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Executive Summary 
Efficient network-level pavement condition assessment is essential for optimizing maintenance 
and rehabilitation strategies. Traditional methods, such as visual inspections and manual 
distress surveys, are often subjective, time-consuming, and inefficient for large-scale pavement 
management. This study was aimed at the integration of advanced novel tools, namely—Traffic 
Speed Deflectometer (TSD), Fast Falling Weight Deflectometer (FFWD), Ground Penetrating 
Radar (GPR), and Pave 3D 8K to assess the pavement condition at network-level. TSD enabled 
continuous deflection measurements under moving loads, providing a rapid and comprehensive 
assessment of pavement structural capacity. A total of six pavement sections were selected on 
the I-35 and I-40 road network in Oklahoma based on the initial TSD rating. These sections 
were further tested using FFWD tests for complementing TSD in identifying weak sections. GPR 
aided in subsurface characterization, detecting variations in layer thickness and underlying 
defects that may compromise pavement integrity. Meanwhile, Pave 3D 8K delivered high-
resolution 3D imaging of the pavement surface allowing for distress identification. The data from 
TSD, FWD and Pave 3D 8K were used for performing regression analysis using advanced 
machine learning models. Finally, pavement condition rating parameters and thresholds were 
proposed for categorizing the pavement sections into good, fair and poor sections. The following 
conclusions and recommendations were drawn from this study: 

• TSD provided continuous, high-speed deflection data, enabling network-level structural 
evaluations without disrupting traffic. TSD deflection basin parameters, namely SCI300, 
BCI and D1500 with threshold limits from current literature were used for categorizing 
pavement conditions at network-level. Care should be taken in analyzing the TSD data 
as it requires significant time and experience. As TSD produces massive amounts of 
data, care should be taken in cleaning the data before analysis. 

• From TSD data analysis, slightly different pavement rankings were observed based on 
different TSD basin parameters. Based on SCI300 indices, it was observed that most of 
the I-35 sections were categorized as good conditioned. However, many of the I-40 EB 
and I-40 WB sections fell under fair to poor categories based on SCI300. It was 
observed that almost all of I-35 SB and I-40 EB have BCI values less than 76.02 μm, 
representing good conditions of the pavements. Some sections of I-40 WB were found to 
exhibit fair conditions from BCI index. Based on D1500, it was observed that most of the 
I-35 SB, I-40 EB and I-40 WB sections fell under good to fair conditions, indicating 
strong subgrade layers. 

• Pavement surface conditions of the experimental sites identified using TSD analysis 
were assessed using the Pave3D 8K. The pavement categorization of I-35 experimental 
sites using rut depths was found to be same as TSD categorization. However, the I-40 
experimental sites showed slightly different categorization between TSD and rut depths 
from Pave3D 8K. For both I-35 and I-40 sites, the MPD results did not match the TSD 
results. The %CWP and %CWNP from Pave3D 8K were in agreement with the TSD 
results based on I-35 sites. However, The %CWP and %CWNP results show that the 
pavement conditions across all I-40 experimental sites are nearly identical, making it 
challenging to differentiate between them. Therefore, an integrated categorization that 
considers both structural and functional aspects is essential for the effective 
management of pavement infrastructure systems. 

• Field coring was found to provide insight into pavement categorization using TSD. The I-
35 experimental site (Section 2) was found to have a composite structure (concrete over 
asphalt) and was ranked as good conditioned. Whereas the other two experimental sites 
consisted of only asphalt materials and were ranked as good and fair conditioned. Also, 
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the pavement categorization using rut depths from Face Dipstick matched with the 
ranking obtained from the TSD analysis.    

• The FFWD results indicated that the pavement rankings obtained from W1 deflection
and E1 modulus are similar to TSD classifications for I-35 experimental sites. The I-40
good experimental site was ranked as good from FFWD W1 deflection and E1 modulus.
However, the ranking was the poor- and fair-conditioned experimental sites did not
match with TSD ranking.

• The GPR images were found to provide information related to layer thicknesses and
subsurface anomalies with potential issues that may not manifest as surface damage.
For both I-35 and I-40 experimental sites, the ranking from TSD analysis was found to
be in agreement with GPR analysis.

• An attempt was made to determine the correlations between different network-level
parameters obtained from the TSD data and in-house technologies using advanced
machine learning models. The results suggest that strong correlations between FFWD
W1 and E1 with TSD basin parameters allow them to be used interchangeably for
assessing pavement structural conditions and ranking at the network-level. It was
observed that the %CWP and %CNWP from Pave3D 8K showed moderate fit with
SCI300, BCI and AUPP, whereas the RD and MPD did not show any meaningful
correlations with TSD basin parameters.

• Based on the collected data and regression analyses, the thresholds for TSD, FFWD
and Pave3D 8K parameters were set in such a way that at least 75th percentile data of a
particular section fell under that category. The thresholds can be used for classifying the
pavement network into good, fair and poor categories for prioritizing pavement
maintenance works.

This study highlighted the potential of these advanced technologies in improving cost-
effectiveness and resilience in pavement maintenance and rehabilitation, ensuring
long-term performance and safety of roadway infrastructure. Findings from this 
research are expected to contribute to the development of a more efficient, data-driven 
framework for large-scale pavement condition assessment. 
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Chapter 1. Introduction 
Pavement network is a critical component of the U.S. transportation infrastructure, requiring 
regular condition monitoring to support cost-effective maintenance, extend service life, manage 
expenses, and improve driver safety (Khazmin et al., 2017). Currently, 68% of roadway 
pavements in the U.S. are in poor condition (Peraka & Bilgiri 2020). Without timely interventions, 
pavement performance can deteriorate significantly, resulting in exponentially higher 
maintenance and rehabilitation costs. This challenge is becoming increasingly difficult for many 
states Departments of Transportation (DOTs), specifically for DOTs in Region VI. Therefore, a 
reliable assessment of pavement conditions with limited resources is essential for making data-
driven decisions regarding maintenance, safety, and pavement design. 
 
Transportation agencies collect pavement condition data and populate their Pavement 
Management System (PMS) to optimize resources for pavement maintenance and 
rehabilitation. Typically, PMS relies on condition indices or scores to assess roadway 
pavements at the network-level, though these indices vary across state agencies. Pavement 
condition data encompasses both structural attributes (e.g., structural number, layer modulus, 
drainage) and surface attributes (e.g., roughness, rutting, cracking, patching), along with other 
factors, such as safety, traffic, and accidents to determine overall pavement condition or rating. 
While structural condition and capacity data are traditionally used at the project level, some 
agencies are beginning to recognize the value of incorporating these indicators at the network 
level (Flintsch, & McGhee 2009).  
 
Several tools and technologies are currently available for evaluating pavement structural 
conditions, including the Falling Weight Deflectometer (FWD), Ground Penetrating Radar 
(GPR), profilometers, Ultrasonic Pulse Velocity (UPV) devices, Light Detection and Ranging 
(LiDAR), and Traffic Speed Deflection (TSD) devices. While FWD testing is widely used for 
assessing pavement structural conditions, it poses safety risks to both testing personnel and the 
traveling public due to lane closures and other disruptions. In recent years, traffic-speed data 
collection methods for pavement condition assessment have gained traction, primarily because 
they do not interfere with traffic flow or require lane closures. TSD is one such technology which 
can provide data to estimate pavement conditions. 
 
Recent developments have spotlighted the TSD as a valuable technology for measuring surface 
deflections at short intervals as well as capturing data on roughness, texture, and rutting at 
traffic speed. As a result, it is gaining popularity among transportation agencies for network-level 
pavement condition assessment and management. While TSD offers significant benefits in 
evaluating both surface and structural conditions, challenges remain in using the data to 
accurately evaluate pavement conditions at network-level. The evaluation of pavement 
conditions or their rating typically depends on deflection basin parameters, namely deflections, 
slope deflection indices, structural considerations, and remaining service life. In this context, the 
potential advantages of deriving network-level pavement condition ratings from TSD data could 
be greatly enhanced through the implementation of other novel technologies conceived by the 
collaborative consortium driving this project. It is noted that the scarcity of TSD availability and 
the expenditure associated with data collection necessitates the pursuit of innovative in-house 
technologies, which will not only elevate efficiency but also yield cost reductions. The current 
study focuses on developing a pavement rating system by combining TSD with in-house 
technologies of partnered institutions. 
 
This collaborative project unites two leading Oklahoma universities – the University of 
Oklahoma (OU), Oklahoma State University (OSU) and Texas Transportation Institute (TTI) - to 
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rapidly and cost-effectively assess network-level pavement conditions using novel tools. As part 
of ODOT's engagement in a pooled fund study (TPF-5 (385)), pavement conditions data from I-
35 and I-40 in Oklahoma were collected recently using a TSD. This study focuses on analyzing 
the collected TSD data for network-level assessment or rating of the associated pavement. A 
complementary objective was to collect data from the same pavements using in-house 
technologies, namely Pave3D 8K available at OSU and an air-coupled Ground Penetrating 
Radar (GPR) and Fast Falling weight Deflectometer (FFWD) available at TTI – a member of the 
SPTC consortium and compare with TSD data. In addition, this study focuses on investigating 
the correlation among TSD deflection basin parameters, FFWD structural capacity parameters, 
and Pave3D 8K parameters using advanced machine learning models. 
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Chapter 2. Literature Review 

2.1 Background  

Pavement conditions are typically categorized into functional (level of serviceability) and 
structural (traffic-carrying capacity and resistance to environmental factors throughout its service 
life) levels. Both destructive and non-destructive tests are commonly used to evaluate the 
overall condition of existing pavements. Destructive tests, such as coring, laboratory 
performance tests, and in-situ tests, are employed by transportation agencies for project-level 
pavement condition assessments. In contrast, non-destructive tests, including Falling Weight 
Deflectometer (FWD), Fast Falling Weight Deflectometer (FFWD), Ground Penetrating Radar 
(GPR), and Pave3D 8K, are used to assess the structural and functional conditions of 
pavements. Data obtained from these and other tests support pavement management systems 
(PMS) and help transportation agencies prioritize maintenance, rehabilitation, and 
reconstruction projects. Some of these measurements can be conducted at traffic speed (e.g., 
GPR and Pave3D 8K), while others require traffic control measures (e.g., FWD, FFWD, 
Dynamic Cone Penetrometer (DCP), and seismic cone testing). Traffic control increases cost, 
time, and safety risks. As a result, pavement condition assessment using traffic-speed data is 
gaining national momentum. In this context, the Traffic Speed Deflectometer (TSD) is 
increasingly attracting the attention of state DOTs, including the DOTs in Region 6. TSD 
enables the assessment of both structural and functional pavement conditions without the need 
for traffic control, offering a more efficient and safer alternative. 

2.2 Pavement Condition Evaluation using Falling Weight 
Deflectometer (FWD)  

Since the 1980s, the Falling Weight Deflectometer (FWD) has been one of the most widely used 
devices for pavement condition assessment in the U.S. In this test, a deflection basin is 
measured under an impact load using geophone sensors. The size of the loading plate and the 
magnitude of the impact load depend on the material being tested (e.g., asphalt, stabilized 
subgrade, compacted subgrade). 

 
Typically, an impact load is applied to a circular plate 12 inches (300 mm) in diameter, placed 
on the pavement surface. The load is normalized to 9 kips (40 kN), equivalent to half an 
Equivalent Single Axle Load (ESAL). Transportation agencies generally rely on the deflection at 
the center of the plate to assess the overall structural capacity of the pavement. The deflection 
measured directly beneath the center of the load (D0) is typically considered the maximum 
deflection. Additionally, FWD collects deflections at distances of 12 inches (300 mm), 24 inches 
(600 mm), 36 inches (900 mm), 48 inches (1200 mm), 60 inches (1500 mm), and 72 inches 
(1800 mm) from the plate center. These deflections, along with pavement thickness data, are 
used to determine the modulus of various pavement layers, including the subgrade soil, as an 
indicator of stiffness. Figure 1 illustrates the stress distribution and measured deflection bowl 
beneath the FWD. 
 
Recently, modifications have been made to the FWD to accelerate pavement testing and enable 
quicker decision-making. The Fast Falling Weight Deflectometer (FFWD) is the next-generation 
FWD, capable of testing pavements at least five times faster than traditional FWD testing 
(Dynatest 2025). However, FFWD still requires lane closures for operation. 
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Figure 1 (a) A photographic view of Falling Weight Deflectometer, and (b) measurement 
approach 

2.3 Pavement Condition Evaluation using Traffic Speed Deflectometer 
(TSD)  

TSD is an instrumented truck that applies a rear axle load ranging from 13 to 28 kips onto the 
pavement surface. It is typically equipped with seven Doppler laser sensors positioned at 0, 8 
inches (200 mm), 12 inches (300 mm), 24 inches (400 mm), 36 inches (600 mm), 48 inches 
(800 mm), 60 inches (1000 mm), and 72 inches (1200 mm) in front of the loaded axle (i.e., in 
the direction of traffic). Additionally, a single laser sensor is located outside the deflection bowl, 
serving as the reference sensor (Katicha et al., 2017). 

 
TSD can be operated at various speeds; however, a speed of 60 MPH with a data collection 
rate of 1 kHz is commonly used (Katicha et al., 2017). The device determines the deflection 
slope by measuring the vertical pavement deflection velocity and the horizontal velocity of the 
vehicle at each laser sensor location. Using these data, a deflection basin is generated, 
representing the profile of the deflected pavement. Pavement deflection is then obtained by 
integrating the deflection slope. Figure 2 provides a pictorial representation of this approach. 
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Figure 2 Deflection slope from Traffic Speed Deflection Device 

2.4 Comparison of TSD and FWD Measurements 

The primary differences between FWD and TSD measurements lie in the nature of loading and 
the type of measuring sensors. The FWD applies an impact load, while the TSD uses a moving 
half-axle load. Additionally, FWD relies on geophones for deflection measurement, whereas 
TSD uses laser sensors. 

 
Another key distinction is the testing procedure. In FWD testing, multiple drops are used to 
verify repeatability, whereas TSD data are collected continuously at close intervals as the 
instrumented truck moves at traffic speed. Some accuracy may be lost in TSD due to the 
averaging process and the method used to define pavement deflection—issues that are not 
present in FWD testing. Furthermore, during TSD testing, stress and strain tensors rotate, 
whereas in FWD testing, they remain constant. Other factors influencing TSD data include 
damping, tire pressure, and truck dynamics (Rada & Nazarian, 2011). Therefore, careful 
evaluation of TSD data and the correlation methods used in assessing pavement condition 
indices is essential. 

