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Executive Summary

Efficient network-level pavement condition assessment is essential for optimizing maintenance
and rehabilitation strategies. Traditional methods, such as visual inspections and manual
distress surveys, are often subjective, time-consuming, and inefficient for large-scale pavement
management. This study was aimed at the integration of advanced novel tools, namely—Traffic
Speed Deflectometer (TSD), Fast Falling Weight Deflectometer (FFWD), Ground Penetrating
Radar (GPR), and Pave 3D 8K to assess the pavement condition at network-level. TSD enabled
continuous deflection measurements under moving loads, providing a rapid and comprehensive
assessment of pavement structural capacity. A total of six pavement sections were selected on
the 1-35 and 1-40 road network in Oklahoma based on the initial TSD rating. These sections
were further tested using FFWD tests for complementing TSD in identifying weak sections. GPR
aided in subsurface characterization, detecting variations in layer thickness and underlying
defects that may compromise pavement integrity. Meanwhile, Pave 3D 8K delivered high-
resolution 3D imaging of the pavement surface allowing for distress identification. The data from
TSD, FWD and Pave 3D 8K were used for performing regression analysis using advanced
machine learning models. Finally, pavement condition rating parameters and thresholds were
proposed for categorizing the pavement sections into good, fair and poor sections. The following
conclusions and recommendations were drawn from this study:

e TSD provided continuous, high-speed deflection data, enabling network-level structural
evaluations without disrupting traffic. TSD deflection basin parameters, namely SCI300,
BCI and D1500 with threshold limits from current literature were used for categorizing
pavement conditions at network-level. Care should be taken in analyzing the TSD data
as it requires significant time and experience. As TSD produces massive amounts of
data, care should be taken in cleaning the data before analysis.

e From TSD data analysis, slightly different pavement rankings were observed based on
different TSD basin parameters. Based on SCI300 indices, it was observed that most of
the 1-35 sections were categorized as good conditioned. However, many of the 1-40 EB
and 1-40 WB sections fell under fair to poor categories based on SCI300. It was
observed that almost all of I-35 SB and 1-40 EB have BCI values less than 76.02 um,
representing good conditions of the pavements. Some sections of 1-40 WB were found to
exhibit fair conditions from BCI index. Based on D1500, it was observed that most of the
I-35 SB, 1-40 EB and I-40 WB sections fell under good to fair conditions, indicating
strong subgrade layers.

e Pavement surface conditions of the experimental sites identified using TSD analysis
were assessed using the Pave3D 8K. The pavement categorization of I-35 experimental
sites using rut depths was found to be same as TSD categorization. However, the 1-40
experimental sites showed slightly different categorization between TSD and rut depths
from Pave3D 8K. For both I-35 and [-40 sites, the MPD results did not match the TSD
results. The %CWP and %CWNP from Pave3D 8K were in agreement with the TSD
results based on [-35 sites. However, The %CWP and %CWNP results show that the
pavement conditions across all [-40 experimental sites are nearly identical, making it
challenging to differentiate between them. Therefore, an integrated categorization that
considers both structural and functional aspects is essential for the effective
management of pavement infrastructure systems.

¢ Field coring was found to provide insight into pavement categorization using TSD. The I-
35 experimental site (Section 2) was found to have a composite structure (concrete over
asphalt) and was ranked as good conditioned. Whereas the other two experimental sites
consisted of only asphalt materials and were ranked as good and fair conditioned. Also,



the pavement categorization using rut depths from Face Dipstick matched with the
ranking obtained from the TSD analysis.

e The FFWD results indicated that the pavement rankings obtained from W1 deflection
and E1 modulus are similar to TSD classifications for [-35 experimental sites. The 1-40
good experimental site was ranked as good from FFWD W1 deflection and E1 modulus.
However, the ranking was the poor- and fair-conditioned experimental sites did not
match with TSD ranking.

¢ The GPR images were found to provide information related to layer thicknesses and
subsurface anomalies with potential issues that may not manifest as surface damage.
For both 1-35 and [-40 experimental sites, the ranking from TSD analysis was found to
be in agreement with GPR analysis.

¢ An attempt was made to determine the correlations between different network-level
parameters obtained from the TSD data and in-house technologies using advanced
machine learning models. The results suggest that strong correlations between FFWD
W1 and E1 with TSD basin parameters allow them to be used interchangeably for
assessing pavement structural conditions and ranking at the network-level. It was
observed that the %CWP and %CNWP from Pave3D 8K showed moderate fit with
SCI300, BCl and AUPP, whereas the RD and MPD did not show any meaningful
correlations with TSD basin parameters.

o Based on the collected data and regression analyses, the thresholds for TSD, FFWD
and Pave3D 8K parameters were set in such a way that at least 75" percentile data of a
particular section fell under that category. The thresholds can be used for classifying the
pavement network into good, fair and poor categories for prioritizing pavement
maintenance works.

This study highlighted the potential of these advanced technologies in improving cost-
effectiveness and resilience in pavement maintenance and rehabilitation, ensuring
long-term performance and safety of roadway infrastructure. Findings from this
research are expected to contribute to the development of a more efficient, data-driven
framework for large-scale pavement condition assessment.



Chapter 1. Introduction

Pavement network is a critical component of the U.S. transportation infrastructure, requiring
regular condition monitoring to support cost-effective maintenance, extend service life, manage
expenses, and improve driver safety (Khazmin et al., 2017). Currently, 68% of roadway
pavements in the U.S. are in poor condition (Peraka & Bilgiri 2020). Without timely interventions,
pavement performance can deteriorate significantly, resulting in exponentially higher
maintenance and rehabilitation costs. This challenge is becoming increasingly difficult for many
states Departments of Transportation (DOTs), specifically for DOTs in Region VI. Therefore, a
reliable assessment of pavement conditions with limited resources is essential for making data-
driven decisions regarding maintenance, safety, and pavement design.

Transportation agencies collect pavement condition data and populate their Pavement
Management System (PMS) to optimize resources for pavement maintenance and
rehabilitation. Typically, PMS relies on condition indices or scores to assess roadway
pavements at the network-level, though these indices vary across state agencies. Pavement
condition data encompasses both structural attributes (e.g., structural number, layer modulus,
drainage) and surface attributes (e.g., roughness, rutting, cracking, patching), along with other
factors, such as safety, traffic, and accidents to determine overall pavement condition or rating.
While structural condition and capacity data are traditionally used at the project level, some
agencies are beginning to recognize the value of incorporating these indicators at the network
level (Flintsch, & McGhee 2009).

Several tools and technologies are currently available for evaluating pavement structural
conditions, including the Falling Weight Deflectometer (FWD), Ground Penetrating Radar
(GPR), profilometers, Ultrasonic Pulse Velocity (UPV) devices, Light Detection and Ranging
(LIDAR), and Traffic Speed Deflection (TSD) devices. While FWD testing is widely used for
assessing pavement structural conditions, it poses safety risks to both testing personnel and the
traveling public due to lane closures and other disruptions. In recent years, traffic-speed data
collection methods for pavement condition assessment have gained traction, primarily because
they do not interfere with traffic flow or require lane closures. TSD is one such technology which
can provide data to estimate pavement conditions.

Recent developments have spotlighted the TSD as a valuable technology for measuring surface
deflections at short intervals as well as capturing data on roughness, texture, and rutting at
traffic speed. As a result, it is gaining popularity among transportation agencies for network-level
pavement condition assessment and management. While TSD offers significant benefits in
evaluating both surface and structural conditions, challenges remain in using the data to
accurately evaluate pavement conditions at network-level. The evaluation of pavement
conditions or their rating typically depends on deflection basin parameters, namely deflections,
slope deflection indices, structural considerations, and remaining service life. In this context, the
potential advantages of deriving network-level pavement condition ratings from TSD data could
be greatly enhanced through the implementation of other novel technologies conceived by the
collaborative consortium driving this project. It is noted that the scarcity of TSD availability and
the expenditure associated with data collection necessitates the pursuit of innovative in-house
technologies, which will not only elevate efficiency but also yield cost reductions. The current
study focuses on developing a pavement rating system by combining TSD with in-house
technologies of partnered institutions.

This collaborative project unites two leading Oklahoma universities — the University of
Oklahoma (OU), Oklahoma State University (OSU) and Texas Transportation Institute (TTI) - to



rapidly and cost-effectively assess network-level pavement conditions using novel tools. As part
of ODOT's engagement in a pooled fund study (TPF-5 (385)), pavement conditions data from I-
35 and I-40 in Oklahoma were collected recently using a TSD. This study focuses on analyzing
the collected TSD data for network-level assessment or rating of the associated pavement. A
complementary objective was to collect data from the same pavements using in-house
technologies, namely Pave3D 8K available at OSU and an air-coupled Ground Penetrating
Radar (GPR) and Fast Falling weight Deflectometer (FFWD) available at TTI —a member of the
SPTC consortium and compare with TSD data. In addition, this study focuses on investigating
the correlation among TSD deflection basin parameters, FFWD structural capacity parameters,
and Pave3D 8K parameters using advanced machine learning models.



Chapter 2. Literature Review

2.1 Background

Pavement conditions are typically categorized into functional (level of serviceability) and
structural (traffic-carrying capacity and resistance to environmental factors throughout its service
life) levels. Both destructive and non-destructive tests are commonly used to evaluate the
overall condition of existing pavements. Destructive tests, such as coring, laboratory
performance tests, and in-situ tests, are employed by transportation agencies for project-level
pavement condition assessments. In contrast, non-destructive tests, including Falling Weight
Deflectometer (FWD), Fast Falling Weight Deflectometer (FFWD), Ground Penetrating Radar
(GPR), and Pave3D 8K, are used to assess the structural and functional conditions of
pavements. Data obtained from these and other tests support pavement management systems
(PMS) and help transportation agencies prioritize maintenance, rehabilitation, and
reconstruction projects. Some of these measurements can be conducted at traffic speed (e.g.,
GPR and Pave3D 8K), while others require traffic control measures (e.g., FWD, FFWD,
Dynamic Cone Penetrometer (DCP), and seismic cone testing). Traffic control increases cost,
time, and safety risks. As a result, pavement condition assessment using traffic-speed data is
gaining national momentum. In this context, the Traffic Speed Deflectometer (TSD) is
increasingly attracting the attention of state DOTSs, including the DOTs in Region 6. TSD
enables the assessment of both structural and functional pavement conditions without the need
for traffic control, offering a more efficient and safer alternative.

2.2 Pavement Condition Evaluation using Falling Weight
Deflectometer (FWD)

Since the 1980s, the Falling Weight Deflectometer (FWD) has been one of the most widely used
devices for pavement condition assessment in the U.S. In this test, a deflection basin is
measured under an impact load using geophone sensors. The size of the loading plate and the
magnitude of the impact load depend on the material being tested (e.g., asphalt, stabilized
subgrade, compacted subgrade).

Typically, an impact load is applied to a circular plate 12 inches (300 mm) in diameter, placed
on the pavement surface. The load is normalized to 9 kips (40 kN), equivalent to half an
Equivalent Single Axle Load (ESAL). Transportation agencies generally rely on the deflection at
the center of the plate to assess the overall structural capacity of the pavement. The deflection
measured directly beneath the center of the load (DO0) is typically considered the maximum
deflection. Additionally, FWD collects deflections at distances of 12 inches (300 mm), 24 inches
(600 mm), 36 inches (900 mm), 48 inches (1200 mm), 60 inches (1500 mm), and 72 inches
(1800 mm) from the plate center. These deflections, along with pavement thickness data, are
used to determine the modulus of various pavement layers, including the subgrade soil, as an
indicator of stiffness. Figure 1 illustrates the stress distribution and measured deflection bowl
beneath the FWD.

Recently, modifications have been made to the FWD to accelerate pavement testing and enable
quicker decision-making. The Fast Falling Weight Deflectometer (FFWD) is the next-generation
FWD, capable of testing pavements at least five times faster than traditional FWD testing
(Dynatest 2025). However, FFWD still requires lane closures for operation.
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Figure 1 (a) A photographic view of Falling Weight Deflectometer, and (b) measurement
approach

2.3 Pavement Condition Evaluation using Traffic Speed Deflectometer
(TSD)

TSD is an instrumented truck that applies a rear axle load ranging from 13 to 28 kips onto the
pavement surface. It is typically equipped with seven Doppler laser sensors positioned at 0, 8
inches (200 mm), 12 inches (300 mm), 24 inches (400 mm), 36 inches (600 mm), 48 inches
(800 mm), 60 inches (1000 mm), and 72 inches (1200 mm) in front of the loaded axle (i.e., in
the direction of traffic). Additionally, a single laser sensor is located outside the deflection bowl,
serving as the reference sensor (Katicha et al., 2017).

TSD can be operated at various speeds; however, a speed of 60 MPH with a data collection
rate of 1 kHz is commonly used (Katicha et al., 2017). The device determines the deflection
slope by measuring the vertical pavement deflection velocity and the horizontal velocity of the
vehicle at each laser sensor location. Using these data, a deflection basin is generated,
representing the profile of the deflected pavement. Pavement deflection is then obtained by
integrating the deflection slope. Figure 2 provides a pictorial representation of this approach.

TSD Deflection Sensors

Deflection Slope = V,/V,

Deflection Basin

Y



Figure 2 Deflection slope from Traffic Speed Deflection Device

2.4 Comparison of TSD and FWD Measurements

The primary differences between FWD and TSD measurements lie in the nature of loading and
the type of measuring sensors. The FWD applies an impact load, while the TSD uses a moving
half-axle load. Additionally, FWD relies on geophones for deflection measurement, whereas
TSD uses laser sensors.

Another key distinction is the testing procedure. In FWD testing, multiple drops are used to
verify repeatability, whereas TSD data are collected continuously at close intervals as the
instrumented truck moves at traffic speed. Some accuracy may be lost in TSD due to the
averaging process and the method used to define pavement deflection—issues that are not
present in FWD testing. Furthermore, during TSD testing, stress and strain tensors rotate,
whereas in FWD testing, they remain constant. Other factors influencing TSD data include
damping, tire pressure, and truck dynamics (Rada & Nazarian, 2011). Therefore, careful
evaluation of TSD data and the correlation methods used in assessing pavement condition
indices is essential.

2.5 Deflection Basin Parameters

Over time, numerous studies have proposed deflection basin-related indices or deflection bowl
parameters to analyze deflection data from deflectometers. These parameters primarily focus
on the maximum deflection under the center of the load and variations in deflection among
sensors as indicators of the stiffness of different pavement layers, including the subgrade, and
the pavement's remaining life. A summary of the most influential parameters, formulas, and
structural indicators derived from measured deflections is provided in Table 1.



