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Abstract

This report examines privacy-preserving traffic management, explainable artificial intelligence for autonomous
systems, and cybersecurity in AV control. The work addresses challenges in Intelligent Transportation Sys-
tems (ITS) and autonomous vehicles through four related contributions. We present a secure and privacy-
preserving traffic forecasting framework that combines Inner Product Functional Encryption (IPFE) with
k-anonymity mechanisms to protect driver location data while enabling accurate traffic flow prediction us-
ing a hybrid deep learning architecture. We use Concept Relevance Propagation (CRP), a bias-resistant
explainable Al technique, to provide transparent concept-level explanations for traffic detection models in
autonomous vehicles, improving trust and interpretability. We use CRP-generated explanations to automate
dataset annotation for perception models, reducing manual labeling effort while producing datasets that
improve model performance. We also present an explainability-guided detection framework for trojan back-
door attacks in regression-based AV steering networks, achieving high detection rates for visible triggers and
strong resilience against stealthy invisible variants. These contributions address challenges in data privacy,
model transparency, and system security while showing practical applicability for real-world deployment.



Executive Summary

This report synthesizes four research contributions addressing critical challenges in Intelligent Transporta-
tion Systems (ITS) and autonomous vehicle (AV) technologies under the U.S. Department of Transporta-
tion’s University Transportation Centers Program. The overarching theme is the development of robust,
transparent, and secure Al-driven solutions that balance operational effectiveness with privacy protection,
explainability, and cybersecurity. Chapter 2 presents a novel framework that integrates Inner Product
Functional Encryption (IPFE) with k-anonymity to enable secure traffic forecasting while protecting sensi-
tive driver location data, achieving high forecasting accuracy while maintaining strong privacy guarantees
against collusion attacks. Chapter 3 introduces Relevance-Based Explainable Al (RB-XAI) using Concept
Relevance Propagation (CRP) to provide transparent, concept-level explanations for traffic detection models
in autonomous systems, enhancing trust and enabling regulatory compliance. Chapter 4 extends XAl appli-
cations to automate dataset annotation for perception models, significantly reducing manual labeling effort
while producing annotations that yield superior model performance. Chapter 5 presents an explainability-
guided framework for detecting trojan backdoor attacks in regression-based AV steering networks, achieving
high detection rates for visible triggers and strong resilience against stealthy invisible variants. These con-
tributions address DOT strategic priorities by enabling proactive congestion management while protecting
citizen privacy, enhancing transparency and trust in autonomous systems, reducing barriers to perception
model development, and strengthening cybersecurity for safety-critical applications.
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Chapter 1: Introduction

1.1 Motivation and DOT Relevance

Traffic congestion remains a critical challenge for modern transportation systems, with profound impacts on
productivity, quality of life, economic activity, and the environment. Prolonged travel times, wasted fuel,
increased operational costs, and heightened carbon emissions highlight the inadequacy of traditional con-
gestion mitigation strategies in keeping pace with urbanization and the rapid growth of vehicle ownership.
Recent data analytics underscore the severity of the problem, with major U.S. cities experiencing annual
productivity losses exceeding $1,800 per driver and over 100 hours wasted in traffic. These trends reinforce
the urgency of deploying innovative congestion management strategies that move beyond infrastructure ex-
pansion or traditional punitive measures.

Intelligent Transportation Systems (ITS) have emerged as the cornerstone of this effort, enabling real-
time data collection, analysis, and decision-making through advances in sensing, communications, and ar-
tificial intelligence. Within ITS, Vehicular Ad-Hoc Networks (VANETS) are particularly promising, as this
technology leverages vehicle onboard computing and vehicle-to-infrastructure (V2I) communication to en-
hance traffic management, improve road safety, and optimize overall transportation efficiency. However,
the very data required for effective traffic forecasting—the spatiotemporal routes of drivers—are highly
sensitive. The temporal mobility information of each driver qualifies as behavioral biometric signatures,
uniquely identifying individuals and exposing personal routines. Consequently, ensuring privacy protection
in VANET-based traffic management is not only a technical necessity but also a prerequisite for user trust
and system adoption.

Simultaneously, the deployment of artificial intelligence in mission-critical sectors like transportation
has enabled Autonomous Vehicles (AVs) to leverage deep learning-based models for real-time perception
and control. AVs operate across four key phases: perception, localization, planning, and control, relying on
sensors like LIDAR and RADAR. The perception phase is fundamental, involving complex deep learning
tasks like road surface extraction and object recognition, which require extensive, detailed dataset annota-
tion. However, despite significant advancements in AV technology, complete public acceptance remains a
challenge due to the “black box” nature of their decision-making processes. This opacity undermines trust
and raises concerns about transparency, regulatory compliance, accountability, safety, and security, issues
that have become even more pressing in light of recent AV incidents.



1.2 Traffic Forecasting and Privacy-Preserving Systems

Short-term traffic flow forecasting primarily focuses on predicting traffic flow conditions in a few or hun-
dreds of minutes. As a prominent research area in ITS, traditional short-term traffic flow forecast methods
often face limitations in accuracy and reliability. Statistical models or early deep learning approaches like
Stacked Autoencoder (SAE), Convolutional Neural Network (CNN), or Long Short-Term Memory (LSTM)
have struggled to fully capture the nonlinear, stochastic relationship between traffic flow and time influenced
by environmental and behavioral variability. While several works propose hybrid deep learning algorithms
to jointly model spatial, temporal, and periodic features of traffic flow prediction, they often treat these
aspects independently and, critically, neglect the privacy of the underlying driver data.

To address these concerns, Chapter[2]presents a secure and efficient privacy-preserving traffic forecasting
framework that integrates advanced cryptographic mechanisms with deep learning. The proposed scheme
divides the traffic management area into cells (geographic regions), each assigned a unique identification
number, where drivers report encrypted location data to the Traffic Management Center (TMC). Utilizing
functional encryption, the TMC aggregates the encrypted location data while revealing only minimal infor-
mation, which serves as input to a multilayer deep learning model for traffic flow prediction. This model
identifies and extracts hidden characteristics within the input traffic flow data, constructing a traffic density
map that highlights probable regions of congestion. Importantly, the encrypted reports and decryption uti-
lize functional encryption keys, k-anonymous reporting, and safeguards against collusion attacks, ensuring
that no subset of entities can compromise driver privacy.

1.3 Explainable AI for Autonomous Vehicle Perception

The emerging field of eXplainable Artificial Intelligence (XAI) presents an opportunity to make Al decisions
in AVs understandable to humans. However, XAl techniques are not widely adopted in the AV sector,
leading to missed opportunities to improve transparency and safety within AV systems. While some studies
have surveyed the advantages, challenges, and methods of integrating different XAl techniques into the
AV domain, the focus of contemporary research on XAl for autonomous systems has primarily centered
on explaining the behavior of models in tasks like semantic segmentation and object detection, utilizing
traditional attribution-based XAI techniques like LIME, SHAP, Saliency Maps, and GRAD-CAM.

Chapter [3] addresses this gap by employing Concept Relevance Propagation (CRP), a bias-resistant
relevance-based XAl algorithm, to provide transparent concept-level explanations for the behavior of traf-
fic detection models used in AVs for traffic perception. CRP, an advanced approach extending Layerwise
Relevance Propagation (LRP), goes beyond traditional attribution maps by generating explanations that au-
tomatically identify and visualize relevant concepts within the input space. This insight sheds light on the
crucial latent concepts and areas responsible for the behavior of traffic detection models used in AVs, aiming
to boost transparency, understanding, and trust in autonomous systems.



1.4 Automated Dataset Annotation via Explainable Al

As Al advances, building efficient models requires extensive, diverse datasets, increasing the need for an-
notated data. Manual annotation is time-consuming, costly, and often prone to inconsistencies, especially
when facing real-world complexities. While companies offer data annotation and management services that
streamline computer vision workflows, these services are costly and still depend on manually annotated
datasets for pre-training, especially when applying auto-labeling features to new, custom datasets, where
performance remains minimal.

Chapter [] addresses the dual challenge of transparency and automated annotation in AV perception
model development by introducing a novel framework leveraging the bias-resistant Concept Relevance
Propagation (CRP) XAI technique. This framework enhances model interpretability and automates dataset
annotation for perception tasks. By integrating Relevance Maximization, CRP provides transparent expla-
nations by pinpointing highly critical concepts and input regions used for network encodings that influence
object detection. Additionally, the approach combines CRP with semi-supervised learning to generate high-
quality automated annotations, significantly streamlining the annotation process and reducing manual effort.
Results show that models trained on auto-annotated data achieve higher mAP scores with lower latency than
models trained on pre-annotated datasets, offering a faster, more cost-effective solution for perception model
development.

1.5 Functional Encryption and Cryptographic Components

The privacy-preserving traffic forecasting framework presented in Chapter [2] relies on advanced crypto-
graphic mechanisms, specifically Inner Product Functional Encryption (IPFE). Functional encryption allows
for the encryption of messages while enabling a designated decryptor to compute the output of a function
on the encrypted message using a decryption key without being able to learn the message itself. IPFE, a
specific type of functional encryption, allows for the computation of the inner product of two encrypted
vectors, enabling secure aggregation of driver location data while preserving individual privacy.

The cryptographic design incorporates k-anonymity mechanisms, where each driver encrypts their true
location cell along with k-1 dummy cells, embedding the actual location within a broader anonymity set.
This approach, combined with fresh random nonces in every encryption, enforces semantic security and
prevents ciphertext correlation or trajectory inference. The scheme guarantees confidentiality of individ-
ual location reports while still enabling the TMC to perform aggregate traffic forecasting, establishing a
foundation for trustworthy, privacy-preserving traffic management systems.

1.6 Trojan Detection in Autonomous Vehicle Control Systems

The deployment of artificial intelligence in critical infrastructure systems has enabled AVs to use sophisti-
cated deep neural networks that fuse inputs from LiDAR, RADAR, vision, and inertial sensors for real-time
steering control. While this data-driven autonomy improves adaptability in dynamic traffic scenes, it also
broadens the system’s attack surface. Among these threats, trojan backdoor attacks—stealthy malicious
manipulations embedded during training—can covertly hijack model behavior, forcing dangerous trajec-



tory deviations. Exacerbating this risk is the opaque nature of DNN systems, where non-intuitive latent
representations obscure effective analysis and regulatory auditing.

