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Abstract 

About 75% of all roads in the United States, around 3 million miles, are in rural areas and are 

vital for transporting goods and connecting communities. The risk of dying in a car crash is 62% 

higher on a rural road compared to an urban road for trips of the same length.  Locally, in the state 

of Minnesota, nearly two-thirds of all crashes leading to fatalities or serious injuries occur at rural 

intersections.  Since a vast majority of these crashes occur due to human error, autonomous 

vehicles (AVs) have the potential to improve rural road safety.  However, low volume rural roads 

present special challenges for AVs.  Such rural roads can be narrow, often will not have right-side 

lane markers, may not even have center lines, may not be plowed for snow removal, and can 

have trees and other objects close to the side of the road.  Rural traffic intersections can have 

missing delineation and signage that are normally provided on higher volume roadways.  All of 

these issues pose major challenges to autonomous driving. 

This project specifically looks into solutions for localization on rural roads without the use of 

cameras so that they can work in the absence of lane markers and/or the presence of snow.  The 

use of RTK-corrected GNSS is explored in detail.  The full-scale Chrysler Pacifica MnCAV vehicle 

at the University of Minnesota was utilized for all data collection.  On rural roads without 

obstructions from trees, RTK-corrected GNSS was found to yield better than 10 cm localization 

accuracy in terms of standard deviation of error.  More than 20 satellites are typically available for 

use in the real-time position calculation on such roads.  However, on roads with dense tree cover, 

satellite visibility may be completely lost – Data collected on a narrow suburban road with dense 

trees showed GNSS dropouts lasting several seconds on multiple occasions.  

The use of Lidar for localization by utilizing an open-source LIO-SAM algorithm was explored. 

This algorithm is a state-of-the-art computational framework that is designed to provide real-time 

trajectory estimation and map-building for autonomous systems like robots and self-driving 

vehicles. By using the Lidar sensor to measure distances to the surrounding environment and 

performing a process called scan-matching, where consecutive Lidar scans are aligned to 

estimate how far the vehicle has moved between scans, the new location of the vehicle is 

determined. Analysis of data from the MnCAV vehicle with this algorithm showed that position 

drifts of approximately 0.2m, 0.5 m and 0.8 m are obtained when GNSS outages occur of 1, 5 

and 10 seconds respectively.  These results suggest that pre-made maps rather than a SLAM 

algorithm are needed for reliable localization with Lidar. 

Since a dual-antenna GNSS system equipped with a high performance IMU can cost well 

over $15,000, the feasibility of reliably estimating yaw angle and slip angle without the need for 

an expensive dual-antenna sensor was studied.  Two novel approaches, one based on the use 

of a high gain observer that utilizes IMU and single-antenna GNSS measurements, and another 

based on the use of a low-cost radar on the car, were developed.  Both approaches showed very 

good performance with yaw angle and slip angle estimates being within approximately 1 degree 

of ground truth readings. 

The results obtained in this project indicate that a low-cost single-antenna GNSS system can 

work reliably for localization on rural roads that have at least some open-sky visibility (don’t have 

dense tree cover). 
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1. Introduction

Crashes on Rural Roads 

About 75% of all roads in the United States, around 3 million miles, are in rural areas and are 

vital for transporting goods and connecting communities. The likelihood that a car crash will result 

in death is higher in rural America, even with less than one fifth of the population living in these 

areas [1]. Approximately 85,000 people were killed on rural roads between 2016 and 2020. 

According to a new study published by the Governors Highway Safety Association (GHSA), the 

risk of dying in a car crash was 62% higher on a rural road compared to an urban road for trips of 

the same length [1].  Locally, in the state of Minnesota, nearly two-thirds of all crashes leading to 

fatalities or serious injuries occur at rural intersections. More than 20% of all traffic fatalities in the 

United States occur at intersections, and over 80% of intersection-related fatalities in rural areas 

occur at unsignalized intersections [2]. 

Challenges for Rural Autonomous Driving 

While major global companies such as Google, Uber, Tesla and General Motors are 

intensively focused on developing Level 3 and higher self-driving autonomous vehicles, their 

research is focused on driving in good weather on clean well-equipped roads. A majority of their 

development and testing has occurred in warm weather states such as California and Arizona. 

States in the US Midwest and rural locations pose additional challenges for autonomous driving 

that could significantly delay the arrival of self-driving technology to these regions. 

The use of cameras is the most common approach for determining a vehicle’s position in the 

lane and for measuring its lateral distance with respect to the lane boundaries. This lateral 

distance to lane markers is used as the feedback variable for automatic steering control [3]. The 

presence of snow on the ground, including even a thin layer of frost covering the lane markers, 

can make the engagement of steering control infeasible. Data gathered by the University of 

Minnesota team shows that snow remains on lane markers for a significantly longer duration, 

compared to snow in the interior of the lane where the tire-paths of cars enable faster snow 

removal. This prevents the engagement of autonomous steering for a significant period of time 

after the end of snowfall.  Further, low volume rural roads present special challenges in all 

seasons.  Such rural roads can be narrow, often will not have right-side lane markers, may not 

even have center lines, may not be plowed for snow removal, and can have trees and other 

objects close to the side of the road.  Rural traffic intersections can have missing delineation and 

signage that are normally provided on higher volume roadways.  All of these issues pose major 

challenges to autonomous driving, since AVs depend critically on such markings and signage.  

