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EXECUTIVE SUMMARY

The Utah Department of Transportation (UDOT) is responsible for maintaining over
120,000 drainage culverts and storm drain pipes across state highways. Ensuring the integrity and
functionality of these culverts is crucial for preventing flooding, sinkholes, and road damage,
thereby safeguarding transportation infrastructure. Traditional inspection methods, primarily
relying on manual visual assessments, are time-consuming, prone to human error, and lack
consistency. To address these challenges, this project aims to develop an automated interpretation
system for culvert inspection videos using advanced computer vision and deep learning

technologies, specifically leveraging image classification and object detection algorithms.

The project utilized a diverse set of culvert inspection videos and images from UDOT’s
database, including video data from CCTV and zoom camera inspections. However, a significant
challenge was the imbalanced dataset, dominated by corrosion defects in metal culverts. Therefore,
we labeled more data collected from different sources and applied data augmentation techniques,
including rotation and adding noise. Based on Utah’s pipe rating system, the structural defect
categories used in this study include Crack-Fracture, Break-Hole-Collapse-Kink, Corrosion,
Deformation-Shape, and Joints, which represent the most observed issues in Utah’s culvert
inspection data. Each structural defect category originally contained up to five distinct classes;
however, due to class imbalance and overlapping visual features, we merged these into smaller
groups of two or three classes per category to improve model performance and ensure more

consistent training.

After finishing the labeling and annotating of the collected images, we tailored the latest
computer vision algorithms to each type of model we aimed to develop. For the binary
classification task, we trained models to distinguish between defective and non-defective frames,
achieving a high accuracy of 91%, which proved effective in filtering out defective frames for
further analysis. Next, we developed multiclass classification models for each structural defect
category, enabling the system to identify and categorize specific types of defects within a frame.
These models achieved accuracies ranging from 77% to 96%, depending on the complexity and
balance of the defect class distributions. To take the analysis a step further, we implemented object

detection models capable of both localizing and classifying defects within each frame using



bounding boxes. The final object detection model achieved an average mean Average Precision

(mAP) of 78%, offering detailed spatial insights necessary for assigning condition ratings.

To make these models accessible and usable by non-technical personnel, we developed
intuitive Graphical User Interfaces (GUIs) for each model type. These GUIs allow UDOT
employees to upload culvert inspection videos, run automated analyses, and receive detailed
outputs without requiring programming knowledge. When evaluated on 56 real inspection videos,
the object detection GUI accurately predicted the condition of 84% of the culverts, while the
multiclass classification GUI achieved 75% accuracy. These results highlight the reliability and

practical value of the system in real-world conditions.

For UDOT, these tools offer significant benefits: They reduce manual inspection time,
improve consistency and objectivity in assessments, and help prioritize maintenance based on
automated condition ratings. Ultimately, this system has the potential to streamline culvert
management workflows, minimize human error, and lower operational costs while supporting

timely, data-driven infrastructure decisions.



1.0 INTRODUCTION

1.1 Problem Statement

Ensuring the safety and functionality of existing transportation infrastructure, including
roads, bridges, and culverts, is a top priority for engineers. Culverts, often hidden underground,
play a crucial role in stormwater management by acting as channels that allow water to flow
beneath various transportation structures [1]. They are vital for preventing flooding, sinkholes, and
road damage. Regularly monitoring infrastructure is essential to catching small problems before
they become expensive and time-consuming repairs. Therefore, transportation agencies send
inspectors to inspect culverts on a regular basis. However, visually inspecting culverts presents a

unique challenge due to their being buried and often located in areas with limited access [2].

To address these challenges, the use of digital video inspections has emerged as a valuable
tool in assessing culvert conditions. Digital video inspections involve deploying cameras to capture
images and videos of the interior of culverts. This method offers several advantages, including the
ability to collect comprehensive data without the need for extensive excavation or physical entry
into the culvert. Inspectors can review the footage to identify defects, assign condition ratings, and
document inventory, significantly improving the accuracy and thoroughness of the inspection
process. Remote cameras can also help inspectors to enhance safety by avoiding potentially
hazardous conditions inside culverts, such as confined spaces, unstable structures, or exposure to
toxic substances [3]. However, there are also disadvantages to consider. The initial investment in
video inspection equipment and technology can be substantial, which may be a barrier for some
transportation agencies. Moreover, the process still requires trained personnel to operate the
equipment and interpret the data accurately. Despite automation advancements, the manual review

of footage remains time-consuming and labor-intensive [4].

The Utah Department of Transportation (UDOT) maintains over 120,000 drainage culverts
and storm drain pipes along state highways in Utah, making the importance of culverts more
evident. Despite this, UDOT lacks a comprehensive inventory of these assets [5]. Establishing a

detailed culvert inventory is crucial for predicting future performance and developing effective



maintenance strategies [6]. To this end, UDOT has to collect information about all culverts across

the state and inventory them in ATOM as quickly as possible.

Identifying whether culverts need repair, rehabilitation, or replacement requires
comprehensive and well-documented inspections. The current culvert inspection practice at
UDOT is based on digital video inspection and relies heavily on human interpretation and defect
identification. Inspectors collect videos on-site and later review them off-site, a process that
includes defect identification, condition rating assignment, and inventory documentation. Each
video interpretation takes approximately 10 to 12 minutes, leading to inefficiencies and time-
consuming procedures. Moreover, because these video interpretations rely on human judgment,

they are prone to subjectivity.

1.2 Objectives

The rapid advancements in computing technologies have significantly enhanced computer
vision and deep learning models’ capabilities in various fields, including the inspection of
infrastructures. Key innovations in computer vision and deep learning have paved the way for
automated systems that can precisely identify and evaluate defects in infrastructure components
such as bridges, pipes, and roads. These advancements are reshaping traditional inspection

methods, offering improved accuracy, efficiency, and cost-effectiveness.

Since UDOT currently relies on manual post-video interpretation for culvert inspections,
this project aims to optimize the process by employing advanced technologies. Manual
interpretation, while useful, is time-consuming, prone to human error, and can vary significantly
based on the inspector’s experience and subjectivity. To address these limitations, this project will
review the most recent defect detection models developed for the assessment of culverts or pipes
and develop a state-of-the-art deep learning model tailored to UDOT’s specific needs. The model

will be customized based on UDOT’s culvert-condition rating criteria.

The automated system will also enable early detection of potential issues, facilitating
proactive maintenance and reducing the risk of costly infrastructure failures. It would also allow
seamless import of inspection data into ATOM UDOT Maintenance Management. This project

aligns with UDOT’s commitment to leveraging innovative technologies to enhance infrastructure



management and ensure the safety and functionality of the state’s transportation network. In
conclusion, this project represents a significant step forward in modernizing UDOT’s culvert
management system. By leveraging the latest advancements in deep learning and computer vision,
UDOT can achieve a more efficient, accurate, and reliable system for assessing culvert conditions

and maintaining critical infrastructure.

1.3 Scope

Research Tasks include:

e Conducting a comprehensive literature review to find the most advanced algorithm

for defect detection
e Collecting available culvert inspection video data and converting them into images

e Labeling and annotating the images based on UDOT’s culvert-condition rating

criteria for model training purposes

e Developing a deep learning model that can interpret culvert inspection videos and

assign a condition rating

e Comparing the results with the ground-truth data to evaluate the performance of the

developed model

e Developing a Graphical User Interface (GUI) for an automated culvert inspection

interpretation framework

1.4 Outline of Report

e Introduction

e Research Methods

e Data Collection

e Data Evaluation & Results
e Conclusions



2.0 RESEARCH METHODS

2.1 Overview

This chapter presents the methodology employed to automate the interpretation of culvert
inspection videos through advanced computer vision and deep learning techniques. The
methodology encompasses both traditional approaches to culvert inspection and cutting-edge
applications of artificial intelligence in infrastructure assessment. We begin with an examination
of conventional culvert inspection practices, highlighting their limitations and the need for
automated solutions, followed by a review of recent advances in computer vision applications for

infrastructure inspection.

The technical methodology covers three primary approaches: image classification for
overall condition assessment, object detection for precise defect localization and classification,
and data augmentation strategies for enhancing model robustness and addressing dataset
limitations. Special attention is given to the latest developments in object detection architectures,
including YOLO and RF-DETR models, each offering unique advantages for culvert defect
detection tasks. The data augmentation section addresses critical challenges in developing robust
models with limited training data, providing strategies for improving model generalization while

maintaining the integrity of defect characteristics essential for accurate assessment.

2.2 Background

2.2.1 Traditional Culvert Inspection

Traditional culvert inspection methods have historically relied on visual assessments
conducted by trained inspectors who physically examine culvert structures to identify defects and
assess structural integrity [7]. These conventional approaches involve inspectors entering culvert
systems when accessible or using basic optical equipment to evaluate visible portions of the
infrastructure. However, traditional inspection methods face significant limitations, particularly
when dealing with confined spaces, hazardous environments, or lengthy culvert systems that

extend beyond safe human access [4].



The introduction of digital video inspection technology has emerged as a significant
advancement over purely manual visual assessments. This method employs specialized cameras
mounted on remotely operated vehicles or cable systems to capture comprehensive footage of
culvert interiors. Digital video inspection allows for thorough documentation without requiring
inspectors to enter potentially dangerous confined spaces, thereby improving safety while enabling
more detailed condition assessments [4]. Despite these technological improvements, the
interpretation of inspection footage remains largely dependent on human expertise, making the

process time-intensive and subject to variability based on inspector experience and judgment.

2.2.2 Applications of Computer Vision in Infrastructure Inspection

The rapid advancement of computer vision and deep learning technologies has opened new
possibilities for automating infrastructure inspection processes. Recent research has demonstrated
the effectiveness of machine learning algorithms in detecting and classifying various types of
structural defects with high accuracy and consistency [8]. Computer vision applications in
infrastructure inspection have shown particular promise in analyzing large datasets of images and
videos to identify patterns and anomalies that might be missed or inconsistently assessed through

manual inspection.

Hawari et al. [9] developed an automated defect detection system for sewer pipelines using
image processing algorithms applied to CCTV footage, focusing on four primary defect types:
cracks, settled deposits, ovality, and displaced joints. Their study demonstrated varying
performance levels across different defect types, with ovality detection showing superior results
compared to other defect categories. The research highlighted the importance of comprehensive
datasets for improving detection capabilities and recommended incorporating larger image

collections to enhance system performance.

Yin et al. [10] advanced the field by implementing a real-time automated defect detection
system using YOLOV3 architecture for sewer pipe assessment. Their model was trained on 3,664
images extracted from CCTV videos, encompassing six defect categories including holes, breaks,
deposits, fractures, cracks, and root intrusion. The balanced distribution of defects in their dataset
contributed to achieving an impressive 85.37% mean Average Precision (mAP) and F1 scores

exceeding 87% for both testing and validation sets.



Kumar et al. [11] conducted a comparative analysis of multiple object detection
frameworks, including Faster R-CNN, YOLOV3, and Single Shot Detector (SSD), for detecting
sewer pipe deposits and root intrusion. Their findings indicated that while Faster R-CNN achieved
superior overall performance, YOLOvV3 provided a more balanced trade-off between detection
speed and accuracy, making it suitable for real-time applications. Yin et al. [12] further expanded
automated assessment capabilities by developing the Video Interpretation Algorithm for Sewer
Pipes (VIASP), which integrated defect detection with location identification and report
generation, achieving an F1 score of 0.75.

According to past studies, deep learning algorithms have shown significant potential in
enhancing the defect detection process for pipelines, leading to more consistent and reliable results.
Research has demonstrated that these algorithms can effectively identify and classify defects such
as cracks, corrosion, and joint misalignments with a high degree of accuracy, surpassing traditional
manual inspection methods. Despite these advancements, there has been a notable gap in applying
deep learning techniques specifically to culvert inspections. Our project aims to address this gap
by employing novel deep learning algorithms tailored for defect detection and condition
assessment of culverts in Utah.

To address the limitations of traditional culvert inspection methods currently used by
UDOT, we propose an automated system for interpreting culvert inspection videos using deep
learning. Manual inspection of video footage is time-consuming, labor-intensive, and prone to
subjectivity. Our goal is to streamline and standardize this process by developing an intelligent
pipeline that can detect, localize, and assess defects automatically. The automation process is
divided into three key phases:

1. In the first phase, we use advanced image classification models to analyze individual
frames extracted from culvert inspection videos. These models are trained to identify
frames that show visible signs of damage, such as cracks, joint misalignments,
corrosion, or surface deformation. This step effectively filters out non-defective
frames, allowing the system to focus on areas that actually require further analysis,
thereby improving efficiency and reducing processing time.

2. Once defective frames are identified, they are passed through object detection models.
These models are trained on a curated dataset of annotated images containing various

types of culvert defects. They are capable of not only locating defects within a frame



but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and
deformation). This step provides both spatial and contextual information about each
defect, which is essential for comprehensive analysis.

3. Inthe final phase, the localized and categorized defects are evaluated to determine their
severity. This is done using advanced object detection models trained on a large dataset
that is annotated based on UDOT’s culvert rating system. The model estimates factors
such as defect color, shape, and texture, and assigns a condition rating based on learned
patterns in the training data. These ratings can then be used to inform maintenance

decisions and prioritize repairs.

To implement this pipeline, we utilize two main classes of deep learning algorithms: image
classification and object detection. Image classification models are used in the first phase to detect
frames likely to contain defects, while object detection models are employed to combine the
second and third phases to precisely locate, label, and assess each defect. By automating the
interpretation of culvert videos, this system promises to significantly enhance inspection accuracy,
reduce human error, and streamline the maintenance workflow for UDOT. The result is a faster,

more consistent, and more scalable approach to culvert condition assessment.

2.3 Image Classification

Image classification represents a fundamental computer vision task that involves
categorizing entire images into predefined classes based on their visual content [13], [14]. In the
context of culvert inspection, image classification can be employed to automatically determine the
overall condition rating of culvert segments or to classify images based on the presence or absence
of specific defect types. This approach differs from object detection in that it assigns a single label
to the entire image rather than localizing and identifying specific defects within the image [15].

The image classification methodology typically employs Convolutional Neural Networks
(CNNs) that learn hierarchical feature representations from training data. These networks
progressively extract features from low-level edge and texture information to high-level semantic
representations that enable accurate classification decisions [16]. For this project we developed

two types of image classification models:



1. A binary classification model which efficiently filters non-defective frames from
culvert video footage.

2. A multi-class classification model that assigns a condition rating (on a scale from 1 to
5) to each frame in the video footage, based on the severity level of identified defect
categories.

We employed CNNs, such as ResNet and EfficientNet, which have demonstrated high
performance in various image recognition tasks. These models are trained on a labeled dataset
consisting of both defective and non-defective culvert frames. Through supervised learning, the
model learns to distinguish visual patterns associated with defects such as cracks, joint separations,
and corrosions. The output is a binary or multi-class label indicating whether a given frame should
be flagged for further inspection.

The classification process begins with preprocessing steps, including image normalization,
resizing, and potential augmentation to improve model robustness. CNN architecture processes
these images through multiple convolutional layers, pooling operations, and fully connected layers
to produce probability distributions across the target classes. Training involves optimizing the
network parameters using labeled examples and validation on separate datasets to ensure
generalization capability. Performance evaluation typically employs metrics such as accuracy,
precision, recall, and F1-score to assess the model’s effectiveness in correctly classifying culvert

conditions.

2.4 Object Detection

YOLOVS8 (You Only Look Once, Version 8) represents one of the latest iterations in the
evolution of the YOLO family of real-time object detection models. Building on the strengths of
its predecessors, YOLOVS incorporates several architectural enhancements to achieve improved
accuracy and speed in detecting and classifying objects within images and videos. At its core,
YOLOVS retains the fundamental principle of YOLO: treating object detection as a single
regression problem, predicting bounding boxes and class probabilities directly from full images in
one evaluation. This end-to-end approach ensures that YOLOvS8 remains efficient and fast, making
it particularly suitable for real-time applications [17].

Recent developments in YOLO architecture have continued to push the boundaries of

object detection performance. YOLOV11, released as an advancement over YOLOVS, introduces

10



enhanced feature pyramid networks and improved anchor-free detection mechanisms that provide
better handling of multi-scale objects and reduced computational overhead [18]. The architecture
incorporates advanced attention mechanisms and optimized backbone networks that significantly
improve detection accuracy while maintaining real-time processing capabilities.

YOLOV12 represents the most recent iteration in the YOLO family, featuring revolutionary
architectural improvements including dynamic head structures and advanced multi-scale fusion
techniques. This version introduces novel training strategies and loss functions that enhance the
model’s ability to detect small objects and handle complex scenes with multiple overlapping
instances [19].. The model demonstrates superior performance in challenging scenarios common
in infrastructure inspection, where defects may appear at various scales and orientations.