2.5 Deflection Basin Parameters  

Over time, numerous studies have proposed deflection basin-related indices or deflection bowl 
parameters to analyze deflection data from deflectometers. These parameters primarily focus 
on the maximum deflection under the center of the load and variations in deflection among 
sensors as indicators of the stiffness of different pavement layers, including the subgrade, and 
the pavement's remaining life. A summary of the most influential parameters, formulas, and 
structural indicators derived from measured deflections is provided in Table 1. 
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Table 1 Deflection Bowl Parameters (Schooner & Horak 2012)  

Parameter Formula Structural indicator 

1. Maximum 
Deflection 

D0 as measured An indication of all structural 
layers with about 70% 
contribution by the subgrade 

2. Radius of 
Curvature (RoC) 
 where, L=127 mm in the Dehlen 

curvature meter and 200 mm for 
the FWD 

An indicator of the structural 
condition of the surface and base 
layers 
 

3. Base Layer Index 
(BLI) also known as 
Surface Curvature 
Index (SCI) 

SCI = BLI = D0 – D300 An indicator of structural 
condition of primarily the base 
layer 
 

4. Middle Layer Index 
(MLI) also known as 
Base Damage Index 
(BDI) 

BDI = MLI = D300 – D600 An indicator of structural 
condition of the subbase and 
probably selected layers 

5. Lower Layer Index 
(LLI) also known as 
Base Curvature Index 
(BCI) 

BCI = LLI = D600 – D900 An indicator of condition of the 
lower structural layers like a 
selected layer and the subgrade 
layer 

6. Spreadability, S 
 

 

 

Supposed to reflect the structural 
response of the whole pavement 
structure, but with weak 
correlations 

7. Area, A 
  

Supposed to reflect the structural 
response of the whole pavement 
structure, but with weak 
correlations 

8. Shape factors 
 

 

The F2 shape factor seems to 
give better correlations with 
subgrade moduli while F1 seems 
to give weak correlations 

9. Slope of Deflection 
 

Weak correlations observed 

10. Additional shape 
factor 

 
Condition of lower layer or depth 
to a stiff layer 

11. Area under 
pavement profile  

Characteristics of the pavement 
upper layers 

12. Additional areas 
 

 

Condition of middle layer 
Condition of lower layers 
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Parameter Formula Structural indicator 

13. Area indices 
 

 

Condition of upper layer 
Condition of middle layer 
Condition of middle layer 
Condition of lower layer 

 
The aforementioned indices are commonly used to assess pavement condition. The Virginia 
Department of Transportation (VDOT) has selected the Deflection Slope Index (DSI) and the 
Surface Curvature Index at 300 mm (SCI300) for pavement condition evaluation using TSD. 
The DSI is defined as the difference between deflections at 100 mm and 300 mm (D100 - D300) 
(Katicha et al., 2017). 
 
Additionally, several deflection parameters, as presented in Equations (1) through (5), were 
proposed by Rada et al. (2016) and are currently used by the Federal Highway Administration 
(FHWA) for pavement condition assessment. 

             (1) 

       (2) 

        (3) 
 

               (4) 

            (5) 
where, 

r, s = distance from applied load in inches (s>r); 
Dx = deflection at distance x from the load; and 
D = differential operator. 

2.6 Pavement Condition Indices for Assessment of Network-Level 
Pavement Conditions 

In recent years, several studies have focused on developing Pavement Condition or Quality 
Indices to categorize pavement sections into good, fair, and poor conditions (Zhang et al., 2003; 
Bryce et al., 2011; Horak et al., 2015; Shrestha, 2017). For example, Zhang et al. (2003) 
developed a methodology for structural characterization of pavement conditions. Internal studies 
at the Texas Department of Transportation (TxDOT) indicated that the Structural Strength Index 
(SSI) was not sensitive enough to differentiate between pavements requiring structural 
reinforcement and those that did not. The primary objective of Zhang et al. (2003)'s research 
was to develop a structural index, based on FWD data, that could effectively distinguish 
between pavements needing additional structural capacity and those for which surface 
treatments would suffice. Comprehensive guidelines were established for utilizing the Structural 
Condition Index (SCI) in selecting the most appropriate maintenance and rehabilitation 
strategies at the network level. A pilot study was also conducted on several pavement 
rehabilitation projects to validate the effectiveness of the SCI. 
 
Bryce et al. (2011) developed a structural index known as the Modified Structural Index (MSI) 
for use in network-level pavement evaluation. The MSI is a modified version of the Structural 

SCI = D0 – Dr  

DSIs-r = Ds – Dr  
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Condition Index (SCI) and is integrated into the Virginia Department of Transportation’s 
Pavement Management System (PMS). Network-level predictions identified MSI as the most 
promising index for predicting project-level maintenance and rehabilitation activities. MSI can be 
used as a network-level screening tool, for deterioration modeling, and in the development of 
structural performance measures. However, MSI is applicable only to flexible pavements, as it is 
based on FWD data and is empirical in nature (Bryce et al., 2011). 
 
Horak et al. (2015) developed a benchmark analysis methodology that utilizes the embedded 
structural response knowledge of the entire deflection bowl, as measured by the FWD, for 
comparative evaluation of the structural condition of flexible pavement structures. In that study, 
three deflection basin parameters - Modified Structural Number (SNP), Pavement Number (PN), 
and Structural Condition Index (SCI) - were calculated from full deflection bowls and used in 
enhanced benchmark analyses of flexible pavement structures. 
 
Shrestha (2017) conducted a field evaluation of the TSD to classify pavement structural 
conditions for a small subset of the Pennsylvania secondary road network. In that study, an 
Overall Pavement Index (OPI) was developed using TSD data to categorize pavements into 
good, fair, and poor conditions. The OPI was derived from a model that relates pavement 
surface characteristics to pavement age and Structural Number (SN). The threshold separating 
pavements with good surface conditions from those with fair conditions was obtained from the 
Pennsylvania Pavement Management System (PMS). Using the determined OPI values and 
model equations, Deflection Slope Index (DSI) thresholds were calculated. The OPI thresholds 
for different pavement conditions were then used to establish corresponding DSI thresholds. 
This was achieved by identifying the DSI values associated with each OPI threshold category 
for pavements with a 10-year-old surface (Shrestha, 2017). 
 
To effectively characterize pavement conditions using TSD data, it is essential to establish 
appropriate thresholds for pavement quality indicators. To this end, existing literature on TSD-
related pavement quality indicator thresholds was reviewed and discussed in the following 
section. 

2.7 Threshold Values for Pavement Condition Indices 

In recent years, several studies have been conducted to establish thresholds for TSD basin 
parameters to characterize pavement conditions. For example, the Virginia Tech Transportation 
Institute proposed using temperature-corrected (70°F) structural indices derived from TSD 
deflection basins to categorize pavement sections as Good, Fair, or Poor. This method utilized 
SCI300 and DSI, with results showing similar trends for both indices. Preliminary thresholds 
distinguishing Good, Fair, and Poor structural conditions were provided in the Virginia Tech 
Transportation Institute report, based on estimates of the expected remaining fatigue life of the 
asphalt layer. The recommended thresholds are summarized in Table 2. 
 
The Pennsylvania Department of Transportation (PennDOT) employs DSI to classify pavement 
quality into Poor, Fair, and Good categories. Table 3 presents the DSI threshold values 
suggested by PennDOT, which apply specifically to the non-National Highway System (non-
NHS). In this study, both SCI300 and DSI are used to characterize pavement conditions. The 
TxDOT guidelines to assign PMIS treatment levels using SCI, BCI and W7 indices are 
presented in Table 4. 
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Table 2 Virginia Tech Transportation Institute TSD Thresholds for Pavement Category 

Road 
Category 

AC Layer 
Thickness 

(in.) 

Annual 
Traffic, 
ESAL 

(million) 

Threshold 
for 

Fatigue 
Cracking 
at Wheel 
path (%) 

Threshold 
for Poor, 

Nf, Million 
ESAL 

Threshold 
for Poor, 
SCI300 

(mil) 

Threshold 
for Poor, 
DSI (mil) 

Threshold 
for Fair, 

Nf, million 
ESAL 

Threshold 
for Fair, 
SCI300 

(mil) 

Threshold 
for Fair, 
DSI (mil) 

Interstate >9 1.4 10 2.8 3.7 3.0 7.0 2.7 2.2 

Primary 6-9 0.2 10 0.4 6.2 5.2 1.0 4.9 4.0 

Secondary 3-6 0.07 45 0.14 9.7 7.7 0.35 7.3 5.8 

 
Table 3 PennDOT DSI Thresholds for Pavement Category 

Non-NHS: 
AADT 

Pavement 
Condition 

DSI 
Non-NHS: 

AADT 
Pavement 
Condition 

DSI 

≥ 2000 Good <0.39 <2000 Good <5.90 

≥ 2000 Fair 0.39-9.78 <2000 Fair 5.90-15.90 

≥ 2000 Poor >9.78 <2000 Poor >15.90 

 
Table 4 TxDOT DSI Thresholds for Pavement Category 

Index 
Parameters 

Thicknes
s>5 

Thickness 
≤5, ≥2.5 

Thickness 

<2.5, ≥1 
 Thickness 

<1 
Diagnosis 

SCI <4 <6 <12 <16 Very Good Asphalt Layer 

SCI <4 <6 <12 <16 Good Asphalt Layer 

SCI 4-6 6-10 12-18 16-24 Fair Asphalt Layer 

SCI 6-8 10-15 18-24 24-32 Poor Asphalt Layer 

SCI 8-10 15-20 24-30 32-40 Very Poor Asphalt Layer 

BCI >10 >20 >30 >40 Very Good Baset Layer 

BCI <2 <3 <4 <8 Good Base Layer 

BCI 2-3 3-5 4-8 8-12 Fair Base Layer 

BCI 3-4 5-9 8-12 12-16 Poor Asphalt Layer 

BCI 4-5 8-10 12-16 16-20 Very Poor Base Layer 

W7 >5 >10 >16 >20 Very Good Subgrade Layer 

W7 <1 <1 <1 <1 Good Subgrade Layer 

W7 1-1.4 1-1.4 1-1.4 1-1.4 Fair Subgrade Layer 

W7 >1.4-1.8 >1.4-1.8 >1.4-1.8 >1.4-1.8 Poor Subgrade Layer 

W7 >1.8-2.2 >1.8-2.2 >1.8-2.2 >1.8-2.2 Very Poor Subgrade Layer 
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Chapter 3. Materials and Methodologies  
This chapter outlines the detailed methodology adopted in this study. A high-level overview of 
the methodology adopted in this study is illustrated in the workflow diagram (Figure 3). For the 
purpose of this study, pavement condition data from I-35 and I-40 in Oklahoma, recently 
collected as part of ODOT's engagement in a pooled fund study (TPF-5 (385)) using a TSD, 
was collected and analyzed. A comprehensive set of pavement condition indicators were 
determined by analyzing the TSD data. Leveraging these indicators, the I-35 and I-40 pavement 
sections were divided into three different categories, namely poor, fair, and good. Based on this 
categorization, experimental sites were selected for an in-depth evaluation. These initially rated 
sections were then further used for in-depth evaluation using FFWD, GPR and Pave3D 8K. 
GPR images were calibrated and validated by collecting field cores at selected locations. 
Structural capacities of these sections were evaluated using FFWD tests at every 10th of a mile. 
Pavement surface characteristics of these test sites, namely rut depth (RD), mean depth profile 
(MDP), cracking along wheel path (CWP), and cracking along non-wheel path (CNWP) were 
evaluated using the Pave3D 8K. Advanced machine learning models including linear 
regression, gradient boosting regression, decision tree, random forest, KNeighbors regressor, 
and Huber regression were used to investigate the correlation between TSD deflection basin 
parameters, FFWD structural performance parameters and Pave3D 8K surface parameters. 
Finally, a pavement rating limit was developed using TSD, FFWD and Pave3D 8K. The 
following subsections provide a detailed discussion of these methodologies. 
 

 

Figure 3 Workflow Diagram 

3.1 Collection of TSD Data 

With the assistance of Strategic Asset and Performance Management (SAPM) personnel at 
ODOT, the research team gained access to recently collected TSD data from I-35 and I-40. It 
was found that the TSD data was collected from three highway segments, namely Interstate-35 
Southbound (I-35 SB), Interstate-40 Eastbound (I-40 EB), and Interstate-40 Southbound (I-40 
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SB). Figure 4 shows the satellite view of the different segments. The I-35 segment begins with 
Hunnewell (36.399916, -97.327006) and ends at I-35/I40 junction (35.46651, -97.46871). The 
TSD data was collected on the southbound lane of I-35. The I-40 EB travels from Texola 
(35.2267, -100.0013) towards I-35/I-40 junctions (35.4500, -97.4331). The I-40 WB runs from I-
35/I-40 junction (35.46561, -97.469490) towards Texola (35.2271, -100.00125).  
 

 

Figure 4 Google Earth View of Test Sites 

The ODOT Pavement Management personnel provided the OU team access to the Hawkeye 
website which is the online storage of TSD data. Figure 4 shows a snippet of the Hawkeye 
website. After evaluating the available data on the Hawkeye website, it was determined that 
access to raw TSD data was required to determine different pavement condition indicators. 
ODOT helped the OU team to get access to the raw data from Australian Road Research Board 
(ARRB). Figure 5 shows a snippet of the raw data spreadsheet collected from ARRB. 
 

 

Figure 5 A snippet of the Hawkeye website 
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Figure 6 A snapshot of TSD data collected on the I-35 section 

3.2 Analysis of TSD Data and Selection of Experimental Sites 

The team conducted a literature review to identify the pavement condition indices and 
thresholds that could be used to evaluate the pavement conditions at network-level. Drawing on 
these literature reviews, a comprehensive set of pavement condition indicators encompassing 
Surface Curvature Index (SCI), Base Curvature Index (BCI), Area Under Pavement Profile 
(AUPP) and D1500 were employed to analyze the TSD data. Leveraging these indicators, the I-
35 and I-40 pavement sections were divided into three different categories, namely poor, fair, 
and good. Table 5 presents the thresholds of TSD pavement condition indices used in this 
study. These thresholds were chosen based on existing literature and discussions with the 
collaborative partners. As can be seen from Table 5, the thresholds for SCI300 were selected 
from the specification proposed by Virginia Tech Transportation Institute. The pavement 
categorization thresholds for BCI and D1500 were selected based on TxDOT and TDOT 
specifications. This categorization facilitated the subsequent selection of experimental sites for 
an in-depth evaluation, each spanning a length of 10 to 15 kilometers (km). Based on these 
analysis, three experimental sites to represent three pavement categories, namely poor, fair, 
and good from I-35 were selected. Similarly, another three experimental sites were selected 
from I-40.  

