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EXECUTIVE SUMMARY 

The Utah Department of Transportation (UDOT) is responsible for maintaining over 

120,000 drainage culverts and storm drain pipes across state highways. Ensuring the integrity and 

functionality of these culverts is crucial for preventing flooding, sinkholes, and road damage, 

thereby safeguarding transportation infrastructure. Traditional inspection methods, primarily 

relying on manual visual assessments, are time-consuming, prone to human error, and lack 

consistency. To address these challenges, this project aims to develop an automated interpretation 

system for culvert inspection videos using advanced computer vision and deep learning 

technologies, specifically leveraging image classification and object detection algorithms. 

The project utilized a diverse set of culvert inspection videos and images from UDOT’s 

database, including video data from CCTV and zoom camera inspections. However, a significant 

challenge was the imbalanced dataset, dominated by corrosion defects in metal culverts. Therefore, 

we labeled more data collected from different sources and applied data augmentation techniques, 

including rotation and adding noise. Based on Utah’s pipe rating system, the structural defect 

categories used in this study include Crack-Fracture, Break-Hole-Collapse-Kink, Corrosion, 

Deformation-Shape, and Joints, which represent the most observed issues in Utah’s culvert 

inspection data. Each structural defect category originally contained up to five distinct classes; 

however, due to class imbalance and overlapping visual features, we merged these into smaller 

groups of two or three classes per category to improve model performance and ensure more 

consistent training. 

After finishing the labeling and annotating of the collected images, we tailored the latest 

computer vision algorithms to each type of model we aimed to develop. For the binary 

classification task, we trained models to distinguish between defective and non-defective frames, 

achieving a high accuracy of 91%, which proved effective in filtering out defective frames for 

further analysis. Next, we developed multiclass classification models for each structural defect 

category, enabling the system to identify and categorize specific types of defects within a frame. 

These models achieved accuracies ranging from 77% to 96%, depending on the complexity and 

balance of the defect class distributions. To take the analysis a step further, we implemented object 

detection models capable of both localizing and classifying defects within each frame using 
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bounding boxes. The final object detection model achieved an average mean Average Precision 

(mAP) of 78%, offering detailed spatial insights necessary for assigning condition ratings. 

To make these models accessible and usable by non-technical personnel, we developed 

intuitive Graphical User Interfaces (GUIs) for each model type. These GUIs allow UDOT 

employees to upload culvert inspection videos, run automated analyses, and receive detailed 

outputs without requiring programming knowledge. When evaluated on 56 real inspection videos, 

the object detection GUI accurately predicted the condition of 84% of the culverts, while the 

multiclass classification GUI achieved 75% accuracy. These results highlight the reliability and 

practical value of the system in real-world conditions.  

For UDOT, these tools offer significant benefits: They reduce manual inspection time, 

improve consistency and objectivity in assessments, and help prioritize maintenance based on 

automated condition ratings. Ultimately, this system has the potential to streamline culvert 

management workflows, minimize human error, and lower operational costs while supporting 

timely, data-driven infrastructure decisions. 
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1.0  INTRODUCTION 

1.1  Problem Statement 

Ensuring the safety and functionality of existing transportation infrastructure, including 

roads, bridges, and culverts, is a top priority for engineers. Culverts, often hidden underground, 

play a crucial role in stormwater management by acting as channels that allow water to flow 

beneath various transportation structures [1]. They are vital for preventing flooding, sinkholes, and 

road damage. Regularly monitoring infrastructure is essential to catching small problems before 

they become expensive and time-consuming repairs. Therefore, transportation agencies send 

inspectors to inspect culverts on a regular basis. However, visually inspecting culverts presents a 

unique challenge due to their being buried and often located in areas with limited access [2]. 

To address these challenges, the use of digital video inspections has emerged as a valuable 

tool in assessing culvert conditions. Digital video inspections involve deploying cameras to capture 

images and videos of the interior of culverts. This method offers several advantages, including the 

ability to collect comprehensive data without the need for extensive excavation or physical entry 

into the culvert. Inspectors can review the footage to identify defects, assign condition ratings, and 

document inventory, significantly improving the accuracy and thoroughness of the inspection 

process. Remote cameras can also help inspectors to enhance safety by avoiding potentially 

hazardous conditions inside culverts, such as confined spaces, unstable structures, or exposure to 

toxic substances [3]. However, there are also disadvantages to consider. The initial investment in 

video inspection equipment and technology can be substantial, which may be a barrier for some 

transportation agencies. Moreover, the process still requires trained personnel to operate the 

equipment and interpret the data accurately. Despite automation advancements, the manual review 

of footage remains time-consuming and labor-intensive [4].  

The Utah Department of Transportation (UDOT) maintains over 120,000 drainage culverts 

and storm drain pipes along state highways in Utah, making the importance of culverts more 

evident. Despite this, UDOT lacks a comprehensive inventory of these assets [5]. Establishing a 

detailed culvert inventory is crucial for predicting future performance and developing effective 
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maintenance strategies [6]. To this end, UDOT has to collect information about all culverts across 

the state and inventory them in ATOM as quickly as possible. 

Identifying whether culverts need repair, rehabilitation, or replacement requires 

comprehensive and well-documented inspections. The current culvert inspection practice at  

UDOT is based on digital video inspection and relies heavily on human interpretation and defect 

identification. Inspectors collect videos on-site and later review them off-site, a process that 

includes defect identification, condition rating assignment, and inventory documentation. Each 

video interpretation takes approximately 10 to 12 minutes, leading to inefficiencies and time-

consuming procedures. Moreover, because these video interpretations rely on human judgment, 

they are prone to subjectivity. 

1.2  Objectives 

The rapid advancements in computing technologies have significantly enhanced computer 

vision and deep learning models’ capabilities in various fields, including the inspection of 

infrastructures. Key innovations in computer vision and deep learning have paved the way for 

automated systems that can precisely identify and evaluate defects in infrastructure components 

such as bridges, pipes, and roads. These advancements are reshaping traditional inspection 

methods, offering improved accuracy, efficiency, and cost-effectiveness. 

Since UDOT currently relies on manual post-video interpretation for culvert inspections, 

this project aims to optimize the process by employing advanced technologies. Manual 

interpretation, while useful, is time-consuming, prone to human error, and can vary significantly 

based on the inspector’s experience and subjectivity. To address these limitations, this project will 

review the most recent defect detection models developed for the assessment of culverts or pipes 

and develop a state-of-the-art deep learning model tailored to UDOT’s specific needs. The model 

will be customized based on UDOT’s culvert-condition rating criteria. 

The automated system will also enable early detection of potential issues, facilitating 

proactive maintenance and reducing the risk of costly infrastructure failures. It would also allow 

seamless import of inspection data into ATOM UDOT Maintenance Management. This project 

aligns with UDOT’s commitment to leveraging innovative technologies to enhance infrastructure 
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management and ensure the safety and functionality of the state’s transportation network. In 

conclusion, this project represents a significant step forward in modernizing UDOT’s culvert 

management system. By leveraging the latest advancements in deep learning and computer vision, 

UDOT can achieve a more efficient, accurate, and reliable system for assessing culvert conditions 

and maintaining critical infrastructure. 

1.3  Scope 

Research Tasks include: 

• Conducting a comprehensive literature review to find the most advanced algorithm 

for defect detection 

• Collecting available culvert inspection video data and converting them into images 

• Labeling and annotating the images based on UDOT’s culvert-condition rating 

criteria for model training purposes 

• Developing a deep learning model that can interpret culvert inspection videos and 

assign a condition rating  

• Comparing the results with the ground-truth data to evaluate the performance of the 

developed model 

• Developing a Graphical User Interface (GUI) for an automated culvert inspection 

interpretation framework 

1.4  Outline of Report  

• Introduction 

• Research Methods  

• Data Collection 

• Data Evaluation & Results 

• Conclusions 
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2.0  RESEARCH METHODS 

2.1  Overview 

This chapter presents the methodology employed to automate the interpretation of culvert 

inspection videos through advanced computer vision and deep learning techniques. The 

methodology encompasses both traditional approaches to culvert inspection and cutting-edge 

applications of artificial intelligence in infrastructure assessment. We begin with an examination 

of conventional culvert inspection practices, highlighting their limitations and the need for 

automated solutions, followed by a review of recent advances in computer vision applications for 

infrastructure inspection. 

The technical methodology covers three primary approaches: image classification for 

overall condition assessment, object detection for precise defect localization and classification, 

and data augmentation strategies for enhancing model robustness and addressing dataset 

limitations. Special attention is given to the latest developments in object detection architectures, 

including YOLO and RF-DETR models, each offering unique advantages for culvert defect 

detection tasks. The data augmentation section addresses critical challenges in developing robust 

models with limited training data, providing strategies for improving model generalization while 

maintaining the integrity of defect characteristics essential for accurate assessment. 

2.2  Background 

2.2.1 Traditional Culvert Inspection 

Traditional culvert inspection methods have historically relied on visual assessments 

conducted by trained inspectors who physically examine culvert structures to identify defects and 

assess structural integrity [7]. These conventional approaches involve inspectors entering culvert 

systems when accessible or using basic optical equipment to evaluate visible portions of the 

infrastructure. However, traditional inspection methods face significant limitations, particularly 

when dealing with confined spaces, hazardous environments, or lengthy culvert systems that 

extend beyond safe human access [4]. 
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The introduction of digital video inspection technology has emerged as a significant 

advancement over purely manual visual assessments. This method employs specialized cameras 

mounted on remotely operated vehicles or cable systems to capture comprehensive footage of 

culvert interiors. Digital video inspection allows for thorough documentation without requiring 

inspectors to enter potentially dangerous confined spaces, thereby improving safety while enabling 

more detailed condition assessments [4]. Despite these technological improvements, the 

interpretation of inspection footage remains largely dependent on human expertise, making the 

process time-intensive and subject to variability based on inspector experience and judgment. 

 2.2.2 Applications of Computer Vision in Infrastructure Inspection 

The rapid advancement of computer vision and deep learning technologies has opened new 

possibilities for automating infrastructure inspection processes. Recent research has demonstrated 

the effectiveness of machine learning algorithms in detecting and classifying various types of 

structural defects with high accuracy and consistency [8]. Computer vision applications in 

infrastructure inspection have shown particular promise in analyzing large datasets of images and 

videos to identify patterns and anomalies that might be missed or inconsistently assessed through 

manual inspection. 

Hawari et al. [9] developed an automated defect detection system for sewer pipelines using 

image processing algorithms applied to CCTV footage, focusing on four primary defect types: 

cracks, settled deposits, ovality, and displaced joints. Their study demonstrated varying 

performance levels across different defect types, with ovality detection showing superior results 

compared to other defect categories. The research highlighted the importance of comprehensive 

datasets for improving detection capabilities and recommended incorporating larger image 

collections to enhance system performance. 

Yin et al. [10] advanced the field by implementing a real-time automated defect detection 

system using YOLOv3 architecture for sewer pipe assessment. Their model was trained on 3,664 

images extracted from CCTV videos, encompassing six defect categories including holes, breaks, 

deposits, fractures, cracks, and root intrusion. The balanced distribution of defects in their dataset 

contributed to achieving an impressive 85.37% mean Average Precision (mAP) and F1 scores 

exceeding 87% for both testing and validation sets. 
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Kumar et al. [11] conducted a comparative analysis of multiple object detection 

frameworks, including Faster R-CNN, YOLOv3, and Single Shot Detector (SSD), for detecting 

sewer pipe deposits and root intrusion. Their findings indicated that while Faster R-CNN achieved 

superior overall performance, YOLOv3 provided a more balanced trade-off between detection 

speed and accuracy, making it suitable for real-time applications. Yin et al. [12] further expanded 

automated assessment capabilities by developing the Video Interpretation Algorithm for Sewer 

Pipes (VIASP), which integrated defect detection with location identification and report 

generation, achieving an F1 score of 0.75. 

According to past studies, deep learning algorithms have shown significant potential in 

enhancing the defect detection process for pipelines, leading to more consistent and reliable results. 

Research has demonstrated that these algorithms can effectively identify and classify defects such 

as cracks, corrosion, and joint misalignments with a high degree of accuracy, surpassing traditional 

manual inspection methods. Despite these advancements, there has been a notable gap in applying 

deep learning techniques specifically to culvert inspections. Our project aims to address this gap 

by employing novel deep learning algorithms tailored for defect detection and condition 

assessment of culverts in Utah. 

To address the limitations of traditional culvert inspection methods currently used by 

UDOT, we propose an automated system for interpreting culvert inspection videos using deep 

learning. Manual inspection of video footage is time-consuming, labor-intensive, and prone to 

subjectivity. Our goal is to streamline and standardize this process by developing an intelligent 

pipeline that can detect, localize, and assess defects automatically. The automation process is 

divided into three key phases: 

1. In the first phase, we use advanced image classification models to analyze individual 

frames extracted from culvert inspection videos. These models are trained to identify 

frames that show visible signs of damage, such as cracks, joint misalignments, 

corrosion, or surface deformation. This step effectively filters out non-defective 

frames, allowing the system to focus on areas that actually require further analysis, 

thereby improving efficiency and reducing processing time.  

2. Once defective frames are identified, they are passed through object detection models. 

These models are trained on a curated dataset of annotated images containing various 

types of culvert defects. They are capable of not only locating defects within a frame 
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but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and 

deformation). This step provides both spatial and contextual information about each 

defect, which is essential for comprehensive analysis. 

3. In the final phase, the localized and categorized defects are evaluated to determine their 

severity. This is done using advanced object detection models trained on a large dataset 

that is annotated based on UDOT’s culvert rating system. The model estimates factors 

such as defect color, shape, and texture, and assigns a condition rating based on learned 

patterns in the training data. These ratings can then be used to inform maintenance 

decisions and prioritize repairs. 

To implement this pipeline, we utilize two main classes of deep learning algorithms: image 

classification and object detection. Image classification models are used in the first phase to detect 

frames likely to contain defects, while object detection models are employed to combine the 

second and third phases to precisely locate, label, and assess each defect. By automating the 

interpretation of culvert videos, this system promises to significantly enhance inspection accuracy, 

reduce human error, and streamline the maintenance workflow for UDOT. The result is a faster, 

more consistent, and more scalable approach to culvert condition assessment. 

2.3 Image Classification 

Image classification represents a fundamental computer vision task that involves 

categorizing entire images into predefined classes based on their visual content [13], [14]. In the 

context of culvert inspection, image classification can be employed to automatically determine the 

overall condition rating of culvert segments or to classify images based on the presence or absence 

of specific defect types. This approach differs from object detection in that it assigns a single label 

to the entire image rather than localizing and identifying specific defects within the image [15]. 

The image classification methodology typically employs Convolutional Neural Networks 

(CNNs) that learn hierarchical feature representations from training data. These networks 

progressively extract features from low-level edge and texture information to high-level semantic 

representations that enable accurate classification decisions [16]. For this project we developed 

two types of image classification models: 
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1. A binary classification model which efficiently filters non-defective frames from 

culvert video footage. 

2. A multi-class classification model that assigns a condition rating (on a scale from 1 to 

5) to each frame in the video footage, based on the severity level of identified defect 

categories. 

We employed CNNs, such as ResNet and EfficientNet, which have demonstrated high 

performance in various image recognition tasks. These models are trained on a labeled dataset 

consisting of both defective and non-defective culvert frames. Through supervised learning, the 

model learns to distinguish visual patterns associated with defects such as cracks, joint separations, 

and corrosions. The output is a binary or multi-class label indicating whether a given frame should 

be flagged for further inspection. 

The classification process begins with preprocessing steps, including image normalization, 

resizing, and potential augmentation to improve model robustness. CNN architecture processes 

these images through multiple convolutional layers, pooling operations, and fully connected layers 

to produce probability distributions across the target classes. Training involves optimizing the 

network parameters using labeled examples and validation on separate datasets to ensure 

generalization capability. Performance evaluation typically employs metrics such as accuracy, 

precision, recall, and F1-score to assess the model’s effectiveness in correctly classifying culvert 

conditions. 

2.4  Object Detection 

YOLOv8 (You Only Look Once, Version 8) represents one of the latest iterations in the 

evolution of the YOLO family of real-time object detection models. Building on the strengths of 

its predecessors, YOLOv8 incorporates several architectural enhancements to achieve improved 

accuracy and speed in detecting and classifying objects within images and videos. At its core, 

YOLOv8 retains the fundamental principle of YOLO: treating object detection as a single 

regression problem, predicting bounding boxes and class probabilities directly from full images in 

one evaluation. This end-to-end approach ensures that YOLOv8 remains efficient and fast, making 

it particularly suitable for real-time applications [17]. 

Recent developments in YOLO architecture have continued to push the boundaries of 

object detection performance. YOLOv11, released as an advancement over YOLOv8, introduces 
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enhanced feature pyramid networks and improved anchor-free detection mechanisms that provide 

better handling of multi-scale objects and reduced computational overhead [18]. The architecture 

incorporates advanced attention mechanisms and optimized backbone networks that significantly 

improve detection accuracy while maintaining real-time processing capabilities. 

