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1 Project Description

1.1 Introduction

Navigational channel dredging is a fundamental component of the U.S. maritime transporta-
tion network, ensuring the efficient movement of goods and commodities through ports, har-
bors, and inland waterways. The U.S. Army Corps of Engineers (USACE), as the federal agency
responsible for maintaining these channels, manages dredging project selection to remove sed-
iment buildup that can impede vessel traffic, reduce channel depth, and restrict cargo capacity.
Without regular dredging, critical shipping lanes would become unnavigable, directly disrupt-
ing domestic and international trade.

The economic importance of dredging is substantial. The U.S. maritime transportation sys-
tem moves more than 2.3 billion tons of domestic and international cargo annually, including
agricultural products, petroleum, coal, chemicals, and manufactured goods. The inland wa-
terway system alone transports over 600 million tons of cargo per year, supporting industries
that rely on bulk transport. Waterborne commerce is vital to the U.S. economy, contributing
approximately 5.4 trillion USD in economic activity and supporting over 31 million jobs. The
cost-effectiveness of maritime transportation further underscores its importance. Shipping by
barge costs significantly less than rail or truck transport, with an estimated cost of 2 to 3 times
lower than rail and 10 times lower than truck per ton-mile. This makes navigable waterways
an indispensable component of the national freight system, particularly for moving heavy, low-
value bulk commodities efficiently.

Despite its crucial role, dredging presents several challenges. Funding constraints require
prioritization of dredging projects to ensure that limited resources yield maximum economic
and operational benefits. System conditions, such as sediment disposal, water quality
impacts, and ecosystem disruption, necessitate compliance with stringent regulations.
Operational complexities arise from the need to coordinate dredging schedules, optimize
equip-ment deployment, and maintain access for commercial and military vessels. The
increasing size of modern vessels, including post-Panama ships, also demands deeper and
wider channels, adding pressure to maintain and expand existing infrastructure.

Beyond these challenges, a fundamental problem remains: how to correctly and efficiently
allocate limited maintenance funds for dredging and general maintenance projects across a
network of interdependent waterway segments and locks. While dredging projects are often
evaluated based on local cost-benefit analyses, their true impact extends across the entire trans-
portation network. Dredging one segment can unlock capacity across multiple routes, while
ignoring another segment can constrain an entire flow. This system-wide interdependence is
frequently overlooked in practice. As a result, existing planning methods often underestimate
the value of certain dredging investments and fail to fully capture their downstream or network-
wide effects.

A central motivation of this research is to address a recurring shortcoming in how dredg-
ing and lock maintenance projects are evaluated and prioritized. Traditionally, these invest-
ments are assessed using simplified, localized cost-benefit logic, for example, calculating how
much it costs to dredge a specific segment and estimating direct savings from reduced delay
or increased throughput at that segment alone. However, this approach fails to account for
the broader interdependencies in the inland waterway network. Improvements at one location
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can unlock higher-capacity routes, reduce system-wide shipping costs, and enhance the flow of
multiple commodity streams. Conversely, deferring maintenance on a single critical segment
may block entire routes or force traffic onto suboptimal alternatives.

To address this, our research reframes the problem from one oflocal optimization to system-
wide performance maximization. Instead of selecting projects based solely on individual re-
turn, we model how local actions (e.g., dredging, lock repair) affect the overall navigability and
freight throughput of the network. Our goal is to allocate a limited maintenance budget in a way
that delivers the greatest systemic benefit, in terms of reduced total shipping costs, improved
reliability, and robust flow across all origin-destination (OD) pairs.

Mathematically, we formalize this goal through an objective function that minimizes the to-
tal system-wide shipping cost, computed based on route availability, draft depth, vessel counts,
delay costs, and maintenance decisions. This represents a shift away from isolated cost-saving
calculations and toward a holistic view of freight movement efficiency.

In doing so, this study also corrects several technical flaws observed in earlier optimization
models, including improper depth logic, unrealistic assumptions about initial conditions, and
one-time-only decision-making. By incorporating more accurate physical relationships, multi-
year decision horizons, and stochastic shoaling effects, the models developed here aim to better
reflect real-world challenges and produce more effective, data-driven budget allocation strate-
gies for inland waterway maintenance.

This study addresses that gap by developing models that measure dredging and lock main-
tenance not merely through isolated improvements, but by examining their effects on overall
system throughput and freight movement efficiency. In particular, this research tests how much
more effective budget allocation can be when projects are selected based on their system-level
impact rather than local conditions alone.

To do so, we begin by identifying and correcting limitations in an existing optimization
model previously used to guide budget decisions for inland waterway maintenance. We then
propose two improved models: one that makes a single-year decision using more accurate
physical and logical assumptions, and another that extends the framework to a two-year adap-
tive planning horizon. Both models are tested using realistic data from the Ohio River Basin
to assess their effectiveness in reducing system-wide shipping costs under various budget and
uncertainty scenarios.

Our ultimate objective is to demonstrate that better modeling, modeling that reflects actual
operating conditions, multi-year dynamics, and interdependencies, can lead to significantly
better outcomes for freight efficiency, cost savings, and infrastructure resilience.