Table 1 Deflection Bowl Parameters (Schooner & Horak 2012)

Parameter Formula Structural indicator
1. Maximum Do as measured An indication of all structural
Deflection layers with about 70%
contribution by the subgrade
2. Radius of An indicator of the structural

Curvature (RoC)

RoC = 12 /(ZDO[(D]ZEO) —1]

where, L=127 mm in the Dehlen
curvature meter and 200 mm for
the FWD

condition of the surface and base
layers

3. Base Layer Index
(BLI) also known as
Surface Curvature
Index (SCI)

SCIl =BLI = Dy — Daoo

An indicator of structural
condition of primarily the base
layer

4. Middle Layer Index
(MLI) also known as
Base Damage Index
(BDI)

BDI = MLI = D3oo - Deoo

An indicator of structural
condition of the subbase and
probably selected layers

5. Lower Layer Index
(LLI) also known as
Base Curvature Index
(BCI)

BCI = LLI = Dgoo — Doaoo

An indicator of condition of the
lower structural layers like a
selected layer and the subgrade
layer

6. Spreadability, S

{{Dn + D3gg + Dggo + Dogg

S = 5
Do

| 100}

Supposed to reflect the structural
response of the whole pavement
structure, but with weak
correlations

7. Area, A

6[Dg + 2D309 + 2Dgpo + Doggo]
Do

Supposed to reflect the structural
response of the whole pavement
structure, but with weak
correlations

8. Shape factors

F1 = (Dp — Dgoo) /D300
F2 = (D300 — Dooo)/Deoo

The F2 shape factor seems to
give better correlations with
subgrade moduli while F1 seems
to give weak correlations

9. Slope of Deflection

SD = tan" }(Dy — Dggo)/600

Weak correlations observed

10. Additional shape
factor

F3 = (Dgoo — D1200)/Dago

Condition of lower layer or depth
to a stiff layer

11. Area under

(SDU B 2D3UU B 2DGUU - D‘-JUU

Characteristics of the pavement

_ AUPP =
pavement profile 2 upper layers
12. Additional areas A2 — 6(D300 + 2D450 + Do) Condition of middle layer
B Dy Condition of lower layers
A3 = 6(Dgoo + 2Dggg + Dy200)

Do




Parameter Formula Structural indicator
13. Area indices All = (Dg + D3p9)/2Dy Condition of upper layer
Al2 = (D309 + Dg00) /2Dy Condition of middle layer
AI3 = (Dggo + Dogo) /2D, Condition of middle layer
Al4 = (Dggo + D1200)/2D, Condition of lower layer

The aforementioned indices are commonly used to assess pavement condition. The Virginia
Department of Transportation (VDOT) has selected the Deflection Slope Index (DSI) and the
Surface Curvature Index at 300 mm (SCI300) for pavement condition evaluation using TSD.
The DSl is defined as the difference between deflections at 100 mm and 300 mm (D100 - D300)
(Katicha et al., 2017).

Additionally, several deflection parameters, as presented in Equations (1) through (5), were
proposed by Rada et al. (2016) and are currently used by the Federal Highway Administration
(FHWA) for pavement condition assessment.

Rlr=—21
230(1—%) (1)
Rer = 2Do(zo-1)

(2)
SC' = Do - Dr (3)

DSls.r = Ds — D¢ (4)
SD, = tan‘l(fu—a?-) -

where,
r, s = distance from applied load in inches (s>r);
Dy = deflection at distance x from the load; and
D = differential operator.

2.6 Pavement Condition Indices for Assessment of Network-Level
Pavement Conditions

In recent years, several studies have focused on developing Pavement Condition or Quality
Indices to categorize pavement sections into good, fair, and poor conditions (Zhang et al., 2003;
Bryce et al., 2011; Horak et al., 2015; Shrestha, 2017). For example, Zhang et al. (2003)
developed a methodology for structural characterization of pavement conditions. Internal studies
at the Texas Department of Transportation (TxDOT) indicated that the Structural Strength Index
(SSI) was not sensitive enough to differentiate between pavements requiring structural
reinforcement and those that did not. The primary objective of Zhang et al. (2003)'s research
was to develop a structural index, based on FWD data, that could effectively distinguish
between pavements needing additional structural capacity and those for which surface
treatments would suffice. Comprehensive guidelines were established for utilizing the Structural
Condition Index (SCI) in selecting the most appropriate maintenance and rehabilitation
strategies at the network level. A pilot study was also conducted on several pavement
rehabilitation projects to validate the effectiveness of the SCI.

Bryce et al. (2011) developed a structural index known as the Modified Structural Index (MSI)
for use in network-level pavement evaluation. The MSI is a modified version of the Structural




Condition Index (SCI) and is integrated into the Virginia Department of Transportation’s
Pavement Management System (PMS). Network-level predictions identified MSI as the most
promising index for predicting project-level maintenance and rehabilitation activities. MSI can be
used as a network-level screening tool, for deterioration modeling, and in the development of
structural performance measures. However, MSl is applicable only to flexible pavements, as it is
based on FWD data and is empirical in nature (Bryce et al., 2011).

Horak et al. (2015) developed a benchmark analysis methodology that utilizes the embedded
structural response knowledge of the entire deflection bowl, as measured by the FWD, for
comparative evaluation of the structural condition of flexible pavement structures. In that study,
three deflection basin parameters - Modified Structural Number (SNP), Pavement Number (PN),
and Structural Condition Index (SCI) - were calculated from full deflection bowls and used in
enhanced benchmark analyses of flexible pavement structures.

Shrestha (2017) conducted a field evaluation of the TSD to classify pavement structural
conditions for a small subset of the Pennsylvania secondary road network. In that study, an
Overall Pavement Index (OPI) was developed using TSD data to categorize pavements into
good, fair, and poor conditions. The OPI was derived from a model that relates pavement
surface characteristics to pavement age and Structural Number (SN). The threshold separating
pavements with good surface conditions from those with fair conditions was obtained from the
Pennsylvania Pavement Management System (PMS). Using the determined OPI values and
model equations, Deflection Slope Index (DSI) thresholds were calculated. The OPI thresholds
for different pavement conditions were then used to establish corresponding DSI thresholds.
This was achieved by identifying the DSI values associated with each OPI threshold category
for pavements with a 10-year-old surface (Shrestha, 2017).

To effectively characterize pavement conditions using TSD data, it is essential to establish
appropriate thresholds for pavement quality indicators. To this end, existing literature on TSD-
related pavement quality indicator thresholds was reviewed and discussed in the following
section.

2.7 Threshold Values for Pavement Condition Indices

In recent years, several studies have been conducted to establish thresholds for TSD basin
parameters to characterize pavement conditions. For example, the Virginia Tech Transportation
Institute proposed using temperature-corrected (70°F) structural indices derived from TSD
deflection basins to categorize pavement sections as Good, Fair, or Poor. This method utilized
SCI300 and DSI, with results showing similar trends for both indices. Preliminary thresholds
distinguishing Good, Fair, and Poor structural conditions were provided in the Virginia Tech
Transportation Institute report, based on estimates of the expected remaining fatigue life of the
asphalt layer. The recommended thresholds are summarized in Table 2.

The Pennsylvania Department of Transportation (PennDOT) employs DSI to classify pavement
quality into Poor, Fair, and Good categories. Table 3 presents the DSI threshold values
suggested by PennDOT, which apply specifically to the non-National Highway System (non-
NHS). In this study, both SCI300 and DSI are used to characterize pavement conditions. The
TxDOT guidelines to assign PMIS treatment levels using SCI, BCl and W7 indices are
presented in Table 4.
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Table 2 Virginia Tech Transportation Institute TSD Thresholds for Pavement Category

Threshold
Annual for Threshold | Threshold Threshold | Threshold
Road .ﬁﬁct%z; Traffic, Fatigue for Poor, for Poor, xg:esgg:d for Fair, for Fair, Tft; rresgicild
Category (in.) ESAL Cracking | Nf, Million SCI300 DS (mili Nf, million SCI300 DSI (mil’)
) (million) | at Wheel ESAL (mil) ESAL (mil)
path (%)
Interstate >9 1.4 10 2.8 3.7 3.0 7.0 2.7 2.2
Primary 6-9 0.2 10 0.4 6.2 5.2 1.0 4.9 4.0
Secondary 3-6 0.07 45 0.14 9.7 7.7 0.35 7.3 5.8
Table 3 PennDOT DSI Thresholds for Pavement Category
Non-NHS: Pavement DS Non-NHS: Pavement DS
AADT Condition AADT Condition
22000 Good <0.39 <2000 Good <5.90
22000 Fair 0.39-9.78 <2000 Fair 5.90-15.90
22000 Poor >9.78 <2000 Poor >15.90
Table 4 TxDOT DSI Thresholds for Pavement Category
Index Thicknes | Thickness | Thickness | Thickness Diaanosis
Parameters s>5 <5,22.5 <2.5, >1 <1 9
SCI <4 <6 <12 <16 Very Good Asphalt Layer
SCI <4 <6 <12 <16 Good Asphalt Layer
SCI 4-6 6-10 12-18 16-24 Fair Asphalt Layer
SCI 6-8 10-15 18-24 24-32 Poor Asphalt Layer
SCI 8-10 15-20 24-30 32-40 Very Poor Asphalt Layer
BCI >10 >20 >30 >40 Very Good Baset Layer
BCI <2 <3 <4 <8 Good Base Layer
BCI 2-3 3-5 4-8 8-12 Fair Base Layer
BCI 3-4 5-9 8-12 12-16 Poor Asphalt Layer
BCI 4-5 8-10 12-16 16-20 Very Poor Base Layer
w7 >5 >10 >16 >20 Very Good Subgrade Layer
W7 <1 <1 <1 <1 Good Subgrade Layer
W7 1-1.4 1-1.4 1-1.4 1-1.4 Fair Subgrade Layer
W7 >1.4-1.8 >1.4-1.8 | >1.4-1.8 >1.4-1.8 Poor Subgrade Layer
W7 >1.8-2.2 >1.8-2.2 | >1.8-2.2 >1.8-2.2 Very Poor Subgrade Layer
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Chapter 3. Materials and Methodologies

This chapter outlines the detailed methodology adopted in this study. A high-level overview of
the methodology adopted in this study is illustrated in the workflow diagram (Figure 3). For the
purpose of this study, pavement condition data from [-35 and 1-40 in Oklahoma, recently
collected as part of ODOT's engagement in a pooled fund study (TPF-5 (385)) using a TSD,
was collected and analyzed. A comprehensive set of pavement condition indicators were
determined by analyzing the TSD data. Leveraging these indicators, the I-35 and 1-40 pavement
sections were divided into three different categories, namely poor, fair, and good. Based on this
categorization, experimental sites were selected for an in-depth evaluation. These initially rated
sections were then further used for in-depth evaluation using FFWD, GPR and Pave3D 8K.
GPR images were calibrated and validated by collecting field cores at selected locations.
Structural capacities of these sections were evaluated using FFWD tests at every 10" of a mile.
Pavement surface characteristics of these test sites, namely rut depth (RD), mean depth profile
(MDP), cracking along wheel path (CWP), and cracking along non-wheel path (CNWP) were
evaluated using the Pave3D 8K. Advanced machine learning models including linear
regression, gradient boosting regression, decision tree, random forest, KNeighbors regressor,
and Huber regression were used to investigate the correlation between TSD deflection basin
parameters, FFWD structural performance parameters and Pave3D 8K surface parameters.
Finally, a pavement rating limit was developed using TSD, FFWD and Pave3D 8K. The
following subsections provide a detailed discussion of these methodologies.

Collection of TSD Data

l

Evaluation of TSD Data & Site Selection

Data Collection using In-House Technologies Collection of Field Cores

Air-Coupled GPR FFWD Pave3D 8K

Evaluation of Test Sites using In-House Technologies

l

Correlation Analysis of TSD and In-House
Technologies using Al Models

Refinement of Existing TSD Thresholds
I}

Establishment of Pavement Condition Rating Limit

Figure 3 Workflow Diagram

3.1 Collection of TSD Data

With the assistance of Strategic Asset and Performance Management (SAPM) personnel at
ODOT, the research team gained access to recently collected TSD data from [-35 and 1-40. It
was found that the TSD data was collected from three highway segments, namely Interstate-35
Southbound (I-35 SB), Interstate-40 Eastbound (I1-40 EB), and Interstate-40 Southbound (1-40
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SB). Figure 4 shows the satellite view of the different segments. The |-35 segment begins with
Hunnewell (36.399916, -97.327006) and ends at 1-35/140 junction (35.46651, -97.46871). The
TSD data was collected on the southbound lane of I-35. The 1-40 EB travels from Texola
(35.2267, -100.0013) towards [-35/1-40 junctions (35.4500, -97.4331). The 1-40 WB runs from |-
35/1-40 junction (35.46561, -97.469490) towards Texola (35.2271, -100.00125).

OKEAHGMA

If 1:35 Endigi-40 EB End
=40 EB Start I' -40°'WB.End [220:\WRB' Start
|
|

rillo
®Norman

CHOCTAW NATION

CHICKASAW!NATION

Figure 4 Google Earth View of Test Sites

The ODOT Pavement Management personnel provided the OU team access to the Hawkeye
website which is the online storage of TSD data. Figure 4 shows a snippet of the Hawkeye
website. After evaluating the available data on the Hawkeye website, it was determined that
access to raw TSD data was required to determine different pavement condition indicators.
ODOT helped the OU team to get access to the raw data from Australian Road Research Board
(ARRB). Figure 5 shows a snippet of the raw data spreadsheet collected from ARRB.

