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Executive Summary

Additive Manufacturing (AM), or 3D printing, is revolutionizing industries by enabling flexible and
efficient production processes. In engineering and architecture, it facilitates the rapid and
economical creation of complex designs, offering transformative potential for infrastructure
development. Engineered Cementitious Composites (ECC), known for their high ductility, crack
control, and strain-hardening behavior, emerge as promising material for 3D printing civil
infrastructure. Fiber-reinforced ECC, in particular, enhances structural capacity, durability, and
resilience.

However, the exposure of 3D-printed ECC elements to ambient environmental conditions poses
significant challenges, especially in arid regions like New Mexico. Low humidity can hinder
hydration, weaken mechanical properties, and reduce durability. To address these challenges,
this study investigates the feasibility of internal curing using lightweight aggregates (LWA) in 3D-
printed ECC to ensure proper hydration and moisture distribution, thereby enhancing
mechanical performance and crack resistance. Two ECC mixes were developed: a control mix
(S50-CT) and a pumice-modified mix (S50-P30). River sand was partially replaced with 30%
natural pumice for internal curing, while cement was replaced with 50% slag, which is a
byproduct of steel production. Polyethylene (PE) fibers were incorporated at 2% by volume to
improve ductility. The LWAs were presoaked for 24 hours to optimize their moisture content.
Specimens were 3D-printed and subjected to curing under different relative humidity conditions,
with mechanical performance tested at 28 days.

Flowability results indicated that the inclusion of slag, methylcellulose, and PE fibers reduced
flowability, which enhanced the demand for water content; initially, a W/B ratio of 0.27 was
selected, which was increased to 0.31 to achieve the required flow. An extrudability test was
performed on the zigzag pattern to evaluate the printed filament's printing quality and shape
retention. Results indicated that the inclusion of PE fibers at 2% volume reduced the printing
quality but increased the shape retention of the printed filament, and the width of the printed
filament was close to the designed width of the filament. Buildability test results showed that
S50-CT had 18 layers stacked compared to S50-P30, which had 16. This can be attributed to
the absence of presoaked lightweight aggregates. In contrast, in S50-P30, the moisture content
is higher due to the presence of presoaked lightweight aggregates, which reduced the static
yield stress and ultimately reduced the buildability. In low relative humidity, both the mixes
showed a reduction in compressive strength, highlighting the effect of environmental conditions
on the curing and hydration. S50-P30 showed promising mechanical results at lower relative
humidity than the controlled specimen, confirming the presence of internal curing mechanisms,
preventing moisture loss and ensuring continuous hydration under dry environmental conditions.
S50-P30 at RH-75% demonstrated better compression strength results than S50-CT at RH-
100%, which also complements the internal curing process in a dry environment. In terms of
flexural strength, both the mixes showed a similar initial linear elastic response, even though the
peak load for both the mixes is comparable, suggesting that both mixes have the same flexural
capacity before significant cracking occurs. After the post-peak, S50-CT drops the load sharply,
followed by smaller peaks exhibiting brittle behavior, poor crack bridging capacity, reduced
ductility, and limited energy absorption. In the case of S50-P30, the post-peak load drops
gradually and shows a smoother curve. This indicates that crack bridging capability has
improved, and energy dissipation has increased. S50-P30 sustained larger deformations than
S50-CT due to the enhanced internal curing, which improved its microstructure integrity,
ductility, resistance to the crack, and toughness. S50-P30 demonstrated superior compressive
and flexural strength compared to S50-CT, showcasing the effectiveness of internal curing



mechanisms in maintaining hydration and increasing durability. S50-CT showed higher
buildability but lacked the mechanical benefits provided by internal curing.

This study underscores the potential of internal curing with lightweight aggregates to overcome
hydration challenges in 3D-printed ECC. By advancing novel 3D printing technologies and
durable material solutions, this research lays the groundwork for constructing durable, high-
performance infrastructure in arid regions, contributing to the future of transportation
construction.



Chapter 1. Introduction

Additive Manufacturing (AM), commonly known as 3D printing, has been hailed as the next
industrial revolution due to its potential for flexible and efficient production of industrial products.
In the context of engineering and architecture, 3D printing allows for the economical and rapid
creation of complex representational models during the design phase. Engineered Cementitious
Composites (ECC) emerge as a promising material for 3D printing infrastructure, showcasing
high ductility, narrow crack width, and a unique strain-hardening behavior akin to metals. ECC's
implementation, particularly the fiber-reinforced variant, is expected to enhance structural
capacity, durability, and resilience in 3D-printed civil infrastructure.

However, the exposure of 3D-printed elements to the ambient environment poses a challenge,
potentially leading to improper hydration and weaker materials, especially in low-humidity
regions like New Mexico. To address this concern, this project explored internal curing to ensure
proper hydration and moisture distribution within the concrete, thereby improving durability and
reducing cracking.

Problem Statement

The primary issue addressed in this project is the potential weakening of 3D-printed ECC
structures due to inadequate hydration caused by exposure to the ambient environment,
especially in dry regions like New Mexico. The project recognized this challenge and aimed to
investigate the feasibility of using internal curing to enhance the durability of 3D-printed ECC
materials on a small scale. The ultimate goal is to adapt novel 3D printing technology for the
future of transportation construction, emphasizing enhanced mechanical performance in arid
conditions.

Research Objectives

The research approach involves several technical objectives:

1. Advance innovative manufacturing techniques, including 3D printing, in transportation
infrastructure projects in low-humid regions.

2. Modify ECC mixes developed by the Pl team to enhance their mechanical and durability
performance by incorporating internal curing agents, specifically lightweight aggregates.
A 50% weight substitution of cement with suitable byproduct alternatives (slag) was
implemented.

3. Investigate the effect of different types (local NM pumice) and contents of internal curing
agent at 30% substitution for normal weight aggregates on the performance of ECC for
transportation infrastructure.

4. Ensure printable ECC mixes performance by thoroughly examining fresh properties like
water content, extrudability, and buildability for 3D printing by 3D printing a zigzag
pattern and wall.

5. Assessing the feasibility of designing an ECC mix suitable for 3D printing infrastructure
in arid conditions. This was achieved by evaluating mechanical properties, including
compressive and flexural, across three distinct curing regimes. The goal is to establish
an ECC composition demonstrating robust mechanical performance and durability within
dry environments, enhancing its suitability for 3D-printed infrastructure applications.

