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16. Abstract

Low volume rural roads present special challenges for AVs, since they can be narrow, often will not have right-side
lane markers, may not even have center lines, and may not be plowed for snow removal. Rural traffic intersections
can have missing delineation and signage that are normally provided on higher volume roadways. All of these issues
pose major challenges to autonomous driving. This project specifically looks into solutions for localization on rural
roads without the use of cameras so that they can work in the absence of lane markers and/or in the presence of snow.
The use of RTK-corrected GNSS is explored in detail. A full-scale Chrysler Pacifica MnCAV vehicle at the University of
Minnesota was utilized for all data collection. On rural roads without obstructions from trees, RTK-corrected GNSS
was found to yield better than 10 cm localization accuracy in terms of standard deviation of error. More than 20
satellites are typically available for use in the real-time position calculation on such roads. However, on roads with
dense tree cover, satellite visibility may be completely lost on occasions.

The use of Lidar for localization by utilizing an open-source LIO-SAM algorithm was also explored in the project and
the results obtained suggest that pre-made maps rather than a SLAM algorithm are needed for reliable localization
with Lidar. Since a dual-antenna GNSS system equipped with a high performance IMU can cost well over $15,000, the
feasibility of reliably estimating yaw angle and slip angle without the need for an expensive dual-antenna sensor was
studied. Two novel approaches, one based on the use of a high gain observer that utilizes IMU and single-antenna
GNSS measurements, and another based on the use of a low-cost radar on the car, were developed. Both approaches
showed very good performance with yaw angle and slip angle estimates being within approximately 1 degree of ground
truth readings.

The results obtained in this project indicate that a low-cost single-antenna GNSS system can work reliably for
localization on rural roads that have at least some open-sky visibility (don’t have dense tree cover).
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Abstract

About 75% of all roads in the United States, around 3 million miles, are in rural areas and are
vital for transporting goods and connecting communities. The risk of dying in a car crash is 62%
higher on a rural road compared to an urban road for trips of the same length. Locally, in the state
of Minnesota, nearly two-thirds of all crashes leading to fatalities or serious injuries occur at rural
intersections. Since a vast majority of these crashes occur due to human error, autonomous
vehicles (AVs) have the potential to improve rural road safety. However, low volume rural roads
present special challenges for AVs. Such rural roads can be narrow, often will not have right-side
lane markers, may not even have center lines, may not be plowed for snow removal, and can
have trees and other objects close to the side of the road. Rural traffic intersections can have
missing delineation and signage that are normally provided on higher volume roadways. All of
these issues pose major challenges to autonomous driving.

This project specifically looks into solutions for localization on rural roads without the use of
cameras so that they can work in the absence of lane markers and/or the presence of snow. The
use of RTK-corrected GNSS is explored in detail. The full-scale Chrysler Pacifica MnCAYV vehicle
at the University of Minnesota was utilized for all data collection. On rural roads without
obstructions from trees, RTK-corrected GNSS was found to yield better than 10 cm localization
accuracy in terms of standard deviation of error. More than 20 satellites are typically available for
use in the real-time position calculation on such roads. However, on roads with dense tree cover,
satellite visibility may be completely lost — Data collected on a narrow suburban road with dense
trees showed GNSS dropouts lasting several seconds on multiple occasions.

The use of Lidar for localization by utilizing an open-source LIO-SAM algorithm was explored.
This algorithm is a state-of-the-art computational framework that is designed to provide real-time
trajectory estimation and map-building for autonomous systems like robots and self-driving
vehicles. By using the Lidar sensor to measure distances to the surrounding environment and
performing a process called scan-matching, where consecutive Lidar scans are aligned to
estimate how far the vehicle has moved between scans, the new location of the vehicle is
determined. Analysis of data from the MnCAV vehicle with this algorithm showed that position
drifts of approximately 0.2m, 0.5 m and 0.8 m are obtained when GNSS outages occur of 1, 5
and 10 seconds respectively. These results suggest that pre-made maps rather than a SLAM
algorithm are needed for reliable localization with Lidar.

Since a dual-antenna GNSS system equipped with a high performance IMU can cost well
over $15,000, the feasibility of reliably estimating yaw angle and slip angle without the need for
an expensive dual-antenna sensor was studied. Two novel approaches, one based on the use
of a high gain observer that utilizes IMU and single-antenna GNSS measurements, and another
based on the use of a low-cost radar on the car, were developed. Both approaches showed very
good performance with yaw angle and slip angle estimates being within approximately 1 degree
of ground truth readings.

The results obtained in this project indicate that a low-cost single-antenna GNSS system can
work reliably for localization on rural roads that have at least some open-sky visibility (don’t have
dense tree cover).