1.2 Literature Review

The maintenance of inland waterways plays a vital role in sustaining the functionality of multi-
modal freight transportation networks. Inland waterways, which consist of rivers, locks, dams,
and navigation channels, are essential for efficient freight movement, offering a cost-effective
and safe alternative to road and rail transport [20]. However, the natural process of shoaling,
where sediment accumulation affects navigability, necessitates continuous dredging
operations and lock maintenance to ensure the system’s reliability. Budget allocation for these
maintenance activities must consider both short-term operational needs and long-term
infrastructure sustainability, especially when addressing the stochasticity inherent in the



shoaling process [18].

A well-designed budget allocation model must integrate both dredging and lock mainte-
nance to optimize the performance of inland waterways. The selection and prioritization of
maintenance projects have been extensively studied, with emphasis on single-year decision-
making frameworks. For example, traditional optimization models focus on maximizing ton-
nage throughput while minimizing costs in a single planning cycle [7]. However, these models
often fail to consider intertemporal dependencies, where the maintenance decision in one year
directly influences the subsequent year’s conditions. Recent studies have proposed multi-year
planning frameworks to address this issue. Bian et al. [9] developed a multi-year dredging prior-
itization model, demonstrating that such an approach can lead to a 27.27% reduction in annual
budget allocation compared to single-year plans.

While budget allocation for maintenance dredging has been explored, most existing studies
do not explicitly account for the stochastic nature of shoaling. Shoaling is influenced by mul-
tiple unpredictable factors such as storm surges, river flow rates, and sediment transport dy-
namics [24]. Addressing this uncertainty, stochastic optimization models have been employed
to develop robust maintenance strategies. Ratick et al. [22] introduced a risk-based dredging
decision model that minimizes expected costs by considering stochastic sediment accumula-
tion. Similarly, a stochastic programming approach was used by Elcheikh et al. [15] to evaluate
the cost of uncertainty in waterway maintenance, proposing multi-scenario models to mitigate
potential failures.

Recent studies emphasize the need for integrated decision-making models that jointly op-
timize dredging and lock maintenance. Traditionally, these two activities have been consid-
ered separately; however, integrated models have been shown to improve efficiency and bud-
get utilization. Ghorbani et al. [16] proposed a two-stage mixed integer non-linear program-
ming model to optimize maintenance project selection by balancing maintenance costs and
expected failure risks. This model considers system reliability over multiple planning periods,
highlighting the importance of a multi-year approach. Similarly, Mahmoudzadeh et al. [17] de-
veloped a decision-support framework that accounts for multimodal transportation effects in
waterway maintenance planning.

The initial depth of navigation channels is a critical but often overlooked factor in budget
allocation models. Most previous studies assume uniform sedimentation rates, ignoring the
heterogeneity of sediment deposition along different waterway segments. However, research
has shown that variable initial depths significantly impact maintenance scheduling and cost
estimation. Ahadi et al. [5] emphasized that accounting for initial depths when optimizing
maintenance decisions improves long-term planning. Similarly, Dunkin et al. [12] developed
a shoaling analysis tool to predict sedimentation trends, demonstrating that integrating initial
bathymetric data into budget models enhances decision-making accuracy. Curlee et al. [11] fur-
ther analyzed economic foundations that impact navigation investment decisions, highlighting
the long-term financial benefits of improved budget allocation strategies. Additionally, Bhurtyal
etal. [8] introduced a two-stage stochastic optimization model for port infrastructure planning,
emphasizing the importance of uncertainty modeling in waterway maintenance.

From an optimization perspective, multi-year budget allocation falls within the domain of
stochastic programming and integer programming approaches. Mixed-integer linear program-
ming (MILP) models have been widely used for maintenance decision-making under uncer-
tainty. Nur et al. [19] proposed a multi-period mixed-integer programming model for inland
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waterway port operations, optimizing both short-term operational decisions and long-term in-
vestment strategies. In offshore maintenance planning, Schrotenboer et al. [23] developed a
stochastic MILP framework to optimize offshore wind farm maintenance, demonstrating the
effectiveness of probabilistic approaches in scheduling maintenance tasks under uncertain
conditions. Similarly, Wang and Schonfeld [25] explored scheduling interdependent waterway
projects through simulation and genetic optimization, reinforcing the importance of adaptive
decision-making techniques in infrastructure management.

Two-stage stochastic optimization models have also been explored for waterway mainte-
nance budget allocation. In railway infrastructure maintenance, D’Ariano et al. [13] formulated
an integrated scheduling model for train operations and track maintenance, demonstrating the
advantage of synchronized decision-making in transportation networks. Similarly, in dredg-
ing projects selection, a two-stage stochastic programming model was developed to optimize
maintenance planning under uncertain shoaling conditions [3]. This approach considers re-
course actions, allowing decision-makers to adjust maintenance plans dynamically based on
real-time sedimentation data. Further, Aghamohammadghasem et al. [4] applied deep re-
inforcement learning to optimize preventive maintenance strategies for inland waterway sys-
tems, showcasing the potential of Artificial Intelligence (AI)-driven methodologies.

The integration of machine learning and artificial i ntelligence in m aintenance decision-
making has gained traction in recent years. Deep reinforcement learning has been applied
in infrastructure asset management, showing promising results in optimizing maintenance
schedules [10]. In inland waterways, Asborno and Hernandez [6] introduced a stochastic mod-
eling framework to quantify freight flows through w aterways, incorporating historical vessel
movement data to improve cargo routing decisions. These Al-driven approaches provide new
opportunities for refining budget allocation models by enhancing predictive capabilities and
scenario-based planning. Rahbaralam et al. [21] leveraged machine learning and survival anal-
ysis to forecast pipeline failures, demonstrating applicability to waterway asset management.

