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Executive Summary 

This research project investigated the adhesion energy between binder and aggregate in asphalt 
pavements through molecular dynamics simulations. The effect of moisture and polyethylene (PE) 
modification was considered.  

The simulation methodology successfully validated real-world conditions, achieving dry adhesion 
energies of 46 mJ/m², which aligns with experimental measurements. The study utilized a model 
SHRP AAA-1 asphalt binder and SiO2 aggregate surface to represent typical road materials. 

An unexpected finding emerged regarding water effects: very low water concentrations (less than 
0.5 waters per nm²) initially increased adhesion energy, possibly due to enhanced hydrogen 
bonding between the binder and aggregate. However, higher water concentrations led to 
progressive deterioration of adhesion in unmodified asphalt, as expected. 

The addition of PE (2.52 wt%) showed mixed effects on performance. Under dry conditions, it 
reduced binding energy from 46 mJ/m² to 33 mJ/m², attributed to PE's non-polar nature creating 
weaker interactions with the silica surface. However, in wet conditions, PE demonstrated a 
protective effect, stabilizing binding energies around 28-29 mJ/m² rather than continuing to 
decrease like unmodified asphalt. This stabilization effect appears to be related to PE's 
hydrophobic properties, which help repel water from the asphalt-aggregate interface. 

PE modification shows promise for improving moisture damage resistance in wet conditions, 
though the reduced dry adhesion strength suggests potential trade-offs that need careful 
consideration.  

Several areas warrant further research to build upon these findings. The work should be 
expanded to include different modifiers, binders, and aggregate types. Additionally, investigating 
the optimal placement and distribution of PE within the asphalt mixture would be valuable. Longer-
term studies using coarse-grained simulations could provide additional insights, especially 
regarding partitioning at the binder/aggregate interface.  

This research provides valuable insights into the molecular-level interactions governing moisture 
damage in asphalt pavements and offers potential directions for improving road infrastructure 
durability through PE modification, particularly in moisture-prone conditions. However, careful 
consideration of the trade-offs between wet and dry performance is necessary before widespread 
implementation. 
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Chapter 1. Introduction 
The infiltration of moisture into asphalt leads to diminished performance, shortened lifespan, 

and unforeseen failures, thereby diminishing the performance of road networks. Given that roads 
are consistently exposed to different types of traffic and weather conditions, the presence of 
moisture can initiate or worsen both new and preexisting damage. This work performed a 
fundamental investigation into the adhesive interactions between asphalt binder and aggregate, 
focusing on the effects of moisture and binder additives, specifically plastic. We used atomistic 
molecular dynamics to simulate the binder and asphalt interface, measure interaction energies, 
and measure the adhesive strength between the binder and the aggregate.  
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Chapter 2. Literature Review 
One of the major modes of failure caused by moisture damage is adhesive failure at the 

binder-aggregate interface. This occurs when the binder dissociates from the aggregate, a 
process that has been documented since the early 1900s. The difference in polarity between the 
binder and the aggregate promotes the weakening of the interface, making it especially vulnerable 
to water intrusion. 1 When the aggregate is dislodged from the binder, a process called stripping, 
the road prematurely fails, leading to increased maintenance costs and shortened service life. 2 

 
This type of failure is fundamentally related to the chemical and physical interactions between 

the binder, aggregate, and water. 3–9 The molecular forces between adhesive and substrate play 
a crucial role in every adhesive and adherent system, with stronger binder-aggregate interactions 
reducing the chances of failure.2 Different binders exhibit varying interactions with water, which 
affects their susceptibility to moisture damage (Kringos, 2007). 10 

 
Waste plastics such as polyethylene (PE) are hydrophobic in nature and thus could potentially 

reduce moisture damage by rejecting water from the binder-aggregate interface. Additionally, 
because higher viscosity binders are associated with better moisture resistance, 11–14 the viscosity 
modifying effects of PE could indicate an improvement as well. Recent research has shown that 
plastic waste modified asphalt can improve pavement performance under certain conditions. 15,16 

 
The work of adhesion between binder and aggregate is commonly used to evaluate moisture 

damage resistance. 17 Surface free energy (SFE) is a closely related property that provides 
fundamental material characterization independent of the mixture. 17,18 While these 
thermodynamic measurements have proven useful in identifying suitable materials for mitigating 
moisture damage, some researchers argue that they do not directly quantify engineering strength. 
.19,20  As more additives, including waste plastic, are used, the effects of these additives on 
moisture damage require deeper study. 