Road Network Data

Maximum Deflection (DO) ~

Figure 5 A snippet of the Hawkeye website
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Data:

Chainage [m]| Driving Speed [m/s]| Driving Accl [m/s2]| GyroYaw [rad/s]| GyroRoll [rad/s]| GyroPitch [rad/s]]|
Acclload [m/s2]| AcclVerti 1.9[m/s2]| AcclTrans [m/s2]| AcclHoris [m/s2]| Strain Gauge Left [kg]| Strain Gauge
Right [kgl| LinPot 2.845[mm]| LinPot ©.825[mm]| Frequency Fan Speed 1[m/s]| Frequency Fan Speed 2[m/s]| Frequency
Fan Speed 3[m/s]| Frequency Fan Speed 4[m/s]| Temp Road [°C]| PWM Temperature 1[°C]| Temp Air [°C]| Temp Inside
8.4[°C]| Temp Inside 3.4[°C]| Temp BeamHigh 3.4[°C]| Temp BeamLow 3.4[°C]| Temp BeamHigh 2.2[°C]| Temp Beamlow
2.2[°C]| Temp BeamHigh ©.5[°C]| Temp BeamlLow ©.5[°C]| Doppler 3.080[m/s]| Doppler 1.50@[m/s]| Doppler ©.980[m/s]|
Doppler ©.600[m/s]| Doppler ©.450[m/s]| Doppler ©.300[m/s]| Doppler ©.215[m/s]| Doppler ©.130[m/s]]|

Doppler -8.20@[m/s]| Doppler -©.38@[m/s]| Doppler -©.458[m/s]| Deflvel 1.58@[mm/s]| Deflvel 8.9@@[mm/s]| Deflvel
0.600[mm/s]| DeflVel ©.450[mm/s]| DeflVel @.300[mm/s]| DeflVel ©.215[mm/s]| Deflvel 8.138[mm/s]|

Deflvel -0.200[mm/s]| Deflvel -e.30@[mm/s]| Deflvel -©.450[mm/s]| Slope 1.50@[pm/m]| Slope ©.90@[um/m]| Slope
©.600[pm/m]| Slope ©.450[pm/m]| Slope ©.38@8[pm/m]| Slope ©.215[pm/m]| Slope ©.138[pm/m]| Slope -©.28@[pm/m] |
Slope -@.30@[um/m]| Slope -8.45@[um/m]| DoppValidity 3.@8@| DoppValidity 1.5@@| DoppValidity ©.90@| DoppValidity
0.600| DoppValidity ©.450| DoppValidity ©.3e0| DoppValidity ©.215| DoppValidity ©.13@| DoppValidity -©.200|
DoppValidity -0.3e@| Doppvalidity -0.450| SCI200 [pm]| SCI3@@ [um]| SCISUB [pm]| D-450[um]| D-30@[um]| D-200[um]
Do[um]| D20e[um]| D3@@[um]| D45@[um]| D6@@[um]| D9@@[um]| D12@e[um]| Di15@e[um]| Goodness of fit

0.0000| 30.9773| -0.4301| 0.8015| -0.00308| -0.0033| 0.6718| -0.0516| ©.8789| ©.3758| 3048.6149| 4835.2401| -1.7792
| ©.5742| 47.1321| 47.4655| 48.3965| 45.7988| 37.4503| 308.8355| 30.4684| 22.2929| 22.3161| 22.2096| 22.8818|
21.9623| 22.5792| 21.9021| 21.5921| ©.0457| 0.0502| ©.0407| ©.0355| 0.0427| ©.0218| ©.0422| ©.0251| ©.0345| ©.0365
| @.0197| @.1713| @.557@| -0.1814| ©.4912| -0.4445| -0.0707| -1.5960| -0.3754| -3.4601| -3.0751| 5.5284| 17.9797
| -5.8563| 15.85608| -14.3501| -2.2839| -51.5218| -12.1199| -111.6969| -99.2711| 0.4569| 8.5300| ©.5269| 0.40858]

Figure 6 A snapshot of TSD data collected on the 1-35 section

3.2 Analysis of TSD Data and Selection of Experimental Sites

The team conducted a literature review to identify the pavement condition indices and
thresholds that could be used to evaluate the pavement conditions at network-level. Drawing on
these literature reviews, a comprehensive set of pavement condition indicators encompassing
Surface Curvature Index (SCI), Base Curvature Index (BCl), Area Under Pavement Profile
(AUPP) and D1500 were employed to analyze the TSD data. Leveraging these indicators, the I-
35 and |-40 pavement sections were divided into three different categories, namely poor, fair,
and good. Table 5 presents the thresholds of TSD pavement condition indices used in this
study. These thresholds were chosen based on existing literature and discussions with the
collaborative partners. As can be seen from Table 5, the thresholds for SCI300 were selected
from the specification proposed by Virginia Tech Transportation Institute. The pavement
categorization thresholds for BCI and D1500 were selected based on TxDOT and TDOT
specifications. This categorization facilitated the subsequent selection of experimental sites for
an in-depth evaluation, each spanning a length of 10 to 15 kilometers (km). Based on these
analysis, three experimental sites to represent three pavement categories, namely poor, fair,
and good from 1-35 were selected. Similarly, another three experimental sites were selected
from 1-40.

Table 5 Thresholds of pavement condition indices obtained from TSD

o D1500, ym
SCI300, um (Asphalt Layer) Virginia BCI, um (Base Layer) '
Category Tech Transportation Institute) (TxDOT) (Subgrade Layer)
(TDOT)
Good <68.58 <76.2 <25.4
Fair 68.58-93.98 76.2-101.6 25.4-55.88
Poor >93.98 >101.6 >55.88

3.3 Collection and Analysis of Data using Pave3D 8K Data

As mentioned earlier, six testing sites, among which three sites were located on 1-35 and three
sites on |-40, were selected based on the TSD data. Surface image data and detailed pavement
condition and texture data were acquired from these sites using Pave3D 8K. During the field
data collection, there was no interruption of traffic on 1-35 and 1-40 as the field data was
collected at traffic speed. The Pave3D 8K system (Figure 7) is a sophisticated system to
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conduct full lane data collection on roadways at highway speed up to 60mph with 0.5mm
resolution. It can acquire both laser imaging intensity (2D) and range data (3D) from pavement
surfaces through two separate sets of sensors. In addition, two 3D high-resolution digital
accelerometers are installed on the system. These accelerometers are capable of
compensating pavement surface profiles and generating roughness indices. The 0.5mm 3D
pavement surface data can be used for the following:

¢ Comprehensive evaluation of surface distresses, with automatic and interactive
detection of cracks and classifying them based on various protocols;

e Safety analysis, including macrotexture in terms of mean profile depth (MPD) and mean
texture depth (MTD), hydroplaning prediction, and grooving identification and evaluation;

o Roadway geometry, including horizontal curve, longitudinal grade, and cross slope.

i
dv .

-

Figure 7 Pave3D 8K system for field data collection

Once the pavement surface data was collected from the field using Pave3D 8K, the next step
was to process the raw data using the ADA 3D software to obtain different pavement condition
parameters, such as roughness, rutting, crack categorization (including type, severity, and
density), and patching. Figure 8 shows the different screenshots of ADA3D software during the
processing of raw data, and Figure 9 shows the screenshot for rut depth calculation. Once the
computation was completed, the results were exported into .csv formatted files for further
analysis.
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Figure 8 Interface of ADA-3D Software
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Figure 9 Computation Interface of Rut Depth Using ADA 3D

3.4 Collection of FFWD Test Data

FFWD tests were conducted by Texas Transportation Institute (TTI) at the selected 1-35 and |-
40 sections using the available facility (Figure 10). The goal was to conduct these tests at the
same or close locations as TSD. For the convenience of the test, FFWD data was collected at
every 10" of a mile. Measured deflections were analyzed using Modulus 7.0. The analyzed data
was used to determine structural conditions and compare with the corresponding TSD results.
These comparisons were useful for setting the rating limits. The test was conducted at night to
avoid heavy traffic on the interstate highways. Rolling traffic control for FFWD testing was
provided by the associated ODOT field districts.

Figure 10 FFWD data collection on I-35 test section
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3.5 Collection of GPR Data

A subsurface GPR survey was conducted on the above mentioned 1-35 and 1-40 sections with
the help of TTl on June 24, 2024. A 1 GHz horn antenna system with integrated high-definition
video and GPS was used for this purpose. Data was collected at highway speed with no traffic
control. The GPR data was processed with the software developed by TTI to compute layer
thicknesses and used to identify areas with subsurface defects. Figure 11 shows the
photograph of the TTI’'s GPR equipment.

Figure 11 Photographic View of TTI’s Air Coupled GPR

3.6 Collection of Selective Cores from Distressed Locations

Based on the TSD and FFWD test results, cores were extracted selectively from distressed
locations of experimental sites. Considering the limitations of this study, cores were collected
from only three I-35 experimental sites representing poor, fair and good conditions. For the
purpose of comparison, cores were collected from few non-distressed locations. A visual
observation of the extracted cores as well as limited laboratory test were used to validate the
pavement rating obtained from the TSD data. Traffic control for coring was provided by the
associated field districts. In addition to field core collection, roadway profiles in the selected
locations were surveyed using Face Dipstick and Straight Edge. Figures 12, 13 and 14 show the
Straight Edge measurement, Face Dipstick test and coring operations.

Figure 12 Face Dipstick Measurements on I-35 Test Site
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Figure 14 Coring Operations on I-35 Test Site

3.7 Comparison of Different Technologies and Determining Pavement
Condition Rating Limits:

The collaborative teams worked together to compare the results from different technologies and
established pavement condition thresholds. In this study, the correlation among TSD basin
parameters, FFWD structural capacity parameters and Pave3D 8K parameters were studied
using advanced machine learning models in order to develop pavement rating limits for both
flexible and rigid pavements. For the purpose of this study, a total of 52 machine learning
models were initially studied and finally 6 of them were finally selected for studying correlations.
Both single and multivariate analyses were performed to evaluate the individual and combined
effects of all these variables. Once the correlations were established, a rating limit system was
proposed based on TSD, FFWD and Pave3D 8K performance parameters. A brief description of
six selected machine learning models is provided below:

3.7.1 Linear Regression:

Linear regression is a fundamental statistical technique used to model and analyze the
relationship between a dependent variable and one or more independent variables (Sohil et al.
2022). It helps in predicting the value of the dependent variable based on the values of the
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independent variables. Linear regression assumes a linear relationship between the dependent
variable (Y) and the independent variables (X). The model can be represented as:

Y=PBo+B1X1+B2X2+ + BnXy +€ (1)
Where,
Bo is the intercept
B1,B2,...,Bn are the coefficients for the independent variables
€ is the error term

The goal is to find the values of the coefficients (8) that minimize the difference between the
observed and predicted values of the dependent variable. This is typically done using the least
squares method. The performance of the linear regression model can be evaluated using
metrics, such as R-squared, adjusted R-squared, Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE).

3.7.2 Gradient Boosting Regressor

Gradient Boosting Regressor is a powerful machine learning algorithm used for regression
tasks. It is part of the ensemble learning family, where multiple weak models (typically decision
trees) are combined to create a strong predictive model. Gradient Boosting Regressor builds an
ensemble of weak prediction models, typically decision trees, in a sequential manner to
minimize the residual errors. The prediction at step m is updated as,

Fi(x) = Fpp_q(X) + Ymhm (%) (2)
where,
Fm(x) is the updated model at iteration m.
Fm-1(x) is the model from the previous iteration.
hm(x) is the weak learner (typically a decision tree) trained to minimize the
residual errors.
ym is the learning rate, controlling the contribution of each weak learner.

The model is trained iteratively by reducing the loss function (MSE) using gradient descent,
leading to improved predictive performance with each iteration.

3.7.3 Decision Tree Regressor
A Decision Tree Regressor is a non-parametric supervised learning algorithm used for
regression tasks. It works by recursively splitting the data into subsets based on feature values,
creating a tree-like structure where each internal node represents a decision rule, and each leaf
node holds a predicted value. The model selects splits by minimizing a chosen error metric,
such as MSE or mean absolute error (MAE). Decision Tree Regressor models a target variable
Y as a hierarchical structure of decision rules based on input features X. It recursively partitions
the feature space into smaller regions and assigns a constant prediction to each region. The
model represents as follows:
y= %ZieRj}’i 3)

where,

y is the predicted value at a leaf node

Rj is the region (subset of data) associated with a leaf node

yi are the actual target values in Rj

N is the number of samples in Rj

19



The splits are chosen by minimizing an impurity function, such as the MSE. The tree grows until
a stopping criterion is met, such as a minimum number of samples per leaf or maximum depth.
To prevent overfitting, techniques like pruning or setting constraints on depth and leaf size are
commonly used.

3.7.4 Random Forest Regressor

A Random Forest Regressor is an ensemble learning method that combines multiple decision
trees to improve prediction accuracy and reduce overfitting. It operates by training multiple
decision trees on different random subsets of the data and averaging their output for regression
tasks. The model can be represented as:

M
1
P =2 > T

m=1 ()
where,

y is the final predicted value

M is the number of decision trees in the forest

Tm(X) is the prediction from the m'" decision tree.

Each tree is trained on a bootstrapped sample of the training data, and at each split, a random
subset of features is considered to enhance diversity among trees. This randomness helps in
reducing variance while maintaining predictive power.

3.7.5 K-Neighbors Regressor

The K-Nearest Neighbors (KNN) Regressor also known as K-Neighbors Regressor is a non-
parametric algorithm that predicts the target value of a given input by averaging the target
values of its k nearest neighbors in the feature space. It is based on the assumption that similar
inputs have similar outputs. The model is represented as:

~ 1ok
y kZl—l Yi (5)
where,

y is the final predicted value

k is the number of nearest neighbors

yi are the actual target values of the k closest neighbors.

The model performance is evaluated by minimizing the MSE.

3.7.6 Huber Regressor

Huber Regressor is a robust regression technique used in machine learning to handle data with
outliers. It combines the properties of both ordinary least squares regression and mean absolute
error regression, making it less sensitive to outliers than standard linear regression. The Huber
Regressor minimizes the Huber loss function, which is defined as:

%az forlal <&
Lé'(a) = 1
8(|a| —56) forlal > & (6)
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where, a is the residual (difference between the observed and predicted values), and d is a
threshold parameter. For residuals smaller than &, the Huber loss behaves like the squared
loss, and for larger residuals, it behaves like the absolute loss. The Huber Regressor iteratively
optimizes the loss function to find the best-fitting model. This involves solving a convex
optimization problem, which ensures convergence to a global minimum.
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Chapter 4. Results and Discussions

4.1 Analysis of TSD Data

As mentioned in the previous section, a comprehensive set of pavement condition indicators
including Surface Curvature Index (SCI), Base Curvature Index (BCl), Area Under Pavement
Profile (AUPP) and D1500 were determined from TSD data to determine the pavement
conditions of 1-35 SB, 1-40 EB and I-40 WB segments. For this purpose, the raw TSD data was
first processed and cleaned to remove any anomalous data and empty cells. The TSD
deflection basin parameters were then calculated from the cleaned TSD data. These basin
parameters were then used to categorize pavement sections of 1-35 SB, 1-40 EB and 1-40 WB in
good, fair and poor conditions using the thresholds mentioned in Table 5.

4.1.1 Surface Curvature Index (SCI1300)

Figures 15(a), 15(b) and 15(c) show the variation of SCI300 values for I-35 SB, 1-40 EB and 1-40
WB, respectively. As mentioned in the literature review, the SCI300 index represents the
structural conditions of the surface layer of the pavements. A lower value of SCI300 typically
represents higher strength of the surface layer. From Figures 15(a), 15(b) and 15(c), it was
observed that the I-35 SB segments show relatively lower SCI300 values than the 1-40 EB and
I-40 WB segments. After consulting with District 4 personnel, it was found that the 1-40 EB and I-
40 WB are mostly flexible pavements, whereas the I-35 segments have composite pavement
sections made of concrete over asphalt. As a result, higher SCI300 values are expected for the
I-35 segments.

Virginia Tech Transportation Institute uses the SCI300 index to categorize pavement conditions
(Katicha et al., 2020). According to them, the pavement sections with SCI300 values of less
than 68.58 um, between 68.58 to 93.98 um and more than 93.98 ym can be categorized as
good, fair and poor conditioned, respectively. In this current study, these thresholds were used
for characterization of the tested I-35 SB, 1-40 EB and I-40 WB segments, as indicated in Table
5. These threshold limits are shown in Figures 15(a), 15(b) and 15(c) to identify the good, fair
and poor pavement sections of 1-35 SB, I-40 EB and 1-40 WB, respectively. It was observed that
most of the |-35 sections were categorized as good conditioned. The composite pavement
layers may be responsible for this phenomenon. From Figures 15(b) and 15(c), many of the |-40
EB and I-40 WB sections fall under fair to poor categories.