RF-DETR (Real-time DEtection TRansformer) represents a significant departure from
traditional CNN-based detection approaches by employing transformer architectures for object
detection tasks. This model leverages self-attention mechanisms to capture long-range
dependencies and spatial relationships more effectively than conventional approaches. RF-DETR
demonstrates strength in detecting complex defect patterns and spatial relationships that are crucial
for accurate culvert condition assessment [20].

The architecture of YOLOvS8 (Figure 1) introduces key innovations that enhance its
performance. One of the primary improvements is the incorporation of advanced CNN layers that
optimize feature extraction. These layers are designed to capture more detailed spatial information,
allowing the model to detect smaller objects and distinguish between closely spaced objects with
greater precision. YOLOv8 also utilizes advanced activation functions and normalization
techniques that enhance the model’s learning capability and stability during training. Additionally,
the model benefits from a refined anchor box mechanism, which dynamically adjusts to different
object scales and aspect ratios, further improving detection accuracy. The architecture is also
designed to be modular, facilitating the integration of additional components such as attention
mechanisms or more sophisticated loss functions, thus enabling further customization and
optimization for specific tasks. These architectural advancements collectively contribute to
YOLOVS8’s superior performance in object detection, making it a powerful tool for various

applications, from autonomous driving to surveillance and beyond.
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Figure 1-YOLOVS architecture [21]

For training and testing our model, we employed a holdout cross-validation technique,
wherein the dataset was divided into two distinct subsets: 70% for training, 20% for validation,
and 10% for testing. This approach ensures that the model is trained on a substantial portion of the
labeled data while reserving a separate set of data to evaluate its performance on unseen samples.
By doing so, we can obtain a more accurate assessment of the model’s generalization capabilities

and its ability to detect defects in new, unobserved culvert inspection videos. This method helps
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to prevent overfitting and provides a realistic measure of the model’s effectiveness in real-world
scenarios, ensuring that it reliably performs when deployed in UDOT’s inspection processes [22].

For this project we developed two types of object detection models:

1. An object detection model for detecting and localizing defect categories without rating

scales.
2. An object detection model for detecting, localizing, and classifying defects with rating
scales
2.5 Data Augmentation

Data augmentation represents a critical technique in deep learning that artificially expands
training datasets by applying various transformations to existing images while preserving their
semantic content and class labels [6], [23]. In the context of culvert inspection, data augmentation
serves multiple purposes: addressing dataset imbalances, improving model generalization, and
enhancing robustness to variations in imaging conditions encountered during field inspections.
The technique is particularly valuable when working with limited datasets, as is often the case in
specialized infrastructure inspection applications where collecting comprehensive labeled data can
be time-consuming and expensive [24].

Common augmentation techniques applicable to culvert inspection include geometric
transformations such as rotation, scaling, translation, and horizontal flipping, which help the model
become invariant to different camera orientations and positions during inspection. Photometric
augmentations, including brightness adjustment, contrast modification, color jittering, and noise
addition, are essential for handling varying lighting conditions encountered in different culvert
environments. More advanced techniques such as cutout, mix-up, and mosaic augmentation can
further enhance model robustness by forcing the network to rely on multiple visual cues rather
than focusing on specific image regions [25].

The implementation of data augmentation requires careful consideration of the specific
characteristics of culvert inspection imagery. For instance, excessive rotation may not be
appropriate as culvert orientations are typically constrained, while brightness and contrast
adjustments are crucial given the challenging lighting conditions often present in underground

infrastructure [23]. To increase the size of our training dataset, we applied a diverse set of data
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augmentation techniques to each original image, generating seven augmented outputs per example.

The augmentations used are as follows:

e Flip: Applied horizontal and vertical flips to introduce directional variability.

¢ 90° Rotation: Included both clockwise and counter-clockwise 90-degree rotations to
account for different viewing angles.

¢ Crop: Performed random cropping with a minimum zoom of 0% and a maximum zoom
of 20% to simulate partial views of defects.

¢ Rotation: Applied random rotations ranging between -15° and +15° to account for slight
camera tilts.

e Shear: Introduced horizontal and vertical shear transformations up to £10° to mimic
perspective distortion.

e Saturation Adjustment: Randomly varied image saturation between -25% and +25% to
account for lighting differences and material surface changes.

¢ Brightness Adjustment: Modified brightness levels within a range of -15% to +15% to
simulate varied lighting conditions.

e Exposure Adjustment: Altered exposure levels from -10% to +10% to reflect
overexposed or underexposed footage.

¢ Blur: Added Gaussian blur with a maximum radius of 1.8 pixels to simulate motion blur
or low focus.

¢ Noise: Introduced random noise affecting up to 0.22% of pixels to improve robustness
against video compression artifacts.

These augmentations were carefully selected to preserve the semantic integrity of the
defects while improving the model’s generalization to real-world variations in culvert inspection

videos.
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3.0 DATA COLLECTION

3.1 Overview

Collecting the necessary input data is the first crucial step in developing a robust deep
learning model. For this project, we gathered extensive culvert video inspection data from UDOT’s
database. Then, we had to label the collected data to develop a deep learning model. Data labeling
for object detection involves annotating images or videos by drawing bounding boxes around
objects of interest and assigning a specific class to each box. This precise annotation allows the
model to learn how to identify and classify various objects accurately, which is crucial for

developing an effective and reliable object detection system.

3.2 Collected data

We collected four distinct categories of data for this project: zoom camera inspection
videos, CCTV culvert inspection videos, culvert images taken by cell phone, and CCTV sewer
pipe inspection images. These diverse data sources provided a comprehensive view of culvert
conditions, capturing various perspectives and levels of detail. By utilizing these varied data types,
we ensure that our model is trained on a rich dataset, enhancing its ability to accurately detect and

assess a wide range of defects in different inspection scenarios.

3.2.1 Zoom Camera Inspection Videos

UDOT provided us with its available culvert inspection data, a vital resource for our deep-
learning model development. A significant subset of this dataset consists of culvert inspection
videos collected by Consor Company. Consor employed a method of video inspection using zoom
cameras mounted on the ends of telescopic poles. This technique allows for a detailed examination
of the culverts without the need for prior cleaning, which can save considerable time and resources.
The zoom camera inspection provides high-resolution footage of the culvert interior, capturing
minute details that are crucial for accurate defect detection and assessment. Consor Company
shared over 2000 inspection video files with us, encompassing a wide range of culvert conditions

and types. These videos cover inspections conducted in Region One of Utah (Figure 2).
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Figure 2-Inspected culverts by Consor in Region One of Utah

For culvert inspection, Consor Company utilized the NASSCO rating system, which is
comparable to UDOT’s hybrid rating system, eliminating the need for conversion between rating
systems in this project. Out of the extensive dataset of culvert inspection, only 1094 inspection
reports were available. Among these reports, approximately 22% indicated that the inspected
culverts had no structural defects, further limiting the amount of data containing observable issues
and reducing the number of samples useful for training defect detection models. This limited
number is due to inconsistencies in the dataset; some culverts had multiple videos linked to the
same pipe, while others lacked corresponding video footage altogether. As a result, the number of

usable video-report pairs was significantly reduced.

We converted the video files into images. These images capture detailed visual information
from the culvert inspections, providing a rich dataset for training our deep learning model.
However, a critical step in utilizing these images is the annotation process. We meticulously
annotated the defects in each image as part of data labeling, which is essential for training the
model to accurately detect and classify defects. This labor-intensive process ensures that the model
learns from high-quality, labeled examples, improving its ability to generalize and perform

effectively on unseen data.
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3.2.2 CCTV Culvert Inspection Videos

Another significant subset of culvert inspection data available in UDOT’s database
comprises CCTV inspection video files collected by Horrocks Company, specifically from the
culverts along the I-80 highway. We accessed this data through UDOT’s R2 culvert rating app
website (Figure 3). This dataset includes 2000 data rows, but only 259 of these entries have
corresponding video files. Among these 259 videos, merely 59 exhibit structural defects, providing

a more focused dataset for our defect detection model.

R2 Culvert Rating App
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Figure 3-Inspected culverts by Horrocks along the I-80 highway

The data collected by Horrocks Engineers utilized the old four-digit rating scale previously
used by UDOT. To ensure consistency and compatibility with our model, we needed to convert
these ratings to the new 5-point rating scale that UDOT currently employs. This conversion was
necessary to standardize the data and make it suitable for training our deep learning model. The
conversion process involved using a predefined table (Table 1) to translate the old ratings into the
new scale, ensuring that the defect severity and conditions are accurately represented in the

updated system.
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Table 1-Data conversion

5-point rating scale Four-digit rating scale
1 <1000

2 1000-1999

3 2000-2999

4 3000-3999

5 >=4000

3.2.3 Culvert Images Taken by Cell Phone

Another subset of data we collected consisted of culvert images taken by UDOT employees
during their field visits. Recognizing that our initial dataset was unbalanced, with a risk of
overfitting the model to specific defect classes, we needed to incorporate additional data to ensure
a more comprehensive training set. To achieve this, we reached out to all UDOT employees,
requesting that they share any culvert images they had captured in the field. This initiative resulted
in the collection of 450 additional culvert images. Out of the 450 images, only 193 contained

visible structural defects.

These images, however, had not been labeled with condition ratings or defect annotations.
Therefore, as part of our data preparation process, we should assess each culvert image and assign
a condition rating based on UDOT’s new hybrid culvert condition rating system. This meticulous
labeling process is crucial for creating a high-quality dataset that accurately represents a wide

range of culvert conditions and defects.

By integrating these additional images into our dataset, we aim to enhance the model’s
ability to generalize across different defect types and conditions, reducing the likelihood of
overfitting. The diverse and balanced dataset that results from this effort will provide a solid
foundation for training our deep learning model, ultimately improving its accuracy and reliability

in detecting and assessing culvert defects.
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3.2.4 CCTV Sewer Pipe Inspection Images

The final type of data we collected consisted of images captured from inside sewer pipes.
These images were extracted as frames from CCTV inspection videos and were sourced from three
different repositories.

The first batch was obtained from the Roboflow website [26], which provided
approximately 1,500 unlabeled images of sewer interiors. Since these images had no annotations,
we manually labeled them using UDOT’s culvert defect rating system to ensure consistency with
the rest of our dataset.

The second batch came from a former employee of AECOM, who shared a collection of
45,000 sewer pipe images labeled using the NASSCO defect rating system. However, only about
3,000 of these images contained visible structural defects. After further review and filtering to
exclude defects irrelevant to culvert inspection, such as those found in pipes made from materials
like vitrified clay, we narrowed this batch down to 591 usable images. To maintain a unified
labeling scheme across all data sources, we converted the NASSCO ratings to UDOT’s rating
system.

The third batch was sourced from the Kaggle website and consisted of an augmented
dataset of sewer pipe images. Initially, it contained 22,120 images, but after removing the
augmented duplicates and retaining only the original frames, we were left with 5,530 annotated
images. These images were labeled with six types of defects: Deformation, Obstacle, Rupture,
Disconnect, Misalignment, and Deposition. Following a thorough review and the conversion of
these labels into UDOT’s classification framework, this batch was reduced to 3,216 relevant and
consistently labeled images.

In total, these three sources contributed to a diverse and standardized dataset of sewer and
culvert defect images, all aligned under the UDOT rating system to support robust training and

evaluation of our defect detection models.

3.3 Data Labeling

In this project, our goal is to develop two types of supervised learning models specifically
for classification and object detection. Supervised learning models require labeled data to learn

meaningful patterns, but the type and complexity of labeling differ significantly between
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classification and object detection tasks. Object detection models, such as YOLO, require detailed
annotations, including bounding boxes around each object of interest and corresponding class
labels. This makes the annotation process both time-consuming and labor-intensive. In contrast,
supervised image classification models like ResNet and EfficientNet operate on labeled images
without the need for precise localization. They simply require a label for the entire image, making
the data preparation process considerably easier and faster.

In this study, we approached the labeling process in stages, progressing from simpler to
more complex tasks. We began by labeling images for a binary classification model, distinguishing
between defective and non-defective culvert frames. This involved extracting individual frames
from culvert inspection videos and manually assigning a binary label (defective and non-defective)

to each (Figure 4).

Defective Non-Defective

Figure 4-Assigning a binary label to images

Next, we labeled the same dataset for a multi-class classification model, assigning specific
defect labels (e.g., corrosion-3 or joint-5) to the images. In the development of our multi-class
classification models, we designed a modular approach by creating five separate models, each
specialized for a distinct category of structural defects commonly found in culvert inspections.
This strategy allowed us to fine-tune each model for the unique visual characteristics and
classification challenges associated with different defect types, rather than training a single model
to handle all defect categories simultaneously. The five categories we focused on were:
Break/Hole/Collapse/Kink, Corrosion, Crack/Fracture, Deformation, Joint Offset.

For each of these categories, we curated a tailored subset of images from our dataset and
applied class labels specific to the types of defects within that group. These class labels, along with
the corresponding categories, are detailed in Table 3. This categorization not only enhanced the

performance of each model by reducing label noise and inter-class confusion but also enabled
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more targeted training and evaluation. By isolating defect types, we improved the models’
sensitivity to subtle variations within each defect class, leading to more reliable and interpretable
classification outcomes in real-world culvert assessments. Since the number of images in some
classes was very limited, we merged similar classes within each defect category to create a more
balanced dataset. For example, in the corrosion category, we combined severity levels 2 and 3 into
a single class labeled as "Corrosion-3" due to the low number of samples in level 2. This merging
strategy helped address class imbalance and improved the reliability of model training. As a result,
some categories ended up with two or three consolidated classes, depending on the distribution of

available data.
Table 2-Multi-class labels by defect type and severity

Break/Hol
Ll Corrosion Crack/Fracture Deformation Joint Offset

Collapse/Kink
Non-bre-hol-col-kin-1 | Non-corrosion-1 = Non-crack-frac-1 = Non-deformation-1 Non-joints-1

Corrosion-2 Crack-Fract-2 Deformation-2 Joints-2
Corrosion-3 Crack-Fract-3 Deformation-3 Joints-3
Bre-Hol-Col-Kin-4 Corrosion-4 Deformation-4 Joints-4
Bre-Hol-Col-Kin-5 Corrosion-5 Deformation-5 Joints-5

Finally, for the object detection model, we annotated the frames with bounding boxes
around visible defects and assigned each region a corresponding class label from Table 3. This
structured, step-by-step annotation strategy allowed us to build and evaluate models of increasing

complexity, leveraging the same video data across multiple learning tasks.

3.3.1 Data Annotation with CVAT

To prepare our data for object detection, we need to go through a detailed annotation
process. This involves labeling each image or video frame by drawing bounding boxes around the
objects of interest, such as culvert defects, and assigning a specific class to each box. For instance,
if a culvert image contains cracks, corrosion, or joint misalignments, each of these defects must be
identified with a bounding box and labeled with the appropriate class. This precise annotation is
crucial as it provides the model with the necessary information to distinguish between different

types of defects during training.
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The labeling process must be thorough and consistent to ensure the model learns from high-
quality examples. Each annotated image or video frame helps the object detection model
understand the features and patterns associated with various defects. Once the model is trained, its
performance will be evaluated on a labeled test set, which was not used during the training phase.
This evaluation will help us measure the model’s accuracy in detecting and classifying defects,

ensuring that it performs reliably on unseen data.

For this task, we used CVAT a powerful open-source tool specifically designed for
annotating image and video datasets [27]. Using CVAT’s user-friendly interface (Figure 4),
annotators manually draw bounding boxes around each defect in the images or video frames. Each
bounding box is labeled with the corresponding class. CVAT provided various tools to streamline
the annotation process, such as auto-segmentation, interpolation for video frames, and copy-paste

functions for repetitive objects.
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Figure 5-CVAT’s interface during data labeling

For annotation, we utilized 16 distinct labels, as illustrated in Table 3, in accordance with
UDOT’s culvert condition rating system. Once the annotation process was completed, the labeled
data was exported in a format compatible with the specific model we want to use. CVAT supports
various export formats, including YOLO’s native format. The exported annotations include the

coordinates of the bounding boxes and the class labels for each object.
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Table 3 illustrates the distribution of defects boxes across the 4863 labeled images.
According to the table, it indicates that a significant portion of UDOT’s culverts are metal pipes
afflicted with corrosion defects. This imbalance in our dataset reveals that certain defect types are
underrepresented, with some labels appearing in fewer than 200 boxes. To address this issue, we
have been actively working to augment our dataset by incorporating additional data. This effort
aims to balance the representation of defect types, thereby enhancing the overall performance and

accuracy of our model.