Furthermore, advances in multi-objective optimization techniques have allowed re-
searchers to incorporate economic trade-offs in maintenance decision-making. Studies
have explored balancing the economic benefits of dredging against potential ecological
impacts, ensuring efficient waterway operations [14]. Simulation-based approaches, such as
those developed by Aghamohammadghasem et al. [3], offer valuable insights into managing
natural events and mitigating adverse effects on aquatic ecosystems.

In summary, while extensive research has been conducted on dredging project selection,
stochastic modeling, and maintenance optimization, existing studies have largely focused on
single-year planning frameworks and have often overlooked the impact of initial depth and in-
tertemporal dependencies. Our study seeks to bridge these gaps by developing a multi-year
budget allocation model that explicitly captures stochastic shoaling effects, initial depth varia-
tions, and the combined impact of dredging and lock maintenance. By integrating stochastic
optimization, machine learning-based forecasting, and integer programming techniques, this
work aims to enhance the resilience and cost-effectiveness of waterway maintenance planning.



2 Methodological Approach

The maintenance and operation of inland waterways are critical for ensuring the efficiency of
freight transportation. These waterways provide an essential alternative to road and rail trans-
port, offering cost-effective freight movement. However, the natural process of shoaling,
where sediment accumulates and reduces navigable depth, combined with aging lock
infrastructure, requires continuous maintenance efforts.

Effective budget allocation for waterway maintenance is challenging due to the need to bal-
ance dredging and lock improvement costs while operating under financial constraints. An op-
timal budget allocation model must consider the stochastic nature of shoaling, the reliability of
aging infrastructure, and the necessity of ensuring continuous navigability. Previous research
has attempted to address this problem using optimization techniques, but existing models have
several limitations. This study aims to refine these models by addressing their deficiencies and
proposing a more robust formulation.

The models developed in this study are designed to move beyond traditional, segment-level
evaluation strategies and instead adopt a system-wide optimization perspective. In real-world
planning, dredging and lock maintenance projects are often prioritized based on localized
return-on-investment metrics, for instance, estimating shipping delay reductions at a single
lock or calculating the cost per ton of sediment removed at one segment. However, such meth-
ods overlook the fact that waterway infrastructure operates as an interconnected system: a bot-
tleneck at one point can affect multiple routes and origin-destination pairs, while an improve-
ment elsewhere may yield cascading benefits. Our models seek to capture these broader inter-
actions explicitly, optimizing decisions not for isolated outcomes but for their impact on total
network performance. This is achieved by formulating an objective function that minimizes to-
tal system-wide shipping cost, taking into account vessel requirements, draft constraints, delay
penalties, and multi-route commodity flows. In doing so, we ensure that every maintenance
action is evaluated not just on its local effect, but on its contribution to system-wide freight
efficiency.

Before presenting the modeling frameworks in detail, we first introduce the notations, vari-
ables, and parameters used consistently throughout all formulations. These definitions pro-
vide a unified foundation for understanding the mathematical structures and decision-making
components of each model variant.



2.1 Model Inputs and Definitions

2.1.1 Notations

L = Set of all locks
W = Set of all origin-destination pairs
R = Set of all routes
R(m) = Set of routes on OD m, R(m) c R
S = Set of all waterway segments
P =Set of all stages, t c P
S(r) = Set of waterway segments on route r, S(r) € S
Z = Integer set {0,1,2,...,13},
Discrete dredging depth of projects allowed with 13 ft being the full depth proposed.
N =Integer set {1,2,3,4,5,6},
The lock/dam improvement level.
H = Integer set {0, 20,40, 60, 80, 100},
The lock/dam improvement value according to levels.

For example, level 5 maintenance carries out 80% of the proposed full amount.

2.1.2 Variables

i

k= { 1, Ifsegment i isdredged by k feet,k < Z

0, otherwise

1, Iflock j is selected for maintenance (when the degree of h,, is increased)
Wjnp=
I 0, otherwise

k1 _ )1, Ifall the segments on route r are dredged by k feet or more in the first stage
B 0, otherwise

0, otherwise

k2 { 1, Ifall the segments on route r remain k feet or more in the second stage

1 1, Ifall the segments on route r have g feet depth or more in the first stage
A@D _
' 0, otherwise



2.1.3

@2 _ 1, Ifall the segments on route r have g feet or more depth in the second stage
: 0, otherwise

l; = Amount of improvement (i.e., maintenance) determined on lock j (in percentage), [jcH
C; = Cost of maintenance of lock j

y; = Total reduction of expected delay at lock j using the linear approximation in the first stage

C™Max1 - Shipping cost of route r in the first stage
C™3X2 - Shipping cost of route r in the second stage
Parameters

Cf = Cost of dredging segment i by k feet
B/ = The tonnage capacity of route r with g feet depth
Nf = The required number of vessels to meet the demand after dredging route r by k feet

N/ = The required number of vessels to meet the demand on route r with ¢ feet depth
P, » = The portion of the tonnage of route r allocated to the total OD of m,

where Z P, »=1,VYr € R. Preset volume split between alternative routes.
meW

c¢r = Average shipping cost per vessel on route r

D, = The freight demand on OD m

b, = Cost of maintenance level n

B = Unit cost of improvement for lock j

V = Delay value (i.e., cost) per hour per vessel

h; = Alternative amount of improvement on a lock. It is one of the values in H,
e.g., h, c H, where ne€ N. Here hy =0, hy = 20,..., hg = 100

fi(hyp) = The amount of delay reduction for lock j resulting from level n maintenance

T = Total budget available for all the maintenances

IR = Inflation Ratio

M = Big M, alarge number

U = Upper limit of the mean reduced delay of all locks.
It may be a large enough number to make the formulation work.