Level-2 vehicles with automatic steering control for lane centering currently sold in the market 

rely on camera-based feedback [3]. The use of differential GPS (as an alternative to camera-

based feedback) for steering control was pioneered by researchers at the University of Minnesota 

[4] and has also been studied by researchers at other universities and companies [5]. The

differential GPS system reported in these early papers was typically an expensive local system
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created specifically for the research project under consideration. A description of dynamic models 

for representing lateral vehicle motion and of automatic steering control systems can be found in 

[6], [7].  The use of the state-wide MnCORS GNSS network in Minnesota for providing RTK 

corrections for lateral lane position measurement has been utilized by Davis, et al for a snowplow 

guidance system that approximately detects lateral position and displays it with a resolution of 1 

foot inside the snowplow cab [8], [9].  

 

Project Objectives 

This project will explore some solutions to the challenges associated with rural driving for 

autonomous vehicles.  In particular, the project will explore the use of RTK-corrected GNSS for 

localization of the autonomous vehicle so that the vehicle can then perform steering control using 

such GNSS-based measurements instead of traditional camera-based relative position 

measurements with respect to lane boundaries.  The availability and accuracy of GNSS-based 

measurements in rural environments will be studied.  Estimation approaches that can reduce the 

cost of GNSS device hardware will be explored.  Alternative Lidar-based localization techniques 

that can compensate for GNSS outages will also be considered. 

 

MnCAV Vehicle Summary 

This section provides a brief summary of the University of Minnesota’s autonomous vehicle, 

known as the MnCAV vehicle, as shown in the photograph in Figure 1. The vehicle is equipped 

with RTK corrected GPS, IMU, gyroscope and radar and their specifications are given in Table 1. 

The vehicle belongs to the Center for Transportation Studies at the University of Minnesota.  The 

project will utilize this vehicle for all of the data collection tasks that will be performed in various 

road environments. 

 

Figure 1: Photograph of the University of Minnesota MnCAV automated vehicle (Credit: Center for Transportation 

Studies, University of Minnesota, https://mncav.umn.edu/) 
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The MnCAV vehicle is equipped with firmware for computer-controlled steering, throttle and 

brakes and is instrumented with sophisticated sensors that include high-density 3D Lidar, forward 

and rear facing radar, inertial measurement unit (IMU) sensors, dual antenna GPS system 

capable of obtaining RTK corrections from MnCORS, a Mobileye Camera system for measuring 

distances from lane boundaries, and multiple other cameras for recording of the road environment 

and of the motions of other nearby vehicles. 

 

Table 1: Sensor Specifications 

Sensor Accuracy Rate (Hz) 

Novatel PWRPAK7-E2 GPS 10 cm 10  

Accelerometer 0.025 m/s/√hr 100 

Gyroscope 0.06 °/√hr 100 

CONTI ARS408 Radar 10 cm 20 

Ouster OS1-64 Lidar  5 cm 10 

 

Figure 2(a) shows the Novatel PwrPak7D-E1 module used on the MnCAV vehicle for GNSS 

based position measurement.  Figure 2(b) shows the MnCAV vehicle equipped with a dual 

antenna system that interfaces with the Novatel GNSS module. The Novatel module supports 

dual antenna receivers and RTK corrections communicated over multi-channel L-band and IP 

connections. The left antenna is the primary antenna or the main GNSS antenna used for position 

determination. The right antenna is the secondary antenna and is used to obtain a high-accuracy 

orientation angle of the vehicle. 

 

(a) Novatel PwrPak7D-E1 module 

(Available at: https://novatel.com/products/gnss-inertial-navigation-systems/combined-systems/pwrpak7d-e1) 
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(b) MnCAV vehicle with roof-equipped dual GNSS antenna system 

(Credit: Center for Transportation Studies, University of Minnesota, https://mncav.umn.edu/) 

Figure 2: GNSS Module and dual antenna system used on the MnCAV vehicle 

 

2. GNSS Availability in Rural Environments 

The project first focused on preliminary data collection using the MnCAV autonomous vehicle 

to analyze the availability and accuracy of GNSS (global navigation satellite system) based 

position measurements for autonomous steering control.  The MnCORS RTK (real-time 

kinematic) correction system was utilized to increase GNSS position estimation accuracy.  Data 

was obtained on a variety of roads, including rural roads without blockage from trees, roads in 

downtown Minneapolis, non-downtown/ suburban roads without tree cover and suburban roads 

with tree cover. This section presents a summary from the analysis of satellite availability and 

position measurement accuracy at these different locations.   
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Figure 3: Map showing roads at a variety of locations used for testing the GNSS system 

Figure 3 shows a variety of locations at which the performance of the GNSS system with RTK 

corrections from MnCORS was tested.  The locations include a rural main road (Langford Ave), a 

rural side road (Vergus Ave), downtown Minneapolis, local non-downtown roads near campus 

with no obstructions (Elm St SE, Kasota Ave, Energy Park Drive) and local non-downtown roads 

with some tree obstructions (West River Parkway and Commonwealth Ave).  Additional data 

collection at more rural locations needs to be conducted in the future to further confirm the results 

from this preliminary analysis. 
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Figure 4: Satellite availability characterization of various locations 

 

Figure 4 shows a characterization of the number of satellites available for position 

determination at each of 4 characteristic locations: downtown Minneapolis, a rural main road, a 

local non-downtown road without obstructions and a local non-downtown road with tree 

obstructions.  From the results in Figure 4, it can be seen that 

• Due to the many tall buildings and skyways in downtown Minneapolis, the number of 

satellites used in position determination drops to very small numbers in many instances. 

There were 240 instances (each lasting 0.1 seconds) when there were less than 4 

satellites visible and hence position could not be determined at all. 