YOLOv12 represents the most recent iteration in the YOLO family, featuring revolutionary 

architectural improvements including dynamic head structures and advanced multi-scale fusion 

techniques. This version introduces novel training strategies and loss functions that enhance the 

model’s ability to detect small objects and handle complex scenes with multiple overlapping 

instances [19].. The model demonstrates superior performance in challenging scenarios common 

in infrastructure inspection, where defects may appear at various scales and orientations. 

RF-DETR (Real-time DEtection TRansformer) represents a significant departure from 

traditional CNN-based detection approaches by employing transformer architectures for object 

detection tasks. This model leverages self-attention mechanisms to capture long-range 

dependencies and spatial relationships more effectively than conventional approaches. RF-DETR 

demonstrates strength in detecting complex defect patterns and spatial relationships that are crucial 

for accurate culvert condition assessment [20]. 

The architecture of YOLOv8 (Figure 1) introduces key innovations that enhance its 

performance. One of the primary improvements is the incorporation of advanced CNN layers that 

optimize feature extraction. These layers are designed to capture more detailed spatial information, 

allowing the model to detect smaller objects and distinguish between closely spaced objects with 

greater precision. YOLOv8 also utilizes advanced activation functions and normalization 

techniques that enhance the model’s learning capability and stability during training. Additionally, 

the model benefits from a refined anchor box mechanism, which dynamically adjusts to different 

object scales and aspect ratios, further improving detection accuracy. The architecture is also 

designed to be modular, facilitating the integration of additional components such as attention 

mechanisms or more sophisticated loss functions, thus enabling further customization and 

optimization for specific tasks. These architectural advancements collectively contribute to 

YOLOv8’s superior performance in object detection, making it a powerful tool for various 

applications, from autonomous driving to surveillance and beyond. 
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Figure 1-YOLOv8 architecture [21] 

For training and testing our model, we employed a holdout cross-validation technique, 

wherein the dataset was divided into two distinct subsets: 70% for training, 20% for validation, 

and 10% for testing. This approach ensures that the model is trained on a substantial portion of the 

labeled data while reserving a separate set of data to evaluate its performance on unseen samples. 

By doing so, we can obtain a more accurate assessment of the model’s generalization capabilities 

and its ability to detect defects in new, unobserved culvert inspection videos. This method helps 
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to prevent overfitting and provides a realistic measure of the model’s effectiveness in real-world 

scenarios, ensuring that it reliably performs when deployed in UDOT’s inspection processes [22]. 

For this project we developed two types of object detection models: 

1. An object detection model for detecting and localizing defect categories without rating 

scales. 

2. An object detection model for detecting, localizing, and classifying defects with rating 

scales 

2.5 Data Augmentation 

Data augmentation represents a critical technique in deep learning that artificially expands 

training datasets by applying various transformations to existing images while preserving their 

semantic content and class labels [6], [23]. In the context of culvert inspection, data augmentation 

serves multiple purposes: addressing dataset imbalances, improving model generalization, and 

enhancing robustness to variations in imaging conditions encountered during field inspections. 

The technique is particularly valuable when working with limited datasets, as is often the case in 

specialized infrastructure inspection applications where collecting comprehensive labeled data can 

be time-consuming and expensive [24]. 

Common augmentation techniques applicable to culvert inspection include geometric 

transformations such as rotation, scaling, translation, and horizontal flipping, which help the model 

become invariant to different camera orientations and positions during inspection. Photometric 

augmentations, including brightness adjustment, contrast modification, color jittering, and noise 

addition, are essential for handling varying lighting conditions encountered in different culvert 

environments. More advanced techniques such as cutout, mix-up, and mosaic augmentation can 

further enhance model robustness by forcing the network to rely on multiple visual cues rather 

than focusing on specific image regions [25]. 

The implementation of data augmentation requires careful consideration of the specific 

characteristics of culvert inspection imagery. For instance, excessive rotation may not be 

appropriate as culvert orientations are typically constrained, while brightness and contrast 

adjustments are crucial given the challenging lighting conditions often present in underground 

infrastructure [23]. To increase the size of our training dataset, we applied a diverse set of data 
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augmentation techniques to each original image, generating seven augmented outputs per example. 

The augmentations used are as follows: 

• Flip: Applied horizontal and vertical flips to introduce directional variability. 

• 90° Rotation: Included both clockwise and counter-clockwise 90-degree rotations to 

account for different viewing angles. 

• Crop: Performed random cropping with a minimum zoom of 0% and a maximum zoom 

of 20% to simulate partial views of defects. 

• Rotation: Applied random rotations ranging between -15° and +15° to account for slight 

camera tilts. 

• Shear: Introduced horizontal and vertical shear transformations up to ±10° to mimic 

perspective distortion. 

• Saturation Adjustment: Randomly varied image saturation between -25% and +25% to 

account for lighting differences and material surface changes. 

• Brightness Adjustment: Modified brightness levels within a range of -15% to +15% to 

simulate varied lighting conditions. 

• Exposure Adjustment: Altered exposure levels from -10% to +10% to reflect 

overexposed or underexposed footage. 

• Blur: Added Gaussian blur with a maximum radius of 1.8 pixels to simulate motion blur 

or low focus. 

• Noise: Introduced random noise affecting up to 0.22% of pixels to improve robustness 

against video compression artifacts. 

These augmentations were carefully selected to preserve the semantic integrity of the 

defects while improving the model’s generalization to real-world variations in culvert inspection 

videos. 
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3.0  DATA COLLECTION 

3.1  Overview 

Collecting the necessary input data is the first crucial step in developing a robust deep 

learning model. For this project, we gathered extensive culvert video inspection data from UDOT’s 

database.  Then, we had to label the collected data to develop a deep learning model. Data labeling 

for object detection involves annotating images or videos by drawing bounding boxes around 

objects of interest and assigning a specific class to each box. This precise annotation allows the 

model to learn how to identify and classify various objects accurately, which is crucial for 

developing an effective and reliable object detection system.  

3.2  Collected data 

We collected four distinct categories of data for this project: zoom camera inspection 

videos, CCTV culvert inspection videos, culvert images taken by cell phone, and CCTV sewer 

pipe inspection images. These diverse data sources provided a comprehensive view of culvert 

conditions, capturing various perspectives and levels of detail. By utilizing these varied data types, 

we ensure that our model is trained on a rich dataset, enhancing its ability to accurately detect and 

assess a wide range of defects in different inspection scenarios. 

3.2.1  Zoom Camera Inspection Videos 

UDOT provided us with its available culvert inspection data, a vital resource for our deep- 

learning model development. A significant subset of this dataset consists of culvert inspection 

videos collected by Consor Company. Consor employed a method of video inspection using zoom 

cameras mounted on the ends of telescopic poles. This technique allows for a detailed examination 

of the culverts without the need for prior cleaning, which can save considerable time and resources. 

The zoom camera inspection provides high-resolution footage of the culvert interior, capturing 

minute details that are crucial for accurate defect detection and assessment. Consor Company 

shared over 2000 inspection video files with us, encompassing a wide range of culvert conditions 

and types. These videos cover inspections conducted in Region One of Utah (Figure 2).  
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Figure 2-Inspected culverts by Consor in Region One of Utah 

For culvert inspection, Consor Company utilized the NASSCO rating system, which is 

comparable to UDOT’s hybrid rating system, eliminating the need for conversion between rating 

systems in this project. Out of the extensive dataset of culvert inspection, only 1094 inspection 

reports were available. Among these reports, approximately 22% indicated that the inspected 

culverts had no structural defects, further limiting the amount of data containing observable issues 

and reducing the number of samples useful for training defect detection models. This limited 

number is due to inconsistencies in the dataset; some culverts had multiple videos linked to the 

same pipe, while others lacked corresponding video footage altogether. As a result, the number of 

usable video-report pairs was significantly reduced. 

We converted the video files into images. These images capture detailed visual information 

from the culvert inspections, providing a rich dataset for training our deep learning model. 

However, a critical step in utilizing these images is the annotation process. We meticulously 

annotated the defects in each image as part of data labeling, which is essential for training the 

model to accurately detect and classify defects. This labor-intensive process ensures that the model 

learns from high-quality, labeled examples, improving its ability to generalize and perform 

effectively on unseen data.  
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3.2.2  CCTV Culvert Inspection Videos  

Another significant subset of culvert inspection data available in UDOT’s database 

comprises CCTV inspection video files collected by Horrocks Company, specifically from the 

culverts along the I-80 highway. We accessed this data through UDOT’s R2 culvert rating app 

website (Figure 3). This dataset includes 2000 data rows, but only 259 of these entries have 

corresponding video files. Among these 259 videos, merely 59 exhibit structural defects, providing 

a more focused dataset for our defect detection model. 

 

Figure 3-Inspected culverts by Horrocks along the I-80 highway 

 

The data collected by Horrocks Engineers utilized the old four-digit rating scale previously 

used by UDOT. To ensure consistency and compatibility with our model, we needed to convert 

these ratings to the new 5-point rating scale that UDOT currently employs. This conversion was 

necessary to standardize the data and make it suitable for training our deep learning model. The 

conversion process involved using a predefined table (Table 1) to translate the old ratings into the 

new scale, ensuring that the defect severity and conditions are accurately represented in the 

updated system. 
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Table 1-Data conversion 

5-point rating scale Four-digit rating scale 

1 <1000 

2 1000-1999 

3 2000-2999 

4 3000-3999 

5 >=4000 

 

3.2.3  Culvert Images Taken by Cell Phone 

Another subset of data we collected consisted of culvert images taken by UDOT employees 

during their field visits. Recognizing that our initial dataset was unbalanced, with a risk of 

overfitting the model to specific defect classes, we needed to incorporate additional data to ensure 

a more comprehensive training set. To achieve this, we reached out to all UDOT employees, 

requesting that they share any culvert images they had captured in the field. This initiative resulted 

in the collection of 450 additional culvert images. Out of the 450 images, only 193 contained 

visible structural defects. 

These images, however, had not been labeled with condition ratings or defect annotations. 

Therefore, as part of our data preparation process, we should assess each culvert image and assign 

a condition rating based on UDOT’s new hybrid culvert condition rating system. This meticulous 

labeling process is crucial for creating a high-quality dataset that accurately represents a wide 

range of culvert conditions and defects. 

By integrating these additional images into our dataset, we aim to enhance the model’s 

ability to generalize across different defect types and conditions, reducing the likelihood of 

overfitting. The diverse and balanced dataset that results from this effort will provide a solid 

foundation for training our deep learning model, ultimately improving its accuracy and reliability 

in detecting and assessing culvert defects.  
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3.2.4 CCTV Sewer Pipe Inspection Images  

The final type of data we collected consisted of images captured from inside sewer pipes. 

These images were extracted as frames from CCTV inspection videos and were sourced from three 

different repositories.  

The first batch was obtained from the Roboflow website [26], which provided 

approximately 1,500 unlabeled images of sewer interiors. Since these images had no annotations, 

we manually labeled them using UDOT’s culvert defect rating system to ensure consistency with 

the rest of our dataset.  

The second batch came from a former employee of AECOM, who shared a collection of 

45,000 sewer pipe images labeled using the NASSCO defect rating system. However, only about 

3,000 of these images contained visible structural defects. After further review and filtering to 

exclude defects irrelevant to culvert inspection, such as those found in pipes made from materials 

like vitrified clay, we narrowed this batch down to 591 usable images. To maintain a unified 

labeling scheme across all data sources, we converted the NASSCO ratings to UDOT’s rating 

system. 

The third batch was sourced from the Kaggle website and consisted of an augmented 

dataset of sewer pipe images. Initially, it contained 22,120 images, but after removing the 

augmented duplicates and retaining only the original frames, we were left with 5,530 annotated 

images. These images were labeled with six types of defects: Deformation, Obstacle, Rupture, 

Disconnect, Misalignment, and Deposition. Following a thorough review and the conversion of 

these labels into UDOT’s classification framework, this batch was reduced to 3,216 relevant and 

consistently labeled images. 

In total, these three sources contributed to a diverse and standardized dataset of sewer and 

culvert defect images, all aligned under the UDOT rating system to support robust training and 

evaluation of our defect detection models. 

3.3 Data Labeling  

In this project, our goal is to develop two types of supervised learning models specifically 

for classification and object detection. Supervised learning models require labeled data to learn 

meaningful patterns, but the type and complexity of labeling differ significantly between 
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classification and object detection tasks. Object detection models, such as YOLO, require detailed 

annotations, including bounding boxes around each object of interest and corresponding class 

labels. This makes the annotation process both time-consuming and labor-intensive. In contrast, 

supervised image classification models like ResNet and EfficientNet operate on labeled images 

without the need for precise localization. They simply require a label for the entire image, making 

the data preparation process considerably easier and faster. 

In this study, we approached the labeling process in stages, progressing from simpler to 

more complex tasks. We began by labeling images for a binary classification model, distinguishing 

between defective and non-defective culvert frames. This involved extracting individual frames 

from culvert inspection videos and manually assigning a binary label (defective and non-defective) 

to each (Figure 4).  

 

Figure 4-Assigning a binary label to images 

Next, we labeled the same dataset for a multi-class classification model, assigning specific 

defect labels (e.g., corrosion-3 or joint-5) to the images. In the development of our multi-class 

classification models, we designed a modular approach by creating five separate models, each 

specialized for a distinct category of structural defects commonly found in culvert inspections. 

This strategy allowed us to fine-tune each model for the unique visual characteristics and 

classification challenges associated with different defect types, rather than training a single model 

to handle all defect categories simultaneously. The five categories we focused on were: 

Break/Hole/Collapse/Kink, Corrosion, Crack/Fracture, Deformation, Joint Offset. 

For each of these categories, we curated a tailored subset of images from our dataset and 

applied class labels specific to the types of defects within that group. These class labels, along with 

the corresponding categories, are detailed in Table 3. This categorization not only enhanced the 

performance of each model by reducing label noise and inter-class confusion but also enabled 
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more targeted training and evaluation. By isolating defect types, we improved the models’ 

sensitivity to subtle variations within each defect class, leading to more reliable and interpretable 

classification outcomes in real-world culvert assessments. Since the number of images in some 

classes was very limited, we merged similar classes within each defect category to create a more 

balanced dataset. For example, in the corrosion category, we combined severity levels 2 and 3 into 

a single class labeled as "Corrosion-3" due to the low number of samples in level 2. This merging 

strategy helped address class imbalance and improved the reliability of model training. As a result, 

some categories ended up with two or three consolidated classes, depending on the distribution of 

available data. 

Table 2-Multi-class labels by defect type and severity 

Break/Hole/ 
Collapse/Kink 

Corrosion Crack/Fracture Deformation Joint Offset 

Non-bre-hol-col-kin-1 Non-corrosion-1 Non-crack-frac-1 Non-deformation-1 Non-joints-1 

 Corrosion-2 Crack-Fract-2 Deformation-2 Joints-2 

 Corrosion-3 Crack-Fract-3 Deformation-3 Joints-3 

Bre-Hol-Col-Kin-4 Corrosion-4  Deformation-4 Joints-4 

Bre-Hol-Col-Kin-5 Corrosion-5 
 

Deformation-5 Joints-5 

 

Finally, for the object detection model, we annotated the frames with bounding boxes 

around visible defects and assigned each region a corresponding class label from Table 3. This 

structured, step-by-step annotation strategy allowed us to build and evaluate models of increasing 

complexity, leveraging the same video data across multiple learning tasks. 

 

3.3.1 Data Annotation with CVAT 

To prepare our data for object detection, we need to go through a detailed annotation 

process. This involves labeling each image or video frame by drawing bounding boxes around the 

objects of interest, such as culvert defects, and assigning a specific class to each box. For instance, 

if a culvert image contains cracks, corrosion, or joint misalignments, each of these defects must be 

identified with a bounding box and labeled with the appropriate class. This precise annotation is 

crucial as it provides the model with the necessary information to distinguish between different 

types of defects during training. 
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The labeling process must be thorough and consistent to ensure the model learns from high-

quality examples. Each annotated image or video frame helps the object detection model 

understand the features and patterns associated with various defects. Once the model is trained, its 

performance will be evaluated on a labeled test set, which was not used during the training phase. 

This evaluation will help us measure the model’s accuracy in detecting and classifying defects, 

ensuring that it performs reliably on unseen data. 

For this task, we used CVAT a powerful open-source tool specifically designed for 

annotating image and video datasets [27]. Using CVAT’s user-friendly interface (Figure 4), 

annotators manually draw bounding boxes around each defect in the images or video frames. Each 

bounding box is labeled with the corresponding class. CVAT provided various tools to streamline 

the annotation process, such as auto-segmentation, interpolation for video frames, and copy-paste 

functions for repetitive objects.  