 
Table 5 Thresholds of pavement condition indices obtained from TSD 

Category 
SCI300, μm (Asphalt Layer) Virginia 

Tech Transportation Institute) 
BCI, μm (Base Layer) 

(TxDOT) 

D1500, μm 
(Subgrade Layer) 

(TDOT) 

Good <68.58 <76.2 <25.4 

Fair 68.58-93.98 76.2-101.6 25.4-55.88 

Poor >93.98 >101.6 >55.88 

3.3 Collection and Analysis of Data using Pave3D 8K Data  

As mentioned earlier, six testing sites, among which three sites were located on I-35 and three 
sites on I-40, were selected based on the TSD data. Surface image data and detailed pavement 
condition and texture data were acquired from these sites using Pave3D 8K. During the field 
data collection, there was no interruption of traffic on I-35 and I-40 as the field data was 
collected at traffic speed. The Pave3D 8K system (Figure 7) is a sophisticated system to 
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conduct full lane data collection on roadways at highway speed up to 60mph with 0.5mm 
resolution. It can acquire both laser imaging intensity (2D) and range data (3D) from pavement 
surfaces through two separate sets of sensors. In addition, two 3D high-resolution digital 
accelerometers are installed on the system. These accelerometers are capable of 
compensating pavement surface profiles and generating roughness indices. The 0.5mm 3D 
pavement surface data can be used for the following: 

• Comprehensive evaluation of surface distresses, with automatic and interactive 
detection of cracks and classifying them based on various protocols; 

• Safety analysis, including macrotexture in terms of mean profile depth (MPD) and mean 
texture depth (MTD), hydroplaning prediction, and grooving identification and evaluation; 

• Roadway geometry, including horizontal curve, longitudinal grade, and cross slope. 

 

 

Figure 7 Pave3D 8K system for field data collection 

Once the pavement surface data was collected from the field using Pave3D 8K, the next step 
was to process the raw data using the ADA 3D software to obtain different pavement condition 
parameters, such as roughness, rutting, crack categorization (including type, severity, and 
density), and patching. Figure 8 shows the different screenshots of ADA3D software during the 
processing of raw data, and Figure 9 shows the screenshot for rut depth calculation. Once the 
computation was completed, the results were exported into .csv formatted files for further 
analysis. 
 

 

Figure 8 Interface of ADA-3D Software 
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 Figure 9 Computation Interface of Rut Depth Using ADA 3D 

3.4 Collection of FFWD Test Data 

FFWD tests were conducted by Texas Transportation Institute (TTI) at the selected I-35 and I-
40 sections using the available facility (Figure 10). The goal was to conduct these tests at the 
same or close locations as TSD. For the convenience of the test, FFWD data was collected at 
every 10th of a mile. Measured deflections were analyzed using Modulus 7.0. The analyzed data 
was used to determine structural conditions and compare with the corresponding TSD results. 
These comparisons were useful for setting the rating limits. The test was conducted at night to 
avoid heavy traffic on the interstate highways. Rolling traffic control for FFWD testing was 
provided by the associated ODOT field districts.  
 

 

Figure 10 FFWD data collection on I-35 test section 

 



 
 17 

3.5 Collection of GPR Data 

A subsurface GPR survey was conducted on the above mentioned I-35 and I-40 sections with 
the help of TTI on June 24, 2024. A 1 GHz horn antenna system with integrated high-definition 
video and GPS was used for this purpose. Data was collected at highway speed with no traffic 
control. The GPR data was processed with the software developed by TTI to compute layer 
thicknesses and used to identify areas with subsurface defects. Figure 11 shows the 
photograph of the TTI’s GPR equipment. 

 

 

Figure 11 Photographic View of TTI’s Air Coupled GPR 

3.6 Collection of Selective Cores from Distressed Locations 

Based on the TSD and FFWD test results, cores were extracted selectively from distressed 
locations of experimental sites. Considering the limitations of this study, cores were collected 
from only three I-35 experimental sites representing poor, fair and good conditions. For the 
purpose of comparison, cores were collected from few non-distressed locations. A visual 
observation of the extracted cores as well as limited laboratory test were used to validate the 
pavement rating obtained from the TSD data. Traffic control for coring was provided by the 
associated field districts. In addition to field core collection, roadway profiles in the selected 
locations were surveyed using Face Dipstick and Straight Edge. Figures 12, 13 and 14 show the 
Straight Edge measurement, Face Dipstick test and coring operations. 

 

 

Figure 12 Face Dipstick Measurements on I-35 Test Site 
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Figure 13 Roadway Profile Measurement using Face Dipstick 

 

 

Figure 14 Coring Operations on I-35 Test Site 

3.7 Comparison of Different Technologies and Determining Pavement 
Condition Rating Limits:  

The collaborative teams worked together to compare the results from different technologies and 
established pavement condition thresholds. In this study, the correlation among TSD basin 
parameters, FFWD structural capacity parameters and Pave3D 8K parameters were studied 
using advanced machine learning models in order to develop pavement rating limits for both 
flexible and rigid pavements. For the purpose of this study, a total of 52 machine learning 
models were initially studied and finally 6 of them were finally selected for studying correlations. 
Both single and multivariate analyses were performed to evaluate the individual and combined 
effects of all these variables. Once the correlations were established, a rating limit system was 
proposed based on TSD, FFWD and Pave3D 8K performance parameters. A brief description of 
six selected machine learning models is provided below: 

3.7.1 Linear Regression: 
Linear regression is a fundamental statistical technique used to model and analyze the 
relationship between a dependent variable and one or more independent variables (Sohil et al. 
2022). It helps in predicting the value of the dependent variable based on the values of the 
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independent variables. Linear regression assumes a linear relationship between the dependent 
variable (Y) and the independent variables (X). The model can be represented as:  
 

         (1) 
  Where, 

β0 is the intercept 
β1,β2,...,βn are the coefficients for the independent variables 
ϵ is the error term 

 
The goal is to find the values of the coefficients (𝛽) that minimize the difference between the 
observed and predicted values of the dependent variable. This is typically done using the least 
squares method. The performance of the linear regression model can be evaluated using 
metrics, such as R-squared, adjusted R-squared, Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE). 

3.7.2 Gradient Boosting Regressor 
Gradient Boosting Regressor is a powerful machine learning algorithm used for regression 
tasks. It is part of the ensemble learning family, where multiple weak models (typically decision 
trees) are combined to create a strong predictive model. Gradient Boosting Regressor builds an 
ensemble of weak prediction models, typically decision trees, in a sequential manner to 
minimize the residual errors. The prediction at step m is updated as, 

 

                      (2) 

where, 
Fm(x) is the updated model at iteration m. 
Fm−1(x) is the model from the previous iteration. 
hm(x) is the weak learner (typically a decision tree) trained to minimize the 
residual errors. 
γm is the learning rate, controlling the contribution of each weak learner. 

 
The model is trained iteratively by reducing the loss function (MSE) using gradient descent, 
leading to improved predictive performance with each iteration. 

3.7.3 Decision Tree Regressor 
A Decision Tree Regressor is a non-parametric supervised learning algorithm used for 
regression tasks. It works by recursively splitting the data into subsets based on feature values, 
creating a tree-like structure where each internal node represents a decision rule, and each leaf 
node holds a predicted value. The model selects splits by minimizing a chosen error metric, 
such as MSE or mean absolute error (MAE). Decision Tree Regressor models a target variable 
Y as a hierarchical structure of decision rules based on input features X. It recursively partitions 
the feature space into smaller regions and assigns a constant prediction to each region. The 
model represents as follows: 

 (3) 
where, 

𝑦̂ is the predicted value at a leaf node 
Rj is the region (subset of data) associated with a leaf node 
yi are the actual target values in Rj 
N is the number of samples in Rj 

𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + ⋯+ 𝜷𝒏𝑿𝒏 + 𝝐 

𝑭𝒎 𝒙 = 𝑭𝒎−𝟏 𝒙 + 𝜸𝒎𝒉𝒎 𝒙  

𝒚 =
𝟏

𝑵
 𝒚𝒊𝒊∈𝑹𝒋       
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The splits are chosen by minimizing an impurity function, such as the MSE. The tree grows until 
a stopping criterion is met, such as a minimum number of samples per leaf or maximum depth. 
To prevent overfitting, techniques like pruning or setting constraints on depth and leaf size are 
commonly used. 

3.7.4 Random Forest Regressor 
A Random Forest Regressor is an ensemble learning method that combines multiple decision 
trees to improve prediction accuracy and reduce overfitting. It operates by training multiple 
decision trees on different random subsets of the data and averaging their output for regression 
tasks. The model can be represented as: 
 

                      (4)      

where, 
𝑦̂ is the final predicted value 
M is the number of decision trees in the forest 
Tm(x) is the prediction from the mth decision tree. 

 
Each tree is trained on a bootstrapped sample of the training data, and at each split, a random 
subset of features is considered to enhance diversity among trees. This randomness helps in 
reducing variance while maintaining predictive power.  

3.7.5 K-Neighbors Regressor 
The K-Nearest Neighbors (KNN) Regressor also known as K-Neighbors Regressor is a non-
parametric algorithm that predicts the target value of a given input by averaging the target 
values of its k nearest neighbors in the feature space. It is based on the assumption that similar 
inputs have similar outputs. The model is represented as: 
 

 (5)          
        where, 

𝑦̂ is the final predicted value 
k is the number of nearest neighbors 
yi are the actual target values of the k closest neighbors. 

 
The model performance is evaluated by minimizing the MSE. 

3.7.6 Huber Regressor 
Huber Regressor is a robust regression technique used in machine learning to handle data with 
outliers. It combines the properties of both ordinary least squares regression and mean absolute 
error regression, making it less sensitive to outliers than standard linear regression. The Huber 
Regressor minimizes the Huber loss function, which is defined as: 
 

          (6) 
 

𝒚 =
𝟏

𝑴
 𝑻𝒎(𝒙)

𝑴

𝒎=𝟏

 

𝒚 =
𝟏

𝒌
 𝒚𝒊
𝒌
𝒊=𝟏      

𝑳𝜹 𝒂 =   

𝟏

𝟐
𝒂𝟐      𝒇𝒐𝒓  𝒂 < 𝜹    

𝜹   𝒂 −
𝟏

𝟐
𝜹       𝒇𝒐𝒓  𝒂 > 𝜹
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where, a is the residual (difference between the observed and predicted values), and δ is a 
threshold parameter. For residuals smaller than δ, the Huber loss behaves like the squared 
loss, and for larger residuals, it behaves like the absolute loss. The Huber Regressor iteratively 
optimizes the loss function to find the best-fitting model. This involves solving a convex 
optimization problem, which ensures convergence to a global minimum. 
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Chapter 4. Results and Discussions  

4.1 Analysis of TSD Data 

As mentioned in the previous section, a comprehensive set of pavement condition indicators 
including Surface Curvature Index (SCI), Base Curvature Index (BCI), Area Under Pavement 
Profile (AUPP) and D1500 were determined from TSD data to determine the pavement 
conditions of I-35 SB, I-40 EB and I-40 WB segments. For this purpose, the raw TSD data was 
first processed and cleaned to remove any anomalous data and empty cells. The TSD 
deflection basin parameters were then calculated from the cleaned TSD data. These basin 
parameters were then used to categorize pavement sections of I-35 SB, I-40 EB and I-40 WB in 
good, fair and poor conditions using the thresholds mentioned in Table 5.  

4.1.1 Surface Curvature Index (SCI300) 
Figures 15(a), 15(b) and 15(c) show the variation of SCI300 values for I-35 SB, I-40 EB and I-40 
WB, respectively. As mentioned in the literature review, the SCI300 index represents the 
structural conditions of the surface layer of the pavements. A lower value of SCI300 typically 
represents higher strength of the surface layer. From Figures 15(a), 15(b) and 15(c), it was 
observed that the I-35 SB segments show relatively lower SCI300 values than the I-40 EB and 
I-40 WB segments. After consulting with District 4 personnel, it was found that the I-40 EB and I-
40 WB are mostly flexible pavements, whereas the I-35 segments have composite pavement 
sections made of concrete over asphalt. As a result, higher SCI300 values are expected for the 
I-35 segments. 
 
Virginia Tech Transportation Institute uses the SCI300 index to categorize pavement conditions 
(Katicha et al., 2020). According to them, the pavement sections with SCI300 values of less 
than 68.58 μm, between 68.58 to 93.98 μm and more than 93.98 μm can be categorized as 
good, fair and poor conditioned, respectively. In this current study, these thresholds were used 
for characterization of the tested I-35 SB, I-40 EB and I-40 WB segments, as indicated in Table 
5. These threshold limits are shown in Figures 15(a), 15(b) and 15(c) to identify the good, fair 
and poor pavement sections of I-35 SB, I-40 EB and I-40 WB, respectively. It was observed that 
most of the I-35 sections were categorized as good conditioned. The composite pavement 
layers may be responsible for this phenomenon. From Figures 15(b) and 15(c), many of the I-40 
EB and I-40 WB sections fall under fair to poor categories. 

4.1.2 Base Curvature Index (BCI) 
The Base Curvature Index or BCI is an indicator of the condition of the lower structural layers 
like base and subgrade layers. Figures 16(a), 16(b) and 16(c) present the variation of BCI 
indices for I-35 SB, I-40 EB and I-40 WB segments, respectively. Similar to SCI300, a lower 
value of BCI represents higher strength of the lower structural layers. From Figures 16(a), 16(b) 
and 16(c), it was observed that the I-35 SB and I-40 EB segments have lower BCI values than 
the I-40 WB. According to TxDOT (Chang et al., 2014), a BCI value of less than 76.02 μm 
represents a good pavement condition. A pavement section with a BCI value higher than 76.02 
μm but less than 101.6 μm can be treated as fair and more than 101.6 μm as poor conditions. 
Figures 16(a), 16(b) and 16(c) show the good, fair and poor pavement sections of I-35 SB, I-40 
EB and I-40 WB, respectively, based on BCI value. It was observed that almost all of I-35 SB 
and I-40 EB have BCI values less than 76.02 μm, representing good conditions of the 
pavements. Some sections of I-40 WB were found to exhibit fair conditions.  
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Figure 15 Variation of SCI300 index for (a) I-35 SB, (b) I-40 EB and (c) I-40 WB segments. 
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Figure 16 Variation of BCI index for (a) I-35 SB, (b) I-40 EB and (c) I-40 WB segments. 
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4.1.3 D1500 
Figures 17(a), 17(b) and 17(c) show the variation of D1500 values for I-35 SB, I-40 EB and I-40 
WB, respectively. As mentioned in the literature, the D1500 index shows the conditions of the 
subgrade layer of a pavement. A lower value of D1500 represents better condition of the 
subgrade layer. It was observed that the I-35 SB, I-40 EB and I-40 WB segments showed 
almost similar ranges of D1500 values. Tennessee DOT (TDOT, 2024) indicated that pavement 
sections with a D1500 value of less than 25.4 μm can be considered as good whereas more 
than 55.88 μm can be treated as poor. The sections with a D1500 value of more than 25.4 μm 
but less than 55.88 μm should be categorized as fair condition. It was observed that most of the 
I-35 SB, I-40 EB and I-40 WB sections fell under good to fair conditions, indicating strong 
subgrade layers. 