Dy; = Existing delay of the lock j at its current state.
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2.2 Briefreview of prior model

A previously developed budget allocation model aimed to minimize the total cost of shipping
and maintenance over a two-year horizon while ensuring sufficient navigation depth. However,
several flaws were identified in its formulation. These issues included errors in constraint logic,
incorrect depth allocation methods, and improper handling of decision variables.

Objective Function:

min Y (CPa1 4 cmax2) 1)
rer
Constraints:
2 2 diCi+ Y Ci<T (L.1)
ieSkeZ JjeL
Y df<1 (vies) (1.2)
keZ
Y &V =1 (vreRr (1.3)
keZ
Y x*? =1 (vreRr) (1.4)
keZ
Y kx®V <Y kd¥ (vreRVieSr) (1.5)
keZ keZ
Y kx? < " E(kdF  (VreR,YieS(r) (1.6)
keZ keZ
k1 npk _
Y x'ByPrm=Dy (YmeW) (1.7)
reR(m) keZ
> Y x*2Bfp =Dy (Ymew) (1.8)
reR(m) keZ
Y xEUNEe, + Y (U -y )NV + (FV - 1) My < ™1 (vreR) (1.9)
keZ jeL
Y xFDNFe, + Y (U-y)NFV + (%2 —1)My < C™™2 (¥reR) (1.10)
keZ jeL
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yi=Y winfi(hy) (VjeLVh,eH) (1.11)
neN

li=) wjnh, (VjeLVYhyeH) (1.12)
neN
Y wjn=1 (Vjel) (1.13)
neN
Cj= Pil; (Vjel (1.14.1 or 1.14.2)
ﬁjlj"‘ZnEN wj,nhnbn
df win, xBY x%? e10,1} (Vke Z VieS,VjeL YneN) (1.15)
Cj,1j,yj, CP™L CM®™2 >0 (VjeLVreR) (1.16)

Constraint ( 1.1) limits the total cost of dredging and lock/dam maintenance to the available
budget. The lock/dam maintenance cost is associated with the total amount of improvement
1, which is evaluated in Constraints ( 1.11)—(1.14), and the dredging cost is calculated with the
indicator variable d. Constraint ( 1.2) prescribes that there can only be one dredging depth per
segment. Constraint ( 1.3) states that there is only one depth increase from dredging in the
channel on each path of OD flow. Constraint ( 1.4) is similar to ( 1.3), but for year two after
shoaling. Constraints ( 1.5) mandates that the effective, increased depth of each path from
dredging be determined by the dredging depth of each segment in the first stage, essentially
meaning that the smallest depth increase among the segments along a route becomes the
depth increase of the entire route. Constraint ( 1.6) is similar to ( 1.5), but is based on the
remaining depth after shoaling in stage two. The dredging depth in the first stage is selected
to minimize the expected value of the total cost over the period of two years. The expected
depth is calculated based on historical data and the probability of shoaling after dredging.
Constraints ( 1.2)-( 1.6) prescribe a relationship that an entire route is dredged to depth k if
and only if the smallest dredging depth of all segments along this route is k. Constraints ( 1.7)
and ( 1.8) ensure that the demand for each OD commodity stream can be met. Constraints
(1.9) and ( 1.10) specify the cap of the total cost on each stage to be minimized in the objective
function. The cost of each route is calculated based on the number of vessels of according size
allowed on the route in order to meet the demand. Here the number of vessels N¥ is the total
capacity B¥ divided by the vessel capacity, both N* and N* being constant for given k and r.
The vessel capacity and per vessel cost ¢, here are approximate estimates based on subjective
judgment by using prevailing vessel size available to each draft depth available based on
experiences. It should be mentioned that the number of vessels required to deliver the demand
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are relatively large for low drafting depths, so these four constraints work altogether to make
sure that the demand is met by lowering the shipping costs. Constraints ( 1.11)—(1.14) implies a
relationship between maintenance costs and delays of the dam. Constraint ( 1.13) only allows
to choose one of the maintenance levels for each lock or dam. Constraint ( 1.11) translates a
level of maintenance/improvement to the exact percentage, such as 40 percent improvement
from the discrete set H. Constraint ( 1.12) translates the percentage of improvement at a
lock/dam into the expected waiting time/delay cost reduction (in time) per vessel. The delay
reduction is first calculated in hours before converting into dollars by multiplying it into the
delay cost parameter available in Constraints ( 1.9) and ( 1.10). The relationship between the
level of maintenance at each dam and the vessel delay reduction depends on the dam failure
probability. A failure may be simply a shutdown for a short period of time due to needed
repair to some failed components. The delay may also be due to reduced capacity for lack of
sufficient maintenance. Constraints (1.14.1) and (1.14.2) are two alternatives for translating
the magnitude of improvement into unit improvement cost for each particular lock/dam.
Constraint (1.14.1) uses a linear function at a fixed rate while the alternative, (1.14.2) adopts a
linear way to approximate an increasing rate of cost with maintenance. Each time the model
is run, only one of the two constraints is chosen. The rationale for exploring (1.14.2) is that for
larger scale improvement, larger equipment may be needed to rent and use, therefore incurring
larger cost per unit improvement. Constraints ( 1.15) and ( 1.16) are the standard binary and
non-negativity constraints.