Chapter [5] presents an explainability-guided detection framework designed for regression-based AV
steering control systems, addressing security gaps in existing defenses. The approach repurposes Grad-
CAM and Concept Relevance Propagation (CRP) as active security tools, generating multi-level spatial and
conceptual attribution maps that expose the rationale behind steering decisions. By analyzing explanations
from benign and trojaned samples across varying poisoning rates, the framework reveals telltale indica-
tors of backdoor compromise like saliency drift, spatial deformation, and conceptual divergence. These
explanation-derived features empower lightweight binary classifiers that detect trojaned behavior with high
fidelity, without requiring prior knowledge of trigger patterns or access to clean reference datasets.

1.7 Research Contributions Across Chapters

This report presents a comprehensive investigation into privacy-preserving traffic management, explainable
artificial intelligence for autonomous systems, and cybersecurity in AV control. The contributions span four
interconnected research areas:

* Privacy-Preserving Traffic Forecasting: A novel framework combining functional encryption with
deep learning for secure, accurate traffic flow prediction while protecting driver location privacy.

* Explainable AI for Traffic Detection: Application of Concept Relevance Propagation (CRP) to
provide transparent, concept-level explanations for traffic detection models in autonomous vehicles.

* Automated Dataset Annotation: Leveraging XAl techniques to automate dataset annotation for
perception models, significantly reducing manual labeling effort while maintaining high quality.

* Trojan Detection via Explainability: An explainability-guided framework for detecting trojan back-
door attacks in regression-based AV control systems, bridging the gap between classification-oriented
detectors and continuous-output control models.

1.8 Report Organization

The remainder of this report is organized as follows. Chapter [2] presents the privacy-preserving traffic fore-
casting framework using functional encryption and deep learning. Chapter [3]describes the relevance-based
explainable Al approach for traffic detection in autonomous systems. Chapter[d|details the automated dataset
annotation framework leveraging explainable AI. Chapter [5|presents the explainability-guided trojan detec-
tion framework for AV control systems. Finally, Chapter [6] synthesizes the cross-chapter insights, empha-
sizing shared themes, privacy-utility tradeoffs, machine learning contributions, cryptographic innovations,
and real-world DOT impact.



Chapter 2: Privacy-Preserving Traffic Forecasting Us-
ing Functional Encryption and Deep Learn-
ing

2.1 Introduction

Traffic congestion remains a critical challenge for modern transportation systems, with profound impacts
on productivity, quality of life, economic activity, and the environment. Prolonged travel times, wasted
fuel, increased operational costs, and heightened carbon emissions[39]] highlight the inadequacy of tradi-
tional congestion mitigation strategies in keeping pace with urbanization and the rapid growth of vehicle
ownership. Recent Inrix location-based data analytic report[47], underscore the severity of the problem,
with major U.S. cities like Chicago and New York being the top-ranked cities in 2024, experiencing annual
productivity losses exceeding $1,800 per driver and over 100 hours wasted in traffic. These trends reinforce
the urgency of deploying innovative congestion management strategies that move beyond infrastructure ex-
pansion or traditional punitive measures.

With this challenge, Intelligent Transportation Systems (ITS) have emerged as the cornerstone of this
effort[87]], enabling real-time data collection, analysis, and decision-making through advances in sensing,
communications, and artificial intelligence. Within ITS, Vehicular Ad-Hoc Networks (VANETS) are par-
ticularly promising, as this technology leverages vehicle onboard computing and vehicle-to-infrastructure
(V2I) communication, as shown in Fig. 2.1] to enhance traffic management, improve road safety, and op-
timize overall transportation efficiency[21]]. Thus, contemporary research focuses on designing preventive
techniques that take advantage of VANET to reduce congestion[52], [81]], [112]], [114]]. Unlike conventional
navigation applications that are reactive to congestion and rely on potentially biased user reports, VANET
based traffic management systems allow for proactive predictive modeling based on continuous real-time
location updates from participating drivers to alleviate traffic congestion issues. This capability enables
traffic management centers (TMCs) to analyze and aggregate timely traffic patterns from driver location
reports to construct dynamic density maps, identify emerging congestion hotspots, and proactively guide
drivers through alternative route recommendations before bottlenecks materialize, thus improving traffic
flow. However, the very data required for this traffic forecast, the spatiotemporal routes of drivers, are highly
sensitive. The temporal mobility information of each driver qualifies as behavioral biometric signatures, just
as fingerprints[112]]; they often uniquely identify individuals and expose personal routines. Consequently,
knowing this temporal route information raises privacy concerns, with implications ranging from profiling
by third-party entities such as insurers or travel brokers to exploitation by malicious actors. Therefore, en-



suring privacy protection in VANET based traffic management is not only a technical necessity but also a
prerequisite for user trust and system adoption. Moreover, it should be noted that various trials have been
explored to minimize urban congestion, such as enhancing transportation infrastructure, charging traffic
fines, offering route information, enforcing traffic regulations, and boosting public transportation[68]], [93]].
Despite these efforts, several factors contribute to the persistence of congestion in urban areas. These in-
clude rapid population growth, increased vehicle ownership, and the lure of urban centers for economic
opportunities. Yet, addressing urban congestion while preserving the drivers’ privacy remains a complex
and ongoing challenge.

Also, short-term traffic flow forecast primarily focuses on predicting traffic flow condition in a few or
hundreds of minutes. As a prominent research area in ITS, traditional short-term traffic flow forecast meth-
ods often face limitations in accuracy and reliability. For instance, statistical models or early deep learning
(DL) approaches like Stacked Autoencoder (SAE), Convolutional Neural Network (CNN) or Long Short
Term Memory (LSTM)[28], [46], [64]], [69], [117]], have struggled to fully capture the nonlinear, stochastic
relationship between traffic flow and time influenced by environmental and behavioral variability. While
several works propose hybrid DL algorithms to jointly model spatial, temporal, and periodic features of
traffic flow prediction, they often treat these aspects independently and, critically, neglect the privacy of the
underlying driver data.

To address these concerns, we propose a secure and efficient privacy-preserving traffic forecasting
framework that integrates advanced cryptographic mechanisms with deep learning. Our proposed scheme
divides the traffic management area into cells (geographic regions) each assigned a unique identification
number (ID), where drivers report encrypted location data to the TMC. Utilizing functional encryption (FE),
the TMC then aggregates the encrypted location data while revealing only the minimal information, this
serves as input to our multilayer DL model for traffic flow prediction. This model identifies and extracts
hidden characteristics within the input traffic flow data, constructing a traffic density map (i.e. heat map) that
highlights probable regions of congestion. Drivers can then reroute their journey to avoid these regions. Im-
portantly, the encrypted reports and decryption performed within the scheme utilizes a variety of functional
encryption keys, k-anonymous reporting, and a single decryption key, incorporating safeguards against col-
lusion attacks, ensuring that no subset of entities can compromise driver privacy by combining partial keys
or ciphertexts. The proposed holistic collusion-resistant research bridges a significant gap in designing an
efficient VANET traffic management system, particularly in major and mid-sized cities experiencing rapid
urbanization and traffic congestion. The primary contributions of this work are enumerated as follows:

1. We propose a novel privacy-preserving location reporting scheme for traffic management systems,
based on Inner Product Functional Encryption (IPFE)[14]]. This scheme incorporates advanced func-
tional encryption, k-anonymity and decryption techniques to safeguard the privacy of driver route
information, while allowing access to specific encrypted data. Consequently, this approach maintains
the confidentiality of sensitive data, while facilitating the prediction of future traffic congestion and
enabling the creation of accurate traffic forecast density maps.

2. We developed a DL-based model for predicting traffic flow, integrating a hybrid architecture that
combines Convolutional Long Short-Term Memory (Conv-LSTM) to capture spatial and short-term
temporal dependencies, Bidirectional LSTM (Bi-LSTM) to extract long-term periodic trends, and a
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Figure 2.1: Conceptual framework of Vehicular Ad-hoc Networks.

Squeeze-and-Excitation (SE) module to enhance feature representation. Together, these components
enable accurate modeling of complex traffic dynamics.

3. The proposed scheme was rigorously evaluated using both synthetic and real-world traffic data. This
two stage evaluation entails: measuring the efficiency, overhead, and privacy guarantees of the encryption-
based reporting scheme, including resistance to collusion, and assessing the forecasting performance
of the hybrid model against both historical and contemporary research baselines.

The subsequent sections of this chapter are structured as follows: Section II reviews literature, while
Section III outlines the system models and the design objectives. Section IV details the preliminaries, while
section V presents a thorough overview of our proposed privacy-preserving traffic forecast system. The
privacy and security analysis and performance evaluation are provided in sections VI and VII, respectively.
Finally, Section VIII summarizes the conclusions drawn from our study.

2.2 Related Work

2.2.1 Privacy-Preserving Route Reporting

Recent advancements in literature have introduced a variety of privacy-preserving route reporting mecha-
nisms for ITS. Most of these studies utilize pseudonyms, homomorphic encryption (HE), differential privacy
(DP) and k-anonymous algorithms, further enhanced by blockchain technologies to bolster data integrity and
privacy. These innovations, detailed in studies[41]], [50], [[60], [80], [113]], aim to enhance data integrity and
privacy. Furthermore, other traffic management techniques leverage transferable Federated Learning (FL)
and Graph Convolutional Network (GCN) approaches[101]], for crowdsensed data, have emerged as
cutting-edge solutions for addressing the challenges of data scarcity and improving traffic management ef-
ficiency while safeguarding the privacy of crowdsourced data in ITS. While these strategies significantly
contribute to preserving user identity and sensitive information protection, they encounter notable limita-
tions including scalability issues, system complexity, blockchain overhead, heightened security vulnerabil-
ities, and dependency on internet connectivity. Moreover, these strategies may incur substantial costs and
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present considerable barriers during their adoption and integration within the existing traffic management
infrastructure. As such, while promising, these schemes may fall short in addressing the nuanced demands
of dynamic, real-time traffic management scenarios, underscoring the need for continued innovation and
adaptation in this rapidly evolving field.