 

Figure 5-CVAT’s interface during data labeling 

For annotation, we utilized 16 distinct labels, as illustrated in Table 3, in accordance with 

UDOT’s culvert condition rating system. Once the annotation process was completed, the labeled 

data was exported in a format compatible with the specific model we want to use. CVAT supports 

various export formats, including YOLO’s native format. The exported annotations include the 

coordinates of the bounding boxes and the class labels for each object. 



 

23 

Table 3 illustrates the distribution of defects boxes across the 4863 labeled images. 

According to the table, it indicates that a significant portion of UDOT’s culverts are metal pipes 

afflicted with corrosion defects. This imbalance in our dataset reveals that certain defect types are 

underrepresented, with some labels appearing in fewer than 200 boxes. To address this issue, we 

have been actively working to augment our dataset by incorporating additional data. This effort 

aims to balance the representation of defect types, thereby enhancing the overall performance and 

accuracy of our model. 

Table 3-Distribution of defect boxes across labeled data 

# Defects  Box count 

0 Bre-Hol-Col-Kin-4 309 

1 Bre-Hol-Col-Kin-5 1333 

2 Corrosion-2 586 

3 Corrosion-3 2803 

4 Corrosion-4 78 

5 Corrosion-5 90 

6 Deformation-2 193 

7 Deformation-3 610 

8 Deformation-4 302 

9 Deformation-5 478 

10 Crack-Fract-2 646 

11 Crack-Fract-3 150 

12 Joints-2 423 

13 Joints-3 801 

14 Joints-4 328 

15 Joints-5 211 

Sum 9341 
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4.0  DATA EVALUATION & RESULTS 

4.1  Overview 

In this chapter, we will discuss the metrics used to evaluate our model’s performance, 

enabling us to predict how it will perform on unseen culvert video inspection data. We will also 

present and analyze the results obtained from these evaluations, providing insights into the model’s 

accuracy and reliability in real-world applications. 

4.2 Evaluation Metrics 

Evaluating the performance of computer vision models, particularly in the domains of 

object detection and image classification, requires the use of well-established quantitative metrics. 

These metrics allow researchers and practitioners to assess how well models generalize to unseen 

data, how accurately they recognize objects or classify images, and how their predictions align 

with ground-truth annotations. The primary evaluation metrics we used in this study are mean 

Average Precision (mAP), precision, recall, F1-score, accuracy, and the confusion matrix. 

 

4.2.1 Confusion Matrix 

The confusion matrix provides a granular view of the classification performance by showing 

how predictions are distributed across the actual class labels. Each row corresponds to the true 

class, and each column corresponds to the predicted class [28]. It highlights where the model is 

making errors, such as misclassifying one class as another, and is particularly useful for evaluating 

multiclass classification models. Figure 6 illustrates a confusion matrix, which presents and 

summarizes the difference between the predicted and actual classes generated by a classification 

model. 
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Figure 6-Confusion matrix for binary classification 

 

4.2.2 Accuracy 

Accuracy is the simplest and most intuitive metric, defined as the proportion of correct 

predictions among the total number of predictions [28]. While widely used in image classification 

tasks, accuracy alone can be misleading in the presence of class imbalance or when evaluating 

object detection tasks with multiple classes and varied object sizes. In object detection, accuracy 

is less frequently used in isolation, as it does not account for localization quality or multiple 

instances per image. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 Equation 1 

 

4.2.3 Precision and Recall 

Precision measures how many of the predicted positive instances are actually correct, whereas 

recall measures how many of the actual positive instances the model was able to identify [29]. In 

object detection, precision and recall are often computed across multiple Intersection over Union 

(IoU) thresholds. A high precision indicates a low false positive rate, while a high recall reflects a 

low false negative rate. Balancing these two is crucial, especially in safety-critical applications 

where missed detections or false alarms have different implications. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 Equation 2 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 Equation 3 

4.2.4 F1-Score 

The F1-score is the harmonic mean of precision and recall. It provides a single metric that 

balances both concerns, particularly useful when class distribution is skewed or when both false 

positives and false negatives are costly [30]. For image classification, a high F1-score indicates 

that the model is not only accurate but also robust in handling both positive and negative 

predictions. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 Equation 4 

4.2.5 Mean Average Precision ([19]) 

To evaluate the performance of object detection models, we used mAP metric. MAP is a 

widely recognized performance measure in object detection tasks. It combines both precision and 

recall across different classes and thresholds, providing a comprehensive assessment of the 

model’s accuracy [21]. The formula (Equation 5) for mAP involves calculating the Average 

Precision (AP) for each class and then taking the mean of these AP values. AP is the area under 

the Precision-Recall curve for a given class. It can be calculated by taking the precision at different 

recall levels (Equation 5).  

AP = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 Equation 5 

where 𝑃𝑛 is the precision at the 𝑛-th threshold and Rn is the recall at the 𝑛-th threshold. MAP 

calculates the AP for each class and then averages these values to give an overall score, effectively 

summarizing the model’s ability to correctly identify and localize defects in the culvert inspection 

images. Using mAP, we can ensure that our model not only detects defects accurately but also 

maintains a high level of reliability across various defect types. 



 

27 

mAP =
1

𝑁
∑ AP𝑖

𝑁

𝑖

 
Equation 6 

where 𝑁 is the number of classes and 𝐴𝑃𝑖 is the Average Precision for the  i-th class. This metric 

is particularly useful in our context, as it helps ensure that our YOLOv8 model not only detects 

and localizes culvert defects accurately but also maintains consistent performance across different 

defect types, thereby validating the model’s robustness and effectiveness in real-world 

applications. 

MAP50, or Mean Average Precision at 50% Intersection over Union (IoU) threshold, is a 

specific metric used to evaluate the performance of object detection models. IoU is a measure used 

to quantify the accuracy of an object detector’s predicted bounding box with respect to the ground 

truth bounding box. It is calculated as the area of overlap between the predicted bounding box and 

the ground truth divided by the area of their union. In the context of mAP50, the model’s 

predictions are considered correct if the IoU between the predicted bounding box and the ground 

truth bounding box is at least 50%. This threshold is a common benchmark used to evaluate object 

detection models. 

4.3  Results 

To detect structural defects in culverts, we developed a YOLOv8 model using 34,390 

labeled images. However, the initial results were unsatisfactory, as the model performed great in 

one class while overlooking others. This issue stemmed from the unbalanced nature of our dataset. 

Initially, we had 20 labels, but after annotating 77 videos, only ten labels were used. The 

distribution among these ten labels was also imbalanced. Figure 7 presents the normalized 

confusion matrix for this model, which indicates that the model’s performance is quite low. As an 

example, Figure 8 shows a batch of a test set. 

 

4.3.1 Classification 

In this project, we developed and evaluated two types of image classification models. The 

first model type focused on binary classification, aiming to detect whether a given video frame 

contains a defect or not. To accomplish this, we experimented with four distinct image 

classification algorithms, which are summarized in Table 4. 
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Table 4-Binary Classification Results 

# Model # Classes Accuracy Precision Recall F1 score 

1 Yolov11 2 91% 90.3% 90.5% 90.4% 

2 Resnet 50 2 83% 88% 89% 88% 

3 VGG + XGBoost 2 85% 84% 84% 84% 

4 ConvNeXt 2 74% 85% 67% 67% 

 

Among the tested models, YOLOv11 consistently outperformed the others across all 

evaluation criteria. Specifically, YOLOv11 achieved the highest F1-score and accuracy, indicating 

its superior ability to correctly distinguish between defective and non-defective frames while 

maintaining a balanced trade-off between false positives and false negatives. 

The performance advantage of YOLOv11 can be attributed to its robust feature extraction 

capabilities and optimized architecture, which proved especially effective in recognizing subtle 

defects within noisy or complex visual contexts. Given its reliability and efficiency, YOLOv11 

was selected as the primary binary classifier for the first stage of the defect detection pipeline. 

 

 

Figure 7-Confusion matrix of Yolo model for binary classification 
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Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) 

for a batch of testing set 



 

30 

In the next phase of this research, the focus shifted from binary classification to a more 

detailed analysis of pipe conditions through multiclass image classification models. The goal was 

to not only detect whether a frame was defective but also to classify the type of defect present in 

the image. To facilitate this, we identified and defined five major structural defect categories 

commonly observed in Utah’s culvert inspection records 

Each major defect category encompassed multiple specific defect classes, allowing for a 

more granular understanding of structural issues (Table 2). After defining the categories, we 

proceeded to annotate a large dataset of images, assigning each image to its appropriate class 

within a category. By training separate models per category, we aimed to improve model focus, 

reduce confusion between dissimilar classes, and ultimately enhance classification performance 

within each defect group. 

To implement this multiclassification framework, we employed two state-of-the-art deep 

learning models: YOLOv11 and EfficientNet. These models were selected for their strong 

performance in prior image classification tasks and their architectural ability to generalize across 

diverse visual inputs. YOLOv11 provided fast and accurate real-time inference, while EfficientNet 

offered high accuracy with optimized computational efficiency through compound scaling. 

The performance of both models was evaluated independently across each defect category 

using standard metrics, including accuracy, precision, recall, and F1-score. The results, 

summarized in YOLOv11, meanwhile, also demonstrated strong performance in Corrosion (96% 

accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories 

compared to EfficientNet but slightly more fluctuation in precision. Notably, in the 

Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and 

76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with 

EfficientNet exhibiting more consistent precision across categories and YOLOv11 showing higher 

recall, particularly for defect types where comprehensive detection is crucial. Findings 

demonstrate how each model performed within the context of the structural defect classification, 

offering insight into the strengths and weaknesses of each approach across different types of 

culvert anomalies. Due to class imbalance in the dataset, we merged the original five or three 

classes within each category into three or two classes to ensure more balanced representation and 

improve model performance. 
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EfficientNet achieved high accuracy across all categories, with its best performance in 

Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). However, the model showed 

relatively lower performance in Deformation and Joints, both recording F1-scores around 61–63%, 

likely due to the visual similarity of these defects or fewer training samples. YOLOv11, on the 

other hand, demonstrated strong results in Corrosion as well (96% accuracy) and slightly better 

recall for Crack-Fracture than EfficientNet (81% vs. 68%). Interestingly, YOLOv11, meanwhile, 

also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94% 

accuracy). It showed improved recall in several categories compared to EfficientNet but slightly 

more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOv11 

achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of 

68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision 

across categories and YOLOv11 showing higher recall, particularly for defect types where 

comprehensive detection is crucial. 

Table 5-Results of multiclassification models 

Model Defect Accuracy Precision Recall F1 Score 

EfficientNet 

Crack-Fracture 94% 79% 68% 72% 

Break-Hole-

Collapse-Kink 
83% 76% 74% 75% 

Corrosion 96% 84% 70% 73% 

Deformation 79% 61% 60% 61% 

Joints 77% 64% 62% 63% 

YOLOv11 

Crack-Fracture 94% 72% 81% 75% 

Break-Hole-

Collapse-Kink 
81% 66% 76% 68% 

Corrosion 96% 81% 87% 83% 

Deformation 78% 59% 60% 59% 

Joints 81% 61% 69% 64% 
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4.3.2 Object Detection 

In the next phase of the project, we extended our analysis by developing an object detection 

model aimed at localizing and classifying structural defects within individual video frames. Unlike 

the classification models used in previous stages, which only provided global labels for entire 

images, object detection allows for precise identification of the location, extent, and type of each 

defect present in a frame. This level of granularity is essential for implementing Utah’s culvert 

rating system, which relies on both the presence and severity of localized defects to assign 

condition scores. 

To train the detection models, we manually annotated thousands of frames by drawing 

bounding boxes around visible structural defects and assigning each box a corresponding class 

label, as defined in Table 3. These annotations served as the ground truth for model training and 

evaluation. However, due to significant class imbalance in the original structural defect labels, 

where some defect types were vastly underrepresented, we applied a similar label merging strategy 

used in the multiclass classification phase. Specifically, we merged related classes into broader 

categories to ensure more consistent training signals and improve detection accuracy for 

underrepresented defect types. 

For model development, we implemented and tested two object detection architectures: 

YOLOv11 and YOLOv12, both of which are advanced versions of the YOLO family known for 

their real-time inference speed and accuracy. These models were trained and evaluated on the 

annotated dataset using standard object detection metrics such as mAP. The detailed performance 

results of the YOLOv12 model across the merged defect categories are presented in Table 7. These 

findings provide valuable insight into the models’ ability to both detect and distinguish structural 

defects, forming the foundation for automated culvert condition assessment. 
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Table 6-Results of object detection models 

Model defects Precision Recall Model performance (mAP) 

YOLOv12 

Bre-Hol-Col-Kin-5 
 

89.1% 68.9% 80.3% 

Joints-3 84% 77.5% 83.8% 

Joints-5 87% 87.9% 91.6% 

Corrosion-3 88.7% 47.1% 68.8% 

Corrosion-5 90.9% 66.7% 79.3% 

Deformation-3 82.4% 44.3% 63.3% 

Deformation-5 94% 71.9% 84.4% 

Crack-Fract-3 84.5% 60.8% 75.1% 

All 87.6% 65.6% 78.3% 

YOLOv11 

Bre-Hol-Col-Kin-5 
 

89.5% 48.9% 69% 

Joints-3 86.2% 56.1% 71.8% 

Joints-5 89.9% 74.8% 82.9% 

Corrosion-3 96.8% 25.2% 61% 

Corrosion-5 83.3% 66.7% 78.4% 

Deformation-3 75% 11.4% 42.4% 

Deformation-5 94% 51.6% 73.1% 

Crack-Fract-3 87.9% 37.9% 63.7% 

All 87.8% 46.6% 67.8% 
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Figure 9-Normalized confusion matrix for the YOLOv12 model  
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Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top 

images) for a batch of testing set 
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4.3.3 Graphical User Interface 

To enable the practical use of the developed models by UDOT, we designed and 

implemented graphical user interfaces (GUIs) tailored to each type of model developed in this 

project. These GUIs are intended to provide a user-friendly experience for UDOT staff, allowing 

them to run complex video analysis tasks on culvert inspection footage without requiring 

programming knowledge. By simply launching the application on a laptop, a UDOT employee can 

import inspection videos and receive meaningful outputs, depending on the model selected for 

analysis. 

Each GUI is specifically designed to align with the function and workflow of its 

corresponding model type, resulting in slightly different user experiences and outputs across the 

three interfaces. The first GUI is built for the binary classification model. In this interface, the user 

imports a culvert inspection video and selects an output directory. The model then automatically 

processes the video and filters out all frames identified as defective. These defective frames are 

saved in the designated output folder for further review. This tool acts as a rapid screening 

mechanism, allowing inspectors to focus on frames where defects are likely present. 

 

Figure 11-Binary classification-GUI 
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The second GUI is designed for the multiclass image classification models, which 

categorize detected defects into specific types. Upon launching the interface, the user inputs a 

culvert inspection video and designates a path for the output text file. Once the "Start Analysis" 

button is clicked, the system begins processing the video frame by frame. Each frame is classified 

by the trained multiclass model into one of several defect categories. The GUI employs a rule-

based logic to track consistency in predictions: If the same defect label is detected in 15 

consecutive frames, the GUI updates the predicted condition rating for the entire inspection video 

to reflect that defect type. If a more critical label is detected over 15 new consecutive frames at 

any point, the system updates the rating again to reflect the more severe condition. At the end of 

the analysis, the GUI generates a detailed text report named after the original video file. This report 

includes a summary of the inspection, the total number of frames associated with each defect label, 

their corresponding timestamps and frame numbers, and the final predicted rating for the video. 

 

 

Figure 12-Multiclassification-GUI 
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The third GUI functions similarly to the second, but it is built around the object detection 

model. After importing the inspection video and specifying the output file location, the user starts 

the analysis process. The object detection model processes each video frame in real time, detecting 

and localizing structural defects by drawing bounding boxes around them. These boxes are labeled 

according to the predicted defect category. Similar to the multiclass classification GUI, if the 

model detects boxes of the same class in 15 consecutive frames, the video’s rating is updated based 

on that defect type. If a more severe defect label is later detected over 15 consecutive frames, the 

system updates the rating to reflect the more critical condition. Once the analysis is complete, the 

GUI produces a comprehensive summary report, listing the detected defects, their bounding box 

coordinates, the timestamps and frame numbers where they occurred, and the final rating 

prediction for the entire inspection video. 

 

 

Figure 13-Object detection-GUI 
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To evaluate the performance of both the Multiclassification-GUI and the Object Detection-

GUI, we tested them on a set of 56 real-world culvert inspection videos provided by UDOT. These 

videos were previously assessed by inspectors, serving as a reliable benchmark for validation. 

Each GUI was used to independently analyze the videos and predict the overall condition of the 

culvert based on its trained model logic and output aggregation rules. 