The limitations identified in the old model necessitated a new formulation to ensure more
accurate and effective budget allocation for inland waterway maintenance. Key modifica-
tions include incorporating initial depths of segments to determine effective dredging needs,
optimizing based on navigational draft rather than dredging depth, and correcting errors in
constraint formulation which were incorrectly implemented in the previous model.

2.3 Development of the New Model

The new model that we developed follows a similar two-stage stochastic structure, but with
improved formulations to reflect real-world constraints and decision-making processes more
accurately. Below is the full formulation of the new model, including its objective function, and
constraints.

Objective Function:

min ) (CP! 4+ Cax2) 2)
reRr
Constraints:
Y Y dfCi+Y Ci<T 2.1)
ieSkeZ JjeL
Y dF<1 2.2)
keZ
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> A 1
qez

¥ A
qez

Y gAY < ¥ (kdk) + R;
qeZ keZ

4<kdf+R; <13

Y gAY < ¥ E(kdf+Ry)
qeZ keZ

4< Y E(kdf+R)<13
kezZ

AN e, + Y (Dy -y NIV + ATV - 1M < et

JeL

AN, + Y (Dy-y)NIV + (AP —1)M < cax2

JeL

yi= 2 winfi(hy)

nenN

lj= ) wjnhn
neN

> win=1
nenN

Cj=Pjl;

dk, wj, AY, A € 0,13

14

(2.3)

(2.4)

(2.5)

(2.5.1)

(2.6)

(2.6.1)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)



Cj,lj,yj,C;nul,C;naXZEO (2.14)

The previous model included constraints related to land transportation. However, since
this study focuses exclusively on waterway transportation, constraints associated with land
transportation were removed. By solving a scenario that considers only waterway mainte-
nance, we can effectively demonstrate the improvements introduced in the new model without
unnecessary complications.

Constraint ( 2.1) limits the total cost of dredging and lock/dam maintenance to the available
budget. The lock/dam maintenance cost is associated with the total amount of improvement
1, which is evaluated in Constraints ( 2.9)-( 2.12), and the dredging cost is calculated with the
indicator variable d. Constraint ( 2.2) prescribes that there can only be one dredging depth per
segment. Constraint ( 2.3) states that there is only one depth after dredging in the channel on
each path of OD flow. Constraint ( 2.4) is similar to ( 2.3), but for year two after shoaling. Con-
straints ( 2.5) mandates that the effective, draft of each path be determined by summation of
the dredging depth of each segment in the first stage and its initial depth, essentially meaning
that the smallest draft among the segments along a route becomes the draft of the entire route.
Constraint ( 2.6) is similar to ( 2.5) but is based on the remaining draft after shoaling in stage
two. The dredging depth in the first stage is selected to minimize the expected value of the total
cost over the period of two years. The expected draft is calculated based on historical data and
the probability of shoaling after dredging. Constraints ( 2.2)—( 2.4), and ( 2.5), ( 2.6) prescribe
a relationship that an entire route depth q if and only if the smallest depth of all segments
along this route after dredging is q. Constraint ( 2.5.1) mandates the draft of each segment
in the first stage can notexceed itslower and upper b ounds. Constraint ( 2.6.1) is similar
to ( 2.5.1) but for second stage. Constraints ( 2.5.1) and ( 2.6.1) are conditional constraints
for when it is required to have the structure of new model be as close as possible to old

model but generally are excluded when searching for the optimum solution for new model.
Constraints ( 2.8) and ( 2.9) specify the cap of the total cost on each stage to be minimized in
the objective function. The cost of each route is calculated based on the number of vessels
of according size allowed on the route. The per vessel cost cr here is approximate estimate
based on subjective judgment by using prevailing vessel size available to each draft available
based on experience. It should be mentioned that the number of vessels required to deliver the
demand are relatively large for low drafting depths, so these four constraints work altogether
to make sure that the demand is met by lowering the shipping costs. Constraints ( 2.9)—( 2.12)
implies a relationship between maintenance costs and delays of the dam. Constraint ( 2.11)
only allows to choose one of the maintenance levels for each lock or dam. Constraint ( 2.10)
translates a level of maintenance/improvement to the exact percentage, such as 40 percent im-
provement from the discrete set H. Constraint ( 2.9) translates the percentage of improvement
at a lock/dam into the expected waiting time/delay cost reduction (in time) per vessel. The
delay reduction is first calculated in hours before converting into dollars by multiplying it into
the delay cost parameter available in Constraints ( 2.7) and ( 2.8). The relationship between
the level of maintenance at each dam and the vessel delay reduction depends on the dam
failure probability. A failure may be simply a shutdown for a short period of time due to needed
repair to some failed components. The delay may also be due to reduced capacity for lack of
sufficient m aintenance. Constraint ( 2.12) translates the magnitude of improvement into unit
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improvement cost for each particular lock/dam. Constraints ( 2.13) and ( 2.14) are the standard
binary and non-negativity constraints.

Although the new model introduces significant improvements, it retains the single-year
decision-making approach of its predecessor. While it accounts for future conditions, it only
makes one decision at the beginning of the planning period and observes its impact in subse-
quent years.