Table 3-Distribution of defect boxes across labeled data

# Defects Box count
0 Bre-Hol-Col-Kin-4 309

1 Bre-Hol-Col-Kin-5 1333
2 Corrosion-2 586
3 Corrosion-3 2803
4 Corrosion-4 78

5 Corrosion-5 90

6 Deformation-2 193
7 Deformation-3 610
8 Deformation-4 302
9 Deformation-5 478
10 Crack-Fract-2 646
11 Crack-Fract-3 150
12 Joints-2 423
13 Joints-3 801
14 Joints-4 328
15 Joints-5 211
Sum 9341
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4.0 DATA EVALUATION & RESULTS

4.1 Overview

In this chapter, we will discuss the metrics used to evaluate our model’s performance,
enabling us to predict how it will perform on unseen culvert video inspection data. We will also
present and analyze the results obtained from these evaluations, providing insights into the model’s

accuracy and reliability in real-world applications.

4.2 Evaluation Metrics

Evaluating the performance of computer vision models, particularly in the domains of
object detection and image classification, requires the use of well-established quantitative metrics.
These metrics allow researchers and practitioners to assess how well models generalize to unseen
data, how accurately they recognize objects or classify images, and how their predictions align
with ground-truth annotations. The primary evaluation metrics we used in this study are mean

Average Precision (mAP), precision, recall, F1-score, accuracy, and the confusion matrix.

4.2.1 Confusion Matrix

The confusion matrix provides a granular view of the classification performance by showing
how predictions are distributed across the actual class labels. Each row corresponds to the true
class, and each column corresponds to the predicted class [28]. It highlights where the model is
making errors, such as misclassifying one class as another, and is particularly useful for evaluating
multiclass classification models. Figure 6 illustrates a confusion matrix, which presents and
summarizes the difference between the predicted and actual classes generated by a classification

model.
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Figure 6-Confusion matrix for binary classification

4.2.2 Accuracy

Accuracy is the simplest and most intuitive metric, defined as the proportion of correct
predictions among the total number of predictions [28]. While widely used in image classification
tasks, accuracy alone can be misleading in the presence of class imbalance or when evaluating
object detection tasks with multiple classes and varied object sizes. In object detection, accuracy
is less frequently used in isolation, as it does not account for localization quality or multiple

instances per image.

True Positives + True Negatives

Accuracy = Equation 1

Total Predictions

4.2.3 Precision and Recall

Precision measures how many of the predicted positive instances are actually correct, whereas
recall measures how many of the actual positive instances the model was able to identify [29]. In
object detection, precision and recall are often computed across multiple Intersection over Union
(IoU) thresholds. A high precision indicates a low false positive rate, while a high recall reflects a
low false negative rate. Balancing these two is crucial, especially in safety-critical applications

where missed detections or false alarms have different implications.
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Precisi True Positives Equation 2
recision = — — uation
True Positives + False Positives q

Recall True Positives L
ecall =
True Positives + False Negatives quation

4.2.4 F1-Score

The F1-score is the harmonic mean of precision and recall. It provides a single metric that
balances both concerns, particularly useful when class distribution is skewed or when both false
positives and false negatives are costly [30]. For image classification, a high F1-score indicates
that the model is not only accurate but also robust in handling both positive and negative
predictions.

Precision X Recall

F1§ =2X Equation 4
core Precision + Recall 1

4.2.5 Mean Average Precision ([19])

To evaluate the performance of object detection models, we used mAP metric. MAP is a
widely recognized performance measure in object detection tasks. It combines both precision and
recall across different classes and thresholds, providing a comprehensive assessment of the
model’s accuracy [21]. The formula (Equation 5) for mAP involves calculating the Average
Precision (AP) for each class and then taking the mean of these AP values. AP is the area under
the Precision-Recall curve for a given class. It can be calculated by taking the precision at different

recall levels (Equation 5).

AP = Z(Rn - Rn—l)Pn qulatiOIl 5

where P, is the pT;ecision at the n-th threshold and R,, is the recall at the n-th threshold. MAP
calculates the AP for each class and then averages these values to give an overall score, effectively
summarizing the model’s ability to correctly identify and localize defects in the culvert inspection
images. Using mAP, we can ensure that our model not only detects defects accurately but also

maintains a high level of reliability across various defect types.
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1 $ Equation 6
i

where N is the number of classes and AP; is the Average Precision for the i-th class. This metric
is particularly useful in our context, as it helps ensure that our YOLOvV8 model not only detects
and localizes culvert defects accurately but also maintains consistent performance across different
defect types, thereby wvalidating the model’s robustness and effectiveness in real-world
applications.

MAP50, or Mean Average Precision at 50% Intersection over Union (IoU) threshold, is a
specific metric used to evaluate the performance of object detection models. IoU is a measure used
to quantify the accuracy of an object detector’s predicted bounding box with respect to the ground
truth bounding box. It is calculated as the area of overlap between the predicted bounding box and
the ground truth divided by the area of their union. In the context of mAP50, the model’s
predictions are considered correct if the IoU between the predicted bounding box and the ground
truth bounding box is at least 50%. This threshold is a common benchmark used to evaluate object

detection models.

4.3 Results

To detect structural defects in culverts, we developed a YOLOvV8 model using 34,390
labeled images. However, the initial results were unsatisfactory, as the model performed great in
one class while overlooking others. This issue stemmed from the unbalanced nature of our dataset.
Initially, we had 20 labels, but after annotating 77 videos, only ten labels were used. The
distribution among these ten labels was also imbalanced. Figure 7 presents the normalized
confusion matrix for this model, which indicates that the model’s performance is quite low. As an

example, Figure 8 shows a batch of a test set.

4.3.1 Classification

In this project, we developed and evaluated two types of image classification models. The
first model type focused on binary classification, aiming to detect whether a given video frame
contains a defect or not. To accomplish this, we experimented with four distinct image

classification algorithms, which are summarized in Table 4.
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Table 4-Binary Classification Results

# Model # Classes Accuracy Precision Recall F1 score ‘

1 Yolovll 2 91% 90.3% 90.5% 90.4%
2 Resnet 50 2 83% 88% 89% 88%
3 VGG + XGBoost 2 85% 84% 84% 84%
4 ConvNeXt 2 74% 85% 67% 67%

Among the tested models, YOLOvI1 consistently outperformed the others across all
evaluation criteria. Specifically, YOLOv11 achieved the highest F1-score and accuracy, indicating
its superior ability to correctly distinguish between defective and non-defective frames while
maintaining a balanced trade-off between false positives and false negatives.

The performance advantage of YOLOvVI11 can be attributed to its robust feature extraction
capabilities and optimized architecture, which proved especially effective in recognizing subtle
defects within noisy or complex visual contexts. Given its reliability and efficiency, YOLOvI11

was selected as the primary binary classifier for the first stage of the defect detection pipeline.

Normalized Confusion Matrix for Binary Classification 0s
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Figure 7-Confusion matrix of Yolo model for binary classification
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Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images)

for a batch of testing set

29



In the next phase of this research, the focus shifted from binary classification to a more
detailed analysis of pipe conditions through multiclass image classification models. The goal was
to not only detect whether a frame was defective but also to classify the type of defect present in
the image. To facilitate this, we identified and defined five major structural defect categories
commonly observed in Utah’s culvert inspection records

Each major defect category encompassed multiple specific defect classes, allowing for a
more granular understanding of structural issues (Table 2). After defining the categories, we
proceeded to annotate a large dataset of images, assigning each image to its appropriate class
within a category. By training separate models per category, we aimed to improve model focus,
reduce confusion between dissimilar classes, and ultimately enhance classification performance
within each defect group.

To implement this multiclassification framework, we employed two state-of-the-art deep
learning models: YOLOvI1 and EfficientNet. These models were selected for their strong
performance in prior image classification tasks and their architectural ability to generalize across
diverse visual inputs. YOLOvV11 provided fast and accurate real-time inference, while EfficientNet
offered high accuracy with optimized computational efficiency through compound scaling.

The performance of both models was evaluated independently across each defect category
using standard metrics, including accuracy, precision, recall, and Fl-score. The results,
summarized in YOLOvVI11, meanwhile, also demonstrated strong performance in Corrosion (96%
accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories
compared to EfficientNet but slightly more fluctuation in precision. Notably, in the
Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and
76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with
EfficientNet exhibiting more consistent precision across categories and YOLOv11 showing higher
recall, particularly for defect types where comprehensive detection is crucial. Findings
demonstrate how each model performed within the context of the structural defect classification,
offering insight into the strengths and weaknesses of each approach across different types of
culvert anomalies. Due to class imbalance in the dataset, we merged the original five or three
classes within each category into three or two classes to ensure more balanced representation and

improve model performance.
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EfficientNet achieved high accuracy across all categories, with its best performance in
Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). However, the model showed
relatively lower performance in Deformation and Joints, both recording F1-scores around 61-63%,
likely due to the visual similarity of these defects or fewer training samples. YOLOv11, on the
other hand, demonstrated strong results in Corrosion as well (96% accuracy) and slightly better
recall for Crack-Fracture than EfficientNet (81% vs. 68%). Interestingly, YOLOv11, meanwhile,
also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94%
accuracy). It showed improved recall in several categories compared to EfficientNet but slightly
more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOvI1
achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of
68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision
across categories and YOLOv11 showing higher recall, particularly for defect types where

comprehensive detection is crucial.

Table 5-Results of multiclassification models

Model Defect Accuracy Precision Recall F1 Score
Crack-Fracture 94% 79% 68% 72%
Break-Hole-
83% 76% 74% 75%
Collapse-Kink
EfficientNet '
Corrosion 96% 84% 70% 73%
Deformation 79% 61% 60% 61%
Joints 77% 64% 62% 63%
Crack-Fracture 94% 2% 81% 75%
Break-Hole-
_ 81% 66% 76% 68%
Collapse-Kink
YOLOv11
Corrosion 96% 81% 87% 83%
Deformation 78% 59% 60% 59%
Joints 81% 61% 69% 64%
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4.3.2 Object Detection

In the next phase of the project, we extended our analysis by developing an object detection
model aimed at localizing and classifying structural defects within individual video frames. Unlike
the classification models used in previous stages, which only provided global labels for entire
images, object detection allows for precise identification of the location, extent, and type of each
defect present in a frame. This level of granularity is essential for implementing Utah’s culvert
rating system, which relies on both the presence and severity of localized defects to assign
condition scores.

To train the detection models, we manually annotated thousands of frames by drawing
bounding boxes around visible structural defects and assigning each box a corresponding class
label, as defined in Table 3. These annotations served as the ground truth for model training and
evaluation. However, due to significant class imbalance in the original structural defect labels,
where some defect types were vastly underrepresented, we applied a similar label merging strategy
used in the multiclass classification phase. Specifically, we merged related classes into broader
categories to ensure more consistent training signals and improve detection accuracy for
underrepresented defect types.

For model development, we implemented and tested two object detection architectures:
YOLOvI11 and YOLOvV12, both of which are advanced versions of the YOLO family known for
their real-time inference speed and accuracy. These models were trained and evaluated on the
annotated dataset using standard object detection metrics such as mAP. The detailed performance
results of the YOLOv12 model across the merged defect categories are presented in Table 7. These
findings provide valuable insight into the models’ ability to both detect and distinguish structural

defects, forming the foundation for automated culvert condition assessment.
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Table 6-Results of object detection models

Model defects Precision RGN Model performance (mAP)
Bre-Hol-Col-Kin-5 89.1% 68.9% 80.3%
Joints-3 84% 77.5% 83.8%
Joints-5 87% 87.9% 91.6%
Corrosion-3 88.7% 47.1% 68.8%
YOLOv12 Corrosion-5 90.9% 66.7% 79.3%
Deformation-3 82.4% 44.3% 63.3%
Deformation-5 94% 71.9% 84.4%
Crack-Fract-3 84.5% 60.8% 75.1%
All 87.6% 65.6% 78.3%
Bre-Hol-Col-Kin-5 89.5% 48.9% 69%
Joints-3 86.2% 56.1% 71.8%
Joints-5 89.9% 74.8% 82.9%
Corrosion-3 96.8% 25.2% 61%
YOLOv11 Corrosion-5 83.3% 66.7% 78.4%
Deformation-3 75% 11.4% 42.4%
Deformation-5 94% 51.6% 73.1%
Crack-Fract-3 87.9% 37.9% 63.7%
All 87.8% 46.6% 67.8%
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background Crack-Fract-3 Defermation-5 Deformation-3  Corrosion-5

Joints-5 Joints-3  Bre-Hol-Col-Kin-5
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Confusion Matrix YOLOv12

0.29 0.19 0.07

' ' ' i i |
Bre-Hol-Col-Kin-5  Joints-3 Joints-5 Corrosion-3  Corrosion-5 Deformation-3 Defermation-5 Crack-Fract-3  background

True

Figure 9-Normalized confusion matrix for the YOLOv12 model
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35



4.3.3 Graphical User Interface

To enable the practical use of the developed models by UDOT, we designed and
implemented graphical user interfaces (GUIs) tailored to each type of model developed in this
project. These GUISs are intended to provide a user-friendly experience for UDOT staff, allowing
them to run complex video analysis tasks on culvert inspection footage without requiring
programming knowledge. By simply launching the application on a laptop, a UDOT employee can
import inspection videos and receive meaningful outputs, depending on the model selected for
analysis.

Each GUI is specifically designed to align with the function and workflow of its
corresponding model type, resulting in slightly different user experiences and outputs across the
three interfaces. The first GUI is built for the binary classification model. In this interface, the user
imports a culvert inspection video and selects an output directory. The model then automatically
processes the video and filters out all frames identified as defective. These defective frames are
saved in the designated output folder for further review. This tool acts as a rapid screening

mechanism, allowing inspectors to focus on frames where defects are likely present.

Upload Video

Start Analysis Stop Analysis Show Frames Previous Frame Next Frame

Figure 11-Binary classification-GUI
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The second GUI is designed for the multiclass image classification models, which
categorize detected defects into specific types. Upon launching the interface, the user inputs a
culvert inspection video and designates a path for the output text file. Once the "Start Analysis"
button is clicked, the system begins processing the video frame by frame. Each frame is classified
by the trained multiclass model into one of several defect categories. The GUI employs a rule-
based logic to track consistency in predictions: If the same defect label is detected in 15
consecutive frames, the GUI updates the predicted condition rating for the entire inspection video
to reflect that defect type. If a more critical label is detected over 15 new consecutive frames at
any point, the system updates the rating again to reflect the more severe condition. At the end of
the analysis, the GUI generates a detailed text report named after the original video file. This report
includes a summary of the inspection, the total number of frames associated with each defect label,

their corresponding timestamps and frame numbers, and the final predicted rating for the video.

Frame Multiclassification Interface

A SRR A AT L . e Ba - 3 Upload Video
[dp-1508pm-0.65887708 3 2 2
2 ‘02 g 44 PM - - - . Start Analysis

Stop

2 Choose Save Location

C:/Users/Pouria/OneDrive - Unive

Model 1: non-bre-hol-col-kin (1.00)

Model 3: non-crack-frac (1.00)
Model 4: Deformation-3 (0.99)
Model 5: non-joints (1.00)

Status: Paused

Video Rating: 5

Figure 12-Multiclassification-GUI

37



The third GUI functions similarly to the second, but it is built around the object detection
model. After importing the inspection video and specifying the output file location, the user starts
the analysis process. The object detection model processes each video frame in real time, detecting
and localizing structural defects by drawing bounding boxes around them. These boxes are labeled
according to the predicted defect category. Similar to the multiclass classification GUI, if the
model detects boxes of the same class in 15 consecutive frames, the video’s rating is updated based
on that defect type. If a more severe defect label is later detected over 15 consecutive frames, the
system updates the rating to reflect the more critical condition. Once the analysis is complete, the
GUI produces a comprehensive summary report, listing the detected defects, their bounding box
coordinates, the timestamps and frame numbers where they occurred, and the final rating

prediction for the entire inspection video.

Object Detection Interface
Culvert Defect Detection Upload Video

22761 ) mp4kkL : > -- 3 % : ‘ :. Start Analysis
05/ 24 Sr?é’s?o 83'"35.:..-“3 050 e N3 ¢

1 @X 5L i o S . * Pause
41@@/0 f“f = e .
‘_2 ']o > ; wls S oeas : > "‘ ; A Log Information
lest N/A/.g o | S

Analysis complete.
il Final Rating: 1

& Defect Summary:

7 Choose Save Location

C:/Users/Pouria/OneDrive - Unive

; = = ™ i~ = $ ]
= e

Status: Video ended

Pipe Rating (1-5): 1

Figure 13-Object detection-GUI
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To evaluate the performance of both the Multiclassification-GUI and the Object Detection-
GUI, we tested them on a set of 56 real-world culvert inspection videos provided by UDOT. These
videos were previously assessed by inspectors, serving as a reliable benchmark for validation.
Each GUI was used to independently analyze the videos and predict the overall condition of the
culvert based on its trained model logic and output aggregation rules.