2.2.2 Deep Learning for Traffic Forecasting

Traffic flow forecasting initially included three primary model types: parametric, non-parametric, and hy-
brid. Parametric models like ARIMA excel in analyzing time series data for traffic forecasting on ex-
pressways and urban roads[38]], [54]], with innovations such as Kohonen-ARIMA (KARIMA)[100] sub-
set ARIMA[53]], and seasonal ARIMA[104]] enhancing their precision for nonlinear data. Non-parametric
models, including K-Nearest Neighbor (KNN) and Support Vector Regression (SVR)[30], adapt well to
complex data relationships but can face optimization hurdles and susceptibility to local minima.. Hybrid
models combine the strengths of both, using techniques from ARIMA, Empirical Mode Decomposition
(EMD), Singular Value Decomposition (SVD), and Neural Networks (NNs) to achieve superior accuracy
and robustness in predicting traffic flow([72]], [96]]. DL further advances traffic flow prediction with Lv et
al.[64] showcasing the effectiveness of Stacked Autoencoders (SAEs) in surpassing traditional methods like
Support Vector Machines (SVMs) and Feedforward Neural Networks (FNNs) in estimating traffic flows.
DL models in traffic flow forecasting, can be segmented into short-term, long-term, and hybrid models.
For short-term predictions, DL models incorporating CNNs, GCNs, and their variants have been effective
in capturing spatial-temporal traffic patterns[|66]], [67], [69]], [[LO2]], [115]], yet they struggle with temporal
sequence data, where past information crucially predicts future outcomes. The introduction of LSTM net-
works by Tian et al.[98] highlighted their superiority in capturing temporal dynamics, paving the way for
subsequent variants[|63]], [[116] that further illustrate LSTMs’ proficiency in long-term forecasting. However,
these models often overlook the impact of road network layouts. Hybrid models[20], [117] merging CNNs
for spatial insight and LSTMs for temporal analysis have markedly improved traffic prediction, merging the
strengths of both to enhance traffic management. Nonetheless, the success of these sophisticated models
hinges on the quality and availability of traffic data. The process of data collection and analysis, especially
from motorists and connected vehicles, raises significant user privacy and data security concerns, necessi-
tating stringent data protection protocols that adds complexity to these forecasting systems.

Despite the scarcity or limited endeavors in both research and development to fully address the dual
challenges of ensuring user privacy and data security in traffic data collection and creating dependable traf-
fic forecasting systems, existing studies offer promising directions. For instance, Xia et al. [107] present
a system that combines GCN with FL for modeling traffic patterns. This approach utilizes GCN for iden-
tifying spatial dependencies in traffic data and employs FL for privacy-preserving collaborative learning
without sharing raw data. Though ingenuous, this innovative system grapples with hurdles, including scala-
bility issues, communication bottlenecks, susceptibility to adversarial threats, integration complexities with
existing systems, and limited adaptability across different environments, highlighting the need for further re-
search. To overcome the limitations identified in existing research and offer a holistic solution, we introduce
a novel, lightweight privacy-preserving traffic forecasting system. Our system uniquely leverages functional
encryption based on cryptography for scalable, internet-independent, and efficient privacy-preserving solu-
tion. It enables intricate encryption and computation on encrypted traffic data, safeguarding data security
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and privacy without compromise. Further enriching our solution, we incorporate a hybrid Conv-LSTM
and Bi-LSTM model with an SE module, enhancing the extraction and analysis of crucial temporal-spatial
dynamics, alongside short-term and long-term traffic patterns. This approach significantly boosts the fore-
cast accuracy and precision, setting a new benchmark for traffic forecasting systems in terms of privacy
preservation and operational efficiency with exceptional forecast reliability.

2.3 System Models and Design Objectives

This section provides an overview of the system model, which includes the network model, threat model,
and the proposed scheme’s design goals.

2.3.1 Network Model

As shown in Fig.[2.2] our considered network model includes three main entities: the vehicle-side (drivers),
traffic management center (TMC), and a key distribution center (KDC). The role of each entity is described
below.

* Drivers (D). As primary components of the traffic management system, each vehicle D sends its
encrypted location information periodically to the TMC. Communication between drivers and the
TMC is either direct or indirect through a gateway (Roadside unit). A setof D,D = {D;,1 <i<|D|},
form the network.

e TMC: As the central control and monitoring hub, the TMC uses encrypted location information from
drivers for traffic flow analysis, congestion detection, and route planning in real time.

* KDC: The KDC is a crucial offline entity responsible for preserving secure communication and data
privacy by providing drivers D and the TMC, respectively, with unique encryption and functional
decryption keys.

2.3.2 Threat Model

We adopt an honest but curious adversarial model for our privacy-preserving traffic management system,
involving three entities: the KDC, the TMC, and the Drivers. The KDC functions as an offline, setup-only
authority responsible for initializing cryptographic keys. The TMC is assumed to compute traffic aggregates
correctly but may act curiously by attempting to infer sensitive information such as driver locations, trajecto-
ries, or mobility patterns. Drivers are generally honest in submitting anonymized traffic reports (the specific
anonymization mechanism lies outside the scope of this chapter), yet adversarial behavior may arise if a sub-
set of drivers colludes with one another or with the TMC to extract private information about non-colluding
participants. We also consider external adversaries 2/ that may attempt to eavesdrop on, manipulate, or
inject traffic data through the communication channels between drivers and the TMC. Finally, we assume
the KDC does not collude post-setup; collusion involving a malicious KDC would compromise confiden-
tiality in a single-authority functional encryption setting like ours. This threat model reflects realistic risks in
vehicular networks, focusing on three principal adversaries; a curious TMC, colluding drivers, and external
adversaries, with TMC—driver collusion representing the strongest practical adversary.
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2.3.3 Design Goals
In our proposed scheme, we anticipate achieving the following objectives.

* Privacy Preservation: Our design seeks to develop robust mechanisms that protect the location and
identity of drivers (via unauthorized access and monitoring prevention) while enabling effective traffic
management and congestion mitigation.

* Real-time Traffic Forecasting: By leveraging advanced predictive models’ accuracy and real-time
traffic forecasting capabilities, our system aims to provide reliable and informed traffic data, enabling
proactive congestion management and efficient route planning.

* Scalability and Efficiency: Our system is designed to be scalable for real-time deployment and oper-
ation under dynamic traffic conditions. This scalability extends to accommodating increasing drivers,
expanding map sizes, and handling various network loads, ensuring efficient performance with mini-
mal latency and computational overhead.

* Secure Communication: With secure communication channels, our scheme utilizes secure protocols
and cryptography techniques to guarantee the integrity, security, and confidentiality of data exchanged
between system entities.

2.4 Preliminaries

2.4.1 Functional Encryption

Functional encryption (FE) refers to a type of cryptography that allows for the encryption of a message x
using a key k to get Enci(x), as well as the ability of a designated decryptor to compute the output of a
function f on the encrypted message using a decryption key dk without being able to learn the message
itself (i.e., Decgi(Enci(x)) = f(x)) [13]. Recently, the focus on FE has been increasing, especially on
how to design efficient schemes for limited classes of functions or polynomials, such as linear [1], [7] or
quadratic [[11]). in this chapter, we focus on a specific type of functional encryption known as inner product
functional encryption (IPFE)[14]], which allows for the computation of the inner product of two encrypted
vectors. In an IPFE framework, when provided with the encryption of a vector x and a functional decryption
key linked to a vector y, one can exclusively derive the dot product result (x-y) by decrypting the encrypted
form of x, all without gaining access to the actual values of x. IPFE involves three distinct parties, outlined
as follows.

* KDC: The KDC produces an encryption key for the encryptor and a single functional decryption key
for the decryptor.

* Encryptor: The encryptor encrypts the plaintext vector x into the ciphertext and sends it to the decryp-
tor.

* Decryptor: The decryptor uses the functional decryption key dk, obtained from the KDC to evaluate
and access (x-y), where x and y are the plaintext vector and the encrypted vector, respectively. The
decryptor is obliged to maintain non-collusion with the KDC.
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Figure 2.2: Illustration of the Privacy-Preserving Traffic Management System

2.4.2 Convolution/ LSTM and Bi-LSTM

CNN and LSTM are powerful deep-learning architectures widely used in computer vision and natural lan-
guage processing. CNNs use a combination of convolutional layers, pooling layers, and fully-connected
layers to extract features from an image and then classify the image into one of the predefined classes.
CNNss are particularly suitable for object recognition, facial recognition, and image segmentation tasks. On
the other hand, LSTM networks are mainly used for natural language processing tasks such as language
translation, sentiment analysis, and text generation. LSTM networks are composed of multiple layers of
memory units, which are responsible for storing information from the past and using it to make predictions.
They are particularly powerful when understanding data sequences, such as sentences, and predicting what
comes next. A combination of CNN and LSTM, known as Conv-LSTM, is usually used to improve the
performance of a neural network. The wide adoption of Conv-LSTM is due to their high accuracy. The
purpose of using attention-based Conv-LSTM is to make the near-future predictions accurate and timely.

2.4.3 Attention Mechanism

An attention mechanism allows deep learning models to selectively focus on certain parts of the input when
making predictions. It is particularly useful in natural language processing and image recognition tasks. In
these tasks, the model must be able to identify and understand specific parts of the input to make accurate
predictions. The attention mechanism is implemented by adding an attention layer to the neural network,
which learns to assign weights to different input parts. These weights are then used to create a weighted
sum of the input, which is then passed to the next network layer. Attention mechanisms have been shown
to improve the performance of neural networks on a wide range of tasks and are now widely used in many
state-of-the-art models. An attention-based Conv-LSTM combines attention mechanisms and Conv-LSTMs

to provide accurate forecasting.
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2.4.4 Squeeze-and-excitation

Squeeze-and-excitation (SE)[44] is a type of attention mechanism that aims to improve the feature repre-
sentation of a neural network. It works by first compressing the feature maps’ spatial dimensions, reducing
the number of channels. The resulting feature maps are then passed through an excitation module, which
learns to assign weights to different channels based on their importance. These weights are then used to
recalibrate the feature maps, improving the network’s overall feature representation. SE has been shown to
improve the performance of neural networks on various tasks such as image classification, object detection,
and semantic segmentation, particularly in architectures like CNNs. It can be added to existing architectures
like CNNs or convolutional LSTMs as a module.