To further enhance the model, we propose an expanded version that allows for two-year
decision-making. Instead of making a single decision and assessing its impact, this formulation
will allow decision-makers to adjust maintenance plans dynamically across multiple years.

This multi-year approach will be tested using a similar example to compare its performance
against the new model. If the expanded model demonstrates superior results, it will justify re-
placing the new model, paving the way for future research into longer planning horizons (10-20
years).

2.4 Expanded Model Formulation

Objective Function:

min Y (CP&1 4 Cpax2) 3)
reR
Constraints:
t (k,m) ~k t

D URY Y a"Ci+ ) G =T (3.1)
tepP ieSkeZ JeL
Y d*<1 (VtePp) (3.2)
keZ
Y AP =1 (vreP) (3.3)
qez
Y qA®" < ¥ (k") + R (YreRvieSr) (3.4)
qezZ keZ
Y gAT? < Y Ekd®P +R)+ Y kd®?  (VreR,VieS(r) (3.5)
qeZ keZ keZ
AN, + Y (Dy-yHNIV+APY )M <C™™! (VreR,Vge Z) (3.6)

JjeL
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APINIe, + 3 (Dy -y = yINTV + (A - 1)M < CP™2  (yreR,Vqe Z) (3.7)

JeL
y;f:Zw]‘.,nfj(h,,) (VjeLVh,e HYteP) (3.8)
nenN
li=) wi hy (VjeLY¥h,eHNreP) (3.9)
neN
Y wi,=1 (VjeLVteP) (3.10)
neN '
Ci=pjl; (VjeLVteP) (3.11)
d*t wt A% €01} (YkeZVreRYieS,VjeLVneN,VteP) (3.12)
CL Ly, CFL e 20 (VjeLVreRVteP) (3.13)

The objective of this expansion is to enable adaptive decision-making across both years

rather than committing all resources upfront. By introducing this flexibility, we aim to quantify
the impact of two-year planning compared to a single-year approach, determining whether the
additional complexity and computational effort are justified by meaningful improvements or if
the benefits remain marginal, rendering a one-year framework sufficient.
In the third model, the total maintenance budget is still allocated across two years, but unlike
the previous models, the decision-making is split into two stages. The first-year decisions are
made at the beginning of the planning horizon, while the second-year decisions are deferred
and made conditionally based on predicted shoaling outcomes derived from the remaining
depth after the first year. To more realistically reflect the cost of delaying maintenance actions,
we introduce an inflation ratio that penalizes second-year maintenance costs. This addition
captures a common challenge in infrastructure planning, that waiting to act often increases
costs, and allows the model to represent a practical trade-off between early, potentially less-
informed decisions and later, more tailored but costlier interventions.

3 Results and Findings

In this section, we present a comprehensive evaluation of the developed optimization models
by analyzing their numerical performance, computational outcomes, and behavior under dif-
ferent input configurations. We begin with a description of the test case setup and then explore
comparative performance in terms of cost-efficiency, sensitivity to data uncertainty, and ability
to minimize total expenditures under varying budget scenarios.
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3.1 Test Case

This model is tested using the data collected through NCF and eHydro for the Ohio River Basin.
The Ohio River system plays an essential role in freight movement in the U.S. and is the single
busiest waterway in the Mississippi River System (MRS). It should also be said that the traffic
going through MRS and the Great Lakes together covers more than 33% of all waterborne freight
traffic by weight [2].

In this study, we focus on the Ohio River, located in USACE Great Lakes and Ohio River
Division (LRD). This division is comprised of seven USACE Districts, namely Buffalo, Chicago,
Detroit, Huntington, Louisville, Nashville, and Pittsburgh Districts.

The Ohio River is a 981-mile river flowing from Pittsburgh, Pennsylvania, to its mouth on the
Mississippi River. It is a key U.S. commercial waterway for the transport of bulk coal and grain
along the U.S. This study focuses on the portion of 428.7 miles of the Ohio River located at US-
ACE’s Louisville (CELRL) and Huntington (CELRH) Districts, subdivided into 27 NCF reaches.
Figure 1 shows the geographic layout of the river.
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Figure 1: The Ohio River Corridor

Source: [1]

3.2 Comparative Analysis of Dredging Costs

The primary objective of this study is to evaluate how effectively the new model minimizes
dredging expenditures relative to available budget constraints, without compromising naviga-
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tional service levels. The results indicate a substantial reduction in dredging costs when em-
ploying the new model compared to the old model. Specifically, the new model achieves a
cost reduction ranging from 30% to 40% under comparable scenarios. This significant decrease
underscores the efficacy of the new model in optimizing resource allocation for maintenance
activities.

To elucidate the relationship between budget constraints and cost savings, we analyzed sce-
narios with varying budget levels of availability. Since actual budget availability is typically de-
termined by external decision-makers and was unknown in our case, we assumed a benchmark
for full funding. Specifically, we calculated the total cost required to fully support all potential
projects, assuming the maximum improvement possible for each (e.g., dredging every segment
to 13 feet depth and applying full lock maintenance), and defined this value as the 100% budget
level. In reality, we rarely receive enough funds to support all projects to their fullest extent.
Therefore, to reflect more realistic conditions, we also analyzed scenarios with partial budget
availability, such as 30% or 40% of the full budget. This setup allows us to investigate how the
models perform under constrained funding.