4.1.2 Base Curvature Index (BCI)

The Base Curvature Index or BCl is an indicator of the condition of the lower structural layers
like base and subgrade layers. Figures 16(a), 16(b) and 16(c) present the variation of BCI
indices for I-35 SB, 1-40 EB and 1-40 WB segments, respectively. Similar to SCI300, a lower
value of BCI represents higher strength of the lower structural layers. From Figures 16(a), 16(b)
and 16(c), it was observed that the 1-35 SB and 1-40 EB segments have lower BCI values than
the 1-40 WB. According to TxDOT (Chang et al., 2014), a BCI value of less than 76.02 um
represents a good pavement condition. A pavement section with a BCI value higher than 76.02
pum but less than 101.6 ym can be treated as fair and more than 101.6 um as poor conditions.
Figures 16(a), 16(b) and 16(c) show the good, fair and poor pavement sections of 1-35 SB, 1-40
EB and I-40 WB, respectively, based on BCI value. It was observed that almost all of I-35 SB
and |-40 EB have BCI values less than 76.02 um, representing good conditions of the
pavements. Some sections of I-40 WB were found to exhibit fair conditions.
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4.1.3 D1500

Figures 17(a), 17(b) and 17(c) show the variation of D1500 values for I-35 SB, 1-40 EB and 1-40

WB, respectively. As mentioned in the literature, the D1500 index shows the conditions of the
subgrade layer of a pavement. A lower value of D1500 represents better condition of the
subgrade layer. It was observed that the 1-35 SB, 1-40 EB and 1-40 WB segments showed

almost similar ranges of D1500 values. Tennessee DOT (TDOT, 2024) indicated that pavement

sections with a D1500 value of less than 25.4 ym can be considered as good whereas more

than 55.88 um can be treated as poor. The sections with a D1500 value of more than 25.4 ym
but less than 55.88 um should be categorized as fair condition. It was observed that most of the

[-35 SB, 1-40 EB and 1-40 WB sections fell under good to fair conditions, indicating strong

subgrade layers.
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Figure 17 Variation of D1500 index for (a) I-35 SB, (b) I-40 EB and (c) I-40 WB segments.
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4.1.4 Area Under Pavement Profile (AUPP)

The Area Under Pavement Profile (AUPP) index indicates the characteristics of the upper layers
of the pavement. Figures 18(a), 18(b) and 18(c) show the variation of AUPP values for |-35 SB,
I-40 EB and I-40 WB, respectively. A lower value of AUPP indicates higher strength of the
pavement layers. From Figures 18(a), 18(b) and 18(c), it was observed that the 1-35 SB, 1-40 EB
and 1-40 WB segments showed almost similar ranges of AUPP indices.
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4.2 Selection of Experimental Sites

As mentioned in the previous section, the threshold limits mentioned in Table 5 for SCI300, BCI
and D1500 were used for the initial categorization of the 1-35 SB, 1-40 EB and 1-40 WB into
good, fair and poor conditions. The details of this categorization were presented in the previous
sections. Based on this categorization, the team identified three experimental sites to represent
three pavement categories, namely poor, fair, and good from 1-35, each spanning a length of 10
to 15 kilometers. The idea was to select a stretch of a highway section that mostly represents a
specific category based on all the TSD indices at network-level. Similarly, another three
experimental sites were selected from 1-40 (combining [-40 EB and [-40 WB). The approximate
locations of the I-35 and 1-40 experimental sites are presented in Figures 19(a) and 19(b),
respectively. As mentioned in Figure 19(a), Section 1, Section 2 and Section 3 of I-35 represent
fair, good and poor conditions, respectively. From Figure 19(b), on 1-40, Section 1, Section 2
and Section 3 represent poor, good and fair conditions, respectively. These experimental sites
were then used for further evaluation using FFWD, GPR, Pave3D 8K and coring.
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Figure 19 Selection of Experimental Sites for Evaluation: (a) I-35, and (b) 1-40
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4.3 Pave3D 8K Measurements

Pavement surface conditions of the experimental sites identified using TSD analysis were
assessed using the Pave3D 8K. As mentioned earlier, Pave3D 8K data was collected and
analyzed by the OSU team. In this study, four different pavement parameters were selected for
evaluating the conditions of the experimental sites. These parameters include rut depth, texture
parameters including Mean Profile Depth (MPD), and percentage (%) of cracks on the wheel
path and non-wheel paths.

4.3.1 Comparison of I-35 Experimental Sites:

Figures 20, 21, 22 and 23 show the rut depth, Mean Profile Depth (MPD), %cracking on the
wheel path and %cracking on the non-wheel paths for |1-35 experimental sites, respectively.
From Figures 20(a), 20(b) and 20(c), it was observed that the rut depths varied from 0.35-5.35
mm, 0.45-2.46 mm, 0.4-10 mm for I-35 Section 1, Section 2 and Section 3, respectively. These
results match with TSD analysis as 1-35 Section 1, Section 2 and Section 3 were rated as fair,
good and poor conditioned, respectively.
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As shown in Figures 21(a), the MPD for [-35 Section 1 was found to vary from 0.8-1.8 mm with
an average of 1.0 mm. The MPD for |-35 Section 2 varied between 0.7-1.9 mm with an average
of 0.9 mm and I-35 Section 3 varied between 0.7-3.5 mm with an average of 1.3 mm. Generally,
a higher value of MPD indicates better resistance to skid and improved pavement conditions.
Therefore, the MPD results do not match the TSD results.
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The cracks on the wheel path typically occur from the passing of traffic and are often referred to
as the load-related cracking. A lower value of %cracking refers to better condition of the
pavement. From Figures 22(a), 22(b) and 22(c), the %cracking on the wheel path was found to
vary between different experimental sites. The %cracking on the wheel path for I-35 Section 1
ranged from 0% t01.6% with an average of 0.1%. The [-35 Section 2 also exhibited similar
results of %cracking on the wheel path with an average of 0.3%. The [-35 Section 3 exhibited
the highest cracking among the three sections with an average of 1.9%. The results indicate
almost similar conditions for the good (Section 2) and fair (Section 1) sections. The Section 3,
which was identified as poor from TSD analysis, was found to exhibit higher cracking on the
wheel path from Paave3D 8k analysis.

The cracking on the non-wheel path is mostly related to the environmental loading on the
pavement section. It was found that the %cracking on the non-wheel path of Section 1, Section
2 and Section 3 varied from 0-1.7%, 0-2.2% and 0-4.4%, respectively (Figures 23(a), 23(b) and
23(c)). Therefore, the %cracking on the non-wheel path from Pave3D 8K are in agreement with
the TSD results.

33



1 -AL“‘.J]AL‘L—
0

0 2 4 6 8 10 12 14 16
Distance (km)

(a)

1 LMMJ&

0

0 2 4 6 8 10 12 14
Distance (km)

(b)

0 2 4 6 8 10
Distance (km)

(c)

Figure 22 %Cracking on the wheel path of I-35 experimental sites: (a) Section 1 (fair), (b)
Section 2 (good) and (c) Section 3 (poor)

34



CNWP (%)
N

0
0O 2 4 6 8 10 12 14 16
Distance (km)

(a)

CNWP (%)
N

0 2 4 6 8 10 12 14
Distance (km)

(b)

0 2 4 6 8 10
Distance (km)

(c)

Figure 23 %Cracking on the non-wheel path of I-35 experimental sites: (a) Section 1 (fair),
(b) Section 2 (good) and (c) Section 3 (poor)

35



4.3.2 Comparisons of 1-40 Experimental Sites

Figures 24(a), 24(b) and 24(c) show the rut depths for [-40 Section 1, Section 2 and Section 3,
respectively. From Figures 24(a), the average rut depths for I-40 Section 1 were found to be
1.14 mm with values ranges from 0.4 mm to 6.0 mm. The 1-40 Section 2 exhibited lesser rut
depths than [-40 Section 1 with an average of 1.1 mm. The average rut depths for 1-40 Section 3
were found to be 2.0 mm, respectively. The results indicate that the 1-40 Section 1 can be
categorized as the better performing section among the three sections which is in agreement
with the TSD analysis. The ranking of the 1-40 Section 2 and 3 does not match with TSD
analysis.
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Figure 24 Rut depth of I-40 experimental sites: (a) Section 1 (poor), (b) Section 2 (good)
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From Figures 25(a), the average values for MPD for Section 1, Section 2 and Section 3 were
observed to be 1.6 mm, 0.8 mm and 2.1 mm, respectively. Therefore, the MPD results do not
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expect to provide the same pavement categorization as the TSD results for 1-40 experimental
sites.
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Figure 25 Mean rut depths of 1-40 experimental sites: (a) Section 1 (poor), (b) Section 2
(good) and (c) Section 3 (fair)
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The %cracking on the wheel path and non-wheel path showed similar trends as seen from
Figures 26 and 27. From Figures 26(a), 26(b) and 26(c), the %cracking on the wheel path was
found to vary from 0-1.8%, 0-1.5%, and 0-1.7% for I-40 Section 1, Section 2 and Section 3,
respectively. The average %cracking on the wheel path for 1-40 Section 1, Section 2 and
Section 3 were 0.1%, 0.3% and 0.1%. Similar trends were observed from Figures 27(a), 27(b)
and 27(c) for cracking on the non-wheel path. The results show that the pavement conditions
across all 1-40 experimental sites are nearly identical, making it challenging to differentiate
between them. The findings suggest that classifying pavements based solely on structural or
functional characteristics can sometimes be misleading. Therefore, an integrated categorization
that considers both structural and functional aspects is essential for the effective management
of pavement infrastructure systems.
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4.4 Physical Inspection of Field Cores

As mentioned earlier, the OU team collected field cores selectively from the I-35 experimental
sites. These cores were physically inspected to measure the pavement thickness and to
observe any visible damage. Figures 28(a), 28(b) and 28(c) show the extracted cores from the |-
35 Section 1, Section 2 and Section 3, respectively. Detailed observations were documented
and are presented in Table 6. From Table 6, the 1-35 Section 2 was found to be a composite
pavement made of approximately 9 inch (230 mm) thick concrete over 6 inch (150 mm) of
asphalt layers. As a result, this section showed less deflection and was ranked as good
conditioned from TSD analysis. The I-35 Section 1 was found to be made of 9-10 inch thick
asphalt layers with hot sand as base materials. Most of the cores from 1-35 Section 3 broke
during coring operation and could not be recovered. It was found that this section contained
approximately 8 inch of asphalt. As I-35 Section 1 and 3 were made of asphalt materials, it was
expected that these sections would show inferior pavement conditions than 1-35 Section 2.
From plan notes, it was found that most of the 1-40 sections were flexible pavements. The
thickness of the asphalt layers of 1-40 was found to be approximately 10 inches.

Figure 28 Physical inspection of roadway cores from 1-35 (a) Section 1, (b) Section 2 and
(c) Section 3
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Table 6 Properties of the roadway cores

Total

o | L L2 L3 L4 L5 | (mm | L1 | L2 | L3 | L4 | L5 Notes
(mm) (mm) (mm) (mm) (mm) | Calcul | Type | Type | Type | Type | Type

ated
A1 95.12 Broken 95.12 S4
A2 | 90.74 | Broken 90.74 | sS4 | s4
A3 | 4627 | 5239 Brzke 9866 | S4 | sS4 | s4 L3 Fabric
A4 | 5065 | 4566 | 29.90 | Broken 12622 | S4 | sS4 | s4 L3 Broken
A5 | 4910 | 5514 | 5132 | 7959 | 1195 | 23545 | sS4 | s4 | S5 | s5 | s3 [paC
A6 | 4289 | 4242 | 2501 | 3519 | 8249 | 22800 | S4 | S4 | S5 | S5 | S3 | L3 Fabric
BY | 22212 | 2820 | 3175 | 7238 | 69.62 | 35445 | PCC | s5 | s5 | sz | BRC | LALS.
B2 | 224.09 | Broken 224.09 | PCC
B3 | 22395 | 4256 | 20.09 | 76.60 37220 | PCC | HMA | HMA | HMA
c1| 6658 | 5360 | 9347 21365 | S4 | s4 | S3
c2 | 7539 | 5323 | 86.91 | 40.71 25625 | S4 | s4 | s3 | S2
c3 | 7282 | 5115 | 89.43 | 3862 25201 | S4 | s4 | s3 | s2
ca | 6757 | 6153 | 8839 | 38.81 25630 | S4 | s4 | s3 | S2
c5 | 6116 | 6860 | 97.90 20766 | S4 | s3 | S2
c6 | 7099 | 6049 | 102.56 23404 | s4 | s4 | S3

4.5 Roadway Profile using Face Dipstick

Rut depths and roadway profiles were measured on the selected places of I-35 Section 1,
Section 2 and Section 3 using the Face Dipstick. Table 7 shows the summary of road profiles
from Face Dipstick measurements. Rut depths of the 1-35 Section 2 were found to vary from
0.038 to 0.108 inch. The 1-35 Section 1 and Section 3 were found to show rut depths of 0.093-
0.393 in. and 0.026-0.332 in., respectively. The pavement categorization using rut depths from
Face Dipstick matches with the ranking obtained from the TSD analysis.
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Table 7 Rut Depths from Face Dipstick

Test Section ID Rut Depth in Left Wheel Path(in) |Rut Depth in Right Wheel Path (in)
[-35 Section 1 A1 -0.102 -0.093
[-35 Section 1 A2 -0.168 -0.124
[-35 Section 1 A3 -0.151 -0.102
[-35 Section 1 A4 -0.137 -0.393
[-35 Section 1 A5 -0.155 -0.099
[-35 Section 1 A6 -0.139 -0.138
[-35 Section 2 B1 -0.097 -0.130
[-35 Section 2 B2 -0.104 -0.017
[-35 Section 2 B3 -0.108 -0.038
[-35 Section 3 C1 -0.327 -0.107
[-35 Section 3 C2 -0.093 -0.209
[-35 Section 3| C3 -0.076 -0.026
[-35 Section 3 C4 -0.233 -0.014
[-35 Section 3 C5 -0.038 -0.222
[-35 Section 3| C6 -0.043 -0.332

4.6 Structural Evaluation using FFWD

As previously mentioned, FFWD tests were conducted by the TTI team on the selected
experimental sites for determining the structural capacity of the pavement sections. During this
test, impact loads were applied to the pavement surface and the pavement responses (vertical
deflections) were measured using a series of geophone sensors (W1 to W7). The FFWD test

data were analyzed using the MODULUS 7.0 software (a back-calculation program for

analyzing FWD data). In addition to normalized deflection (with respect to 9-kip load), the

software can provide layer moduli. A snippet of the FFWD processed data of the 1-35 Section 1
is presented in Figure 29. In this study, the normalized (9-kip) deflections of W1, W6 and W7
sensors and elastic modulus of the surface layer obtained from the FFWD tests were used for

the evaluation of the structural conditions of the experimental sites.