Table of Contents

L [0 oTo [V ox 1T ] PP PP PP PPP O PPPPPPPPI 3
Crashes 0N RUMal ROAAS..........uuuuiiiiiiiiiiiiiiiii e 3
Challenges for Rural AUtONOMOUS DFIVING........uuuutiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeaeee 3
Project ODJECHVES .......oooiiiiiiiiiiiiiiiiiiie e 4
MNCAV VehiCle SUMMANY ........ooiiiiiiiiiiiiiiiiiiiiieeeeeee ettt 4

2.  GNSS Availability in Rural ENvironments ..........ccooooiiiiiiiiiii e, 6
Alternate Methods to Estimate Yaw Angle and SIip Angle ......ccooooiiiiiiiiiiiceee e, 11
High Gain Observer Based Yaw and Slip Angle Estimation....................cccciiiein i, 12
Slip Angle Estimation Using On-Board Radar .............cccoooooiiiiiiiiiiiiccee e, 18
The Kinematics of Static Points in Relation to the Radar's Radial Velocity ..............c.......... 18
SIiPp ANGIE ESHMALION ....uuiiiiiiiiiiiii bbb 19
Comparison Between Proposed MethOdsS ..........oovieiiiiiiiiiiiec e 20

5. LIO-SAM: A Framework for Lidar-Based Localization and Mapping ............ccceevvvvvvnieneennn. 21
INErOAUCTION ... 21
(076] (=N @7e]ao7=T o] 63X=TaTo LY [=1 1 gToTo (o] oo V2 21
System Architecture and Performance ...............uuuuiiiiiiiiiiiiiiiiiiiieeeeeeeennnes 22
EXperimental RESUILS ..........ui i e et e e e e e e aaaaas 22

G T T [T T - SR 26
ReCOMMENAALIONS .....oeiiiiiiiiiiiiiiiiiiiiieeeee ettt 27
REFEIENCES ...ttt ettt e e e ee e 28

Appendix: Outcomes, Outputand IMpPact ... 29



1. Introduction

Crashes on Rural Roads

About 75% of all roads in the United States, around 3 million miles, are in rural areas and are
vital for transporting goods and connecting communities. The likelihood that a car crash will result
in death is higher in rural America, even with less than one fifth of the population living in these
areas [1]. Approximately 85,000 people were killed on rural roads between 2016 and 2020.
According to a new study published by the Governors Highway Safety Association (GHSA), the
risk of dying in a car crash was 62% higher on a rural road compared to an urban road for trips of
the same length [1]. Locally, in the state of Minnesota, nearly two-thirds of all crashes leading to
fatalities or serious injuries occur at rural intersections. More than 20% of all traffic fatalities in the
United States occur at intersections, and over 80% of intersection-related fatalities in rural areas
occur at unsignalized intersections [2].

Challenges for Rural Autonomous Driving

While major global companies such as Google, Uber, Tesla and General Motors are
intensively focused on developing Level 3 and higher self-driving autonomous vehicles, their
research is focused on driving in good weather on clean well-equipped roads. A majority of their
development and testing has occurred in warm weather states such as California and Arizona.
States in the US Midwest and rural locations pose additional challenges for autonomous driving
that could significantly delay the arrival of self-driving technology to these regions.

The use of cameras is the most common approach for determining a vehicle’s position in the
lane and for measuring its lateral distance with respect to the lane boundaries. This lateral
distance to lane markers is used as the feedback variable for automatic steering control [3]. The
presence of snow on the ground, including even a thin layer of frost covering the lane markers,
can make the engagement of steering control infeasible. Data gathered by the University of
Minnesota team shows that snow remains on lane markers for a significantly longer duration,
compared to snow in the interior of the lane where the tire-paths of cars enable faster snow
removal. This prevents the engagement of autonomous steering for a significant period of time
after the end of snowfall. Further, low volume rural roads present special challenges in all
seasons. Such rural roads can be narrow, often will not have right-side lane markers, may not
even have center lines, may not be plowed for snow removal, and can have trees and other
objects close to the side of the road. Rural traffic intersections can have missing delineation and
signage that are normally provided on higher volume roadways. All of these issues pose major
challenges to autonomous driving, since AVs depend critically on such markings and signage.

Level-2 vehicles with automatic steering control for lane centering currently sold in the market
rely on camera-based feedback [3]. The use of differential GPS (as an alternative to camera-
based feedback) for steering control was pioneered by researchers at the University of Minnesota
[4] and has also been studied by researchers at other universities and companies [5]. The
differential GPS system reported in these early papers was typically an expensive local system



created specifically for the research project under consideration. A description of dynamic models
for representing lateral vehicle motion and of automatic steering control systems can be found in
[6], [7]- The use of the state-wide MNCORS GNSS network in Minnesota for providing RTK
corrections for lateral lane position measurement has been utilized by Davis, et al for a snowplow
guidance system that approximately detects lateral position and displays it with a resolution of 1
foot inside the snowplow cab [8], [9].

Project Objectives

This project will explore some solutions to the challenges associated with rural driving for
autonomous vehicles. In particular, the project will explore the use of RTK-corrected GNSS for
localization of the autonomous vehicle so that the vehicle can then perform steering control using
such GNSS-based measurements instead of traditional camera-based relative position
measurements with respect to lane boundaries. The availability and accuracy of GNSS-based
measurements in rural environments will be studied. Estimation approaches that can reduce the
cost of GNSS device hardware will be explored. Alternative Lidar-based localization techniques
that can compensate for GNSS outages will also be considered.

