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1  Project  Description 

1.1 Introduction 

Navigational channel dredging is a fundamental component of the U.S. maritime transporta-
tion network, ensuring the effcient movement of goods and commodities through ports, har-
bors, and inland waterways. The U.S. Army Corps of Engineers (USACE), as the federal agency 
responsible for maintaining these channels, manages dredging project selection to remove sed-
iment buildup that can impede vessel traffc, reduce channel depth, and restrict cargo capacity. 
Without regular dredging, critical shipping lanes would become unnavigable, directly disrupt-
ing domestic and international trade. 

The economic importance of dredging is substantial. The U.S. maritime transportation sys-
tem moves more than 2.3 billion tons of domestic and international cargo annually, including 
agricultural products, petroleum, coal, chemicals, and manufactured goods. The inland wa-
terway system alone transports over 600 million tons of cargo per year, supporting industries 
that rely on bulk transport. Waterborne commerce is vital to the U.S. economy, contributing 
approximately 5.4 trillion USD in economic activity and supporting over 31 million jobs. The 
cost-effectiveness of maritime transportation further underscores its importance. Shipping by 
barge costs signifcantly less than rail or truck transport, with an estimated cost of 2 to 3 times 
lower than rail and 10 times lower than truck per ton-mile. This makes navigable waterways 
an indispensable component of the national freight system, particularly for moving heavy, low-
value bulk commodities effciently. 

Despite its crucial role, dredging presents several challenges. Funding constraints require 
prioritization of dredging projects to ensure that limited resources yield maximum economic 
and operational benefits. System conditions, such as sediment disposal, water quality 
impacts, and ecosystem disruption, necessitate compliance with stringent regulations. 
Operational complexities arise from the need to coordinate dredging schedules, optimize 
equip-ment deployment, and maintain access for commercial and military vessels. The 
increasing size of modern vessels, including post-Panama ships, also demands deeper and 
wider channels, adding pressure to maintain and expand existing infrastructure. 

Beyond these challenges, a fundamental problem remains: how to correctly and efficiently 
allocate limited maintenance funds for dredging and general maintenance projects across a 
network of interdependent waterway segments and locks. While dredging projects are often 
evaluated based on local cost-benefit analyses, their true impact extends across the entire trans-
portation network. Dredging one segment can unlock capacity across multiple routes, while 
ignoring another segment can constrain an entire flow. This system-wide interdependence is 
frequently overlooked in practice. As a result, existing planning methods often underestimate 
the value of certain dredging investments and fail to fully capture their downstream or network-
wide effects. 

A central motivation of this research is to address a recurring shortcoming in how dredg-
ing and lock maintenance projects are evaluated and prioritized. Traditionally, these invest-
ments are assessed using simplified, localized cost-benefit logic, for example, calculating how 
much it costs to dredge a specific segment and estimating direct savings from reduced delay 
or increased throughput at that segment alone. However, this approach fails to account for 
the broader interdependencies in the inland waterway network. Improvements at one location 
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can unlock higher-capacity routes, reduce system-wide shipping costs, and enhance the fow of 
multiple commodity streams. Conversely, deferring maintenance on a single critical segment 
may block entire routes or force traffc onto suboptimal alternatives. 

To address this, our research reframes the problem from one of local optimization to system-
wide performance maximization. Instead of selecting projects based solely on individual re-
turn, we model how local actions (e.g., dredging, lock repair) affect the overall navigability and 
freight throughput of the network. Our goal is to allocate a limited maintenance budget in a way 
that delivers the greatest systemic beneft, in terms of reduced total shipping costs, improved 
reliability, and robust fow across all origin-destination (OD) pairs. 

Mathematically, we formalize this goal through an objective function that minimizes the to-
tal system-wide shipping cost, computed based on route availability, draft depth, vessel counts, 
delay costs, and maintenance decisions. This represents a shift away from isolated cost-saving 
calculations and toward a holistic view of freight movement effciency. 

In doing so, this study also corrects several technical faws observed in earlier optimization 
models, including improper depth logic, unrealistic assumptions about initial conditions, and 
one-time-only decision-making. By incorporating more accurate physical relationships, multi-
year decision horizons, and stochastic shoaling effects, the models developed here aim to better 
refect real-world challenges and produce more effective, data-driven budget allocation strate-
gies for inland waterway maintenance. 

This study addresses that gap by developing models that measure dredging and lock main-
tenance not merely through isolated improvements, but by examining their effects on overall 
system throughput and freight movement effciency. In particular, this research tests how much 
more effective budget allocation can be when projects are selected based on their system-level 
impact rather than local conditions alone. 

To do so, we begin by identifying and correcting limitations in an existing optimization 
model previously used to guide budget decisions for inland waterway maintenance. We then 
propose two improved models: one that makes a single-year decision using more accurate 
physical and logical assumptions, and another that extends the framework to a two-year adap-
tive planning horizon. Both models are tested using realistic data from the Ohio River Basin 
to assess their effectiveness in reducing system-wide shipping costs under various budget and 
uncertainty scenarios. 

Our ultimate objective is to demonstrate that better modeling, modeling that refects actual 
operating conditions, multi-year dynamics, and interdependencies, can lead to signifcantly 
better outcomes for freight effciency, cost savings, and infrastructure resilience. 