2.5 Proposed Scheme

As depicted in Fig.2.2] our proposed framework comprises two primary components: 1) Privacy-Preserving
Location Reporting and Aggregation for Drivers, and 2) Traffic Forecasting through Deep Learning. The
first component encompasses system initialization, driver location reporting, and server-side aggregation of
information for traffic monitoring. The second component involves a deep learning-based traffic forecasting
algorithm. Our model utilizes Conv-LSTM on aggregated driver data to predict short- and long-term traffic
patterns while ensuring driver privacy. Additionally, our model incorporates an attention mechanism and a
squeeze-and-excitation block, significantly improving performance. The following subsections explain the
details of each building block. For clarity, the mathematical symbols used in the scheme are summarized
in Table Fig. 2.4] further illustrates the key phases of the privacy-preserving reporting and forecasting
pipeline through a sequence diagram.

2.5.1 Drivers Location Reporting and Aggregation

We assume that the traffic management area is divided into a set of geographic areas called cells, as illus-
trated in Figure Each cell is assigned a unique identifier, similar to zip codes.
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Figure 2.3: A traffic management area partitioned into distinct geographic zones (i.e., cells).

* To report their location, each D; € D, where {1 <i < |D|}, employ IPFE scheme[14] to conceal their
association with a specific cell, denoted as l{ [f] = 1, where 1 < j < |.Z|, and .Z represents the total
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number of grid cells within a given reporting area. Additionally, drivers encrypt the remaining (k — 1)
dummy cells with a value of zero to maintain k-anonymity [95]]. The outcome is a set of k ciphertexts,
labeled as C}[¢] through C¥[¢], which are subsequently transmitted to the decryptor (i.e. TMC). This
encryption mechanism safeguards the confidentiality of the driver’s precise location.

* At each reporting interval ¢, the TMC receives encrypted cell information Cij [t] from all drivers and
applies the functional decryption key dk to compute the aggregate driver density for each cell j (i.e.
Decdk([C{ [t],...,C‘]b‘ t]]) = ZBM l{ [t], where l{ [t] denotes the plaintext occupancy status of grid cell
Jj reported by D; at time slot 7). If fewer than |D| ciphertexts are received for a given cell, the TMC
compensates with dummy ciphertexts encrypting zero, preserving consistency in the aggregate com-
putation. Aggregation is restricted to fixed-length, non-overlapping time windows (e.g. every At
minutes), ensuring each ciphertext contributes exactly once and eliminating overlap-based differenc-
ing attacks. The process further enforces a minimum cohort threshold 7, releasing aggregates only
when at least y distinct drivers contribute within a reporting window. 7 is defined by the assumed
collusion bound & (fraction of drivers that may collude with the TMC) and the required minimum of
honest contributors 4, and is computed as y > [ﬁ-‘ . This guarantees that even if the TMC colludes
with a subset of drivers, the reports of non-colluding participants remain indistinguishable within a
sufficiently large anonymity set. Aggregates that do not satisfy the threshold are merged, thereby mit-
igating both small-cohort leakage and differencing risks, and ensuring that published outputs expose

no information beyond the authorized cell-level counts.

The main phases of the route report are described as follows.

System Initialization

During system initialization, the KDC computes and distributes the following: (a) Public parameters; (b)
Driver’s encryption keys; and (c) TMC’s functional decryption key.

a) Public Parameters Generation: To generate the public parameters, the KDC should:

Setup (1*,.7p) : The algorithm first generates secure parameters as & := (G, p,g) « GroupGen (1%),

and then generates several samples as a; < RZ},,ai = (1,a;)",Vi € {1,...,|D|}, in addition to W; <

Z},XZ, Ui <R Z},. Then, it generates the master public key and master private key as
mpk := (¢, [ai] Wiaj]),msk := (Wi, ui)icq1,...p)}y

b) Drivers’ Encryption Keys Generation: KDC constructs and distribute |D| encryption keys to the drivers
in the network as follows: pk; := (¢, [a;], [Wa;],u;).

c) TMC’s Functional Decryption Key Generation: To enable secure aggregation, the KDC constructs a
vector of ones, denoted as y;,|p|, whose length equals the number of drivers in the network. This vector
enforces that, when evaluated in an inner product with encrypted driver reports, the result corresponds to the
total number of drivers present in a given grid cell j. Using this vector, the KDC computes the functional
decryption key dk as:

dk:=d; — (yWi)cp 24 Y, vt
i€|D|

Note that [x] = ¢*. In our representation, we adopt the bracket notation implicitly from [29], which is widely recognized and
used as a standard in the cryptographic community.
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Table 2.1: Main notations.

Notation Description

D Number of drivers

pk; Encryption keys of Drivers

<z Total number of grid cells

Y Minimum cohort threshold

lij 7] Status of cell j reported by driver D; at time ¢

Cij 1] Encrypted status of cell j reported by D; at time ¢

G,p,g Public parameters for the functional encryption

dk Functional decryption keys

X[t’] Current traffic density over t* —n, ...,1*

X[t Daily historical traffic density over t —n, ..., ¢

X[t Weekly historical traffic density over t" —n,...,1"

G[t'] Output from the CNN

H;[t*] The LSTM hidden state indicating the spatial-temporal feature for time
step t°

C.H Channel and spatial dimensions of the Squeeze operation

G[t*],G [t*] Output of CNN and Squeeze and excitation

H,[t] The output of Conv-SE-LSTM at each time step #*

T Time interval

Br The attention value

This operation is equivalent to aggregating the secret shares across all drivers to generate a single decryp-
tion key for the TMC. Crucially, KDC issues only one functional key and strictly focuses on the aggregate
function defined by y. No alternative functional keys (e.g. sparse vectors or selector functions) are dis-
tributed. This restriction guarantees that the TMC can recover only aggregate driver densities at the cell
level and is cryptographically prevented from isolating or reconstructing any individual driver’s report, even
under repeated queries.

Reporting Drivers Locations

For each reporting period ¢, driver D; encrypts the cell j information, V1 < j < |-Z|, and generate the
ciphertext Cl.j [t]. This encryption ensures that the cell information is kept private and only authorized parties
can access it. Each cell information is encrypted separately, allowing the TMC to compute the aggregated
reports for cell j without learning the individual reports themselves. The encrypted cell information is
generated as follows.

Encrypt (pki, l{ ) : The algorithm first generates a random nonce r{ — Rij {1, K} and then computes
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Figure 2.4: End-to-end workflow of the proposed framework, illustrating the sequential interactions from
system setup, private driver reporting and encryption, secure aggregation at the TMC, to deep learning based
forecasting.

the ciphertext as
4

C/lr) = ({t{}  [a;r]], [c{} e [ + i+ Weairl).

It should be noted that the drivers do not need to report the encryption status for all cells within the
reporting area. Instead, they can employ K-anonymity [95] to selectively report only a subset of cells,
thereby ensuring privacy and reducing computational overhead.
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Aggregating the Drivers Reports

After collecting all the D’s encrypted locations (¢;) at time 7, represented as ¢, = [C{ ], Cé [t],... ,Cﬁm [t]], the
TMC first verifies that the minimum cohort threshold 7 is satisfied and then applies the functional decryption
key dk to obtain the total aggregated traffic density by computing:

M (e /[074))
[2]
_ Tiepy ([yTCi] / [YTWiai"ij D
[2]
ey ([yT(l{[f] +u;+ Wiayr/ )} / [YTWiairf D
[2]
[icm) [YTZ{V] +YTui+yTWiai”ii —YTWiai’ﬂ
[2]
- %] [yTl,j [+y wi+y Wair] -y Wiagr! — yTlli]
ic

=TIy

i€[D]

D]

= ;l{ 1]

Solving the discrete logarithm is not a challenging task due to the relatively small value of (ZE'I l{ [1]).
While many methods have been introduced to compute the discrete logarithm, such as Shank’s baby-step
giant-step algorithm [91]], we resorted to using a lookup table to compute it efficiently in a light-weight
manner. By performing the above steps, the result ():;EI1 l{ [t]) is the summation of the drivers passing through
grid cell j at each reporting period 7. After the aggregation, the TMC can use the encrypted information to
forecast traffic conditions, such as traffic density and congestion, as explained in the next section.
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2.5.2 Deep learning-based Traffic Forecasting

Traffic Flow Process Formulation: The process of traffic flow prediction can be formulated mathematically
as the drivers’ density and congestion patterns within each cell under the traffic monitoring area. This
formulation involves the analysis of historical density, real-time density, and future density. As shown in
Fig. at the current time ¢, the objective is to predict the traffic flow of a specific grid cell at the time
interval (t + hA) for a given prediction horizon, utilizing the past traffic status. Let X/[] denote the traffic
flow of the j™ observation route during the 7™ time interval. The traffic flow values X/[7] correspond to
T=t—nA,...,t —A,t. Here, A= 5 minutes, n = 15,and h =1, 3,6, 12,. This means that 75-minute historical
data will be used to predict the traffic flow of the next 5, 15, 30, and 60 minutes.

L 1 1 1 1 1 l l l 1 ]
1 1 1 1 1 1 T T T 1 1
t—nA e t—2A t—-A t t+A t+2A e t+nA

Past Future

Figure 2.6: The Traffic forecasting time horizon.

We create three spatiotemporal traffic flow matrices to capture the temporal and spatial aspects of traffic
flow. This involves combining historical traffic flow data from neighboring locations at different time scales,
including the current moment ¢°, daily patterns ¢/, and weekly trends . The matrix X|[¢*] specifically
represents the current historical traffic density. It considers a time window spanning from ¢ — n to #* where

each column of this matrix can be represented as the status of the reporting area at time #° denoted as X [r°]
T
D D D
= | Y U], ¥ 2], ..., ¥ Z[t*]| . The following matrix defines X [¢*] with dimensions . x n, where .
i=1 i=1 i=1

is the number of reporting cells, and # is the size of the time window used for analysis.