MnCAV Vehicle Summary

This section provides a brief summary of the University of Minnesota’s autonomous vehicle,
known as the MnCAV vehicle, as shown in the photograph in Figure 1. The vehicle is equipped
with RTK corrected GPS, IMU, gyroscope and radar and their specifications are given in Table 1.
The vehicle belongs to the Center for Transportation Studies at the University of Minnesota. The
project will utilize this vehicle for all of the data collection tasks that will be performed in various
road environments.

Figure 1: Photograph of the University of Minnesota MnCAV automated vehicle (Credit: Center for Transportation
Studies, University of Minnesota, https://mncav.umn.edu/)



The MnCAV vehicle is equipped with firmware for computer-controlled steering, throttle and
brakes and is instrumented with sophisticated sensors that include high-density 3D Lidar, forward
and rear facing radar, inertial measurement unit (IMU) sensors, dual antenna GPS system
capable of obtaining RTK corrections from MNnCORS, a Mobileye Camera system for measuring
distances from lane boundaries, and multiple other cameras for recording of the road environment
and of the motions of other nearby vehicles.

Table 1: Sensor Specifications

Sensor Accuracy Rate (Hz)
Novatel PWRPAK7-E2 GPS 10 cm 10
Accelerometer 0.025 m/s/~hr 100
Gyroscope 0.06 °/Nhr 100
CONTI ARS408 Radar 10 cm 20
Ouster OS1-64 Lidar 5cm 10

Figure 2(a) shows the Novatel PwrPak7D-E1 module used on the MnCAV vehicle for GNSS
based position measurement. Figure 2(b) shows the MnCAV vehicle equipped with a dual
antenna system that interfaces with the Novatel GNSS module. The Novatel module supports
dual antenna receivers and RTK corrections communicated over multi-channel L-band and IP
connections. The left antenna is the primary antenna or the main GNSS antenna used for position
determination. The right antenna is the secondary antenna and is used to obtain a high-accuracy
orientation angle of the vehicle.

(a) Novatel PwrPak7D-E1 module

(Available at: https://novatel.com/products/gnss-inertial-navigation-systems/combined-systems/pwrpak7d-e1)



(b) MnCAV vehicle with roof-equipped dual GNSS antenna system

(Credit: Center for Transportation Studies, University of Minnesota, https://mncav.umn.edu/)

Figure 2: GNSS Module and dual antenna system used on the MnCAV vehicle

2. GNSS Availability in Rural Environments

The project first focused on preliminary data collection using the MNnCAV autonomous vehicle
to analyze the availability and accuracy of GNSS (global navigation satellite system) based
position measurements for autonomous steering control. The MnCORS RTK (real-time
kinematic) correction system was utilized to increase GNSS position estimation accuracy. Data
was obtained on a variety of roads, including rural roads without blockage from trees, roads in
downtown Minneapolis, non-downtown/ suburban roads without tree cover and suburban roads
with tree cover. This section presents a summary from the analysis of satellite availability and
position measurement accuracy at these different locations.
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Figure 3: Map showing roads at a variety of locations used for testing the GNSS system

Figure 3 shows a variety of locations at which the performance of the GNSS system with RTK
corrections from MNnCORS was tested. The locations include a rural main road (Langford Ave), a
rural side road (Vergus Ave), downtown Minneapolis, local non-downtown roads near campus
with no obstructions (EIm St SE, Kasota Ave, Energy Park Drive) and local non-downtown roads
with some tree obstructions (West River Parkway and Commonwealth Ave). Additional data
collection at more rural locations needs to be conducted in the future to further confirm the results

from this preliminary analysis.
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Figure 4 shows a characterization of the number of satellites available for position
determination at each of 4 characteristic locations: downtown Minneapolis, a rural main road, a
non-downtown road without obstructions and a local non-downtown road with tree

local

Figure 4: Satellite availability characterization of various locations

obstructions. From the results in Figure 4, it can be seen that

Due to the many tall buildings and skyways in downtown Minneapolis, the number of
satellites used in position determination drops to very small numbers in many instances.
There were 240 instances (each lasting 0.1 seconds) when there were less than 4

satellites visible and hence position could not be determined at all.

On Langford Ave (a rural main road), there are not much trees to obstruct the lines of sight
to satellites. Therefore, there was a large number of satellites (= 20) always available to

be used in the position determination solution.

On suburban local roads with obstructions, the number of satellites used in the position
determination solution is smaller than on roads with no obstruction, but more than in

downtown where the case is significantly worse.

On suburban local roads with no obstructions, the number of satellites available to be used

40

in solution is very good (and always adequate to prevent loss of position determination).