 

Figure 17 Variation of D1500 index for (a) I-35 SB, (b) I-40 EB and (c) I-40 WB segments. 
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4.1.4 Area Under Pavement Profile (AUPP) 
The Area Under Pavement Profile (AUPP) index indicates the characteristics of the upper layers 
of the pavement. Figures 18(a), 18(b) and 18(c) show the variation of AUPP values for I-35 SB, 
I-40 EB and I-40 WB, respectively. A lower value of AUPP indicates higher strength of the 
pavement layers. From Figures 18(a), 18(b) and 18(c), it was observed that the I-35 SB, I-40 EB 
and I-40 WB segments showed almost similar ranges of AUPP indices.  
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Figure 18 Variation of AUPP index for (a) I-35 SB, (b) I-40 EB and (c) I-40 WB segments. 
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4.2 Selection of Experimental Sites 

As mentioned in the previous section, the threshold limits mentioned in Table 5 for SCI300, BCI 
and D1500 were used for the initial categorization of the I-35 SB, I-40 EB and I-40 WB into 
good, fair and poor conditions. The details of this categorization were presented in the previous 
sections. Based on this categorization, the team identified three experimental sites to represent 
three pavement categories, namely poor, fair, and good from I-35, each spanning a length of 10 
to 15 kilometers. The idea was to select a stretch of a highway section that mostly represents a 
specific category based on all the TSD indices at network-level. Similarly, another three 
experimental sites were selected from I-40 (combining I-40 EB and I-40 WB). The approximate 
locations of the I-35 and I-40 experimental sites are presented in Figures 19(a) and 19(b), 
respectively. As mentioned in Figure 19(a), Section 1, Section 2 and Section 3 of I-35 represent 
fair, good and poor conditions, respectively. From Figure 19(b), on I-40, Section 1, Section 2 
and Section 3 represent poor, good and fair conditions, respectively. These experimental sites 
were then used for further evaluation using FFWD, GPR, Pave3D 8K and coring. 
 

 
Figure 19 Selection of Experimental Sites for Evaluation: (a) I-35, and (b) I-40 
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4.3 Pave3D 8K Measurements  

Pavement surface conditions of the experimental sites identified using TSD analysis were 
assessed using the Pave3D 8K. As mentioned earlier, Pave3D 8K data was collected and 
analyzed by the OSU team. In this study, four different pavement parameters were selected for 
evaluating the conditions of the experimental sites. These parameters include rut depth, texture 
parameters including Mean Profile Depth (MPD), and percentage (%) of cracks on the wheel 
path and non-wheel paths. 

4.3.1 Comparison of I-35 Experimental Sites: 
Figures 20, 21, 22 and 23 show the rut depth, Mean Profile Depth (MPD), %cracking on the 
wheel path and %cracking on the non-wheel paths for I-35 experimental sites, respectively. 
From Figures 20(a), 20(b) and 20(c), it was observed that the rut depths varied from 0.35-5.35 
mm, 0.45-2.46 mm, 0.4-10 mm for I-35 Section 1, Section 2 and Section 3, respectively. These 
results match with TSD analysis as I-35 Section 1, Section 2 and Section 3 were rated as fair, 
good and poor conditioned, respectively. 
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Figure 20 Rut depth of I-35 experimental sites: (a) Section 1 (fair), (b) Section 2 (good) 
and (c) Section 3 (poor)  
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As shown in Figures 21(a), the MPD for I-35 Section 1 was found to vary from 0.8-1.8 mm with 
an average of 1.0 mm. The MPD for I-35 Section 2 varied between 0.7-1.9 mm with an average 
of 0.9 mm and I-35 Section 3 varied between 0.7-3.5 mm with an average of 1.3 mm. Generally, 
a higher value of MPD indicates better resistance to skid and improved pavement conditions. 
Therefore, the MPD results do not match the TSD results. 
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Figure 21 Mean Profile Depths of I-35 experimental sites: (a) Section 1 (fair), (b) Section 2 
(good) and (c) Section 3 (poor)  
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The cracks on the wheel path typically occur from the passing of traffic and are often referred to 
as the load-related cracking. A lower value of %cracking refers to better condition of the 
pavement. From Figures 22(a), 22(b) and 22(c), the %cracking on the wheel path was found to 
vary between different experimental sites. The %cracking on the wheel path for I-35 Section 1 
ranged from 0% to1.6% with an average of 0.1%. The I-35 Section 2 also exhibited similar 
results of %cracking on the wheel path with an average of 0.3%. The I-35 Section 3 exhibited 
the highest cracking among the three sections with an average of 1.9%. The results indicate 
almost similar conditions for the good (Section 2) and fair (Section 1) sections. The Section 3, 
which was identified as poor from TSD analysis, was found to exhibit higher cracking on the 
wheel path from Paave3D 8k analysis. 
 
The cracking on the non-wheel path is mostly related to the environmental loading on the 
pavement section. It was found that the %cracking on the non-wheel path of Section 1, Section 
2 and Section 3 varied from 0-1.7%, 0-2.2% and 0-4.4%, respectively (Figures 23(a), 23(b) and 
23(c)). Therefore, the %cracking on the non-wheel path from Pave3D 8K are in agreement with 
the TSD results.  
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Figure 22 %Cracking on the wheel path of I-35 experimental sites: (a) Section 1 (fair), (b) 
Section 2 (good) and (c) Section 3 (poor)  



 
 35 

 

 

Figure 23 %Cracking on the non-wheel path of I-35 experimental sites: (a) Section 1 (fair), 
(b) Section 2 (good) and (c) Section 3 (poor)  
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4.3.2 Comparisons of I-40 Experimental Sites 
Figures 24(a), 24(b) and 24(c) show the rut depths for I-40 Section 1, Section 2 and Section 3, 
respectively. From Figures 24(a), the average rut depths for I-40 Section 1 were found to be 
1.14 mm with values ranges from 0.4 mm to 6.0 mm. The I-40 Section 2 exhibited lesser rut 
depths than I-40 Section 1 with an average of 1.1 mm. The average rut depths for I-40 Section 3 
were found to be 2.0 mm, respectively. The results indicate that the I-40 Section 1 can be 
categorized as the better performing section among the three sections which is in agreement 
with the TSD analysis. The ranking of the I-40 Section 2 and 3 does not match with TSD 
analysis. 
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Figure 24 Rut depth of I-40 experimental sites: (a) Section 1 (poor), (b) Section 2 (good) 
and (c) Section 3 (fair)  

From Figures 25(a), the average values for MPD for Section 1, Section 2 and Section 3 were 
observed to be 1.6 mm, 0.8 mm and 2.1 mm, respectively. Therefore, the MPD results do not 
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expect to provide the same pavement categorization as the TSD results for I-40 experimental 
sites. 
 
 

 

Figure 25 Mean rut depths of I-40 experimental sites: (a) Section 1 (poor), (b) Section 2 
(good) and (c) Section 3 (fair)  
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The %cracking on the wheel path and non-wheel path showed similar trends as seen from 
Figures 26 and 27. From Figures 26(a), 26(b) and 26(c), the %cracking on the wheel path was 
found to vary from 0-1.8%, 0-1.5%, and 0-1.7% for I-40 Section 1, Section 2 and Section 3, 
respectively. The average %cracking on the wheel path for I-40 Section 1, Section 2 and 
Section 3 were 0.1%, 0.3% and 0.1%. Similar trends were observed from Figures 27(a), 27(b) 
and 27(c) for cracking on the non-wheel path. The results show that the pavement conditions 
across all I-40 experimental sites are nearly identical, making it challenging to differentiate 
between them. The findings suggest that classifying pavements based solely on structural or 
functional characteristics can sometimes be misleading. Therefore, an integrated categorization 
that considers both structural and functional aspects is essential for the effective management 
of pavement infrastructure systems. 

 

Figure 26 %Cracking on wheel path of I-40 experimental sites: (a) Section 1 (poor), (b) 
Section 2 (good) and (c) Section 3 (fair)  
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Figure 27 %Cracking on non-wheel path of I-40 experimental sites: (a) Section 1 (poor), 
(b) Section 2 (good) and (c) Section 3 (fair)  
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4.4 Physical Inspection of Field Cores 

As mentioned earlier, the OU team collected field cores selectively from the I-35 experimental 
sites. These cores were physically inspected to measure the pavement thickness and to 
observe any visible damage. Figures 28(a), 28(b) and 28(c) show the extracted cores from the I-
35 Section 1, Section 2 and Section 3, respectively. Detailed observations were documented 
and are presented in Table 6. From Table 6, the I-35 Section 2 was found to be a composite 
pavement made of approximately 9 inch (230 mm) thick concrete over 6 inch (150 mm) of 
asphalt layers. As a result, this section showed less deflection and was ranked as good 
conditioned from TSD analysis. The I-35 Section 1 was found to be made of 9-10 inch thick 
asphalt layers with hot sand as base materials. Most of the cores from I-35 Section 3 broke 
during coring operation and could not be recovered. It was found that this section contained 
approximately 8 inch of asphalt. As I-35 Section 1 and 3 were made of asphalt materials, it was 
expected that these sections would show inferior pavement conditions than I-35 Section 2.  
From plan notes, it was found that most of the I-40 sections were flexible pavements. The 
thickness of the asphalt layers of I-40 was found to be approximately 10 inches. 
 

           

Figure 28 Physical inspection of roadway cores from I-35 (a) Section 1, (b) Section 2 and 
(c) Section 3 
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Table 6 Properties of the roadway cores 

 

ID 
L1 

(mm) 
L2 

(mm) 
L3 

(mm) 
L4 

(mm) 
L5 

(mm) 

Total 
(mm) 

Calcul
ated 

L1 
Type 

L2 
Type 

L3 
Type 

L4 
Type 

L5 
Type 

Notes 

A1 95.12 Broken    95.12 S4      

A2 90.74 Broken    90.74 S4 S4     

A3 46.27 52.39 
Broke

n 
  98.66 S4 S4 S4   L3 Fabric 

A4 50.65 45.66 29.90 Broken  126.22 S4 S4 S4   L3 Broken 

A5 49.10 55.14 51.32 79.59 11.95 235.15 S4 S4 S5 S5 S3 
Fabric 
Between Lifts 

A6 42.89 42.42 25.01 35.19 82.49 228.00 S4 S4 S5 S5 S3 L3 Fabric 

B1 222.12 28.20 31.75 72.38 69.62 354.45 PCC S5 S5 S2 
BBC
AT 

L2/L3 
Delaminated 

B2 224.09 Broken    224.09 PCC      

B3 223.95 42.56 29.09 76.60  372.20 PCC HMA HMA HMA   

C1 66.58 53.60 93.47   213.65 S4 S4 S3    

C2 75.39 53.23 86.91 40.71  256.25 S4 S4 S3 S2   

C3 72.82 51.15 89.43 38.62  252.01 S4 S4 S3 S2   

C4 67.57 61.53 88.39 38.81  256.30 S4 S4 S3 S2   

C5 61.16 68.60 97.90   227.66 S4 S3 S2    

C6 70.99 60.49 102.56   234.04 S4 S4 S3    

 

4.5 Roadway Profile using Face Dipstick  

Rut depths and roadway profiles were measured on the selected places of I-35 Section 1, 
Section 2 and Section 3 using the Face Dipstick. Table 7 shows the summary of road profiles 
from Face Dipstick measurements. Rut depths of the I-35 Section 2 were found to vary from 
0.038 to 0.108 inch. The I-35 Section 1 and Section 3 were found to show rut depths of 0.093-
0.393 in. and 0.026-0.332 in., respectively. The pavement categorization using rut depths from 
Face Dipstick matches with the ranking obtained from the TSD analysis.   
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Table 7 Rut Depths from Face Dipstick 

Test Section ID  Rut Depth in Left Wheel Path(in)  Rut Depth in Right Wheel Path (in)  

I-35 Section 1 A1  -0.102  -0.093  

I-35 Section 1 A2  -0.168  -0.124  

I-35 Section 1 A3  -0.151  -0.102  

I-35 Section 1 A4  -0.137  -0.393  

I-35 Section 1 A5  -0.155  -0.099  

I-35 Section 1 A6  -0.139  -0.138  

I-35 Section 2 B1  -0.097  -0.130  

I-35 Section 2 B2  -0.104  -0.017  

I-35 Section 2 B3  -0.108  -0.038  

I-35 Section 3 C1  -0.327  -0.107  

I-35 Section 3 C2  -0.093  -0.209  

I-35 Section 3 C3  -0.076  -0.026  

I-35 Section 3 C4  -0.233  -0.014  

I-35 Section 3 C5  -0.038  -0.222  

I-35 Section 3 C6  -0.043  -0.332  

4.6 Structural Evaluation using FFWD 

As previously mentioned, FFWD tests were conducted by the TTI team on the selected 
experimental sites for determining the structural capacity of the pavement sections. During this 
test, impact loads were applied to the pavement surface and the pavement responses (vertical 
deflections) were measured using a series of geophone sensors (W1 to W7). The FFWD test 
data were analyzed using the MODULUS 7.0 software (a back-calculation program for 
analyzing FWD data). In addition to normalized deflection (with respect to 9-kip load), the 
software can provide layer moduli. A snippet of the FFWD processed data of the I-35 Section 1 
is presented in Figure 29. In this study, the normalized (9-kip) deflections of W1, W6 and W7 
sensors and elastic modulus of the surface layer obtained from the FFWD tests were used for 
the evaluation of the structural conditions of the experimental sites. 
 

 

Figure 29 Snippet of FFWD Data of I-35 
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4.6.1 Comparisons of I-35 Experimental Sites 
The variations in normalized (9-kip) deflections of W1, W6 and W7 sensors of I-35 experimental 
sites are presented in Figures 30(a), 30(b) and 30(c), respectively. A clear trend for 
distinguishing the good, fair and poor sites was observed from the normalized deflection of W1 
sensor as evident from Figure 30(a). The average values of the normalized W1 deflections were 
found to be 3.5, 12.6 and 14.9-mil, for good (Section 2), fair (Section 1) and poor (Section 3) 
experimental sites, respectively. According to Chen et al. (2003), any pavement section with a 
normalized W1 deflection of less than 10-mill can be considered as structurally adequate. 
Therefore, at network-level, fair (Section 1) and poor (Section 3) I-35 experimental sites could 
be considered structurally inadequate. From Figures 30(b) and 30(c), no proper trend of 
normalized W6 and W7 deflections were observed to distinguish between different pavement 
categories. 
 