6. Explore utilizing locally available NM pumice to enhance the economic viability of the
3D-printing process and the ECC used in transportation infrastructure projects.



Chapter 2. Literature Review

Engineered Cementitious Composites (ECC)

ECC falls within the broader category of fiber-reinforced concrete (FRC) (Zafar et al., 2023a), as
it incorporates fibers within a cementitious matrix. When subjected to tensile loads, FRCs
typically show tension-softening behavior, where cracks appear and progressively widen as the
load resistance capacity diminishes. For both regular concrete and FRC, the elastic limit is
typically approached at approximately 0.01%. A relatively more recent type of material, Ultra-
High-Performance Concrete (UHPC), is characterized by optimized gradation of granular
constituents, highlighting high compressive strength (exceeding 150 MPa) and the ability to
maintain post-cracking tensile strength of 5 MPa. Generally, UHPC exhibits a tensile
deformation capacity of 0.2% or less (Figure 1) (Biyani et al., 2020).

In contrast, The ECC material family is characterized by its ductility, with a tensile strain
capacity that typically exceeds 2%. (Figure 1) (Li, 2003). The design philosophy behind ECC
remarkably differs from that of high-strength concrete (HSC) or UHPC. While HSC and UHPC
are designed based on dense packing of particles, ECC's material microstructure is intentionally
adjusted to foster synergistic interactions among its microstructural components. This approach,
called micromechanics of ECC, involves deliberately engineering the fiber, matrix, and
fiber/matrix interaction in a specific manner when subjected to load. The emphasis on this
design principle is the rationale behind its name, Engineered Cementitious Composites
(Sahmaran et al., 2009).

The fundamental objective of ECC's design is to address a critical limitation present in traditional
concrete, specifically its limited capacity for tensile deformation. Consequently, ECC shows a
stress-strain relationship more reminiscent of metallic materials, featuring a distinct "yield"
strength followed by tensile strain-hardening behavior. During this phase, the stress-strain
relationship is represented by a straight line with a slope lower than the elastic modulus, marked
by multiple load drops whose magnitude depends on the specific ECC variant. This
characteristic has led to ECC being termed Strain-Hardening Cementitious Composites
(SHCC), emphasizing its nearly bi-linear relationship between tensile stress and strain and its
applicability in structural design (Li et al., 2020).

The tensile ductility of ECC, denoting its deformation capacity at peak strength, is typically two
orders of magnitude greater than that of regular concrete. Its compressive strength varies,
ranging from a few MPa, as seen in fire-resistant, highly insulative ECC designed for steel
protection, to exceeding 200 MPa in ultra-high-strength ECC engineered for impact loading
(Figure 1). illustrates the tensile stress-strain relationship for these two ECC types, showcasing
their distinctive characteristics. The deformability and propensity for multiple cracking in ECC
are depicted in Figure 2. ECC places a strong emphasis on tensile ductility with the goal of
supporting infrastructure resilience and durability by mitigating fracture failures.
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Figure 1. Tensile curves of Normal strength and High strength ECC and UHPC (Biyani et
al., 2020)

Figure 2. High Deformability of ECC under a) bending load and b) direct tension (Biyani et
al., 2020)

3D Printing of Engineered Cementitious Composites

Additive manufacturing, also known as 3D printing, according to the definition by ASTM
Committee F42 (ASTM Committee F42 on Additive Manufacturing Technologies, 2009),
involves the layer-by-layer fabrication of an object or component based on a 3D computer-aided
design. Integrating innovative technologies like 3D printing has transformed the construction
industry by enabling the direct creation of intricate and complex geometries through printing,
eliminating the need for traditional formwork methods. Compared to conventional construction
approaches, additive manufacturing presents several benefits, including expedited construction
processes, reduced labor demands, safer working conditions, and minimized material waste
(Sedghi et al., 2023).

Despite three decades of 3D printing technology in construction, various challenges remain to
be addressed to fully unlock its potential in structural printing. Some of these highlighted
limitations include modifying the properties of 3D printable cementitious materials through
admixtures and additives, ensuring the durability of printed concrete, exploring 3D printing of
fiber-reinforced concrete, and addressing the incorporation of reinforcement during the printing
process (Robayo-Salazar et al., 2023).



A major challenge impeding the widespread acceptance of concrete 3D printing in civil
infrastructure lies in the complexity of incorporating reinforcement into printed structural
elements to ensure robust performance under various loading conditions. The conventional
method of reinforcing materials is unsuitable for 3D-printed materials, necessitating essential
material and reinforcement strategy modifications to make 3D printing a viable construction
practice.

To reinforce 3D-printed cementitious materials, pre- and post-installation of prefabricated steel
rebars and reinforcement is one approach. However, it restricts nozzle movement during
printing and lacks full automation for the entire construction process. In contrast, incorporating
fiber reinforcement into the fresh concrete mixture during printing is deemed more compatible
and practical for 3D printing technology. Therefore, a self-reinforced ECC mixture with superior
properties emerges as a novel candidate for 3D printing construction, aiming to enhance the
ductility (softening) and tensile capacity (hardening) of 3DPC elements through the in-process
reinforcement technique (Zafar et al., 2023a). However, adjustments in the fresh characteristics
of the ECC mixture are necessary to meet the requirements for 3D printing.

Internal curing and 3D Printing of ECC

Concrete 3D printing represents an innovative formwork-free construction method wherein
printable materials are extruded through a nozzle and stacked in successive layers. In
comparison to conventional concrete casting, this technique offers significant advantages,
including high automation, enhanced construction safety, and reductions in time, formwork, and
labor costs (Wang et al., 2020). However, the absence of formwork protection exposes 3D-
printed concrete (3DPC) to moisture loss both during the printing process and after deposition.

Environmental conditions, like hot climate, high wind speed and low relative humidity (RH), can
intensify moisture evaporation from the surface of concrete during and after printing(Gerrit M.
Moelich et al., 2020)(Li et al., 2020). The extensive exposed area of 3DPC facilitates the
outward movement of internal moisture, hindering the hydration reaction of cement and resulting
in insufficient hydration products to fill the pores. Consequently, the mechanical properties of
3DPC decline due to increased porosity and coarse pores (Ma et al., 2022).