Figure 5 shows a characterization of the predicted standard deviation in longitude position
measurement at the 4 characteristic locations. It can be seen that the rural road (Langford Ave)
always has excellent position accuracy with the predicted standard deviation always being less
than 10 cm. On the other hand, the downtown test has many instances of poor position accuracy
in which the standard deviation increases significantly and can be well over 1 meter. The local
road with no obstructions has good accuracy with standard deviation being less than 10 cm for
most readings. The local road with tree obstructions has several instances of loss in accuracy
wherein the standard deviation can increase to over 1 meter, although the accuracy is significantly
better than that of downtown most of the time.
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Figure 5: Standard deviation of longitude measurement at various locations

Figure 6 shows a similar characterization of the predicted standard deviation in latitude
position measurement at the 4 characteristic locations. The conclusions from this figure are
identical to the ones from Figure 5.

A detailed analysis of whether the brief GNSS outages can be handled by IMU based
integration methods remains to be done and was not taken up as a part of this CCAT project.



Distribution of Standard Deviation Values Distribution of Standard Deviation Values

1200

g
g

k]
8

3500
1000
Man
. y 3 & 2000
instances 3 2
1] e
of poor = o 1500
accuracy o
200 500
o 0
0 0102 03 04 05 08 07 08 09 1 11 12 13 14 15 0 0102 0304050607 0809 1 1112 13 14 15
Standard Deviation Range Standard Deviation Range
Distribution of Standard Deviation Values B0 Distribution of Standard Deviation Values

5000
Local Road Rural Road
With o Langford Ave
N Obstructions . Always
5 £ 000 excellent
s & accuracy

2000

1000

1] - 0
0 0102 0304050607 0809 1 1112 13 14 15 0 0102 0304050607 0809 1 111213 14 15
Standard Deviation Range Standard Deviation Range

Figure 6: Standard deviation of latitude measurement at various locations

From all of the data we have collected so far, the standard deviation appears to be 10 cm or
better on rural roads and local roads without obstructions where the number of satellites available
is typically more than 15.

Figure 7 shows the availability (or accuracy) of RTK corrections in determining positions at
the same 4 characteristic locations. It can be seen that RTK corrections were not available for
approximately 40% of the time in the downtown test (Here availability actually refers to accuracy
of the RTK correction and such accuracy is compromised by multipath errors). Since RTK
correction is susceptible to multipath errors which occur frequently in the presence of tall
buildings, RTK correction can often be unavailable in downtown, as evidenced by the results of
Figure 6. RTK corrections were available almost 100% of the time in the rural location and local
road without obstruction tests. In the case of the local road with tree cover, RTK corrections were
not available approximately 20% of the time.

10
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Figure 7: RTK correction availability characterization at various locations

Alternate Methods to Estimate Yaw Angle and Slip Angle

A dual-antenna GNSS system equipped with a high performance IMU sensor can cost well
over $15,000. For example, the Novatel PwrPak7D-E1 module utilized on the MnCAV vehicle
had a cost of over $17,500 when initially purchased (~in 2022). The use of a single-antenna
device together with the use of a low-cost IMU can significantly reduce hardware costs. This
section explores the development of alternate techniques for estimating yaw angle and slip angle
so that the use of a dual antenna system can be avoided. The yaw angle of the vehicle is needed
for autonomous steering control, since the yaw error between the road and the vehicle, as well
as the look-ahead lateral position error, need to be used in the feedback control system. Two
approaches are studied for yaw and slip angle estimation:

A) A high gain observer based yaw and slip angle method in which IMU measurements are
used as inputs to a process dynamics model, in addition to measurements from a single-
antenna GNSS system.

11



B) Aradar based method in which radial distances and velocities with respect to static objects
on the road can be utilized for slip angle (and consequently yaw angle) estimation. Radar
is typically already utilized on all autonomous vehicles for object detection and tracking
tasks and is thus a sensor that is already available on the vehicle.

3. High Gain Observer Based Yaw and Slip Angle Estimation
Consider the state vector for an autonomous vehicle’s ego state estimation,

zg=[xg Xg Xg yg Ve Vel" =z .. z]" (1)
The acceleration of the ego vehicle in the inertial frame is given by,

Xg = ay cos(Yg) — aysin (Yg) (2)

Vi = ayx sin(¥g) + aycos (Yg) (3)

where, a, and a,, are the acceleration of the ego vehicle about inertial Xz and Y5 axis obtained
which can be obtained using an IMU.

The jerk of the ego vehicle in the inertial frame is the derivative of (2) and (3) which is given
as follows,

Xg = ay cos(Yg) — ay sin(Pg) — uszyg (4)

Vg = ay sin(Pg) + a,, cos(Pg) + uzkg ()

where, a, and a, are the derivative of the IMU readings and u; is the yaw rate obtained from the
gyroscope. The IMU and gyroscope signal derivatives a,, a, and 15 cannot be measured directly

and moreover the differentiation of IMU readings will yield highly noise values, hence it has been
assumed that these derivatives are zero.

Assumption 1. The jerk (derivative of acceleration and angular acceleration) is zero: a, = 0, a, =
0 and 13 = 0.

Given the above assumption, (4) and (5) can be simplified as follows,

Xp = —U3Jg (6)

Vi = us¥g (7)
The new state dynamics is then given as follows,

zg = Fzg + Gfp(u3, zg) (8)

12
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The measurement equation is then given by,

y= Hzg 9)
1 0 0 0 0 O
where H = [0 00 10 of

It can be observed that accurate state estimates can be obtained from the use of just GPS
positions and gyroscope measurements when assumption 1 is satisfied, without using the IMU
accelerations.