No.  Station (mi) LANE

7 0.0
8 0.1
9 0.2
10 0.3
11 0.4
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14 0.7
15 0.8
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19 1.2
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Figure 29 Snippet of FFWD Data of I-35
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4.6.1 Comparisons of I-35 Experimental Sites

The variations in normalized (9-kip) deflections of W1, W6 and W7 sensors of [-35 experimental
sites are presented in Figures 30(a), 30(b) and 30(c), respectively. A clear trend for
distinguishing the good, fair and poor sites was observed from the normalized deflection of W1
sensor as evident from Figure 30(a). The average values of the normalized W1 deflections were
found to be 3.5, 12.6 and 14.9-mil, for good (Section 2), fair (Section 1) and poor (Section 3)
experimental sites, respectively. According to Chen et al. (2003), any pavement section with a
normalized W1 deflection of less than 10-mill can be considered as structurally adequate.
Therefore, at network-level, fair (Section 1) and poor (Section 3) I-35 experimental sites could
be considered structurally inadequate. From Figures 30(b) and 30(c), no proper trend of
normalized W6 and W7 deflections were observed to distinguish between different pavement
categories.

Variation of the surface modulus (E1) of the |-35 experimental sites are presented in Figure
30(d). The average values of the E1 for good (Section 2), fair (Section 1) and poor (Section 3)
sections of I-35 were found as 4027, 94 and 76-ksi, respectively. Generally, any pavement
section with a surface layer modulus less than 145-ksi (1,000 MPa) is classified as poor, 145-
435 ksi (1,000-3,000 MPa) as moderate (fair) and more than 435 ksi (3,000 MPa) as a strong
(good) pavement (ARA 2004, Huang 2004; Khazanovich & Tayabji 2007). Therefore, the FFWD
evaluations classified both poor and fair sections as poor sections. The results indicates that the
pavement rankings obtained from W1 deflection and E1 modulus are similar to TSD
classifications.
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Figure 30 FFWD Structural Response Parameters of I-35 Test Sections: (a) Deflection of
W1 Sensor; (b) Deflection of W6 Sensor; (c) Deflection of W7 Sensor; and (d) Surface
Modulus (E1)
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Figure 31 FFWD Structural Response Parameters of 1-40 Test Sections: (a) Deflection of
W1 Sensor; (b) Deflection of W6 Sensor; (c) Deflection of W7 Sensor; and (d) Surface
Modulus (E1)
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4.6.2 Comparisons of I-40 Experimental Sites

Figures 31(a), 31(b) and 31(c) presents the variations of normalized W1, W6 and W7
deflections of 1-40 experimental sites, respectively. The results of the normalized W1, W6 and
W7 deflections of 1-40 experimental sites were found to be similar as I-35 experimental sites.
The average values of the normalized W1 deflections of I-40 experimental sites were found to
be 3.20, 7.35 and 12.72-mil, for good (Section 2), fair (Section 3) and poor (Section 1)
conditions, respectively. In this case, only I-40 Section 1 showed a normalized W1 deflection
higher than 10-mil which was already identified to have poor structural condition. No proper
trend was observed for W6 and W7 deflections as evident from Figures 31(b) and 31(c). The E1
values of the |-40 experimental sites are shown in Figure 31(d). The average values of the E1
were found to be 3,263, 117 and 148-ksi, for good (Section 2), fair (Section 3) and poor (Section
1) experimental sites, respectively. Although the poor section exhibited a higher average E1
value than the fair section, the difference is not significant. According to current literature (ARA
2004, Huang 2004; Khazanovich & Tayabji 2007), both fair (Section 3) and poor (Section 1)
experimental sites can be classified as structurally poor conditioned.

4.7 Pavement Condition Evaluation Using GPR

In this study, the pavement structures of selected experimental sites of I-35 and 1-40 were
surveyed using the TTI’s air coupled-GPR. During this survey, the dielectric values of the
subsurface were collected and then analyzed to evaluate pavement conditions. The TTI team
helped analyze the collected data. GPR facilitated continuous measurements of pavement
thicknesses in these test sites. This data was further calibrated using field cores. Also, the
subsurface conditions and defects, such as voids and anomaly were identified from the GPR
measurements. Figure 32 shows a screenshot of the GPR data analysis window. In this study, a
qualitative analysis was performed to compare GPR images with TSD data at network-level.

Figure 32 Screenshot of the GPR data analysis window

4.7.1 GPR Images of I-35 Experimental Sites:

Figures 33(a), 33(b) and 33(c) present the snippets of GPR images obtained from |-35 Section
1, Section 2 and Section 3, respectively. From Figure 33(a), disturbance in the subsurface can
be seen at several locations of I-35 Section 1. The areas of disturbance are marked with red
boxes. Some disturbance were expected as |-35 Section 1 was rated as fair conditioned. From
Figure 33(b), although the initial stretch of I-35 Section 2 exhibited some disturbances, the rest
of the pavement was found to show good subsurface conditions. This result is in agreement with
TSD data as the |-35 Section 2 was categorized as good conditioned. The 1-35 Section 3 was
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rated as poor conditioned from TSD analysis and was found to have subsurface distresses at
many locations, as shown in Figure 33(c). Therefore, the ranking from TSD analysis was found
to be in agreement with GPR analysis.

Blis 04429 04739 041055, 041 041688 041999 042309 042617 042928 0+3242
0.

(c)

Figure 33 GPR Images of I-35 experimental sites: (a) Section 1 (fair), (b) Section 2 (good)
and (c) Section 3 (poor)

4.7.2 GPR Images of 1-40 Experimental Sites:

Figures 34(a), 34(b) and 34(c) present the GPR images of I-40 Section 1, Section 2 and Section
3, respectively. The 1-40 experimental sites were found to be mostly flexible pavements of
approximately 10-inches of thickness. From Figure 34(a), I-40 Section 1 was found to show
significant distresses within asphalt and subsurface layers. The results match with Pave3D 8k
findings as %cracking on the wheel and non-wheel paths for those areas were found to be
significantly higher than other areas. Similarly, 1-40 Section 3 was found to exhibit higher
surface and subsurface distresses. It was assumed that these high distresses contributed to the
overall rating of the pavement sections as |-40 Section 1 and Section 3 were rated as poor and
fair conditioned from TSD analysis. Some distresses on the subsurface were observed over the
[-40 Section 2 (Figure 34(b)) which was categorized as good conditioned from TSD analysis.
The FWD analysis showed very high elastic modulus for the surface layer which may have
contributed to the rating of this experimental site.
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Figure 34 GPR Images of 1-40 experimental sites: (a) Section 1 (poor), (b) Section 2 (good)
and (c) Section 3 (fair)

4.8 Correlation Between Pavement Condition Parameters

In this study, an attempt was made to determine the correlations between different network-level
parameters obtained from the TSD data and in-house technologies. For this purpose, a test
matrix was formed using the TSD basin parameters, FFWD Layer Moduli (E1), FFWD W1 and
W6 deflection data, Pave 3D 8K rutting (RD), wheel path cracking (CWP), non-wheel path
cracking (CNWP) and MPD from the initially categorized pavement sections of 1-35 and 1-40. A
total of 52 advanced machine learning models, including, Random Forest Regression, Gradient
Boosting Regression, KNeighbors Regression, Decision Tree and Linear Regressions were
used for evaluating the relationships among different parameters. From previous discussions, it
was found that the structural conditions of I-35 and 1-40 are significantly different. Therefore, in
order to reduce variability, the regression analyses between different parameters for 1-35 and I-
40 experimental sites were conducted separately. The Coefficient of Correlation (R?) between
independent and dependent variables were used to determine the goodness of fit of the
relationships using the following thresholds:

R?< 0.3: Weak fit

0.3 < R?< 0.60: Moderate fit

0.60 < R%< 0.9: Strong fit

R2?2 0.9: Very strong fit (or excellent fit)
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4.8.1 Comparison of FFWD and TSD parameters

4.8.1.1 1-35 Experimental Sites

A summary of the regression analyses of the FFWD normalized (9-kip) W1 deflection with TSD
basin parameters for I-35 experimental sites using above models is presented in Table 8. From
Table 8, it was observed that the SCI300, BCI, D1500 and AUPP parameters from TSD have
strong correlations with the FFWD W1 deflection (R?> 0.67). This was found to be true for all
models considered in these analyses. Examples of the variations of SCI300 and AUPP from
TSD with FFWD W1 deflection are presented in Figures 35(a) and 35(b), respectively. A similar
analysis was also performed using the FFWD E1 and W6 deflection with TSD parameters.
Table 9 shows the correlation analyses among FFWD E1 and TSD basin parameters for 1-35
experimental sites. Strong relationships were observed between FFWD E1 and TSD basin
parameters. However, a poor relationship was observed between the FFWD W6 deflections and
TSD parameters (Appendix A). Details of the regression analyses can be found in Appendix A.

Table 8 Regression Analysis for FFWD W1 and TSD Basin Parameters for 1-35

Parameter Max R? Fitting Model

SCI300 0.81 K-Neighbors Regressor

AUPP 0.78 K-Neighbors Regressor

D1500 and SCI300 0.79 K-Neighbors Regressor
D1500 and BCI 0.67 Random Forest Regressor

D1500 and AUPP 0.80 K-Neighbors Regressor
SCI300 and BCI 0.73 Random Forest Regressor

SCI300 and AUPP 0.76 K-Neighbors Regressor

BCI, SCI300 and AUPP 0.80 K-Neighbors Regressor

BCI, SCI300, D1500 and AUPP 0.76 K-Neighbors Regressor

Table 9 Regression Analysis for FFWD E1 and TSD Basin Parameters for 1-35

Parameter Max R? Fitting Model

SCI300 0.75 Gradient Boosting Regressor

AUPP 0.65 Random Forest Regressor

D1500 and SCI300 0.75 Random Forest Regressor

D1500 and BCI 0.72 Random Forest Regressor

BCI and AUPP 0.80 K-Neighbors Regressor

SCI300 and BCI 0.80 Random Forest Regressor

SCI300 and AUPP 0.77 Random Forest Regressor
D1500, SCI300 and BCI 0.80 Gradient Boosting Regressor
BCI, SCI300, D1500 and AUPP 0.79 Gradient Boosting Regressor
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Figure 35 Variation of TSD basin parameters with FFWD W1 deflection for I-35: (a)

SCI300; and (b) AUPP

4.8.1.2 1-40 Experimental Sites
A similar analysis was also conducted for I1-40 experimental sites. Summaries of correlation
analyses between FFWD W1 and E1 with TSD parameters are presented in Tables 10 and 11,
respectively. The above-mentioned TSD parameters were found to show a moderate correlation
with FFWD W1 deflection when considered individually. However, the combined effect of BCI,
SCI300 and AUPP were found to show a strong relationship with the W1 deflection as evident
from Table 10. From Table 11, the SCI300, BCI, D1500 and AUPP were found to show strong
relationships with FFWD E1. Overall, the results suggest that strong correlations between
FFWD W1 and E1 with TSD basin parameters allow them to be used interchangeably for

assessing pavement structural conditions and ranking at the network-level.
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Table 10 Regression Analysis for FFWD W1 and TSD Basin Parameters for 1-40

Parameter Max R2 Fitting Model
SCI300 0.62 K-Neighbors Regressor
AUPP 0.65 K-Neighbors Regressor
BCl and SCI300 0.63 Gradient Boosting Regressor
SCI300 and AUPP 0.65 K-Neighbors Regressor
BCI, SCI300 and AUPP 0.68 Gradient Boosting Regressor

Table 11 Regression Analysis for FFWD E1 and TSD Basin Parameters for 1-40

Parameter Max R? Fitting Model
SCI300 0.83 Decision Tree Regressor
AUPP 0.86 K-Neighbors Regressor
D1500 and SCI300 0.89 Gradient Boosting Regressor
D1500 and AUPP 0.87 K-Neighbors Regressor
BCl and AUPP 0.80 K-Neighbors Regressor
SCI300 and BCI 0.91 Gradient Boosting Regressor
SCI300 and AUPP 0.87 Random Forest Regressor
D1500, SCI300 and BCI 0.93 Gradient Boosting Regressor
BCI, SCI300, D1500 and AUPP 0.88 K-Neighbors Regressor

4.8.2 Comparison of FFWD and Pave3D 8k parameters

4.8.2.1 1-35 Experimental Sites

Table 12 shows a summary of the regression analyses of FFWD normalized W1 deflection and
Pave 3D 8K surface parameters for I-35 experimental sites. Table 12 only shows the results of
selected models. The details of the results can be found in Appendix A. A moderate correlation
was observed between the FFWD normalized W1 deflection with Pave3D 8K RD, MPD, %CWP
and %CNWP parameters with a maximum R2?value of 0.60. Similar moderate fits were observed
between FFWD E1 and Pave3D 8K surface parameters for 1-35 with a maximum R? value of

0.50 (Table 13).

Table 12 Regression Analysis FFWD W1 and Pave3D 8K Parameters for 1-35

Parameter Max R? Fitting Model
MPD, %CNWP 0.58 K-Neighbors Regressor
%CWP, %CNWP 0.57 Gradient Boosting Regressor
RD, %CWP, %CNWP 0.60 Random Forest Regressor
MPD, %CWP, %CNWP 0.54 K-Neighbors Regressor
RD, MPD, %CWP, %CNWP 0.60 K-Neighbors Regressor
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Table 13 Regression Analysis for FFWD E1 and Pave3D 8K Surface Parameters for 1-35

Parameter Max R? Fitting Model
RD and MPD 0.5 Random Forest Regressor
MPD and %CWP 0.5 K-Neighbors Regressor
RD and %CWP 0.5 Random Forest Regressor
RD, %CWP and %CNWP 0.5 K-Neighbors Regressor
MPD, %CWP and %CNWP 0.5 K-Neighbors Regressor

4.8.2.2 1-40 Experimental Sites

Tables 14 and 15 show the summaries of the regression analyses of the FFWD normalized W1
deflection and E1 modulus with Pave 3D 8K surface parameters for 1-40 experimental sites,
respectively. From Table 14, the correlations between Pave3D 8K parameters and FFWD
normalized W1 deflection were found to be moderate. However, FFWD E1 and Pave3D 8K
surface parameters for |1-40 experimental sites exhibited strong correlations with a maximum R?
value of 0.93 for MPD. The results indicate that the in-house Pave3D 8K technology show
moderate to strong correlation with FFWD parameters and can be used to classify the
pavement network into different categories.