Apart from water evaporation post-deposition, evaporation during printing also impacts the bond
properties between consecutive layers (Chen et al., 2020). Moisture evaporation becomes more
pronounced with longer time intervals between layers, reducing interlayer bond strength and
overall mechanical properties of 3DPC (Van Der Putten et al., 2021). Studies have shown a
significant decrease in interlayer bond strength (47.7%) with increased printing time intervals
(Sanjayan et al., 2018).

The higher stiffness of the printed material, combined with prolonged printing intervals,
introduces pores and flaws into the printed filaments (Nerella et al., 2019). Following deposition,
the absence of formwork increases the exposed area, amplifying the adverse effects of ambient
environmental conditions on the mechanical properties of the printed material (Soja et al.,
2020).

Bendable concrete is different from traditional concrete as it has very low W/CM to satisfy ECC's
micromechanics and interface properties. Increased W/CM reduces the concentration of binder
particles, resulting in loose microstructure and weak interfacial bonding (Kong et al., 2003),
which will result in low fiber bridging stress and low tensile capacity in terms of strength as well
as strain. High W/CM also decreases the plastic viscosity of ECC, resulting in poor fiber



distribution. Therefore, because of the low W/CM (less than 0.30), one of the major challenges
with bendable concrete is its tendency to undergo early-age cracking resulting from enhanced
autogenous shrinkage that may affect the durability properties of the ECC (Sahmaran et al.,
2009). Due to the dense microstructure of the ECC, water transportation is hindered from the
surface to the core of the ECC; therefore, external curing methods are ineffective in eliminating
early-age cracking (D. P. Bentz et al., 1999).

An effective way to control this issue is the use of pre-wetted lightweight aggregates (LWA) as
internal curing water storage (H. K. Kim et al., 2018; Sahmaran et al., 2009). According to the
American Concrete Institute (ACI), the definition of internal curing is "supplying water throughout
a freshly placed cementitious mixture using reservoirs, via pre-wetted lightweight aggregates,
that readily release water as needed for hydration or to replace moisture lost through
evaporation or self-desiccation" (Jason Weiss, Dale Bentz, Anton Schindler, 2012). Figure 3
compares concrete's external and internal curing using presoaked lightweight aggregates
(LWA) (J. Yang et al., 2024). To maintain the relative humidity in the matrix and alleviate the
autogenous shrinkage, internal curing is considered the most effective technique (Liu et al.,
2017; Mechtcherine et al., 2013; Schroefl et al., 2017; L. Yang et al., 2021).

Cement matrix . Aggregates Internal curing agents

External water Curing area

Figure 3. Conventional and Internal Curing of Concrete (J. Yang et al., 2024)

When the moisture inside the capillary pores is slowly consumed during the hydration process,
resulting in increased capillary pressure and a drop in relative humidity, then water stored in the
internal curing agent is released under the relative humidity gradient formed due to the
difference of pore size of internal curing agent (larger pores) and capillary pores (smaller pores).
Water transportation is also promoted due to the difference in capillary pressure between the
internal curing agent and concrete matrix (L. Yang et al., 2021). By adding the internal curing
agents, the meniscus radius can be increased, reducing the capillary pressure and reducing the
driving force that causes shrinkage. The released water migration distance in the hardening
concrete and the water absorption/desorption behavior of internal curing agents have significant
effects on internal curing (D. P. Bentz et al., 1999; J. H. Kim et al., 2018; Semion Zhutovsky et
al., 2004).

Internal curing agents are broadly classified into two categories based on their water absorption
method. The first type of internal curing agent absorbs water through physical capillary forces,
such as rice husk ash, zeolite, perlite, expanded shale, expanded glass, pumice and recycled
aggregates, which are porous materials. Because of their low cost and easy availability,
lightweight aggregates are the most common internal curing agents from the first type (Liu et al.,



2017). The second type of internal curing agents are superabsorbent polymers (SAPs), which
can absorb and retain water up to a hundred times their self-weight. SAP's water absorption
mechanism is through van der Waal forces or hydrogen bonds (J. Yang et al., 2024). When
SAPs release retained water, that reduces capillary pressure, ultimately causing a reduction in
plastic shrinkage and crack severity. Similarly, it increases internal relative humidity and causes
a reduction in autogenous shrinkage during self-desiccation. The premature release of water
from SAPs can result in a drop of mechanical strength because of increased W/C. However, In
3D printed concrete (3DPC), the inter layer bond strength can be enhanced by the increased
surface moisture or by the reduction of differential shrinkage strain (G. M. Moelich et al.,
2022)(Gerrit Marius Moelich et al., 2021). The buildability of 3DPC can be improved significantly
through SAPs by absorbing free pore water after extrusion (Gerrit Marius Moelich et al., 2021).

Several studies have reported that replacing normal aggregates with presoaked lightweight
aggregates as an internal curing agent has effectively mitigated autogenous shrinkage in high-
performance concrete with low W/C (Sahmaran et al., 2009). In addition to the mitigation of
autogenous shrinkage, internal curing can increase the rate of hydration, which may result in
improved mechanical and durability properties of high-strength concrete. Several studies have
reported that at later ages, the improved strength and resistance to chloride attack are attributed
to the enhanced hydration caused by the internal curing from the lightweight aggregates (H. K.
Kim et al., 2018). The effectiveness of internal curing agents in alleviating autogenous shrinkage
depends on the higher water absorption capacity of LWA and the fineness of its particle size (S.
Zhutovsky et al., 2002). Optimum efficiency of volcanic pumice LWA was observed in the range
of 0.59 to 4.76 mm (Sahmaran et al., 2009).

In conclusion, the primary issue being addressed in this project is the potential weakening of
3D-printed ECC structures due to inadequate hydration caused by exposure to the ambient
environment, especially in dry regions like New Mexico. Therefore, to overcome the issue of
insufficient hydration and increase the overall durability of 3D-printed ECC materials, the
research proposes the implementation of internal curing. Internal curing involves the
introduction of lightweight aggregates, specifically utilizing locally available materials like NM
Pumice as internal curing agents, which will facilitate sustained moisture distribution within the
ECC during the curing process. This intervention is expected to improve the material properties
of the 3D-printed ECC significantly, mitigating issues related to early-age cracking, reduced
mechanical strength, and compromised durability.



