamics in the section of cell 12 containing the first thermocouple. The coherence indicates 

that the linear filter model is suitable for representing heat conduction within the concrete layer. 

However, we observe that the properties of the filter modeling the lower part of the concrete layer 

change significantly over time, unlike those modeling the upper part. This difference could be explained 

by the proximity of the lower part to the base and thus to humidity, as suggested by the correlation with 

precipitation through seasonal fluctuations in the filter properties. Additionally, the magnitude and 

phase shift at the interface exhibit a notable time-dependent behavior, both increasing over time, 

possibly reflecting enhanced heat conduction at the interface between the concrete layer and the base. 

 

Figure 4.11 Wavelet a) coherence, b) FRF magnitude, and c) phase shift for cell 12. 
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A significant long perturbation at the subgrade was discovered. However, further investigation is 

necessary to explain this perturbation in the coherence, FRF magnitude, and phase shift. Figure 4.12 

shows the coherence, FRF magnitude, and phase shift for cell 13. Figure 4.13 presents the heat 

conduction profile for cell 12, which resembles that of cell 13. Here, we observe a clear correlation with 

weather conditions but no significant trend in magnitude or phase shift. Nonetheless, a notable 

perturbation is again observed at the subgrade and base, the cause of which remains undetermined but 

could be related to factors such as fluctuations of the relatively shallow groundwater table.  

 

Figure 4.12 Wavelet a) coherence, b) FRF magnitude, and c) phase shift for cell 13. 
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Figure 4.13 Slope of the phase shift (left), mean FRF amplitude (middle), mean phase shift (right) for cell 12: 

Fourier (red dashed line) and wavelet analyses (black solid line). 

 

Figure 4.14 Slope of the phase shift (left), mean FRF amplitude (middle), mean phase shift (right) for cell 13: 

Fourier (red dashed line) and wavelet analyses (black solid line). 

4.3 Discussion 

The results presented above demonstrate that the thermodynamic behavior of both flexible and rigid 

pavements is effectively captured by the properties of the modeled filters. These findings indicate that 

the filters’ time-dependent characteristics are closely linked to the evolving environmental conditions 

affecting the pavement, including ageing and weather variations. Additionally, we observe that both the 

phase shift and magnitude of the filters vary with depth and depend on the spacing between sensors. 

Notably, the interfaces between layers exhibit particularly intriguing behaviors, showing significant time-

dependent influences on both phase shift and magnitude. While further investigation is needed to 

pinpoint the exact causes of these phenomena, we are confident that they correlate with pavement 
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performance, potentially reflecting processes such as densification and compaction of granular 

materials, as well as variations in their thermal properties. 
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Chapter 5:  Probabilistic Analysis and Pavement 

Degradation Prediction 

In this research project, we demonstrate—through theoretical analysis and real-world data—that 

proper treatment of temperature measurements can yield sensitive indicators of pavement condition 

for both flexible and rigid systems. To accomplish this objective, we developed a probabilistic framework 

that enables rigorous uncertainty quantification of the thermal diffusivity coefficients associated with 

different pavement layers over a 24-hour period. To this end, we consider the data from Cell 12. 

Specifically, the research team employed an MCMC approach to predict the temperature field at each 

sensor within the thermocouple tree and estimate the probability density functions of the thermal 

parameters corresponding to each material layer. We considered 3 different days as examples in our 

analysis: 04/15/1998, 06/15/2009, and 02/10/2021. 

The posterior distributions of the thermal diffusivity parameters 𝛼1, 𝛼2, and 𝛼3—corresponding to 

concrete, aggregate base, and clay, respectively—were estimated using 12 independent Markov chains, 

each generating 3,000 samples, resulting in a total of 36,000 samples per parameter. We adopted 

uniform, non-informative prior distributions for all parameters and used a log-likelihood function based 

on the discrepancy between observed and simulated temperatures. The simulated field was computed 

by solving the forward heat equation using samples drawn from the posterior distributions of each 

thermal diffusivity parameter 𝛼𝑖. The residuals are defined as the difference between observed and 

predicted temperatures. 