The results were highly promising, especially for the Object Detection-GUI, which
correctly predicted the condition of 46 out of 56 videos, resulting in an accuracy of approximately
84%. This demonstrates the model’s strong capability to localize and interpret structural defects
with high reliability. In comparison, the Multiclassification-GUI achieved 42 correct predictions,
corresponding to a 75% accuracy. While slightly less accurate, the multiclassification approach
still provided valuable insights and maintained consistent performance across a variety of defect
types.

Importantly, in most of the cases where the Object Detection-GUI failed to predict the
correct condition, the model tended to be conservative, flagging defects where none were present
according to human reviewers. This conservative bias may be preferable in certain safety-critical
applications, as it prioritizes caution over risk. These misclassifications typically arose from subtle
image features or lighting artifacts that resembled true defects, prompting the model to issue a
higher severity rating than necessary.

Overall, the evaluation demonstrates the potential of these automated tools to streamline
the inspection process, reduce subjectivity in condition assessments, and significantly save time,
labor, and costs in culvert management. By automating defect recognition and condition rating
from video footage, these GUIs can help prevent infrastructure failures and prioritize maintenance
more effectively, especially in high-volume inspection workflows where manual review is

impractical.
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5.0 CONCLUSIONS

5.1 Summary

This chapter will discuss the conclusions obtained following the development of our
computer vision models, showcasing their effectiveness. Additionally, we will discuss any
limitations or challenges encountered during the research process, providing a comprehensive

evaluation of the model’s capabilities and areas for improvement.

To address the challenges associated with traditional culvert inspections in Utah, we
proposed leveraging novel computer vision algorithms to enhance the interpretation of culvert
inspection videos. This approach aims to significantly reduce the time and resources spent on
manual interpretation, offering a more efficient and accurate alternative. To achieve this, we
utilized the available culvert inspection videos and images from UDOT’s database, labeled them
using CVAT, and developed different computer vision models. This project introduced a multi-
phase approach, including binary classification, multiclass image classification, and object
detection models—each designed to progressively refine the detection and categorization of

structural defects in inspection footage.

5.2 Findings

We started with a limited dataset of culvert inspection videos, which posed challenges for
training reliable models. To address this, we expanded the dataset through additional video
collection and data augmentation, enabling better model generalization and supporting the

development of a multi-stage classification and detection framework.

The first model implemented was a binary classification model, designed to distinguish
between defective and non-defective frames. Despite the limited initial data, the model achieved
an impressive 91% accuracy, demonstrating its reliability in filtering out defective frames for
further analysis. Building upon this, we developed a set of multiclass image classification models,
each focused on categorizing specific types of structural defects. The best-performing model
reached a 96% accuracy, while the least accurate achieved 77%, reflecting the varying difficulty

across defect categories and class distribution within the dataset.
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To gain spatial insight into the location and extent of defects, we developed an object
detection model trained on annotated bounding box data. The final model achieved an average
mAP of 78% across all defect classes. This performance indicates that the model not only classifies
but also localizes defects with reasonable accuracy, providing detailed input for downstream
culvert condition assessment.

The true effectiveness of the system was validated through testing on 56 real inspection
videos. The object detection model correctly identified the condition of 84% of the culverts,
confirming its practical viability for deployment. This result illustrates the potential of automated
video analysis tools to support infrastructure inspection workflows, reduce subjectivity, and
significantly improve efficiency in defect detection and rating.

Overall, the system demonstrates a successful progression from a small, constrained dataset
to a fully functional, real-world application capable of assisting UDOT engineers in efficiently
assessing culvert conditions. With further refinement and expansion, such tools hold strong

promise for broader application across transportation infrastructure monitoring.

5.3 Limitations and Challenges

While the study produced robust results, several limitations and challenges were
encountered:

e One of the primary challenges was the initial lack of sufficient labeled data.
Although the dataset was expanded through additional data collection and
augmentation, certain defect classes remained underrepresented. This class
imbalance affected the training of both multiclass classification and object
detection models, particularly in categories like Deformation, where performance
metrics were lower due to fewer high-quality samples.

e Manual annotation of structural defects, especially bounding boxes in object
detection, requires domain expertise and is prone to human error or inconsistency.
Variation in how defects were labeled or categorized across frames may have
impacted model training and evaluation. Inconsistent annotation boundaries or
overlapping defect types also introduced noise into the dataset.

e Some structural defects, such as hairline cracks, subtle deformations, or joint
displacements, are visually challenging to detect due to poor lighting, motion blur,
or low resolution in inspection videos. These subtle visual cues often led to false
negatives or incorrect classifications, especially in low-contrast or noisy frames.

e Users with limited hardware may experience slower inference times.
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Despite these challenges, this research demonstrates the strong potential of computer vision
and Al as transformative tools for automating culvert inspection in Utah. The success of the
developed models, even under constrained conditions, highlights the feasibility of integrating Al-
driven solutions into infrastructure maintenance workflows. Future work could explore the use of
Vision-Language Models (VLMs), which may further simplify the process by enabling defect
detection and condition assessment through natural language prompts, reducing the need for

manual coding and huge datasets for training.
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CATEGORY

SHAPE

APPENDIX A: UDOT’s PIPE DEFECT RATING SHEETS

Minor bumps or bulges - no
change in diameter - Area is less
than 2 in. diameter

UDOT PLASTIC OR HDPE PIPE RATING SYSTEM

'MODERATE DEFECTS SIGNIFICANT DEFECTS MAJOR DEFECTS
DESCRIPTION DESCRIPTION SCORE DESCRIPTION

Bumps and bulges in pipe -
greater than 2 in. diameter - no
inside diameter lost

This refers to bulges or vertical
deformation in pipe. No cracking
or fractures present, $5% of
inside diameter lost.

Minor wall flattening (s5%)

This refers to bulges or vertical
deformationin pipe. No cracking
or fractures present. <5% to >10%
of inside diameter lost.
Visible out of roundness (elliptical
shape) with no cracks,

.

Significant wall flattening (>5% to
<10%) or increased wall curvature,|

This refers to bulges or vertical
deformation in pipe. No cracking
or fractures present. >10% of
inside diameter lost.
.

Significant visible out of
roundness (elliptical shape) >10%
with no cracks.

Extreme wall flattening (>10%)
with reversal of curvature (global
bucking) and/or kinks

A defect where the inward bulge
is sharp crested taking shape of
heart point or shark fin.

.

A sharp outward folding of pipe
wall

SURFACE DAMAGE

Blisters or degradation at single
location - less than 6 in. diameter

Blisters at multiple locations - less
than 10% of surface covered

Damage to surface due to erosion
or wear, $10% wall thickness
removed,

Ultraviolet degradation - based on
amount of degradation shown,
Minor amount
Blisters on wall - <25% of surface
covered,

age to surface due to erosion
or wear, >10% to $25% wall
thickness removed.
.
Ultraviolet degradation - based on
amount of degradation shown -
Pipe ends showing discoloration.

Blisters on wall -2 25% of surface
covered.

Darage to surface due to erosion
or wear, >25% wall thickness
removed,

Ultraviolet degradation - based on
amount of degradation shown «
Degradation resulting of cracked
or broken pipe walls.

LOCAL BUCKLING, SPLITS
AND CRACKS

Crack that is perpendicular to flow|
direction. No opening between

crack. One max per pipe section.

Longitudinal crack § 121n.in
length with or without water
infiltration - no soil infiltration
.
Crack that changes from
perpendicular to longitudinal {or

Less than 1/4 of i e

reverse).
Cire jal crack between
1/4 of diameter and 1/2 of
diameter

Initiation of local bucking
indicated by ripplingin wall.

Combination of Circumferential
and Longitudinal cracks or
multiple number of each in pipe
section,

Water infiltration through
circumferential cracks.

Two longitudinal cracks located at
hinge points (12, 3, 6,9 o'clock
positions) < 12 in. in length,

Advanced and widespread local
wall bucking indicated by
extensive interior surface ripping.

Circumferential cracks 2 1/2 of
pipe drcumference
.

Cracks/Fractures with significant
soil migration or water infiltration.
.

Cracks/Fractures with vertical
offset - pieces of pipe has moved.

Two longitudinal cracks located at
hinge points (12, 3, 6, 9 o'dock
positions) > 12 in. in length,

.

Cracks with soil infiltration.

.

Pipe wall buckles inward locally

Kinks through full wall thickness

Broken Pipe - can see soil

Broken Pipe - Can see void behind
pipe.
.
Hole in pipe
Collapsed Pipe.
Three or four longitudinal cracks

located at hinge points (12, 3,6,9
o'dock positions),

BARREL ALIGNMENT

Horizontal alignment shows small
visible deviations (<5%) from
installed conditions and does not
affect joints or barrel

Vertical alignment has minor
sagging or heaving {<5%),

Vertical misalignment with sags <
10% with sediment accumulation

Change in alignment greater than
(>) 5 and less than or equal to (s)
10%,

Alignment deviations that affect
condition of joints or barrel

Vertical misalignment causing
ponding or sediment
accurnulation at sags between
10% and 30% of diameter

Change in alignment greater than
{>) 10°

Alignment deviations that cause
breakage at joints or barrel
.

Vertical misalignment cousing
ponding or sediment
accumulation at sags > 30% of
diameter

Changes in alignment that cause
hole in pipe.

Changes in alignment causing
blockage of pipe

JOINTS

Offset is visible at joint with no
effect on pipe - not a quantifiable
amount of offset

Offset is visible but less than 1
wall thickness.

Offset is greater than or equal to
(2) 1 pipe wall thickness but less
than (<) 1.5 wall thickness - no
distress visible.
Separation is up to 1 pipe wall
thickness - no distress visible,
Exposed or missing gasket
materials.
Infiltration/exfiltration or soil
migration through joints - no
structural damage.

.

Roots visible through joints - no
structural damage.

Offset is greater than or equal to
(2) 1.5 pipe wall thickness.

Separation is greater than () 1
pipe wall thickness,

Possible exposed joint seatant

Infiltration/exfiltration or soil
migration through joints - visible
structural damage.

Roots visible through joints -
structural damage,

Joint distress directly couses
distress 1o barrel /end section,
roadway/shoulder, or
embankment.

Offset joint where soil is showing
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UDOT CORRUGATED METAL PIPE RATING SYSTEM

S -
s MODERATE DEFECTS. SIGNIFICANT DEFECTS MAJOR DEFECTS
DESCRIPTION DESCRIPTION SCORE DESCRIPTION
Dents or damage that warrant
Large dents or impiact damage to engineering inspection.
Single dent or bulge - no change i) ke e o e T 5'7“":;’; ‘:':I':"‘::‘L:::?mf:: pipe wal section with localized .
SURFACE DAMAGE | diameter - Area is less than 2 in g s 3| wallbreaches, no more than one Through-wall holes > 1
area less than 4 inches diameter wall breaches - area greater than :
diameter i el over over a length of more
: length of 6in than &in. allowing unimpeded soil
infiltration,
Corrosion of pipe material and
widespread section has loss <10% Wikt i iafivat
of wall thickness :
s penetration/comosion
Freckled rust, corrosion of pipe ool 2 nvert missing in localized section
CORROSION Single area of freckeled rust Isolated areas of freckled rust sl Lo 3 . R
wall material,
Swvnred ol ou 15 4 par eg e yard) Holes > 1 in. diameter or holes
less < 1in, diameter
% grouped together > 4 per square
|Penetration possible with hammer =
pick strike,
Small or local abrasion of wall or e
. coating at more than 2 locations
Visible abrasion at single location WLl sty cir ot el b et oc area gireater than 12 inches CORINg Wi ket ipotiog i
ABRASION ; at 2 locations with total affected 3| the pipe material and allowing Abrasion has worn holes in pipe.
fess than 6 inches diameter 5 ) diameter with no breaches in the /
area fess than 12 inches diamter through-wall penetcation during
coating exposing structural wall if pasialatabihopaleal
signs of corrosion. 2 Lbal dcil
Deformation of barrel 215% of
inside diameter
Significant visible out of
liptica 2
O, roundness (elliptical shape) >10%
15% of inside dismeter o
Deformation of barrel 25% to 10% i g .
Smooth curvature of barrel, finside di Ext Il flattening (>10%)
Visible deformation. isolated at O N ol Visible out of roundness (elliptical TR Wl pertaviig (0%
SHAPE e deformation <5% of inside 3 o it with reversal of curvature (global
s adaa diameter, Minor wall flattening or bulges o OO rashs bucking) and/or kinks.
(s5%) " G 5
Sigpificant wal fattening (5% to R Gk
<10%) or increased wall curvature. .
is sharp crested taking shope of
heart point or shark fin
Asharp outward folding of pipe
wall
Circumferential cracks 2 1/2 of
) pipe drcumference
Longitudinal crack € 12 in. in FERESENSA o thearmminiial .
and longitudinal cracks or
Tength with or without water Pl hmopelitaiod Cracks/Fractures with significant Broken Pipe - can see soll
Infltration - no soll infltration. W b Sangitlil soil migration or water infiltration .
section. g
. _ . Broken Pipe - can see void behind
CRACKS -
Crack that changes from Cracks/Fractures with vertical pipe.
Crack that is perpendicular to flow| erpendicular to longitudinal {or Water infifration though offset - pieces of pipe has moved .
BREAKS BES PABL IS P TE NS Ll ; il circumferential cracks. Sl L "
direction, No opening between reverse) A " . Hole in pipe.
T rack. One max e pipe section ) I —— Twwolongitudinal cracks focated at
Less than /4 of Circ ack between kit sl ; hinge points (12,3, 6, 9 0'dock Collapsed Pipe.
hinge points (12, 3, 6,9 o'clock A
e 1/4 of diameter and 1/2 of s b g positions) > 12 i, in fength. .
diameter, post 21n.Injeng: . Three or four longitudinal cracks
. 1
N o e Cracks with soil infiltration, located at hinge points (12,3,6,9
Initiation of local budking . o'dock positions).
; . wall bucking indicated by
indicated by ripplingin wall, . ; Pipe wall buckles inward locally,
extensive interior surface ripping. 3
Kinks through full wall thickness
Change in alignment greater than TR .
in ali eater
(5) 5° and less than or equal to (s) gt ik """1:: el
Horizontal alignment shows small 10°, M. ¥
visible deviations (<5%) from . Changes i alignment that couse
installed conditions and does not Allgnment deviations that affect s, ksl gt hole in pipe
BARREL AUGNMENT affect joints or barrel Warticsl misal et with sags < o criinoriams. TS breakage t joints or barrel, v
! 10% with sediment accurmulation ooikicat ipinon el .
. . e g Changes in alignment cousing
) ertical misalignment causin §
Vertical alignment has minor Vertical misalignment causing w e blockage of pipe
sagging or heaving (<5%). e i ponding or sediment
v ot accumulation at sags > 30% of
accumulation at sags between &
jameter
10% and 30% of diameter
Offset is greater than or equal to
Offset is greater than or equal to (2) 1.5 pipe wal thickness.
(2) 1 pipe wall thickness but less .
than {<) 1.5 wall thickness - no Separation is greater than (>) 1
distress visible. pipe wall thickness
Separation is up to 1 pipe wall Possible exposed joint sealant
thickness - no distress visible .
Offset s visible with no effect on Bt s ale B tags i . nfiltration/exfiltration or sl
JOINTS pipe - not a quantifiable amount k :ﬂl ml(k"'_: " Exposed or missing gasket 3 | migration through joints - visible Offset joint where soil Is showing
of offset ; materials, ructural damage
. .
Infiltration/exfittration or soil Roots visible through oints -
migration through joints - no structural damage.
structural damage. .
. Joint distress directly causes
Roots visible through joints - no distress to barrel/end section,
structural damage. roadway/shoulder, or
embankiment
Significant water infiltration and Course soi infiltration through
. o .
INFILTRATION Signs of past infiltration (staining) Signs of past infiltration (staining) Minor water infiltration through encs "’w"':‘" 1"::: iy o
at isolated location - no current 2t multiple locations -no current leak-resistant seams, but no soil 3
‘ . Possible hollow sounds behind
EXFILTRATION infiltration infiltration infiltration.