Chapter 3. Materials and Methodologies

Materials

The mixture design of Engineered Cementitious Composites is adapted from the author's
previous work. The constituents of the mix include Ordinary Portland Cement (C), mineral
admixtures, chemical admixtures, River Sand, Lightweight Aggregates, and fibers. Ordinary
Portland Cement (C) was provided by the GCC Cement in New Mexico, confirming the ASTM
C150 standard for Type I/ll. Table 1 displays the chemical compositions of the introduced
binding materials. In addition to the binder components, methylcellulose was used as a rheology
modifying agent and Polyethylene (PE) fiber was added to provide acceptable tensile
capacity(Zafar et al., 2023b). The properties of these materials are reported in Table 2 and
Table 3.

Table 1. Chemical composition of binders (C, S) and lightweight aggregate
Material SiO: AlLO Fe:0; CaO MgO SO; KO TiO: Na: Specific

3 o) Gravity
Cc 19.24 475 335 6580 220 36 05 021 - 3.13
1 4
S 3080 114 226 4750 365 3.0 03 - 017 2.91
5 3 8

Pumice 751 12,5 2.00 0425 0.07 00 56 0.08 3.55 1.35
2 18 7 6

Table 2. Properties of PE fibers

Material Diameter Length Specific Modulus of Tenacity Color
(microns) (mm) Gravity  Elasticity (GPa)
(GPa)
PE 17.9 6,10 0.97 114 4.0 Off
Fibers White

Table 3. Properties of MC as viscosity modifying admixture

Material Viscosity Degree of Methoxy Molecular
(cP) Substitution Substitution Weight
MC 15 1.5-1.9 27.5-31.5 14,000
Mix Design

A control mixture was created using natural river sand (RS) as fine aggregates, with specified
particle size, specific gravity, and water absorption capacity. Mineral admixture, such as ground
granulated blast furnace Slag (S), was used to replace cement in mixtures. Two grades of
pumice (Pumice 3 and Pumice 4) from CR Minerals New Mexico suppliers served as internal
curing agent in the designed Engineered Cementitious Composite (ECC) for ambient



temperature environments. The chemical composition of the materials is provided in Table 1.
Chemical composition of binders (C, S) and lightweight aggregate. The pumice was carefully
blended to ensure optimal particle size distribution. The lightweight aggregates were presoaked
into water for 24 hours and then added into the mix during mixing protocol. The mix design is
outlined in Table 4.

Table 4. Mix proportions of ECC mixes (weight ratio to binder)
# MixID C/B S/B RS Pumice W/B RS/B MC HRWR PE Fibers
(%) (%)’ (Vol%)?

1 S50- 0.5 05 1.0 0.0 0.31 0.313 0.01 0.0015 2.0
CT

2 S50- 05 05 0.7 0.3 0.31 0313 0.01 0.0015 2.0
P30

Note: 1. HRWR and MC (% weight of the binder)
2. 1% of 6mm and 1% of 10mm PE Fibers (% of the total mix volume)

The mass of lightweight aggregates required for internal curing was calculated using the
following equation (Dale P Bentz et al., 2011).

Cr X CS X O

MLWA =
Where:

Muwa = mass of lightweight aggregates
Ct = binder content

CS = chemical shrinkage

Omax = degree of hydration

S = degree of saturation

®Lwa = Absorption

Equation 1. Mass of Lightweight Aggregates for Internal Curing

All mixtures included ADVA 195, a polycarboxylate-based high range water reducer (HRWR)
compliant with ASTM C494, at a proportion of 0.0018% by weight of the total mix. Additionally, a
viscosity-modifying admixture (MC), detailed in Table 3, was incorporated to tailor rheological
properties and enhance printing quality. PE fibers were added to each mix at a volume of 2.0%
to mitigate early age cracking in printed filaments. Mixing procedures shown in Figure 4 involved
10 minutes of dry blending followed by 5 minutes post-water addition for consistency.
Subsequently, PE fibers were added, and mixing continued for 10 minutes: 5 minutes at a slow
speed and 5 minutes at a medium speed to ensure uniform fiber dispersion.
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Dry mixing (Binders + Sand) Add solution of water and HRWRA Add fibers
10 minutes-lower speed 5 minutes-lower speed 5 minutes-lower speed
5 minutes-higher speed
Stage-1 Stage-I1 Stage-111

Figure 4. Mixing protocol for ECC Mixes

Test Methods

3D Printing System

A gantry 3D printer housed in the Dana C. Wood Materials and Structures Lab at the University
of New Mexico shown in Figure 5 was used to evaluate the printability of the formulated mixes.
This printer features a controller responsible for translating STL files into G-code which means
converting a 3D model’s mesh into machine instructions that tell a printer exactly how to move,
extrude material, and build the object layer by layer and overseeing printing parameters such as
speed, extrusion rate, and layer height. With three linear degrees of freedom, the printer's drive
motors maneuver a 20mm diameter circular nozzle along X, Y, and Z axes. Print quality was
evaluated based on extrudability and buildability.

y
f
|

V‘A ‘

oS ar = —

Figure 5. The 3D Gantry printing system in Dana C. Wood Materials and Structures Lab at
the University of New Mexico

11



To examine the printability of the designed mixes based on their fresh properties, a series of
experiments was performed to establish the relationship between the fresh properties and the
printing performance of 3D printed elements. This included analyses of extrudability, shape
retention, and buildability, all of which are detailed in this study.

Flow table test

The flow table test is shown in Figure 6. The flowability of the mix plays a crucial role in 3D
printing of concrete as it governs the various stages of the printing process, such as pumping,
extrudability, and buildability. Therefore, it was essential to adjust the flowability of the mix to
make it printable. The quick preliminary flow test of mortars was performed following ASTM
C1437-20 to determine the adequacy of the adjusted water content for each mix. To perform
this test, the fresh mix was placed in the center of the flow table, filling half of the cone. The
material as then tamped 20 times, followed by adding a second layer to fill the cone, tamping it
as specified for the first layer. Excess material on the cone’s surface was removed, and the
cone was gently lifted. Subsequently, the flow table was dropped 25 times within 15 seconds,
and the diameter of the specimens was measured at the end of the test. Finally, an average of
three replicates was calculated for each mix.