 
Simulating the energy of interaction between binder and aggregate has the advantage of 

direct measurement of the adhesive energy and strength between the binder and the aggregate, 
as well as easy manipulation of the various relevant parameters. That is, binder components, 
additives, and moisture content can be easily set to whatever value is desired. Asphalt models 
have continued to improve in their accuracy such that they are now able to model a wide range 
of asphalt binders, 21 and are compatible with general forcefields21,22 allowing the modeling of 
arbitrary additives in the mixture. This kind of modeling also allows access to atomic-level 
information, providing insight into the mechanisms behind moisture damage and how it affects 
the interfacial interactions between binder and aggregate.  
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Chapter 3. Materials and Methodologies  
The binder was modeled using the model developed by Li and Greenfield based on the OPLS 

(Optimized Potential for Liquid System) forcefield that had been used previously.23,24 This 

approach allows a wide array of SHRP (Strategic Highway Research Project) model asphalts to 
be simulated, and ensured compatibility with OPLS tools to create the various additives required. 
While many different binders could have been considered, the study was restricted to a model 
SHRP AAA-1 as a representative binder. Future work could consider the effect of different 

compositions. LigParGen25 was used to create the additives. LigParGen simply requires inputting 

a molecular structure in the form of a SMILES (Simplified Molecular Input Line Entry System) 
string, so polymers and well-defined additives could be easily modeled. It is also compatible with 
the aforementioned asphalt binder model. Water was modeled 
using the TIP3P model.26,27 While aggregates are formed of a 
large number of metal oxides, the focus in this short project was 
on the most common, SiO2, the main component in granite, a 

common aggregate 28 The SiO2 was created using the 

CHARMM-GUI (Chemistry at Harvard Molecular Mechanics  - 
Graphical User Interface) tool29 but OPLS parameters were 
used. Details of the aggregate surface certainly were important 
but were outside the scope of this project. The study was limited 
to smooth SiO2 surfaces.  
 
Measurement of the adhesion between two materials using 
molecular dynamics has been well demonstrated in a variety 

of contexts.30–32 This project implemented the method 

described in Reference 30. The adhesion energy was measured by pulling the asphalt binder off 
the aggregate using a virtual spring. Using Bell's model,30,33 the pulling velocity 
 
 𝑣 = 𝑣0𝑒𝑥𝑝(𝑓 𝑥𝑏 𝑘𝑏⁄ 𝑇) Equation 1 

 
where 𝑥𝑏 is the distance between the equilibrium states and the transition state, and 
 
 𝑣0 = 𝜔0𝑥𝑏𝑒𝑥𝑝⁡(−𝐸𝑏 𝑘𝑏⁄ 𝑇) Equation 2 

 
where 𝜔0 is the natural vibration frequency, and 𝐸𝑏 is the adhesion energy.  
 
The project calculated the adhesion energy as a function of water concentration and validated the 

results against experimental results under wet and dry conditions with granite. 19,34 Experimental 

validation came from literature,35–37 and our own experiments . While granite does not perfectly 
match the SiO2 model, the match was sufficient for a reasonable validation. Once validated, water 
composition was varied. The water was initialized in the empty space between the binder and the 
SiO2 and brought to equilibrium. High concentrations of water formed a continuous liquid phase 
between the binder and the aggregate. In addition to quantifying adhesion, this allowed study of 
the molecular phenomenon that resulted in adhesive failure. 
 
The effect of waste plastic was investigated. Polyethylene was modeled using LigParGen,25 
however, only small molecular weights (<10kg/mol) were considered as very large molecular 
weights resulted in very large simulation times and volumes to get accurate data. This was still 
sufficient to consider the interaction strength between the modified binder and the aggregate, as 
the main effect of increasing molecular weight, after increasing past some small number, is to 

Figure 1. Schematic of 
simulation to measure binder-
aggregate adhesion strength.  
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increase viscosity and slow dynamics, 38 rather than change the interactions between molecules. 
Simple monodisperse, low molecular weight models were used. This sped simulation time and 
provided a good first pass study that could be extended in a future study. Further studies could 
test a wider range of additives. 
 
Calculation and validation of binding energy and effect of water. A process was created for 
initiating the asphalt drop above the aggregate surface, and pulling the droplet off the surface at 
various velocities. The adhesion energy has been calculated for AAA-1 SHRP asphalt with SiO2 
at values similar to those found in literature (See Results and Discussion for a more thorough 
explanation).  
 
Water was incorporated into simulations and calculations. In addition, multiple runs were used to 
estimate error. For each pulling velocity, five runs were initialized with different starting velocities. 
The maximum pulling force for each run was extracted from the data. The mean value of that 
maximum pulling force is used, and the standard deviation of those five runs is used to calculate 
the error of that data point. The error in 𝐸𝑏 was calculated using MATLAB’s fit function with 
weighting factors defined as 
 
 

𝑤𝑖 =
𝑛(𝑠𝑦𝑖)

−2

∑ (𝑠𝑦𝑖)
−2𝑛

𝑖=1

 
Equation 3 

 
where 𝑠𝑦𝑖 is the standard deviation for yi and n is the number of data points. Each data point’s 

contribution to the regression line is inversely proportional to the precision of yi; that is, the more 
precise the value of y, the greater its contribution to the regression.  
 