The results were highly promising, especially for the Object Detection-GUI, which 

correctly predicted the condition of 46 out of 56 videos, resulting in an accuracy of approximately 

84%. This demonstrates the model’s strong capability to localize and interpret structural defects 

with high reliability. In comparison, the Multiclassification-GUI achieved 42 correct predictions, 

corresponding to a 75% accuracy. While slightly less accurate, the multiclassification approach 

still provided valuable insights and maintained consistent performance across a variety of defect 

types. 

Importantly, in most of the cases where the Object Detection-GUI failed to predict the 

correct condition, the model tended to be conservative, flagging defects where none were present 

according to human reviewers. This conservative bias may be preferable in certain safety-critical 

applications, as it prioritizes caution over risk. These misclassifications typically arose from subtle 

image features or lighting artifacts that resembled true defects, prompting the model to issue a 

higher severity rating than necessary. 

Overall, the evaluation demonstrates the potential of these automated tools to streamline 

the inspection process, reduce subjectivity in condition assessments, and significantly save time, 

labor, and costs in culvert management. By automating defect recognition and condition rating 

from video footage, these GUIs can help prevent infrastructure failures and prioritize maintenance 

more effectively, especially in high-volume inspection workflows where manual review is 

impractical. 
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5.0  CONCLUSIONS 

5.1  Summary 

This chapter will discuss the conclusions obtained following the development of our 

computer vision models, showcasing their effectiveness. Additionally, we will discuss any 

limitations or challenges encountered during the research process, providing a comprehensive 

evaluation of the model’s capabilities and areas for improvement. 

To address the challenges associated with traditional culvert inspections in Utah, we 

proposed leveraging novel computer vision algorithms to enhance the interpretation of culvert 

inspection videos. This approach aims to significantly reduce the time and resources spent on 

manual interpretation, offering a more efficient and accurate alternative. To achieve this, we 

utilized the available culvert inspection videos and images from UDOT’s database, labeled them 

using CVAT, and developed different computer vision models. This project introduced a multi-

phase approach, including binary classification, multiclass image classification, and object 

detection models—each designed to progressively refine the detection and categorization of 

structural defects in inspection footage. 

5.2  Findings 

We started with a limited dataset of culvert inspection videos, which posed challenges for 

training reliable models. To address this, we expanded the dataset through additional video 

collection and data augmentation, enabling better model generalization and supporting the 

development of a multi-stage classification and detection framework. 

The first model implemented was a binary classification model, designed to distinguish 

between defective and non-defective frames. Despite the limited initial data, the model achieved 

an impressive 91% accuracy, demonstrating its reliability in filtering out defective frames for 

further analysis. Building upon this, we developed a set of multiclass image classification models, 

each focused on categorizing specific types of structural defects. The best-performing model 

reached a 96% accuracy, while the least accurate achieved 77%, reflecting the varying difficulty 

across defect categories and class distribution within the dataset. 
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To gain spatial insight into the location and extent of defects, we developed an object 

detection model trained on annotated bounding box data. The final model achieved an average 

mAP of 78% across all defect classes. This performance indicates that the model not only classifies 

but also localizes defects with reasonable accuracy, providing detailed input for downstream 

culvert condition assessment.  

The true effectiveness of the system was validated through testing on 56 real inspection 

videos. The object detection model correctly identified the condition of 84% of the culverts, 

confirming its practical viability for deployment. This result illustrates the potential of automated 

video analysis tools to support infrastructure inspection workflows, reduce subjectivity, and 

significantly improve efficiency in defect detection and rating. 

Overall, the system demonstrates a successful progression from a small, constrained dataset 

to a fully functional, real-world application capable of assisting UDOT engineers in efficiently 

assessing culvert conditions. With further refinement and expansion, such tools hold strong 

promise for broader application across transportation infrastructure monitoring. 

5.3  Limitations and Challenges 

While the study produced robust results, several limitations and challenges were 

encountered: 

• One of the primary challenges was the initial lack of sufficient labeled data. 

Although the dataset was expanded through additional data collection and 

augmentation, certain defect classes remained underrepresented. This class 

imbalance affected the training of both multiclass classification and object 

detection models, particularly in categories like Deformation, where performance 

metrics were lower due to fewer high-quality samples. 

• Manual annotation of structural defects, especially bounding boxes in object 

detection, requires domain expertise and is prone to human error or inconsistency. 

Variation in how defects were labeled or categorized across frames may have 

impacted model training and evaluation. Inconsistent annotation boundaries or 

overlapping defect types also introduced noise into the dataset. 

• Some structural defects, such as hairline cracks, subtle deformations, or joint 

displacements, are visually challenging to detect due to poor lighting, motion blur, 

or low resolution in inspection videos. These subtle visual cues often led to false 

negatives or incorrect classifications, especially in low-contrast or noisy frames. 

• Users with limited hardware may experience slower inference times. 
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Despite these challenges, this research demonstrates the strong potential of computer vision 

and AI as transformative tools for automating culvert inspection in Utah. The success of the 

developed models, even under constrained conditions, highlights the feasibility of integrating AI-

driven solutions into infrastructure maintenance workflows. Future work could explore the use of 

Vision-Language Models (VLMs), which may further simplify the process by enabling defect 

detection and condition assessment through natural language prompts, reducing the need for 

manual coding and huge datasets for training. 

 

 

 

 

 



 

43 

REFERENCES 

[1] P. Mohammadi, A. Rashidi, and S. Asgari, “Improving Culvert Condition Prediction 

Models Using Federated Learning: The Case Study of Utah,” 2024. 

[2] J. N. Meegoda, J. A. Kewalramani, and A. Saravanan, “Adapting 360-Degree Cameras for 

Culvert Inspection: Case Study,” J. Pipeline Syst. Eng. Pract., vol. 10, no. 1, 2019, doi: 

10.1061/(asce)ps.1949-1204.0000352. 

[3] R. Rayhana, H. Yun, Z. Liu, and X. Kong, “Automated defect-detection system for water 

pipelines based on CCTV inspection videos of autonomous robotic platforms,” 

IEEE/ASME Trans. Mechatronics, vol. 29, no. 3, pp. 2021–2031, 2023. 

[4] D. Youngblood and C. D. M. Smith, “Enhanced culvert inspections-best practices 

guidebook,” Minnesota. Dept. of Transportation. Research Services & Library, 2017. 

[5] P. Mohammadi, A. Rashidi, and S. Asgari, “An Improved Hybrid XGBoost Model for 

Culvert Inspection Using Swarm Intelligence Algorithms,” Computing in Civil 

Engineering 2023. pp. 100–108, Jan. 25, 2024. doi: doi:10.1061/9780784485224.013. 

[6] P. Mohammadi, A. Rashidi, and S. Asgari, “Simulating Federated Learning with Data 

Augmentation for Culvert Condition Prediction in Utah: A Case Study,” in 2024 Winter 

Simulation Conference (WSC), 2024, pp. 2337–2347. 

[7] S. Grier, “Large culvert inspection procedures.” Purdue University, 2022. 

[8] P. Mohammadi, S. Asgari, A. Rashidi, and R. Alder, “Culvert Inspection Framework 

Using Hybrid XGBoost and Risk-Based Prioritization: Utah Case Study,” J. Constr. Eng. 

Manag., vol. 151, no. 6, p. 4025052, 2025. 

[9] A. Hawari, M. Alamin, F. Alkadour, M. Elmasry, and T. Zayed, “Automated defect 

detection tool for closed circuit television (cctv) inspected sewer pipelines,” Autom. 

Constr., vol. 89, pp. 99–109, 2018. 

[10] X. Yin, Y. Chen, A. Bouferguene, H. Zaman, M. Al-Hussein, and L. Kurach, “A deep 



 

44 

learning-based framework for an automated defect detection system for sewer pipes,” 

Autom. Constr., vol. 109, p. 102967, 2020. 

[11] S. S. Kumar, M. Wang, D. M. Abraham, M. R. Jahanshahi, T. Iseley, and J. C. P. Cheng, 

“Deep learning–based automated detection of sewer defects in CCTV videos,” J. Comput. 

Civ. Eng., vol. 34, no. 1, p. 4019047, 2020. 

[12] X. Yin, T. Ma, A. Bouferguene, and M. Al-Hussein, “Automation for sewer pipe 

assessment: CCTV video interpretation algorithm and sewer pipe video assessment 

(SPVA) system development,” Autom. Constr., vol. 125, p. 103622, 2021. 

[13] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification 

algorithms based on convolutional neural networks,” Remote Sens., vol. 13, no. 22, p. 

4712, 2021. 

[14] M. Farhadmanesh, A. Rashidi, A. K. Subedi, and N. Marković, “A computer vision-based 

standalone system for automated operational data collection at non-towered airports,” 

IEEE Access, 2024. 

[15] S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and A. Liotta, “A systematic review and 

analysis of deep learning-based underwater object detection,” Neurocomputing, vol. 527, 

pp. 204–232, 2023. 

[16] A. Hassandokht Mashhadi, A. Rashidi, and N. Marković, “A GAN-Augmented CNN 

Approach for Automated Roadside Safety Assessment of Rural Roadways,” J. Comput. 

Civ. Eng., vol. 38, no. 2, p. 4023043, 2024. 

[17] M. Sohan, T. Sai Ram, and C. V. Rami Reddy, “A review on yolov8 and its 

advancements,” in International Conference on Data Intelligence and Cognitive 

Informatics, 2024, pp. 529–545. 

[18] R. Khanam and M. Hussain, “Yolov11: An overview of the key architectural 

enhancements,” arXiv Prepr. arXiv2410.17725, 2024. 

[19] Y. Tian, Q. Ye, and D. Doermann, “Yolov12: Attention-centric real-time object 



 

45 

detectors,” arXiv Prepr. arXiv2502.12524, 2025. 

[20] R. Sapkota, R. H. Cheppally, A. Sharda, and M. Karkee, “RF-DETR Object Detection vs 

YOLOv12: A Study of Transformer-based and CNN-based Architectures for Single-Class 

and Multi-Class Greenfruit Detection in Complex Orchard Environments Under Label 

Ambiguity,” arXiv Prepr. arXiv2504.13099, 2025. 

[21] L. Zhang, G. Ding, C. Li, and D. Li, “DCF-Yolov8: an improved algorithm for 

aggregating low-level features to detect agricultural pests and diseases,” Agronomy, vol. 

13, no. 8, p. 2012, 2023. 

[22] P. Mohammadi, A. Rashidi, and S. Asgari, “Privacy-preserving culvert predictive models: 

A federated learning approach,” Adv. Eng. Informatics, vol. 61, p. 102483, 2024. 

[23] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image data augmentation for 

deep learning: A survey,” arXiv Prepr. arXiv2204.08610, 2022. 

[24] A. Erfani, N. Shayesteh, and T. Adnan, “Data-augmented explainable AI for pavement 

roughness prediction,” Autom. Constr., vol. 176, p. 106307, 2025. 

[25] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep 

learning,” J. big data, vol. 6, no. 1, pp. 1–48, 2019. 

[26] B. Dwyer, J. Nelson, and J. ea Solawetz, “Roboflow (version 1.0)[software],” Comput. 

Vis., 2024. 

[27] B. Sekachev et al., “opencv/cvat: v1.1.0.” Zenodo, Aug. 2020. doi: 

10.5281/zenodo.4009388. 

[28] P. Mohammadi, A. Rashidi, M. Malekzadeh, and S. Tiwari, “Evaluating various machine 

learning algorithms for automated inspection of culverts,” Eng. Anal. Bound. Elem., vol. 

148, pp. 366–375, 2023, doi: https://doi.org/10.1016/j.enganabound.2023.01.007. 

[29] A. H. Mashhadi, N. Markovic, and A. Rashidi, “Estimating Construction Work Zones 

Capacity Using Deep Neural Network,” in Construction Research Congress 2022, 2022, 



 

46 

pp. 98–107. 

[30] A. Hassandokht Mashhadi, A. Rashidi, J. C. Medina, and N. Marković, “A hybrid 

framework for predicting crash severity in construction work zones using knowledge 

distillation and conditional GANs,” J. Comput. Civ. Eng., vol. 39, no. 2, p. 4025010, 

2025. 

 

 

 



 

47 

APPENDIX A:  UDOT’s PIPE DEFECT RATING SHEETS 

 



 

48 



 

49 



 

50 

 



 

51 



 

52 



 

53 

 


	Structure Bookmarks
	Document
	Figure
	 
	Report No. UT-25.20 
	Report No. UT-25.20 

	 
	 
	 
	 
	 
	AUTOMATED INTERPRETATION OF CULVERT INSPECTION VIDEOS USING AI AND COMPUTER VISION 
	 
	 
	 
	 
	 
	Prepared For:  
	 
	Utah Department of Transportation 
	Research & Innovation Division  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Final Report 
	August 2025 

	DISCLAIMER 
	The authors alone are responsible for the preparation and accuracy of the information, data, analysis, discussions, recommendations, and conclusions presented herein. The contents do not necessarily reflect the views, opinions, endorsements, or policies of the Utah Department of Transportation or the U.S. Department of Transportation. The Utah Department of Transportation makes no representation or warranty of any kind, and assumes no liability therefore. 
	 
	 
	ACKNOWLEDGMENTS 
	The authors acknowledge the Utah Department of Transportation (UDOT) for funding this research, and the following individuals from UDOT on the Technical Advisory Committee for helping to guide the research: 
	•
	•
	•
	 Abdul Wakil 

	•
	•
	 Brad Loveless 

	•
	•
	 Kevin Nichol 

	•
	•
	 Greg Merrill 

	•
	•
	 Sean Berry  

	•
	•
	 Keith Meinhardt 

	•
	•
	 Chris Whipple 

	•
	•
	 Jeff Erdman  

	•
	•
	 Brandon Cox  


	The authors also thank Dr. Khalid Kaddoura and his former company, AECOM, for providing data that was essential to this research. 
	TECHNICAL REPORT ABSTRACT 
	TECHNICAL REPORT ABSTRACT 

	1. Report No. UT-25.20 
	1. Report No. UT-25.20 
	1. Report No. UT-25.20 
	1. Report No. UT-25.20 
	1. Report No. UT-25.20 
	 

	2. Government Accession No. N/A 
	2. Government Accession No. N/A 
	 

	3. Recipient’s Catalog No. N/A 
	3. Recipient’s Catalog No. N/A 
	 


	4. Title and Subtitle Automated Interpretation of Culvert Inspection Videos Using AI and Computer Vision 
	4. Title and Subtitle Automated Interpretation of Culvert Inspection Videos Using AI and Computer Vision 
	4. Title and Subtitle Automated Interpretation of Culvert Inspection Videos Using AI and Computer Vision 

	5. Report Date July 2024 
	5. Report Date July 2024 


	TR
	6. Performing Organization Code  
	6. Performing Organization Code  


	7. Author(s) Pouria Mohammadi, Abbas Rashidi 
	7. Author(s) Pouria Mohammadi, Abbas Rashidi 
	7. Author(s) Pouria Mohammadi, Abbas Rashidi 
	 

	8. Performing Organization Report No.  
	8. Performing Organization Report No.  


	9. Performing Organization Name and Address 
	9. Performing Organization Name and Address 
	9. Performing Organization Name and Address 
	The University of Utah 
	Department of Civil and Environmental Engineering 
	201 Presidents Circle 
	Salt Lake City, Utah 84112 

	10. Work Unit No. 5H094 24H 
	10. Work Unit No. 5H094 24H 


	TR
	11. Contract or Grant No. 24-8333 
	11. Contract or Grant No. 24-8333 


	12. Sponsoring Agency Name and Address Utah Department of Transportation 4501 South 2700 West 
	12. Sponsoring Agency Name and Address Utah Department of Transportation 4501 South 2700 West 
	12. Sponsoring Agency Name and Address Utah Department of Transportation 4501 South 2700 West 
	P.O. Box 148410 
	Salt Lake City, UT  84114-8410 

	13. Type of Report & Period Covered Final 
	13. Type of Report & Period Covered Final 
	      August 2023 to August 2025 


	TR
	14. Sponsoring Agency Code UT-25.20 
	14. Sponsoring Agency Code UT-25.20 


	15. Supplementary Notes 
	15. Supplementary Notes 
	15. Supplementary Notes 
	Prepared in cooperation with the Utah Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration 


	16. Abstract 
	16. Abstract 
	16. Abstract 
	  
	     Culvert assets play a critical role in ensuring the safe operation of highways. UDOT maintains over 120,000 drainage culverts and storm drain pipes along state highways. To maintain these assets optimally and prevent failures, UDOT must collect comprehensive information about all culverts across the state and inventory them in the ATOM system. Accurate identification of culverts needing repair, rehabilitation, or replacement necessitates thorough and well-documented inspections. Traditional culvert ins


	17. Key Words 
	17. Key Words 
	17. Key Words 
	      Culvert, Computer Vision, Object Detection, Automatic Interpretation  