Variation of the surface modulus (E1) of the I-35 experimental sites are presented in Figure 
30(d). The average values of the E1 for good (Section 2), fair (Section 1) and poor (Section 3) 
sections of I-35 were found as 4027, 94 and 76-ksi, respectively. Generally, any pavement 
section with a surface layer modulus less than 145-ksi (1,000 MPa) is classified as poor, 145-
435 ksi (1,000-3,000 MPa) as moderate (fair) and more than 435 ksi (3,000 MPa) as a strong 
(good) pavement (ARA 2004, Huang 2004; Khazanovich & Tayabji 2007). Therefore, the FFWD 
evaluations classified both poor and fair sections as poor sections. The results indicates that the 
pavement rankings obtained from W1 deflection and E1 modulus are similar to TSD 
classifications. 
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Figure 30 FFWD Structural Response Parameters of I-35 Test Sections: (a) Deflection of 

W1 Sensor; (b) Deflection of W6 Sensor; (c) Deflection of W7 Sensor; and (d) Surface 
Modulus (E1) 
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Figure 31 FFWD Structural Response Parameters of I-40 Test Sections: (a) Deflection of 

W1 Sensor; (b) Deflection of W6 Sensor; (c) Deflection of W7 Sensor; and (d) Surface 
Modulus (E1) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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4.6.2 Comparisons of I-40 Experimental Sites 
Figures 31(a), 31(b) and 31(c) presents the variations of normalized W1, W6 and W7 
deflections of I-40 experimental sites, respectively. The results of the normalized W1, W6 and 
W7 deflections of I-40 experimental sites were found to be similar as I-35 experimental sites. 
The average values of the normalized W1 deflections of I-40 experimental sites were found to 
be 3.20, 7.35 and 12.72-mil, for good (Section 2), fair (Section 3) and poor (Section 1) 
conditions, respectively. In this case, only I-40 Section 1 showed a normalized W1 deflection 
higher than 10-mil which was already identified to have poor structural condition. No proper 
trend was observed for W6 and W7 deflections as evident from Figures 31(b) and 31(c). The E1 
values of the I-40 experimental sites are shown in Figure 31(d). The average values of the E1 
were found to be 3,263, 117 and 148-ksi, for good (Section 2), fair (Section 3) and poor (Section 
1) experimental sites, respectively. Although the poor section exhibited a higher average E1 
value than the fair section, the difference is not significant. According to current literature (ARA 
2004, Huang 2004; Khazanovich & Tayabji 2007), both fair (Section 3) and poor (Section 1) 
experimental sites can be classified as structurally poor conditioned.  

4.7 Pavement Condition Evaluation Using GPR 

In this study, the pavement structures of selected experimental sites of I-35 and I-40 were 
surveyed using the TTI’s air coupled-GPR. During this survey, the dielectric values of the 
subsurface were collected and then analyzed to evaluate pavement conditions. The TTI team 
helped analyze the collected data. GPR facilitated continuous measurements of pavement 
thicknesses in these test sites. This data was further calibrated using field cores. Also, the 
subsurface conditions and defects, such as voids and anomaly were identified from the GPR 
measurements. Figure 32 shows a screenshot of the GPR data analysis window. In this study, a 
qualitative analysis was performed to compare GPR images with TSD data at network-level.  

 

Figure 32 Screenshot of the GPR data analysis window 

4.7.1 GPR Images of I-35 Experimental Sites:  
Figures 33(a), 33(b) and 33(c) present the snippets of GPR images obtained from I-35 Section 
1, Section 2 and Section 3, respectively. From Figure 33(a), disturbance in the subsurface can 
be seen at several locations of I-35 Section 1. The areas of disturbance are marked with red 
boxes. Some disturbance were expected as I-35 Section 1 was rated as fair conditioned. From 
Figure 33(b), although the initial stretch of I-35 Section 2 exhibited some disturbances, the rest 
of the pavement was found to show good subsurface conditions. This result is in agreement with 
TSD data as the I-35 Section 2 was categorized as good conditioned. The I-35 Section 3 was 
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rated as poor conditioned from TSD analysis and was found to have subsurface distresses at 
many locations, as shown in Figure 33(c). Therefore, the ranking from TSD analysis was found 
to be in agreement with GPR analysis. 

 

Figure 33 GPR Images of I-35 experimental sites: (a) Section 1 (fair), (b) Section 2 (good) 
and (c) Section 3 (poor)  

4.7.2 GPR Images of I-40 Experimental Sites:  
Figures 34(a), 34(b) and 34(c) present the GPR images of I-40 Section 1, Section 2 and Section 
3, respectively. The I-40 experimental sites were found to be mostly flexible pavements of 
approximately 10-inches of thickness. From Figure 34(a), I-40 Section 1 was found to show 
significant distresses within asphalt and subsurface layers. The results match with Pave3D 8k 
findings as %cracking on the wheel and non-wheel paths for those areas were found to be 
significantly higher than other areas. Similarly, I-40 Section 3 was found to exhibit higher 
surface and subsurface distresses. It was assumed that these high distresses contributed to the 
overall rating of the pavement sections as I-40 Section 1 and Section 3 were rated as poor and 
fair conditioned from TSD analysis. Some distresses on the subsurface were observed over the 
I-40 Section 2 (Figure 34(b)) which was categorized as good conditioned from TSD analysis. 
The FWD analysis showed very high elastic modulus for the surface layer which may have 
contributed to the rating of this experimental site.  
 
 

 
(a) 

 
(b) 

 
(c) 
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Figure 34 GPR Images of I-40 experimental sites: (a) Section 1 (poor), (b) Section 2 (good) 
and (c) Section 3 (fair) 

4.8 Correlation Between Pavement Condition Parameters 

In this study, an attempt was made to determine the correlations between different network-level 
parameters obtained from the TSD data and in-house technologies. For this purpose, a test 
matrix was formed using the TSD basin parameters, FFWD Layer Moduli (E1), FFWD W1 and 
W6 deflection data, Pave 3D 8K rutting (RD), wheel path cracking (CWP), non-wheel path 
cracking (CNWP) and MPD from the initially categorized pavement sections of I-35 and I-40. A 
total of 52 advanced machine learning models, including, Random Forest Regression, Gradient 
Boosting Regression, KNeighbors Regression, Decision Tree and Linear Regressions were 
used for evaluating the relationships among different parameters. From previous discussions, it 
was found that the structural conditions of I-35 and I-40 are significantly different. Therefore, in 
order to reduce variability, the regression analyses between different parameters for I-35 and I-
40 experimental sites were conducted separately. The Coefficient of Correlation (R2) between 
independent and dependent variables were used to determine the goodness of fit of the 
relationships using the following thresholds: 

 
R2< 0.3: Weak fit 
0.3 ≤ R2< 0.60: Moderate fit 
0.60 ≤ R2 < 0.9: Strong fit 
R2 ≥ 0.9: Very strong fit (or excellent fit) 

 
(a) 

 
(b) 

 
(c) 
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4.8.1 Comparison of FFWD and TSD parameters 

4.8.1.1 I-35 Experimental Sites 
A summary of the regression analyses of the FFWD normalized (9-kip) W1 deflection with TSD 
basin parameters for I-35 experimental sites using above models is presented in Table 8. From 
Table 8, it was observed that the SCI300, BCI, D1500 and AUPP parameters from TSD have 
strong correlations with the FFWD W1 deflection (R2 ≥ 0.67). This was found to be true for all 

models considered in these analyses. Examples of the variations of SCI300 and AUPP from 
TSD with FFWD W1 deflection are presented in Figures 35(a) and 35(b), respectively. A similar 
analysis was also performed using the FFWD E1 and W6 deflection with TSD parameters. 
Table 9 shows the correlation analyses among FFWD E1 and TSD basin parameters for I-35 
experimental sites. Strong relationships were observed between FFWD E1 and TSD basin 
parameters. However, a poor relationship was observed between the FFWD W6 deflections and 
TSD parameters (Appendix A). Details of the regression analyses can be found in Appendix A.  

 
Table 8 Regression Analysis for FFWD W1 and TSD Basin Parameters for I-35 

Parameter Max R2 Fitting Model 

SCI300 0.81 K-Neighbors Regressor 

AUPP 0.78 K-Neighbors Regressor 

D1500 and SCI300 0.79 K-Neighbors Regressor 

D1500 and BCI 0.67 Random Forest Regressor 

D1500 and AUPP 0.80 K-Neighbors Regressor 

SCI300 and BCI 0.73 Random Forest Regressor 

SCI300 and AUPP 0.76 K-Neighbors Regressor 

BCI, SCI300 and AUPP 0.80 K-Neighbors Regressor 

BCI, SCI300, D1500 and AUPP 0.76 K-Neighbors Regressor 

 
Table 9 Regression Analysis for FFWD E1 and TSD Basin Parameters for I-35 

Parameter Max R2 Fitting Model 

SCI300 0.75 Gradient Boosting Regressor 

AUPP 0.65 Random Forest Regressor 

D1500 and SCI300 0.75 Random Forest Regressor 

D1500 and BCI 0.72 Random Forest Regressor 

BCI and AUPP 0.80 K-Neighbors Regressor 

SCI300 and BCI 0.80 Random Forest Regressor 

SCI300 and AUPP 0.77 Random Forest Regressor 

D1500, SCI300 and BCI 0.80 Gradient Boosting Regressor 

BCI, SCI300, D1500 and AUPP 0.79 Gradient Boosting Regressor 
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Figure 35 Variation of TSD basin parameters with FFWD W1 deflection for I-35: (a) 

SCI300; and (b) AUPP 

4.8.1.2 I-40 Experimental Sites  
A similar analysis was also conducted for I-40 experimental sites. Summaries of correlation 
analyses between FFWD W1 and E1 with TSD parameters are presented in Tables 10 and 11, 
respectively. The above-mentioned TSD parameters were found to show a moderate correlation 
with FFWD W1 deflection when considered individually. However, the combined effect of BCI, 
SCI300 and AUPP were found to show a strong relationship with the W1 deflection as evident 
from Table 10. From Table 11, the SCI300, BCI, D1500 and AUPP were found to show strong 
relationships with FFWD E1. Overall, the results suggest that strong correlations between 
FFWD W1 and E1 with TSD basin parameters allow them to be used interchangeably for 
assessing pavement structural conditions and ranking at the network-level. 

 
(a) 

 
 

(b) 
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Table 10 Regression Analysis for FFWD W1 and TSD Basin Parameters for I-40 

Parameter Max R2 Fitting Model 

SCI300 0.62 K-Neighbors Regressor 

AUPP 0.65 K-Neighbors Regressor 

BCI and SCI300 0.63 Gradient Boosting Regressor 

SCI300 and AUPP 0.65 K-Neighbors Regressor 

BCI, SCI300 and AUPP 0.68 Gradient Boosting Regressor 

 
Table 11 Regression Analysis for FFWD E1 and TSD Basin Parameters for I-40 

Parameter Max R2 Fitting Model 

SCI300 0.83 Decision Tree Regressor 

AUPP 0.86 K-Neighbors Regressor 

D1500 and SCI300 0.89 Gradient Boosting Regressor 

D1500 and AUPP 0.87 K-Neighbors Regressor 

BCI and AUPP 0.80 K-Neighbors Regressor 

SCI300 and BCI 0.91 Gradient Boosting Regressor 

SCI300 and AUPP 0.87 Random Forest Regressor 

D1500, SCI300 and BCI 0.93 Gradient Boosting Regressor 

BCI, SCI300, D1500 and AUPP 0.88 K-Neighbors Regressor 

4.8.2 Comparison of FFWD and Pave3D 8k parameters 

4.8.2.1 I-35 Experimental Sites  
Table 12 shows a summary of the regression analyses of FFWD normalized W1 deflection and 
Pave 3D 8K surface parameters for I-35 experimental sites. Table 12 only shows the results of 
selected models. The details of the results can be found in Appendix A. A moderate correlation 
was observed between the FFWD normalized W1 deflection with Pave3D 8K RD, MPD, %CWP 
and %CNWP parameters with a maximum R2 value of 0.60. Similar moderate fits were observed 
between FFWD E1 and Pave3D 8K surface parameters for I-35 with a maximum R2 value of 
0.50 (Table 13).  

 
Table 12 Regression Analysis FFWD W1 and Pave3D 8K Parameters for I-35 

Parameter Max R2 Fitting Model 

MPD, %CNWP 0.58 K-Neighbors Regressor 

%CWP, %CNWP 0.57 Gradient Boosting Regressor 

RD, %CWP, %CNWP 0.60 Random Forest Regressor 

MPD, %CWP, %CNWP 0.54 K-Neighbors Regressor 

RD, MPD, %CWP, %CNWP 0.60 K-Neighbors Regressor 
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Table 13 Regression Analysis for FFWD E1 and Pave3D 8K Surface Parameters for I-35 

Parameter Max R2 Fitting Model 

RD and MPD 0.5 Random Forest Regressor 

MPD and %CWP 0.5 K-Neighbors Regressor 

RD and %CWP 0.5 Random Forest Regressor 

RD, %CWP and %CNWP 0.5 K-Neighbors Regressor 

MPD, %CWP and %CNWP 0.5 K-Neighbors Regressor 

4.8.2.2 I-40 Experimental Sites  
Tables 14 and 15 show the summaries of the regression analyses of the FFWD normalized W1 
deflection and E1 modulus with Pave 3D 8K surface parameters for I-40 experimental sites, 
respectively. From Table 14, the correlations between Pave3D 8K parameters and FFWD 
normalized W1 deflection were found to be moderate. However, FFWD E1 and Pave3D 8K 
surface parameters for I-40 experimental sites exhibited strong correlations with a maximum R2 

value of 0.93 for MPD. The results indicate that the in-house Pave3D 8K technology show 
moderate to strong correlation with FFWD parameters and can be used to classify the 
pavement network into different categories.   
 
 

Table 14 Regression Analysis FFWD W1 and Pave3D 8K Parameters for I-40 

Parameter Max R2 Fitting Model 

%CWP and %CNWP 0.55 K-Neighbors Regressor 

RD, MPD and %CWP 0.65 Random Forest Regressor 

RD, MPD, %CWP and %CNWP 0.51 K-Neighbors Regressor 

 
 

Table 15 Regression Analysis for FFWD E1 and Pave3D 8K Surface Parameters for I-40 

Parameter Max R2 Fitting Model 

MPD 0.93 Random Forest Regressor 

RD and MPD 0.90 Random Forest Regressor 

MPD and %CWP 0.82 Random Forest Regressor 

MPD and %CNWP 0.85 Random Forest Regressor 

%CWP and %CNWP 0.76 Decision Tree Regressor 

RD, MPD and %CWP 0.89 Random Forest Regressor 

RD, MPD and %CNWP 0.90 K-Neighbors Regressor 

RD, %CWP and %CNWP 0.64 K-Neighbors Regressor 

MPD, %CWP and %CNWP 0.88 K-Neighbors Regressor 

RD, MPD, %CWP and %CNWP 0.86 Random Forest Regressor 

4.8.3 Comparison of Pave3D 8k and TSD parameters 
In this study, regression analyses were performed between Pave3D 8K and TSD basin 

parameters to understand their relationships. The details of the analyses considering all TSD 
and Pave3D 8K parameters are presented in Appendix A. The correlations between Pave3D 8K 
%CWP and %CNWP with TSD basin parameters for I-35 experimental sites are presented in 
Tables 16 and 17, respectively. It was observed that the %CWP and %CNWP from Pave3D 8K 
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showed moderate fit with TSD parameters with a maximum R2 value of 0.70. The correlations 
between %CWP and TSD basin parameters for I-40 sites were weaker than I-35 sites, as seen 
from Table 18. The RD and MPD from Pave3D 8K did not show any meaningful correlations 
with TSD basin parameters. Therefore, RD and MPD from Pave3D 8K were excluded from 
further analyses.  
 