1.2  Literature  Review 

The maintenance of inland waterways plays a vital role in sustaining the functionality of multi-
modal freight transportation networks. Inland waterways, which consist of rivers, locks, dams, 
and navigation channels, are essential for efficient freight movement, offering a cost-effective 
and safe alternative to road and rail transport [20]. However, the natural process of shoaling, 
where sediment accumulation affects navigability, necessitates continuous dredging 
operations and lock maintenance to ensure the system’s reliability. Budget allocation for these 
maintenance activities must consider both short-term operational needs and long-term 
infrastructure sustainability, especially when addressing the stochasticity inherent in the 
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shoaling process [18]. 
A well-designed budget allocation model must integrate both dredging and lock mainte-

nance to optimize the performance of inland waterways. The selection and prioritization of 
maintenance projects have been extensively studied, with emphasis on single-year decision-
making frameworks. For example, traditional optimization models focus on maximizing ton-
nage throughput while minimizing costs in a single planning cycle [7]. However, these models 
often fail to consider intertemporal dependencies, where the maintenance decision in one year 
directly infuences the subsequent year’s conditions. Recent studies have proposed multi-year 
planning frameworks to address this issue. Bian et al. [9] developed a multi-year dredging prior-
itization model, demonstrating that such an approach can lead to a 27.27% reduction in annual 
budget allocation compared to single-year plans. 

While budget allocation for maintenance dredging has been explored, most existing studies 
do not explicitly account for the stochastic nature of shoaling. Shoaling is infuenced by mul-
tiple unpredictable factors such as storm surges, river fow rates, and sediment transport dy-
namics [24]. Addressing this uncertainty, stochastic optimization models have been employed 
to develop robust maintenance strategies. Ratick et al. [22] introduced a risk-based dredging 
decision model that minimizes expected costs by considering stochastic sediment accumula-
tion. Similarly, a stochastic programming approach was used by Elcheikh et al. [15] to evaluate 
the cost of uncertainty in waterway maintenance, proposing multi-scenario models to mitigate 
potential failures. 

Recent studies emphasize the need for integrated decision-making models that jointly op-
timize dredging and lock maintenance. Traditionally, these two activities have been consid-
ered separately; however, integrated models have been shown to improve effciency and bud-
get utilization. Ghorbani et al. [16] proposed a two-stage mixed integer non-linear program-
ming model to optimize maintenance project selection by balancing maintenance costs and 
expected failure risks. This model considers system reliability over multiple planning periods, 
highlighting the importance of a multi-year approach. Similarly, Mahmoudzadeh et al. [17] de-
veloped a decision-support framework that accounts for multimodal transportation effects in 
waterway maintenance planning. 

The initial depth of navigation channels is a critical but often overlooked factor in budget 
allocation models. Most previous studies assume uniform sedimentation rates, ignoring the 
heterogeneity of sediment deposition along different waterway segments. However, research 
has shown that variable initial depths signifcantly impact maintenance scheduling and cost 
estimation. Ahadi et al. [5] emphasized that accounting for initial depths when optimizing 
maintenance decisions improves long-term planning. Similarly, Dunkin et al. [12] developed 
a shoaling analysis tool to predict sedimentation trends, demonstrating that integrating initial 
bathymetric data into budget models enhances decision-making accuracy. Curlee et al. [11] fur-
ther analyzed economic foundations that impact navigation investment decisions, highlighting 
the long-term fnancial benefts of improved budget allocation strategies. Additionally, Bhurtyal 
et al. [8] introduced a two-stage stochastic optimization model for port infrastructure planning, 
emphasizing the importance of uncertainty modeling in waterway maintenance. 

From an optimization perspective, multi-year budget allocation falls within the domain of 
stochastic programming and integer programming approaches. Mixed-integer linear program-
ming (MILP) models have been widely used for maintenance decision-making under uncer-
tainty. Nur et al. [19] proposed a multi-period mixed-integer programming model for inland 
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waterway port operations, optimizing both short-term operational decisions and long-term in-
vestment strategies. In offshore maintenance planning, Schrotenboer et al. [23] developed a 
stochastic MILP framework to optimize offshore wind farm maintenance, demonstrating the 
effectiveness of probabilistic approaches in scheduling maintenance tasks under uncertain 
conditions. Similarly, Wang and Schonfeld [25] explored scheduling interdependent waterway 
projects through simulation and genetic optimization, reinforcing the importance of adaptive 
decision-making techniques in infrastructure management. 

Two-stage stochastic optimization models have also been explored for waterway mainte-
nance budget allocation. In railway infrastructure maintenance, D’Ariano et al. [13] formulated 
an integrated scheduling model for train operations and track maintenance, demonstrating the 
advantage of synchronized decision-making in transportation networks. Similarly, in dredg-
ing projects selection, a two-stage stochastic programming model was developed to optimize 
maintenance planning under uncertain shoaling conditions [3]. This approach considers re-
course actions, allowing decision-makers to adjust maintenance plans dynamically based on 
real-time sedimentation data. Further, Aghamohammadghasem et al. [4] applied deep re-
inforcement learning to optimize preventive maintenance strategies for inland waterway sys-
tems, showcasing the potential of Artificial Intelligence (AI)-driven methodologies. 

The integration of machine learning and artifcial i ntelligence i n m aintenance decision-
making has gained traction in recent years. Deep reinforcement learning has been applied 
in infrastructure asset management, showing promising results in optimizing maintenance 
schedules [10]. In inland waterways, Asborno and Hernandez [6] introduced a stochastic mod-
eling framework to quantify freight fows t hrough w aterways, i ncorporating h istorical vessel 
movement data to improve cargo routing decisions. These AI-driven approaches provide new 
opportunities for refning budget allocation models by enhancing predictive capabilities and 
scenario-based planning. Rahbaralam et al. [21] leveraged machine learning and survival anal-
ysis to forecast pipeline failures, demonstrating applicability to waterway asset management. 

Furthermore, advances in multi-objective optimization techniques have allowed re-
searchers to incorporate economic trade-offs in maintenance decision-making. Studies 
have explored balancing the economic benefits of dredging against potential ecological 
impacts, ensuring efficient waterway operations [14]. Simulation-based approaches, such as 
those developed by Aghamohammadghasem et al. [3], offer valuable insights into managing 
natural events and mitigating adverse effects on aquatic ecosystems. 