Extrudability evaluation

The extrudability of various mixtures was evaluated by printing a zigzag pattern with six sides.
Each mixture underwent extrusion rate calibration at speeds of 0.1, 0.15, and 0.20 rounds per
second to ensure precise material deposition. Printing speeds ranging from 10 mm/sec to 35
mm/sec were tested on each side of the pattern to identify the optimal speed for consistent
filament width. After 24 hours, filament width was measured at three sections to evaluate shape
retention. Measurement consistency was analyzed to assess uniformity and reliability across
mixtures and printing speeds.

Buildability evaluation:

Buildability was evaluated by printing a 20 mm x 400 mm wall to measure the maximum height
each mixture can be printed before failure occurs.

Compressive Strength test

For the printed specimens created from each mixture, a primary prism sample consists of five
layers in 243x200 mm and a total height of 50 mm printed using the gantry system. After 24
hours, the samples were moist cured in different regimes until the testing day. Cubes of
50x50x50mm were extracted from the primary printed sample using a wet tile saw during the
testing day. All specimens were tested Normal to the printing direction. The cubes were tested
after 28 days at a loading rate of 35 Psi according to ASTM C109-20. Compressive strength test
setup is shown in Figure 7. Figure 8 displays the 3D-printed cubes prepared for the
compressive strength tests.

12



Figure 6. Flow table test Figure 7. Compressive strength test setup

" (b) |
Figure 8. (a) Primary 3D printed slab of 243x200x50mm with 20 mm with circular nozzle
(b) six extracted 50x50x50mm cubic samples from the primary sample

Flexural Strength Test

This research also evaluated the flexural behavior of ECC 3D-printed beams. Rectangular
Primary specimens with 4 layers have been printed using the gantry system with the 20 mm
diameter circular nozzle. The specimens were transferred to the different curing conditions till
the testing day (28-days after printing). The printed beams were subjected to pure bending; a
three-point flexural test has been conducted on the specimens using a hydraulic universal
testing system. The load rate applied to the specimens was 0.00393 in/min. During the three-
point bending test, the applied load was recorded on a recording systems software. The
machine automatically recorded the displacement of the ECC specimens by LVDT's connected
to the Universal testing machine. Figure 9 displays the testing machine and 3D-printed
specimen.
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Figure 9. (a) Three point bending schematic test setup, (b) Cross section of tested beam,
(c) Primary 3D printed slab of 243 x 200 x 50 mm with 20 mm circular nozzle (d) Three
extracted prisms of 40 x40 x 160 mm, (e) Bending test setup
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Chapter 4. Results and Discussions

Gradation, Surface Morphology and Microscopic Properties of Fine
Aggregates

Error! Reference source not found. illustrates the particle size distribution of river sand (RS),
pumice (P3 & P4) and their blends with pumice at two replacement levels, 30 % (P30) and 60 %
(P60). The gradation of the fine aggregates was carried out using the standard test method for
sieve analysis of fine aggregates conforming to ASTM C136/C136-19. Well-graded curves were
observed for all the fine aggregates, showing a continuous distribution of particle sizes ranging
from 0.1 mm to 2 mm. With a fineness modulus (FM) of 2.60 and an average particle size (d50)
of around 0.7 mm, RS showed a smooth and continuous gradation curve, representing uniform
particle packing. P3 with FM of 1.92 and an average patrticle size of 0.4 mm displayed a
uniformly graded curve. In contrast, P4 had an FM of 2.87 with a dso of 0.8 mm, showing a well-
graded curve with all particle sizes. Additionally, P30 had FM of 2.60 with an average particle
size of around 0.7 mm, and its gradation curve also overlapped the RS curve, representing a
balanced particle size distribution conforming to similar packing density and enhanced internal
friction in the composite. In contrast, P60 had a fineness modulus of 2.46, with an average
particle size of 0.6 mm, representing fine gradation. Scanning electron microscopy (SEM) was
carried out using JEOL 5800LV SEM furnished with the secondary and backscattered electron
and cathodoluminescence (CL) imaging detectors located at the Institute of Meteoritics,
University of New Mexico. Scanning electron microscopy was performed to characterize the
morphology of fine aggregates, shown in Error! Reference source not found., which revealed
distinct differences; RS particles were angular with dense and smooth surface texture, resulting
in stable particle interlocking. In contrast, pumice particles were highly porous with
interconnected pores and vesicular microstructure. Internal curing is facilitated by this porous
morphology of pumice, which affects the rheology and hydration of composites. The SEM
images of these aggregates are presented in

100 F
§ 80 F
@
<
~ 60 |
9]
o1}
8
g /
o 40 F / River Sand (RS)
ri') = = = 30% Pumice Replacement (P30)
0+ Sy === 60% Pumice Replacement (P60)
Pumice 3 (P3)
Pumice 4 (P4)
O = Ll L L L
0.10 1.00 10.00

Particle size (mm)

Figure 10.The gradation curves of the river sand (RS) and its blends with pumice.

15



Figure 11.

st v 190V
oM MAG: 390 4
res

SEM WY 1200
SEM AT 1990 0

VEGAS TESCAN  SEM WV 150V

Ve fhaiet 130 s

vt LEBOE « 88 3

Cumomisys E11UTD

16



100 F
& 80 F
7
<
~ 60
)
o0
it
§
g 40 r River Sand (RS)
é) = = =30% Pumice Replacement (P30)
0o+ Sy === 60% Pumice Replacement (P60)
Pumice 3 (P3)
Pumice 4 (P4)
O PR | L L L L L bl
0.10 1.00 10.00

Particle size (mm)

Figure 10.The gradation curves of the river sand (RS) and its blends with pumice.
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Figure 11. SEM micrographs of River sand (a, b, ¢), pumice 3 (d, e, f) and Pumice 4 (g, h, i) at
different magnifications.