Table 16 Regression Analysis for Pave 3D 8K %CWP and TSD Basin Parameters for I-35 

Parameters Max R2 Fitting Model 

AUPP 0.62 K-Neighbors Regressor 

D1500, SCI300 0.70 K-Neighbors Regressor 

D1500, BCI 0.60 K-Neighbors Regressor 

D1500, AUPP 0.61 K-Neighbors Regressor 

SCI300, BCI 0.61 K-Neighbors Regressor 

SCI300, AUPP 0.66 K-Neighbors Regressor 

BCI, AUPP 0.67 K-Neighbors Regressor 

D1500, BCI, AUPP 0.64 K-Neighbors Regressor 

SCI300, BCI, AUPP 0.61 K-Neighbors Regressor 

 
Table 17 Regression Analysis for Pave 3D 8K %CNWP and TSD Basin Parameters for I-35 

Parameters Max R2 Fitting Model 

SCI300 0.61 K-Neighbors Regressor 

AUPP 0.62 Gradient Boosting Regressor 

D1500, SCI300 0.62 Random Forest Regressor 

D1500, BCI 0.67 Random Forest Regressor 

D1500, AUPP 0.62 Gradient Boosting Regressor 

SCI300, BCI 0.62 K-Neighbors Regressor 

BCI, AUPP 0.61 Random Forest Regressor 

D1500, SCI300, BCI 0.66 Gradient Boosting Regressor 

D1500, SCI300, AUPP 0.62 K-Neighbors Regressor 

D1500, BCI, AUPP 0.65 Random Forest Regressor 

SCI300, BCI, AUPP 0.63 K-Neighbors Regressor 

D1500, SCI300, BCI, AUPP 0.65 Gradient Boosting Regressor 

 
Table 18 Regression Analysis for Pave 3D 8K %CWP and TSD Basin Parameters for I-40 

Parameter Max R2 Fitting Model 

D1500, SCI300 0.51 K-Neighbors Regressor 

D1500, AUPP 0.54 Gradient Boosting Regressor 

D1500, SCI300, BCI 0.53 Gradient Boosting Regressor 

D1500, SCI300, AUPP 0.52 K-Neighbors Regressor 

D1500, SCI300, BCI, AUPP 0.51 Random Forest Regressor 
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4.8.4 Determining Thresholds for Pavement Condition Rating 
The regression analysis conducted in the previous sections was used to identify parameters 

that can serve as indicators of pavement performance. Since the FWD test has been widely 
used by the transportation community for several decades, the parameters that showed strong 
correlations with FFWD E1 and W1-normalized deflection were selected as reliable indicators of 
pavement condition. Accordingly, in this study, SCI300 from the TSD data, along with %CWP 
and %CNWP from the Pave3D-8K system, were chosen as the primary parameters for 
assessing pavement conditions. 

For this purpose, Annual Average Daily Traffic (AADT) data for the experimental sites were 
obtained from the ODOT database. Based on the AADT values, the Equivalent Single Axle 
Load (ESAL) was calculated for 1-year, 2-year, and 5-year periods. Using the FFWD E1 data 
and the SCI300 values from the TSD, the remaining fatigue life (Nf) of the asphalt layers was 
estimated using Equation 7. Pavement sections were classified as follows: 

• Good: Nf > 5-year ESAL 
• Fair: Nf between 2-year and 5-year ESAL 
• Poor: Nf < 2-year ESAL 
A gradient boosting machine-learning model was then developed and executed to evaluate 

the relationship between SCI300 and Nf. Figure 36 presents the relationship between Nf and 
SCI300 for the I-35 and I-40 pavement sections. These models were subsequently used to 
determine threshold values for SCI300. The were further calculated and suggested as the 
threshold values for these parameters. Following the regression analyses, threshold limits for 
the W1, %CWP and %CNWP were calculated by taking average of these parameters from the 
categorized sections (which were categorized as good, fair and poor based on the SCI300) for I-
35 and I-40 were established and are summarized in Tables 19 and 20, respectively. 

The initial network-level pavement ratings for I-35 and I-40 based on the TSD data were 
consistent with the results obtained from the FFWD and Pave3D-8K systems. A similar trend 
was observed across all three technologies for all evaluated sections. Therefore, these 
threshold limits can be used to classify pavement networks into good, fair, and poor categories 
to support the prioritization of pavement maintenance activities. 

 

(7) 
Where,  

C, a’ and b’= constants, 

et  = tensile strength at the bottom of the AC layer =  

E = modulus of elasticity of AC layer 
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Figure 36 Relationship of SCI300 and Nf: (a) I-35; and (b) I-40 

 
 
 
 
 

 
(a) 

 
(b) 
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Table 19 Refined Pavement Condition Thresholds for I-35 Pavement 

Category 
SCI300, 
mm 

Pave3D 8K %CWP 
Pave3D 8K 

%CNWP 
FFWD W1 (μm) 

Good <140 <1.6 <1.7 <167 

Fair 140-215 1.6-1.7 1.7-2.2 167-510 

Poor >215 >1.7 >2.2 >510 

 
Table 20 Refined Pavement Condition Thresholds for I-40 Pavement 

Category SCI300 (mm) 
Pave3D 8K 
%CWP 

Pave3D 8K 
%CNWP 

FFWD W1 (μm) 

Good <140 <0.35 <2.6 <115 

Fair 140-200 0.35-1.5 2.6-2.7 115-337 

Poor >200 >1.5 >2.7 >337 
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Chapter 5. Conclusions and Recommendations  
The focus of this collaborative project was to evaluate tools for rapidly and cost-effectively 
assessing network-level pavement conditions for Oklahoma. As part of ODOT's engagement in 
a pooled fund study (TPF-5 (385)), pavement conditions data from I-35 and I-40 in Oklahoma 
were collected recently using a TSD. This study focused on analyzing the collected TSD data 
for network-level assessment or rating of the associated pavement. A complementary objective 
was to collect data from the same pavements using in-house technologies, namely Pave3D 8K 
available at OSU and an air-coupled Ground Penetrating Radar (GPR) and Fast Falling weight 
Deflectometer (FFWD) and compare with TSD data. In addition, this study focused on 
investigating the correlation among TSD deflection basin parameters, FFWD structural capacity 
parameters, and Pave3D 8K parameters using advanced machine learning models. The 
following conclusions and recommendations were drawn from this study: 

• TSD provided continuous, high-speed deflection data, enabling network-level structural 
evaluations without disrupting traffic. TSD deflection basin parameters, namely SCI300, 
BCI and D1500 with threshold limits from current literature were used for categorizing 
pavement conditions at network-level. Care should be taken in analyzing the TSD data 
as it requires significant time and experience. As TSD produces massive amounts of 
data, care should be taken in cleaning the data before analysis. 

• From TSD data analysis, slightly different pavement rankings were observed based on 
different TSD basin parameters. Based on SCI300 indices, it was observed that most of 
the I-35 sections were categorized as good conditioned. However, many of the I-40 EB 
and I-40 WB sections fell under fair to poor categories based on SCI300. It was 
observed that almost all of I-35 SB and I-40 EB have BCI values less than 76.02 μm, 
representing good conditions of the pavements. Some sections of I-40 WB were found to 
exhibit fair conditions from BCI index. Based on D1500, it was observed that most of the 
I-35 SB, I-40 EB and I-40 WB sections fell under good to fair conditions, indicating 
strong subgrade layers. 

• Pavement surface conditions of the experimental sites identified using TSD analysis 
were assessed using the Pave3D 8K. The pavement categorization of I-35 experimental 
sites using rut depths was found to be same as TSD categorization. However, the I-40 
experimental sites showed slightly different categorization between TSD and rut depths 
from Pave3D 8K. For both I-35 and I-40 sites, the MPD results did not match the TSD 
results. The %CWP and %CWNP from Pave3D 8K were in agreement with the TSD 
results based on I-35 sites. However, The %CWP and %CWNP results show that the 
pavement conditions across all I-40 experimental sites are nearly identical, making it 
challenging to differentiate between them. Therefore, an integrated categorization that 
considers both structural and functional aspects is essential for the effective 
management of pavement infrastructure systems. 

• Field coring was found to provide insight into pavement categorization using TSD. The I-
35 experimental site (Section 2) was found to have a composite structure (concrete over 
asphalt) and was ranked as good conditioned. Whereas the other two experimental sites 
consisted of only asphalt materials and were ranked as good and fair conditioned. Also, 
the pavement categorization using rut depths from Face Dipstick matched with the 
ranking obtained from the TSD analysis.    

• The FFWD results indicated that the pavement rankings obtained from W1 deflection 
and E1 modulus are similar to TSD classifications for I-35 experimental sites. The I-40 
good experimental site was ranked as good from FFWD W1 deflection and E1 modulus. 
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However, the ranking was the poor- and fair-conditioned experimental sites did not 
match with TSD ranking. 

• The GPR images were found to provide information related to layer thicknesses and 
subsurface anomalies with potential issues that may not manifest as surface damage. 
For both I-35 and I-40 experimental sites, the ranking from TSD analysis was found to 
be in agreement with GPR analysis. 

• An attempt was made to determine the correlations between different network-level 
parameters obtained from the TSD data and in-house technologies using advanced 
machine learning models. The results suggest that strong correlations between FFWD 
W1 and E1 with TSD basin parameters allow them to be used interchangeably for 
assessing pavement structural conditions and ranking at the network-level. It was 
observed that the %CWP and %CNWP from Pave3D 8K showed moderate fit with 
SCI300, BCI and AUPP, whereas the RD and MPD did not show any meaningful 
correlations with TSD basin parameters. 

• Based on the collected data and regression analyses, the thresholds for TSD, FFWD 
and Pave3D 8K parameters were set in such a way that at least 75th percentile data of a 
particular section fell under that category. The thresholds can be used for classifying the 
pavement network into good, fair and poor categories for prioritizing pavement 
maintenance works. 
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Chapter 6. Implementation of Project Outputs 
This study provided valuable insights on the use of different tools and technologies for DOT’s 
pavement condition evaluation and management system. Using advanced technologies, like 
TSD, Pave3D 8K technology, and other instruments, this study aimed to change how DOTs 
evaluate and manage infrastructure health on a network-level. This study was focused on 
analyzing the collected TSD data from I-35 and I-40 pavement sections in Oklahoma for 
network-level assessment or rating. The network-level pavement ratings obtained from TSD 
parameters were compared with pavement ratings obtained from FFWD, Pave3D 8K, GPR and 
other field assessments. Advanced machine learning models were used to determine the 
correlations between different network-level parameters obtained from different technologies. 
Based on the collected data and regression analyses, the thresholds for TSD, FFWD and 
Pave3D 8K parameters were determined to rank pavements into poor, fair and good categories. 
These thresholds can be used by ODOT and other DOTs' for classifying the pavement network 
for prioritizing pavement maintenance works.  

The findings are expected to bring about positive changes and help meet USDOT strategic goal 
to reduce backlog of pavement repairs to enhance economic strength. Consideration of different 
technologies and parameters will allow for improved pavement health assessments, more 
accurate life-cycle cost analyses, and targeted maintenance strategies, ultimately leading to 
more resilient, cost-effective and data-driven pavement management systems. Also, the 
adoption of this rating system will bridge the gap between network-level monitoring and project-
level diagnostics. As a result, it empowers transportation agencies to prioritize resources 
effectively, mitigate risks proactively, and extend the service life of pavement assets. 
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Chapter 7. Technology Transfer and Community 
Engagement and Participation (CEP) Activities 

The research team has worked towards disseminating the findings of this study to the 
stakeholders and engineering community through oral and poster presentations. Also, the team 
is working on preparing a journal manuscript from this study. In addition, the team is planning to 
conduct a technology transfer workshop to train to disseminate the findings and train DOTs on 
the use of TSD data and other technologies. The research team worked closely with the 
Oklahoma DOT, specifically Mr. Angel Gonzales for the successful completion of this project. 
Mr. Gonzales helped to access TSD data and was involved in the progress meetings to provide 
feedback. ODOT District 4 helped coordinate the collection of FFWD and other field data. The 
findings are expected to be implemented by ODOT as well as DOTs in Region 6 for pavement 
management and rehabilitation. 
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Chapter 8. Invention Disclosures and Patents, 
Publications, Presentations, Reports, Project 
Website, and Social Media Listings 

The research team has worked towards disseminating the findings of this study to the 
stakeholders and engineering community. Till now, the team has made two oral presentations, 
and one poster presentation based on the findings of this study. Also, the team is working on 
preparing a journal manuscript from this study. The list of the presentation and publication is as 
follows: 
 

• Ghos, S., Mendez Larrain, M., Ali, S. A., Hobson, K., Zaman, M., 2024 Oklahoma 
Transportation Research Day (OTRD), "Novel Tools for Rapid Assessment of Pavement 
Conditions," Oklahoma Department of Transportation, Oklahoma City, OK. (October 15, 
2024). Poster, Conference. 

• Ghos, S., Mendez Larrain, M., Ali, S. A., Hobson, K., Zaman, M., 59th Annual Paving 
and Transportation Conference, "Novel Tools for Rapid Assessment of Pavement 
Conditions," University of New Mexico, Albuquerque, NM. (January 3, 2024). Oral 
Presentation, Conference. 