In summary, while extensive research has been conducted on dredging project selection, 
stochastic modeling, and maintenance optimization, existing studies have largely focused on 
single-year planning frameworks and have often overlooked the impact of initial depth and in-
tertemporal dependencies. Our study seeks to bridge these gaps by developing a multi-year 
budget allocation model that explicitly captures stochastic shoaling effects, initial depth varia-
tions, and the combined impact of dredging and lock maintenance. By integrating stochastic 
optimization, machine learning-based forecasting, and integer programming techniques, this 
work aims to enhance the resilience and cost-effectiveness of waterway maintenance planning. 
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2  Methodological  Approach 

The maintenance and operation of inland waterways are critical for ensuring the effciency of 
freight transportation. These waterways provide an essential alternative to road and rail trans-
port, offering cost-effective freight movement. However, the natural process of shoaling, 
where sediment accumulates and reduces navigable depth, combined with aging lock 
infrastructure, requires continuous maintenance efforts. 

Effective budget allocation for waterway maintenance is challenging due to the need to bal-
ance dredging and lock improvement costs while operating under fnancial constraints. An op-
timal budget allocation model must consider the stochastic nature of shoaling, the reliability of 
aging infrastructure, and the necessity of ensuring continuous navigability. Previous research 
has attempted to address this problem using optimization techniques, but existing models have 
several limitations. This study aims to refne these models by addressing their defciencies and 
proposing a more robust formulation. 

The models developed in this study are designed to move beyond traditional, segment-level 
evaluation strategies and instead adopt a system-wide optimization perspective. In real-world 
planning, dredging and lock maintenance projects are often prioritized based on localized 
return-on-investment metrics, for instance, estimating shipping delay reductions at a single 
lock or calculating the cost per ton of sediment removed at one segment. However, such meth-
ods overlook the fact that waterway infrastructure operates as an interconnected system: a bot-
tleneck at one point can affect multiple routes and origin-destination pairs, while an improve-
ment elsewhere may yield cascading benefts. Our models seek to capture these broader inter-
actions explicitly, optimizing decisions not for isolated outcomes but for their impact on total 
network performance. This is achieved by formulating an objective function that minimizes to-
tal system-wide shipping cost, taking into account vessel requirements, draft constraints, delay 
penalties, and multi-route commodity fows. In doing so, we ensure that every maintenance 
action is evaluated not just on its local effect, but on its contribution to system-wide freight 
effciency. 

Before presenting the modeling frameworks in detail, we frst introduce the notations, vari-
ables, and parameters used consistently throughout all formulations. These defnitions pro-
vide a unifed foundation for understanding the mathematical structures and decision-making 
components of each model variant. 
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2.1 Model Inputs and Defnitions 

2.1.1 Notations 

L = Set of all locks 

W = Set of all origin-destination pairs 

R = Set of all routes 

R(m) = Set of routes on OD m,R(m) ⊂ R 

S = Set of all waterway segments 

P = Set of all stages, t ⊂ P 

S(r ) = Set of waterway segments on route r,S(r ) ⊂ S 

Z = Integer set {0,1,2, . . . ,13}, 

Discrete dredging depth of projects allowed with 13 ft being the full depth proposed. 

N = Integer set {1,2,3,4,5,6}, 

The lock/dam improvement level. 

H = Integer set {0,20,40,60,80,100}, 

The lock/dam improvement value according to levels. 

For example, level 5 maintenance carries out 80% of the proposed full amount. 

2.1.2 Variables 

(
1, If segment i is dredged by k feet,k ⊂ Z k = i 0, otherwise 

(
1, If lock j is selected for maintenance (when the degree of hn is increased) 

j ,n = 
0, otherwise 

(
1, If all the segments on route r are dredged by k feet or more in the frst stage k,1 = r 0, otherwise 

(
1, If all the segments on route r remain k feet or more in the second stage k,2

r = 
0, otherwise 

( 
(q,1) 1, If all the segments on route r have q feet depth or more in the frst stage 
 = r 

0, otherwise 

d

w

x 

x

A
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( 
(q,2) 1, If all the segments on route r have q feet or more depth in the second stage 

A = r 
0, otherwise 

l j = Amount of improvement (i.e., maintenance) determined on lock j (in percentage), l j ⊂ H 

C j = Cost of maintenance of lock j 

y j = Total reduction of expected delay at lock j using the linear approximation in the frst stage 

C max1 = Shipping cost of route r in the frst stage r 

C max2 = Shipping cost of route r in the second stage r 

2.1.3 Parameters 

C k = Cost of dredging segment i by k feet 
q = The tonnage capacity of route r with q feet depth  

k = The required number of vessels to meet the demand after dredging route r by k feetr 
q = The required number of vessels to meet the demand on route r with q feet depth r 

,m = The portion of the tonnage of route r allocated to the total OD of m,X 
where Pr,m = 1,∀r ∈ R. Preset volume split between alternative routes. 

m∈W 

 = Average shipping cost per vessel on route r 

m = The freight demand on OD m 

 = Cost of maintenance level n 

j = Unit cost of improvement for lock j 

= Delay value (i.e., cost) per hour per vessel 

 = Alternative amount of improvement on a lock. It is one of the values in H , 

e.g., hn ⊂ H , where n ∈ N . Here h1 = 0,h2 = 20, . . . ,h6 = 100 

 (hn ) = The amount of delay reduction for lock j resulting from level n maintenance 

= Total budget available for all the maintenances 

 = Infation Ratio 

 = Big M , a large number 

 = Upper limit of the mean reduced delay of all locks. 

It may be a large enough number to make the formulation work. 

y j = Existing delay of the lock j at its current state. 

i

Br

N

N

Pr

cr

D

bn

β

V 

hn

f j

T 

I R

M

U

D
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2.2 Brief review of prior model 

A previously developed budget allocation model aimed to minimize the total cost of shipping 
and maintenance over a two-year horizon while ensuring suffcient navigation depth. However, 
several faws were identifed in its formulation. These issues included errors in constraint logic, 
incorrect depth allocation methods, and improper handling of decision variables. 