• On Langford Ave (a rural main road), there are not much trees to obstruct the lines of sight 

to satellites. Therefore, there was a large number of satellites (≥ 20) always available to 

be used in the position determination solution. 

• On suburban local roads with obstructions, the number of satellites used in the position 

determination solution is smaller than on roads with no obstruction, but more than in 

downtown where the case is significantly worse. 

• On suburban local roads with no obstructions, the number of satellites available to be used 

in solution is very good (and always adequate to prevent loss of position determination). 
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Figure 5 shows a characterization of the predicted standard deviation in longitude position 

measurement at the 4 characteristic locations.  It can be seen that the rural road (Langford Ave) 

always has excellent position accuracy with the predicted standard deviation always being less 

than 10 cm.  On the other hand, the downtown test has many instances of poor position accuracy 

in which the standard deviation increases significantly and can be well over 1 meter. The local 

road with no obstructions has good accuracy with standard deviation being less than 10 cm for 

most readings.  The local road with tree obstructions has several instances of loss in accuracy 

wherein the standard deviation can increase to over 1 meter, although the accuracy is significantly 

better than that of downtown most of the time. 

 

 

Figure 5: Standard deviation of longitude measurement at various locations 

Figure 6 shows a similar characterization of the predicted standard deviation in latitude 

position measurement at the 4 characteristic locations.  The conclusions from this figure are 

identical to the ones from Figure 5. 

A detailed analysis of whether the brief GNSS outages can be handled by IMU based 

integration methods remains to be done and was not taken up as a part of this CCAT project. 
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Figure 6: Standard deviation of latitude measurement at various locations 

 

From all of the data we have collected so far, the standard deviation appears to be 10 cm or 

better on rural roads and local roads without obstructions where the number of satellites available 

is typically more than 15. 

Figure 7 shows the availability (or accuracy) of RTK corrections in determining positions at 

the same 4 characteristic locations. It can be seen that RTK corrections were not available for 

approximately 40% of the time in the downtown test (Here availability actually refers to accuracy 

of the RTK correction and such accuracy is compromised by multipath errors).  Since RTK 

correction is susceptible to multipath errors which occur frequently in the presence of tall 

buildings, RTK correction can often be unavailable in downtown, as evidenced by the results of 

Figure 6.  RTK corrections were available almost 100% of the time in the rural location and local 

road without obstruction tests.  In the case of the local road with tree cover, RTK corrections were 

not available approximately 20% of the time. 
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Figure 7: RTK correction availability characterization at various locations 

 

Alternate Methods to Estimate Yaw Angle and Slip Angle 

A dual-antenna GNSS system equipped with a high performance IMU sensor can cost well 

over $15,000.  For example, the Novatel PwrPak7D-E1 module utilized on the MnCAV vehicle 

had a cost of over $17,500 when initially purchased (~in 2022).  The use of a single-antenna 

device together with the use of a low-cost IMU can significantly reduce hardware costs.  This 

section explores the development of alternate techniques for estimating yaw angle and slip angle 

so that the use of a dual antenna system can be avoided.  The yaw angle of the vehicle is needed 

for autonomous steering control, since the yaw error between the road and the vehicle, as well 

as the look-ahead lateral position error, need to be used in the feedback control system.  Two 

approaches are studied for yaw and slip angle estimation: 

A) A high gain observer based yaw and slip angle method in which IMU measurements are 

used as inputs to a process dynamics model, in addition to measurements from a single-

antenna GNSS system. 
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B) A radar based method in which radial distances and velocities with respect to static objects 

on the road can be utilized for slip angle (and consequently yaw angle) estimation. Radar 

is typically already utilized on all autonomous vehicles for object detection and tracking 

tasks and is thus a sensor that is already available on the vehicle. 

 

3. High Gain Observer Based Yaw and Slip Angle Estimation 

Consider the state vector for an autonomous vehicle’s ego state estimation, 

 𝑧𝐸 = [𝑥𝐸 𝑥̇𝐸 𝑥̈𝐸 𝑦𝐸 𝑦̇𝐸 𝑦̈𝐸]𝑇 = [𝑧1   …  𝑧6]
𝑇 (1) 

The acceleration of the ego vehicle in the inertial frame is given by, 

 𝑥̈𝐸 = 𝑎𝑥 𝑐𝑜𝑠(𝜓𝐸) − 𝑎𝑦𝑠𝑖𝑛 (𝜓𝐸) (2) 

 𝑦̈𝐸 = 𝑎𝑥 𝑠𝑖𝑛(𝜓𝐸) + 𝑎𝑦𝑐𝑜𝑠 (𝜓𝐸) (3) 

where, 𝑎𝑥 and 𝑎𝑦 are the acceleration of the ego vehicle about inertial 𝑋𝐸 and 𝑌𝐸 axis obtained 

which can be obtained using an IMU. 

The jerk of the ego vehicle in the inertial frame is the derivative of (2) and (3) which is given 

as follows, 

 𝑥𝐸 = 𝑎̇𝑥 𝑐𝑜𝑠(𝜓𝐸) − 𝑎̇𝑦 𝑠𝑖𝑛(𝜓𝐸) − 𝑢3𝑦̈𝐸  (4) 

 𝑦𝐸 = 𝑎̇𝑥 𝑠𝑖𝑛(𝜓𝐸) + 𝑎̇𝑦 𝑐𝑜𝑠(𝜓𝐸) + 𝑢3𝑥̈𝐸  (5) 

where, 𝑎̇𝑥 and 𝑎̇𝑦 are the derivative of the IMU readings and 𝑢3 is the yaw rate obtained from the 

gyroscope. The IMU and gyroscope signal derivatives 𝑎̇𝑥 , 𝑎̇𝑦 and 𝑢̇3 cannot be measured directly 

and moreover the differentiation of IMU readings will yield highly noise values, hence it has been 

assumed that these derivatives are zero. 