After obtaining the companion form for state estimation of ego vehicle, the observer dynamics
as can be obtained as follows,

Zg = F2g + Gfg(us, 2g) + Lg(y — H2g) (10)
where Lg is the constant observer gain matrix. It is assumed that the nonlinear process equation
is Lipschitz,

I7ell, < vllZgll, (11)

where, fr = f(us, zg) — f(us, 25) and Z; = zz — 2 and y is the Lipschitz constant and for state
estimation it is given by the maximum angular velocity encountered during the motion of the ego
vehicle i.e. ¥ = u3|max-

The high gain observer formulation requires the dynamics to be in the block triangular form as
given in (8), after which the observer gain can be obtained by solving the LMI given in Theorem
1.

Theorem 1. If there exists P > 0, A > 0, L, and 8 > 1 such that:

FTP+PF—HTR—RTH < -l (12)
and
2Y Amax (P
0> 0, = 2V mell) (13)

in which 4,,,,(.) is the maximum eigenvalue, then the estimation error Z is exponentially stable
by taking:
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K = P~1RT (14)

L=T(®K (15)
# 0 0 0 0 0
0 62 0 0 0 O
o o 6 0 0 o
where, T(0) = 0 0 06 0 ol 6> 1.
0 0 0 0 62 0
0 0 0 0 0 63

The proof of the above Theorem can be obtained from Gauthier, et al., 1994, [10].

After obtaining the ego state estimates zg, it is very important to compute the yaw angle of the
ego vehicle, which can be obtained as follows using (2) and (3),

a,Xg + ay Vg

16
/a,zc+a32, (16)

The above equation can be used to estimate the yaw angle although it will not work for the case
when the ego vehicle is not accelerating. In such cases the yaw angle can be approximated as
the course angle y; which can be computed as follows,

cos(Pg) =

Ve =Yg + Bp =tan™" (g) (17)

Given the measurements in (16) and (17), the following observer can be used to estimate the yaw
angle of the ego vehicle,

’jJE =uz +ky(ys — lle) + ka(v2 — Pg) (18)

1 axjc'E+ayj}E

where, y; = tan™! (ii) andy, = cos~ . The value of k; and k, can be decided based
E

ai+a}
on the value of gyroscope reading or the accelerometer readings as follows,

If us > uyy, then k; = 0 else k, = 0.

If /a,% + a3 > a,, then ky = 0 else k, = 0.

where, u;;, and a;, are the threshold values of gyroscope or accelerometer respectively. Since at
any point of time one of k; and k, will be present, the observer in (18) becomes,

bg = us + ke (v — Pp) (19)

where k; = k; or k, and y; = y; or y, depending on the conditions on gyroscope or accelerometer
readings. Both y; and y, will have some errors along with the gyroscope reading. Hence, the
actual system for yaw angle estimation can be written as follows,
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t[)E = uz + Bw andy; = Yy + Dw (20)
where, w = [Ww1  W3]T and B and D € R'*2,

The H, disturbance rejection criteria can be used to obtain the observer gain k; thus
bounding the the error induced due to sensor noise for the system given in (38). Theorem 2 can
be used to obtain the observer gain k;.

Theorem 2. Consider the system in the form (20).
If there exists k; > 0, P > 0, and u > 0 such that the following LMI is satisfied:

—2Pk+1 P(B—kD)

—(kD + B)TP —ul =0 (21)

then the observer as given in (19) will be stable and a H,, disturbance rejection criterion will be
satisfied.

Proof. Consider the Lyapunov candidate function,
V=3P (22)
where, Y = Yz — Pz and P > 0. The derivative of V becomes,
V = PEPYg + PLPPy = —2PkPZ + P(B — k. D)Pyw + (B — kD)TPTw”  (23)
Using the H,, disturbance rejection criteria (Zemouche & Boutayeb, 2009),
VA 1Pell* —ullwll> <0 (24)

Using (22), (23) can be written in matrix form as follows,

[l'f’E WT] [ —2Pk+1 P(B — kD)] [lf/E

(—kD + B)'P —ul W] =0 (29)

The solution of (24) results in solving the LMI as given in (21) and hence the proof is complete. m

The complete flow chart for ego vehicle state estimation is given in Figure 8.