Evidence of piping due to
exfiltration

structure wall near seams
indicating loss of backfill support,
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UDOT CORRUGATED METAL PIPE RATING SYSTEM

o, 'MODERATE DEFECTS. SIGNIFICANT DEFECTS MAIOR DEFECTS
DESCRIPTION DESCRIPTION SCORE DESCRIPTION
Cocked seams that it affects cross Cocked seams severely affecting
AN ALGNMENT Seam::::::::; ::;o;:lig;.mem . 5:;"::’": f::::(:m‘;“ﬁf:: mction shace. 5 apsseRtion shape Seam uackin:;a::ing failure or
N e section shape. Cusped effect with local wall Cusp effect with seam cracking.
bending. Seam capacity loss imminent.
SEAM BOLTS/ g o 4. <5%loose or missing bolts in any 5% to 15%loose or missing bolts . 2 , 2 ;
d It 1 B
ETRERE Single missing bol s, oy 3 | > 15%missing bolts in any seam. > 50% missing bolts in any seam
Significant yielding of steel at bolt
Minor yielding of steel and/or Yielding of steel and/or holes.
A g el Aty - :
N N e Cracing/spliting >3in. fong local Balt holescorroded tolevel that
SEAM BOLT HOLES Cracking at single bolt hole g . 5 : 3 R IIO0E no botts can be replaced - over

.

Minor corrosion developing
around bolt holes or on bolts.

Corrosion with section loss around|
bolt holes or on bolts.

to bolt holes.

Corrosion with major section loss
around bolt holes or on bolts.

50% of bolt holes
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UDOT TIMBER PIPE RATING SYSTEM

oy MODERATE DEFECTS SIGNIFICANT DEFECTS MAJOR DEFECTS
DESCRIPTION DESCRIPTION SCORE DESCRIPTION
Connection integrity in question,
imminent collapse, missing
Missie i X . 2 i
Muttiple loose bolts and fasteners, lissing bolts, rivets or fasteners, members, collapsed section.
. broken welds. .
. Missing bolts, rivets, or
CONNECTIONS AND ) Two loose bolts or fasteners (not Freckled rust (no pitting or section . - S ey v e
Single loose bolt or fastener 2 7 3 Surface rusting with some pitting, broken welds causing movement
MISSING MEMBERS on single member) loss), rust staining . ikl s ;s
Gy Eot pack rust without distortion in connection elements.
{connection is functioning as T SRR
designed). {connection is functioning as .
el designed). Heavy rusting with section loss,
and/or pack rust causing
distortion.
Decay allowing probe penetration
P tre f
. ) >10% to 20% of member cross voliepeetiaes S 2k ol ros
Decay allowing probe penetration ’ ? section.
] ) ; ’ section, but is away from
. ) Visible decay - surface scraping of $10% of member cross section. " ¢ .
DECAY Visible decay - no penetration A 3 connections and tension of
material only . s Probe penetrates > 10% of cross
) bending member. A kel
Localized hollow sounds. ! section near connections or in
t i "
i b ension zone of bending member
Checks or shakes penetrating
Checks or shakes penetrating 5% Checks or shakes penetrating 15% >50% ot me "’_ A Checks or shakes penetrating
CHECKS SHi Checks or shakes pe?)mrating <5% 1o 15% of menhef.mickness, bvut 10 50% of manher. thickness, b.ul 3 Checks or shakes penetrating 5% >10% o,' member ﬁ?iclmsss, at
of member thickness. laway from connection and tension| away from connection and tension| 2 connection and tension zones of
5 % to 10% of member thickness, at :
20nes of bending members. 20nes of bending members. ; : bending members.
connection and tension zones of
bending members.
Deformation of barrel 215% of
inside diameter.
.
Significant visible out of
Deformation of barrel 210% to roundress (elpticalstiepe) 103
15% of inside diameter e
Deformation of barrel 25% to 10% . ) J .
it f @, f insi i % Exty il flatzenis %)
Minor deflection visible, but not Smactheuvstins of bam; aflsice dameten Visible out of roundness {elliptical ram wall fizttaniog O 10W)
SHAPE s deformation <5% of inside . 3 it domn with reversal of curvature (global
b diameter. Minor wall flattening or bulges Py - bucking) and/or kinks.
{s5%). o o o $
bt B T
i is sharp crested taking shape of
heart point or shark fin,
A sharp outward folding of pipe
wall.
Structural cracking exists, but ) R
TROCTORAL SRR R Structural cracks have been protects< 5 o b cooss | 3| Structorl cracking 25% t0.25% Structural cracking 225% nto
arrested. sectlon into member cross section. member cross section.
inati o inati 2 total
Minor surface delamination at a Minor surface delamination at a D:::':""" '::""‘ ::;:;: he mz:‘"g": '°;'I :’"ﬁﬂ ""::m Delamination near connections or
DELAMINATION single isolated location - less than single isolated location - less than b dep i 3 s i in tension zones, imminent
poieas sl Al s from connections and tension connections and tension zones of e
* zones of bending members. bending members. B e
ABRASION/IMPACT | Minor abrasion to surface from Minor abrasion damage due to Section loss < 10% of member - Section loss 10% t 20% of Section loss > 20% of member
DAMAGE impacts - no damage impacts - no member section loss cross section. member cross section. cross section.
% i o X 2 Warping or sagging causing
Mi s : 2
Minor observed sagging of single Soor cbaornd sssing of Warpiog o sggiog ot Angle.oc distortion of cross sectional Significant distortion of cross
! multiple non adjacent mermber - few members not requiring . 4
DISTORTION member - amount of sagging not : e A 3 shape. sectional shape or widespread
= amount of sagging not mitigation or has been previously 3 5 p
quentifiable e o it . warping, crushing or sagging.
" o Crushing of members.
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UDOT MASONRY PIPE RATING SYSTEM

CATEGORY MODERATE DEFECTS SIGNIFICANT DEFECTS MAJOR DEFECTS
DESCRIPTION SCORE DESCRIPTION SCORE DESCRIPTION SCORE
— — —
Split or cracked masonry units. Widespread cracking, splitting,
. splitting, o crushing of masonry :
Holes through structure, unit:
Large areas of moderate spalling, units, or missing units. by > '""“‘l,‘ c, “1"“ N
i ; 4 Cracking of individual units. scaling or weathering, . TRSETI T SR rotesecOon.
MASONRY UNITS AND |Minor stess or expansion cracking . 2 78 3 RS i A
e areas of heavy spalling, Z
MOVEMENT surface cracking only ¢ b Y PO Visible movement or distortion of
Surface weathering or spalling. Pronounced movement or scaling or weathering, S eicnd s At
dislocation of masonry units, but . I SCOUTRLS ‘:l"“ s
, appears unstable.
does not warrant engineering Significant movement of a
evaluation individual units,
Localized cracked or missiny )
o e 10% to 50% of mortar missing, no o Badfllinfiltration.
mortar (<10%). >50% of mortar missing, no unit %
" unit movernent,
Vegetation/roots sprouting U 6 movement Roadivmvucids
MORTAR between units, no widespread pread areas of shallow ) 3 . 4 2
2 Extensive mortar deterioration, . 9
missing mortar. mortar deterioration, possible p 4 Large roots through jcints (no unit '
: e : small flow but no fines, infiltration Mortar missing or large roots with
minor water infiltration (no active g movement),
or exfiltration through joints. unit movernent.
flow) or exfiltration,
Localized areas of efflorescence < Widespread areas of efflorescence| Heavy buildup of efflorescence
EFFLORESCENCE A gith i K omebesy 3 Exposed rebar 4 Broken or missing rebar
2in'. without rust staining. with rust staining,
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CATEGORY

MATERIAL
DEGRADATION OF
INSIDE SURFACE

UDOT MANHOLES, CATCH BASINS, AND BURIED JUNCTION STRUCTURES
RATING SYSTEM

Crack {crack is a line in pipe that
has not shown opening or

deformation) that is vertical. No
opening between crack, One max
per manhole,

MODERATE DEFECTS SIGNIFICANT DEFECTS MAJOR DEFECTS
DESCRIPTION DESCRIPTION SCORE DESCRIPTION
Widespread cracking, splitting,

Multiple cracking between 0.01 in
and 0.05 in. width horizontal to
grade. Single crack around interior
or exterior (if visible) of manhole.

Moisture on wall from seepage.

Grate, MH Cover, slightly off
proper grade.

Localized spalls less than 1/2 in.
depth and less than 6in.
diameter. No exposed rebar.

Ladder and attachments have
surface corrosion or light pitting.
.

Efflorescence but no rust
emanating from crack.
.

Single open crack (fracture) -
vertical
.
Missing brick in brick/masonry
manhole in chimney, wall, or
bench. No visible sail or void.

Split or cracked masonry uniits.
.

Missing mortar in brick or
masonry manhole.
.

slight discoloration of masonry
units.
.

spalling and/or delamination from|
1/2in. to 3/4in.in depth and
larger than 6 in. diameter. No
exposed rebar. Some rust staining
from spalled areas, structure
stable.
.

Ladder and attachments have
heavy corrosion, pitting on
surface, minor loss of section.
Displaced structural elements,
minor visible movement of
masonry units,

.

Infiltration - no soils present.

Efflorescence and rust emanating

from crack/fracture.
Exterior manhole cracking - are
above grade.
.

Single open crack (fracture) -
horizontal.

splitting, or crushing of masonry
units, or missing units.
.

Significant moverment of
individual brick or masonry units
.

Spalling with exposed or minor
corrosion of rebar - rebar still
intact,

.

Widespread spalling greater than
3/4in. in depth or delamination,
.

Slabbing of concrete.
.

Ladder and attachments as heavy
corrosion, pitting on surface, loss
of section, not safe.
Multiple open cracks (fractures)
on inside or outside of manhole.

Significant infiltration with soils.
.

Minor change in shape of masonry

cross section.
Cracks/Fractures with significant
soil migration or water infiltration.,

Cracks/Fractures with vertical
offset - pieces of pipe have
moved.

.

Large areas of rust staining
emanating from cracks/fractures.
.

Manhole frame and cover offset
from manhole.

Holes in concrete manhole.

Visible moverment or distortion of
cross sectional shape, structure
appears unstable,

Visible corrosion of rebar.
.

Major distortion in shape of
masonry cross section.

Masonry units missing through
structure wall.

Manhole frame or cover broken.
.
Holes in brick manhole with soil
visible or void visible.
.

Hole in brick manhole in channel.

Collapsed manhole.

Offset joints in concrete manhole.

Cracking of mortar around
pipe/manhole connection

Missing pieces of mortar around
connection between pipe and
manhole - noinfiltration or
distress

Small joint separation but no
infiltration and no indication of
distress.
.
Joint separation, offset, or
rotation,

Indication of distress to pipe or
structure wall,

Joint separations, offset, or
rotation with significant backfill
infiltration and pipe vertical offset
with exposed backfill material

52




UDOT CONCRETE PIPE RATING SYSTEM

e MODERATE DEFECTS SIGNIFICANT DEFECTS MAJOR DEFECTS.
DESCRIPTION DESCRIPTION DESCRIPTION
Combination of Gircumferential
and Longitudinal cracks or
multiple number of each in pipe
section.
f’“:;'d‘_:;"‘“ c::’::;: Water infiktrtion through
i S Gircurnferential cracks.
. e s . Three or Four longitudinal cracks
i i Efflorescence and rust emanating located 2t hinge points (12, 3, 6,9
perpendicular to longitudinal for Wom Taddiratue. ‘2 dock positiors). Broken Pipe - can see sodl.
reverse). s ; oy .
Fract ! Fractures wit <
ot Crack {not showing signs of . T, ) T Beckan Boe= con saevoid hilid
(<0.05 INCHES) : . Described per pipe section. Can be| scil migration or water infiltration .
opening or movement } that is Efflorescence but no rust a single fracture at 2 hinge point % pipe.
FRACTURES pe m"e"'n::h' © f""":;:"‘"’" emanating from crack. . Cracks/Fractures with vertical TR
(20,05 INCHES) penee . o e il Three longitudinal cracks located offset - pieces of pipe have e
e y at hinge points {12, 3,6, 9 o'dock moved. :
hinge points (12, 3,6, 9 o'clock ' 5 . Collapsed Pipe.
& s
positions). . Large areas of rust staining
Fracture thatis perpendicular to Fracture that may start as emanating from cracks/fractures.
flow direction. One max per pipe Jomspfsiciial el cisngo to
=i circumferential or the reverse.
R Does not cross 2 joint.
Two longitudinal fractures located
at hinge points {12, 3, 6, 9 o'dock
positions).
Patched areas that are
defarminated or deterioating.
ARG Spalling and/or delamination from| .
2in. to 3/4in. in depth despre: i ¢
SPALLING Minor spalling of fess than 1/2 in. Localized spalls less than 1/2in. 2t mfiin il Whdiesgiui spaling reates than
; X lorger than & in. diameter. No 3/4in. in depth or delamination.
depth and less than 2 in. depth and less than 6 in. exposed rebor. Some rust steling 5 Not Applicable
CELAMINATION Raeter: No exposed rebwr Warter. Mo expoved reber from spalled areas, structure Slabbing of concrete.
stable. .
PRIDES Spalling with exposed or
rebar.
Pipe has deteriorated to level
where the rebar has corroded but
Moderate to severe scaling - pipe not broken.
cement material is eroded or : i A
wom to level that aggregateis D":f: _: t "“;:" * “"(e"_:' Sipe has deteriorated to level
it Pipe cement material is eroded or projecting above level of s ‘a_m m;:‘:::’e ‘m where the rebar has corroded but
"88‘ . worn to level that aggregate is remaining cement mix. gd‘_n -h;wall ¥ S not broken.
DETERIORATION ki i showing - abrasion less than 0.25 . pckntn ¢ : .
ight dar “":’;‘:" R in. deep over less than 20% of Pipe cement material is eroded or ”"”"_“"' Sipe has deteriorated to level
. pipe surface cross section. worn to level that aggregate is ) where the rebar has failed and
act d th exposed
showing - abrasion between 0.25 T S broken such that pieces are
in.and 0.5 in. deep over less than _ sticking out of wall.
30% of pipe surface cross section. .
Complete invert dezerioration and
loss of pipe well section
Change in aliy t greater than
o e e e Change in alignment greater than
{5)5° and less than or equal to (<) p
Horizontal alignment shows small 10°. en.
visible deviations (<5%) from . ” P Changes in slignment that cause
installed conditions and does not Vertical misali with o Alignment deviations that affect :'":‘ ¢ fm"s :;‘2!““ holein pipe.
BARREL ALIGNMENT affect joints or barrel S condition of joints or barrel. M .
b 10% with sediment accurmulation 2 - <
‘ Vertical misalignment causi Chspe ki alginent caing
Vertical alignment has minor Vertical misalignment causing i :se\i "8 blockage of pipe
spigorheatng (<5%). pondicg or sedimumt accumulation 2t sags > 30% of
accumulation at sags between einetes
10% and 30% of diameter. *
Offset is greater than or equal to Offset is greater than or equal to
{2) 1 pipe wall thickness but less (2) 1.5 pipe wall thickness .
then (<} 1.5 wall thickness - no .
distress visible. Separation is greater than {>) 1
. pipe wall thickness.
Separation is up to 1 pipe wall .
thickness - no distress visible. Possible exposed reinforcement
R ———— *Exposed or missing gasket or joint sealant.
R materials. *
Offset is visible at jcint with minor S hcknes, . Infiltration/exfiltration or scil ) o
JOINTS ’ : » : AR i Offset joint where soil is showing
joint material showing P —— Large spalls along edge of spigos migration through joins - visible
; ;:d a5 - end. structural damage.

Infiltration/exfiltration or scil
migration through joints - no
structural damage.

Roots visible through joints - no

structural damage.

Roots visible through joints -
structural demage.

Joint distress directly causes
distress to barrel/end section,
roadway/shoulder, or
embankment.
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	EXECUTIVE SUMMARY 
	The Utah Department of Transportation (UDOT) is responsible for maintaining over 120,000 drainage culverts and storm drain pipes across state highways. Ensuring the integrity and functionality of these culverts is crucial for preventing flooding, sinkholes, and road damage, thereby safeguarding transportation infrastructure. Traditional inspection methods, primarily relying on manual visual assessments, are time-consuming, prone to human error, and lack consistency. To address these challenges, this project
	The project utilized a diverse set of culvert inspection videos and images from UDOT’s database, including video data from CCTV and zoom camera inspections. However, a significant challenge was the imbalanced dataset, dominated by corrosion defects in metal culverts. Therefore, we labeled more data collected from different sources and applied data augmentation techniques, including rotation and adding noise. Based on Utah’s pipe rating system, the structural defect categories used in this study include Crac
	After finishing the labeling and annotating of the collected images, we tailored the latest computer vision algorithms to each type of model we aimed to develop. For the binary classification task, we trained models to distinguish between defective and non-defective frames, achieving a high accuracy of 91%, which proved effective in filtering out defective frames for further analysis. Next, we developed multiclass classification models for each structural defect category, enabling the system to identify and
	bounding boxes. The final object detection model achieved an average mean Average Precision (mAP) of 78%, offering detailed spatial insights necessary for assigning condition ratings. 