[ i=|D| L =D
7 Y L[—=n] .. ¥ L[]
Xl =n ) b
Y ef—n .. X G
i=1 i=1
L X[ - il
Y e —=n . X [
L i=1 i=1 J

The next matrix defines the historical traffic densities with daily periodicity (i.e., in the previous day d)
over the same time period t¢ —n,...,t¢,...,t* +n. The traffic data with daily periodicity can be obtained by
considering the previous and following # time intervals of the same moment as time #* from the preceding
day. This can be represented as the matrix X [t¢].
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Similarly, the next matrix defines the historical traffic densities with weekly periodicity (i.e., in the pre-
vious week 'w’) over the same time period " —n,...,1",...,t" + n. Historical traffic flow data is constructed
with weekly periodicity by considering previous and subsequent n time intervals of the same moment as
time #* in the last week as follows X [t"].

[i=|D| i=|D| 7
Y e —n .. X L +n]
X[ —n]] r i=1 J=L
i=|D)| i=|D|
Y e —n .. X G+n]
i=1 j=L
| X[ +n]] i=|D| i=|D|
Y v —=n .. ¥ LY +n]
L i=1 j=L i

Deep Learning-based Forecasting: The traffic forecasting model utilized by TMC is based on an
attention-based Convolutional Sqeeze and Excitation and Long Short-Term Memory (Conv-SE-LSTM) deep
learning architecture. The model’s structure is depicted in Fig. [2.5] The Conv-SE-LSTM module serves
as the primary component of the proposed model, focusing on capturing the spatial-temporal features of
traffic flow. The Conv-SE-LSTM module combines a CNN, a SE, and an LSTM network, as illustrated in
Fig.[2.5] The CNN component comprises two convolutional layers, while the LSTM component comprises
two LSTM layers. The input to the Conv-LSTM module is a spatial-temporal traffic flow matrix denoted
as X [r*], which represents the current historical traffic flow of the reporting area to be predicted. The main
components of the proposed model are described as follows.

1) Convolutional Block: To extract spatial features, a two-dimensional convolution operation is applied
to the traffic flow data X[r*] at time #°. The convolution operation involves a two-dimensional convolu-
tion kernel filter, which slides over the flow data to acquire the local perceptual domain. The convolution

operation can be expressed as

Y] = o(Wyx X[t°] + by), (2.1)

where W, represents the filter weights, by is the bias term, X*[¢] denotes the input traffic flow at time
t*, * denotes the convolution operation, ¢ represents the activation function, and Y [¢*] is the output of the
first convolutional layer. This process helps in extracting spatial features from the neighboring observation
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Figure 2.7: The weighting mechanism within the Squeeze-and-Excitation block.

locations. G|t*] represents the output of the second convolutional layer.
G[t'] = o(Ws, x Y [] + by,) (2.2)

After processing the current spatiotemporal information through the two convolutional layers, the output
is then connected to the squeeze and excitation module.

2) Squeeze-and-Excitation (SE): In the SE, convolution transformation is represented by F;,, which maps
the input G[t*] to feature mappings V where V € R¥*C (see Fig. . The feature mappings V undergo
a squeeze operation, which aggregates the feature maps across their spatial dimensions (H) to generate
a channel descriptor. This descriptor captures the global distribution of channel-wise feature responses,
allowing all network layers to access information from the entire receptive field. Subsequently, the excitation
operation, implemented through a self-gating mechanism, takes the channel descriptor as input and produces
modulation weights specific to each channel. These weights are then applied to the feature mappings V,
generating the output of the SE block. This output can be directly fed into subsequent layers of the network.
In our model, one dimensional SE is applied to the input G[¢*] to generate the output is G'[#], which is input
to the LSTM module. The complete architecture for the SE module is given in Fig.

3) LSTM: Long-term dependencies within sequential data can be efficiently captured using the LSTM
architecture, making it particularly suitable for handling extended sequential patterns. In our model, we
employ multiple LSTM layers to capture higher-level traffic flow features. The first LSTM processes the
sequence output from the SE module G [°] = [G'[t* —n],...,G'[t* — 1],G[t*]] and calculates the hidden
state for each time step H;[t°] = [H;[t* —n],...,H;[t* — 1],H;[t°]]. Then the hidden state sequence H [¢*] is
input into the second LSTM layer to calculate the hidden state H,[t*] as the output, which indicates the
spatial-temporal feature for time step *. LSTM layers are stacked so that each subsequent layer receives
the hidden state of the previous layer. As a result, the model can capture increasingly complex patterns and
dependencies within the sequential data. The diagram in Fig. [2.9] visually represents the used LSTM layers
and their sequential connections.

4) Attention Mechanism: The standard LSTM cannot determine the importance of different parts within
a traffic flow sequence. To address this limitation, an attention mechanism is introduced. This attention
mechanism enables the model to automatically identify varying levels of importance for different segments
of the traffic flow sequence at different time steps. The incorporation of the attention mechanism with the
Conv-LSTM module is depicted in Fig. providing a visual representation of its functionality. The output
of Conv-SE-LSTM at each time step #* is computed as a weighted summation of the output of the LSTM
network H,[t*] follows:
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Figure 2.9: The Conv-SE-LSTM module with an attention mechanism.

n+1
H,[r'] = i BiHblt’ — (k—1)] 2.3)
k=1

where n+ 1 is the length of flow sequence and f; is the temporal attention value at time step 7 — (k— 1). The
attention value f; can be computed as
exp(si)
ﬁ k= $atl
Yyl exp(sk)

The scores s = (s1,52,...,5,.1)" indicate the importance of each part in the traffic flow sequence, which
can be obtained as

2.4)

st =V tanh(WysG[t'] + Wi, o [t°]) (2.5)

where VI, W), and Wj, are the learnable parameters and H;[t*] is the hidden output from the Conv-LSTM
network.

5) Bidirectional LSTM (Bi-LSTM): A module based on bi-directional LSTM networks is employed to
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Figure 2.10: The attention mechanism with Conv-LSTM networks.
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Figure 2.11: The structure of Bi-LSTM networks.

extract periodic features and capture such a temporal dependency from the daily X[t¢] and X[¢"] weekly
densities. The hidden states of forward and backward passes are combined as the output. This way, more
features from both directions can be captured, improving the prediction performance. Fig. 2.11]illustrates
the overall structure of the bi-directional LSTM module used in the model.

As shown in Fig. 2.9] Hf can be obtained after the processing by the attention Conv-LSTM and Bi-
LSTM modules, the spatial-temporal features, the daily periodicity features H,d I th * the weekly period-
icity features H," / and H," > Then, all these features are concatenated into a feature vector and then input
by two regression layers to perform forecasting. Also, Fig. shows the spatial-temporal features H,|t],
the daily periodicity features Hy[t4], H,[t?] and the weekly periodicity features H/[t"] and Hp[t"] can be
obtained after the processing by the attention Conv-SE-LSTM and Bi-LSTM modules. Then, these features
are concatenated into a feature vector fed into two regression layers to carry out forecasting.

Architecture Remarks. In our model, we utilize SE layers to enhance the performance of CNNs by
adaptively recalibrating the channel-wise feature responses. The SE layer employs global pooling to reduce
the spatial dimensions of the input data, generating a channel descriptor for each channel. This descriptor
is then processed through a fully connected layer to generate channel weights. These weights are utilized
to scale the original feature maps, enabling the network to selectively emphasize different regions of the
input data based on the specific task at hand. The attention mechanism is also employed to selectively
focus on specific segments of the input data rather than processing the entire input indiscriminately. At-
tention is commonly used in sequence-to-sequence models like Recurrent Neural Networks (RNNs) and
Transformer-based models, particularly when dealing with variable-length input sequences. The model can
assign weights to different parts of the sequence by employing attention mechanisms based on their relative
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importance for the given task. This allows the model to effectively allocate its attention and resources to the
most relevant portions of the input sequence.

2.6 Privacy and Security Analysis

Proposition 1. Confidentiality of Location Reports

Proof: During system initialization, each driver D; is provisioned with a unique encryption key pk;,
derived from independently sampled randomness (a;, W;, u;) under the IPFE scheme. These keys provide
encryption capability only; no driver receives functional decryption material. Consequently, ciphertexts
generated by one driver are computationally inaccessible to all others. The TMC, by contrast, is issued a
single functional decryption key dk, scoped exclusively to the inner product with the all-ones vector y[14].
This key allows recovery of aggregate driver counts per cell, expressed as (y,x), but reveals no individual
component x;. The issuance of only one function scoped key prevents selector queries or arbitrary decryp-
tions that could isolate individuals. Hence, the scheme guarantees confidentiality of individual location
reports while still enabling the TMC to perform aggregate traffic forecasting.

Proposition 2. Unlinkability of Encrypted Cells

Proof: Ciphertexts generated by one driver, whether for identical or different cells, are computationally
unlinkable under the known-ciphertext model employed. For each driver D; and cell j € {1,...,K}, the
IPFE encryption algorithm incorporates a fresh random nonce rlj <R Zp. This ensures that repeated encryp-
tions of the same plaintext yield distinct ciphertexts, eliminating deterministic patterns and guaranteeing
semantic or Indistinguishability under Chosen-Plaintext Attack (IND-CPA) security. To further conceal the
true report, each driver enforces k-anonymity[95] by encrypting K — 1 dummy cells alongside the actual
cell, thereby embedding the true location within a broader anonymity set. The combined effect of nonce-
induced randomness and dummy-cell padding prevents adversaries, whether external or colluding with the
TMC, from correlating ciphertexts across time or cells, thus rendering them unlinkable to any specific driver
trajectory.