Flowability

The rheological properties and extrusion performance of 3D printed mixes depend on the mix's
flowability. Figure 12 shows the flow table results for the S50-CT (control) and S50-P30 mixes,
where the initial water-to-binder ratio was set at 0.27. Adjustments were made to this ratio to
achieve flow diameters between 12 and 15 cm, as previous research from the PI's group
indicated that this range is ideal for producing flowable, pumpable, and buildable mixes before
testing for printing. Mixes with high fly ash content needed less water due to the lubricating
effect of the fine, spherical fly ash particles, whereas slag-based mixes required more water.
The inclusion of methylcellulose (MC) significantly altered the flow behavior, as previous studies
recommended a flowability range of 16 to 20 cm for successful 3D concrete extrusion. Despite
achieving a flow diameter in the range of 12 to 14.25 cm with MC, the mix apparently looks
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good for extrudability at high rates, which is in contrast with conventional concrete mixes without
MC. This discrepancy is likely due to the water retention properties of cellulose ethers in ECC
mixes, which prevent water migration between pores. Additionally, the stickiness of the mix
when in contact with the flow table surface can hinder its flow, and MC can cause the
agglomeration of cement particles and hydration products, increasing dynamic yield stress and
plastic viscosity, thus reducing flowability. While the flow table test provides initial insights into
the necessary water content for printing mixes, it is a subjective measure that should be
complemented with rheological assessments and preliminary printing tests for a comprehensive
evaluation. In the next step of this study, the water content will be further adjusted for the actual
printing tests and according to the rheological properties of fresh mixes.

Flowability of ECC Mixes

16.0
14.0
12.0
10.0
8.0
6.0
4.0

Flow Diameter (cm)

2.0
0.0

S50-P30
ECC Mixes

Figure 12. Flowability of ECC Mixes

Extrudability

In this study, extrudability refers to the capability of the 3D printing process to produce
components that meet satisfactory standards in terms of dimensions, consistency, and surface
quality of the printed filaments. It evaluates the overall quality and performance of the printed
objects by examining their dimensional accuracy, uniformity, and surface finish. To assess the
extrudability of the designed mixes, a zigzag path was printed at various speeds. Before
conducting the extrudability test, the extrusion rate was calibrated for the mix. Once a consistent
rate was established, the mixes were evaluated at a constant extrusion speed. The printing
speed was incrementally increased from 10 mm/s to 35 mm/s along each side of the zigzag
pattern, as shown in Figure 13, to determine the optimal speed for each mix. The width of the
printing path was measured immediately after completing the zigzag pattern to select the
printing speed that resulted in the least deviation from the design. Furthermore, to ensure the
dimensional conformity of each mix, after 24 hours, final measurements were made on
hardened printed filaments width. The printed filament width of S50-CT was found to be 23.6mm
and the printing speed and extrusion rate were 10mm/sec and 0.10 rounds per sec respectively.
For S50-P30 the filament width was 24.0 mm whereas the printing speed was 10 mm/sec, and
the extrusion rate was 0.10 rounds per sec. These printed filament widths are close to the
intended design width of 20 mm (diameter of the nozzle) and confirms the dimensional
consistency.
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S50-P30

Figure 13. Extrudability on zigzag printing path for fresh and hardened states of S50-CT,
and S50-P30

Buildability

In concrete 3D printing, buildability also known as structural buildup, is referred to the ability of
the printed filaments or layers to withstand the self-weight and the weight of the subsequent
layers without any possible failure in the fresh state. This failure can be due to the deformation
in the bottom layer, or it can be a buckling failure, depending upon the location of the failure. It
can also be because of the self-weight of the layer, weight of the following layers and extrusion
pressure of the nozzle. Shape stability and buildability are the key objectives and play a vital
role in the evaluation of design mixes for printability. Generally, the shape stability and
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buildability are closely associated to the rheology of the mix, particularly the static yield stress
plays an important role in structural buildup. For evaluation of the buildability a 20mm X 400mm
wall was printed. Before printing the wall extrudability of the mix was checked on the zigzag
pattern and optimum printing parameters were determined. Buildability evaluation of the mixes
S50-CT and S50-P30 are presented in Figure 14. For S50-CT the printing speed and extrusion
were kept constant at 10mm/sec and 0.10 rounds/sec and a maximum of 18 layers were printed
before failure. For S50-P30 the printing speed was 10mm/sec and extrusion was kept constant
at 0.10 rounds/sec and the maximum number of layers printed was 16.

S50-CT

S50-P30

Figure 14. Buildability evaluation of the mixes S50-CT and S50-P30

Compressive Strength

The 28-day compressive strength of ECC mixes is presented in Figure 15. The printed
specimens were subjected to three different curing conditions till the age of 28 days, (a) moist
curing room with RH-100% and 24+0.5°C (b) sealed chamber with sodium chloride saturated
salt solution with RH-75% and 24+0.5°C (c) lab environment with RH-18% and 24+0.5°C. Both
S50-CT and S50-P30 exhibit the highest compressive strength under 100% RH. This highlights
the beneficial effects of internal curing at saturated conditions, ensuring full hydration and better
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microstructural development. Compressive strength slightly decreases compared to RH-100%
for both mixes. This suggests that partial humidity reduces hydration efficiency, but the
reduction is not drastic, indicating that the mixes retain some ability to sustain hydration. The
compressive strength is significantly lower for the S50-CT mix at RH-18%, with a notable drop
and higher variability (indicated by larger error bars). Interestingly, the S50-P30 mix shows
better performance under RH-18% compared to S50-CT, with a smaller reduction in strength.
This implies that S50-P30 may have enhanced internal curing mechanisms or greater moisture
retention capacity, which mitigates strength loss under dry conditions. S50-P30 Performance:
The superior performance of S50-P30 at low RH may be attributed to its composition, potentially
containing materials (e.g., pre-saturated lightweight aggregates or polymers) that provide
internal water reservoirs for hydration. S50-CT Limitations: the significant drop in strength for
S50-CT at RH-18% indicates its dependency on external moisture for curing, making it less
suited for dry environments. When designing ECC for environments with low humidity,
incorporating internal curing agents like those in S50-P30 can be crucial to maintaining
mechanical properties. The compressive strength was in the range of 7.5 to 10.2 Ksi with a
minimum of 7.5 Ksi at RH-18% and a maximum of 10.2 Ksi at RH-100%. The two mixes
exhibited lower strength with low humidity, but the internally cured mix (S50-P30) did not
undergo significant changes with variations in RH, which is a sign that the mix retained more
moisture and was less susceptible to drying.