Table 14 Regression Analysis FFWD W1 and Pave3D 8K Parameters for 1-40

Parameter Max R? Fitting Model
%CWP and %CNWP 0.55 K-Neighbors Regressor
RD, MPD and %CWP 0.65 Random Forest Regressor
RD, MPD, %CWP and %CNWP 0.51 K-Neighbors Regressor

Table 15 Regression Analysis for FFWD E1 and Pave3D 8K Surface Parameters for 1-40

Parameter Max R2 Fitting Model
MPD 0.93 Random Forest Regressor
RD and MPD 0.90 Random Forest Regressor
MPD and %CWP 0.82 Random Forest Regressor
MPD and %CNWP 0.85 Random Forest Regressor
%CWP and %CNWP 0.76 Decision Tree Regressor
RD, MPD and %CWP 0.89 Random Forest Regressor
RD, MPD and %CNWP 0.90 K-Neighbors Regressor
RD, %CWP and %CNWP 0.64 K-Neighbors Regressor
MPD, %CWP and %CNWP 0.88 K-Neighbors Regressor
RD, MPD, %CWP and %CNWP 0.86 Random Forest Regressor

4.8.3 Comparison of Pave3D 8k and TSD parameters

In this study, regression analyses were performed between Pave3D 8K and TSD basin
parameters to understand their relationships. The details of the analyses considering all TSD
and Pave3D 8K parameters are presented in Appendix A. The correlations between Pave3D 8K
%CWP and %CNWRP with TSD basin parameters for I-35 experimental sites are presented in
Tables 16 and 17, respectively. It was observed that the %CWP and %CNWP from Pave3D 8K
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showed moderate fit with TSD parameters with a maximum R?value of 0.70. The correlations
between %CWP and TSD basin parameters for 1-40 sites were weaker than 1-35 sites, as seen
from Table 18. The RD and MPD from Pave3D 8K did not show any meaningful correlations
with TSD basin parameters. Therefore, RD and MPD from Pave3D 8K were excluded from

further analyses.

Table 16 Regression Analysis for Pave 3D 8K %CWP and TSD Basin Parameters for 1-35

Parameters Max R? Fitting Model
AUPP 0.62 K-Neighbors Regressor
D1500, SCI300 0.70 K-Neighbors Regressor
D1500, BCI 0.60 K-Neighbors Regressor
D1500, AUPP 0.61 K-Neighbors Regressor
SCI300, BCI 0.61 K-Neighbors Regressor
SCI300, AUPP 0.66 K-Neighbors Regressor
BCI, AUPP 0.67 K-Neighbors Regressor
D1500, BCI, AUPP 0.64 K-Neighbors Regressor
SCI1300, BCI, AUPP 0.61 K-Neighbors Regressor

Table 17 Regression Analysis for Pave 3D 8K %CNWP and TSD Basin Parameters for 1-35

Parameters Max R2 Fitting Model
SCI300 0.61 K-Neighbors Regressor
AUPP 0.62 Gradient Boosting Regressor
D1500, SCI300 0.62 Random Forest Regressor
D1500, BCI 0.67 Random Forest Regressor
D1500, AUPP 0.62 Gradient Boosting Regressor
SCI300, BCI 0.62 K-Neighbors Regressor
BCI, AUPP 0.61 Random Forest Regressor
D1500, SCI300, BCI 0.66 Gradient Boosting Regressor
D1500, SCI300, AUPP 0.62 K-Neighbors Regressor
D1500, BCI, AUPP 0.65 Random Forest Regressor
SCI1300, BCI, AUPP 0.63 K-Neighbors Regressor
D1500, SCI300, BCI, AUPP 0.65 Gradient Boosting Regressor

Table 18 Regression Analysis for Pave 3D 8K %CWP and TSD Basin Parameters for 1-40

Parameter Max R2 Fitting Model
D1500, SCI300 0.51 K-Neighbors Regressor
D1500, AUPP 0.54 Gradient Boosting Regressor
D1500, SCI300, BCI 0.53 Gradient Boosting Regressor
D1500, SCI300, AUPP 0.52 K-Neighbors Regressor
D1500, SCI300, BCI, AUPP 0.51 Random Forest Regressor
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4.8.4 Determining Thresholds for Pavement Condition Rating

The regression analysis conducted in the previous sections was used to identify parameters
that can serve as indicators of pavement performance. Since the FWD test has been widely
used by the transportation community for several decades, the parameters that showed strong
correlations with FFWD E1 and W1-normalized deflection were selected as reliable indicators of
pavement condition. Accordingly, in this study, SCI300 from the TSD data, along with %CWP
and %CNWP from the Pave3D-8K system, were chosen as the primary parameters for
assessing pavement conditions.

For this purpose, Annual Average Daily Traffic (AADT) data for the experimental sites were
obtained from the ODOT database. Based on the AADT values, the Equivalent Single Axle
Load (ESAL) was calculated for 1-year, 2-year, and 5-year periods. Using the FFWD E1 data
and the SCI300 values from the TSD, the remaining fatigue life (Nf) of the asphalt layers was
estimated using Equation 7. Pavement sections were classified as follows:

e Good: Nf > 5-year ESAL

o Fair: Nf between 2-year and 5-year ESAL

e Poor: Nf < 2-year ESAL

A gradient boosting machine-learning model was then developed and executed to evaluate
the relationship between SCI300 and Nf. Figure 36 presents the relationship between Nf and
SCI300 for the 1-35 and 1-40 pavement sections. These models were subsequently used to
determine threshold values for SCI300. The were further calculated and suggested as the
threshold values for these parameters. Following the regression analyses, threshold limits for
the W1, %CWP and %CNWP were calculated by taking average of these parameters from the
categorized sections (which were categorized as good, fair and poor based on the SCI300) for |-
35 and |-40 were established and are summarized in Tables 19 and 20, respectively.

The initial network-level pavement ratings for I-35 and 1-40 based on the TSD data were
consistent with the results obtained from the FFWD and Pave3D-8K systems. A similar trend
was observed across all three technologies for all evaluated sections. Therefore, these
threshold limits can be used to classify pavement networks into good, fair, and poor categories
to support the prioritization of pavement maintenance activities.

3.291

l ) 0.854
Nf =(Cx0.00432] — (]
& E

t

(7)
Where,
C, @’ and b’= constants,

_ o b
et = tensile strength at the bottom of the AC layer = &€=a (‘S('[ 300)
E = modulus of elasticity of AC layer
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Gradient Boosting Model: Actual vs Predicted SCI300 (I-35 Dataset)
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Gradient Boosting Model: Actual vs Predicted SCI300 (I-40 Dataset)
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Figure 36 Relationship of SCI300 and Nf: (a) I1-35; and (b) 1-40
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Table 19 Refined Pavement Condition Thresholds for I-35 Pavement

Category Si'jf"o’ Pave3D 8K %CWP P;"gﬁevg’( FFWD W1 (um)
Good <140 <1.6 <1.7 <167
Fair 140-215 1.6-1.7 1.7-2.2 167-510
Poor >215 >1.7 >2.2 >510

Table 20 Refined Pavement Condition Thresholds for I-40 Pavement

Category | SCI300 (mm) ;%"7\,33 8K ;*‘e’ﬁs\',:’PSK FFWD W1 (um)
Good <140 <0.35 <26 <115

Fair 140-200 0.35-1.5 2.6-2.7 115-337

Poor >200 15 >2.7 >337

57



Chapter 5. Conclusions and Recommendations

The focus of this collaborative project was to evaluate tools for rapidly and cost-effectively
assessing network-level pavement conditions for Oklahoma. As part of ODOT's engagement in
a pooled fund study (TPF-5 (385)), pavement conditions data from 1-35 and 1-40 in Oklahoma
were collected recently using a TSD. This study focused on analyzing the collected TSD data
for network-level assessment or rating of the associated pavement. A complementary objective
was to collect data from the same pavements using in-house technologies, namely Pave3D 8K
available at OSU and an air-coupled Ground Penetrating Radar (GPR) and Fast Falling weight
Deflectometer (FFWD) and compare with TSD data. In addition, this study focused on
investigating the correlation among TSD deflection basin parameters, FFWD structural capacity
parameters, and Pave3D 8K parameters using advanced machine learning models. The
following conclusions and recommendations were drawn from this study:

e TSD provided continuous, high-speed deflection data, enabling network-level structural
evaluations without disrupting traffic. TSD deflection basin parameters, namely SCI300,
BCI and D1500 with threshold limits from current literature were used for categorizing
pavement conditions at network-level. Care should be taken in analyzing the TSD data
as it requires significant time and experience. As TSD produces massive amounts of
data, care should be taken in cleaning the data before analysis.

¢ From TSD data analysis, slightly different pavement rankings were observed based on
different TSD basin parameters. Based on SCI300 indices, it was observed that most of
the 1-35 sections were categorized as good conditioned. However, many of the 1-40 EB
and |-40 WB sections fell under fair to poor categories based on SCI300. It was
observed that almost all of 1-35 SB and 1-40 EB have BCI values less than 76.02 ym,
representing good conditions of the pavements. Some sections of 1-40 WB were found to
exhibit fair conditions from BCI index. Based on D1500, it was observed that most of the
I-35 SB, 1-40 EB and 1-40 WB sections fell under good to fair conditions, indicating
strong subgrade layers.

e Pavement surface conditions of the experimental sites identified using TSD analysis
were assessed using the Pave3D 8K. The pavement categorization of 1-35 experimental
sites using rut depths was found to be same as TSD categorization. However, the 1-40
experimental sites showed slightly different categorization between TSD and rut depths
from Pave3D 8K. For both I-35 and 1-40 sites, the MPD results did not match the TSD
results. The %CWP and %CWNP from Pave3D 8K were in agreement with the TSD
results based on [-35 sites. However, The %CWP and %CWNP results show that the
pavement conditions across all [-40 experimental sites are nearly identical, making it
challenging to differentiate between them. Therefore, an integrated categorization that
considers both structural and functional aspects is essential for the effective
management of pavement infrastructure systems.

¢ Field coring was found to provide insight into pavement categorization using TSD. The I-
35 experimental site (Section 2) was found to have a composite structure (concrete over
asphalt) and was ranked as good conditioned. Whereas the other two experimental sites
consisted of only asphalt materials and were ranked as good and fair conditioned. Also,
the pavement categorization using rut depths from Face Dipstick matched with the
ranking obtained from the TSD analysis.

e The FFWD results indicated that the pavement rankings obtained from W1 deflection
and E1 modulus are similar to TSD classifications for [-35 experimental sites. The 1-40
good experimental site was ranked as good from FFWD W1 deflection and E1 modulus.
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However, the ranking was the poor- and fair-conditioned experimental sites did not
match with TSD ranking.

The GPR images were found to provide information related to layer thicknesses and
subsurface anomalies with potential issues that may not manifest as surface damage.
For both 1-35 and [-40 experimental sites, the ranking from TSD analysis was found to
be in agreement with GPR analysis.

An attempt was made to determine the correlations between different network-level
parameters obtained from the TSD data and in-house technologies using advanced
machine learning models. The results suggest that strong correlations between FFWD
W1 and E1 with TSD basin parameters allow them to be used interchangeably for
assessing pavement structural conditions and ranking at the network-level. It was
observed that the %CWP and %CNWP from Pave3D 8K showed moderate fit with
SCI300, BCl and AUPP, whereas the RD and MPD did not show any meaningful
correlations with TSD basin parameters.

Based on the collected data and regression analyses, the thresholds for TSD, FFWD
and Pave3D 8K parameters were set in such a way that at least 75" percentile data of a
particular section fell under that category. The thresholds can be used for classifying the
pavement network into good, fair and poor categories for prioritizing pavement
maintenance works.
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Chapter 6. Implementation of Project Outputs

This study provided valuable insights on the use of different tools and technologies for DOT’s
pavement condition evaluation and management system. Using advanced technologies, like
TSD, Pave3D 8K technology, and other instruments, this study aimed to change how DOTs
evaluate and manage infrastructure health on a network-level. This study was focused on
analyzing the collected TSD data from 1-35 and |-40 pavement sections in Oklahoma for
network-level assessment or rating. The network-level pavement ratings obtained from TSD
parameters were compared with pavement ratings obtained from FFWD, Pave3D 8K, GPR and
other field assessments. Advanced machine learning models were used to determine the
correlations between different network-level parameters obtained from different technologies.
Based on the collected data and regression analyses, the thresholds for TSD, FFWD and
Pave3D 8K parameters were determined to rank pavements into poor, fair and good categories.
These thresholds can be used by ODOT and other DOTSs' for classifying the pavement network
for prioritizing pavement maintenance works.

The findings are expected to bring about positive changes and help meet USDOT strategic goal
to reduce backlog of pavement repairs to enhance economic strength. Consideration of different
technologies and parameters will allow for improved pavement health assessments, more
accurate life-cycle cost analyses, and targeted maintenance strategies, ultimately leading to
more resilient, cost-effective and data-driven pavement management systems. Also, the
adoption of this rating system will bridge the gap between network-level monitoring and project-
level diagnostics. As a result, it empowers transportation agencies to prioritize resources
effectively, mitigate risks proactively, and extend the service life of pavement assets.
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Chapter 7. Technology Transfer and Community
Engagement and Participation (CEP) Activities

The research team has worked towards disseminating the findings of this study to the
stakeholders and engineering community through oral and poster presentations. Also, the team
is working on preparing a journal manuscript from this study. In addition, the team is planning to
conduct a technology transfer workshop to train to disseminate the findings and train DOTs on
the use of TSD data and other technologies. The research team worked closely with the
Oklahoma DOT, specifically Mr. Angel Gonzales for the successful completion of this project.
Mr. Gonzales helped to access TSD data and was involved in the progress meetings to provide
feedback. ODOT District 4 helped coordinate the collection of FFWD and other field data. The
findings are expected to be implemented by ODOT as well as DOTs in Region 6 for pavement
management and rehabilitation.
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Chapter 8. Invention Disclosures and Patents,
Publications, Presentations, Reports, Project
Website, and Social Media Listings

The research team has worked towards disseminating the findings of this study to the
stakeholders and engineering community. Till now, the team has made two oral presentations,
and one poster presentation based on the findings of this study. Also, the team is working on
preparing a journal manuscript from this study. The list of the presentation and publication is as
follows:

e Ghos, S., Mendez Larrain, M., Ali, S. A., Hobson, K., Zaman, M., 2024 Oklahoma
Transportation Research Day (OTRD), "Novel Tools for Rapid Assessment of Pavement
Conditions," Oklahoma Department of Transportation, Oklahoma City, OK. (October 15,
2024). Poster, Conference.

e Ghos, S., Mendez Larrain, M., Ali, S. A., Hobson, K., Zaman, M., 59th Annual Paving
and Transportation Conference, "Novel Tools for Rapid Assessment of Pavement
Conditions," University of New Mexico, Albuquerque, NM. (January 3, 2024). Oral
Presentation, Conference.

e Ghos, S, Ali, S. A,, Zaman, M., Mendez Larrain, M., Hobson, K., (2025), "Development
of Network-Level Thresholds for Rapid Assessment of Pavement Conditions in
Oklahoma," Under Preparation.
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Appendix A: Results of Regression Analysis
Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters

Model Features Accuracy (%) MSE R?
LinearRegression D1500 -4.1 | 3602669.4 0.0
GradientBoostingRegressor | D1500 -16.2 | 4020299.8 -0.2
DecisionTreeRegressor D1500 -52.8 | 5286723.2 -0.5
RandomForestRegressor D1500 -22.6 | 4240674.6 -0.2
KNeighborsRegressor D1500 -4.4 | 3611403.3 0.0
HuberRegressor D1500 -16.2 | 4018663.9 -0.2
LinearRegression SCI300 20.9 | 2595918.5 0.2
GradientBoostingRegressor | SCI300 81.5| 608172.9 0.8
DecisionTreeRegressor SCI300 77.7 | 732406.8 0.8
RandomForestRegressor SCI300 82.8 | 563485.6 0.8
KNeighborsRegressor SCI300 85.2 | 484603.5 0.9
HuberRegressor SCI300 16.2 | 2752271.7 0.2
LinearRegression BCI 24.9 | 2354798.3 0.2
GradientBoostingRegressor | BCI 15.1 | 2659706.1 0.2
DecisionTreeRegressor BCI -2.6 | 3217100.4 0.0
RandomForestRegressor BCI 22.1 | 2442994.6 0.2
KNeighborsRegressor BCI 35.4 | 2025920.1 0.4
HuberRegressor BCI 20.7 | 2484887.9 0.2
LinearRegression AUPP 21.7 | 2568714.2 0.2
GradientBoostingRegressor | AUPP 61.6 | 1259035.2 0.6
DecisionTreeRegressor AUPP 58.0 | 1379694.3 0.6
RandomForestRegressor AUPP 66.9 | 1087784.2 0.7
KNeighborsRegressor AUPP 81.6 | 604998.9 0.8
HuberRegressor AUPP 17.1 | 2720044.3 0.2
D1500 and

LinearRegression SCI300 24.0 | 3000965.1 0.2
D1500 and

GradientBoostingRegressor | SCI300 74.6 | 1001281.5 0.7
D1500 and

DecisionTreeRegressor SCI300 67.9 | 1267797.2 0.7
D1500 and

RandomForestRegressor SCI300 78.1 | 866227.5 0.8
D1500 and

KNeighborsRegressor SCI300 76.6 | 923410.8 0.8
D1500 and

HuberRegressor SCI300 16.9 | 3281275.9 0.2

LinearRegression D1500 and BCI 22.6 | 2573803.3 0.2
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Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters (cont.)