 
Figure 2. Maximum force vs. ln(v/v*). v* is 1 m/s. Error bars are given as the standard error 
of 5 runs. Linear fit is used to calculate the bonding energy per area.  
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Water was incorporated into the simulation using the TIP3P model. Water molecules were placed 
in an evenly spaced array on the surface of the SiO2, as shown in Figure 2. The rest of the 
simulation proceeded in the same manner as the simulations without water. Different amounts of 
water were added by changing the spacing between water molecules. An example with 100 water 
molecules added (0.94 water molecules per nm2) is shown in Figure 3. The droplet is above the 
SiO2 with water molecules shown in blue. Except for the water molecules, hydrogen atoms are 
shown in white, carbon atoms in cyan, oxygen in red, sulfur in yellow, nitrogen in blue, and silicon 
in brown. The simulation is run using periodic boundary conditions so that the SiO2 surface is 
pseudofinite.  
 

 
 

Figure 3. Insertion of water molecules. The asphalt droplet is over the SiO2 with water 
molecules (shown in blue) placed above the SiO2.  
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Chapter 4. Results and Discussions  
In this project, the research team seeks to develop a screening tool for assessment of moisture-

induced damage potential of asphalt mixes containing PE. We use Bell’s model,30,33 which relates 

the pulling velocity and pulling force to the adhesion energy. 
 
To extract the adhesion energy per area, the slope and intercept of the maximum force vs. ln(v/v*) 
must be extracted (see overview). This is shown for various amounts of added water with the 
bonding energy shown in text on the plot in Figure 4. Generally, increased water content 
decreases adhesion energy, though zero water has a lower adhesion energy than ~1 water 
molecule per nm2. A few reasons are possible. First, some of the dry tests pulled apart the asphalt 
droplet rather than simply pulling it off the surface, but this does not happen when water is 
included. Finally, perhaps a small amount of water promotes hydrogen bonding and increases 
adhesion, though ultimately, water is detrimental to adhesion, as attested to in the literature.  
 

 
Figure 4. Comparison of adhesion energy vs. water content. 0 water is shown in circles, 0.46 
waters per nm2 is red squares, 0.94 waters per nm2 in blue triangles, 3.8 waters per nm2 in 
green asterisks, and 8.5 waters per nm2 in magenta xs. 
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For comparison, experimental measurements give adhesion energy in the range of 30-75 mJ/m2 

under dry conditions depending on the binder, aggregate, and measurement technique. It can be 
difficult to distinguish between the effect of each between studies. A result of ~46 mJ/m2 was 
obtained for dry unmodified asphalt, consistent with experiment. One difficulty in attaining this 
value is ascertaining the interaction area between the droplet and the aggregate. This was done 
by taking a snapshot of simulation after good contact was made (that is, just before the droplet 
was pulled off the surface) and taking the area of the shape containing the droplet atoms in contact 
with the SiO2 surface. This gave an area of 282 Å2 and was fairly consistent between tests (within 
12   Å2 for those sampled). However, the boundary of this shape is not well defined as atoms 
interact appreciably beyond the hard surface of the LJ (Lennard-Jones) sphere that approximates 
each atom.  
 
Polymer Addition. Polyethylene was added to the bottom of the asphalt droplet and the 
calculations were completed, as described previously. A 30-monomer long chain was used. This 
is shown in Figure 4 and equates to a 2.52 wt% mixture. The droplet has a mass of 32597.393 
amu and the polymer has a mass of 843.636 amu.  
 
 

 
 

Figure 5. Insertion of PE. Atoms are colored by element: oxygen is red, hydrogen is white, 
carbon is cyan, sulfur is yellow, nitrogen is blue, and silicon is brown. The polyethylene 
atoms are colored green to distinguish them from the other asphalt molecules.  
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Results in the same format as above are shown in Figure 5. The results are qualitatively similar, 
with a slight increase at low water content, and a decrease at higher water content, but the 
magnitude and behavior at high water content differ. Comparisons of the binding energy per area 
are shown in Figure 6.  
 
 

 
Figure 6. Comparison of adhesion energy vs. water content for 1 PE molecule per droplet 
(2.52 wt%). 0 water is shown in circles, 0.46 waters per nm2 is red squares, 0.94 waters per 
nm2 in blue triangles, 3.8 waters per nm2 in green asterisks, and 8.5 waters per nm2 in 
magenta xs.  