• Ghos, S., Ali, S. A., Zaman, M., Mendez Larrain, M., Hobson, K., (2025), "Development 
of Network-Level Thresholds for Rapid Assessment of Pavement Conditions in 
Oklahoma," Under Preparation. 
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Appendix A: Results of Regression Analysis  
Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters 

Model Features Accuracy (%) MSE R2 

LinearRegression D1500 -4.1 3602669.4 0.0 

GradientBoostingRegressor D1500 -16.2 4020299.8 -0.2 

DecisionTreeRegressor D1500 -52.8 5286723.2 -0.5 

RandomForestRegressor D1500 -22.6 4240674.6 -0.2 

KNeighborsRegressor D1500 -4.4 3611403.3 0.0 

HuberRegressor D1500 -16.2 4018663.9 -0.2 

LinearRegression SCI300 20.9 2595918.5 0.2 

GradientBoostingRegressor SCI300 81.5 608172.9 0.8 

DecisionTreeRegressor SCI300 77.7 732406.8 0.8 

RandomForestRegressor SCI300 82.8 563485.6 0.8 

KNeighborsRegressor SCI300 85.2 484603.5 0.9 

HuberRegressor SCI300 16.2 2752271.7 0.2 

LinearRegression BCI 24.9 2354798.3 0.2 

GradientBoostingRegressor BCI 15.1 2659706.1 0.2 

DecisionTreeRegressor BCI -2.6 3217100.4 0.0 

RandomForestRegressor BCI 22.1 2442994.6 0.2 

KNeighborsRegressor BCI 35.4 2025920.1 0.4 

HuberRegressor BCI 20.7 2484887.9 0.2 

LinearRegression AUPP 21.7 2568714.2 0.2 

GradientBoostingRegressor AUPP 61.6 1259035.2 0.6 

DecisionTreeRegressor AUPP 58.0 1379694.3 0.6 

RandomForestRegressor AUPP 66.9 1087784.2 0.7 

KNeighborsRegressor AUPP 81.6 604998.9 0.8 

HuberRegressor AUPP 17.1 2720044.3 0.2 

LinearRegression 
D1500 and 
SCI300 24.0 3000965.1 0.2 

GradientBoostingRegressor 
D1500 and 
SCI300 74.6 1001281.5 0.7 

DecisionTreeRegressor 
D1500 and 
SCI300 67.9 1267797.2 0.7 

RandomForestRegressor 
D1500 and 
SCI300 78.1 866227.5 0.8 

KNeighborsRegressor 
D1500 and 
SCI300 76.6 923410.8 0.8 

HuberRegressor 
D1500 and 
SCI300 16.9 3281275.9 0.2 

LinearRegression D1500 and BCI 22.6 2573803.3 0.2 

 
 
 
 



 
 66 

Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters (cont.) 

Model Features Accuracy 
(%) 

MSE R2 

GradientBoostingRegressor D1500 and BCI 62.1 1260657.5 0.6 

DecisionTreeRegressor D1500 and BCI 53.8 1535051.4 0.5 

RandomForestRegressor D1500 and BCI 70.7 973881.8 0.7 

KNeighborsRegressor D1500 and BCI 54.9 1500346.6 0.5 

HuberRegressor D1500 and BCI 20.5 2642792.8 0.2 

LinearRegression D1500 and AUPP 22.9 3045331.4 0.2 

GradientBoostingRegressor D1500 and AUPP 61.6 1517210.7 0.6 

DecisionTreeRegressor D1500 and AUPP 61.6 1515744.1 0.6 

RandomForestRegressor D1500 and AUPP 69.4 1207296.5 0.7 

KNeighborsRegressor D1500 and AUPP 74.9 991030.1 0.7 

HuberRegressor D1500 and AUPP 15.8 3324190.5 0.2 

LinearRegression SCI300 and BCI 26.7 2649120.9 0.3 

GradientBoostingRegressor SCI300 and BCI 78.5 777679.9 0.8 

DecisionTreeRegressor SCI300 and BCI 74.5 921480.1 0.7 

RandomForestRegressor SCI300 and BCI 80.5 703582.7 0.8 

KNeighborsRegressor SCI300 and BCI 75.2 897412.4 0.8 

HuberRegressor SCI300 and BCI 22.4 2803411.0 0.2 

LinearRegression SCI300 and AUPP 21.8 2565428.6 0.2 

GradientBoostingRegressor SCI300 and AUPP 83.5 541959.2 0.8 

DecisionTreeRegressor SCI300 and AUPP 80.8 629280.8 0.8 

RandomForestRegressor SCI300 and AUPP 85.2 485938.7 0.9 

KNeighborsRegressor SCI300 and AUPP 82.0 591915.0 0.8 

HuberRegressor SCI300 and AUPP 17.4 2711443.5 0.2 

LinearRegression BCI and AUPP 26.2 2665996.7 0.3 

GradientBoostingRegressor BCI and AUPP 60.2 1437108.5 0.6 

DecisionTreeRegressor BCI and AUPP 58.9 1484014.6 0.6 

RandomForestRegressor BCI and AUPP 71.0 1048391.0 0.7 

KNeighborsRegressor BCI and AUPP 72.9 977248.2 0.7 

HuberRegressor BCI and AUPP 21.9 2821855.9 0.2 

LinearRegression D1500, SCI300 and BCI 29.8 2408466.6 0.3 
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Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters (cont.) 

Model Features Accuracy 
(%) 

MSE R2 

GradientBoostingRegressor D1500, SCI300 and BCI 80.7 660578.6 0.8 

DecisionTreeRegressor D1500, SCI300 and BCI 66.9 1136995.6 0.7 

RandomForestRegressor D1500, SCI300 and BCI 78.9 725295.8 0.8 

KNeighborsRegressor D1500, SCI300 and BCI 71.3 984963.1 0.7 

HuberRegressor D1500, SCI300 and BCI 26.7 2513329.9 0.3 

LinearRegression D1500, SCI300 and AUPP 24.3 2990586.1 0.2 

GradientBoostingRegressor D1500, SCI300 and AUPP 66.0 1344598.7 0.7 

DecisionTreeRegressor D1500, SCI300 and AUPP 58.7 1632684.6 0.6 

RandomForestRegressor D1500, SCI300 and AUPP 74.5 1007963.6 0.7 

KNeighborsRegressor D1500, SCI300 and AUPP 73.7 1038879.3 0.7 

HuberRegressor D1500, SCI300 and AUPP 17.1 3273906.8 0.2 

LinearRegression D1500, BCI, AUPP 28.5 2452997.5 0.3 

GradientBoostingRegressor D1500, BCI, AUPP 71.3 984305.1 0.7 

DecisionTreeRegressor D1500, BCI, AUPP 65.3 1190724.1 0.7 

RandomForestRegressor D1500, BCI, AUPP 71.9 962525.7 0.7 

KNeighborsRegressor D1500, BCI, AUPP 63.3 1258303.2 0.6 

HuberRegressor D1500, BCI, AUPP 25.4 2557827.8 0.3 

LinearRegression SCI300, BCI, AUPP 32.4 2441186.1 0.3 

GradientBoostingRegressor SCI300, BCI, AUPP 80.3 710656.7 0.8 

DecisionTreeRegressor SCI300, BCI, AUPP 80.0 721688.4 0.8 

RandomForestRegressor SCI300, BCI, AUPP 78.4 779883.7 0.8 

KNeighborsRegressor SCI300, BCI, AUPP 73.2 969567.7 0.7 

HuberRegressor SCI300, BCI, AUPP 28.9 2566686.8 0.3 

LinearRegression 
D1500, SCI300, BCI and 
AUPP 40.0 2059612.1 0.4 

GradientBoostingRegressor 
D1500, SCI300, BCI and 
AUPP 73.5 908377.6 0.7 

DecisionTreeRegressor 
D1500, SCI300, BCI and 
AUPP 64.1 1232561.1 0.6 

RandomForestRegressor 
D1500, SCI300, BCI and 
AUPP 76.8 795760.4 0.8 

KNeighborsRegressor 
D1500, SCI300, BCI and 
AUPP 68.1 1095585.9 0.7 

HuberRegressor 
D1500, SCI300, BCI and 
AUPP 35.8 2203563.1 0.4 
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters 
 

Model Features Accuracy (%) MSE R2 

LinearRegression D1500 -0.3 24.5 0.0 

GradientBoostingRegressor D1500 -20.8 29.4 -0.2 

DecisionTreeRegressor D1500 -83.6 44.8 -0.8 

RandomForestRegressor D1500 -34.3 32.7 -0.3 

KNeighborsRegressor D1500 -10.5 26.9 -0.1 

HuberRegressor D1500 -0.2 24.4 0.0 

LinearRegression SCI300 51.2 10.3 0.5 

GradientBoostingRegressor SCI300 51.7 10.2 0.5 

DecisionTreeRegressor SCI300 31.4 14.5 0.3 

RandomForestRegressor SCI300 49.5 10.6 0.5 

KNeighborsRegressor SCI300 65.3 7.3 0.7 

HuberRegressor SCI300 51.9 10.1 0.5 

LinearRegression BCI 51.5 12.6 0.5 

GradientBoostingRegressor BCI 41.2 15.3 0.4 

DecisionTreeRegressor BCI 10.4 23.3 0.1 

RandomForestRegressor BCI 41.0 15.3 0.4 

KNeighborsRegressor BCI 59.1 10.6 0.6 

HuberRegressor BCI 51.0 12.7 0.5 

LinearRegression AUPP 52.2 10.1 0.5 

GradientBoostingRegressor AUPP 53.4 9.8 0.5 

DecisionTreeRegressor AUPP 24.2 16.0 0.2 

RandomForestRegressor AUPP 45.3 11.5 0.5 

KNeighborsRegressor AUPP 66.3 7.1 0.7 

HuberRegressor AUPP 52.8 9.9 0.5 

LinearRegression D1500 and SCI300 50.8 12.2 0.5 

GradientBoostingRegressor D1500 and SCI300 52.0 11.9 0.5 

DecisionTreeRegressor D1500 and SCI300 34.8 16.2 0.3 

RandomForestRegressor D1500 and SCI300 60.5 9.8 0.6 

KNeighborsRegressor D1500 and SCI300 67.8 8.0 0.7 

HuberRegressor D1500 and SCI300 52.0 11.9 0.5 

LinearRegression D1500 and BCI 54.7 9.8 0.5 
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters (cont.) 
 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor D1500 and BCI 64.3 7.7 0.6 

DecisionTreeRegressor D1500 and BCI 60.2 8.6 0.6 

RandomForestRegressor D1500 and BCI 71.5 6.2 0.7 

KNeighborsRegressor D1500 and BCI 69.8 6.6 0.7 

HuberRegressor D1500 and BCI 54.6 9.8 0.5 

LinearRegression D1500 and AUPP 53.5 11.6 0.5 

GradientBoostingRegressor D1500 and AUPP 59.4 10.1 0.6 

DecisionTreeRegressor D1500 and AUPP 50.9 12.2 0.5 

RandomForestRegressor D1500 and AUPP 66.4 8.4 0.7 

KNeighborsRegressor D1500 and AUPP 70.2 7.4 0.7 

HuberRegressor D1500 and AUPP 54.6 11.3 0.5 

LinearRegression SCI300 and BCI 55.7 9.9 0.6 

GradientBoostingRegressor SCI300 and BCI 63.4 8.2 0.6 

DecisionTreeRegressor SCI300 and BCI 59.2 9.1 0.6 

RandomForestRegressor SCI300 and BCI 66.1 7.6 0.7 

KNeighborsRegressor SCI300 and BCI 68.2 7.1 0.7 

HuberRegressor SCI300 and BCI 55.8 9.9 0.6 

LinearRegression SCI300 and AUPP 48.9 10.8 0.5 

GradientBoostingRegressor SCI300 and AUPP 55.5 9.4 0.6 

DecisionTreeRegressor SCI300 and AUPP 48.1 11.0 0.5 

RandomForestRegressor SCI300 and AUPP 57.9 8.9 0.6 

KNeighborsRegressor SCI300 and AUPP 67.1 6.9 0.7 

HuberRegressor SCI300 and AUPP 48.5 10.8 0.5 

LinearRegression BCI and AUPP 55.4 10.0 0.6 

GradientBoostingRegressor BCI and AUPP 58.9 9.2 0.6 

DecisionTreeRegressor BCI and AUPP 35.8 14.4 0.4 

RandomForestRegressor BCI and AUPP 64.3 8.0 0.6 

KNeighborsRegressor BCI and AUPP 68.4 7.1 0.7 

HuberRegressor BCI and AUPP 55.6 10.0 0.6 

LinearRegression D1500, SCI300 and BCI 54.7 9.5 0.5 
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters (cont.) 
 
 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor D1500, SCI300 and BCI 55.5 9.3 0.6 

DecisionTreeRegressor D1500, SCI300 and BCI 41.3 12.3 0.4 

RandomForestRegressor D1500, SCI300 and BCI 65.0 7.3 0.6 

KNeighborsRegressor D1500, SCI300 and BCI 74.5 5.3 0.7 

HuberRegressor D1500, SCI300 and BCI 54.6 9.5 0.5 

LinearRegression D1500, SCI300 and AUPP 54.3 11.3 0.5 

GradientBoostingRegressor D1500, SCI300 and AUPP 60.7 9.8 0.6 

DecisionTreeRegressor D1500, SCI300 and AUPP 52.5 11.8 0.5 

RandomForestRegressor D1500, SCI300 and AUPP 66.6 8.3 0.7 

KNeighborsRegressor D1500, SCI300 and AUPP 69.4 7.6 0.7 

HuberRegressor D1500, SCI300 and AUPP 55.1 11.2 0.6 

LinearRegression D1500, BCI and AUPP 54.1 9.6 0.5 

GradientBoostingRegressor D1500, BCI and AUPP 65.5 7.2 0.7 

DecisionTreeRegressor D1500, BCI and AUPP 35.2 13.6 0.4 

RandomForestRegressor D1500, BCI and AUPP 68.7 6.6 0.7 

KNeighborsRegressor D1500, BCI and AUPP 74.3 5.4 0.7 

HuberRegressor D1500, BCI and AUPP 54.1 9.6 0.5 

LinearRegression SCI300, BCI and AUPP 56.3 9.8 0.6 

GradientBoostingRegressor SCI300, BCI and AUPP 57.7 9.5 0.6 

DecisionTreeRegressor SCI300, BCI and AUPP 37.0 14.1 0.4 

RandomForestRegressor SCI300, BCI and AUPP 65.2 7.8 0.7 

KNeighborsRegressor SCI300, BCI and AUPP 71.3 6.4 0.7 

HuberRegressor SCI300, BCI and AUPP 56.4 9.8 0.6 

LinearRegression D1500, SCI300, BCI and AUPP 55.1 9.4 0.6 

GradientBoostingRegressor D1500, SCI300, BCI and AUPP 59.2 8.6 0.6 

DecisionTreeRegressor D1500, SCI300, BCI and AUPP 48.3 10.9 0.5 

RandomForestRegressor D1500, SCI300, BCI and AUPP 67.7 6.8 0.7 

KNeighborsRegressor D1500, SCI300, BCI and AUPP 76.2 5.0 0.8 

HuberRegressor D1500, SCI300, BCI and AUPP 55.1 9.4 0.6 
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters 
 