Model Features Accuracy MSE R?
(%)
GradientBoostingRegressor | D1500 and BCI 62.1 | 1260657.5 0.6
DecisionTreeRegressor D1500 and BCI 53.8 | 1535051.4 0.5
RandomForestRegressor D1500 and BCI 70.7 | 973881.8 0.7
KNeighborsRegressor D1500 and BCI 54.9 | 1500346.6 0.5
HuberRegressor D1500 and BCI 20.5 | 2642792.8 0.2
LinearRegression D1500 and AUPP 22.9 | 3045331.4 0.2
GradientBoostingRegressor | D1500 and AUPP 61.6 | 1517210.7 0.6
DecisionTreeRegressor D1500 and AUPP 61.6 | 1515744 .1 0.6
RandomForestRegressor D1500 and AUPP 69.4 | 1207296.5 0.7
KNeighborsRegressor D1500 and AUPP 74.9 | 991030.1 0.7
HuberRegressor D1500 and AUPP 15.8 | 3324190.5 0.2
LinearRegression SCI300 and BCI 26.7 | 2649120.9 0.3
GradientBoostingRegressor | SCI300 and BCI 78.5 | 777679.9 0.8
DecisionTreeRegressor SCI300 and BCI 74.5 | 921480.1 0.7
RandomForestRegressor SCI300 and BCI 80.5| 703582.7 0.8
KNeighborsRegressor SCI300 and BCI 75.2 | 8974124 0.8
HuberRegressor SCI300 and BCI 22.4 | 2803411.0 0.2
LinearRegression SCI300 and AUPP 21.8 | 2565428.6 0.2
GradientBoostingRegressor | SCI300 and AUPP 83.5| 541959.2 0.8
DecisionTreeRegressor SCI300 and AUPP 80.8 | 629280.8 0.8
RandomForestRegressor SCI300 and AUPP 85.2 | 485938.7 0.9
KNeighborsRegressor SCI300 and AUPP 82.0 | 591915.0 0.8
HuberRegressor SCI300 and AUPP 17.4 | 2711443.5 0.2
LinearRegression BCIl and AUPP 26.2 | 2665996.7 0.3
GradientBoostingRegressor | BCl and AUPP 60.2 | 1437108.5 0.6
DecisionTreeRegressor BCl and AUPP 58.9 | 1484014.6 0.6
RandomForestRegressor BCl and AUPP 71.0 | 1048391.0 0.7
KNeighborsRegressor BCl and AUPP 72.9 | 977248.2 0.7
HuberRegressor BCI and AUPP 21.9 | 2821855.9 0.2
LinearRegression D1500, SCI300 and BCI 29.8 | 2408466.6 0.3

66



Table A.1 Summary of Regression Analysis for FFWD E1 to TSD Deflection Parameters (cont.)

Model Features Accuracy MSE R?
(%)
GradientBoostingRegressor | D1500, SCI300 and BCI 80.7 | 660578.6 0.8
DecisionTreeRegressor D1500, SCI300 and BCI 66.9 | 1136995.6 0.7
RandomForestRegressor D1500, SCI300 and BCI 78.9 | 725295.8 0.8
KNeighborsRegressor D1500, SCI300 and BCI 71.3 | 984963.1 0.7
HuberRegressor D1500, SCI300 and BCI 26.7 | 2513329.9 0.3
LinearRegression D1500, SCI300 and AUPP 24.3 | 2990586.1 0.2
GradientBoostingRegressor | D1500, SCI300 and AUPP 66.0 | 1344598.7 0.7
DecisionTreeRegressor D1500, SCI300 and AUPP 58.7 | 1632684.6 0.6
RandomForestRegressor D1500, SCI300 and AUPP 74.5 | 1007963.6 0.7
KNeighborsRegressor D1500, SCI300 and AUPP 73.7 | 1038879.3 0.7
HuberRegressor D1500, SCI300 and AUPP 17.1 | 3273906.8 0.2
LinearRegression D1500, BCI, AUPP 28.5 | 2452997.5 0.3
GradientBoostingRegressor | D1500, BCI, AUPP 71.3 | 984305.1 0.7
DecisionTreeRegressor D1500, BCI, AUPP 65.3 | 1190724 .1 0.7
RandomForestRegressor D1500, BCI, AUPP 71.9 | 962525.7 0.7
KNeighborsRegressor D1500, BCI, AUPP 63.3 | 1258303.2 0.6
HuberRegressor D1500, BCI, AUPP 25.4 | 2557827.8 0.3
LinearRegression SCI300, BCI, AUPP 32.4 | 2441186.1 0.3
GradientBoostingRegressor | SCI300, BCI, AUPP 80.3 | 710656.7 0.8
DecisionTreeRegressor SCI300, BCI, AUPP 80.0| 721688.4 0.8
RandomForestRegressor SCI300, BCI, AUPP 78.4 | 779883.7 0.8
KNeighborsRegressor SCI300, BCI, AUPP 73.2 | 969567.7 0.7
HuberRegressor SCI300, BCI, AUPP 28.9 | 2566686.8 0.3
D1500, SCI300, BCI and
LinearRegression AUPP 40.0 | 2059612.1 04
D1500, SCI300, BCI and
GradientBoostingRegressor | AUPP 73.5| 908377.6 0.7
D1500, SCI300, BCI and
DecisionTreeRegressor AUPP 64.1 | 1232561.1 0.6
D1500, SCI300, BCI and
RandomForestRegressor AUPP 76.8 | 795760.4 0.8
D1500, SCI300, BCI and
KNeighborsRegressor AUPP 68.1 | 1095585.9 0.7
D1500, SCI300, BCI and
HuberRegressor AUPP 35.8 | 2203563.1 04
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters

Model Features Accuracy (%) | MSE R?
LinearRegression D1500 -0.3 24.5 0.0
GradientBoostingRegressor | D1500 -20.8 294 -0.2
DecisionTreeRegressor D1500 -83.6 44.8 -0.8
RandomForestRegressor D1500 -34.3 32.7 -0.3
KNeighborsRegressor D1500 -10.5 26.9 -0.1
HuberRegressor D1500 -0.2 24.4 0.0
LinearRegression SCI300 51.2 10.3 0.5
GradientBoostingRegressor | SCI300 51.7 10.2 0.5
DecisionTreeRegressor SCI300 314 14.5 0.3
RandomForestRegressor SCI300 49.5 10.6 0.5
KNeighborsRegressor SCI300 65.3 7.3 0.7
HuberRegressor SCI300 51.9 10.1 0.5
LinearRegression BCI 51.5 12.6 0.5
GradientBoostingRegressor | BCI 41.2 15.3 04
DecisionTreeRegressor BCI 10.4 23.3 0.1
RandomForestRegressor BCI 41.0 15.3 04
KNeighborsRegressor BCI 59.1 10.6 0.6
HuberRegressor BCI 51.0 12.7 0.5
LinearRegression AUPP 52.2 10.1 0.5
GradientBoostingRegressor | AUPP 534 9.8 0.5
DecisionTreeRegressor AUPP 24.2 16.0 0.2
RandomForestRegressor AUPP 45.3 11.5 0.5
KNeighborsRegressor AUPP 66.3 71 0.7
HuberRegressor AUPP 52.8 9.9 0.5
LinearRegression D1500 and SCI300 50.8 12.2 0.5
GradientBoostingRegressor | D1500 and SCI300 52.0 11.9 0.5
DecisionTreeRegressor D1500 and SCI300 34.8 16.2 0.3
RandomForestRegressor D1500 and SCI300 60.5 9.8 0.6
KNeighborsRegressor D1500 and SCI300 67.8 8.0 0.7
HuberRegressor D1500 and SCI300 52.0 11.9 0.5
LinearRegression D1500 and BCI 54.7 9.8 0.5
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters (cont.)

Model Features Accuracy (%) | MSE R?
GradientBoostingRegressor | D1500 and BCI 64.3 7.7 0.6
DecisionTreeRegressor D1500 and BCI 60.2 8.6 0.6
RandomForestRegressor D1500 and BCI 71.5 6.2 0.7
KNeighborsRegressor D1500 and BCI 69.8 6.6 0.7
HuberRegressor D1500 and BCI 54.6 9.8 0.5
LinearRegression D1500 and AUPP 53.5 11.6 0.5
GradientBoostingRegressor | D1500 and AUPP 594 10.1 0.6
DecisionTreeRegressor D1500 and AUPP 50.9 12.2 0.5
RandomForestRegressor D1500 and AUPP 66.4 8.4 0.7
KNeighborsRegressor D1500 and AUPP 70.2 7.4 0.7
HuberRegressor D1500 and AUPP 54.6 11.3 0.5
LinearRegression SCI300 and BCI 55.7 9.9 0.6
GradientBoostingRegressor | SCI300 and BCI 63.4 8.2 0.6
DecisionTreeRegressor SCI300 and BCI 59.2 9.1 0.6
RandomForestRegressor SCI300 and BCI 66.1 7.6 0.7
KNeighborsRegressor SCI300 and BCI 68.2 7.1 0.7
HuberRegressor SCI300 and BCI 55.8 9.9 0.6
LinearRegression SCI300 and AUPP 48.9 10.8 0.5
GradientBoostingRegressor | SCI300 and AUPP 55.5 94 0.6
DecisionTreeRegressor SCI300 and AUPP 48.1 11.0 0.5
RandomForestRegressor SCI300 and AUPP 57.9 8.9 0.6
KNeighborsRegressor SCI300 and AUPP 67.1 6.9 0.7
HuberRegressor SCI300 and AUPP 48.5 10.8 0.5
LinearRegression BCIl and AUPP 554 10.0 0.6
GradientBoostingRegressor | BCl and AUPP 58.9 9.2 0.6
DecisionTreeRegressor BCl and AUPP 35.8 14.4 0.4
RandomForestRegressor BCIl and AUPP 64.3 8.0 0.6
KNeighborsRegressor BCIl and AUPP 68.4 71 0.7
HuberRegressor BCIl and AUPP 55.6 10.0 0.6
LinearRegression D1500, SCI300 and BCI 54.7 9.5 0.5
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Table A2. Summary of Regression Analysis for FFWD W1 to TSD Deflection Parameters (cont.)

Model Features Accuracy (%) | MSE R?
GradientBoostingRegressor | D1500, SCI300 and BCI 55.5| 93 0.6
DecisionTreeRegressor D1500, SCI300 and BCI 413 | 123 0.4
RandomForestRegressor D1500, SCI300 and BCI 65.0| 7.3 0.6
KNeighborsRegressor D1500, SCI300 and BCI 745| 5.3 0.7
HuberRegressor D1500, SCI300 and BCI 54.6 9.5 0.5
LinearRegression D1500, SCI300 and AUPP 5431 11.3 0.5
GradientBoostingRegressor | D1500, SCI300 and AUPP 60.7| 9.8 0.6
DecisionTreeRegressor D1500, SCI300 and AUPP 5251| 11.8 0.5
RandomForestRegressor D1500, SCI300 and AUPP 66.6 8.3 0.7
KNeighborsRegressor D1500, SCI300 and AUPP 69.4 7.6 0.7
HuberRegressor D1500, SCI300 and AUPP 551 11.2 0.6
LinearRegression D1500, BCI and AUPP 54.1 9.6 0.5
GradientBoostingRegressor | D1500, BCI and AUPP 65.5| 7.2 0.7
DecisionTreeRegressor D1500, BCIl and AUPP 352 | 13.6 0.4
RandomForestRegressor D1500, BCIl and AUPP 68.7 6.6 0.7
KNeighborsRegressor D1500, BCI and AUPP 74.3 54 0.7
HuberRegressor D1500, BCI and AUPP 54 .1 9.6 0.5
LinearRegression SCI300, BCl and AUPP 56.3 9.8 0.6
GradientBoostingRegressor | SCI300, BCl and AUPP 57.7| 9.5 0.6
DecisionTreeRegressor SCI300, BCl and AUPP 370 | 141 0.4
RandomForestRegressor SCI300, BCl and AUPP 65.2 7.8 0.7
KNeighborsRegressor SCI300, BCl and AUPP 71.3| 64 0.7
HuberRegressor SCI300, BCIl and AUPP 56.4 9.8 0.6
LinearRegression D1500, SCI300, BCIl and AUPP 55.1 9.4 0.6
GradientBoostingRegressor | D1500, SCI300, BCI and AUPP 59.2 8.6 0.6
DecisionTreeRegressor D1500, SCI300, BCIl and AUPP 48.3 | 10.9 0.5
RandomForestRegressor D1500, SCI300, BCIl and AUPP 67.7 6.8 0.7
KNeighborsRegressor D1500, SCI300, BCIl and AUPP 76.2 50 0.8
HuberRegressor D1500, SCI300, BCIl and AUPP 55.1 9.4 0.6
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters

Model Features Accuracy (%) | MSE R?
LinearRegression D1500 -2.9 0.3 0.0
GradientBoostingRegressor | D1500 -2.8 0.3 0.0
DecisionTreeRegressor D1500 -38.0 0.3 -0.4
RandomForestRegressor D1500 -8.9 0.3 -0.1
KNeighborsRegressor D1500 14.0 0.2 0.1
HuberRegressor D1500 -8.5 0.3 -0.1
LinearRegression SCI300 -0.6 0.2 0.0
GradientBoostingRegressor | SCI300 -34.1 0.3 -0.3
DecisionTreeRegressor SCI300 -114.2 0.5 -1.1
RandomForestRegressor SCI300 -48.4 0.3 -0.5
KNeighborsRegressor SCI300 15.6 0.2 0.2
HuberRegressor SCI300 0.2 0.2 0.0
LinearRegression BCI 10.0 0.2 0.1
GradientBoostingRegressor | BCI -24.6 0.3 -0.2
DecisionTreeRegressor BCI -61.8 04 -0.6
RandomForestRegressor BCI -27.0 0.3 -0.3
KNeighborsRegressor BCI 7.7 0.2 0.1
HuberRegressor BCI 9.9 0.2 0.1
LinearRegression AUPP -2.1 0.2 0.0
GradientBoostingRegressor | AUPP -12.7 0.2 -0.1
DecisionTreeRegressor AUPP -70.4 0.4 -0.7
RandomForestRegressor AUPP -16.9 0.3 -0.2
KNeighborsRegressor AUPP 22.2 0.2 0.2
HuberRegressor AUPP -1.3 0.2 0.0
LinearRegression D1500 and SCI300 11.6 0.1 0.1
GradientBoostingRegressor | D1500 and SCI300 -9.3 0.2 -0.1
DecisionTreeRegressor D1500 and SCI300 -103.6 0.3 -1.0
RandomForestRegressor D1500 and SCI300 12.4 0.1 0.1
KNeighborsRegressor D1500 and SCI300 31.0 0.1 0.3
HuberRegressor D1500 and SCI300 14.6 0.1 0.1
LinearRegression D1500 and BCI -17.3 0.2 -0.2
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters (cont.)