	18. Distribution Statement 
	18. Distribution Statement 
	Not restricted. Available through: 
	UDOT Research Division  
	4501 South 2700 West 
	P.O. Box 148410 
	Salt Lake City, UT  84114-8410 
	 
	www.udot.utah.gov/go/research
	www.udot.utah.gov/go/research



	23. Registrant’s Seal 
	23. Registrant’s Seal 
	 
	N/A 


	TR
	19. Security Classification 
	19. Security Classification 
	(of this report) 
	 
	Unclassified 
	 

	20. Security Classification 
	20. Security Classification 
	(of this page) 
	 
	Unclassified 
	 

	21. No. of Pages 
	21. No. of Pages 
	 
	62 

	22. Price 
	22. Price 
	 
	N/A 




	 
	TABLE OF CONTENTS 
	TABLE OF CONTENTS 
	LIST OF TABLES .......................................................................................................................... v
	LIST OF TABLES .......................................................................................................................... v
	LIST OF TABLES .......................................................................................................................... v

	 

	LIST OF FIGURES ....................................................................................................................... vi
	LIST OF FIGURES ....................................................................................................................... vi
	LIST OF FIGURES ....................................................................................................................... vi

	 

	UNIT CONVERSION FACTORS ............................................................................................... vii
	UNIT CONVERSION FACTORS ............................................................................................... vii
	UNIT CONVERSION FACTORS ............................................................................................... vii

	 

	LIST OF ACRONYMS ............................................................................................................... viii
	LIST OF ACRONYMS ............................................................................................................... viii
	LIST OF ACRONYMS ............................................................................................................... viii

	 

	EXECUTIVE SUMMARY ............................................................................................................ 1
	EXECUTIVE SUMMARY ............................................................................................................ 1
	EXECUTIVE SUMMARY ............................................................................................................ 1

	 

	1.0 INTRODUCTION .................................................................................................................... 3
	1.0 INTRODUCTION .................................................................................................................... 3
	1.0 INTRODUCTION .................................................................................................................... 3

	 

	1.1 Problem Statement .................................................................................................................3
	1.1 Problem Statement .................................................................................................................3
	1.1 Problem Statement .................................................................................................................3

	 

	1.2 Objectives ..............................................................................................................................4
	1.2 Objectives ..............................................................................................................................4
	1.2 Objectives ..............................................................................................................................4

	 

	1.3 Scope ......................................................................................................................................5
	1.3 Scope ......................................................................................................................................5
	1.3 Scope ......................................................................................................................................5

	 

	1.4 Outline of Report ...................................................................................................................5
	1.4 Outline of Report ...................................................................................................................5
	1.4 Outline of Report ...................................................................................................................5

	 

	2.0 RESEARCH METHODS ......................................................................................................... 6
	2.0 RESEARCH METHODS ......................................................................................................... 6
	2.0 RESEARCH METHODS ......................................................................................................... 6

	 

	2.1 Overview ................................................................................................................................6
	2.1 Overview ................................................................................................................................6
	2.1 Overview ................................................................................................................................6

	 

	2.2 Background ............................................................................................................................6
	2.2 Background ............................................................................................................................6
	2.2 Background ............................................................................................................................6

	 

	2.2.1 Traditional Culvert Inspection ....................................................................................... 6
	2.2.1 Traditional Culvert Inspection ....................................................................................... 6
	2.2.1 Traditional Culvert Inspection ....................................................................................... 6

	 

	2.2.2 Applications of Computer Vision in Infrastructure Inspection ...................................... 7
	2.2.2 Applications of Computer Vision in Infrastructure Inspection ...................................... 7
	2.2.2 Applications of Computer Vision in Infrastructure Inspection ...................................... 7

	 

	2.3 Image Classification ..............................................................................................................9
	2.3 Image Classification ..............................................................................................................9
	2.3 Image Classification ..............................................................................................................9

	 

	2.4 Object Detection ..................................................................................................................10
	2.4 Object Detection ..................................................................................................................10
	2.4 Object Detection ..................................................................................................................10

	 

	2.5 Data Adfugmentation ...........................................................................................................13
	2.5 Data Adfugmentation ...........................................................................................................13
	2.5 Data Adfugmentation ...........................................................................................................13

	 

	3.0 DATA COLLECTION ........................................................................................................... 15
	3.0 DATA COLLECTION ........................................................................................................... 15
	3.0 DATA COLLECTION ........................................................................................................... 15

	 

	3.1 Overview ..............................................................................................................................15
	3.1 Overview ..............................................................................................................................15
	3.1 Overview ..............................................................................................................................15

	 

	3.2 Collected data ......................................................................................................................15
	3.2 Collected data ......................................................................................................................15
	3.2 Collected data ......................................................................................................................15

	 

	3.2.1 Zoom Camera Inspection Videos ................................................................................. 15
	3.2.1 Zoom Camera Inspection Videos ................................................................................. 15
	3.2.1 Zoom Camera Inspection Videos ................................................................................. 15

	 

	3.2.2 CCTV Culvert Inspection Videos ................................................................................ 17
	3.2.2 CCTV Culvert Inspection Videos ................................................................................ 17
	3.2.2 CCTV Culvert Inspection Videos ................................................................................ 17

	 

	3.2.3 Culvert Images Taken by Cell Phone .......................................................................... 18
	3.2.3 Culvert Images Taken by Cell Phone .......................................................................... 18
	3.2.3 Culvert Images Taken by Cell Phone .......................................................................... 18

	 

	3.2.4 CCTV Sewer Pipe Inspection Images .......................................................................... 19
	3.2.4 CCTV Sewer Pipe Inspection Images .......................................................................... 19
	3.2.4 CCTV Sewer Pipe Inspection Images .......................................................................... 19

	 

	3.3 Data Labeling .......................................................................................................................19
	3.3 Data Labeling .......................................................................................................................19
	3.3 Data Labeling .......................................................................................................................19

	 

	3.3.1 Data Annotation with CVAT ....................................................................................... 21
	3.3.1 Data Annotation with CVAT ....................................................................................... 21
	3.3.1 Data Annotation with CVAT ....................................................................................... 21

	 

	4.0 DATA EVALUATION & RESULTS .................................................................................... 24
	4.0 DATA EVALUATION & RESULTS .................................................................................... 24
	4.0 DATA EVALUATION & RESULTS .................................................................................... 24

	 

	4.1 Overview ..............................................................................................................................24
	4.1 Overview ..............................................................................................................................24
	4.1 Overview ..............................................................................................................................24

	 

	4.2 Evaluation Metrics ...............................................................................................................24
	4.2 Evaluation Metrics ...............................................................................................................24
	4.2 Evaluation Metrics ...............................................................................................................24

	 

	4.2.1 Confusion Matrix ......................................................................................................... 24
	4.2.1 Confusion Matrix ......................................................................................................... 24
	4.2.1 Confusion Matrix ......................................................................................................... 24

	 

	4.2.2 Accuracy ...................................................................................................................... 25
	4.2.2 Accuracy ...................................................................................................................... 25
	4.2.2 Accuracy ...................................................................................................................... 25

	 

	4.2.3 Precision and Recall ..................................................................................................... 25
	4.2.3 Precision and Recall ..................................................................................................... 25
	4.2.3 Precision and Recall ..................................................................................................... 25

	 

	4.2.4 F1-Score ....................................................................................................................... 26
	4.2.4 F1-Score ....................................................................................................................... 26
	4.2.4 F1-Score ....................................................................................................................... 26

	 

	4.2.5 Mean Average Precision ([19]) .................................................................................... 26
	4.2.5 Mean Average Precision ([19]) .................................................................................... 26
	4.2.5 Mean Average Precision ([19]) .................................................................................... 26

	 

	4.3 Results ..................................................................................................................................27
	4.3 Results ..................................................................................................................................27
	4.3 Results ..................................................................................................................................27

	 

	4.3.1 Classification ................................................................................................................ 27
	4.3.1 Classification ................................................................................................................ 27
	4.3.1 Classification ................................................................................................................ 27

	 

	4.3.2 Object Detection .......................................................................................................... 32
	4.3.2 Object Detection .......................................................................................................... 32
	4.3.2 Object Detection .......................................................................................................... 32

	 

	4.3.3 Graphical User Interface .............................................................................................. 36
	4.3.3 Graphical User Interface .............................................................................................. 36
	4.3.3 Graphical User Interface .............................................................................................. 36

	 

	5.0 CONCLUSIONS..................................................................................................................... 40
	5.0 CONCLUSIONS..................................................................................................................... 40
	5.0 CONCLUSIONS..................................................................................................................... 40

	 

	5.1 Summary ..............................................................................................................................40
	5.1 Summary ..............................................................................................................................40
	5.1 Summary ..............................................................................................................................40

	 

	5.2 Findings ...............................................................................................................................40
	5.2 Findings ...............................................................................................................................40
	5.2 Findings ...............................................................................................................................40

	 

	5.3 Limitation and Challenges ...................................................................................................41
	5.3 Limitation and Challenges ...................................................................................................41
	5.3 Limitation and Challenges ...................................................................................................41

	 

	REFERENCES ............................................................................................................................. 43
	REFERENCES ............................................................................................................................. 43
	REFERENCES ............................................................................................................................. 43

	 

	APPENDIX A:  UDOT’s PIPE DEFECT RATING SHEETS ..................................................... 47
	APPENDIX A:  UDOT’s PIPE DEFECT RATING SHEETS ..................................................... 47
	APPENDIX A:  UDOT’s PIPE DEFECT RATING SHEETS ..................................................... 47

	 


	LIST OF TABLES 
	LIST OF TABLES 
	Table 1-Data conversion ................................................................................................................18
	Table 1-Data conversion ................................................................................................................18
	Table 1-Data conversion ................................................................................................................18

	 

	Table 2-Multi-class labels by defect type and severity ..................................................................21
	Table 2-Multi-class labels by defect type and severity ..................................................................21
	Table 2-Multi-class labels by defect type and severity ..................................................................21

	 

	Table 3-Distribution of defect boxes across labeled data ..............................................................23
	Table 3-Distribution of defect boxes across labeled data ..............................................................23
	Table 3-Distribution of defect boxes across labeled data ..............................................................23

	 

	Table 4-Binary classification results ..............................................................................................28
	Table 4-Binary classification results ..............................................................................................28
	Table 4-Binary classification results ..............................................................................................28

	 

	Table 5-Results of multiclassification models ...............................................................................31
	Table 5-Results of multiclassification models ...............................................................................31
	Table 5-Results of multiclassification models ...............................................................................31

	 

	Table 6-Results of object detection models ...................................................................................33
	Table 6-Results of object detection models ...................................................................................33
	Table 6-Results of object detection models ...................................................................................33

	 

	 

	LIST OF FIGURES 
	LIST OF FIGURES 
	Figure 1-YOLOv8 architecture [16] ..............................................................................................12
	Figure 1-YOLOv8 architecture [16] ..............................................................................................12
	Figure 1-YOLOv8 architecture [16] ..............................................................................................12

	 

	Figure 2-Inspected culverts by Consor in Region One of Utah .....................................................16
	Figure 2-Inspected culverts by Consor in Region One of Utah .....................................................16
	Figure 2-Inspected culverts by Consor in Region One of Utah .....................................................16

	 

	Figure 3-Inspected culverts by Horrocks along the I-80 highway .................................................17
	Figure 3-Inspected culverts by Horrocks along the I-80 highway .................................................17
	Figure 3-Inspected culverts by Horrocks along the I-80 highway .................................................17

	 

	Figure 4-Assigning a binary label to images .................................................................................20
	Figure 4-Assigning a binary label to images .................................................................................20
	Figure 4-Assigning a binary label to images .................................................................................20

	 

	Figure 5-CVAT’s interface during data labeling ...........................................................................22
	Figure 5-CVAT’s interface during data labeling ...........................................................................22
	Figure 5-CVAT’s interface during data labeling ...........................................................................22

	 

	Figure 6-Confusion matrix for binary classification ......................................................................25
	Figure 6-Confusion matrix for binary classification ......................................................................25
	Figure 6-Confusion matrix for binary classification ......................................................................25

	 

	Figure 7-Confusion matrix of Yolo model for binary classification .............................................28
	Figure 7-Confusion matrix of Yolo model for binary classification .............................................28
	Figure 7-Confusion matrix of Yolo model for binary classification .............................................28

	 

	Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) for a batch of testing set .................................................................................................29
	Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) for a batch of testing set .................................................................................................29
	Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) for a batch of testing set .................................................................................................29

	 

	Figure 9-Normalized confusion matrix for the YOLOv12 model .................................................34
	Figure 9-Normalized confusion matrix for the YOLOv12 model .................................................34
	Figure 9-Normalized confusion matrix for the YOLOv12 model .................................................34

	 

	Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top images) for a batch of testing set ...........................................................................35
	Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top images) for a batch of testing set ...........................................................................35
	Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top images) for a batch of testing set ...........................................................................35

	 

	Figure 11-Binary classification-GUI .............................................................................................36
	Figure 11-Binary classification-GUI .............................................................................................36
	Figure 11-Binary classification-GUI .............................................................................................36

	 

	Figure 12-Multiclassification-GUI ................................................................................................37
	Figure 12-Multiclassification-GUI ................................................................................................37
	Figure 12-Multiclassification-GUI ................................................................................................37

	 

	Figure 13-Object detection-GUI ....................................................................................................38
	Figure 13-Object detection-GUI ....................................................................................................38
	Figure 13-Object detection-GUI ....................................................................................................38

	 

	 

	UNIT CONVERSION FACTORS 
	UNIT CONVERSION FACTORS 

	No unit conversions 
	 
	LIST OF ACRONYMS 
	LIST OF ACRONYMS 

	FHWA   Federal Highway Administration 
	UDOT   Utah Department of Transportation 
	NASSCO   National Association of Sewer Service Companies  
	CVAT    Computer Vision Annotation Tool 
	YOLO   You Only Look Once 
	IoU   Intersection over Union 
	CNN   Convolutional Neural Network 
	Faster R-CNN  Faster Region-Based Convolutional Neural Network 
	EXECUTIVE SUMMARY 
	The Utah Department of Transportation (UDOT) is responsible for maintaining over 120,000 drainage culverts and storm drain pipes across state highways. Ensuring the integrity and functionality of these culverts is crucial for preventing flooding, sinkholes, and road damage, thereby safeguarding transportation infrastructure. Traditional inspection methods, primarily relying on manual visual assessments, are time-consuming, prone to human error, and lack consistency. To address these challenges, this project
	The project utilized a diverse set of culvert inspection videos and images from UDOT’s database, including video data from CCTV and zoom camera inspections. However, a significant challenge was the imbalanced dataset, dominated by corrosion defects in metal culverts. Therefore, we labeled more data collected from different sources and applied data augmentation techniques, including rotation and adding noise. Based on Utah’s pipe rating system, the structural defect categories used in this study include Crac
	After finishing the labeling and annotating of the collected images, we tailored the latest computer vision algorithms to each type of model we aimed to develop. For the binary classification task, we trained models to distinguish between defective and non-defective frames, achieving a high accuracy of 91%, which proved effective in filtering out defective frames for further analysis. Next, we developed multiclass classification models for each structural defect category, enabling the system to identify and
	bounding boxes. The final object detection model achieved an average mean Average Precision (mAP) of 78%, offering detailed spatial insights necessary for assigning condition ratings. 

	To make these models accessible and usable by non-technical personnel, we developed intuitive Graphical User Interfaces (GUIs) for each model type. These GUIs allow UDOT employees to upload culvert inspection videos, run automated analyses, and receive detailed outputs without requiring programming knowledge. When evaluated on 56 real inspection videos, the object detection GUI accurately predicted the condition of 84% of the culverts, while the multiclass classification GUI achieved 75% accuracy. These res
	For UDOT, these tools offer significant benefits: They reduce manual inspection time, improve consistency and objectivity in assessments, and help prioritize maintenance based on automated condition ratings. Ultimately, this system has the potential to streamline culvert management workflows, minimize human error, and lower operational costs while supporting timely, data-driven infrastructure decisions. 
	 
	 
	 
	 
	 
	1.0  INTRODUCTION 
	1.1  Problem Statement 
	Ensuring the safety and functionality of existing transportation infrastructure, including roads, bridges, and culverts, is a top priority for engineers. Culverts, often hidden underground, play a crucial role in stormwater management by acting as channels that allow water to flow beneath various transportation structures [1]. They are vital for preventing flooding, sinkholes, and road damage. Regularly monitoring infrastructure is essential to catching small problems before they become expensive and time-c
	To address these challenges, the use of digital video inspections has emerged as a valuable tool in assessing culvert conditions. Digital video inspections involve deploying cameras to capture images and videos of the interior of culverts. This method offers several advantages, including the ability to collect comprehensive data without the need for extensive excavation or physical entry into the culvert. Inspectors can review the footage to identify defects, assign condition ratings, and document inventory
	The Utah Department of Transportation (UDOT) maintains over 120,000 drainage culverts and storm drain pipes along state highways in Utah, making the importance of culverts more evident. Despite this, UDOT lacks a comprehensive inventory of these assets [5]. Establishing a detailed culvert inventory is crucial for predicting future performance and developing effective 
	maintenance strategies [6]. To this end, UDOT has to collect information about all culverts across the state and inventory them in ATOM as quickly as possible. 