RH-100% BERH-75% RH-18%
12.0

10.0

8.0

6.0

4.0

Compressive Strength (Ksi)

2.0

0.0

550-CT SS0-P30
Mixes

Figure 15. Compressive Strength test results

Flexural Strength

The flexural ultimate load (average of 3 samples) capacities and corresponding displacements
(average of 3 samples) are shown in Figure 16 and 17. The 28-day flexural load-displacement
behavior of ECC mixes, S50-CT and S50-P30 is presented in Figure 188-Figure 22. The printed
specimens were subjected to three different curing conditions till the age of 28 days, (a) moist
curing room with RH-100% and 24+0.5°C (b) sealed chamber with sodium chloride saturated
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salt solution with RH-75% and 24+0.5°C (c) lab environment with RH-18% and 24+0.5°C. A
similar initial linear elastic phase can be observed from the graphs, where load changes were
proportional to displacement. This illustrates the uncracked behavior of the mixes. S50-CT (RH-
100%) and S50-P30 (RH-75%) both reach a similar peak load, so their maximum flexural
strengths are comparable. Therefore, both mixes can be inferred as bearing similar magnitudes
of flexural loading before significant amounts of cracking occur. S50-CT, after hitting its peak,
there is an abrupt drop in load followed by small peaks and valleys. This type of pattern
indicates sudden cracking events and poor crack-bridging capacity. The load rapidly reduces
with displacement, suggesting brittle failure and limited ductility.

In S50-P30, the post-peak load drops more gradually and exhibits a smoother curve compared
to S50-CT. This indicates better crack-bridging and energy absorption capacity. Flexural
behavior suggests higher ductility and a more stable failure process. In terms of displacement,
S50-P30 sustains larger displacements compared to S50-CT before failure. This highlights its
improved toughness and ability to withstand deformation. In S50-CT, the brittle failure and sharp
load drops indicate that the control mix lacks internal curing mechanisms, leading to insufficient
hydration under non-saturated conditions. Without internal curing agents, the mix is more prone
to cracking and less capable of maintaining integrity after peak load. S50-P30, the smoother
post-peak curve and better displacement capacity are indicative of enhanced internal curing
mechanisms, likely due to the inclusion of water-retaining agents. Internal curing promotes
better hydration, resulting in improved microstructural bonding and crack-bridging capacity. The
maximum load of 651 Ibs. was recorded for S50-P30 whereas minimum load of 454 Ibs. for the
control mix S50-CT at RH-100%. Similarly, the maximum displacement of 0.22 inch was
observed for S50-P30 at RH-75% and minimum displacement of 0.12 inch was observed for
S50-CT at RH-100%. The findings indicate that load capacity and displacement of the ECC
mixes were affected by the relative humidity with some degree of significance. In control mix
(S50-CT) the load capacity went up to fully saturated conditions to 75 percent RH followed by
slight decline at 18 percent RH, which implied that moderate drying enhanced better matrix
consolidation and severe drying initiated degradation of strength. The internally cured mixture
(S50-P30) had a greater load capacity than the control at all humidity levels and at its best
under saturated conditions indicating the advantage of internal moisture retention that pumice
provides. The same trend was applied in displacement, and both mixes exhibited the greatest
deformation at 75 percent RH. S50-P30 mix always demonstrated higher displacement as
compared to the control, which proved higher ductility owing to internal curing. The differences
in performance of 18 percent RH when using both mixes indicate how sensitive ECC is to over
drying and the improved behavior of S50-P30 under all environments indicate its greater ability
to withstand changes in moisture.
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Figure 16. Flexural Load Capacities (Average) for ECC Mixes
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Figure 17. Mid Span Displacements (Average) for ECC Mixes at Ultimate Average Loads
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Figure 18. Load vs. Displacement curves of S50-CT at RH-100%
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Figure 19. Load vs. Displacement curves of S50-CT at RH-75%
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Figure 20. Load vs. Displacement curves of S50-CT at RH-18%
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Figure 21. Load vs. Displacement curves of S50-P30 at RH-100%
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Figure 22. Load vs. Displacement curves of S50-P30 at RH-75%
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Figure 23.Load vs. Displacement curves of S50-P30 at RH-18%

In conclusion, S50-P30 demonstrates superior flexural toughness, ductility, and energy
absorption compared to S50-CT, making it a more suitable choice for environments requiring
durable and crack-resistant materials. The role of internal curing in S50-P30 is evident from its
enhanced post-peak performance, which reduces the risk of sudden failure.
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Chapter 5. Conclusions and Recommendations

This research aimed to advance the application of 3D printing by using self-reinforced ECC
mixes in transportation projects, contributing to deployable and durable solutions in southern
regions. ECC's unique properties, such as enhanced durability and crack resistance, can lead to
longer-lasting structures with reduced need for frequent repairs and replacements. This
longevity directly translates to lower material consumption in production. Moreover, ECC often
incorporates supplementary cementitious materials like fly ash and slag, which are byproducts
of industrial processes and can replace a portion of cement in the mixture. This substitution not
only improves material performance but also can reduce the cost of the concrete. ECC's high
ductility also allows for thinner sections and reduced material volumes, further minimizing time
and energy related to production and transportation. This study aimed to investigate whether
internal curing can enhance the curing process of 3D printed ECC components in arid
environments, particularly in regions like the southwest United States, where prolonged dry
conditions exist.

1. The inclusion of presoaked pumice LWAs slightly reduced the flowability of S50-P30 mix
as compared to S50-CT mix which could be attributed to the coarser texture and particle
angularity resulting in increased inter-particle friction.

2. The extrudability test was performed to evaluate the printing quality of the ECC mixes
with and without lightweight aggregates. It revealed that incorporation of PE fibers at a
volume of 2% reduced the printing quality but it increased the crack resistance.
Incorporation of PE fibers also increased the shape retention capability of the filaments;
therefore, the width of the printed filaments was close to the designed width.

3. The buildability test results indicated that the control mix S50-CT had higher number of
stacked layers as compared to S50-P30. This can be attributed to the reduced internal
water content into the mix as compared to S50-P30 mix. As S50-P30 mix contains
presoaked pumice lightweight aggregates which release water with the passage of time
and increase the water content which effects the buildability.

4. Both the mixes, S50-CT and S50-P30 showed reduction in compressive strength with
the decrease in relative humidity, which underscores the effect of environmental
conditions on the curing and hydration.