Sensors Multi-stage Observer u
GPS " i: ﬁr 32! )7 E h 1
High Gain Observer Ve gOSVC icle
Accelerometer 2=F2+Gf(w2)+ Ly — HZ) tate
b Estimates

A X a,¥; + a,Vg
Gyroscope P J’T) ye = cos1 [ T EZZE
¢ b3 ’a,'f + a3

Observer for Yaw Angle
Yy =uz + kr()’: - beb')

Figure 8: Multi-stage high gain observer for state estimation of ego vehicle.
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This section provides the experimental results for state estimation and vehicle tracking
obtained using the University of Minnesota’s autonomous vehicle MnCAV. The vehicle is equipped
with RTK corrected GPS, IMU, gyroscope and radar and their specifications are given in Table 1.
The GPS position, gyroscope and IMU readings of the MnCAV vehicle were used as
measurements for the ego vehicle state estimation by which the inertial position, yaw and course
angle of the ego vehicle was estimated. The inputs from the ego state estimates were then utilized
by vehicle tracking algorithms along with the radar readings of the tracked vehicle which was
obtained from the Continental ARS408 Radar sensor. The tracked position, velocity, course and
yaw angle obtained from the vehicle tracking algorithm were then compared with the ground truth
data of the tracked vehicle obtained using MATLAB ground truth labeler using the highly accurate
Ouster OS1-64 Lidar mounted on the Ego vehicle. The tracking algorithms developed in this work
utilize some variables from the sensors (which includes the position of the ego and tracked
vehicle, along with the acceleration and yaw rate of ego vehicle) to estimate many other variables
(which includes the yaw angle, course angle and the velocities of the ego and tracked vehicles).
The performance of the developed observer was evaluated using the error in estimation of V., V.,

and y; where V,,; = /r'xz + 77 and y. is the course angle of the target vehicle.

To effectively evaluate the ego vehicle state estimation, tests were performed for a curved
road in a parking lot at the University of Minnesota as shown in Figure 9. The plot for the position,
yaw angle and side slip angle are shown in Figure 10 and it can be seen that the observer is able
to estimate all these variables accurately. Furthermore, even the side slip angle is being estimated
accurately over both straight road and curved path when the actual side slip is large. Additional
estimation results for a second experiment are presented in Figure 11 and Figure 12.

Path of vehicle
44°58'41"N | | ® Starting location
| —® — Ending location
44°58'40 5"N
4]
'g 44°58'40"N
=
=}
44°58'39.5"N
44°58'39"N
10m - A—
. 50 ft jominy INCREMENT P, NGA,
44°58'38 5"N t I I
93°13"17"W 93°13"16"W 93°1315"W 93°13"14"W 93°13"13"W

Longitude

Figure 9: Route 1 of autonomous during state estimation.
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Figure 11: Route 2 of autonomous vehicle during state estimation.
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Figure 12: State estimation of ego vehicle on route 2.

4. Slip Angle Estimation Using On-Board Radar

One useful characteristic of the radar is its ability to measure the radial velocity of all objects within
the field of view. By exploiting this feature and utilizing static points within the radar’s field of view,
the ego-vehicle’s lateral and longitudinal velocities can be accurately derived through fundamental
kinematic relationships.

The Kinematics of Static Points in Relation to the Radar's Radial Velocity

If the radar or ego-vehicle is in motion, reflections from static objects in the field of view will
indicate the same velocity as the ego vehicle’s velocity but in the opposite direction. Based on
this basic kinematic principle, we can derive the ego vehicle's kinematics by utilizing more than
one of these static points. The objective is to estimate the longitudinal velocity (v, ), lateral velocity
(vy), and ultimately slip angle (f) of the ego-vehicle using measurements derived from static
objects. The schematics are explained in Figure 13, and the relationship between radial velocity
(v,) and angle of arrival (8) are formulated in Eq. (26).

v = vy cos(0) + vysin (6) (26)

Then this equation is employed to determine v, and v,, when both v, and 6 are collected from

the radar. It is important to note that this formula is applicable only for points obtained from static
objects; it does not apply to points from moving objects.

The slip angle B subsequently can be calculated by the following formula (27):
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p=tant (2 (27)

Ux

Slip Angle Estimation

When collecting radar data and selecting returns from static points, a large number of static
measurements can be obtained; however, not all of them are reliable. Since our system is
equipped with GPS, unreliable points can be filtered based on speed information. Specifically, the
radar detects both moving vehicles and stationary objects (e.g., trees, walls, traffic lights).
According to the kinematic relationship described earlier, radial velocity measurements from
stationary objects should remain within the speed range of the ego-vehicle, as radial velocity
reflects only the component of the vehicle’s motion along the radar’s line of sight. Consequently,
points with radial velocity values that exceed or fall outside a prescribed range relative to the ego-
vehicle’s GPS-derived speed are identified as outliers and discarded. This filtering ensures that
only physically consistent static points are retained for the slip angle estimation process.

With the filtered data, the following methods are devised and investigated for slip angle
estimation.

o Two-Point Median Method: This approach involves selecting two static points from the
surroundings, using them to calculate the lateral and longitudinal velocities (v, and v,),
and then computing the median of all possible combinations of two-point measurements
to reduce the impact of outliers.

o Pseudo-Inverse Method: This method leverages all available static points in the scene to
estimate v, and v,,.

For the Two-Point Median Method, two points are selected from the static objects, as expressed
in the following Eq. (28).

Ur,] _ [cos(8;) sin(6;)][Vx;
[vr].] B [005(91') Sin(9j)] [vyj]
To enhance robustness against noise and outliers, we formed all possible combinations of

static point pairs (i, j), and solved the linear system in (28) for each pair. Then, the median of the
resulting v, and v,, estimates are computed:

(28)

(Dy, Dy) = median{(vy, v},‘)}i’:l (29)

where v¥ and v¥ denote the estimated longitudinal and lateral velocities from the k-th point pair,
and N is the total number of unique point combinations. This median-based filtering method
effectively suppresses the influence of outlier points and yields a more reliable velocity estimate.