	Identifying whether culverts need repair, rehabilitation, or replacement requires comprehensive and well-documented inspections. The current culvert inspection practice at  UDOT is based on digital video inspection and relies heavily on human interpretation and defect identification. Inspectors collect videos on-site and later review them off-site, a process that includes defect identification, condition rating assignment, and inventory documentation. Each video interpretation takes approximately 10 to 12 m
	1.2  Objectives 
	The rapid advancements in computing technologies have significantly enhanced computer vision and deep learning models’ capabilities in various fields, including the inspection of infrastructures. Key innovations in computer vision and deep learning have paved the way for automated systems that can precisely identify and evaluate defects in infrastructure components such as bridges, pipes, and roads. These advancements are reshaping traditional inspection methods, offering improved accuracy, efficiency, and 
	Since UDOT currently relies on manual post-video interpretation for culvert inspections, this project aims to optimize the process by employing advanced technologies. Manual interpretation, while useful, is time-consuming, prone to human error, and can vary significantly based on the inspector’s experience and subjectivity. To address these limitations, this project will review the most recent defect detection models developed for the assessment of culverts or pipes and develop a state-of-the-art deep learn
	The automated system will also enable early detection of potential issues, facilitating proactive maintenance and reducing the risk of costly infrastructure failures. It would also allow seamless import of inspection data into ATOM UDOT Maintenance Management. This project aligns with UDOT’s commitment to leveraging innovative technologies to enhance infrastructure 
	management and ensure the safety and functionality of the state’s transportation network. In conclusion, this project represents a significant step forward in modernizing UDOT’s culvert management system. By leveraging the latest advancements in deep learning and computer vision, UDOT can achieve a more efficient, accurate, and reliable system for assessing culvert conditions and maintaining critical infrastructure. 

	1.3  Scope 
	Research Tasks include: 
	•
	•
	•
	 Conducting a comprehensive literature review to find the most advanced algorithm for defect detection 

	•
	•
	 Collecting available culvert inspection video data and converting them into images 

	•
	•
	 Labeling and annotating the images based on UDOT’s culvert-condition rating criteria for model training purposes 

	•
	•
	 Developing a deep learning model that can interpret culvert inspection videos and assign a condition rating  

	•
	•
	 Comparing the results with the ground-truth data to evaluate the performance of the developed model 

	•
	•
	 Developing a Graphical User Interface (GUI) for an automated culvert inspection interpretation framework 


	1.4  Outline of Report  
	•
	•
	•
	 Introduction 

	•
	•
	 Research Methods  

	•
	•
	 Data Collection 

	•
	•
	 Data Evaluation & Results 

	•
	•
	 Conclusions 


	2.0  RESEARCH METHODS 
	2.1  Overview 
	This chapter presents the methodology employed to automate the interpretation of culvert inspection videos through advanced computer vision and deep learning techniques. The methodology encompasses both traditional approaches to culvert inspection and cutting-edge applications of artificial intelligence in infrastructure assessment. We begin with an examination of conventional culvert inspection practices, highlighting their limitations and the need for automated solutions, followed by a review of recent ad
	The technical methodology covers three primary approaches: image classification for overall condition assessment, object detection for precise defect localization and classification, and data augmentation strategies for enhancing model robustness and addressing dataset limitations. Special attention is given to the latest developments in object detection architectures, including YOLO and RF-DETR models, each offering unique advantages for culvert defect detection tasks. The data augmentation section address
	2.2  Background 
	2.2.1 Traditional Culvert Inspection 
	Traditional culvert inspection methods have historically relied on visual assessments conducted by trained inspectors who physically examine culvert structures to identify defects and assess structural integrity [7]. These conventional approaches involve inspectors entering culvert systems when accessible or using basic optical equipment to evaluate visible portions of the infrastructure. However, traditional inspection methods face significant limitations, particularly when dealing with confined spaces, ha
	The introduction of digital video inspection technology has emerged as a significant advancement over purely manual visual assessments. This method employs specialized cameras mounted on remotely operated vehicles or cable systems to capture comprehensive footage of culvert interiors. Digital video inspection allows for thorough documentation without requiring inspectors to enter potentially dangerous confined spaces, thereby improving safety while enabling more detailed condition assessments [4]. Despite t
	 2.2.2 Applications of Computer Vision in Infrastructure Inspection 
	The rapid advancement of computer vision and deep learning technologies has opened new possibilities for automating infrastructure inspection processes. Recent research has demonstrated the effectiveness of machine learning algorithms in detecting and classifying various types of structural defects with high accuracy and consistency [8]. Computer vision applications in infrastructure inspection have shown particular promise in analyzing large datasets of images and videos to identify patterns and anomalies 
	Hawari et al. [9] developed an automated defect detection system for sewer pipelines using image processing algorithms applied to CCTV footage, focusing on four primary defect types: cracks, settled deposits, ovality, and displaced joints. Their study demonstrated varying performance levels across different defect types, with ovality detection showing superior results compared to other defect categories. The research highlighted the importance of comprehensive datasets for improving detection capabilities a
	Yin et al. [10] advanced the field by implementing a real-time automated defect detection system using YOLOv3 architecture for sewer pipe assessment. Their model was trained on 3,664 images extracted from CCTV videos, encompassing six defect categories including holes, breaks, deposits, fractures, cracks, and root intrusion. The balanced distribution of defects in their dataset contributed to achieving an impressive 85.37% mean Average Precision (mAP) and F1 scores exceeding 87% for both testing and validat
	Kumar et al. [11] conducted a comparative analysis of multiple object detection frameworks, including Faster R-CNN, YOLOv3, and Single Shot Detector (SSD), for detecting sewer pipe deposits and root intrusion. Their findings indicated that while Faster R-CNN achieved superior overall performance, YOLOv3 provided a more balanced trade-off between detection speed and accuracy, making it suitable for real-time applications. Yin et al. [12] further expanded automated assessment capabilities by developing the Vi
	According to past studies, deep learning algorithms have shown significant potential in enhancing the defect detection process for pipelines, leading to more consistent and reliable results. Research has demonstrated that these algorithms can effectively identify and classify defects such as cracks, corrosion, and joint misalignments with a high degree of accuracy, surpassing traditional manual inspection methods. Despite these advancements, there has been a notable gap in applying deep learning techniques 
	To address the limitations of traditional culvert inspection methods currently used by UDOT, we propose an automated system for interpreting culvert inspection videos using deep learning. Manual inspection of video footage is time-consuming, labor-intensive, and prone to subjectivity. Our goal is to streamline and standardize this process by developing an intelligent pipeline that can detect, localize, and assess defects automatically. The automation process is divided into three key phases: 
	1.
	1.
	1.
	 In the first phase, we use advanced image classification models to analyze individual frames extracted from culvert inspection videos. These models are trained to identify frames that show visible signs of damage, such as cracks, joint misalignments, corrosion, or surface deformation. This step effectively filters out non-defective frames, allowing the system to focus on areas that actually require further analysis, thereby improving efficiency and reducing processing time.  

	2.
	2.
	 Once defective frames are identified, they are passed through object detection models. These models are trained on a curated dataset of annotated images containing various types of culvert defects. They are capable of not only locating defects within a frame 

	but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and deformation). This step provides both spatial and contextual information about each defect, which is essential for comprehensive analysis. 
	but also categorizing them into specific classes (e.g., crack/fracture, break/hole, and deformation). This step provides both spatial and contextual information about each defect, which is essential for comprehensive analysis. 

	3.
	3.
	 In the final phase, the localized and categorized defects are evaluated to determine their severity. This is done using advanced object detection models trained on a large dataset that is annotated based on UDOT’s culvert rating system. The model estimates factors such as defect color, shape, and texture, and assigns a condition rating based on learned patterns in the training data. These ratings can then be used to inform maintenance decisions and prioritize repairs. 


	To implement this pipeline, we utilize two main classes of deep learning algorithms: image classification and object detection. Image classification models are used in the first phase to detect frames likely to contain defects, while object detection models are employed to combine the second and third phases to precisely locate, label, and assess each defect. By automating the interpretation of culvert videos, this system promises to significantly enhance inspection accuracy, reduce human error, and streaml
	2.3 Image Classification 
	Image classification represents a fundamental computer vision task that involves categorizing entire images into predefined classes based on their visual content [13], [14]. In the context of culvert inspection, image classification can be employed to automatically determine the overall condition rating of culvert segments or to classify images based on the presence or absence of specific defect types. This approach differs from object detection in that it assigns a single label to the entire image rather t
	The image classification methodology typically employs Convolutional Neural Networks (CNNs) that learn hierarchical feature representations from training data. These networks progressively extract features from low-level edge and texture information to high-level semantic representations that enable accurate classification decisions [16]. For this project we developed two types of image classification models: 
	1.
	1.
	1.
	 A binary classification model which efficiently filters non-defective frames from culvert video footage. 

	2.
	2.
	 A multi-class classification model that assigns a condition rating (on a scale from 1 to 5) to each frame in the video footage, based on the severity level of identified defect categories. 


	We employed CNNs, such as ResNet and EfficientNet, which have demonstrated high performance in various image recognition tasks. These models are trained on a labeled dataset consisting of both defective and non-defective culvert frames. Through supervised learning, the model learns to distinguish visual patterns associated with defects such as cracks, joint separations, and corrosions. The output is a binary or multi-class label indicating whether a given frame should be flagged for further inspection. 
	The classification process begins with preprocessing steps, including image normalization, resizing, and potential augmentation to improve model robustness. CNN architecture processes these images through multiple convolutional layers, pooling operations, and fully connected layers to produce probability distributions across the target classes. Training involves optimizing the network parameters using labeled examples and validation on separate datasets to ensure generalization capability. Performance evalu
	2.4  Object Detection 
	YOLOv8 (You Only Look Once, Version 8) represents one of the latest iterations in the evolution of the YOLO family of real-time object detection models. Building on the strengths of its predecessors, YOLOv8 incorporates several architectural enhancements to achieve improved accuracy and speed in detecting and classifying objects within images and videos. At its core, YOLOv8 retains the fundamental principle of YOLO: treating object detection as a single regression problem, predicting bounding boxes and clas
	Recent developments in YOLO architecture have continued to push the boundaries of object detection performance. YOLOv11, released as an advancement over YOLOv8, introduces 
	enhanced feature pyramid networks and improved anchor-free detection mechanisms that provide better handling of multi-scale objects and reduced computational overhead [18]. The architecture incorporates advanced attention mechanisms and optimized backbone networks that significantly improve detection accuracy while maintaining real-time processing capabilities. 

	YOLOv12 represents the most recent iteration in the YOLO family, featuring revolutionary architectural improvements including dynamic head structures and advanced multi-scale fusion techniques. This version introduces novel training strategies and loss functions that enhance the model’s ability to detect small objects and handle complex scenes with multiple overlapping instances [19].. The model demonstrates superior performance in challenging scenarios common in infrastructure inspection, where defects may
	RF-DETR (Real-time DEtection TRansformer) represents a significant departure from traditional CNN-based detection approaches by employing transformer architectures for object detection tasks. This model leverages self-attention mechanisms to capture long-range dependencies and spatial relationships more effectively than conventional approaches. RF-DETR demonstrates strength in detecting complex defect patterns and spatial relationships that are crucial for accurate culvert condition assessment [20]. 
	The architecture of YOLOv8 (Figure 1) introduces key innovations that enhance its performance. One of the primary improvements is the incorporation of advanced CNN layers that optimize feature extraction. These layers are designed to capture more detailed spatial information, allowing the model to detect smaller objects and distinguish between closely spaced objects with greater precision. YOLOv8 also utilizes advanced activation functions and normalization techniques that enhance the model’s learning capab
	 
	Figure
	Figure 1-YOLOv8 architecture [21] 
	For training and testing our model, we employed a holdout cross-validation technique, wherein the dataset was divided into two distinct subsets: 70% for training, 20% for validation, and 10% for testing. This approach ensures that the model is trained on a substantial portion of the labeled data while reserving a separate set of data to evaluate its performance on unseen samples. By doing so, we can obtain a more accurate assessment of the model’s generalization capabilities and its ability to detect defect
	to prevent overfitting and provides a realistic measure of the model’s effectiveness in real-world scenarios, ensuring that it reliably performs when deployed in UDOT’s inspection processes [22]. For this project we developed two types of object detection models: 

	1.
	1.
	1.
	 An object detection model for detecting and localizing defect categories without rating scales. 

	2.
	2.
	 An object detection model for detecting, localizing, and classifying defects with rating scales 


	2.5 Data Augmentation 
	Data augmentation represents a critical technique in deep learning that artificially expands training datasets by applying various transformations to existing images while preserving their semantic content and class labels [6], [23]. In the context of culvert inspection, data augmentation serves multiple purposes: addressing dataset imbalances, improving model generalization, and enhancing robustness to variations in imaging conditions encountered during field inspections. The technique is particularly valu
	Common augmentation techniques applicable to culvert inspection include geometric transformations such as rotation, scaling, translation, and horizontal flipping, which help the model become invariant to different camera orientations and positions during inspection. Photometric augmentations, including brightness adjustment, contrast modification, color jittering, and noise addition, are essential for handling varying lighting conditions encountered in different culvert environments. More advanced technique
	The implementation of data augmentation requires careful consideration of the specific characteristics of culvert inspection imagery. For instance, excessive rotation may not be appropriate as culvert orientations are typically constrained, while brightness and contrast adjustments are crucial given the challenging lighting conditions often present in underground infrastructure [23]. To increase the size of our training dataset, we applied a diverse set of data 
	augmentation techniques to each original image, generating seven augmented outputs per example. The augmentations used are as follows: 

	•
	•
	•
	 Flip: Applied horizontal and vertical flips to introduce directional variability. 

	•
	•
	 90° Rotation: Included both clockwise and counter-clockwise 90-degree rotations to account for different viewing angles. 

	•
	•
	 Crop: Performed random cropping with a minimum zoom of 0% and a maximum zoom of 20% to simulate partial views of defects. 

	•
	•
	 Rotation: Applied random rotations ranging between -15° and +15° to account for slight camera tilts. 

	•
	•
	 Shear: Introduced horizontal and vertical shear transformations up to ±10° to mimic perspective distortion. 

	•
	•
	 Saturation Adjustment: Randomly varied image saturation between -25% and +25% to account for lighting differences and material surface changes. 

	•
	•
	 Brightness Adjustment: Modified brightness levels within a range of -15% to +15% to simulate varied lighting conditions. 

	•
	•
	 Exposure Adjustment: Altered exposure levels from -10% to +10% to reflect overexposed or underexposed footage. 

	•
	•
	 Blur: Added Gaussian blur with a maximum radius of 1.8 pixels to simulate motion blur or low focus. 

	•
	•
	 Noise: Introduced random noise affecting up to 0.22% of pixels to improve robustness against video compression artifacts. 


	These augmentations were carefully selected to preserve the semantic integrity of the defects while improving the model’s generalization to real-world variations in culvert inspection videos. 
	3.0  DATA COLLECTION 
	3.1  Overview 
	Collecting the necessary input data is the first crucial step in developing a robust deep learning model. For this project, we gathered extensive culvert video inspection data from UDOT’s database.  Then, we had to label the collected data to develop a deep learning model. Data labeling for object detection involves annotating images or videos by drawing bounding boxes around objects of interest and assigning a specific class to each box. This precise annotation allows the model to learn how to identify and
	3.2  Collected data 
	We collected four distinct categories of data for this project: zoom camera inspection videos, CCTV culvert inspection videos, culvert images taken by cell phone, and CCTV sewer pipe inspection images. These diverse data sources provided a comprehensive view of culvert conditions, capturing various perspectives and levels of detail. By utilizing these varied data types, we ensure that our model is trained on a rich dataset, enhancing its ability to accurately detect and assess a wide range of defects in dif
	3.2.1  Zoom Camera Inspection Videos 
	UDOT provided us with its available culvert inspection data, a vital resource for our deep- learning model development. A significant subset of this dataset consists of culvert inspection videos collected by Consor Company. Consor employed a method of video inspection using zoom cameras mounted on the ends of telescopic poles. This technique allows for a detailed examination of the culverts without the need for prior cleaning, which can save considerable time and resources. The zoom camera inspection provid
	 
	Figure
	Figure 2-Inspected culverts by Consor in Region One of Utah 
	For culvert inspection, Consor Company utilized the NASSCO rating system, which is comparable to UDOT’s hybrid rating system, eliminating the need for conversion between rating systems in this project. Out of the extensive dataset of culvert inspection, only 1094 inspection reports were available. Among these reports, approximately 22% indicated that the inspected culverts had no structural defects, further limiting the amount of data containing observable issues and reducing the number of samples useful fo
	We converted the video files into images. These images capture detailed visual information from the culvert inspections, providing a rich dataset for training our deep learning model. However, a critical step in utilizing these images is the annotation process. We meticulously annotated the defects in each image as part of data labeling, which is essential for training the model to accurately detect and classify defects. This labor-intensive process ensures that the model learns from high-quality, labeled e
	3.2.2  CCTV Culvert Inspection Videos  
	Another significant subset of culvert inspection data available in UDOT’s database comprises CCTV inspection video files collected by Horrocks Company, specifically from the culverts along the I-80 highway. We accessed this data through UDOT’s R2 culvert rating app website (Figure 3). This dataset includes 2000 data rows, but only 259 of these entries have corresponding video files. Among these 259 videos, merely 59 exhibit structural defects, providing a more focused dataset for our defect detection model.
	 