Proposition 3. Anonymity of Location Reports

Proof: Insider and outsider adversaries cannot compromise the anonymity of drivers’ location reports.
With the IPFE[[14]] cryptosystem employed, even if the TMC colludes with a subset of drivers, the coalition
learns no additional information about non-colluding drivers’ reports beyond the authorized aggregates, pro-
vided a minimum cohort threshold ¥ is enforced, the aggregation windows are fixed and non-overlapping,
and the decryption key is scoped exclusively to the aggregate function. In this scenario, the colluding coali-
tion observes all ciphertexts, the plaintext of colluding drivers, and only aggregate sums via the function-
limited key dk. Differencing attacks are neutralized by releasing aggregates only when at least 7y distinct
contributors are present, ensuring that honest drivers’ inputs are masked within a sufficiently large anonymity
set. Fixed, non-overlapping time windows further prevent adaptive cohort-splitting and overlap-based infer-
ence, while function scoping ensures that only one decryption key tied to the all-ones vector is available,
precluding selector-style queries that could isolate individuals. Meanwhile, fresh random nonces applied at
each encryption step guarantee IND-CPA security, and k-anonymity obliges drivers to report K — 1 dummy
cells alongside their true location, preventing ciphertext correlation or trajectory inference. Under these
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constraints, the coalition’s posterior knowledge about any non-colluding driver’s bit is negligibly stronger
than its prior, and thus no per-driver information beyond the aggregate counts is revealed.

2.7 Performance Analysis

The proposed schemes were implemented in Python on a Lambda GPU workstation equipped with the
following specifications: 2xQuadro RTX 8000 GPUs, 2-Way NVLink, Intel 19-9820X CPU (10 Cores),
128 GB of RAM, and a 2 TB NVMe SSD. This workstation came pre-installed with the latest versions of
essential libraries such as CUDA, Jupyter, Pytorch, Tensorflow, and Keras. For our implementation, we
utilized two datasets:

* SUMO Dataset: To assess the encryption component of our project, we generated a set of random
trips based on real maps. We started by obtaining a genuine map of Greensboro, North Carolina, USA,
from the OpenStreetMap project[78|]. The traffic management area covered an 8km x 8km region,
divided into 40 cells, each measuring 1 km X 1 km. To create real and random routes, we employed the
”Simulation of Urban MObility” (SUMO) software[48]. All results presented are the averages from
30 different runs (See Fig. [2.12).

» PeMS Dataset: This dataset was sourced from the Performance Measurement System (PeMS), sup-
ported by California Department of Transportation (Caltrans)[[16]]. We used the PeMS14 dataset,
covering traffic data from 2001 to 2023 across California’s major metropolitan areas. The data, col-
lected from nearly 40,000 sensors, is mostly recorded at 5-minute intervals, with some available at
30-second intervals for more detailed historical and real-time traffic analysis. For our study we fo-
cused on two specific scenarios: freeway and urban traffic, training and evaluating our proposed model
with data from 183 sensors in District 10, specifically on Freeway SR99-S, as well as 12 sensors from
District 4 on Street 1980 in Oakland. This enabled robust analysis across both freeway and urban
traffic conditions.

We then assess the proposed privacy-preserving traffic management forecasting system from three perspec-
tives: Computation Overhead, Communication Overhead, and Traffic Flow Forecasting.

2.7.1 Computation Overhead

The computation overhead is quantified through two key metrics: the cryptographic key size provisioned by
the KDC and the encrypted message size transmitted to the TMC (Dy + E,;,). For Dy, each driver receives a
unique key pk; := (G, [a;], [Wiai],u;), generated over the asymmetric BN256 pairing curve with 256-bit secu-
rity. With each group element of 32 bytes, a driver requires two group points (64 bytes) and one small field
element (2 bytes), yielding a lightweight 66-byte route encryption key. For E,,, each encrypted cell consists
of two group elements (32 bytes x 2 group elements = 64 bytes). Under k-anonymity[95]], the transmit-
ted payload grows linearly with k (total encrypted cells), resulting in a message size of 64k bytes. For an
80-cell grid, this corresponds to just 5.12 KB, easily handled by on-board units and existing V2I standards.
Compared with state-of-the-art schemes in Table our IPFE-based design incurs only (k) modular
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Figure 2.12: Synthetic dataset generation using SUMO
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Figure 2.13: Computation Overhead Analysis.

exponentiations with constant-size ciphertexts for the driver-side encryptions and O(|D| - K) modular expo-
nentiations for the TMC aggregated decryptions. Competing methods are significantly costlier: blockchain
schemes add ¢(logn) consensus overhead, additive HE grows as & (K - L- A3) with minute-level delays, and
FL+DP requires & (|D|-d - R) repeated server gradient updates with O(dR) client gradient uploads, thereby
slowing convergence. In contrast, our design guarantees predictable linear growth with drivers encrypting
in ~12-35 ms for k € [24,48] per window, and the TMC executes a single &(|D| - K) decryption across
all cells with full parallelization. Even at metropolitan scale (|D| = 10°, K = 100), aggregate decryption
completes in under 1s on modern multi-core/GPU servers, ensuring real-time performance. These results
confirm the efficiency of our cryptographic design: lightweight for resource constrained vehicles, scalable
for dense urban deployments, and decisively more practical than blockchain, HE, or FL based alternatives.

2.7.2 Communication Overhead
In our simulations, we enforce a minimum cohort size of y = 20, derived from the collusion-resilience con-

dition y > {ﬁw , with oo = 0.5 (up to 50% colluders) and 4 = 10 honest contributors per reporting window.
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Table 2.2: Comparative Analysis of Privacy and Non-Privacy Schemes

Scheme Computational Communication Scalability Forecasting | Remarks
complexity complexity
Proposed Driver: 0(K) bytes,, ariver = Linear/Feasible if 4 Lowest driver cost;
bit-ops; TMC: K |G| (independent | O(|D| - K) e < At Scalable; Accurate
O(|D|-K) bit-ops per | of |D|) forecasting
At
(Blockchain & Signature /(1) ops; | Constant per tx = Limited throughput; X Consensus bottleneck;
Pseudonyms) [[T13]] Consensus '(logn) | O(six); bytesy, = Latency o< 1/TPS unsuitable for real-time
ﬁ(Npeers 'Slx)
(Blockchain & CPPA) | Signature /(1) ops; | Per auth. = Consensus latency X High latency; Unsuitable
[60] Consensus ¢'(logn) O (s1x)bytes; o(T) for high-freq. traffic data
Broadcast =
ﬁ(Npccrs . Stx)
Additive HE [41]) Driver: O(K - 13) bytes,p driver = Super-linear; Delay in X Very high computation;
bit-ops; TMC: ﬁ( K- ng) sec—min range Impractical for short
ﬁ(K -L- 13) bit-ops real-time Ar
per At
Differential Privacy Driver: 0(K) Noise bytes,p driver = Linear in [D|+K 4 Forecast accuracy |
(DP) [50] injection; TMC: O(K) = K - syal; degrades at strong € |,
O(|D]-K) Noise (STE > sy1) levels
vector aggre.
(FL & DP) [80] Clients: O'(dR); bytes; cjienyr = Scales to many drivers v High comms. overhead;
Server: O(|D[-d-R) | bytes crverr ~ |D| xR Slow convergence with
O(1)-d - Selem DP

* v = supported; X = not supported; R rounds; d gradient; G, s ciphertext sizes; sejem byte/element; s, per value-size; A security parameter;
O'(1) small/constant cost; Az forecast window; € DP privacy; s, tx size; Npeers neighbors; n set size; TPS transactions/s; T consensus period; L
HE layers

On the driver side, uplink communication is limited to transmitting constant-size ciphertexts |G| for K active
cells. This uplink is independent of the total number of drivers |D|. Using a BN256-based IPFE implemen-
tation, each encrypted cell is 64 bytes, so a driver reporting K = 80 active cells transmits about 5.12 KB per
window. Even with |D| = 500 drivers, the aggregate uplink remains only ~ 0.005 MB per reporting inter-
val At, a negligible bandwidth demand for vehicular networks. By contrast, additive HE expands payloads
to O(K - sHE), where sHE >> |G|, and induces super-linear decryption costs at the server/TMC. Blockchain
systems impose € (si) per transaction and additional &'(Npeers - Stx) broadcast overhead. FL+DP requires
bidirectional gradient transfers on the order of &(d - Sejem) €ach over R rounds, compounding both com-
munication and convergence delays. Central DP preserves the (K ) byte growth per driver (= K - sy,1) but
reduces forecast accuracy under strong privacy guarantees (small €) while still obligating the TMC to ag-
gregate |D| vectors as summarized Table[2.2l We validated these properties with a prototype built using the
GoFE library in Python for our IPFE setup[32]] over a synthetically generated Greensboro-area traffic trace
with |[D| = 200 drivers and 80 geographic cells. Simulation results confirm linear scaling, with Fig.
depicting a direct linear relationship between the encryption time and K, where encrypting 80 cells requires
only ~ 50 ms per driver. Similarly, TMC decryption time also scales linearly with K, where decrypting 200
driver presences across 80 cells completes in under 600 ms as illustrated in Fig. Thus, the overall
complexity remains bounded by ¢(K) per driver and & (|D| - K) at the TMC, both of which comfortably
satisfy the feasibility condition &(|D|- K) tme < At, where the total work &(|D| - K) tm duration utilized by
the TMC is < At. Hence, our IPFE-based design avoids the heavy communication overheads of blockchain
consensus, HE expansion, and FL gradient exchanges, while maintaining forecasting accuracy and strong
privacy guarantees.
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Table 2.3: Hyper-parameter tuning

H -
yper Value Selected Best
parameter Value
Units 32,...,512 488
relu,
Activation tanh, relu
sigmoid
Dropout True, False True
. 1x107* to
Learning rate 1 % 10-2 0.0003

Table 2.4: Different Optimizer comparison

Optimizer MAE | MAPE | RMSE
SGD 39.45 62.73 45.66
ADADELTA 18.75 19.13 24.09
RMSProp 12.06 14.25 15.67
ADAGRAD 9.80 10.18 13.93
ADAM 7.94 8.50 11.03
Prediction Error Rate for 5 minutes Prediction Error Rate for 60 minutes
115
25
15.0
20
125
% 100 %: B
5 . 5
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B MAE Bl MAE
I RMSE I RMSE
‘ DCRNN AT-Conv-LSTM Bi-LSTM SCG AGFCRN PGCN Proposed Model ¢ DCRNN AT-Conv-LSTM Bi-LSTM SCG AGFCRN PGCN Proposed Model
Algorithms Algorithms
(a) Mean Absolute Error and Root Mean Square Error (b) Mean Absolute Error and Root Mean Square Error

Figure 2.14: Error Rate Assessment for Short-Term Traffic Flow Forecasting.