We employed the proposed uncertainty quantification methodology to analyze the first day of 

measured temperatures. Figure 5.1 shows the measured, predicted average, and residual temperature 

fields. The results show a good agreement between the real-world data and the results obtained using 

the MCMC method. In addition, the residuals are minimal, with a maximum absolute error of 

approximately 0.46 °C, indicating that the methodology accurately captures the system’s thermal 

behavior. 

 

Figure 5.1 The measured, predicted average, and residual temperature fields for 04/15/1998. 
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Furthermore, Figure 5.2 illustrates the observed temperature field, the predicted average temperature 

field, and the resulting residual temperature field for the second analyzed day. The results show strong 

agreement between the predicted and measured temperature profiles, indicating that the inference 

framework captures the system's thermal behavior with high fidelity. The residuals are generally small, 

with a maximum absolute residual of approximately 0.85°C, confirming the accuracy of the proposed 

computational model. 

 

Figure 5.2 The measured, predicted average, and residual temperature fields for 06/15/2009. 

Next, we applied the proposed methodology for the temperature field on the third day. The measured, 

predicted average, and residual temperature fields are plotted in Figure 5.3. The results indicate a 

strong agreement between the predicted and observed profiles, even with higher temperatures in the 

bottom layer and lower temperatures near the surface of the pavement. Compared to the second day, 

the residuals are slightly larger, exceeding 1 °C, but the maximum absolute residual error remains low, 

at approximately 1.17 °C.

 

Figure 5.3 The measured, predicted average, and residual temperature fields for 02/10/2021. 

Next, we applied Kernel Density Estimation (KDE) to estimate the posterior probability density functions 

of the thermal diffusivity parameters across the analyzed days. As illustrated in Figure 5.4, the posterior 

distributions for concrete and clay appear approximately Gaussian, centered around their respective 

mean values. In contrast, the distribution for the aggregate base layer exhibits a more irregular shape 

for the third day, indicating that a better calibration strategy must be employed. This behavior is 

expected, as concrete and clay tend to have more consistent and well-characterized thermal properties, 

while the aggregate base layer is typically more heterogeneous and less predictable. 
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Figure 5.4 Posterior probability distributions of the thermal diffusivity parameters for the concrete, CL5sp 

(aggregate base), and clay layers for all three days analyzed. The distributions were estimated using KDE. 

Finally, analysis of all posterior distribution plots reveals a decrease in the thermal diffusivity of the 

concrete layer. The aggregate base layer exhibits temporal variability in its thermal diffusivity, as 

expected. While this behavior is expected due to the heterogeneous nature of the material, it is difficult 

to conclusively attribute these changes to physical deterioration. External environmental factors, such 

as moisture content and precipitation, likely play a significant role in its thermal response. Moreover, we 

observe an increase in the thermal diffusivity coefficient 𝑎3 for the clay layer, potentially suggesting 

changes in the physical properties of this material, such as the thermal conductivity or soil humidity.  
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Chapter 6:  Summary, Conclusions and 

Recommendations 

6.1 Summary 

This research study developed a computational tool to predict pavement performance using long-term 

temperature data collected from thermocouple trees embedded in pavement sections at the MnROAD 

research facility. The study focused on three flexible (cells 2, 3, and 4) and two rigid (cells 12 and 13) 

pavement sections, leveraging temperature measurements to analyze thermal behavior and its impact 

on pavement condition. The research comprised three main components: 

1) Data Collection and Preprocessing. Temperature data were gathered from thermocouple trees, 

supplemented by weather data (air temperature, humidity, and precipitation) from MnROAD’s 

weather stations. Challenges such as missing data, noise, and artifacts were addressed using 

compressed sampling (CS) to reconstruct incomplete signals, ensuring a uniform 15-minute sampling 

interval. 