The findings shown in Table 1 reveal that under more stringent budget conditions, the new
model’s efficiency becomes even more pronounced, with cost reductions reaching up to 38.5%.
Conversely, in scenarios with higher budget allocations, the cost savings stabilize around 31.2%.
This trend suggests that the new model is particularly advantageous when financial
resources are limited, ensuring optimal utilization of available funds.

Table 1: Test results of the second model with varying budget

Allocated dredging budget Allocated dredging budget

Budget scenario for the Old Model ($) for the New Model ($) Improvement
30.0% 507902.1 312464.5 38.5%
40.0% 571144.2 389039.4 31.9%
50.0% 573655.8 393080.9 31.5%
60.0% 577249.4 397303.6 31.2%
70.0% 576128.5 394303.3 31.6%
80.0% 579975.5 400524.7 30.9%
90.0% 575628.5 394499.1 31.5%
100.0% 577870.4 397746.1 31.2%

3.3 Sensitivity to Initial Depth Variations

Accurate data on the initial depths of waterway segments was not available for this study, which
posed a challenge in evaluating the impact of depth variations on maintenance strategies. To
address this, we performed a sensitivity analysis by generating multiple simulation scenarios
in which the initial depth values for each waterway segment were randomly assigned within a
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plausible range. For each randomized configuration, the model was solved independently to
observe how variations in input conditions would influence overall performance.

The results, depicted in Figure 2, demonstrate that the cost reduction achieved by the new
model remains substantial across all randomized runs. The shaded bands in the figure repre-
sent error margins around the mean values, confirming the consistency of performance. This
robustness is important for real-world applications, where data limitations are common, and
suggests that the model’s recommendations are reliable even in the presence of input uncer-
tainty.
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Figure 2: Comparison of old and new models’ dredging cost

4 Impacts and Benefits of Implementation

In this section, we examine the broader operational and economic implications of the improved
models. We focus on how the implementation of the second and third models contributes to
long-term shipping cost savings, dynamic decision-making across a two-year horizon, and re-
silience under varying inflationary and budgetary pressures.

4.1 Impact on Shipping Costs Over a Two-Year Period

Beyond immediate maintenance costs, an effective budget allocation model should contribute
tolong-term reductions in operational expenses, particularly shipping costs. A well-maintained
waterway network allows for smoother navigation, reduces delays, and enhances freight trans-
port efficiency.

The results indicate that the old model does contribute to a reduction in shipping costs
over the two-year period following maintenance interventions. Figures 3 to 5 present the im-
pact of the old model on shipping costs for different available budgets, showing that despite its
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limitations, it still led to improvements in operational efficiency. While the new model offers a
more efficient approach, the performance of the old model demonstrates that structured main-
tenance planning, even with its prior limitations, plays a critical role in enhancing the cost-
effectiveness of inland waterway transportation. However, the enhanced models, particularly
the third model, further amplified these benefits by dynamically responding to sedimentation
changes over two years.
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Figure 3: Histogram of Shipping Costs for 30% of the Total Budget (Density)
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Figure 5: Histogram of Shipping Costs for 100% of the Total Budget (Density)

4.2 Two-Year Decision Making and Inflation Ratio Analysis

In this part of the analysis, we focus on the third model, which expands on the new model by
introducing explicit decision-making at the beginning of the second year after observing first-
year shoaling effects.

We introduced an inflation ratio to simulate increased costs for maintenance activities un-
dertaken in the second year. The budget constraint was adjusted accordingly, ensuring second-
year dredging and lock maintenance activities reflect higher real-world costs. Our results show
that even with an inflation ratio as high as 1.5 (reflecting a 50% increase in second-year costs),
significant second-year maintenance actions still proved beneficial in all scenarios. Table 2
shows the sensitivity analysis over budget and inflation ratio.

Table 2: Objective function values of different Inflation Ratio and Budget scenarios for second
model

Inflation Ratio
Budget 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
10% 4059297661 4033171960 3987891787 4048057383 4072964118 3985059851 4025468989 4069307258 3990428806 3962341627 4156147869
20% 2519731749 2806978573 2722791407 2715063848 2578723662 2513903031 2843402480 2542396317 2562020718 2565026460 2566003843
30% 1819656904 1565108913 1655245750 1783047866 1621353650 1748940068 1907742019 1695924372 2835546144 1672084521 1660714859
40% 1088050021 1056969355 1049642210 1111332400 1177079605 1224992879 1095104144 1076726055 1064158375 1235579849 1203133826
50% 779572638 884532071 784578086 858131769 857034392 834054112 816751586 822648181 770358517 924973328 832292665
60% 673793713 670768286 678228343 795339356 778771497 667425359 662127814 829272340 714189842 723856410 765804696
70% 589855783 593598945 598217517 596996405 627190638 617903645 603983809 617212242 613184061 642726258 614902116
80% 535154840 535625413 538412505 548392003 543238114 569153602 557487474 563851210 612976532 562916116 648432799
90% 517018676 501747642 501016007 546128016 539720671 510040163 518288850 514132103 511562243 525268891 527866745
100% 468259903 478258158 471563680 490437587 479108934 484342829 483850541 491700687 489416007 492454011 492043202
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Reducing the inflation ratio closer to realistic lower bounds (e.g., 1.05) further increased the
attractiveness and implementation of second-year maintenance activities, demonstrating the
sensitivity and effectiveness of the expanded model. Table 3 presents the improvement in the
objective function (in percentage), reflecting a reduction due to the minimization nature of the
problem. In nearly all scenarios, the two-year decision-making model (third model) demon-
strates a significant improvement in the objective function compared to the one-year decision-
making model (second model).