On top of that, pseudo-inverse methods can be also explored for estimating the slip angle with
collected static points. This method employs all the static points and estimates lateral and
longitudinal velocity of the ego-vehicle described in (30).
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cos(8,) sin(6,)

[%] [
Vr, cos(6,) sin(6y)
The pseudo inverse of the matrix is then utilized to find v, and v,,. However, low-cost radar sensors

inherently produce multipath reflections and spurious points from surrounding objects, which can
result in large peaks in the estimated slip angle from Eqn. (30) [24]. A comparison for one
representative scenario is presented in the following sub-section.

|I2] @)

Based on the observations from the two aforementioned methods, the filtered data obtained
through the median operation is employed for slip angle estimation. This approach mitigates the
influence of outliers and spurious radar points, thereby improving the robustness of the estimation.

Static
_ Object
Uy

-G

VUyehicle /,” ﬁ -0,

Vy '8 e
4 /,«"/ ~Vyehicle
Radar Ve = Vpy +v y= U, COS(B) + Uy Sln(H)
i

Ego-Vehicle

Static
Object

= —v, cos(f)

—Vyehicle

—Vp= (V) + (V) = —(v, cos(0) + vy sin(6))

Figure 13: From a blue static target, the radar measures the radial velocity component (v,.) of the relative velocity
vector (Vyenicie)-

Comparison Between Proposed Methods

A comparison of the two proposed methods is presented using a sharp-turn scenario described
in the following section. In Figure 14, the red and green lines correspond to the two-point median
and pseudo-inverse approaches, respectively, while the blue line represents the ground truth
obtained from the GPS system. The results indicate that the median method yields smoother
estimates with fewer spurious peaks than the pseudo-inverse method, which exhibits larger
fluctuations and deviations from the reference trajectory. Moreover, the median-based approach
demonstrates greater robustness to outliers and sensor noise, allowing it to capture the underlying
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slip angle dynamics more consistently. In contrast, the pseudo-inverse approach is more sensitive
to impurities in the radar data, leading to unreliable peaks in the estimation. Based on these
observations, the two-point median method is adopted as the preferred approach for estimating
the slip angle of the ego-vehicle.
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Figure 14: Slip angle estimation: Two-Point Median vs. Pseudo-Inverse methods

5. LIO-SAM: A Framework for Lidar-Based Localization and Mapping

Introduction

LIO-SAM (Lidar Inertial Odometry via Smoothing and Mapping) is a state-of-the-art computational
framework for mobile robotics. Developed by Tixiao Shan et al. [11], this system is designed to
provide highly accurate, real-time trajectory estimation and map-building for autonomous systems
like robots and self-driving vehicles. It achieves this by "tightly coupling" data from two primary
sensors: a Lidar (Light Detection and Ranging) and an Inertial Measurement Unit (IMU). The
authors claim that this fusion of sensor data allows LIO-SAM to create precise maps and
determine a robot's position with minimal drift, even in complex and dynamic environments. Yue
et al. [12] demonstrated the application of LIO-SAM for vehicle localization using a factor graph
optimization (FGO) architecture, highlighting its robustness and safety in rail transportation GPS
denied scenarios.

Core Concepts and Methodology

LIO-SAM operates on a principle known as a factor graph, a mathematical model used to
represent and solve complex optimization problems. In this framework, sensor measurements
(like Lidar scans and IMU readings) are treated as "factors" that constrain the robot's estimated
position and orientation.

1. Lidar Odometry: A Lidar sensor measures distances to the surrounding environment by
emitting laser pulses and detecting their reflections. LIO-SAM uses this data to perform a
process called scan-matching, where it aligns consecutive Lidar scans to estimate how
far the robot has moved.
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2. IMU Pre-Integration: The IMU provides high-frequency measurements of the robot's
linear acceleration and angular velocity. LIO-SAM uses a technique called pre-integration
to quickly and efficiently estimate the robot's motion between Lidar scans. This provides a
robust initial guess for the more computationally intensive Lidar-based odometry.

3. Tightly-Coupled Fusion: The genius of LIO-SAM lies in its tight coupling. It doesn't simply
use the IMU to correct the Lidar's output. Instead, it integrates both sets of data into a
single, unified optimization problem on the factor graph. The IMU data helps "de-skew"
the Lidar point clouds (correcting for motion during a scan), and the Lidar data, in turn,
helps to correct for the IMU's inherent bias and drift.

4. Optional GPS Integration: To further enhance global accuracy, LIO-SAM allows for the
optional integration of a GPS signal. This provides an absolute position measurement that
can be incorporated into the factor graph as an additional factor, which is especially useful
for correcting for long-term drift in large-scale outdoor environments.