2) Spectral Analysis. Two techniques, Fourier Transform and Wavelet Analysis, were applied to model 

pavement layers as a cascade of filters, characterizing the time-varying thermal properties (gain and 

phase shift) of pavement sections. These methods provided insights into heat conduction dynamics, 

with wavelet analysis offering superior temporal resolution for capturing non-stationary behaviors. 

3) Probabilistic Analysis. A Markov Chain Monte Carlo (MCMC) approach, based on Bayesian 

inference, was used to estimate thermal diffusivity coefficients for pavement layers. The method 

employed the Crank-Nicolson numerical scheme to solve the one-dimensional heat equation, 

enabling uncertainty quantification and validation of spectral analysis results. 

All computational methods were implemented in a modular, object-oriented Python package, publicly 

available on GitHub with reproducible Jupyter notebook examples. The study demonstrated that 

thermocouple-derived temperature data, when processed with advanced spectral and probabilistic 

tools, can reliably detect changes in pavement material properties due to aging, moisture, or 

compaction, supporting long-term infrastructure management. 

6.2 Conclusions 

Based on the research conducted, the following conclusions can be drawn: 

• Thermocouple trees provide a robust method for monitoring pavement thermal behavior, 

capturing daily and yearly temperature fluctuations that reflect material and environmental 

interactions. The filter modeling approach, using spectral properties (gain, phase shift, and 

coherence), effectively identifies time-dependent changes in pavement thermal performance. 

• Compressed sampling effectively reconstructed missing data in temperature signals, enabling 

reliable spectral and probabilistic analyses. The data quality assessment and artifact removal 
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processes ensured that only healthy signal segments were used, enhancing the accuracy of the 

results. 

• Both Fourier and Wavelet analyses successfully characterized the thermal properties of pavement 

layers. Wavelet analysis, particularly with Generalized Harmonic Wavelets, proved superior for its 

finer temporal resolution, enabling the detection of transient thermal phenomena linked to 

environmental events like precipitation. 

• The MCMC-based probabilistic framework accurately estimated thermal diffusivity coefficients, 

with residuals between observed and predicted temperatures typically below 1.17°C. The approach 

provided robust uncertainty quantification, confirming the reliability of thermal parameters as 

indicators of pavement condition. 

• The study revealed distinct thermal responses across pavement layers. Asphalt layers showed high 

coherence and uniform thermal behavior, while base and subgrade layers were more sensitive to 

environmental factors like precipitation. Interfaces between layers exhibited significant time-

dependent changes, potentially linked to densification or moisture effects. 

6.3 Recommendations 

The findings of this study represent a very good start in developing a computational tool for reliable 

prediction of pavement performance based on temperature data. However, this research effort needs 

to be continued to address the following key issues: 

• While this study focused on thermal properties, future research should integrate fracture 

mechanics models (e.g., cohesive zone models) to correlate thermal behavior with mechanical 

performance, such as crack initiation and propagation, to provide a more comprehensive 

assessment of pavement durability. 

• Further investigation is needed to quantify the relationship between environmental factors (e.g., 

precipitation, humidity) and changes in thermal properties, particularly at layer interfaces. This 

could enhance predictive models for pavement degradation under varying weather conditions. 

• Develop real-time data processing pipelines using the proposed Python package to enable 

continuous pavement condition monitoring. This could involve integrating sensor data with 

machine learning models to predict performance trends dynamically. 

• Extend the analysis to additional MnROAD cells and other pavement types to validate the 

generalizability of the spectral and probabilistic methods. This would strengthen the tool’s 

applicability across different regions and pavement designs. 

• Refine data quality assessment thresholds (e.g., MSE, R², Frobenius norm) to optimize the 

identification of reconstructed signal segments. Explore advanced machine learning techniques for 

automated detection of data corruption. 

• Partner with MnDOT and other transportation agencies to deploy the computational tool in 

operational settings, integrating it with existing pavement management systems to support data-

driven decision-making. 
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