	Figure
	Figure 3-Inspected culverts by Horrocks along the I-80 highway 
	 
	The data collected by Horrocks Engineers utilized the old four-digit rating scale previously used by UDOT. To ensure consistency and compatibility with our model, we needed to convert these ratings to the new 5-point rating scale that UDOT currently employs. This conversion was necessary to standardize the data and make it suitable for training our deep learning model. The conversion process involved using a predefined table () to translate the old ratings into the new scale, ensuring that the defect severi
	Table 1
	Table 1


	Table 1-Data conversion 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 
	5-point rating scale 

	Four-digit rating scale 
	Four-digit rating scale 



	1 
	1 
	1 
	1 

	<1000 
	<1000 


	2 
	2 
	2 

	1000-1999 
	1000-1999 


	3 
	3 
	3 

	2000-2999 
	2000-2999 


	4 
	4 
	4 

	3000-3999 
	3000-3999 


	5 
	5 
	5 

	>=4000 
	>=4000 




	 
	3.2.3  Culvert Images Taken by Cell Phone 
	Another subset of data we collected consisted of culvert images taken by UDOT employees during their field visits. Recognizing that our initial dataset was unbalanced, with a risk of overfitting the model to specific defect classes, we needed to incorporate additional data to ensure a more comprehensive training set. To achieve this, we reached out to all UDOT employees, requesting that they share any culvert images they had captured in the field. This initiative resulted in the collection of 450 additional
	These images, however, had not been labeled with condition ratings or defect annotations. Therefore, as part of our data preparation process, we should assess each culvert image and assign a condition rating based on UDOT’s new hybrid culvert condition rating system. This meticulous labeling process is crucial for creating a high-quality dataset that accurately represents a wide range of culvert conditions and defects. 
	By integrating these additional images into our dataset, we aim to enhance the model’s ability to generalize across different defect types and conditions, reducing the likelihood of overfitting. The diverse and balanced dataset that results from this effort will provide a solid foundation for training our deep learning model, ultimately improving its accuracy and reliability in detecting and assessing culvert defects.  
	3.2.4 CCTV Sewer Pipe Inspection Images  
	The final type of data we collected consisted of images captured from inside sewer pipes. These images were extracted as frames from CCTV inspection videos and were sourced from three different repositories.  
	The first batch was obtained from the Roboflow website [26], which provided approximately 1,500 unlabeled images of sewer interiors. Since these images had no annotations, we manually labeled them using UDOT’s culvert defect rating system to ensure consistency with the rest of our dataset.  
	The second batch came from a former employee of AECOM, who shared a collection of 45,000 sewer pipe images labeled using the NASSCO defect rating system. However, only about 3,000 of these images contained visible structural defects. After further review and filtering to exclude defects irrelevant to culvert inspection, such as those found in pipes made from materials like vitrified clay, we narrowed this batch down to 591 usable images. To maintain a unified labeling scheme across all data sources, we conv
	The third batch was sourced from the Kaggle website and consisted of an augmented dataset of sewer pipe images. Initially, it contained 22,120 images, but after removing the augmented duplicates and retaining only the original frames, we were left with 5,530 annotated images. These images were labeled with six types of defects: Deformation, Obstacle, Rupture, Disconnect, Misalignment, and Deposition. Following a thorough review and the conversion of these labels into UDOT’s classification framework, this ba
	In total, these three sources contributed to a diverse and standardized dataset of sewer and culvert defect images, all aligned under the UDOT rating system to support robust training and evaluation of our defect detection models. 
	3.3 Data Labeling  
	In this project, our goal is to develop two types of supervised learning models specifically for classification and object detection. Supervised learning models require labeled data to learn meaningful patterns, but the type and complexity of labeling differ significantly between 
	classification and object detection tasks. Object detection models, such as YOLO, require detailed annotations, including bounding boxes around each object of interest and corresponding class labels. This makes the annotation process both time-consuming and labor-intensive. In contrast, supervised image classification models like ResNet and EfficientNet operate on labeled images without the need for precise localization. They simply require a label for the entire image, making the data preparation process c

	In this study, we approached the labeling process in stages, progressing from simpler to more complex tasks. We began by labeling images for a binary classification model, distinguishing between defective and non-defective culvert frames. This involved extracting individual frames from culvert inspection videos and manually assigning a binary label (defective and non-defective) to each (Figure 4).  
	 
	Figure
	Figure 4-Assigning a binary label to images 
	Next, we labeled the same dataset for a multi-class classification model, assigning specific defect labels (e.g., corrosion-3 or joint-5) to the images. In the development of our multi-class classification models, we designed a modular approach by creating five separate models, each specialized for a distinct category of structural defects commonly found in culvert inspections. This strategy allowed us to fine-tune each model for the unique visual characteristics and classification challenges associated wit
	For each of these categories, we curated a tailored subset of images from our dataset and applied class labels specific to the types of defects within that group. These class labels, along with the corresponding categories, are detailed in Table 3. This categorization not only enhanced the performance of each model by reducing label noise and inter-class confusion but also enabled 
	more targeted training and evaluation. By isolating defect types, we improved the models’ sensitivity to subtle variations within each defect class, leading to more reliable and interpretable classification outcomes in real-world culvert assessments. Since the number of images in some classes was very limited, we merged similar classes within each defect category to create a more balanced dataset. For example, in the corrosion category, we combined severity levels 2 and 3 into a single class labeled as "Cor

	Table 2-Multi-class labels by defect type and severity 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Break/Hole/ 
	Collapse/Kink 

	Corrosion 
	Corrosion 

	Crack/Fracture 
	Crack/Fracture 

	Deformation 
	Deformation 

	Joint Offset 
	Joint Offset 



	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 
	Non-bre-hol-col-kin-1 

	Non-corrosion-1 
	Non-corrosion-1 

	Non-crack-frac-1 
	Non-crack-frac-1 

	Non-deformation-1 
	Non-deformation-1 

	Non-joints-1 
	Non-joints-1 


	 
	 
	 

	Corrosion-2 
	Corrosion-2 

	Crack-Fract-2 
	Crack-Fract-2 

	Deformation-2 
	Deformation-2 

	Joints-2 
	Joints-2 


	 
	 
	 

	Corrosion-3 
	Corrosion-3 

	Crack-Fract-3 
	Crack-Fract-3 

	Deformation-3 
	Deformation-3 

	Joints-3 
	Joints-3 


	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 

	Corrosion-4 
	Corrosion-4 

	 
	 

	Deformation-4 
	Deformation-4 

	Joints-4 
	Joints-4 


	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 

	Corrosion-5 
	Corrosion-5 

	 
	 

	Deformation-5 
	Deformation-5 

	Joints-5 
	Joints-5 




	 
	Finally, for the object detection model, we annotated the frames with bounding boxes around visible defects and assigned each region a corresponding class label from Table 3. This structured, step-by-step annotation strategy allowed us to build and evaluate models of increasing complexity, leveraging the same video data across multiple learning tasks. 
	 
	3.3.1 Data Annotation with CVAT 
	To prepare our data for object detection, we need to go through a detailed annotation process. This involves labeling each image or video frame by drawing bounding boxes around the objects of interest, such as culvert defects, and assigning a specific class to each box. For instance, if a culvert image contains cracks, corrosion, or joint misalignments, each of these defects must be identified with a bounding box and labeled with the appropriate class. This precise annotation is crucial as it provides the m
	The labeling process must be thorough and consistent to ensure the model learns from high-quality examples. Each annotated image or video frame helps the object detection model understand the features and patterns associated with various defects. Once the model is trained, its performance will be evaluated on a labeled test set, which was not used during the training phase. This evaluation will help us measure the model’s accuracy in detecting and classifying defects, ensuring that it performs reliably on u
	For this task, we used CVAT a powerful open-source tool specifically designed for annotating image and video datasets [27]. Using CVAT’s user-friendly interface (Figure 4), annotators manually draw bounding boxes around each defect in the images or video frames. Each bounding box is labeled with the corresponding class. CVAT provided various tools to streamline the annotation process, such as auto-segmentation, interpolation for video frames, and copy-paste functions for repetitive objects.  
	 
	Figure
	Figure 5-CVAT’s interface during data labeling 
	For annotation, we utilized 16 distinct labels, as illustrated in Table 3, in accordance with UDOT’s culvert condition rating system. Once the annotation process was completed, the labeled data was exported in a format compatible with the specific model we want to use. CVAT supports various export formats, including YOLO’s native format. The exported annotations include the coordinates of the bounding boxes and the class labels for each object. 
	 illustrates the distribution of defects boxes across the 4863 labeled images. According to the table, it indicates that a significant portion of UDOT’s culverts are metal pipes afflicted with corrosion defects. This imbalance in our dataset reveals that certain defect types are underrepresented, with some labels appearing in fewer than 200 boxes. To address this issue, we have been actively working to augment our dataset by incorporating additional data. This effort aims to balance the representation of de
	Table 3
	Table 3


	Table 3-Distribution of defect boxes across labeled data 
	# 
	# 
	# 
	# 
	# 

	Defects  
	Defects  

	Box count 
	Box count 


	0 
	0 
	0 

	Bre-Hol-Col-Kin-4 
	Bre-Hol-Col-Kin-4 

	309 
	309 


	1 
	1 
	1 

	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 

	1333 
	1333 


	2 
	2 
	2 

	Corrosion-2 
	Corrosion-2 

	586 
	586 


	3 
	3 
	3 

	Corrosion-3 
	Corrosion-3 

	2803 
	2803 


	4 
	4 
	4 

	Corrosion-4 
	Corrosion-4 

	78 
	78 


	5 
	5 
	5 

	Corrosion-5 
	Corrosion-5 

	90 
	90 


	6 
	6 
	6 

	Deformation-2 
	Deformation-2 

	193 
	193 


	7 
	7 
	7 

	Deformation-3 
	Deformation-3 

	610 
	610 


	8 
	8 
	8 

	Deformation-4 
	Deformation-4 

	302 
	302 


	9 
	9 
	9 

	Deformation-5 
	Deformation-5 

	478 
	478 


	10 
	10 
	10 

	Crack-Fract-2 
	Crack-Fract-2 

	646 
	646 


	11 
	11 
	11 

	Crack-Fract-3 
	Crack-Fract-3 

	150 
	150 


	12 
	12 
	12 

	Joints-2 
	Joints-2 

	423 
	423 


	13 
	13 
	13 

	Joints-3 
	Joints-3 

	801 
	801 


	14 
	14 
	14 

	Joints-4 
	Joints-4 

	328 
	328 


	15 
	15 
	15 

	Joints-5 
	Joints-5 

	211 
	211 


	Sum 
	Sum 
	Sum 

	9341 
	9341 




	4.0  DATA EVALUATION & RESULTS 
	4.1  Overview 
	In this chapter, we will discuss the metrics used to evaluate our model’s performance, enabling us to predict how it will perform on unseen culvert video inspection data. We will also present and analyze the results obtained from these evaluations, providing insights into the model’s accuracy and reliability in real-world applications. 
	4.2 Evaluation Metrics 
	Evaluating the performance of computer vision models, particularly in the domains of object detection and image classification, requires the use of well-established quantitative metrics. These metrics allow researchers and practitioners to assess how well models generalize to unseen data, how accurately they recognize objects or classify images, and how their predictions align with ground-truth annotations. The primary evaluation metrics we used in this study are mean Average Precision (mAP), precision, rec
	 
	4.2.1 Confusion Matrix 
	The confusion matrix provides a granular view of the classification performance by showing how predictions are distributed across the actual class labels. Each row corresponds to the true class, and each column corresponds to the predicted class [28]. It highlights where the model is making errors, such as misclassifying one class as another, and is particularly useful for evaluating multiclass classification models. Figure 6 illustrates a confusion matrix, which presents and summarizes the difference betwe
	 
	 
	Figure
	Figure 6-Confusion matrix for binary classification 
	 
	4.2.2 Accuracy 
	Accuracy is the simplest and most intuitive metric, defined as the proportion of correct predictions among the total number of predictions [28]. While widely used in image classification tasks, accuracy alone can be misleading in the presence of class imbalance or when evaluating object detection tasks with multiple classes and varied object sizes. In object detection, accuracy is less frequently used in isolation, as it does not account for localization quality or multiple instances per image. 
	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
	Equation 1 
	 
	4.2.3 Precision and Recall 
	Precision measures how many of the predicted positive instances are actually correct, whereas recall measures how many of the actual positive instances the model was able to identify [29]. In object detection, precision and recall are often computed across multiple Intersection over Union (IoU) thresholds. A high precision indicates a low false positive rate, while a high recall reflects a low false negative rate. Balancing these two is crucial, especially in safety-critical applications where missed detect
	 
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
	Equation 2 
	𝑅𝑒𝑐𝑎𝑙𝑙= 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
	Equation 3 
	4.2.4 F1-Score 
	The F1-score is the harmonic mean of precision and recall. It provides a single metric that balances both concerns, particularly useful when class distribution is skewed or when both false positives and false negatives are costly [30]. For image classification, a high F1-score indicates that the model is not only accurate but also robust in handling both positive and negative predictions. 
	𝐹1 𝑆𝑐𝑜𝑟𝑒=2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
	Equation 4 
	4.2.5 Mean Average Precision ([19]) 
	To evaluate the performance of object detection models, we used mAP metric. MAP is a widely recognized performance measure in object detection tasks. It combines both precision and recall across different classes and thresholds, providing a comprehensive assessment of the model’s accuracy [21]. The formula (Equation 5) for mAP involves calculating the Average Precision (AP) for each class and then taking the mean of these AP values. AP is the area under the Precision-Recall curve for a given class. It can b
	AP=∑(𝑅𝑛−𝑅𝑛−1)𝑃𝑛𝑛 
	Equation 5 
	where  is the precision at the -th threshold and  is the recall at the -th threshold. MAP calculates the  for each class and then averages these values to give an overall score, effectively summarizing the model’s ability to correctly identify and localize defects in the culvert inspection images. Using mAP, we can ensure that our model not only detects defects accurately but also maintains a high level of reliability across various defect types. 
	𝑃𝑛
	𝑛
	Rn
	𝑛
	AP

	mAP=1𝑁∑AP𝑖𝑁𝑖 
	Equation 6 
	where  is the number of classes and  is the Average Precision for the  -th class. This metric is particularly useful in our context, as it helps ensure that our YOLOv8 model not only detects and localizes culvert defects accurately but also maintains consistent performance across different defect types, thereby validating the model’s robustness and effectiveness in real-world applications. 
	𝑁
	𝐴𝑃𝑖
	i

	MAP50, or Mean Average Precision at 50% Intersection over Union (IoU) threshold, is a specific metric used to evaluate the performance of object detection models. IoU is a measure used to quantify the accuracy of an object detector’s predicted bounding box with respect to the ground truth bounding box. It is calculated as the area of overlap between the predicted bounding box and the ground truth divided by the area of their union. In the context of mAP50, the model’s predictions are considered correct if t
	4.3  Results 
	To detect structural defects in culverts, we developed a YOLOv8 model using 34,390 labeled images. However, the initial results were unsatisfactory, as the model performed great in one class while overlooking others. This issue stemmed from the unbalanced nature of our dataset. Initially, we had 20 labels, but after annotating 77 videos, only ten labels were used. The distribution among these ten labels was also imbalanced. Figure 7 presents the normalized confusion matrix for this model, which indicates th
	 
	4.3.1 Classification 
	In this project, we developed and evaluated two types of image classification models. The first model type focused on binary classification, aiming to detect whether a given video frame contains a defect or not. To accomplish this, we experimented with four distinct image classification algorithms, which are summarized in Table 4. 
	 