Model Features Accuracy (%) MSE R2 

LinearRegression D1500 -2.9 0.3 0.0 

GradientBoostingRegressor D1500 -2.8 0.3 0.0 

DecisionTreeRegressor D1500 -38.0 0.3 -0.4 

RandomForestRegressor D1500 -8.9 0.3 -0.1 

KNeighborsRegressor D1500 14.0 0.2 0.1 

HuberRegressor D1500 -8.5 0.3 -0.1 

LinearRegression SCI300 -0.6 0.2 0.0 

GradientBoostingRegressor SCI300 -34.1 0.3 -0.3 

DecisionTreeRegressor SCI300 -114.2 0.5 -1.1 

RandomForestRegressor SCI300 -48.4 0.3 -0.5 

KNeighborsRegressor SCI300 15.6 0.2 0.2 

HuberRegressor SCI300 0.2 0.2 0.0 

LinearRegression BCI 10.0 0.2 0.1 

GradientBoostingRegressor BCI -24.6 0.3 -0.2 

DecisionTreeRegressor BCI -61.8 0.4 -0.6 

RandomForestRegressor BCI -27.0 0.3 -0.3 

KNeighborsRegressor BCI 7.7 0.2 0.1 

HuberRegressor BCI 9.9 0.2 0.1 

LinearRegression AUPP -2.1 0.2 0.0 

GradientBoostingRegressor AUPP -12.7 0.2 -0.1 

DecisionTreeRegressor AUPP -70.4 0.4 -0.7 

RandomForestRegressor AUPP -16.9 0.3 -0.2 

KNeighborsRegressor AUPP 22.2 0.2 0.2 

HuberRegressor AUPP -1.3 0.2 0.0 

LinearRegression D1500 and SCI300 11.6 0.1 0.1 

GradientBoostingRegressor D1500 and SCI300 -9.3 0.2 -0.1 

DecisionTreeRegressor D1500 and SCI300 -103.6 0.3 -1.0 

RandomForestRegressor D1500 and SCI300 12.4 0.1 0.1 

KNeighborsRegressor D1500 and SCI300 31.0 0.1 0.3 

HuberRegressor D1500 and SCI300 14.6 0.1 0.1 

LinearRegression D1500 and BCI -17.3 0.2 -0.2 
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters (cont.) 
 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor D1500 and BCI -10.3 0.2 -0.1 

DecisionTreeRegressor D1500 and BCI -84.4 0.4 -0.8 

RandomForestRegressor D1500 and BCI -27.1 0.3 -0.3 

KNeighborsRegressor D1500 and BCI -11.2 0.2 -0.1 

HuberRegressor D1500 and BCI -12.4 0.2 -0.1 

LinearRegression D1500 and AUPP 11.8 0.1 0.1 

GradientBoostingRegressor D1500 and AUPP 5.3 0.2 0.1 

DecisionTreeRegressor D1500 and AUPP -14.7 0.2 -0.1 

RandomForestRegressor D1500 and AUPP 25.7 0.1 0.3 

KNeighborsRegressor D1500 and AUPP 35.9 0.1 0.4 

HuberRegressor D1500 and AUPP 14.8 0.1 0.1 

LinearRegression SCI300 and BCI 29.8 0.2 0.3 

GradientBoostingRegressor SCI300 and BCI 34.0 0.2 0.3 

DecisionTreeRegressor SCI300 and BCI 4.0 0.2 0.0 

RandomForestRegressor SCI300 and BCI 41.5 0.1 0.4 

KNeighborsRegressor SCI300 and BCI 46.7 0.1 0.5 

HuberRegressor SCI300 and BCI 28.7 0.2 0.3 

LinearRegression SCI300 and AUPP 32.6 0.1 0.3 

GradientBoostingRegressor SCI300 and AUPP 19.1 0.2 0.2 

DecisionTreeRegressor SCI300 and AUPP -35.6 0.3 -0.4 

RandomForestRegressor SCI300 and AUPP 15.8 0.2 0.2 

KNeighborsRegressor SCI300 and AUPP 22.7 0.2 0.2 

HuberRegressor SCI300 and AUPP 32.7 0.1 0.3 

LinearRegression BCI and AUPP 29.6 0.2 0.3 

GradientBoostingRegressor BCI and AUPP 45.9 0.1 0.5 

DecisionTreeRegressor BCI and AUPP -9.4 0.3 -0.1 

RandomForestRegressor BCI and AUPP 39.7 0.1 0.4 

KNeighborsRegressor BCI and AUPP 41.7 0.1 0.4 

HuberRegressor BCI and AUPP 28.5 0.2 0.3 

LinearRegression D1500, SCI300 and BCI 3.3 0.2 0.0 
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters (cont.) 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor D1500, SCI300 and BCI 9.5 0.2 0.1 

DecisionTreeRegressor D1500, SCI300 and BCI -35.8 0.3 -0.4 

RandomForestRegressor D1500, SCI300 and BCI 21.3 0.2 0.2 

KNeighborsRegressor D1500, SCI300 and BCI 20.3 0.2 0.2 

HuberRegressor D1500, SCI300 and BCI 3.4 0.2 0.0 

LinearRegression D1500, SCI300 and AUPP 33.5 0.1 0.3 

GradientBoostingRegressor D1500, SCI300 and AUPP 14.1 0.1 0.1 

DecisionTreeRegressor D1500, SCI300 and AUPP -32.9 0.2 -0.3 

RandomForestRegressor D1500, SCI300 and AUPP 37.0 0.1 0.4 

KNeighborsRegressor D1500, SCI300 and AUPP 34.0 0.1 0.3 

HuberRegressor D1500, SCI300 and AUPP 32.8 0.1 0.3 

LinearRegression D1500, BCI and AUPP 2.9 0.2 0.0 

GradientBoostingRegressor D1500, BCI and AUPP 14.4 0.2 0.1 

DecisionTreeRegressor D1500, BCI and AUPP -21.4 0.3 -0.2 

RandomForestRegressor D1500, BCI and AUPP 22.5 0.2 0.2 

KNeighborsRegressor D1500, BCI and AUPP 15.3 0.2 0.2 

HuberRegressor D1500, BCI and AUPP 3.9 0.2 0.0 

LinearRegression SCI300, BCI and AUPP 30.1 0.2 0.3 

GradientBoostingRegressor SCI300, BCI and AUPP 37.6 0.1 0.4 

DecisionTreeRegressor SCI300, BCI and AUPP -16.8 0.3 -0.2 

RandomForestRegressor SCI300, BCI and AUPP 41.3 0.1 0.4 

KNeighborsRegressor SCI300, BCI and AUPP 41.5 0.1 0.4 

HuberRegressor SCI300, BCI and AUPP 28.9 0.2 0.3 

LinearRegression D1500, SCI300, BCI and AUPP 3.5 0.2 0.0 

GradientBoostingRegressor D1500, SCI300, BCI and AUPP 4.3 0.2 0.0 

DecisionTreeRegressor D1500, SCI300, BCI and AUPP -28.7 0.3 -0.3 

RandomForestRegressor D1500, SCI300, BCI and AUPP 22.7 0.2 0.2 

KNeighborsRegressor D1500, SCI300, BCI and AUPP 15.7 0.2 0.2 

HuberRegressor D1500, SCI300, BCI and AUPP 3.2 0.2 0.0 
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters 
 

Model Features Accuracy (%) MSE R2 

LinearRegression RD 6.9 3361027.8 0.1 

GradientBoostingRegressor RD -6.7 3852809.2 -0.1 

DecisionTreeRegressor RD -16.2 4195367.2 -0.2 

RandomForestRegressor RD -9.4 3949513.3 -0.1 

KNeighborsRegressor RD 14.5 3086500.8 0.1 

HuberRegressor RD 4.9 3433876.3 0.0 

LinearRegression MPD 20.5 2376920.8 0.2 

GradientBoostingRegressor MPD 7.9 2755262.3 0.1 

DecisionTreeRegressor MPD 4.5 2855296.9 0.0 

RandomForestRegressor MPD 8.7 2731707.9 0.1 

KNeighborsRegressor MPD 10.7 2671732.4 0.1 

HuberRegressor MPD 19.0 2422029.3 0.2 

LinearRegression %CWP -3.7 4044338.4 0.0 

GradientBoostingRegressor %CWP 38.1 2411803.3 0.4 

DecisionTreeRegressor %CWP 36.1 2491951.0 0.4 

RandomForestRegressor %CWP 40.6 2316457.2 0.4 

KNeighborsRegressor %CWP 41.3 2289104.5 0.4 

HuberRegressor %CWP -11.2 4337394.0 -0.1 

LinearRegression %CNWP 5.8 2959374.9 0.1 

GradientBoostingRegressor %CNWP -18.9 3735028.6 -0.2 

DecisionTreeRegressor %CNWP -31.5 4129269.9 -0.3 

RandomForestRegressor %CNWP -15.5 3625611.8 -0.2 

KNeighborsRegressor %CNWP 14.9 2673401.5 0.1 

HuberRegressor %CNWP 2.2 3072015.2 0.0 

LinearRegression RD and MPD 20.8 2860123.2 0.2 

GradientBoostingRegressor RD and MPD 22.1 2813313.1 0.2 

DecisionTreeRegressor RD and MPD 34.8 2355110.2 0.3 

RandomForestRegressor RD and MPD 41.2 2124008.8 0.4 

KNeighborsRegressor RD and MPD 40.7 2140338.6 0.4 

HuberRegressor RD and MPD 19.7 2898788.3 0.2 

LinearRegression RD and %CWP 10.8 3048954.9 0.1 
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters 
(cont.) 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor RD and %CWP 58.9 1406018.0 0.6 

DecisionTreeRegressor RD and %CWP 37.9 2123096.5 0.4 

RandomForestRegressor RD and %CWP 54.1 1568488.2 0.5 

KNeighborsRegressor RD and %CWP 49.2 1736423.9 0.5 

HuberRegressor RD and %CWP 8.9 3114829.2 0.1 

LinearRegression RD and %CNWP 17.4 3092899.6 0.2 

GradientBoostingRegressor RD and %CNWP 28.6 2675620.6 0.3 

DecisionTreeRegressor RD and %CNWP -29.4 4847579.3 -0.3 

RandomForestRegressor RD and %CNWP 45.3 2049376.8 0.5 

KNeighborsRegressor RD and %CNWP 51.8 1804647.9 0.5 

HuberRegressor RD and %CNWP 15.2 3177521.3 0.2 

LinearRegression MPD and %CWP 20.1 3117387.4 0.2 

GradientBoostingRegressor MPD and %CWP 46.1 2102083.2 0.5 

DecisionTreeRegressor MPD and %CWP 24.1 2957798.7 0.2 

RandomForestRegressor MPD and %CWP 54.7 1765462.1 0.5 

KNeighborsRegressor MPD and %CWP 42.6 2237970.3 0.4 

HuberRegressor MPD and %CWP 15.5 3293019.7 0.2 

LinearRegression MPD and %CNWP 24.5 2369932.4 0.2 

GradientBoostingRegressor MPD and %CNWP 36.0 2010504.5 0.4 

DecisionTreeRegressor MPD and %CNWP 4.9 2986201.1 0.0 

RandomForestRegressor MPD and %CNWP 33.8 2080276.0 0.3 

KNeighborsRegressor MPD and %CNWP 23.3 2408430.1 0.2 

HuberRegressor MPD and %CNWP 21.9 2452351.3 0.2 

LinearRegression %CWP and %CNWP 3.4 3225546.5 0.0 

GradientBoostingRegressor %CWP and %CNWP 54.3 1526204.2 0.5 

DecisionTreeRegressor %CWP and %CNWP 36.0 2138060.8 0.4 

RandomForestRegressor %CWP and %CNWP 53.8 1542259.5 0.5 

KNeighborsRegressor %CWP and %CNWP 36.1 2134756.0 0.4 

HuberRegressor %CWP and %CNWP 1.2 3299966.6 0.0 

LinearRegression RD, MPD and %CWP 19.2 2761987.6 0.2 
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters 
(cont.) 

Model Features Accuracy (%) MSE R2 

GradientBoostingRegressor RD, MPD and %CWP 53.6 1587673.2 0.5 

DecisionTreeRegressor RD, MPD and %CWP 44.2 1907180.1 0.4 

RandomForestRegressor RD, MPD and %CWP 55.8 1511847.5 0.6 

KNeighborsRegressor RD, MPD and %CWP 48.2 1771638.8 0.5 

HuberRegressor RD, MPD and %CWP 19.0 2769175.2 0.2 

LinearRegression RD, MPD and %CNWP 26.5 2754030.0 0.3 

GradientBoostingRegressor RD, MPD and %CNWP 66.8 1244004.7 0.7 

DecisionTreeRegressor RD, MPD and %CNWP 7.3 3473655.3 0.1 

RandomForestRegressor RD, MPD and %CNWP 58.8 1541758.4 0.6 

KNeighborsRegressor RD, MPD and %CNWP 61.4 1447715.7 0.6 

HuberRegressor RD, MPD and %CNWP 24.8 2818743.3 0.2 

LinearRegression RD, %CWP and %CNWP 32.1 1755093.3 0.3 

GradientBoostingRegressor RD, %CWP and %CNWP 52.5 1227359.0 0.5 

DecisionTreeRegressor RD, %CWP and %CNWP 15.8 2177503.8 0.2 

RandomForestRegressor RD, %CWP and %CNWP 50.0 1291869.8 0.5 

KNeighborsRegressor RD, %CWP and %CNWP 42.3 1491557.0 0.4 

HuberRegressor RD, %CWP and %CNWP 31.7 1767086.0 0.3 

LinearRegression MPD, %CWP and %CNWP 17.4 2760481.4 0.2 

GradientBoostingRegressor MPD, %CWP and %CNWP 57.8 1411266.6 0.6 

DecisionTreeRegressor MPD, %CWP and %CNWP -1.8 3401835.1 0.0 

RandomForestRegressor MPD, %CWP and %CNWP 54.9 1508067.0 0.5 

KNeighborsRegressor MPD, %CWP and %CNWP 41.5 1952531.8 0.4 

HuberRegressor MPD, %CWP and %CNWP 17.1 2770361.0 0.2 

LinearRegression RD, MPD, %CWP and %CNWP 33.9 1708476.9 0.3 

GradientBoostingRegressor RD, MPD, %CWP and %CNWP 45.5 1408677.6 0.5 

DecisionTreeRegressor RD, MPD, %CWP and %CNWP 7.7 2387694.8 0.1 

RandomForestRegressor RD, MPD, %CWP and %CNWP 60.5 1022178.8 0.6 

KNeighborsRegressor RD, MPD, %CWP and %CNWP 61.5 996729.5 0.6 

HuberRegressor RD, MPD, %CWP and %CNWP 35.3 1673160.3 0.4 
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