 

Assumption 1. The jerk (derivative of acceleration and angular acceleration) is zero: 𝑎̇𝑥 = 0, 𝑎̇𝑦 =

0 and 𝑢̇3 = 0. 

 

Given the above assumption, (4) and (5) can be simplified as follows, 

 𝑥𝐸 = −𝑢3𝑦̈𝐸 (6) 

 𝑦𝐸 = 𝑢3𝑥̈𝐸 (7) 

The new state dynamics is then given as follows, 

 𝑧̇𝐸 = 𝐹𝑧𝐸 + 𝐺𝑓𝐸(𝑢3, 𝑧𝐸) (8) 
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where, 𝐹 = 

[
 
 
 
 
 
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 
 

, 

𝐺 = 

[
 
 
 
 
 
0 0
0 0
1 0
0 0
0 0
0 1]

 
 
 
 
 

 and 𝑓𝐸(𝑢3, 𝑧𝐸) = [
𝑓1(𝑢3, 𝑧𝐸)
𝑓2(𝑢3, 𝑧𝐸)

] = [
−𝑢3𝑧6

𝑢3𝑧3
]. 

The measurement equation is then given by, 

 𝑦 =  𝐻𝑧𝐸 (9) 

where 𝐻 = [
1 0 0 0 0 0
0 0 0 1 0 0

]. 

 It can be observed that accurate state estimates can be obtained from the use of just GPS 

positions and gyroscope measurements when assumption 1 is satisfied, without using the IMU 

accelerations. 

After obtaining the companion form for state estimation of ego vehicle, the observer dynamics 

as can be obtained as follows,  

 𝑧̇̂𝐸 = 𝐹𝑧̂𝐸 + 𝐺𝑓𝐸(𝑢3, 𝑧̂𝐸) + 𝐿𝐸(𝑦 − 𝐻𝑧̂𝐸) (10) 

where 𝐿𝐸 is the constant observer gain matrix. It is assumed that the nonlinear process equation 

is Lipschitz, 

 ‖𝑓𝐸‖
2

≤ 𝛾‖𝑧̃𝐸‖2 (11) 

where, 𝑓𝐸 = 𝑓(𝑢3, 𝑧𝐸) − 𝑓(𝑢3, 𝑧̂𝐸) and 𝑧̃𝐸 = 𝑧𝐸 − 𝑧̂𝐸 and 𝛾 is the Lipschitz constant and for state 

estimation it is given by the maximum angular velocity encountered during the motion of the ego 

vehicle i.e. 𝛾 = 𝑢3|𝑚𝑎𝑥. 

The high gain observer formulation requires the dynamics to be in the block triangular form as 

given in (8), after which the observer gain can be obtained by solving the LMI given in Theorem 

1. 

Theorem 1. If there exists 𝑃 > 0, 𝜆 > 0, 𝐿, and 𝜃 > 1 such that: 

 𝐹𝑇𝑃 + 𝑃𝐹 − 𝐻𝑇𝑅 − 𝑅𝑇𝐻 < −𝜆𝐼 (12) 

and 

 
𝜃 > 𝜃0 =

2𝛾𝜆𝑚𝑎𝑥(𝑃)

𝜆
 (13) 

in which 𝜆𝑚𝑎𝑥(. ) is the maximum eigenvalue, then the estimation error 𝑧̃ is exponentially stable 

by taking: 
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 𝐾 = 𝑃−1𝑅𝑇 (14) 

 𝐿 = 𝑇(𝜃)𝐾 (15) 

where, 𝑇(𝜃) =

[
 
 
 
 
 
𝜃 0 0
0 𝜃2 0
0 0 𝜃3

0 0   0
0  0   0
0  0   0

0  0   0
0  0   0
0  0   0

𝜃 0 0
0 𝜃2 0
0 0 𝜃3]

 
 
 
 
 

, 𝜃 > 1. 

The proof of the above Theorem can be obtained from Gauthier, et al., 1994, [10]. 

 

After obtaining the ego state estimates 𝑧𝐸, it is very important to compute the yaw angle of the 

ego vehicle, which can be obtained as follows using (2) and (3), 

 
𝑐𝑜𝑠(𝜓𝐸) =

𝑎𝑥𝑥̈𝐸 + 𝑎𝑦𝑦̈𝐸

√𝑎𝑥
2 + 𝑎𝑦

2

 
(16) 

The above equation can be used to estimate the yaw angle although it will not work for the case 

when the ego vehicle is not accelerating. In such cases the yaw angle can be approximated as 

the course angle 𝛾𝐸 which can be computed as follows, 

 
𝛾𝐸 = 𝜓𝐸 + 𝛽𝐸 = 𝑡𝑎𝑛−1 (

𝑦̇𝐸

𝑥̇𝐸
) (17) 

Given the measurements in (16) and (17), the following observer can be used to estimate the yaw 

angle of the ego vehicle, 

 𝜓̇̂𝐸 = 𝑢3 + 𝑘1(𝑦1 − 𝜓̂𝐸) + 𝑘2(𝑦2 − 𝜓̂𝐸) (18) 

where, 𝑦1 = 𝑡𝑎𝑛−1 (
𝑦̇𝐸

𝑥̇𝐸
) and 𝑦2 = cos−1 (

𝑎𝑥𝑥̈𝐸+𝑎𝑦𝑦̈𝐸

√𝑎𝑥
2+𝑎𝑦

2
). The value of 𝑘1 and 𝑘2 can be decided based 

on the value of gyroscope reading or the accelerometer readings as follows, 

If 𝑢3 > 𝑢𝑡ℎ then 𝑘1 = 0 else 𝑘2 = 0. 