System Architecture and Performance

The LIO-SAM system maintains two core factor graphs for optimal performance. One graph
handles the real-time odometry and is reset periodically, ensuring a low computational load and
a constant output of the robot's immediate position. The second, more comprehensive graph is
used for global map optimization, incorporating loop closures (when the robot revisits a previously
visited location) and optional GPS measurements to correct for long-term drift and create a
globally consistent map. It can process a massive amount of data while maintaining high accuracy,
making it suitable for demanding applications in robotics, autonomous navigation, and surveying.

Experimental Results

The LIO-SAM algorithm was implemented and tested using MnCAV data. Although the MnCAV
platform is equipped with an RTK-corrected GPS module capable of providing high-precision
positioning, GPS availability cannot be guaranteed in all environments. This is especially evident
in urban downtown areas with tall buildings, narrow streets, and tree cover, which frequently block
or degrade satellite signals.
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Figure 15: XY plot of MNCAV data

To evaluate LIO-SAM’s performance under GPS-denied conditions, the GPS module was
manually switched off for a durations of 1, 5 and 10 seconds during vehicle operation and the
performance of the algorithm was evaluated. During this interval, the system relied solely on
LiDAR and IMU measurements for localization. The preliminary results in Figure 16, Figure 17,
Figure 18, Figure 19, Figure 20 and Figure 21 show that LIO-SAM maintained a trajectory drift
error of approximately 0.2, 0.5 and 0.8 meters, demonstrating its ability to provide somewhat
accurate pose estimation even when GPS data becomes unavailable.

These experiments confirm that LIO-SAM can complement GPS-based navigation and is
somewhat capable of handling short-term GPS outages in complex urban environments.

Case 1: 1 second GPS outage
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Figure 17: Plot of Y position with time (shaded region is gps free region)

Case 2: 5 second GPS outage
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Figure 19: Plot of Y position with time (shaded region is gps free region)

Case 3: 10 second GPS outage
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Figure 21: Plot of Y position with time (shaded region is gps free region)

6. Findings

Autonomous vehicles (AVs) have the potential to improve rural road safety. However, low
volume rural roads present special challenges for AVs. Such rural roads can be narrow, often will
not have right-side lane markers, may not even have center lines, may not be plowed for snow
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removal, and can have trees and other objects close to the side of the road. Rural traffic
intersections can have missing delineation and signage that are normally provided on higher
volume roadways. All of these issues pose major challenges to autonomous driving.

This project specifically looked into solutions for localization on rural roads without the use of
cameras so that they can work in the absence of lane markers and/or the presence of snow. The
use of RTK-corrected GNSS was explored in detail. A full-scale Chrysler Pacifica MnCAV vehicle
at the University of Minnesota was utilized for all data collection. On rural roads without
obstructions from trees, RTK-corrected GNSS was found to yield better than 10 cm localization
accuracy in terms of standard deviation of error. More than 20 satellites are typically available
and used in the position calculation on such roads. However, on roads with dense tree cover,
satellite visibility may be completely lost — Data collected on a narrow suburban road with dense
trees showed GNSS dropouts lasting several seconds on multiple occasions.

The use of Lidar for localization by utilizing an open-source LIO-SAM algorithm was explored.
The LIO-SAM algorithm is a state-of-the-art computational framework that is designed to provide
real-time trajectory estimation and map-building for autonomous systems like robots and self-
driving vehicles. By using the Lidar sensor to measure distances to the surrounding environment
and performing a process called scan-matching, where consecutive Lidar scans are aligned to
estimate how far the vehicle has moved between scans, the new location of the vehicle is
determined. Analysis of data from the MnCAV vehicle with this algorithm showed that position
drifts of approximately 0.2m, 0.5 m and 0.8 m are obtained when GNSS outages occur of 1, 5
and 10 seconds respectively. These results suggest that pre-made maps rather than a SLAM
algorithm are needed for reliable localization with Lidar.

Since a dual-antenna GNSS system equipped with a high performance IMU can cost well
over $15,000, the feasibility of reliably estimating yaw angle and slip angle without the need for
an expensive dual-antenna sensor was studied. Two novel approaches, one based on the use
of a high gain observer that utilizes IMU and single-antenna GNSS measurements, and another
based on the use of a low-cost radar on the car, were developed. Both approaches showed very
good performance with yaw angle and slip angle estimates being within approximately 1 degree
of ground truth readings.

The results obtained in this project indicate that a low-cost single-antenna GNSS system can
work reliably for localization on rural roads that have at least some open-sky visibility (don’t have
dense tree cover).

7. Recommendations

The open skies and low-multipath environments in rural locations can provide significant
benefits for AV operations. RTK-corrected GNSS can provide localization accuracy better than
0.1m and can support autonomous steering control as well as intersection identification and
handling. GNSS outages due to tree cover can occur in rural environments and will need to be
handled. Driving on routes that only involve roads without dense tree cover is a possible solution.
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The development of solutions for an autonomous vehicle to safely pass through rural
intersections needs to be developed in future work.
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Objective: This project aims to implement autonomous steering control on the MnCAV
vehicle platform using RTK-corrected GNSS and will demonstrate closed-loop control on
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