Objective Function: X ¡ ¢ 
C max1 +C max2 min (1)r r 

r ∈R 

Constraints: 

X X X 
di

kC k + C j ≤ T (1.1) i 
i ∈S k∈Z j ∈L 

X 
d k ≤ 1 (∀i ∈ S) (1.2) i 

k∈Z 

X 
(k,1)x = 1 (∀r ∈ R) (1.3) r 

k∈Z 

X 
(k,2)x = 1 (∀r ∈ R) (1.4) r 

k∈Z 

X X 
kx(k,1) ≤ kd k (∀r ∈ R,∀i ∈ S(r )) (1.5) r i 

k∈Z k∈Z 

X X 
kx(k,2) 

r ≤ E(k)di
k (∀r ∈ R,∀i ∈ S(r )) (1.6) 

k∈Z k∈Z 

X X 
xk,1B k Pr,m = Dm (∀m ∈ W ) (1.7) r r 

r ∈R(m) k∈Z 

X X 
k,2B kx Pr,m = Dm (∀m ∈ W ) (1.8) r r 

r ∈R(m) k∈Z 

X X
(k,1)N k (k,1) − 1)M} ≤ C max1 {x cr + (U − y j )N kV + (x (∀r ∈ R) (1.9) r r r r r 

k∈Z j ∈L 

X X
(k,2) (k,2) − 1)M} ≤ C max2 {x N k cr + (U − y j )N kV + (x (∀r ∈ R) (1.10) r r r r r 

k∈Z j ∈L 
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X 
y j = w j ,n f j (hn ) (∀ j ∈ L,∀hn ∈ H) (1.11) 

n∈N 

X 
l j = w j ,nhn (∀ j ∈ L,∀hn ∈ H) (1.12) 

n∈N 

X 
w j ,n = 1 (∀ j ∈ L) (1.13) 

n∈N 

( 
β j l j

C j = P (∀ j ∈ L) (1.14.1 or 1.14.2) 
β j l j + n∈N w j ,nhnbn 

d k (k,1) (k,2) 
i , w j ,n , xr , x ∈ {0,1} (∀k ∈ Z ,∀i ∈ S,∀ j ∈ L,∀n ∈ N ) (1.15) r 

C j , l j , y j ,C max1 ,C max2 ≥ 0 (∀ j ∈ L,∀r ∈ R) (1.16) r r 

Constraint ( 1.1) limits the total cost of dredging and lock/dam maintenance to the available 
budget. The lock/dam maintenance cost is associated with the total amount of improvement 
l, which is evaluated in Constraints ( 1.11)–(1.14), and the dredging cost is calculated with the 
indicator variable d. Constraint ( 1.2) prescribes that there can only be one dredging depth per 
segment. Constraint ( 1.3) states that there is only one depth increase from dredging in the 
channel on each path of OD fow. Constraint ( 1.4) is similar to ( 1.3), but for year two after 
shoaling. Constraints ( 1.5) mandates that the effective, increased depth of each path from 
dredging be determined by the dredging depth of each segment in the frst stage, essentially 
meaning that the smallest depth increase among the segments along a route becomes the 
depth increase of the entire route. Constraint ( 1.6) is similar to ( 1.5), but is based on the 
remaining depth after shoaling in stage two. The dredging depth in the frst stage is selected 
to minimize the expected value of the total cost over the period of two years. The expected 
depth is calculated based on historical data and the probability of shoaling after dredging. 
Constraints ( 1.2)–( 1.6) prescribe a relationship that an entire route is dredged to depth k if 
and only if the smallest dredging depth of all segments along this route is k. Constraints ( 1.7) 
and ( 1.8) ensure that the demand for each OD commodity stream can be met. Constraints 
( 1.9) and ( 1.10) specify the cap of the total cost on each stage to be minimized in the objective 
function. The cost of each route is calculated based on the number of vessels of according size 
allowed on the route in order to meet the demand. Here the number of vessels N k is the total r 
capacity B k divided by the vessel capacity, both N k and N k being constant for given k and r .r r r 
The vessel capacity and per vessel cost cr here are approximate estimates based on subjective 
judgment by using prevailing vessel size available to each draft depth available based on 
experiences. It should be mentioned that the number of vessels required to deliver the demand 
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are relatively large for low drafting depths, so these four constraints work altogether to make 
sure that the demand is met by lowering the shipping costs. Constraints ( 1.11)–(1.14) implies a 
relationship between maintenance costs and delays of the dam. Constraint ( 1.13) only allows 
to choose one of the maintenance levels for each lock or dam. Constraint ( 1.11) translates a 
level of maintenance/improvement to the exact percentage, such as 40 percent improvement 
from the discrete set H. Constraint ( 1.12) translates the percentage of improvement at a 
lock/dam into the expected waiting time/delay cost reduction (in time) per vessel. The delay 
reduction is frst calculated in hours before converting into dollars by multiplying it into the 
delay cost parameter available in Constraints ( 1.9) and ( 1.10). The relationship between the 
level of maintenance at each dam and the vessel delay reduction depends on the dam failure 
probability. A failure may be simply a shutdown for a short period of time due to needed 
repair to some failed components. The delay may also be due to reduced capacity for lack of 
suffcient maintenance. Constraints (1.14.1) and (1.14.2) are two alternatives for translating 
the magnitude of improvement into unit improvement cost for each particular lock/dam. 
Constraint (1.14.1) uses a linear function at a fxed rate while the alternative, (1.14.2) adopts a 
linear way to approximate an increasing rate of cost with maintenance. Each time the model 
is run, only one of the two constraints is chosen. The rationale for exploring (1.14.2) is that for 
larger scale improvement, larger equipment may be needed to rent and use, therefore incurring 
larger cost per unit improvement. Constraints ( 1.15) and ( 1.16) are the standard binary and 
non-negativity constraints. 