 
Shown in Figure 6, water significantly impacts the adhesion between binder and silica. Both with 
and without PE, there is an increase at low water concentrations followed by a decrease in binding 
energy. This could be caused by increased hydrogen bonding between the asphalt and silica. It 
could also be caused by an effective increase in the interaction area as the water can act to wet 
both surfaces. Under dry conditions, the added PE reduces binding energy (46 mJ/m2 vs. 33 
mJ/m2).  
 
However, at high water content the situation is different. Without PE, the binding energy continues 
to decrease, potentially leading to premature failure. With PE, the binding energy stabilizes at 
high water content, indicating that PE could act to induce water damage resistance in the asphalt.  
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The reduced adhesion under dry conditions when PE is included could be explained by the non-
polar nature of PE. It simply has a weaker interaction with SiO2 than the asphalt which contains 
some polar components. While not sampled here, it is possible that the PE would spend less time 
at the surface and mitigate these effects in experimental systems.  
 
The stabilization effect and mitigation of the effect of water could also be explained by the 
hydrophobic nature of PE. Once in contact with the SiO2 surface, it may repel water from that 
surface, thus keeping a dryer overall interaction. This is supported when the trajectories are 
analyzed. Under dry conditions, the simulations with and without PE look very similar (see Figure 
7). However, high water content sometimes results in the PE molecule bridging between the SiO2 
and the asphalt droplet as it moves away. (see Figure 8) Figure 8 presents a visualization of the 
molecular dynamics simulation immediately following the detachment of the asphalt droplet from 
the SiO₂ aggregate surface. In this image, water molecules are rendered as a transparent blue 
surface. The PE allowed the water to be repelled at the interface and a stronger interaction 
between the droplet (including PE) and the surface was formed. Thus, the relatively weak impact 
of water on the polymer modifed asphalt. These results suggest that PE could be used to limit the 
effect of water, though there might be tradeoffs for performance if water is not present. More work 
is needed.  
 
 

 
Figure 7. Comparison of adhesion energy vs. water content for no PE vs. PE.  
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Figure 8. Image of simulation soon after droplet pulloff. Water is shown as a transparent 
blue surface using the quicksurf method in VMD (Visual Molecular Dynamics).  
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Chapter 5. Conclusions and Recommendations  
This project successfully validated the approach used by achieving dry adhesion energies 
consistent with experiments (46 mJ/m2). Interestingly, the study found that at very low water 
concentrations (<0.5 waters per nm2), adhesion energy increased. This could be caused by an 
increase in hydrogen bonding between the binder and aggregate, or potentially by an increased 
wetting area between binder and aggregate. The first cause would be reflected in experiment, 
while the second is more of a reflection of the droplet shape on a flat surface.  
 
The addition of polyethylene to the asphalt binder produced two significant effects. First, it 
reduced the initial dry binding energy from 46 mJ/m² to 33 mJ/m², likely due to PE's non-polar 
nature creating weaker interactions with the silica surface compared to the polar components in 
unmodified asphalt. Second, and perhaps more importantly, PE modification demonstrated a 
protective effect against water damage at higher water concentrations, with binding energies 
stabilizing around 28-29 mJ/m² rather than continuing to decrease, as observed in unmodified 
asphalt. This stabilization effect appears to be related to PE's hydrophobic nature, which helps 
repel water from the asphalt-aggregate interface. 
 
Modification by PE may reduce moisture damage of asphalt in very wet conditions, though the 
effects it has on dry properties must be studied to ensure those properties are not diminished.  
 
Further work is required in a few areas. First, other modifiers, binders, and aggregate should be 
tested to see if these effects are universal. Second, the effect of specific placement of the modifier 
in the droplet, and the typical position of the modifier in the droplet, should be tested. For 
consistency, the polymer was placed on the bottom of that droplet, but it is unclear exactly where 
the polymer will partition in general. Coarse-grained simulations could be used to allow sampling 
of these longer timescale simulations.  
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Chapter 6. Implementation of Project Outputs 
The method has been implemented and validated. Scripts and data files to aid in reproduction 
and extension of the calculations will be provided on the PI’s website 
(https://www2.latech.edu/~apeters/index.html).  
 
The effect of water at various concentrations on binder to aggregate adhesion was found and 
reported.  
 
The effect of PE modification to binder and the effects of binder to aggregate adhesion was 
found and reported. PE reduced the dry adhesion energy but increased wet adhesion energy 
above the unmodified values. This suggested PE could be used to mitigate water damage, but 
the effect on dry properties needs to be studied first. The basis for longer studies on the effect of 
different asphalts or aggregates has been provided. 
 
.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://www2.latech.edu/~apeters/index.html
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Chapter 7. Technology Transfer and Community 
Engagement and Participation (CEP) Activities 

The work of the PI/CoPI was presented at the annual Transportation Research Board meeting 
in Washington DC in January 2024 and January 2025.  
 
The PI will present the findings in a monthly SPTC webinar. 
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