	Table 4-Binary Classification Results 
	# 
	# 
	# 
	# 
	# 

	Model 
	Model 

	# Classes 
	# Classes 

	Accuracy 
	Accuracy 

	Precision 
	Precision 

	Recall 
	Recall 

	F1 score 
	F1 score 



	1 
	1 
	1 
	1 

	Yolov11 
	Yolov11 

	2 
	2 

	91% 
	91% 

	90.3% 
	90.3% 

	90.5% 
	90.5% 

	90.4% 
	90.4% 


	2 
	2 
	2 

	Resnet 50 
	Resnet 50 

	2 
	2 

	83% 
	83% 

	88% 
	88% 

	89% 
	89% 

	88% 
	88% 


	3 
	3 
	3 

	VGG + XGBoost 
	VGG + XGBoost 

	2 
	2 

	85% 
	85% 

	84% 
	84% 

	84% 
	84% 

	84% 
	84% 


	4 
	4 
	4 

	ConvNeXt 
	ConvNeXt 

	2 
	2 

	74% 
	74% 

	85% 
	85% 

	67% 
	67% 

	67% 
	67% 




	 
	Among the tested models, YOLOv11 consistently outperformed the others across all evaluation criteria. Specifically, YOLOv11 achieved the highest F1-score and accuracy, indicating its superior ability to correctly distinguish between defective and non-defective frames while maintaining a balanced trade-off between false positives and false negatives. 
	The performance advantage of YOLOv11 can be attributed to its robust feature extraction capabilities and optimized architecture, which proved especially effective in recognizing subtle defects within noisy or complex visual contexts. Given its reliability and efficiency, YOLOv11 was selected as the primary binary classifier for the first stage of the defect detection pipeline. 
	 
	 
	Figure
	Figure 7-Confusion matrix of Yolo model for binary classification 
	 
	Figure
	Figure
	Figure 8-Examples of Yolo model predictions (bottom images) and true labels (top images) for a batch of testing set 
	In the next phase of this research, the focus shifted from binary classification to a more detailed analysis of pipe conditions through multiclass image classification models. The goal was to not only detect whether a frame was defective but also to classify the type of defect present in the image. To facilitate this, we identified and defined five major structural defect categories commonly observed in Utah’s culvert inspection records 
	Each major defect category encompassed multiple specific defect classes, allowing for a more granular understanding of structural issues (). After defining the categories, we proceeded to annotate a large dataset of images, assigning each image to its appropriate class within a category. By training separate models per category, we aimed to improve model focus, reduce confusion between dissimilar classes, and ultimately enhance classification performance within each defect group. 
	Table 2
	Table 2


	To implement this multiclassification framework, we employed two state-of-the-art deep learning models: YOLOv11 and EfficientNet. These models were selected for their strong performance in prior image classification tasks and their architectural ability to generalize across diverse visual inputs. YOLOv11 provided fast and accurate real-time inference, while EfficientNet offered high accuracy with optimized computational efficiency through compound scaling. 
	The performance of both models was evaluated independently across each defect category using standard metrics, including accuracy, precision, recall, and F1-score. The results, summarized in  Findings demonstrate how each model performed within the context of the structural defect classification, offering insight into the strengths and weaknesses of each approach across different types of culvert anomalies. Due to class imbalance in the dataset, we merged the original five or three classes within each categ
	YOLOv11, meanwhile, also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories compared to EfficientNet but slightly more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision across categories and YOL
	YOLOv11, meanwhile, also demonstrated strong performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). It showed improved recall in several categories compared to EfficientNet but slightly more fluctuation in precision. Notably, in the Break/Hole/Collapse/Kink category, YOLOv11 achieved 81% accuracy with 66% precision and 76% recall, leading to a respectable F1-score of 68%. Overall, both models performed well, with EfficientNet exhibiting more consistent precision across categories and YOL


	EfficientNet achieved high accuracy across all categories, with its best performance in Corrosion (96% accuracy) and Crack-Fracture (94% accuracy). However, the model showed relatively lower performance in Deformation and Joints, both recording F1-scores around 61–63%, likely due to the visual similarity of these defects or fewer training samples. YOLOv11, on the other hand, demonstrated strong results in Corrosion as well (96% accuracy) and slightly better recall for Crack-Fracture than EfficientNet (81% v
	Table 5-Results of multiclassification models 
	Model 
	Model 
	Model 
	Model 
	Model 

	Defect 
	Defect 

	Accuracy 
	Accuracy 

	Precision 
	Precision 

	Recall 
	Recall 

	F1 Score 
	F1 Score 



	EfficientNet 
	EfficientNet 
	EfficientNet 
	EfficientNet 

	Crack-Fracture 
	Crack-Fracture 

	94% 
	94% 

	79% 
	79% 

	68% 
	68% 

	72% 
	72% 


	TR
	Break-Hole-Collapse-Kink 
	Break-Hole-Collapse-Kink 

	83% 
	83% 

	76% 
	76% 

	74% 
	74% 

	75% 
	75% 


	TR
	Corrosion 
	Corrosion 

	96% 
	96% 

	84% 
	84% 

	70% 
	70% 

	73% 
	73% 


	TR
	Deformation 
	Deformation 

	79% 
	79% 

	61% 
	61% 

	60% 
	60% 

	61% 
	61% 


	TR
	Joints 
	Joints 

	77% 
	77% 

	64% 
	64% 

	62% 
	62% 

	63% 
	63% 


	YOLOv11 
	YOLOv11 
	YOLOv11 

	Crack-Fracture 
	Crack-Fracture 

	94% 
	94% 

	72% 
	72% 

	81% 
	81% 

	75% 
	75% 


	TR
	Break-Hole-Collapse-Kink 
	Break-Hole-Collapse-Kink 

	81% 
	81% 

	66% 
	66% 

	76% 
	76% 

	68% 
	68% 


	TR
	Corrosion 
	Corrosion 

	96% 
	96% 

	81% 
	81% 

	87% 
	87% 

	83% 
	83% 


	TR
	Deformation 
	Deformation 

	78% 
	78% 

	59% 
	59% 

	60% 
	60% 

	59% 
	59% 


	TR
	Joints 
	Joints 

	81% 
	81% 

	61% 
	61% 

	69% 
	69% 

	64% 
	64% 




	 
	4.3.2 Object Detection 
	In the next phase of the project, we extended our analysis by developing an object detection model aimed at localizing and classifying structural defects within individual video frames. Unlike the classification models used in previous stages, which only provided global labels for entire images, object detection allows for precise identification of the location, extent, and type of each defect present in a frame. This level of granularity is essential for implementing Utah’s culvert rating system, which rel
	To train the detection models, we manually annotated thousands of frames by drawing bounding boxes around visible structural defects and assigning each box a corresponding class label, as defined in Table 3. These annotations served as the ground truth for model training and evaluation. However, due to significant class imbalance in the original structural defect labels, where some defect types were vastly underrepresented, we applied a similar label merging strategy used in the multiclass classification ph
	For model development, we implemented and tested two object detection architectures: YOLOv11 and YOLOv12, both of which are advanced versions of the YOLO family known for their real-time inference speed and accuracy. These models were trained and evaluated on the annotated dataset using standard object detection metrics such as mAP. The detailed performance results of the YOLOv12 model across the merged defect categories are presented in Table 7. These findings provide valuable insight into the models’ abil
	 
	 
	 
	 
	 
	 
	Table 6-Results of object detection models 
	Model 
	Model 
	Model 
	Model 
	Model 

	defects 
	defects 

	Precision 
	Precision 

	Recall 
	Recall 

	Model performance (mAP) 
	Model performance (mAP) 



	YOLOv12 
	YOLOv12 
	YOLOv12 
	YOLOv12 

	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 



	 

	89.1% 
	89.1% 

	68.9% 
	68.9% 

	80.3% 
	80.3% 


	TR
	Joints-3 
	Joints-3 

	84% 
	84% 

	77.5% 
	77.5% 

	83.8% 
	83.8% 


	TR
	Joints-5 
	Joints-5 

	87% 
	87% 

	87.9% 
	87.9% 

	91.6% 
	91.6% 


	TR
	Corrosion-3 
	Corrosion-3 

	88.7% 
	88.7% 

	47.1% 
	47.1% 

	68.8% 
	68.8% 


	TR
	Corrosion-5 
	Corrosion-5 

	90.9% 
	90.9% 

	66.7% 
	66.7% 

	79.3% 
	79.3% 


	TR
	Deformation-3 
	Deformation-3 

	82.4% 
	82.4% 

	44.3% 
	44.3% 

	63.3% 
	63.3% 


	TR
	Deformation-5 
	Deformation-5 

	94% 
	94% 

	71.9% 
	71.9% 

	84.4% 
	84.4% 


	TR
	Crack-Fract-3 
	Crack-Fract-3 

	84.5% 
	84.5% 

	60.8% 
	60.8% 

	75.1% 
	75.1% 


	TR
	All 
	All 

	87.6% 
	87.6% 

	65.6% 
	65.6% 

	78.3% 
	78.3% 


	YOLOv11 
	YOLOv11 
	YOLOv11 

	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 
	Bre-Hol-Col-Kin-5 



	 

	89.5% 
	89.5% 

	48.9% 
	48.9% 

	69% 
	69% 


	TR
	Joints-3 
	Joints-3 

	86.2% 
	86.2% 

	56.1% 
	56.1% 

	71.8% 
	71.8% 


	TR
	Joints-5 
	Joints-5 

	89.9% 
	89.9% 

	74.8% 
	74.8% 

	82.9% 
	82.9% 


	TR
	Corrosion-3 
	Corrosion-3 

	96.8% 
	96.8% 

	25.2% 
	25.2% 

	61% 
	61% 


	TR
	Corrosion-5 
	Corrosion-5 

	83.3% 
	83.3% 

	66.7% 
	66.7% 

	78.4% 
	78.4% 


	TR
	Deformation-3 
	Deformation-3 

	75% 
	75% 

	11.4% 
	11.4% 

	42.4% 
	42.4% 


	TR
	Deformation-5 
	Deformation-5 

	94% 
	94% 

	51.6% 
	51.6% 

	73.1% 
	73.1% 


	TR
	Crack-Fract-3 
	Crack-Fract-3 

	87.9% 
	87.9% 

	37.9% 
	37.9% 

	63.7% 
	63.7% 


	TR
	All 
	All 

	87.8% 
	87.8% 

	46.6% 
	46.6% 

	67.8% 
	67.8% 




	 
	 
	Figure
	Figure 9-Normalized confusion matrix for the YOLOv12 model  
	 
	Figure
	Figure
	Figure 10-Examples of YOLOv12 model predictions (bottom images) and true labels (top images) for a batch of testing set 
	 
	4.3.3 Graphical User Interface 
	To enable the practical use of the developed models by UDOT, we designed and implemented graphical user interfaces (GUIs) tailored to each type of model developed in this project. These GUIs are intended to provide a user-friendly experience for UDOT staff, allowing them to run complex video analysis tasks on culvert inspection footage without requiring programming knowledge. By simply launching the application on a laptop, a UDOT employee can import inspection videos and receive meaningful outputs, dependi
	Each GUI is specifically designed to align with the function and workflow of its corresponding model type, resulting in slightly different user experiences and outputs across the three interfaces. The first GUI is built for the binary classification model. In this interface, the user imports a culvert inspection video and selects an output directory. The model then automatically processes the video and filters out all frames identified as defective. These defective frames are saved in the designated output 
	 
	Figure
	Figure 11-Binary classification-GUI 
	 
	The second GUI is designed for the multiclass image classification models, which categorize detected defects into specific types. Upon launching the interface, the user inputs a culvert inspection video and designates a path for the output text file. Once the "Start Analysis" button is clicked, the system begins processing the video frame by frame. Each frame is classified by the trained multiclass model into one of several defect categories. The GUI employs a rule-based logic to track consistency in predic
	 
	 
	Figure
	Figure 12-Multiclassification-GUI 
	 
	The third GUI functions similarly to the second, but it is built around the object detection model. After importing the inspection video and specifying the output file location, the user starts the analysis process. The object detection model processes each video frame in real time, detecting and localizing structural defects by drawing bounding boxes around them. These boxes are labeled according to the predicted defect category. Similar to the multiclass classification GUI, if the model detects boxes of t
	 
	 
	Figure
	Figure 13-Object detection-GUI 
	 
	To evaluate the performance of both the Multiclassification-GUI and the Object Detection-GUI, we tested them on a set of 56 real-world culvert inspection videos provided by UDOT. These videos were previously assessed by inspectors, serving as a reliable benchmark for validation. Each GUI was used to independently analyze the videos and predict the overall condition of the culvert based on its trained model logic and output aggregation rules. 
	The results were highly promising, especially for the Object Detection-GUI, which correctly predicted the condition of 46 out of 56 videos, resulting in an accuracy of approximately 84%. This demonstrates the model’s strong capability to localize and interpret structural defects with high reliability. In comparison, the Multiclassification-GUI achieved 42 correct predictions, corresponding to a 75% accuracy. While slightly less accurate, the multiclassification approach still provided valuable insights and 
	Importantly, in most of the cases where the Object Detection-GUI failed to predict the correct condition, the model tended to be conservative, flagging defects where none were present according to human reviewers. This conservative bias may be preferable in certain safety-critical applications, as it prioritizes caution over risk. These misclassifications typically arose from subtle image features or lighting artifacts that resembled true defects, prompting the model to issue a higher severity rating than n
	Overall, the evaluation demonstrates the potential of these automated tools to streamline the inspection process, reduce subjectivity in condition assessments, and significantly save time, labor, and costs in culvert management. By automating defect recognition and condition rating from video footage, these GUIs can help prevent infrastructure failures and prioritize maintenance more effectively, especially in high-volume inspection workflows where manual review is impractical. 
	 
	 
	 
	 
	 
	 
	 
	5.0  CONCLUSIONS 
	5.1  Summary 
	This chapter will discuss the conclusions obtained following the development of our computer vision models, showcasing their effectiveness. Additionally, we will discuss any limitations or challenges encountered during the research process, providing a comprehensive evaluation of the model’s capabilities and areas for improvement. 
	To address the challenges associated with traditional culvert inspections in Utah, we proposed leveraging novel computer vision algorithms to enhance the interpretation of culvert inspection videos. This approach aims to significantly reduce the time and resources spent on manual interpretation, offering a more efficient and accurate alternative. To achieve this, we utilized the available culvert inspection videos and images from UDOT’s database, labeled them using CVAT, and developed different computer vis
	5.2  Findings 
	We started with a limited dataset of culvert inspection videos, which posed challenges for training reliable models. To address this, we expanded the dataset through additional video collection and data augmentation, enabling better model generalization and supporting the development of a multi-stage classification and detection framework. 
	The first model implemented was a binary classification model, designed to distinguish between defective and non-defective frames. Despite the limited initial data, the model achieved an impressive 91% accuracy, demonstrating its reliability in filtering out defective frames for further analysis. Building upon this, we developed a set of multiclass image classification models, each focused on categorizing specific types of structural defects. The best-performing model reached a 96% accuracy, while the least
	To gain spatial insight into the location and extent of defects, we developed an object detection model trained on annotated bounding box data. The final model achieved an average mAP of 78% across all defect classes. This performance indicates that the model not only classifies but also localizes defects with reasonable accuracy, providing detailed input for downstream culvert condition assessment.  
	The true effectiveness of the system was validated through testing on 56 real inspection videos. The object detection model correctly identified the condition of 84% of the culverts, confirming its practical viability for deployment. This result illustrates the potential of automated video analysis tools to support infrastructure inspection workflows, reduce subjectivity, and significantly improve efficiency in defect detection and rating. 
	Overall, the system demonstrates a successful progression from a small, constrained dataset to a fully functional, real-world application capable of assisting UDOT engineers in efficiently assessing culvert conditions. With further refinement and expansion, such tools hold strong promise for broader application across transportation infrastructure monitoring. 
	5.3  Limitations and Challenges 
	While the study produced robust results, several limitations and challenges were encountered: 
	•
	•
	•
	 One of the primary challenges was the initial lack of sufficient labeled data. Although the dataset was expanded through additional data collection and augmentation, certain defect classes remained underrepresented. This class imbalance affected the training of both multiclass classification and object detection models, particularly in categories like Deformation, where performance metrics were lower due to fewer high-quality samples. 

	•
	•
	 Manual annotation of structural defects, especially bounding boxes in object detection, requires domain expertise and is prone to human error or inconsistency. Variation in how defects were labeled or categorized across frames may have impacted model training and evaluation. Inconsistent annotation boundaries or overlapping defect types also introduced noise into the dataset. 

	•
	•
	 Some structural defects, such as hairline cracks, subtle deformations, or joint displacements, are visually challenging to detect due to poor lighting, motion blur, or low resolution in inspection videos. These subtle visual cues often led to false negatives or incorrect classifications, especially in low-contrast or noisy frames. 

	•
	•
	 Users with limited hardware may experience slower inference times. 


	Despite these challenges, this research demonstrates the strong potential of computer vision and AI as transformative tools for automating culvert inspection in Utah. The success of the developed models, even under constrained conditions, highlights the feasibility of integrating AI-driven solutions into infrastructure maintenance workflows. Future work could explore the use of Vision-Language Models (VLMs), which may further simplify the process by enabling defect detection and condition assessment through
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	APPENDIX A:  UDOT’s PIPE DEFECT RATING SHEETS 
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