The limitations identifed in the old model necessitated a new formulation to ensure more 
accurate and effective budget allocation for inland waterway maintenance. Key modifca-
tions include incorporating initial depths of segments to determine effective dredging needs, 
optimizing based on navigational draft rather than dredging depth, and correcting errors in 
constraint formulation which were incorrectly implemented in the previous model. 

2.3 Development of the New Model 

The new model that we developed follows a similar two-stage stochastic structure, but with 
improved formulations to refect real-world constraints and decision-making processes more 
accurately. Below is the full formulation of the new model, including its objective function, and 
constraints. 

Objective Function:X ¡ ¢ 
C max1 +C max2 min (2)r r 

r ∈R 

Constraints: 

X X X 
d kC k + C j ≤ T (2.1) i i 

i ∈S k∈Z j ∈L X 
d k ≤ 1 (2.2) i 

k∈Z 
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X (q,1) A = 1r 
q∈Z 

(2.3) 

X (q,2) A = 1r 
q∈Z 

(2.4) 

X X(q,1) q A ≤ (kdi
k )+ Ri (2.5) r 

q∈Z k∈Z 

4 ≤ kd k + Ri ≤ 13 (2.5.1) i 

X X(q,2) q A ≤ E(kd k + Ri ) (2.6) r i 
q∈Z k∈Z 

X 
4 ≤ E(kd k + Ri ) ≤ 13 (2.6.1) i 

k∈Z 

(q,1)N q X (q,1) − 1)M ≤ C max1 A r cr + (D y − y j )N qV + (A (2.7) r r r r 
j ∈L 

X(q,2)N q (q,2) − 1)M ≤ C max2 A cr + (D y − y j )N qV + (A (2.8) r r r r r 
j ∈L 

X 
y j = w j ,n f j (hn ) (2.9) 

n∈N 

X 
l j = w j ,nhn (2.10) 

n∈N 

w j ,n = 1 (2.11) 
n∈N 

C j = β j l j (2.12) 

di
k , w j ,n , A , A ∈ {0,1} (2.13) r r 

(q,1) (q,2) 
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C j , l j , y j ,C max1 ,C max2 ≥ 0 (2.14) r r 

The previous model included constraints related to land transportation. However, since 
this study focuses exclusively on waterway transportation, constraints associated with land 
transportation were removed. By solving a scenario that considers only waterway mainte-
nance, we can effectively demonstrate the improvements introduced in the new model without 
unnecessary complications. 
Constraint ( 2.1) limits the total cost of dredging and lock/dam maintenance to the available 
budget. The lock/dam maintenance cost is associated with the total amount of improvement 
l, which is evaluated in Constraints ( 2.9)–( 2.12), and the dredging cost is calculated with the 
indicator variable d. Constraint ( 2.2) prescribes that there can only be one dredging depth per 
segment. Constraint ( 2.3) states that there is only one depth after dredging in the channel on 
each path of OD fow. Constraint ( 2.4) is similar to ( 2.3), but for year two after s hoaling. Con-
straints ( 2.5) mandates that the effective, draft of each path be determined by summation of 
the dredging depth of each segment in the frst stage and its initial depth, essentially meaning 
that the smallest draft among the segments along a route becomes the draft of the entire route. 
Constraint ( 2.6) is similar to ( 2.5) but is based on the remaining draft after shoaling in stage 
two. The dredging depth in the frst stage is selected to minimize the expected value of the total 
cost over the period of two years. The expected draft is calculated based on historical data and 
the probability of shoaling after dredging. Constraints ( 2.2)–( 2.4), and ( 2.5), ( 2.6) prescribe 
a relationship that an entire route depth q if and only if the smallest depth of all segments 
along this route after dredging is q. Constraint ( 2.5.1) mandates the draft of each segment 
in the frst s tage c an n ot e xceed i ts l ower a nd u pper b ounds. C onstraint ( 2 .6.1) i s similar 
to ( 2.5.1) but for second stage. Constraints ( 2.5.1) and ( 2.6.1) are conditional constraints 
for when it is required to have the structure of new model be as close as possible to old 
model but generally are excluded when searching for the optimum solution for new model. 
Constraints ( 2.8) and ( 2.9) specify the cap of the total cost on each stage to be minimized in 
the objective function. The cost of each route is calculated based on the number of vessels 
of according size allowed on the route. The per vessel cost cr here is approximate estimate 
based on subjective judgment by using prevailing vessel size available to each draft available 
based on experience. It should be mentioned that the number of vessels required to deliver the 
demand are relatively large for low drafting depths, so these four constraints work altogether 
to make sure that the demand is met by lowering the shipping costs. Constraints ( 2.9)–( 2.12) 
implies a relationship between maintenance costs and delays of the dam. Constraint ( 2.11) 
only allows to choose one of the maintenance levels for each lock or dam. Constraint ( 2.10) 
translates a level of maintenance/improvement to the exact percentage, such as 40 percent im-
provement from the discrete set H. Constraint ( 2.9) translates the percentage of improvement 
at a lock/dam into the expected waiting time/delay cost reduction (in time) per vessel. The 
delay reduction is frst calculated in hours before converting into dollars by multiplying it into 
the delay cost parameter available in Constraints ( 2.7) and ( 2.8). The relationship between 
the level of maintenance at each dam and the vessel delay reduction depends on the dam 
failure probability. A failure may be simply a shutdown for a short period of time due to needed 
repair to some failed components. The delay may also be due to reduced capacity for lack of 
suffcient m aintenance. Constraint ( 2.12) translates the magnitude of improvement into unit 
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improvement cost for each particular lock/dam. Constraints ( 2.13) and ( 2.14) are the standard 
binary and non-negativity constraints. 

Although the new model introduces signifcant improvements, it retains the single-year 
decision-making approach of its predecessor. While it accounts for future conditions, it only 
makes one decision at the beginning of the planning period and observes its impact in subse-
quent years. 

To further enhance the model, we propose an expanded version that allows for two-year 
decision-making. Instead of making a single decision and assessing its impact, this formulation 
will allow decision-makers to adjust maintenance plans dynamically across multiple years. 