	To make these models accessible and usable by non-technical personnel, we developed intuitive Graphical User Interfaces (GUIs) for each model type. These GUIs allow UDOT employees to upload culvert inspection videos, run automated analyses, and receive detailed outputs without requiring programming knowledge. When evaluated on 56 real inspection videos, the object detection GUI accurately predicted the condition of 84% of the culverts, while the multiclass classification GUI achieved 75% accuracy. These res
	For UDOT, these tools offer significant benefits: They reduce manual inspection time, improve consistency and objectivity in assessments, and help prioritize maintenance based on automated condition ratings. Ultimately, this system has the potential to streamline culvert management workflows, minimize human error, and lower operational costs while supporting timely, data-driven infrastructure decisions. 
	 
	 
	 
	 
	 
	1.0  INTRODUCTION 
	1.1  Problem Statement 
	Ensuring the safety and functionality of existing transportation infrastructure, including roads, bridges, and culverts, is a top priority for engineers. Culverts, often hidden underground, play a crucial role in stormwater management by acting as channels that allow water to flow beneath various transportation structures [1]. They are vital for preventing flooding, sinkholes, and road damage. Regularly monitoring infrastructure is essential to catching small problems before they become expensive and time-c
	To address these challenges, the use of digital video inspections has emerged as a valuable tool in assessing culvert conditions. Digital video inspections involve deploying cameras to capture images and videos of the interior of culverts. This method offers several advantages, including the ability to collect comprehensive data without the need for extensive excavation or physical entry into the culvert. Inspectors can review the footage to identify defects, assign condition ratings, and document inventory
	The Utah Department of Transportation (UDOT) maintains over 120,000 drainage culverts and storm drain pipes along state highways in Utah, making the importance of culverts more evident. Despite this, UDOT lacks a comprehensive inventory of these assets [5]. Establishing a detailed culvert inventory is crucial for predicting future performance and developing effective 
	maintenance strategies [6]. To this end, UDOT has to collect information about all culverts across the state and inventory them in ATOM as quickly as possible. 

	Identifying whether culverts need repair, rehabilitation, or replacement requires comprehensive and well-documented inspections. The current culvert inspection practice at  UDOT is based on digital video inspection and relies heavily on human interpretation and defect identification. Inspectors collect videos on-site and later review them off-site, a process that includes defect identification, condition rating assignment, and inventory documentation. Each video interpretation takes approximately 10 to 12 m
	1.2  Objectives 
	The rapid advancements in computing technologies have significantly enhanced computer vision and deep learning models’ capabilities in various fields, including the inspection of infrastructures. Key innovations in computer vision and deep learning have paved the way for automated systems that can precisely identify and evaluate defects in infrastructure components such as bridges, pipes, and roads. These advancements are reshaping traditional inspection methods, offering improved accuracy, efficiency, and 
	Since UDOT currently relies on manual post-video interpretation for culvert inspections, this project aims to optimize the process by employing advanced technologies. Manual interpretation, while useful, is time-consuming, prone to human error, and can vary significantly based on the inspector’s experience and subjectivity. To address these limitations, this project will review the most recent defect detection models developed for the assessment of culverts or pipes and develop a state-of-the-art deep learn
	The automated system will also enable early detection of potential issues, facilitating proactive maintenance and reducing the risk of costly infrastructure failures. It would also allow seamless import of inspection data into ATOM UDOT Maintenance Management. This project aligns with UDOT’s commitment to leveraging innovative technologies to enhance infrastructure 
	management and ensure the safety and functionality of the state’s transportation network. In conclusion, this project represents a significant step forward in modernizing UDOT’s culvert management system. By leveraging the latest advancements in deep learning and computer vision, UDOT can achieve a more efficient, accurate, and reliable system for assessing culvert conditions and maintaining critical infrastructure. 

	1.3  Scope 
	Research Tasks include: 
	•
	•
	•
	 Conducting a comprehensive literature review to find the most advanced algorithm for defect detection 

	•
	•
	 Collecting available culvert inspection video data and converting them into images 

	•
	•
	 Labeling and annotating the images based on UDOT’s culvert-condition rating criteria for model training purposes 

	•
	•
	 Developing a deep learning model that can interpret culvert inspection videos and assign a condition rating  

	•
	•
	 Comparing the results with the ground-truth data to evaluate the performance of the developed model 

	•
	•
	 Developing a Graphical User Interface (GUI) for an automated culvert inspection interpretation framework 


	1.4  Outline of Report  
	•
	•
	•
	 Introduction 

	•
	•
	 Research Methods  

	•
	•
	 Data Collection 

	•
	•
	 Data Evaluation & Results 

	•
	•
	 Conclusions 


	2.0  RESEARCH METHODS 
	2.1  Overview 
	This chapter presents the methodology employed to automate the interpretation of culvert inspection videos through advanced computer vision and deep learning techniques. The methodology encompasses both traditional approaches to culvert inspection and cutting-edge applications of artificial intelligence in infrastructure assessment. We begin with an examination of conventional culvert inspection practices, highlighting their limitations and the need for automated solutions, followed by a review of recent ad
	The technical methodology covers three primary approaches: image classification for overall condition assessment, object detection for precise defect localization and classification, and data augmentation strategies for enhancing model robustness and addressing dataset limitations. Special attention is given to the latest developments in object detection architectures, including YOLO and RF-DETR models, each offering unique advantages for culvert defect detection tasks. The data augmentation section address
	2.2  Background 
	2.2.1 Traditional Culvert Inspection 
	Traditional culvert inspection methods have historically relied on visual assessments conducted by trained inspectors who physically examine culvert structures to identify defects and assess structural integrity [7]. These conventional approaches involve inspectors entering culvert systems when accessible or using basic optical equipment to evaluate visible portions of the infrastructure. However, traditional inspection methods face significant limitations, particularly when dealing with confined spaces, ha
	The introduction of digital video inspection technology has emerged as a significant advancement over purely manual visual assessments. This method employs specialized cameras mounted on remotely operated vehicles or cable systems to capture comprehensive footage of culvert interiors. Digital video inspection allows for thorough documentation without requiring inspectors to enter potentially dangerous confined spaces, thereby improving safety while enabling more detailed condition assessments [4]. Despite t
	 2.2.2 Applications of Computer Vision in Infrastructure Inspection 
	The rapid advancement of computer vision and deep learning technologies has opened new possibilities for automating infrastructure inspection processes. Recent research has demonstrated the effectiveness of machine learning algorithms in detecting and classifying various types of structural defects with high accuracy and consistency [8]. Computer vision applications in infrastructure inspection have shown particular promise in analyzing large datasets of images and videos to identify patterns and anomalies 
	Hawari et al. [9] developed an automated defect detection system for sewer pipelines using image processing algorithms applied to CCTV footage, focusing on four primary defect types: cracks, settled deposits, ovality, and displaced joints. Their study demonstrated varying performance levels across different defect types, with ovality detection showing superior results compared to other defect categories. The research highlighted the importance of comprehensive datasets for improving detection capabilities a
	Yin et al. [10] advanced the field by implementing a real-time automated defect detection system using YOLOv3 architecture for sewer pipe assessment. Their model was trained on 3,664 images extracted from CCTV videos, encompassing six defect categories including holes, breaks, deposits, fractures, cracks, and root intrusion. The balanced distribution of defects in their dataset contributed to achieving an impressive 85.37% mean Average Precision (mAP) and F1 scores exceeding 87% for both testing and validat
	Kumar et al. [11] conducted a comparative analysis of multiple object detection frameworks, including Faster R-CNN, YOLOv3, and Single Shot Detector (SSD), for detecting sewer pipe deposits and root intrusion. Their findings indicated that while Faster R-CNN achieved superior overall performance, YOLOv3 provided a more balanced trade-off between detection speed and accuracy, making it suitable for real-time applications. Yin et al. [12] further expanded automated assessment capabilities by developing the Vi
	According to past studies, deep learning algorithms have shown significant potential in enhancing the defect detection process for pipelines, leading to more consistent and reliable results. Research has demonstrated that these algorithms can effectively identify and classify defects such as cracks, corrosion, and joint misalignments with a high degree of accuracy, surpassing traditional manual inspection methods. Despite these advancements, there has been a notable gap in applying deep learning techniques 
	To address the limitations of traditional culvert inspection methods currently used by UDOT, we propose an automated system for interpreting culvert inspection videos using deep learning. Manual inspection of video footage is time-consuming, labor-intensive, and prone to subjectivity. Our goal is to streamline and standardize this process by developing an intelligent pipeline that can detect, localize, and assess defects automatically. The automation process is divided into three key phases: 
	1.
	1.
	1.
	 In the first phase, we use advanced image classification models to analyze individual frames extracted from culvert inspection videos. These models are trained to identify frames that show visible signs of damage, such as cracks, joint misalignments, corrosion, or surface deformation. This step effectively filters out non-defective frames, allowing the system to focus on areas that actually require further analysis, thereby improving efficiency and reducing processing time.  

	2.
	2.
	 Once defective frames are identified, they are passed through object detection models. These models are trained on a curated dataset of annotated images containing various types of culvert defects. They are capable of not only locating defects within a frame 

	but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and deformation). This step provides both spatial and contextual information about each defect, which is essential for comprehensive analysis. 
	but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and deformation). This step provides both spatial and contextual information about each defect, which is essential for comprehensive analysis. 

	3.
	3.
	 In the final phase, the localized and categorized defects are evaluated to determine their severity. This is done using advanced object detection models trained on a large dataset that is annotated based on UDOT’s culvert rating system. The model estimates factors such as defect color, shape, and texture, and assigns a condition rating based on learned patterns in the training data. These ratings can then be used to inform maintenance decisions and prioritize repairs. 


	To implement this pipeline, we utilize two main classes of deep learning algorithms: image classification and object detection. Image classification models are used in the first phase to detect frames likely to contain defects, while object detection models are employed to combine the second and third phases to precisely locate, label, and assess each defect. By automating the interpretation of culvert videos, this system promises to significantly enhance inspection accuracy, reduce human error, and streaml
	2.3 Image Classification 
	Image classification represents a fundamental computer vision task that involves categorizing entire images into predefined classes based on their visual content [13], [14]. In the context of culvert inspection, image classification can be employed to automatically determine the overall condition rating of culvert segments or to classify images based on the presence or absence of specific defect types. This approach differs from object detection in that it assigns a single label to the entire image rather t
	The image classification methodology typically employs Convolutional Neural Networks (CNNs) that learn hierarchical feature representations from training data. These networks progressively extract features from low-level edge and texture information to high-level semantic representations that enable accurate classification decisions [16]. For this project we developed two types of image classification models: 
	1.
	1.
	1.
	 A binary classification model which efficiently filters non-defective frames from culvert video footage. 

	2.
	2.
	 A multi-class classification model that assigns a condition rating (on a scale from 1 to 5) to each frame in the video footage, based on the severity level of identified defect categories. 


	We employed CNNs, such as ResNet and EfficientNet, which have demonstrated high performance in various image recognition tasks. These models are trained on a labeled dataset consisting of both defective and non-defective culvert frames. Through supervised learning, the model learns to distinguish visual patterns associated with defects such as cracks, joint separations, and corrosions. The output is a binary or multi-class label indicating whether a given frame should be flagged for further inspection. 
	The classification process begins with preprocessing steps, including image normalization, resizing, and potential augmentation to improve model robustness. CNN architecture processes these images through multiple convolutional layers, pooling operations, and fully connected layers to produce probability distributions across the target classes. Training involves optimizing the network parameters using labeled examples and validation on separate datasets to ensure generalization capability. Performance evalu
	2.4  Object Detection 
	YOLOv8 (You Only Look Once, Version 8) represents one of the latest iterations in the evolution of the YOLO family of real-time object detection models. Building on the strengths of its predecessors, YOLOv8 incorporates several architectural enhancements to achieve improved accuracy and speed in detecting and classifying objects within images and videos. At its core, YOLOv8 retains the fundamental principle of YOLO: treating object detection as a single regression problem, predicting bounding boxes and clas
	Recent developments in YOLO architecture have continued to push the boundaries of object detection performance. YOLOv11, released as an advancement over YOLOv8, introduces 
	enhanced feature pyramid networks and improved anchor-free detection mechanisms that provide better handling of multi-scale objects and reduced computational overhead [18]. The architecture incorporates advanced attention mechanisms and optimized backbone networks that significantly improve detection accuracy while maintaining real-time processing capabilities. 

	YOLOv12 represents the most recent iteration in the YOLO family, featuring revolutionary architectural improvements including dynamic head structures and advanced multi-scale fusion techniques. This version introduces novel training strategies and loss functions that enhance the model’s ability to detect small objects and handle complex scenes with multiple overlapping instances [19].. The model demonstrates superior performance in challenging scenarios common in infrastructure inspection, where defects may
	RF-DETR (Real-time DEtection TRansformer) represents a significant departure from traditional CNN-based detection approaches by employing transformer architectures for object detection tasks. This model leverages self-attention mechanisms to capture long-range dependencies and spatial relationships more effectively than conventional approaches. RF-DETR demonstrates strength in detecting complex defect patterns and spatial relationships that are crucial for accurate culvert condition assessment [20]. 
	The architecture of YOLOv8 (Figure 1) introduces key innovations that enhance its performance. One of the primary improvements is the incorporation of advanced CNN layers that optimize feature extraction. These layers are designed to capture more detailed spatial information, allowing the model to detect smaller objects and distinguish between closely spaced objects with greater precision. YOLOv8 also utilizes advanced activation functions and normalization techniques that enhance the model’s learning capab
	 
	Figure
	Figure 1-YOLOv8 architecture [21] 
	For training and testing our model, we employed a holdout cross-validation technique, wherein the dataset was divided into two distinct subsets: 70% for training, 20% for validation, and 10% for testing. This approach ensures that the model is trained on a substantial portion of the labeled data while reserving a separate set of data to evaluate its performance on unseen samples. By doing so, we can obtain a more accurate assessment of the model’s generalization capabilities and its ability to detect defect
	to prevent overfitting and provides a realistic measure of the model’s effectiveness in real-world scenarios, ensuring that it reliably performs when deployed in UDOT’s inspection processes [22]. For this project we developed two types of object detection models: 

	1.
	1.
	1.
	 An object detection model for detecting and localizing defect categories without rating scales. 

	2.
	2.
	 An object detection model for detecting, localizing, and classifying defects with rating scales 


	2.5 Data Augmentation 
	Data augmentation represents a critical technique in deep learning that artificially expands training datasets by applying various transformations to existing images while preserving their semantic content and class labels [6], [23]. In the context of culvert inspection, data augmentation serves multiple purposes: addressing dataset imbalances, improving model generalization, and enhancing robustness to variations in imaging conditions encountered during field inspections. The technique is particularly valu
	Common augmentation techniques applicable to culvert inspection include geometric transformations such as rotation, scaling, translation, and horizontal flipping, which help the model become invariant to different camera orientations and positions during inspection. Photometric augmentations, including brightness adjustment, contrast modification, color jittering, and noise addition, are essential for handling varying lighting conditions encountered in different culvert environments. More advanced technique
	The implementation of data augmentation requires careful consideration of the specific characteristics of culvert inspection imagery. For instance, excessive rotation may not be appropriate as culvert orientations are typically constrained, while brightness and contrast adjustments are crucial given the challenging lighting conditions often present in underground infrastructure [23]. To increase the size of our training dataset, we applied a diverse set of data 
	augmentation techniques to each original image, generating seven augmented outputs per example. The augmentations used are as follows: 

	•
	•
	•
	 Flip: Applied horizontal and vertical flips to introduce directional variability. 

	•
	•
	 90° Rotation: Included both clockwise and counter-clockwise 90-degree rotations to account for different viewing angles. 

	•
	•
	 Crop: Performed random cropping with a minimum zoom of 0% and a maximum zoom of 20% to simulate partial views of defects. 

	•
	•
	 Rotation: Applied random rotations ranging between -15° and +15° to account for slight camera tilts. 

	•
	•
	 Shear: Introduced horizontal and vertical shear transformations up to ±10° to mimic perspective distortion. 