If √𝑎𝑥
2 + 𝑎𝑦

2 > 𝑎𝑡ℎ then 𝑘1 = 0 else 𝑘2 = 0. 

where, 𝑢𝑡ℎ and 𝑎𝑡ℎ are the threshold values of gyroscope or accelerometer respectively. Since at 

any point of time one of 𝑘1 and 𝑘2 will be present, the observer in (18) becomes, 

 𝜓̇̂𝐸 = 𝑢3 + 𝑘𝑡(𝑦𝑡 − 𝜓̂𝐸) (19) 

where 𝑘𝑡 = 𝑘1 or 𝑘2 and 𝑦𝑡 = 𝑦1 or 𝑦2 depending on the conditions on gyroscope or accelerometer 

readings. Both 𝑦1 and 𝑦2 will have some errors along with the gyroscope reading. Hence, the 

actual system for yaw angle estimation can be written as follows, 
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 𝜓̇𝐸 = 𝑢3 + 𝐵𝑤 and 𝑦𝑡 = 𝜓𝐸 + 𝐷𝑤 (20) 

where, 𝑤 = [𝑤1 𝑤2]𝑇 and 𝐵 and 𝐷 ∈ ℝ1×2. 

 The 𝐻∞ disturbance rejection criteria can be used to obtain the observer gain 𝑘𝑡 thus 

bounding the the error induced due to sensor noise for the system given in (38). Theorem 2 can 

be used to obtain the observer gain 𝑘𝑡. 

Theorem 2. Consider the system in the form (20). 

If there exists 𝑘𝑡 > 0, 𝑃 > 0, and 𝜇 > 0 such that the following LMI is satisfied: 

 
[

−2𝑃𝑘 + 1 𝑃(𝐵 − 𝑘𝐷)

−(𝑘𝐷 + 𝐵)𝑇𝑃 −𝜇𝐼
] ≤ 0 (21) 

then the observer as given in (19) will be stable and a 𝐻∞ disturbance rejection criterion will be 

satisfied.  

 

Proof. Consider the Lyapunov candidate function, 

 𝑉 = 𝜓̃𝐸
2𝑃 (22) 

where, 𝜓̃𝐸 = 𝜓𝐸 − 𝜓̂𝐸 and 𝑃 > 0. The derivative of 𝑉 becomes, 

 𝑉̇ = 𝜓̃𝐸
𝑇𝑃𝜓̇̃𝐸 + 𝜓̇̃𝐸

𝑇𝑃𝜓̃𝐸 = −2𝑃𝑘𝛹̃𝐸
2 + 𝑃(𝐵 − 𝑘𝑡𝐷)𝛹̃𝐸𝑤 + (𝐵 − 𝑘𝐷)𝑇𝑃𝛹̃𝐸𝑤𝑇 (23) 

Using the 𝐻∞ disturbance rejection criteria (Zemouche & Boutayeb, 2009), 

 𝑉̇ + ||𝜓̃𝐸||2  − 𝜇||𝑤||2 ≤ 0 (24) 

Using (22), (23) can be written in matrix form as follows, 

 
[𝛹̃𝐸 𝑤

𝑇
] [

−2𝑃𝑘 + 1 𝑃(𝐵 − 𝑘𝐷)

(−𝑘𝐷 + 𝐵)𝑇𝑃 −𝜇𝐼
] [𝛹̃𝐸

𝑤
] ≤ 0 (25) 

The solution of (24) results in solving the LMI as given in (21) and hence the proof is complete. ∎ 

The complete flow chart for ego vehicle state estimation is given in Figure 8. 

 

Figure 8: Multi-stage high gain observer for state estimation of ego vehicle. 
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This section provides the experimental results for state estimation and vehicle tracking 

obtained using the University of Minnesota’s autonomous vehicle MnCAV. The vehicle is equipped 

with RTK corrected GPS, IMU, gyroscope and radar and their specifications are given in Table 1. 

The GPS position, gyroscope and IMU readings of the MnCAV vehicle were used as 

measurements for the ego vehicle state estimation by which the inertial position, yaw and course 

angle of the ego vehicle was estimated. The inputs from the ego state estimates were then utilized 

by vehicle tracking algorithms along with the radar readings of the tracked vehicle which was 

obtained from the Continental ARS408 Radar sensor. The tracked position, velocity, course and 

yaw angle obtained from the vehicle tracking algorithm were then compared with the ground truth 

data of the tracked vehicle obtained using MATLAB ground truth labeler using the highly accurate 

Ouster OS1-64 Lidar mounted on the Ego vehicle. The tracking algorithms developed in this work 

utilize some variables from the sensors (which includes the position of the ego and tracked 

vehicle, along with the acceleration and yaw rate of ego vehicle) to estimate many other variables 

(which includes the yaw angle, course angle and the velocities of the ego and tracked vehicles). 

The performance of the developed observer was evaluated using the error in estimation of 𝑉𝐶 , 𝑉𝑟𝑒𝑙 

and 𝛾𝐶 where 𝑉𝑟𝑒𝑙 = √𝑟̇𝑥
2 + 𝑟̇𝑦

2 and 𝛾𝐶 is the course angle of the target vehicle. 