This multi-year approach will be tested using a similar example to compare its performance 
against the new model. If the expanded model demonstrates superior results, it will justify re-
placing the new model, paving the way for future research into longer planning horizons (10–20 
years). 

2.4 Expanded Model Formulation 

Objective Function: X ¡ ¢ 
C max1 +C max2 min (3)r r 

r ∈R 

Constraints: 

Ã ! X X X X 
d (k,m)C k C t(I R)t + ≤ T (3.1) i i j 

t∈P i ∈S k∈Z j ∈L 

X 
d (k,t ) ≤ 1 (∀t ∈ P ) (3.2) i 

k∈Z 

X (q,t )A = 1 (∀t ∈ P ) (3.3) r 
q∈Z 

X X ³ ´ 
(q,1) kd (k,1)q Ar ≤ + Ri (∀r ∈ R,∀i ∈ S(r )) (3.4) i 

q∈Z k∈Z 

X X X(q,2) E(kd (k,1) kd (k,2)q A ≤ + Ri ) + (∀r ∈ R,∀i ∈ S(r )) (3.5) r i i 
q∈Z k∈Z k∈Z 

A cr + (D y − yi )N qV + (A (∀r ∈ R,∀q ∈ Z ) (3.6) r r r r r 
j ∈L 

(q,1)N q X 
1 (q,1) − 1)M ≤ C max1 
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(q,2) X 
1 2 (q,2) − 1)M ≤ C max2 A N q cr + (D y − y − yi )N qV + (A (∀r ∈ R,∀q ∈ Z ) (3.7) r r i r r r 

j ∈L 

X 
t ty = w f j (hn ) (∀ j ∈ L,∀hn ∈ H ,∀t ∈ P ) (3.8) j j ,n 

n∈N 

X 
tl t = w hn (∀ j ∈ L,∀hn ∈ H ,∀t ∈ P ) (3.9) j j ,n 

n∈N 

X 
tw = 1 (∀ j ∈ L,∀t ∈ P ) (3.10) j ,n 

n∈N 

C tj = β j l 
t (∀ j ∈ L,∀t ∈ P ) (3.11) 

d (k,t ) t (q,t ) , w , A ∈ {0,1} (∀k ∈ Z ,∀r ∈ R,∀i ∈ S,∀ j ∈ L,∀n ∈ N ,∀t ∈ P ) (3.12) i j ,n r 

j 

i
t ,C max1 ,C max2 C tj , l tj , y ≥ 0 (∀ j ∈ L,∀r ∈ R,∀t ∈ P ) (3.13) r r 

The objective of this expansion is to enable adaptive decision-making across both years 
rather than committing all resources upfront. By introducing this fexibility, we aim to quantify 
the impact of two-year planning compared to a single-year approach, determining whether the 
additional complexity and computational effort are justifed by meaningful improvements or if 
the benefts remain marginal, rendering a one-year framework suffcient. 
In the third model, the total maintenance budget is still allocated across two years, but unlike 
the previous models, the decision-making is split into two stages. The frst-year decisions are 
made at the beginning of the planning horizon, while the second-year decisions are deferred 
and made conditionally based on predicted shoaling outcomes derived from the remaining 
depth after the frst year. To more realistically refect the cost of delaying maintenance actions, 
we introduce an infation ratio that penalizes second-year maintenance costs. This addition 
captures a common challenge in infrastructure planning, that waiting to act often increases 
costs, and allows the model to represent a practical trade-off between early, potentially less-
informed decisions and later, more tailored but costlier interventions. 

3 Results and Findings 

In this section, we present a comprehensive evaluation of the developed optimization models 
by analyzing their numerical performance, computational outcomes, and behavior under dif-
ferent input confgurations. We begin with a description of the test case setup and then explore 
comparative performance in terms of cost-effciency, sensitivity to data uncertainty, and ability 
to minimize total expenditures under varying budget scenarios. 
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3.1 Test Case 

This model is tested using the data collected through NCF and eHydro for the Ohio River Basin. 
The Ohio River system plays an essential role in freight movement in the U.S. and is the single 
busiest waterway in the Mississippi River System (MRS). It should also be said that the traffc 
going through MRS and the Great Lakes together covers more than 33% of all waterborne freight 
traffc by weight [2]. 

In this study, we focus on the Ohio River, located in USACE Great Lakes and Ohio River 
Division (LRD). This division is comprised of seven USACE Districts, namely Buffalo, Chicago, 
Detroit, Huntington, Louisville, Nashville, and Pittsburgh Districts. 

The Ohio River is a 981-mile river fowing from Pittsburgh, Pennsylvania, to its mouth on the 
Mississippi River. It is a key U.S. commercial waterway for the transport of bulk coal and grain 
along the U.S. This study focuses on the portion of 428.7 miles of the Ohio River located at US-
ACE’s Louisville (CELRL) and Huntington (CELRH) Districts, subdivided into 27 NCF reaches. 
Figure 1 shows the geographic layout of the river. 

Figure 1: The Ohio River Corridor 

Source: [1] 

3.2 Comparative Analysis of Dredging Costs 

The primary objective of this study is to evaluate how effectively the new model minimizes 
dredging expenditures relative to available budget constraints, without compromising naviga-
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tional service levels. The results indicate a substantial reduction in dredging costs when em-
ploying the new model compared to the old model. Specifcally, t he n ew m odel a chieves a 
cost reduction ranging from 30% to 40% under comparable scenarios. This signifcant decrease 
underscores the effcacy of the new model in optimizing resource allocation for maintenance 
activities. 