This reduction highlights the benefits of incorporating a longer planning horizon, leading
to more cost-effective dredging investment decisions and the potential for dynamic, multi-year
maintenance strategies to considerably improve infrastructure management efficiency under
variable economic conditions. It is important to note that each scenario required over 15 hours
to reach a solution, making full optimization computationally impractical within a reasonable
timeframe. To address this, a time limit was imposed on the solver, ensuring feasible run times
while still achieving near-optimal solutions. As a result, the reported outcomes closely approx-
imate the optimal solutions but do not necessarily represent the absolute optimum. This con-
straint also explains the observed inconsistencies between the results of different scenarios, as
some solutions may have terminated before fully converging.

Table 3: Amount of improvement of third model compared to second model for different Infla-
tion Ratio and Budget scenarios

Inflation Ratio 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
Budget

10% 056 -0.09 -1.21 028 090 -1.28 -0.28 081 -1.15 -1.84 2.96
20% -709 350 039 011 -492 -731 484 -6.26 -553 -542 -5.39
30% -34.59 -43.74 -40.50 -35.91 -41.72 -37.14 -31.43 -39.04 1.92 -39.90 -40.31
40% 090 -198 -266 3.06 9.16 1360 156 -0.15 -1.31 14.58 11.58
50% -895 331 -836 023 0.10 -258 -460 -3.92 -10.02 8.04 -2.79
60% -12.14 -12.54 -11.57 3.70 154 -12.97 -13.66 8.13 -6.88 -562 -0.15
70% -17.19 -16.67 -16.02 -16.19 -11.95 -13.25 -15.21 -13.35 -13.92 -9.77 -13.68
80% -22.78 -22.71 -22.31 -20.87 -21.61 -17.87 -19.55 -18.64 -11.55 -18.77 -6.43
90% -21.23 -23.56 -23.67 -16.80 -17.77 -22.29 -21.04 -21.67 -22.06 -19.97 -19.58
100% -26.66 -25.09 -26.14 -23.19 -24.96 -24.14 -24.22 -22.99 -23.35 -22.87 -22.93

5 Recommendations and Conclusions

This study aimed to optimize inland waterway maintenance operations by developing and
comparing different modeling approaches for dredging project selection. Given the random
shoaling, three models were examined to evaluate their effectiveness in improving mainte-
nance strategies. The first model (old model) served as a baseline for this study and was de-
veloped prior to the other two models. The second model (new model) addressed one of the
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key limitations of the first model by incorporating the initial depth of each segment into the
decision-making process. The third model, referred to as the extended model, addressed an-
other critical limitation by shifting from a single-year to a multi-year decision-making frame-
work, allowing for sequential decisions at each stage of the planning horizon. The models pro-
gressively increased the temporal scope and structural accuracy of the decision-making frame-
work, allowing for more informed and adaptive budget allocation over time.

The first model provided a structured framework for scheduling and budgeting dredging op-
erations considering random shoaling. However, a limitation was that it did not account for the
initial depth of the waterways causing project optimization not to be based on the actual draft.
As a result, dredging budget was not spent most effectively, and the model failed to allocate
resources in the most strategic manner.

The second model incorporates initial depth as a critical factor to be able to measure re-
sulting deeper draft from dredging on river segments, therefore, is able to measure new ship-
ping capacities. The model demonstrated significant cost reductions compared to the first ap-
proach. The results indicated that considering initial depth allowed for more precise dredging
schedules, reducing unnecessary maintenance expenses on some river segments while ensur-
ing navigability. This model marked a substantial improvement over the first one, providing
a more effective resource allocation. However, the second model still operated within a one
period of time horizon and did not fully account for interdependencies between maintenance
decision over multiple time periods.

The third model introduced a multi-period optimization strategy, further refining the
decision-making process. This model not only accounted for initial depth but also allowed for
dynamic budget reallocation and better long-term forecasting. The findings showed that the
improvements achieved by this model were not marginal but significant, demonstrating that
a more comprehensive, adaptive approach to maintenance planning leads to substantial effi-
ciency gains. Compared to the second model, the third model offered enhanced cost savings,
better scheduling accuracy, and a more effective long-term maintenance strategy.

Given the effectiveness of the third model, one of the most important takeaways from this
study is the potential benefit of extending the forecasting horizon beyond the two-year period
used in the analysis. Since we have established that this model provides significant improve-
ments over the previous counterparts, future studies should focus on applying it to a longer
horizon, such as 10 or even 20 years. Additionally, while this study used a deterministic ap-
proach to shoaling for simplicity, primarily to assess the significance of the model’s improve-
ments, an approximate way for the stochastic shoaling, the next step should involve solving
the problem under stochastic conditions and through an iterative, dynamic process. This
would better reflect the real-world uncertainties in shoaling patterns, budget fluctuations, and
system conditions.

Additionally, this study highlights the potential of integrating advanced data analytics and
machine learning techniques to enhance predictive maintenance capabilities. Real-time data
collection and Al-driven decision-support systems could further improve adaptability and ef-
ficiency, ensuring that maintenance efforts remain cost-effective.

Our next step is to optimize for long-term, dynamic strategies that still considers stochastic
shoaling of inland waterway networks.
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