To effectively evaluate the ego vehicle state estimation, tests were performed for a curved 

road in a parking lot at the University of Minnesota as shown in Figure 9. The plot for the position, 

yaw angle and side slip angle are shown in Figure 10 and it can be seen that the observer is able 

to estimate all these variables accurately. Furthermore, even the side slip angle is being estimated 

accurately over both straight road and curved path when the actual side slip is large. Additional 

estimation results for a second experiment are presented in Figure 11 and Figure 12. 

 

Figure 9: Route 1 of autonomous during state estimation. 
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Figure 10: State estimation of ego vehicle on route 1. 

 

Figure 11: Route 2 of autonomous vehicle during state estimation. 
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Figure 12: State estimation of ego vehicle on route 2. 

 

4. Slip Angle Estimation Using On-Board Radar 

One useful characteristic of the radar is its ability to measure the radial velocity of all objects within 

the field of view. By exploiting this feature and utilizing static points within the radar’s field of view, 

the ego-vehicle’s lateral and longitudinal velocities can be accurately derived through fundamental 

kinematic relationships. 

The Kinematics of Static Points in Relation to the Radar's Radial Velocity 

If the radar or ego-vehicle is in motion, reflections from static objects in the field of view will 

indicate the same velocity as the ego vehicle’s velocity but in the opposite direction. Based on 

this basic kinematic principle, we can derive the ego vehicle's kinematics by utilizing more than 

one of these static points. The objective is to estimate the longitudinal velocity (𝑣𝑥), lateral velocity 

(𝑣𝑦), and ultimately slip angle (𝛽) of the ego-vehicle using measurements derived from static 

objects. The schematics are explained in Figure 13, and the relationship between radial velocity 

(𝑣𝑟) and angle of arrival (𝜃) are formulated in Eq. (26). 

 𝑣𝑟 = 𝑣𝑥 cos(𝜃) + 𝑣𝑦sin (𝜃) (26) 

Then this equation is employed to determine 𝑣𝑥 and 𝑣𝑦 when both 𝑣𝑟 and 𝜃 are collected from 

the radar. It is important to note that this formula is applicable only for points obtained from static 

objects; it does not apply to points from moving objects.  

The slip angle 𝛽 subsequently can be calculated by the following formula (27): 
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 𝛽 = tan−1 (
𝑣𝑦

𝑣𝑥
) (27) 

Slip Angle Estimation 

When collecting radar data and selecting returns from static points, a large number of static 

measurements can be obtained; however, not all of them are reliable. Since our system is 

equipped with GPS, unreliable points can be filtered based on speed information. Specifically, the 

radar detects both moving vehicles and stationary objects (e.g., trees, walls, traffic lights). 

According to the kinematic relationship described earlier, radial velocity measurements from 

stationary objects should remain within the speed range of the ego-vehicle, as radial velocity 

reflects only the component of the vehicle’s motion along the radar’s line of sight. Consequently, 

points with radial velocity values that exceed or fall outside a prescribed range relative to the ego-

vehicle’s GPS-derived speed are identified as outliers and discarded. This filtering ensures that 

only physically consistent static points are retained for the slip angle estimation process.  

With the filtered data, the following methods are devised and investigated for slip angle 

estimation. 

• Two-Point Median Method: This approach involves selecting two static points from the 

surroundings, using them to calculate the lateral and longitudinal velocities (𝑣𝑥 and 𝑣𝑦), 

and then computing the median of all possible combinations of two-point measurements 

to reduce the impact of outliers. 

• Pseudo-Inverse Method: This method leverages all available static points in the scene to 

estimate 𝑣𝑥 and 𝑣𝑦. 

For the Two-Point Median Method, two points are selected from the static objects, as expressed 

in the following Eq. (28). 

 
[
𝑣𝑟𝑖

𝑣𝑟𝑗
] = [

𝑐𝑜𝑠(𝜃𝑖) 𝑠𝑖𝑛(𝜃𝑖)
𝑐𝑜𝑠(𝜃𝑗) 𝑠𝑖𝑛(𝜃𝑗)

] [
𝑣𝑥𝑖

𝑣𝑦𝑗
] (28) 

To enhance robustness against noise and outliers, we formed all possible combinations of 

static point pairs (𝑖, 𝑗), and solved the linear system in (28) for each pair. Then, the median of the 

resulting 𝑣𝑥 and 𝑣𝑦 estimates are computed: 

 (𝑣𝑥 , 𝑣𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{(𝑣𝑥
𝑘, 𝑣𝑦

𝑘)}
𝑘=1

𝑁
 (29) 

where 𝑣𝑥
𝑘 and 𝑣𝑦

𝑘 denote the estimated longitudinal and lateral velocities from the 𝑘-th point pair, 

and 𝑁 is the total number of unique point combinations. This median-based filtering method 

effectively suppresses the influence of outlier points and yields a more reliable velocity estimate. 

On top of that, pseudo-inverse methods can be also explored for estimating the slip angle with 

collected static points. This method employs all the static points and estimates lateral and 

longitudinal velocity of the ego-vehicle described in (30).  
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[

𝑣𝑟1

⋮
𝑣𝑟𝑛

] = [
𝑐𝑜𝑠(𝜃1) 𝑠𝑖𝑛(𝜃1)

⋮
𝑐𝑜𝑠(𝜃𝑛)

⋮
𝑠𝑖𝑛(𝜃𝑛)

] [
𝑣𝑥

𝑣𝑦
] (30) 

The pseudo inverse of the matrix is then utilized to find 𝑣𝑥 and 𝑣𝑦. However, low-cost radar sensors 

inherently produce multipath reflections and spurious points from surrounding objects, which can 

result in large peaks in the estimated slip angle from Eqn. (30) [24]. A comparison for one 

representative scenario is presented in the following sub-section. 