	•
	•
	 Saturation Adjustment: Randomly varied image saturation between -25% and +25% to account for lighting differences and material surface changes. 

	•
	•
	 Brightness Adjustment: Modified brightness levels within a range of -15% to +15% to simulate varied lighting conditions. 

	•
	•
	 Exposure Adjustment: Altered exposure levels from -10% to +10% to reflect overexposed or underexposed footage. 

	•
	•
	 Blur: Added Gaussian blur with a maximum radius of 1.8 pixels to simulate motion blur or low focus. 

	•
	•
	 Noise: Introduced random noise affecting up to 0.22% of pixels to improve robustness against video compression artifacts. 


	These augmentations were carefully selected to preserve the semantic integrity of the defects while improving the model’s generalization to real-world variations in culvert inspection videos. 
	3.0  DATA COLLECTION 
	3.1  Overview 
	Collecting the necessary input data is the first crucial step in developing a robust deep learning model. For this project, we gathered extensive culvert video inspection data from UDOT’s database.  Then, we had to label the collected data to develop a deep learning model. Data labeling for object detection involves annotating images or videos by drawing bounding boxes around objects of interest and assigning a specific class to each box. This precise annotation allows the model to learn how to identify and
	3.2  Collected data 
	We collected four distinct categories of data for this project: zoom camera inspection videos, CCTV culvert inspection videos, culvert images taken by cell phone, and CCTV sewer pipe inspection images. These diverse data sources provided a comprehensive view of culvert conditions, capturing various perspectives and levels of detail. By utilizing these varied data types, we ensure that our model is trained on a rich dataset, enhancing its ability to accurately detect and assess a wide range of defects in dif
	3.2.1  Zoom Camera Inspection Videos 
	UDOT provided us with its available culvert inspection data, a vital resource for our deep- learning model development. A significant subset of this dataset consists of culvert inspection videos collected by Consor Company. Consor employed a method of video inspection using zoom cameras mounted on the ends of telescopic poles. This technique allows for a detailed examination of the culverts without the need for prior cleaning, which can save considerable time and resources. The zoom camera inspection provid
	 
	Figure
	Figure 2-Inspected culverts by Consor in Region One of Utah 
	For culvert inspection, Consor Company utilized the NASSCO rating system, which is comparable to UDOT’s hybrid rating system, eliminating the need for conversion between rating systems in this project. Out of the extensive dataset of culvert inspection, only 1094 inspection reports were available. Among these reports, approximately 22% indicated that the inspected culverts had no structural defects, further limiting the amount of data containing observable issues and reducing the number of samples useful fo
	We converted the video files into images. These images capture detailed visual information from the culvert inspections, providing a rich dataset for training our deep learning model. However, a critical step in utilizing these images is the annotation process. We meticulously annotated the defects in each image as part of data labeling, which is essential for training the model to accurately detect and classify defects. This labor-intensive process ensures that the model learns from high-quality, labeled e
	3.2.2  CCTV Culvert Inspection Videos  
	Another significant subset of culvert inspection data available in UDOT’s database comprises CCTV inspection video files collected by Horrocks Company, specifically from the culverts along the I-80 highway. We accessed this data through UDOT’s R2 culvert rating app website (Figure 3). This dataset includes 2000 data rows, but only 259 of these entries have corresponding video files. Among these 259 videos, merely 59 exhibit structural defects, providing a more focused dataset for our defect detection model.
	 
	Figure
	Figure 3-Inspected culverts by Horrocks along the I-80 highway 
	 
	The data collected by Horrocks Engineers utilized the old four-digit rating scale previously used by UDOT. To ensure consistency and compatibility with our model, we needed to convert these ratings to the new 5-point rating scale that UDOT currently employs. This conversion was necessary to standardize the data and make it suitable for training our deep learning model. The conversion process involved using a predefined table () to translate the old ratings into the new scale, ensuring that the defect severi
	Table 1
	Table 1


	Table 1-Data conversion 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 

	Four-digit rating scale 
	Four-digit rating scale 



	1 
	1 
	1 
	1 

	<1000 
	<1000 


	2 
	2 
	2 

	1000-1999 
	1000-1999 


	3 
	3 
	3 

	2000-2999 
	2000-2999 


	4 
	4 
	4 

	3000-3999 
	3000-3999 


	5 
	5 
	5 

	>=4000 
	>=4000 




	 
	3.2.3  Culvert Images Taken by Cell Phone 
	Another subset of data we collected consisted of culvert images taken by UDOT employees during their field visits. Recognizing that our initial dataset was unbalanced, with a risk of overfitting the model to specific defect classes, we needed to incorporate additional data to ensure a more comprehensive training set. To achieve this, we reached out to all UDOT employees, requesting that they share any culvert images they had captured in the field. This initiative resulted in the collection of 450 additional
	These images, however, had not been labeled with condition ratings or defect annotations. Therefore, as part of our data preparation process, we should assess each culvert image and assign a condition rating based on UDOT’s new hybrid culvert condition rating system. This meticulous labeling process is crucial for creating a high-quality dataset that accurately represents a wide range of culvert conditions and defects. 
	By integrating these additional images into our dataset, we aim to enhance the model’s ability to generalize across different defect types and conditions, reducing the likelihood of overfitting. The diverse and balanced dataset that results from this effort will provide a solid foundation for training our deep learning model, ultimately improving its accuracy and reliability in detecting and assessing culvert defects.  
	3.2.4 CCTV Sewer Pipe Inspection Images  
	The final type of data we collected consisted of images captured from inside sewer pipes. These images were extracted as frames from CCTV inspection videos and were sourced from three different repositories.  
	The first batch was obtained from the Roboflow website [26], which provided approximately 1,500 unlabeled images of sewer interiors. Since these images had no annotations, we manually labeled them using UDOT’s culvert defect rating system to ensure consistency with the rest of our dataset.  
	The second batch came from a former employee of AECOM, who shared a collection of 45,000 sewer pipe images labeled using the NASSCO defect rating system. However, only about 3,000 of these images contained visible structural defects. After further review and filtering to exclude defects irrelevant to culvert inspection, such as those found in pipes made from materials like vitrified clay, we narrowed this batch down to 591 usable images. To maintain a unified labeling scheme across all data sources, we conv
	The third batch was sourced from the Kaggle website and consisted of an augmented dataset of sewer pipe images. Initially, it contained 22,120 images, but after removing the augmented duplicates and retaining only the original frames, we were left with 5,530 annotated images. These images were labeled with six types of defects: Deformation, Obstacle, Rupture, Disconnect, Misalignment, and Deposition. Following a thorough review and the conversion of these labels into UDOT’s classification framework, this ba
	In total, these three sources contributed to a diverse and standardized dataset of sewer and culvert defect images, all aligned under the UDOT rating system to support robust training and evaluation of our defect detection models. 
	3.3 Data Labeling  
	In this project, our goal is to develop two types of supervised learning models specifically for classification and object detection. Supervised learning models require labeled data to learn meaningful patterns, but the type and complexity of labeling differ significantly between 
	classification and object detection tasks. Object detection models, such as YOLO, require detailed annotations, including bounding boxes around each object of interest and corresponding class labels. This makes the annotation process both time-consuming and labor-intensive. In contrast, supervised image classification models like ResNet and EfficientNet operate on labeled images without the need for precise localization. They simply require a label for the entire image, making the data preparation process c

	In this study, we approached the labeling process in stages, progressing from simpler to more complex tasks. We began by labeling images for a binary classification model, distinguishing between defective and non-defective culvert frames. This involved extracting individual frames from culvert inspection videos and manually assigning a binary label (defective and non-defective) to each (Figure 4).  
	 
	Figure
	Figure 4-Assigning a binary label to images 
	Next, we labeled the same dataset for a multi-class classification model, assigning specific defect labels (e.g., corrosion-3 or joint-5) to the images. In the development of our multi-class classification models, we designed a modular approach by creating five separate models, each specialized for a distinct category of structural defects commonly found in culvert inspections. This strategy allowed us to fine-tune each model for the unique visual characteristics and classification challenges associated wit
	For each of these categories, we curated a tailored subset of images from our dataset and applied class labels specific to the types of defects within that group. These class labels, along with the corresponding categories, are detailed in Table 3. This categorization not only enhanced the performance of each model by reducing label noise and inter-class confusion but also enabled 
	more targeted training and evaluation. By isolating defect types, we improved the models’ sensitivity to subtle variations within each defect class, leading to more reliable and interpretable classification outcomes in real-world culvert assessments. Since the number of images in some classes was very limited, we merged similar classes within each defect category to create a more balanced dataset. For example, in the corrosion category, we combined severity levels 2 and 3 into a single class labeled as "Cor

	Table 2-Multi-class labels by defect type and severity 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Collapse/Kink 

	Corrosion 
	Corrosion 

	Crack/Fracture 
	Crack/Fracture 

	Deformation 
	Deformation 

	Joint Offset 
	Joint Offset 



	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 

	Non-corrosion-1 
	Non-corrosion-1 

	Non-crack-frac-1 
	Non-crack-frac-1 

	Non-deformation-1 
	Non-deformation-1 

	Non-joints-1 
	Non-joints-1 


	 
	 
	 

	Corrosion-2 
	Corrosion-2 

	Crack-Fract-2 
	Crack-Fract-2 

	Deformation-2 
	Deformation-2 

	Joints-2 
	Joints-2 


	 
	 
	 

	Corrosion-3 
	Corrosion-3 

	Crack-Fract-3 
	Crack-Fract-3 

	Deformation-3 
	Deformation-3 

	Joints-3 
	Joints-3 


	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 

	Corrosion-4 
	Corrosion-4 

	 
	 

	Deformation-4 
	Deformation-4 

	Joints-4 
	Joints-4 


	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 

	Corrosion-5 
	Corrosion-5 

	 
	 

	Deformation-5 
	Deformation-5 

	Joints-5 
	Joints-5 




	 
	Finally, for the object detection model, we annotated the frames with bounding boxes around visible defects and assigned each region a corresponding class label from Table 3. This structured, step-by-step annotation strategy allowed us to build and evaluate models of increasing complexity, leveraging the same video data across multiple learning tasks. 
	 
	3.3.1 Data Annotation with CVAT 
	To prepare our data for object detection, we need to go through a detailed annotation process. This involves labeling each image or video frame by drawing bounding boxes around the objects of interest, such as culvert defects, and assigning a specific class to each box. For instance, if a culvert image contains cracks, corrosion, or joint misalignments, each of these defects must be identified with a bounding box and labeled with the appropriate class. This precise annotation is crucial as it provides the m
	The labeling process must be thorough and consistent to ensure the model learns from high-quality examples. Each annotated image or video frame helps the object detection model understand the features and patterns associated with various defects. Once the model is trained, its performance will be evaluated on a labeled test set, which was not used during the training phase. This evaluation will help us measure the model’s accuracy in detecting and classifying defects, ensuring that it performs reliably on u
	For this task, we used CVAT a powerful open-source tool specifically designed for annotating image and video datasets [27]. Using CVAT’s user-friendly interface (Figure 4), annotators manually draw bounding boxes around each defect in the images or video frames. Each bounding box is labeled with the corresponding class. CVAT provided various tools to streamline the annotation process, such as auto-segmentation, interpolation for video frames, and copy-paste functions for repetitive objects.  
	 
	Figure
	Figure 5-CVAT’s interface during data labeling 
	For annotation, we utilized 16 distinct labels, as illustrated in Table 3, in accordance with UDOT’s culvert condition rating system. Once the annotation process was completed, the labeled data was exported in a format compatible with the specific model we want to use. CVAT supports various export formats, including YOLO’s native format. The exported annotations include the coordinates of the bounding boxes and the class labels for each object. 
	 illustrates the distribution of defects boxes across the 4863 labeled images. According to the table, it indicates that a significant portion of UDOT’s culverts are metal pipes afflicted with corrosion defects. This imbalance in our dataset reveals that certain defect types are underrepresented, with some labels appearing in fewer than 200 boxes. To address this issue, we have been actively working to augment our dataset by incorporating additional data. This effort aims to balance the representation of de
	Table 3
	Table 3


	Table 3-Distribution of defect boxes across labeled data 
	# 
	# 
	# 
	# 
	# 

	Defects  
	Defects  

	Box count 
	Box count 


	0 
	0 
	0 

	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 

	309 
	309 


	1 
	1 
	1 

	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 

	1333 
	1333 


	2 
	2 
	2 

	Corrosion-2 
	Corrosion-2 

	586 
	586 


	3 
	3 
	3 

	Corrosion-3 
	Corrosion-3 

	2803 
	2803 


	4 
	4 
	4 

	Corrosion-4 
	Corrosion-4 

	78 
	78 


	5 
	5 
	5 

	Corrosion-5 
	Corrosion-5 

	90 
	90 


	6 
	6 
	6 

	Deformation-2 
	Deformation-2 

	193 
	193 


	7 
	7 
	7 

	Deformation-3 
	Deformation-3 

	610 
	610 


	8 
	8 
	8 

	Deformation-4 
	Deformation-4 

	302 
	302 


	9 
	9 
	9 

	Deformation-5 
	Deformation-5 

	478 
	478 


	10 
	10 
	10 

	Crack-Fract-2 
	Crack-Fract-2 

	646 
	646 


	11 
	11 
	11 

	Crack-Fract-3 
	Crack-Fract-3 

	150 
	150 


	12 
	12 
	12 

	Joints-2 
	Joints-2 

	423 
	423 


	13 
	13 
	13 

	Joints-3 
	Joints-3 

	801 
	801 


	14 
	14 
	14 

	Joints-4 
	Joints-4 

	328 
	328 


	15 
	15 
	15 

	Joints-5 
	Joints-5 

	211 
	211 


	Sum 
	Sum 
	Sum 

	9341 
	9341 




	4.0  DATA EVALUATION & RESULTS 
	4.1  Overview 
	In this chapter, we will discuss the metrics used to evaluate our model’s performance, enabling us to predict how it will perform on unseen culvert video inspection data. We will also present and analyze the results obtained from these evaluations, providing insights into the model’s accuracy and reliability in real-world applications. 
	4.2 Evaluation Metrics 
	Evaluating the performance of computer vision models, particularly in the domains of object detection and image classification, requires the use of well-established quantitative metrics. These metrics allow researchers and practitioners to assess how well models generalize to unseen data, how accurately they recognize objects or classify images, and how their predictions align with ground-truth annotations. The primary evaluation metrics we used in this study are mean Average Precision (mAP), precision, rec
	 
	4.2.1 Confusion Matrix 
	The confusion matrix provides a granular view of the classification performance by showing how predictions are distributed across the actual class labels. Each row corresponds to the true class, and each column corresponds to the predicted class [28]. It highlights where the model is making errors, such as misclassifying one class as another, and is particularly useful for evaluating multiclass classification models. Figure 6 illustrates a confusion matrix, which presents and summarizes the difference betwe
	 
	 
	Figure
	Figure 6-Confusion matrix for binary classification 
	 
	4.2.2 Accuracy 
	Accuracy is the simplest and most intuitive metric, defined as the proportion of correct predictions among the total number of predictions [28]. While widely used in image classification tasks, accuracy alone can be misleading in the presence of class imbalance or when evaluating object detection tasks with multiple classes and varied object sizes. In object detection, accuracy is less frequently used in isolation, as it does not account for localization quality or multiple instances per image. 
	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
	Equation 1 
	 
	4.2.3 Precision and Recall 
	Precision measures how many of the predicted positive instances are actually correct, whereas recall measures how many of the actual positive instances the model was able to identify [29]. In object detection, precision and recall are often computed across multiple Intersection over Union (IoU) thresholds. A high precision indicates a low false positive rate, while a high recall reflects a low false negative rate. Balancing these two is crucial, especially in safety-critical applications where missed detect
	 
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	Equation 2 
	𝑅𝑒𝑐𝑎𝑙𝑙= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
	Equation 3 
	4.2.4 F1-Score 
	The F1-score is the harmonic mean of precision and recall. It provides a single metric that balances both concerns, particularly useful when class distribution is skewed or when both false positives and false negatives are costly [30]. For image classification, a high F1-score indicates that the model is not only accurate but also robust in handling both positive and negative predictions. 
	𝐹1 𝑆𝑐𝑜𝑟𝑒=2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
	Equation 4 
	4.2.5 Mean Average Precision ([19]) 
	To evaluate the performance of object detection models, we used mAP metric. MAP is a widely recognized performance measure in object detection tasks. It combines both precision and recall across different classes and thresholds, providing a comprehensive assessment of the model’s accuracy [21]. The formula (Equation 5) for mAP involves calculating the Average Precision (AP) for each class and then taking the mean of these AP values. AP is the area under the Precision-Recall curve for a given class. It can b
	AP=∑(𝑅𝑛−𝑅𝑛−1)𝑃𝑛𝑛 
	Equation 5 
	where  is the precision at the -th threshold and  is the recall at the -th threshold. MAP calculates the  for each class and then averages these values to give an overall score, effectively summarizing the model’s ability to correctly identify and localize defects in the culvert inspection images. Using mAP, we can ensure that our model not only detects defects accurately but also maintains a high level of reliability across various defect types. 
	𝑃𝑛
	𝑛
	Rn
	𝑛
	AP

	mAP=1𝑁∑AP𝑖𝑁𝑖 
	Equation 6 
	where  is the number of classes and  is the Average Precision for the  -th class. This metric is particularly useful in our context, as it helps ensure that our YOLOv8 model not only detects and localizes culvert defects accurately but also maintains consistent performance across different defect types, thereby validating the model’s robustness and effectiveness in real-world applications. 
	𝑁
	𝐴𝑃𝑖
	i

	MAP50, or Mean Average Precision at 50% Intersection over Union (IoU) threshold, is a specific metric used to evaluate the performance of object detection models. IoU is a measure used to quantify the accuracy of an object detector’s predicted bounding box with respect to the ground truth bounding box. It is calculated as the area of overlap between the predicted bounding box and the ground truth divided by the area of their union. In the context of mAP50, the model’s predictions are considered correct if t
	4.3  Results 
	To detect structural defects in culverts, we developed a YOLOv8 model using 34,390 labeled images. However, the initial results were unsatisfactory, as the model performed great in one class while overlooking others. This issue stemmed from the unbalanced nature of our dataset. Initially, we had 20 labels, but after annotating 77 videos, only ten labels were used. The distribution among these ten labels was also imbalanced. Figure 7 presents the normalized confusion matrix for this model, which indicates th
	 
	4.3.1 Classification 
	In this project, we developed and evaluated two types of image classification models. The first model type focused on binary classification, aiming to detect whether a given video frame contains a defect or not. To accomplish this, we experimented with four distinct image classification algorithms, which are summarized in Table 4. 
	 