5. At low relative humidity (RH-18%), S50-P30 illustrated improved performance as
compared to S50-CT, which suggests the effectiveness of internal curing mechanisms in
S50-P30 under harsh environmental conditions, mitigating the moisture loss and
ensuring continued hydration.

6. The compressive strength of S50-P30 (RH-75%) is equivalent to S50-CT (RH-100%)
and even higher than S50-P30 (RH-100%), which also ensures the effectiveness of
internal curing.

7. Interms of flexural strength, S50-CT and S50-P30 both showed comparable peak loads,
demonstrating similar initial flexural capacity, whereas S50-CT shows a brittle post peak
behavior with sudden load drop and limited energy dissipation. In contrast, S50-P30
shows a more gradual post peak reduction, indicating higher ductility, toughness and
crack bridging capabilities.

8. Interms of displacements, S50-P30 sustains larger displacements as compared to S50-
CT which indicates improved resistance to deformations and enhanced durability in
flexure.
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In conclusion, the improved performance of S50-P30 underscores the effectiveness of internal
curing mechanisms, which ensures continuous hydration and enhances the microstructural
integrity of the ECC mixes and improves the crack resistance, especially under harsh
environmental conditions. Whereas S50-CT lacks these mechanisms, resulting in reduced

performance.
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Chapter 6. Implementation of Project Outputs

This study aimed to investigate the development of 3D printable cementitious mixes optimized
for constructing infrastructure using the internal curing approach to enhance their properties. As
a result, the project output will produce experimental results, images, and documentation files,
including the final report. The outcomes of this research endeavor encompass a range of
valuable outputs. These include exploring and potentially developing internal curing methods for
optimizing 3D printable cementitious mixes tailored to infrastructure construction. Through this
investigation, the study yielded experimental findings, visual documentation in the form of
images, and comprehensive documentation files. These outputs contribute to a better
understanding of enhancing material properties through internal curing techniques.

Impacts/Benefits of Implementation

The outcome of this research project could potentially bring changes and improvements to the
transportation system. These improvements in material performance can lead to several
positive impacts on the transportation system. The outcomes of this research project
encompass a multifaceted approach aimed at advancing transportation infrastructure in low-
humid regions. These outcomes/impacts include:

1. Innovative Manufacturing Techniques: Implement cutting-edge 3D printing methods
for transportation infrastructure projects specifically tailored for regions with low humidity.
Explore and adapt emerging technologies to suit the unique construction needs of these
areas.

2. Optimized 3D Printable Cementitious Mixes: Develop and fine-tune cementitious
mixes suitable for 3D printing, with a focus on incorporating internal curing agents.
Extensive testing and optimization are conducted to ensure these mixes meet the
project's mechanical and durability requirements.

3. Improved Material Performance: Enhance the mechanical and durability performance
of infrastructure components by utilizing the optimized 3D printable cementitious mixes.
Evaluate and validate these improvements through rigorous testing protocols.

4. Longevity and Durability Enhancement: Utilize internal curing agents in ECC mixes to
promote better hydration and crack resistance. This will extend the lifespan of
constructed infrastructure elements, reducing the need for frequent repairs and
maintenance.

5. Cost Reduction Strategies: Explore cost-effective construction methodologies by
leveraging 3D printing and ECC mixes. Investigate the potential for eliminating traditional
formwork and reducing labor demands. Maximize the use of locally available resources
to further minimize construction costs.

6. Enhanced Structural Integrity: Ensure that 3D-printed ECC elements exhibit superior
mechanical properties, leading to stronger and more reliable transportation structures.
Prioritize the safety and well being of commuters and travelers by creating robust
infrastructure components.

7. Environmental Resilience: Improve the resilience of infrastructure components, making
them more reliable under various environmental conditions. This will contribute to a more
dependable transportation system for users.

8. Educational and Workforce Development: Foster educational and workforce
development opportunities by engaging graduate students and offering research roles to
undergraduates. This initiative helps train a skilled and knowledgeable workforce for the
transportation sector.
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Chapter 7. Technology Transfer and Community
Engagement and Participation (CEP) Activities

The research findings will be disseminated and shared with stakeholders interested in the study
outcomes through presenting at conferences or publishing technical papers. The research
project places importance on transferring its technological findings or innovations to practical
use. These efforts will contribute to making the transportation sector more robust and capable of
withstanding challenges while also being more able to endure over time.
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Chapter 8. Invention Disclosures and Patents,
Publications, Presentations, Reports, Project
Website, and Social Media Listings

The findings of this study will be incorporated into several courses taught by the PI, including
her materials course at UNM and the seminar course for graduate students.

Publications, Presentations, Reports, Project Website, and Social Media Listings
Currently, no publications stemming from this research, but the findings will be published soon
in a high-rank journal in construction materials.

Invention Disclosures and Patents
As of now, there are no invention disclosures or patents stemming from this research.
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Appendix A: Technical Parameters of 3D-Printer

Cartesian Coordinate 3D-Printer Technical Parameters

Technical parameters of JYHC 3D printing gantry robot system (3DPRT)

Frame Size: length (mm) * width (mm) * height 2800*2010*2600
structure (mm)
Frame Weight (Kg) 300
Frame Drive motor Stepper motor, five
structure
Etrsjr:ti e Power supply AC 220V
Shear mixer
o Capacity (L) 50 (recommended) (max 60)
f“gg‘é?r?ga:fstem Voltage (V) 380 AC
Power (W) 3000
Weight (Kg) 300x2
Pumping system
Voltage (V) 380 AC
Mixing and Power (W) 4000
feeding system | Horizontal transmission distance (M) 15
Transmission height (m) 5
Weight (Kg) 180
Transporting pipe:
Mixing and Material Rubber
feeding system | Length (m) 5
Inner diameter (mm) 45
_ Effectlve size: length (mm) * width (mm) 1800*1600*1800
Motion control | height (mm)
system XY Plane moving speed (mm/S) 10 to 350
Z moving speed (mm/S) 10 to 20
Printing head Diameter of printing head (mm) 25, 35, 45 mm
Printing head The diameter of Acrylic printing head (mm) 40 mm

Printing head

Ways of adding material

Manual (through the printing
head) or automatic
(pumping system)

LabVIEW (reads from a G-

Software Software development environment Code)
Software Interface text English
Software Software upgrade Network transmission, Free

for renew
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