To elucidate the relationship between budget constraints and cost savings, we analyzed sce-
narios with varying budget levels of availability. Since actual budget availability is typically de-
termined by external decision-makers and was unknown in our case, we assumed a benchmark 
for full funding. Specifcally, we calculated the total cost required to fully support all potential 
projects, assuming the maximum improvement possible for each (e.g., dredging every segment 
to 13 feet depth and applying full lock maintenance), and defned this value as the 100% budget 
level. In reality, we rarely receive enough funds to support all projects to their fullest extent. 
Therefore, to refect more realistic conditions, we also analyzed scenarios with partial budget 
availability, such as 30% or 40% of the full budget. This setup allows us to investigate how the 
models perform under constrained funding. 

The fndings shown in Table 1 reveal that under more stringent budget conditions, the new 
model’s effciency becomes even more pronounced, with cost reductions reaching up to 38.5%. 
Conversely, in scenarios with higher budget allocations, the cost savings stabilize around 31.2%. 
This trend suggests that the new model is particularly advantageous when financial 
resources are limited, ensuring optimal utilization of available funds. 

Table 1: Test results of the second model with varying budget 

Allocated dredging budget Allocated dredging budget 
Budget scenario for the Old Model ($) for the New Model ($) Improvement 

30.0% 507902.1 312464.5 38.5% 
40.0% 571144.2 389039.4 31.9% 
50.0% 573655.8 393080.9 31.5% 
60.0% 577249.4 397303.6 31.2% 
70.0% 576128.5 394303.3 31.6% 
80.0% 579975.5 400524.7 30.9% 
90.0% 575628.5 394499.1 31.5% 

100.0% 577870.4 397746.1 31.2% 

3.3 Sensitivity to Initial Depth Variations 

Accurate data on the initial depths of waterway segments was not available for this study, which 
posed a challenge in evaluating the impact of depth variations on maintenance strategies. To 
address this, we performed a sensitivity analysis by generating multiple simulation scenarios 
in which the initial depth values for each waterway segment were randomly assigned within a 
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plausible range. For each randomized confguration, the model was solved independently to 
observe how variations in input conditions would infuence overall performance. 

The results, depicted in Figure 2, demonstrate that the cost reduction achieved by the new 
model remains substantial across all randomized runs. The shaded bands in the fgure repre-
sent error margins around the mean values, confrming the consistency of performance. This 
robustness is important for real-world applications, where data limitations are common, and 
suggests that the model’s recommendations are reliable even in the presence of input uncer-
tainty. 

Figure 2: Comparison of old and new models’ dredging cost 

4 Impacts and Benefts of Implementation 

In this section, we examine the broader operational and economic implications of the improved 
models. We focus on how the implementation of the second and third models contributes to 
long-term shipping cost savings, dynamic decision-making across a two-year horizon, and re-
silience under varying infationary and budgetary pressures. 

4.1 Impact on Shipping Costs Over a Two-Year Period 

Beyond immediate maintenance costs, an effective budget allocation model should contribute 
to long-term reductions in operational expenses, particularly shipping costs. A well-maintained 
waterway network allows for smoother navigation, reduces delays, and enhances freight trans-
port effciency. 

The results indicate that the old model does contribute to a reduction in shipping costs 
over the two-year period following maintenance interventions. Figures 3 to 5 present the im-
pact of the old model on shipping costs for different available budgets, showing that despite its 
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limitations, it still led to improvements in operational effciency. While the new model offers a 
more effcient approach, the performance of the old model demonstrates that structured main-
tenance planning, even with its prior limitations, plays a critical role in enhancing the cost-
effectiveness of inland waterway transportation. However, the enhanced models, particularly 
the third model, further amplifed these benefts by dynamically responding to sedimentation 
changes over two years. 

Histogram of 30% Budget

Figure 3: Histogram of Shipping Costs for 30% of the Total Budget (Density) 

Histogram of 60% Budget

Figure 4: Histogram of Shipping Costs for 60% of the Total Budget (Density) 
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Histogram of 100% Budget

Figure 5: Histogram of Shipping Costs for 100% of the Total Budget (Density) 

4.2 Two-Year Decision Making and Infation Ratio Analysis 

In this part of the analysis, we focus on the third model, which expands on the new model by 
introducing explicit decision-making at the beginning of the second year after observing frst-
year shoaling effects. 

We introduced an infation ratio to simulate increased costs for maintenance activities un-
dertaken in the second year. The budget constraint was adjusted accordingly, ensuring second-
year dredging and lock maintenance activities refect higher real-world costs. Our results show 
that even with an infation ratio as high as 1.5 (refecting a 50% increase in second-year costs), 
signifcant second-year maintenance actions still proved benefcial in all scenarios. Table 2 
shows the sensitivity analysis over budget and infation ratio. 

Table 2: Objective function values of different Infation Ratio and Budget scenarios for second 
model 

Infation Ratio 
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 

Budget 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

4059297661 4033171960 3987891787 4048057383 4072964118 3985059851 4025468989 4069307258 3990428806 3962341627 4156147869 

2519731749 2806978573 2722791407 2715063848 2578723662 2513903031 2843402480 2542396317 2562020718 2565026460 2566003843 

1819656904 1565108913 1655245750 1783047866 1621353650 1748940068 1907742019 1695924372 2835546144 1672084521 1660714859 

1088050021 1056969355 1049642210 1111332400 1177079605 1224992879 1095104144 1076726055 1064158375 1235579849 1203133826 

779572638 884532071 784578086 858131769 857034392 834054112 816751586 822648181 770358517 924973328 832292665 

673793713 670768286 678228343 795339356 778771497 667425359 662127814 829272340 714189842 723856410 765804696 

589855783 593598945 598217517 596996405 627190638 617903645 603983809 617212242 613184061 642726258 614902116 

535154840 535625413 538412505 548392003 543238114 569153602 557487474 563851210 612976532 562916116 648432799 

517018676 501747642 501016007 546128016 539720671 510040163 518288850 514132103 511562243 525268891 527866745 

468259903 478258158 471563680 490437587 479108934 484342829 483850541 491700687 489416007 492454011 492043202 
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Reducing the infation ratio closer to realistic lower bounds (e.g., 1.05) further increased the 
attractiveness and implementation of second-year maintenance activities, demonstrating the 
sensitivity and effectiveness of the expanded model. Table 3 presents the improvement in the 
objective function (in percentage), refecting a reduction due to the minimization nature of the 
problem. In nearly all scenarios, the two-year decision-making model (third model) demon-
strates a signifcant improvement in the objective function compared to the one-year decision-
making model (second model). 