	Table 4-Binary Classification Results 
	# 
	# 
	# 
	# 
	# 

	Model 
	Model 

	# Classes 
	# Classes 

	Accuracy 
	Accuracy 

	Precision 
	Precision 

	Recall 
	Recall 

	F1 score 
	F1 score 



	1 
	1 
	1 
	1 

	Yolov11 
	Yolov11 

	2 
	2 

	91% 
	91% 

	90.3% 
	90.3% 

	90.5% 
	90.5% 

	90.4% 
	90.4% 


	2 
	2 
	2 

	Resnet 50 
	Resnet 50 

	2 
	2 

	83% 
	83% 

	88% 
	88% 

	89% 
	89% 

	88% 
	88% 


	3 
	3 
	3 

	VGG + XGBoost 
	VGG + XGBoost 

	2 
	2 

	85% 
	85% 

	84% 
	84% 

	84% 
	84% 

	84% 
	84% 


	4 
	4 
	4 

	ConvNeXt 
	ConvNeXt 

	2 
	2 

	74% 
	74% 

	85% 
	85% 

	67% 
	67% 

	67% 
	67% 




	 
	Among the tested models, YOLOv11 consistently outperformed the others across all evaluation criteria. Specifically, YOLOv11 achieved the highest F1-score and accuracy, indicating its superior ability to correctly distinguish between defective and non-defective frames while maintaining a balanced trade-off between false positives and false negatives. 
	The performance advantage of YOLOv11 can be attributed to its robust feature extraction capabilities and optimized architecture, which proved especially effective in recognizing subtle defects within noisy or complex visual contexts. Given its reliability and efficiency, YOLOv11 was selected as the primary binary classifier for the first stage of the defect detection pipeline. 
	 
	 
	Figure
	Figure 7-Confusion matrix of Yolo model for binary classification 
	 
	Figure
	Figure
	Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) for a batch of testing set 
	In the next phase of this research, the focus shifted from binary classification to a more detailed analysis of pipe conditions through multiclass image classification models. The goal was to not only detect whether a frame was defective but also to classify the type of defect present in the image. To facilitate this, we identified and defined five major structural defect categories commonly observed in Utah’s culvert inspection records 
	Each major defect category encompassed multiple specific defect classes, allowing for a more granular understanding of structural issues (). After defining the categories, we proceeded to annotate a large dataset of images, assigning each image to its appropriate class within a category. By training separate models per category, we aimed to improve model focus, reduce confusion between dissimilar classes, and ultimately enhance classification performance within each defect group. 
	Table 2
	Table 2


	To implement this multiclassification framework, we employed two state-of-the-art deep learning models: YOLOv11 and EfficientNet. These models were selected for their strong performance in prior image classification tasks and their architectural ability to generalize across diverse visual inputs. YOLOv11 provided fast and accurate real-time inference, while EfficientNet offered high accuracy with optimized computational efficiency through compound scaling. 
	The performance of both models was evaluated independently across each defect category using standard metrics, including accuracy, precision, recall, and F1-score. The results, summarized in  Findings demonstrate how each model performed within the context of the structural defect classification, offering insight into the strengths and weaknesses of each approach across different types of culvert anomalies. Due to class imbalance in the dataset, we merged the original five or three classes within each categ
	YOLOv11, meanwhile, also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories compared to EfficientNet but slightly more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision across categories and YOL
	YOLOv11, meanwhile, also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories compared to EfficientNet but slightly more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision across categories and YOL


	EfficientNet achieved high accuracy across all categories, with its best performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). However, the model showed relatively lower performance in Deformation and Joints, both recording F1-scores around 61–63%, likely due to the visual similarity of these defects or fewer training samples. YOLOv11, on the other hand, demonstrated strong results in Corrosion as well (96% accuracy) and slightly better recall for Crack-Fracture than EfficientNet (81% v
	Table 5-Results of multiclassification models 
	Model 
	Model 
	Model 
	Model 
	Model 

	Defect 
	Defect 

	Accuracy 
	Accuracy 

	Precision 
	Precision 

	Recall 
	Recall 

	F1 Score 
	F1 Score 



	EfficientNet 
	EfficientNet 
	EfficientNet 
	EfficientNet 

	Crack-Fracture 
	Crack-Fracture 

	94% 
	94% 

	79% 
	79% 

	68% 
	68% 

	72% 
	72% 


	TR
	Break-Hole-Collapse-Kink 
	Break-Hole-Collapse-Kink 

	83% 
	83% 

	76% 
	76% 

	74% 
	74% 

	75% 
	75% 


	TR
	Corrosion 
	Corrosion 

	96% 
	96% 

	84% 
	84% 

	70% 
	70% 

	73% 
	73% 


	TR
	Deformation 
	Deformation 

	79% 
	79% 

	61% 
	61% 

	60% 
	60% 

	61% 
	61% 


	TR
	Joints 
	Joints 

	77% 
	77% 

	64% 
	64% 

	62% 
	62% 

	63% 
	63% 


	YOLOv11 
	YOLOv11 
	YOLOv11 

	Crack-Fracture 
	Crack-Fracture 

	94% 
	94% 

	72% 
	72% 

	81% 
	81% 

	75% 
	75% 


	TR
	Break-Hole-Collapse-Kink 
	Break-Hole-Collapse-Kink 

	81% 
	81% 

	66% 
	66% 

	76% 
	76% 

	68% 
	68% 


	TR
	Corrosion 
	Corrosion 

	96% 
	96% 

	81% 
	81% 

	87% 
	87% 

	83% 
	83% 


	TR
	Deformation 
	Deformation 

	78% 
	78% 

	59% 
	59% 

	60% 
	60% 

	59% 
	59% 


	TR
	Joints 
	Joints 

	81% 
	81% 

	61% 
	61% 

	69% 
	69% 

	64% 
	64% 




	 
	4.3.2 Object Detection 
	In the next phase of the project, we extended our analysis by developing an object detection model aimed at localizing and classifying structural defects within individual video frames. Unlike the classification models used in previous stages, which only provided global labels for entire images, object detection allows for precise identification of the location, extent, and type of each defect present in a frame. This level of granularity is essential for implementing Utah’s culvert rating system, which rel
	To train the detection models, we manually annotated thousands of frames by drawing bounding boxes around visible structural defects and assigning each box a corresponding class label, as defined in Table 3. These annotations served as the ground truth for model training and evaluation. However, due to significant class imbalance in the original structural defect labels, where some defect types were vastly underrepresented, we applied a similar label merging strategy used in the multiclass classification ph
	For model development, we implemented and tested two object detection architectures: YOLOv11 and YOLOv12, both of which are advanced versions of the YOLO family known for their real-time inference speed and accuracy. These models were trained and evaluated on the annotated dataset using standard object detection metrics such as mAP. The detailed performance results of the YOLOv12 model across the merged defect categories are presented in Table 7. These findings provide valuable insight into the models’ abil
	 
	 
	 
	 
	 
	 
	Table 6-Results of object detection models 
	Model 
	Model 
	Model 
	Model 
	Model 

	defects 
	defects 

	Precision 
	Precision 

	Recall 
	Recall 

	Model performance (mAP) 
	Model performance (mAP) 



	YOLOv12 
	YOLOv12 
	YOLOv12 
	YOLOv12 

	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 



	 

	89.1% 
	89.1% 

	68.9% 
	68.9% 

	80.3% 
	80.3% 


	TR
	Joints-3 
	Joints-3 

	84% 
	84% 

	77.5% 
	77.5% 

	83.8% 
	83.8% 


	TR
	Joints-5 
	Joints-5 

	87% 
	87% 

	87.9% 
	87.9% 

	91.6% 
	91.6% 


	TR
	Corrosion-3 
	Corrosion-3 

	88.7% 
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	Figure
	Figure 9-Normalized confusion matrix for the YOLOv12 model  
	 
	Figure
	Figure
	Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top images) for a batch of testing set 
	 
	4.3.3 Graphical User Interface 
	To enable the practical use of the developed models by UDOT, we designed and implemented graphical user interfaces (GUIs) tailored to each type of model developed in this project. These GUIs are intended to provide a user-friendly experience for UDOT staff, allowing them to run complex video analysis tasks on culvert inspection footage without requiring programming knowledge. By simply launching the application on a laptop, a UDOT employee can import inspection videos and receive meaningful outputs, dependi
	Each GUI is specifically designed to align with the function and workflow of its corresponding model type, resulting in slightly different user experiences and outputs across the three interfaces. The first GUI is built for the binary classification model. In this interface, the user imports a culvert inspection video and selects an output directory. The model then automatically processes the video and filters out all frames identified as defective. These defective frames are saved in the designated output 
	 
	Figure
	Figure 11-Binary classification-GUI 
	 
	The second GUI is designed for the multiclass image classification models, which categorize detected defects into specific types. Upon launching the interface, the user inputs a culvert inspection video and designates a path for the output text file. Once the "Start Analysis" button is clicked, the system begins processing the video frame by frame. Each frame is classified by the trained multiclass model into one of several defect categories. The GUI employs a rule-based logic to track consistency in predic
	 
	 
	Figure
	Figure 12-Multiclassification-GUI 
	 
	The third GUI functions similarly to the second, but it is built around the object detection model. After importing the inspection video and specifying the output file location, the user starts the analysis process. The object detection model processes each video frame in real time, detecting and localizing structural defects by drawing bounding boxes around them. These boxes are labeled according to the predicted defect category. Similar to the multiclass classification GUI, if the model detects boxes of t
	 
	 
	Figure
	Figure 13-Object detection-GUI 
	 
	To evaluate the performance of both the Multiclassification-GUI and the Object Detection-GUI, we tested them on a set of 56 real-world culvert inspection videos provided by UDOT. These videos were previously assessed by inspectors, serving as a reliable benchmark for validation. Each GUI was used to independently analyze the videos and predict the overall condition of the culvert based on its trained model logic and output aggregation rules. 
	The results were highly promising, especially for the Object Detection-GUI, which correctly predicted the condition of 46 out of 56 videos, resulting in an accuracy of approximately 84%. This demonstrates the model’s strong capability to localize and interpret structural defects with high reliability. In comparison, the Multiclassification-GUI achieved 42 correct predictions, corresponding to a 75% accuracy. While slightly less accurate, the multiclassification approach still provided valuable insights and 
	Importantly, in most of the cases where the Object Detection-GUI failed to predict the correct condition, the model tended to be conservative, flagging defects where none were present according to human reviewers. This conservative bias may be preferable in certain safety-critical applications, as it prioritizes caution over risk. These misclassifications typically arose from subtle image features or lighting artifacts that resembled true defects, prompting the model to issue a higher severity rating than n
	Overall, the evaluation demonstrates the potential of these automated tools to streamline the inspection process, reduce subjectivity in condition assessments, and significantly save time, labor, and costs in culvert management. By automating defect recognition and condition rating from video footage, these GUIs can help prevent infrastructure failures and prioritize maintenance more effectively, especially in high-volume inspection workflows where manual review is impractical. 
	 
	 
	 
	 
	 
	 
	 
	5.0  CONCLUSIONS 
	5.1  Summary 
	This chapter will discuss the conclusions obtained following the development of our computer vision models, showcasing their effectiveness. Additionally, we will discuss any limitations or challenges encountered during the research process, providing a comprehensive evaluation of the model’s capabilities and areas for improvement. 
	To address the challenges associated with traditional culvert inspections in Utah, we proposed leveraging novel computer vision algorithms to enhance the interpretation of culvert inspection videos. This approach aims to significantly reduce the time and resources spent on manual interpretation, offering a more efficient and accurate alternative. To achieve this, we utilized the available culvert inspection videos and images from UDOT’s database, labeled them using CVAT, and developed different computer vis
	5.2  Findings 
	We started with a limited dataset of culvert inspection videos, which posed challenges for training reliable models. To address this, we expanded the dataset through additional video collection and data augmentation, enabling better model generalization and supporting the development of a multi-stage classification and detection framework. 
	The first model implemented was a binary classification model, designed to distinguish between defective and non-defective frames. Despite the limited initial data, the model achieved an impressive 91% accuracy, demonstrating its reliability in filtering out defective frames for further analysis. Building upon this, we developed a set of multiclass image classification models, each focused on categorizing specific types of structural defects. The best-performing model reached a 96% accuracy, while the least
	To gain spatial insight into the location and extent of defects, we developed an object detection model trained on annotated bounding box data. The final model achieved an average mAP of 78% across all defect classes. This performance indicates that the model not only classifies but also localizes defects with reasonable accuracy, providing detailed input for downstream culvert condition assessment.  
	The true effectiveness of the system was validated through testing on 56 real inspection videos. The object detection model correctly identified the condition of 84% of the culverts, confirming its practical viability for deployment. This result illustrates the potential of automated video analysis tools to support infrastructure inspection workflows, reduce subjectivity, and significantly improve efficiency in defect detection and rating. 
	Overall, the system demonstrates a successful progression from a small, constrained dataset to a fully functional, real-world application capable of assisting UDOT engineers in efficiently assessing culvert conditions. With further refinement and expansion, such tools hold strong promise for broader application across transportation infrastructure monitoring. 
	5.3  Limitations and Challenges 
	While the study produced robust results, several limitations and challenges were encountered: 
	•
	•
	•
	 One of the primary challenges was the initial lack of sufficient labeled data. Although the dataset was expanded through additional data collection and augmentation, certain defect classes remained underrepresented. This class imbalance affected the training of both multiclass classification and object detection models, particularly in categories like Deformation, where performance metrics were lower due to fewer high-quality samples. 

	•
	•
	 Manual annotation of structural defects, especially bounding boxes in object detection, requires domain expertise and is prone to human error or inconsistency. Variation in how defects were labeled or categorized across frames may have impacted model training and evaluation. Inconsistent annotation boundaries or overlapping defect types also introduced noise into the dataset. 

	•
	•
	 Some structural defects, such as hairline cracks, subtle deformations, or joint displacements, are visually challenging to detect due to poor lighting, motion blur, or low resolution in inspection videos. These subtle visual cues often led to false negatives or incorrect classifications, especially in low-contrast or noisy frames. 

	•
	•
	 Users with limited hardware may experience slower inference times. 


	Despite these challenges, this research demonstrates the strong potential of computer vision and AI as transformative tools for automating culvert inspection in Utah. The success of the developed models, even under constrained conditions, highlights the feasibility of integrating AI-driven solutions into infrastructure maintenance workflows. Future work could explore the use of Vision-Language Models (VLMs), which may further simplify the process by enabling defect detection and condition assessment through
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