Model Features Accuracy (%) | MSE R?
GradientBoostingRegressor | D1500 and BCI -10.3 0.2 -0.1
DecisionTreeRegressor D1500 and BCI -84.4 0.4 -0.8
RandomForestRegressor D1500 and BCI -27.1 0.3 -0.3
KNeighborsRegressor D1500 and BCI -11.2 0.2 -0.1
HuberRegressor D1500 and BCI -12.4 0.2 -0.1
LinearRegression D1500 and AUPP 11.8 0.1 0.1
GradientBoostingRegressor | D1500 and AUPP 5.3 0.2 0.1
DecisionTreeRegressor D1500 and AUPP -14.7 0.2 -0.1
RandomForestRegressor D1500 and AUPP 25.7 0.1 0.3
KNeighborsRegressor D1500 and AUPP 35.9 0.1 04
HuberRegressor D1500 and AUPP 14.8 0.1 0.1
LinearRegression SCI300 and BCI 29.8 0.2 0.3
GradientBoostingRegressor | SCI300 and BCI 34.0 0.2 0.3
DecisionTreeRegressor SCI300 and BCI 4.0 0.2 0.0
RandomForestRegressor SCI300 and BCI 41.5 0.1 04
KNeighborsRegressor SCI300 and BCI 46.7 0.1 0.5
HuberRegressor SCI300 and BCI 28.7 0.2 0.3
LinearRegression SCI300 and AUPP 32.6 0.1 0.3
GradientBoostingRegressor | SCI300 and AUPP 19.1 0.2 0.2
DecisionTreeRegressor SCI300 and AUPP -35.6 0.3 -0.4
RandomForestRegressor SCI300 and AUPP 15.8 0.2 0.2
KNeighborsRegressor SCI300 and AUPP 22.7 0.2 0.2
HuberRegressor SCI300 and AUPP 32.7 0.1 0.3
LinearRegression BCI and AUPP 29.6 0.2 0.3
GradientBoostingRegressor | BCl and AUPP 45.9 0.1 0.5
DecisionTreeRegressor BCIl and AUPP -9.4 0.3 -0.1
RandomForestRegressor BCIl and AUPP 39.7 0.1 04
KNeighborsRegressor BCl and AUPP 41.7 0.1 0.4
HuberRegressor BCl and AUPP 28.5 0.2 0.3
LinearRegression D1500, SCI300 and BCI 3.3 0.2 0.0
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Table A3. Summary of Regression Analysis for FFWD W6 to TSD Deflection Parameters (cont.)

Model Features Accuracy (%) | MSE R?
GradientBoostingRegressor | D1500, SCI300 and BCI 95| 0.2 0.1
DecisionTreeRegressor D1500, SCI300 and BCI -35.8 0.3 -0.4
RandomForestRegressor D1500, SCI300 and BCI 21.3 0.2 0.2
KNeighborsRegressor D1500, SCI300 and BCI 20.3 0.2 0.2
HuberRegressor D1500, SCI300 and BCI 3.4 0.2 0.0
LinearRegression D1500, SCI300 and AUPP 33.5| 041 0.3
GradientBoostingRegressor | D1500, SCI300 and AUPP 14.1 0.1 0.1
DecisionTreeRegressor D1500, SCI300 and AUPP -329 ] 0.2 -0.3
RandomForestRegressor D1500, SCI300 and AUPP 37.0 0.1 0.4
KNeighborsRegressor D1500, SCI300 and AUPP 34.0 0.1 0.3
HuberRegressor D1500, SCI300 and AUPP 32.8 0.1 0.3
LinearRegression D1500, BCI and AUPP 2.9 0.2 0.0
GradientBoostingRegressor | D1500, BCI and AUPP 144 0.2 0.1
DecisionTreeRegressor D1500, BCI and AUPP 214 0.3 -0.2
RandomForestRegressor D1500, BCIl and AUPP 22.5 0.2 0.2
KNeighborsRegressor D1500, BCI and AUPP 15.3] 0.2 0.2
HuberRegressor D1500, BCIl and AUPP 3.9 0.2 0.0
LinearRegression SCI300, BCl and AUPP 30.1 0.2 0.3
GradientBoostingRegressor | SCI300, BCl and AUPP 376 | 041 0.4
DecisionTreeRegressor SCI300, BCl and AUPP -16.8 0.3 -0.2
RandomForestRegressor SCI300, BCl and AUPP 41.3 0.1 0.4
KNeighborsRegressor SCI300, BCl and AUPP 415 0.1 04
HuberRegressor SCI300, BCl and AUPP 28.9 0.2 0.3
LinearRegression D1500, SCI300, BCl and AUPP 3.5 0.2 0.0
GradientBoostingRegressor | D1500, SCI300, BCl and AUPP 43 0.2 0.0
DecisionTreeRegressor D1500, SCI300, BCIl and AUPP -28.7 0.3 -0.3
RandomForestRegressor D1500, SCI300, BCIl and AUPP 22.7 0.2 0.2
KNeighborsRegressor D1500, SCI300, BCIl and AUPP 15.7 0.2 0.2
HuberRegressor D1500, SCI300, BCIl and AUPP 3.2 0.2 0.0
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters

Model Features Accuracy (%) MSE R?
LinearRegression RD 6.9 | 3361027.8 0.1
GradientBoostingRegressor | RD -6.7 | 3852809.2 -0.1
DecisionTreeRegressor RD -16.2 | 4195367.2 -0.2
RandomForestRegressor RD -9.4 | 3949513.3 -0.1
KNeighborsRegressor RD 14.5 | 3086500.8 0.1
HuberRegressor RD 4.9 | 3433876.3 0.0
LinearRegression MPD 20.5 | 2376920.8 0.2
GradientBoostingRegressor | MPD 7.9 | 2755262.3 0.1
DecisionTreeRegressor MPD 4.5 | 2855296.9 0.0
RandomForestRegressor MPD 8.7 | 2731707.9 0.1
KNeighborsRegressor MPD 10.7 | 2671732.4 0.1
HuberRegressor MPD 19.0 | 2422029.3 0.2
LinearRegression %CWP -3.7 | 4044338.4 0.0
GradientBoostingRegressor | %CWP 38.1 | 2411803.3 0.4
DecisionTreeRegressor %CWP 36.1 | 2491951.0 04
RandomForestRegressor %CWP 40.6 | 2316457.2 0.4
KNeighborsRegressor %CWP 41.3 | 2289104.5 0.4
HuberRegressor %CWP -11.2 | 4337394.0 -01
LinearRegression %CNWP 5.8 | 2959374.9 0.1
GradientBoostingRegressor | %CNWP -18.9 | 3735028.6 -0.2
DecisionTreeRegressor %CNWP -31.5 | 4129269.9 -0.3
RandomForestRegressor %CNWP -15.5 | 3625611.8 -0.2
KNeighborsRegressor %CNWP 14.9 | 2673401.5 0.1
HuberRegressor %CNWP 2.2 | 3072015.2 0.0
LinearRegression RD and MPD 20.8 | 2860123.2 0.2
GradientBoostingRegressor | RD and MPD 22.1| 28133131 0.2
DecisionTreeRegressor RD and MPD 34.8 | 2355110.2 0.3
RandomForestRegressor RD and MPD 41.2 | 2124008.8 04
KNeighborsRegressor RD and MPD 40.7 | 2140338.6 0.4
HuberRegressor RD and MPD 19.7 | 2898788.3 0.2
LinearRegression RD and %CWP 10.8 | 3048954.9 0.1
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters

(cont.)

Model Features Accuracy (%) MSE R?
GradientBoostingRegressor | RD and %CWP 58.9 | 1406018.0 0.6
DecisionTreeRegressor RD and %CWP 37.9 | 2123096.5 0.4
RandomForestRegressor RD and %CWP 54.1 | 1568488.2 0.5
KNeighborsRegressor RD and %CWP 49.2 | 1736423.9 0.5
HuberRegressor RD and %CWP 8.9 | 3114829.2 0.1
LinearRegression RD and %CNWP 17.4 | 3092899.6 0.2
GradientBoostingRegressor | RD and % CNWP 28.6 | 2675620.6 0.3
DecisionTreeRegressor RD and %CNWP -29.4 | 4847579.3 -0.3
RandomForestRegressor RD and %CNWP 45.3 | 2049376.8 0.5
KNeighborsRegressor RD and %CNWP 51.8 | 1804647.9 0.5
HuberRegressor RD and %CNWP 15.2 | 3177521.3 0.2
LinearRegression MPD and %CWP 20.1 | 3117387.4 0.2
GradientBoostingRegressor | MPD and %CWP 46.1 | 2102083.2 0.5
DecisionTreeRegressor MPD and %CWP 24.1 | 2957798.7 0.2
RandomForestRegressor MPD and %CWP 54.7 | 1765462.1 0.5
KNeighborsRegressor MPD and %CWP 42.6 | 2237970.3 0.4
HuberRegressor MPD and %CWP 15.5 | 3293019.7 0.2
LinearRegression MPD and %CNWP 24.5 | 2369932.4 0.2
GradientBoostingRegressor | MPD and %CNWP 36.0 | 2010504.5 04
DecisionTreeRegressor MPD and %CNWP 4.9 | 29862011 0.0
RandomForestRegressor MPD and %CNWP 33.8 | 2080276.0 0.3
KNeighborsRegressor MPD and %CNWP 23.3 | 2408430.1 0.2
HuberRegressor MPD and %CNWP 21.9 | 2452351.3 0.2
LinearRegression %CWP and %CNWP 3.4 | 3225546.5 0.0
GradientBoostingRegressor | %CWP and %CNWP 54.3 | 1526204.2 0.5
DecisionTreeRegressor %CWP and %CNWP 36.0 | 2138060.8 0.4
RandomForestRegressor %CWP and %CNWP 53.8 | 1542259.5 0.5
KNeighborsRegressor %CWP and %CNWP 36.1 | 2134756.0 04
HuberRegressor %CWP and %CNWP 1.2 | 3299966.6 0.0
LinearRegression RD, MPD and %CWP 19.2 | 2761987.6 0.2
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Table A4. Summary of Regression Analysis for FFWD E1 to Pave 3D 8K Surface Parameters

(cont.)

Model Features Accuracy (%) MSE R?
GradientBoostingRegressor | RD, MPD and %CWP 53.6 1587673.2 | 0.5
DecisionTreeRegressor RD, MPD and %CWP 44.2 1907180.1 | 0.4
RandomForestRegressor RD, MPD and %CWP 55.8 1511847.5 | 0.6
KNeighborsRegressor RD, MPD and %CWP 48.2 1771638.8 | 0.5
HuberRegressor RD, MPD and %CWP 19.0 2769175.2 | 0.2
LinearRegression RD, MPD and %CNWP 26.5 2754030.0 | 0.3
GradientBoostingRegressor | RD, MPD and %CNWP 66.8 1244004.7 | 0.7
DecisionTreeRegressor RD, MPD and %CNWP 7.3 3473655.3 | 0.1
RandomForestRegressor RD, MPD and %CNWP 58.8 1541758.4 | 0.6
KNeighborsRegressor RD, MPD and %CNWP 61.4 1447715.7 | 0.6
HuberRegressor RD, MPD and %CNWP 24.8 2818743.3 | 0.2
LinearRegression RD, %CWP and %CNWP 32.1 1755093.3 | 0.3
GradientBoostingRegressor | RD, %CWP and %CNWP 52.5 1227359.0 | 0.5
DecisionTreeRegressor RD, %CWP and %CNWP 15.8 2177503.8 | 0.2
RandomForestRegressor RD, %CWP and %CNWP 50.0 1291869.8 | 0.5
KNeighborsRegressor RD, %CWP and %CNWP 42.3 1491557.0 | 0.4
HuberRegressor RD, %CWP and %CNWP 31.7 1767086.0 | 0.3
LinearRegression MPD, %CWP and %CNWP 17.4 27604814 | 0.2
GradientBoostingRegressor | MPD, %CWP and %CNWP 57.8 1411266.6 | 0.6
DecisionTreeRegressor MPD, %CWP and %CNWP -1.8 3401835.1 | 0.0
RandomForestRegressor MPD, %CWP and %CNWP 54.9 1508067.0 | 0.5
KNeighborsRegressor MPD, %CWP and %CNWP 41.5 1952531.8 | 0.4
HuberRegressor MPD, %CWP and %CNWP 171 2770361.0 | 0.2
LinearRegression RD, MPD, %CWP and %CNWP 33.9 1708476.9 | 0.3
GradientBoostingRegressor | RD, MPD, %CWP and %CNWP 455 1408677.6 | 0.5
DecisionTreeRegressor RD, MPD, %CWP and %CNWP 7.7 2387694.8 | 0.1
RandomForestRegressor RD, MPD, %CWP and %CNWP 60.5 1022178.8 | 0.6
KNeighborsRegressor RD, MPD, %CWP and %CNWP 61.5 996729.5 | 0.6
HuberRegressor RD, MPD, %CWP and %CNWP 35.3 1673160.3 | 0.4
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