This reduction highlights the benefts of incorporating a longer planning horizon, leading 
to more cost-effective dredging investment decisions and the potential for dynamic, multi-year 
maintenance strategies to considerably improve infrastructure management effciency under 
variable economic conditions. It is important to note that each scenario required over 15 hours 
to reach a solution, making full optimization computationally impractical within a reasonable 
timeframe. To address this, a time limit was imposed on the solver, ensuring feasible run times 
while still achieving near-optimal solutions. As a result, the reported outcomes closely approx-
imate the optimal solutions but do not necessarily represent the absolute optimum. This con-
straint also explains the observed inconsistencies between the results of different scenarios, as 
some solutions may have terminated before fully converging. 

Table 3: Amount of improvement of third model compared to second model for different Infa-
tion Ratio and Budget scenarios 

Infation Ratio 
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 

Budget 

10% 0.56 -0.09 -1.21 0.28 0.90 -1.28 -0.28 0.81 -1.15 -1.84 2.96 

20% -7.09 3.50 0.39 0.11 -4.92 -7.31 4.84 -6.26 -5.53 -5.42 -5.39 

30% -34.59 -43.74 -40.50 -35.91 -41.72 -37.14 -31.43 -39.04 1.92 -39.90 -40.31 

40% 0.90 -1.98 -2.66 3.06 9.16 13.60 1.56 -0.15 -1.31 14.58 11.58 

50% -8.95 3.31 -8.36 0.23 0.10 -2.58 -4.60 -3.92 -10.02 8.04 -2.79 

60% -12.14 -12.54 -11.57 3.70 1.54 -12.97 -13.66 8.13 -6.88 -5.62 -0.15 

70% -17.19 -16.67 -16.02 -16.19 -11.95 -13.25 -15.21 -13.35 -13.92 -9.77 -13.68 

80% -22.78 -22.71 -22.31 -20.87 -21.61 -17.87 -19.55 -18.64 -11.55 -18.77 -6.43 

90% -21.23 -23.56 -23.67 -16.80 -17.77 -22.29 -21.04 -21.67 -22.06 -19.97 -19.58 

100% -26.66 -25.09 -26.14 -23.19 -24.96 -24.14 -24.22 -22.99 -23.35 -22.87 -22.93 

5 Recommendations and Conclusions 

This study aimed to optimize inland waterway maintenance operations by developing and 
comparing different modeling approaches for dredging project selection. Given the random 
shoaling, three models were examined to evaluate their effectiveness in improving mainte-
nance strategies. The frst model (old model) served as a baseline for this study and was de-
veloped prior to the other two models. The second model (new model) addressed one of the 
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key limitations of the frst model by incorporating the initial depth of each segment into the 
decision-making process. The third model, referred to as the extended model, addressed an-
other critical limitation by shifting from a single-year to a multi-year decision-making frame-
work, allowing for sequential decisions at each stage of the planning horizon. The models pro-
gressively increased the temporal scope and structural accuracy of the decision-making frame-
work, allowing for more informed and adaptive budget allocation over time. 

The frst model provided a structured framework for scheduling and budgeting dredging op-
erations considering random shoaling. However, a limitation was that it did not account for the 
initial depth of the waterways causing project optimization not to be based on the actual draft. 
As a result, dredging budget was not spent most effectively, and the model failed to allocate 
resources in the most strategic manner. 

The second model incorporates initial depth as a critical factor to be able to measure re-
sulting deeper draft from dredging on river segments, therefore, is able to measure new ship-
ping capacities. The model demonstrated signifcant cost reductions compared to the frst ap-
proach. The results indicated that considering initial depth allowed for more precise dredging 
schedules, reducing unnecessary maintenance expenses on some river segments while ensur-
ing navigability. This model marked a substantial improvement over the frst o ne, providing 
a more effective resource allocation. However, the second model still operated within a one 
period of time horizon and did not fully account for interdependencies between maintenance 
decision over multiple time periods. 

The third model introduced a multi-period optimization strategy, further refning the 
decision-making process. This model not only accounted for initial depth but also allowed for 
dynamic budget reallocation and better long-term forecasting. The fndings showed that the 
improvements achieved by this model were not marginal but signifcant, demonstrating that 
a more comprehensive, adaptive approach to maintenance planning leads to substantial eff-
ciency gains. Compared to the second model, the third model offered enhanced cost savings, 
better scheduling accuracy, and a more effective long-term maintenance strategy. 

Given the effectiveness of the third model, one of the most important takeaways from this 
study is the potential beneft of extending the forecasting horizon beyond the two-year period 
used in the analysis. Since we have established that this model provides signifcant improve-
ments over the previous counterparts, future studies should focus on applying it to a longer 
horizon, such as 10 or even 20 years. Additionally, while this study used a deterministic ap-
proach to shoaling for simplicity, primarily to assess the signifcance of the model’s improve-
ments, an approximate way for the stochastic shoaling, the next step should involve solving 
the problem under stochastic conditions and through an iterative, dynamic process. This 
would better reflect the real-world uncertainties in shoaling patterns, budget fluctuations, and 
system conditions. 

Additionally, this study highlights the potential of integrating advanced data analytics and 
machine learning techniques to enhance predictive maintenance capabilities. Real-time data 
collection and AI-driven decision-support systems could further improve adaptability and ef-
ficiency, ensuring that maintenance efforts remain cost-effective. 

Our next step is to optimize for long-term, dynamic strategies that still considers stochastic 
shoaling of inland waterway networks. 
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