Based on the observations from the two aforementioned methods, the filtered data obtained 

through the median operation is employed for slip angle estimation. This approach mitigates the 

influence of outliers and spurious radar points, thereby improving the robustness of the estimation. 

 

 
Figure 13: From a blue static target, the radar measures the radial velocity component (𝑣𝑟) of the relative velocity 

vector (𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒). 

 

Comparison Between Proposed Methods 

A comparison of the two proposed methods is presented using a sharp-turn scenario described 

in the following section. In Figure 14, the red and green lines correspond to the two-point median 

and pseudo-inverse approaches, respectively, while the blue line represents the ground truth 

obtained from the GPS system. The results indicate that the median method yields smoother 

estimates with fewer spurious peaks than the pseudo-inverse method, which exhibits larger 

fluctuations and deviations from the reference trajectory. Moreover, the median-based approach 

demonstrates greater robustness to outliers and sensor noise, allowing it to capture the underlying 
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slip angle dynamics more consistently. In contrast, the pseudo-inverse approach is more sensitive 

to impurities in the radar data, leading to unreliable peaks in the estimation. Based on these 

observations, the two-point median method is adopted as the preferred approach for estimating 

the slip angle of the ego-vehicle. 

Figure 14: Slip angle estimation: Two-Point Median vs. Pseudo-Inverse methods 

5. LIO-SAM: A Framework for Lidar-Based Localization and Mapping

Introduction 

LIO-SAM (Lidar Inertial Odometry via Smoothing and Mapping) is a state-of-the-art computational 

framework for mobile robotics. Developed by Tixiao Shan et al. [11], this system is designed to 

provide highly accurate, real-time trajectory estimation and map-building for autonomous systems 

like robots and self-driving vehicles. It achieves this by "tightly coupling" data from two primary 

sensors: a Lidar (Light Detection and Ranging) and an Inertial Measurement Unit (IMU). The 

authors claim that this fusion of sensor data allows LIO-SAM to create precise maps and 

determine a robot's position with minimal drift, even in complex and dynamic environments. Yue 

et al. [12] demonstrated the application of LIO-SAM for vehicle localization using a factor graph 

optimization (FGO) architecture, highlighting its robustness and safety in rail transportation GPS 

denied scenarios. 

Core Concepts and Methodology 

LIO-SAM operates on a principle known as a factor graph, a mathematical model used to 

represent and solve complex optimization problems. In this framework, sensor measurements 

(like Lidar scans and IMU readings) are treated as "factors" that constrain the robot's estimated 

position and orientation. 

1. Lidar Odometry: A Lidar sensor measures distances to the surrounding environment by

emitting laser pulses and detecting their reflections. LIO-SAM uses this data to perform a

process called scan-matching, where it aligns consecutive Lidar scans to estimate how

far the robot has moved.
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2. IMU Pre-Integration: The IMU provides high-frequency measurements of the robot's

linear acceleration and angular velocity. LIO-SAM uses a technique called pre-integration

to quickly and efficiently estimate the robot's motion between Lidar scans. This provides a

robust initial guess for the more computationally intensive Lidar-based odometry.

3. Tightly-Coupled Fusion: The genius of LIO-SAM lies in its tight coupling. It doesn't simply

use the IMU to correct the Lidar's output. Instead, it integrates both sets of data into a

single, unified optimization problem on the factor graph. The IMU data helps "de-skew"

the Lidar point clouds (correcting for motion during a scan), and the Lidar data, in turn,

helps to correct for the IMU's inherent bias and drift.

4. Optional GPS Integration: To further enhance global accuracy, LIO-SAM allows for the

optional integration of a GPS signal. This provides an absolute position measurement that

can be incorporated into the factor graph as an additional factor, which is especially useful

for correcting for long-term drift in large-scale outdoor environments.

System Architecture and Performance 

The LIO-SAM system maintains two core factor graphs for optimal performance. One graph 

handles the real-time odometry and is reset periodically, ensuring a low computational load and 

a constant output of the robot's immediate position. The second, more comprehensive graph is 

used for global map optimization, incorporating loop closures (when the robot revisits a previously 

visited location) and optional GPS measurements to correct for long-term drift and create a 

globally consistent map. It can process a massive amount of data while maintaining high accuracy, 

making it suitable for demanding applications in robotics, autonomous navigation, and surveying. 

Experimental Results 

The LIO-SAM algorithm was implemented and tested using MnCAV data. Although the MnCAV 

platform is equipped with an RTK-corrected GPS module capable of providing high-precision 

positioning, GPS availability cannot be guaranteed in all environments. This is especially evident 

in urban downtown areas with tall buildings, narrow streets, and tree cover, which frequently block 

or degrade satellite signals. 
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To evaluate LIO-SAM’s performance under GPS-denied conditions, the GPS module was 

manually switched off for a durations of 1, 5 and 10 seconds during vehicle operation and the 

performance of the algorithm was evaluated. During this interval, the system relied solely on 

LiDAR and IMU measurements for localization. The preliminary results in Figure 16, Figure 17, 

Figure 18, Figure 19, Figure 20 and Figure 21 show that LIO-SAM maintained a trajectory drift 

error of approximately 0.2, 0.5 and 0.8 meters, demonstrating its ability to provide somewhat 

accurate pose estimation even when GPS data becomes unavailable. 