2.7.3 Traffic Flow Forecast

This subsection evaluates the traffic forecasting model (Conv-LSTM) both with and without the squeezing
and excitation algorithms, attention mechanism, and Bi-LSTM. In order to measure our suggested scheme
against comparable traffic forecasting methods found in the literature, we selected three commonly used
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Figure 2.15: Comparison of our privacy-preserving model Predictions vs other non-privacy-preserving mod-
els and actual traffic flow over a 300-Minute interval.

performance indices. These measures, Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE) assess the accuracy of predictive models in re-

gression analysis.

* Mean Absolute Error: The MAE is calculated using the formula

1 n
MAE = - Y |F,—Fl (2.6)

t=1

* Mean Absolute Percentage Error: The MAPE is calculated as follows:

F, E

MAPE (%) Z |- 2.7)
* Root Mean Square Error: The RMSE is determined by the formula:
1 n
RMSE = ’ Z (Fp—F)? (2.8)

where F), represents the predicted traffic flow and F; represents the true traffic flow.

1. Experimental Data and Evaluation: Using the PeMS dataset, the hyperparameters of the fore-
casting Conv-LSTM model are fine-tuned utilizing the Tensorflow Keras Tuner. The tuning process

31



Table 2.5: Prediction performance with various proposed modules for prediction of urban area traffic flow.

Algorithm Measure | Smin | 15min | 30 min | 60 min

MAE 9.05 | 10.80 | 10.28 | 10.50
Conv LSTM (Stage 1) MAPE (%) | 9.94 | 11.73 | 1025 | 11.33
RMSE | 12.32 | 14.73 | 14.28 | 14.21

MAE 12.57 | 18.07 | 12.37 | 14.31
Bi-Conv LSTM (Stage 2) MAPE (%) | 13.18 | 19.08 | 129 | 13.73

RMSE 18.8 | 24.16 | 18.55 21.16

MAE 8.19 | 945 | 921 10
AT-Bi-Conv LSTM (Stage 3) | MAPE (%) | 8.86 | 9.56 | 9.60 | 10.71
RMSE | 1133 | 13.14 | 13.01 | 13.94

MAE 794 | 866 | 988 | 10.10
AT-Bi-Conv-SE LSTM (Stage 4) | MAPE (%) | 8.5 | 9.22 | 10.66 | 10.75
RMSE | 11.03 | 12.10 | 138 13.9

involved exploring a range of hyperparameter values, including unit limits for feed-forward layers
ranging from 32 to a maximum of 512, likewise exploring various activation functions ranging ReLU,
Sigmoid, and Tanh. Lastly, we investigated different learning rates within 1 x 107 to 1 x 1072
Table [2.3] contains the tuning process outcomes and the optimal hyperparameter values. Additionally,
we performed a comparative analysis on adopting five different optimizers for our model. The opti-
mizers used were Stochastic Gradient Descent (SGD), ADADELTA, Root Mean Square Propagation
(RMSProp), Adaptive Gradient (ADAGRAD), and Adaptive Moment Estimation (ADAM). The anal-
ysis results are presented in Table 2.4] where the ADAM consistently outperforms other optimizers

regarding error reduction. Consequently, we selected ADAM as the optimizer for our final model.

2. Forecast Performance Evaluation: Here, we demonstrate the efficacy of our proposed hybrid model
for traffic flow prediction at a particular Point of Interest (POI) on Street 1980 in Oakland, District
4, by utilizing a number of crucial elements, including an attention mechanism (AT), a squeeze-and-
excitation (SE) module, and a Bi-LSTM module. Our hybrid model was built in four stages using
the TensorFlow framework[31]], Beginning with the Conv-LSTM (Conv LSTM) model (Stage 1).
Then, integrating the Conv LSTM model with a Bi-LSTM module to form a Bi-Conv LSTM model
(Stage 2). The Bi-Conv LSTM model was enhanced further by adding an attention mechanism to
produce an AT-Bi-Conv LSTM model (Stage 3). Lastly, we fuse a squeeze-and-excitation module
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Table 2.6: Performance comparison of different Models for Urban traffic flow prediction.

Horizon Measure DCRNNJ58] | AT-Conv-LSTM[117] | Bi-LSTM[65] | SCG[67] AGFCRN][57] PGCN[90] | Our Model
MAE 13.79 13.49 12.63 343 15.10 12.56 7.49
Smin | MAPE (%) 10.7 10.1 10.49 8.60 9.67 8.74 8.5
RMSE 18.88 18.56 16.72 5.09 17.81 16.49 11.03
MAE 14.79 14.34 15.09 6.89 16.71 13.43 8.66
15 min | MAPE (%) 11.5 10.8 12.28 11.61 10.14 9.88 9.22
RMSE 20.43 20.08 18.34 8.43 22.68 17.91 12.10
MAE 16.05 15.48 17.41 11.15 19.53 15.62 9.88
30 min | MAPE (%) 12.4 11.4 14.5 16.89 12.82 11.61 10.66
RMSE 21.18 21.26 19.72 14.71 25.94 19.33 13.8
MAE 18.43 16.65 20.53 20.21 22.31 18.06 10.10
60 min | MAPE (%) 14.2 12.3 16.9 17.36 15.53 13.89 10.75
RMSE 25.74 23.26 24.12 21.09 28.09 24.74 139

to the previous AT-Bi-Conv LSTM model, resulting in an AT-Bi-Conv-SE LSTM model (Stage 4).
The outcomes, as detailed in Table highlight our final hybrid model (AT-Bi-Conv-SE LSTM
model) as the best performing model, achieving the lowest MAE and RMSE error rates of 7.94%
and 11.03% respectively for a 5 minutes prediction time, while posing a 10.1% MAE value and
13.9% RMSE value for a prediction horizon of 60 minutes. Also, Table shows stage two (Bi-
Conv LSTM model) as the worst performing stage, with the highest MAE and RMSE error rates of
12.57% and 18.8% respectively for a 5 minutes prediction horizon, as well as, 14.31% MAE value and
21.16% RMSE value for a prediction time of 60 minutes, indicating a decrease in performance, after
the addition of the Bi-LSTM module. For instance, a significant increase in MAE and RMSE error
rates from 10.5% and 14.21% respectively in stage 1 to MAE and RMSE error rates of 14.31% and
21.16% respectively in stage 2. Conversely, a substantial performance improvement was witnessed
from stage 2 to stage 3, likewise from stage 3 to stage 4 (best performing model) across all prediction
horizons. Concretely, this comprehensive approach underscores the effectiveness of our model in
accurately forecasting traffic flow and positions it as a leading solution for traffic management and
analysis. Fig. shows the prediction performance of the proposed model, emphasizing its superior
forecasting accuracy due to its coherence with the referenced actual traffic flow compared to the flow

predictions of other baselines forecasting models.

Furthermore, we comprehensively compared our proposed hybrid (AT-Bi-Conv-SE-LSTM) model
and other established contemporary approaches for short-term traffic flow predictions spanning vari-
ous prediction time horizons (5, 15, 30, and 60 minutes). The comparative approaches encompass Dif-
fusion Convolutional Recurrent Neural Network (DCRNN)[58]], Attention-Based Conv-LSTM Net-
work (AT-Con-LSTM)[117]], Bidirectional LSTM network[65]], STFSA Convolutional Neural Net-
work Gated Recurrent Unit (SCG)[67]], Adaptive Spatial-Temporal Fusion Graph Convolutional Net-
work (AGFCRN)[57] and Progressive Graph Convolutional Network (PGCN)[90]. Table show-
cases the comparison of prediction accuracy (error rates) across different models using the MAE,
MAPE, and RMSE indices. Notably, our proposed hybrid (AT-Bi-Conv-SE LSTM) model emerged
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as the overall best, consistently delivering exceptionally low MAE and RMSE rates of 7.49% and
11.03%, respectively, for a 5-minute forecast. For the same prediction time, AGFCRN shows the
highest MAE and RMSE rates of 15.10% and 17.81% respectively, making it the least effective for
the same forecast duration. Other models, including DCRNN, AT-Con-LSTM, Bi-LSTM, SCG and
PGCN, showed improved performances (descension of MAE and RMSE rates) over AGFCRN (least
performing), with SCG being the superior model for shorter prediction times. Fig. 2.14alaffirms these
findings, as we can visualize a reduction in the MAE and RMSE rates (improved model performance)
moving from the least performing AGFCRN to the best performing SCG forecasting model for a
5-minute forecast. Similarly, from Table for a 60-minute forecast, AGFCRN remains the least ef-
ficient with the highest MAE and RMSE rates of 22.31% and 28.09% respectively, while our proposed
model was the best-performing forecasting model with the least MAE and RMSE rates of 10.1% and
13.9% respectively (significantly reducing errors compared to AGFCRN and PGCN). Common to
the behavior observed in Fig. 2.14d for the 5-minute forecast, Fig. 2.14b] provides a visual illustration
of the ascension in model performance for the forecasting algorithms moving from AGFCRN (the
least performing algorithm), DCRNN, AT-Con-LSTM, Bi-LSTM, SCG, PGCN to our proposed hy-
brid model (best performing), in decreasing order of MAE and RMSE rates. It is essential to note,
the trend of increasing MAE and RMSE rates with longer prediction horizons is consistent across
all models as witnessed in both Tables 2.3 and 2.6l However, the SCG model, while excellent for
short predictions (5 and 15 minutes), from Table falls short for longer horizons (30 and 60 min-
utes) compared to our proposed model. This indicating how reactionary the SCG model is, as well
as underlining the superior capability of our proposed hybrid model in providing precise short-term
traffic forecasts, essential for dynamic traffic management, incident response, and enhancing mobility,

safety, and the overall efficiency of the transportation network.