These experiments confirm that LIO-SAM can complement GPS-based navigation and is 

somewhat capable of handling short-term GPS outages in complex urban environments. 

Case 1: 1 second GPS outage 

Figure 15: XY plot of MnCAV data 
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Case 2: 5 second GPS outage 

Figure 16: Plot of X position with time (shaded region is gps free region) 

Figure 17: Plot of Y position with time (shaded region is gps free region) 
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Case 3: 10 second GPS outage 

 

 

Figure 18: Plot of X position with time (shaded region is gps free region) 

 

Figure 19: Plot of Y position with time (shaded region is gps free region) 
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6. Findings

Autonomous vehicles (AVs) have the potential to improve rural road safety.  However, low

volume rural roads present special challenges for AVs.  Such rural roads can be narrow, often will 

not have right-side lane markers, may not even have center lines, may not be plowed for snow 

Figure 20: Plot of X position with time (shaded region is gps free region) 

Figure 21: Plot of Y position with time (shaded region is gps free region) 
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removal, and can have trees and other objects close to the side of the road.  Rural traffic 

intersections can have missing delineation and signage that are normally provided on higher 

volume roadways.  All of these issues pose major challenges to autonomous driving. 

This project specifically looked into solutions for localization on rural roads without the use of 

cameras so that they can work in the absence of lane markers and/or the presence of snow.  The 

use of RTK-corrected GNSS was explored in detail.  A full-scale Chrysler Pacifica MnCAV vehicle 

at the University of Minnesota was utilized for all data collection.  On rural roads without 

obstructions from trees, RTK-corrected GNSS was found to yield better than 10 cm localization 

accuracy in terms of standard deviation of error.  More than 20 satellites are typically available 

and used in the position calculation on such roads.  However, on roads with dense tree cover, 

satellite visibility may be completely lost – Data collected on a narrow suburban road with dense 

trees showed GNSS dropouts lasting several seconds on multiple occasions. 

The use of Lidar for localization by utilizing an open-source LIO-SAM algorithm was explored. 

The LIO-SAM algorithm is a state-of-the-art computational framework that is designed to provide 

real-time trajectory estimation and map-building for autonomous systems like robots and self-

driving vehicles. By using the Lidar sensor to measure distances to the surrounding environment 

and performing a process called scan-matching, where consecutive Lidar scans are aligned to 

estimate how far the vehicle has moved between scans, the new location of the vehicle is 

determined. Analysis of data from the MnCAV vehicle with this algorithm showed that position 

drifts of approximately 0.2m, 0.5 m and 0.8 m are obtained when GNSS outages occur of 1, 5 

and 10 seconds respectively.  These results suggest that pre-made maps rather than a SLAM 

algorithm are needed for reliable localization with Lidar. 

Since a dual-antenna GNSS system equipped with a high performance IMU can cost well 

over $15,000, the feasibility of reliably estimating yaw angle and slip angle without the need for 

an expensive dual-antenna sensor was studied.  Two novel approaches, one based on the use 

of a high gain observer that utilizes IMU and single-antenna GNSS measurements, and another 

based on the use of a low-cost radar on the car, were developed.  Both approaches showed very 

good performance with yaw angle and slip angle estimates being within approximately 1 degree 

of ground truth readings. 

The results obtained in this project indicate that a low-cost single-antenna GNSS system can 

work reliably for localization on rural roads that have at least some open-sky visibility (don’t have 

dense tree cover). 

7. Recommendations

The open skies and low-multipath environments in rural locations can provide significant

benefits for AV operations.  RTK-corrected GNSS can provide localization accuracy better than 

0.1m and can support autonomous steering control as well as intersection identification and 

handling.  GNSS outages due to tree cover can occur in rural environments and will need to be 

handled.  Driving on routes that only involve roads without dense tree cover is a possible solution. 
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The development of solutions for an autonomous vehicle to safely pass through rural 

intersections needs to be developed in future work. 
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Appendix: Outcomes, Output and Impact

Publications: 

• G. Sharma, H. Alai and R. Rajamani, “Simultaneous Ego-Vehicle State Estimation and

Vehicle Trajectory Tracking using a Multistage High Gain Observer,” accepted for

publication in the journal Transportation Research – Part C: Emerging Technologies,

October 2025.

• H. Kyong, H. Alai, E.K. Tameh and R. Rajamani, “On the Importance of Slip Angle

Estimation for Radar-Based Tracking of Nearby Vehicles,” submitted to the journal IEEE

Transactions on Intelligent Transportation Systems, under review.

Presentations: 

• Rajesh Rajamani, “Interesting ITS Projects in Road Safety,” Safety Working Group, Center

for Connected and Automated Transportation, Region 5 UTC, March 22, 2024.

• Rajesh Rajamani, “Autonomous Vehicle Challenges for the US Rural Midwest,” CCAT

Global Symposium, March 28, 2025.

• Rajesh Rajamani, “Autonomous Vehicle Challenges for the US Rural Midwest,” Safety

Working Group, Center for Connected and Automated Transportation (CCAT), October

24, 2025.

External Funding: 

• Minnesota Local Road Research Board and Minnesota Department of Transportation,

“Use of MnCORS to Support Autonomous Vehicle Operations in Rural Minnesota,” PI:

Rajesh Rajamani, Funding: $178,775, July 1, 2024 – July 31, 2026.

Objective: This project aims to implement autonomous steering control on the MnCAV

vehicle platform using RTK-corrected GNSS and will demonstrate closed-loop control on

rural paved roads, gravel roads and on snow-covered roads.
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