2.8 Conclusion

this chapter presented a novel, secure, and efficient framework for privacy-preserving traffic forecasting that
addresses both the precision demands of modern ITS and the sensitivity of driver location data. By com-
bining IPFE with k-anonymity, the proposed scheme supports encrypted route reporting and aggregation
while preventing disclosure of individual trajectories, even under collusion. A hybrid Conv-LSTM and Bi-
LSTM model, enhanced with a SE module, operates on the aggregated encrypted data to capture complex
spatial-temporal traffic dynamics and deliver reliable forecasts. Extensive evaluations on both synthetic and
real-world datasets confirmed the framework’s scalability, low overheads, and resilience, achieving high
forecast accuracy particularly at critical congestion points. Unlike prior methods, the proposed system in-
tegrates strong cryptographic guarantees with deep learning, establishing a new benchmark for trustworthy,
privacy-preserving traffic forecasting and demonstrating clear potential for deployment in real-world ITS

environments.
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Chapter 3: RB-XAI: Relevance-Based Explainable Al
for Traffic Detection in Autonomous Sys-
tems

3.1 Introduction

The recent transformative evolution of artificial intelligence (Al) has significantly impacted various indus-
tries, including transportation, healthcare, finance, and cybersecurity. This evolution is propelled by sophis-
ticated Al algorithms, which empower autonomous systems, such as AVs and Unmanned Aerial Vehicles
(UAVs or drones), with versatile capabilities in navigation, learning, decision-making, and collaboration,
spanning various industries. UAVs have become indispensable across applications such as agriculture, in-
frastructure inspection, package delivery, and disaster response [76]], [79], due to their agility in accessing
remote or hazardous locations. Simultaneously, AVs promise to revolutionize the transportation industry
with their autonomous navigation capabilities, leveraging advanced sensors for their perception, localiza-
tion, planning, and control operations [9].

Despite the remarkable strides in AVs, a significant impediment to its widespread societal acceptance,
like many other intelligent systems persists in the form of the “black box” stereotype. This stereotype sym-
bolizes the opacity in AV decision-making [3[], creating a challenge of understanding and trust. Recent
accidents involving AVs [[12f], [92]] and growing concerns related to ethics and security vulnerabilities un-
derscore the urgency of transparent solutions to address this challenge comprehensively. Overcoming the
“black box” hurdle requires making the decision-making processes of AVs transparent to build stakeholder
trust and acceptance. Achieving this transparency is not only essential for regulatory compliance and ethical
considerations but also for ensuring the safety, security, and accountability of autonomous systems as they
navigate through our dynamic and complex world.

The emerging field of XAI presents an opportunity to make Al decisions in AVs understandable to
humans. However, besides the potential, XAl techniques are not widely adopted in the AV sector. Many
AV developers and researchers have not fully embraced these techniques, leading to missed opportunities
to improve transparency and safety within AV systems. This underutilization has also hindered innovation
and collaboration within the field of XAI for AVs. However, this underutilization contrasts sharply with
the extensive XAl research in areas like medicine [56], [73]], [88]], [119], IoT [118]], cybersecurity [74],
[111] and several others [22], [24], [37]], [97]], where XAI methods are actively explored and used. While
some studies have surveyed the advantages, challenges, and methods of integrating different XAl techniques
into the AV domain [9], the focus of contemporary research on XAI for autonomous systems has primarily
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centered on explaining the behavior of models in tasks like semantic segmentation and object detection,
utilizing traditional attribution-based XAI techniques like LIME, SHAP, Saliency Maps, GRAD-CAM, etc.

In our work, we employ the CRP XAI algorithm, a bias-resistant relevance-based XAl algorithm to
profter transparent concept—level explanations for the behavior of traffic detection models used in AVs, for
traffic perception. CRP, an advanced approach extending the Layerwise Relevance Propagation (LRP) tech-
nique [[84]], goes beyond traditional attribution maps, by generating explanations that automatically identify
and visualizes relevant examples within the input space. This insight sheds light on the crucial latent con-
cepts and areas within the input space responsible for the behavior of traffic detection models [2] used in
AVs. This research aims to boost transparency, understanding, trust, and ultimately lay the groundwork
for XAl integration in AV development, fostering safer and more widely accepted autonomous systems.
Concretely,

* Employing XAI techniques, specifically the CRP algorithm, our paper analyzes traffic detection in
AVs. The CRP algorithm, a hybrid approach incorporating Relevance Maximization (Rel-Max), can
identify examples that are highly relevant to network latent encodings. This provides nuanced insights
into the features influencing the decision-making process of the traffic detection model.

* Deploying the YOLO (You Only Look Once) object detection model on our customized traffic dataset,
merging Open Image Dataset Version 7 and the Microsoft COCO Dataset, our study extensively eval-
uates the proposed CRP explainer. The assessment hinges on Faithfulness, measuring the accuracy
of CRP explanations in reflecting the detection model decisions, and Complexity metrics, gauging
the comprehensibility of the generated CRP explanations. This dual evaluation provides a thorough
assessment of the CRP explainer’s performance.

* To enhance the YOLO model, we further integrate the Convolutional Block Attention Module (CBAM)
into its feature extraction segment, to assess the impact of CBAM on the performance of both the
YOLO model and the CRP XAI algorithm.

The subsequent sections of this chapter are structured as follows: Section II reviews literature, while
Section III outlines our proposed method. Results and findings are presented in Section IV, followed by a
summary of conclusions and potential future avenues of research in Section V.

3.2 Related Work

3.2.1 Explainable Artificial Intelligence (XAI)

XAI has emerged as a remedy for the inherent opacity of intricate Al models, especially Deep Neural
Networks (DNNs), spanning critical domains such as healthcare, transportation, energy, security, finance,
and criminal justice. Initially focused on healthcare, XAl ensures transparency in Al decisions, facilitating
their integration into clinical workflows. For example, [56], [88]], [119] suggest ensemble XAl approaches,
melding SHapley Additive Explanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-
CAM++) [88], [119], along with Class Activation Mapping (CAM) and Saliency map [56] algorithms, for
retrospective visual explanations in the classification of COVID-19 and pneumonia from medical scans.
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Similarly, in [8]], [[73]], SHAP is utilized to elucidate early diagnosis of brain tumors [8]] and chronic kidney
disease [73] from medical scans using DNNs. In the energy sector, Machlev et al. [[70] utilize Local In-
terpretable Model-agnostic Explanations (LIME), Occlusion-Sensitivity, and GRAD-CAM to expound on
outcomes produced by Convolutional Neural Network Power Quality Disturbance (CNN-PQD) classifiers.
They introduce an assessment metric, employing Binary scores and Intersection over Union (IoU) scores, to
evaluate the explainability of both XAl techniques and classifiers, fostering trust by providing comprehen-
sible rationales for Al decisions, benefiting professionals and users.

Stop

- i 1 1 1
—0.0002 —0.0001 0.0000 0.0001 0.0002
SHAP value

(a) SHAP Explanation

(b) CRP Explanation

Figure 3.1: Comparing XAI Algorithms

3.2.2 XAI for Autonomous Systems

In the field of transportation, specifically autonomous systems, the exploration and application of XAl tech-
niques to enhance transparency in the behavior of models used by AVs have been relatively limited, as men-
tioned earlier. However, Mankodiya et al. [71] present a proposal for an XAl integrated AV system. This
system utilizes GradCAM and Saliency maps XAl techniques to provide comprehensive explanations, visu-
alizations, and insights into the intricate workings of semantic road segmentation model layers, elucidating
the perception actions of AVs. Additionally, Hogan et al. [24] [42] tackle the challenges of interpretability
in Al systems employed in UAVs. They achieve this by adapting KernelSHAP, an optimized variant of the
traditional SHAP, for object detection tasks in aerial imagery. The KernelSHAP explainer offers quantita-
tive insights into robust performance, detecting biases, and accurately attributing positive contributions in
real-world images. The outcomes of this study highlight the significant potential of KernelSHAP as an XAI
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algorithm, especially in safety-critical applications where precise and interpretable insights are of utmost
importance.

Despite the remarkable contributions of attribution-based XAl techniques (LIME, SHAP, Grad-CAM,
Saliency Maps, etc.) in enhancing model transparency, these techniques largely used in literature have in-
herent limitations. SHAP like other attribution map techniques, as shown in Fig. focuses on providing
insights to specific predictions (Stop prediction), by attributing prediction using positive (red) and negative
(blue) masks on specific input features. Yet, lacking a holistic understanding of the model decision-making
process, leaving critical aspects of model behavior unexplored. A notable drawback of these approaches
is their susceptibility to biases due to their symmetrical treatment of positive and negative feature contri-
butions, as depicted in Fig. [3.Ta] Thus, the potential to obscure imbalances in feature importance, leading
to biased interpretations and impacting the reliability (faithfulness) of these XAI algorithms. Moreover,
the computational demands of these methods and the absence of standardized metrics pose challenges for
comprehensive quantitative assessments and hinder the consistent comparison of their effectiveness across
applications.

With its emphasis on relevance maximization and low operational latency, CRP addresses these attribu-
tion maps challenges particularly for AVs, by discerning and highlighting crucial latent concepts within the
input space responsible for the behavior of traffic detection models. In Fig.[3.1b] the concept of "STOP text
in an octagon” is highlighted, representing knowledge learned by the detection model for perceiving stop
signs during AV traffic perception. Provision of transparent concept-level explanations as shown in Fig.[3.1b|
ensures a more nuanced and accurate understanding of model decisions, making CRP a valuable tool to en-
hancing reliability (faithfulness), transparency and ease of comprehension (less complexity). Additionally,
the capabilities of CRP help mitigate biases, offering a more robust, efficient, and interpretable solution for

real-time traffic perception operation in AVs.

3.3 Methodology

In this section, we present the methodological contributions of our work through a structured framework
illustrated in Fig. [3.2] consisting of three main stages. Firstly, the Input Space incorporates a custom
annotated traffic dataset with 21,000 samples across 7 classes, depicting real-time on-road scenarios. Sec-
ondly, the Traffic Detection Model involves a medium-sized YOLOvV8 model, which we further in-
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Table 3.1: Main Notations

Notation Description

€ Number of object classes
B Number of predicted bounding boxes per cell

Sp Scaling parameter
Nell Total number of cells in the grid
0,0 ReLU, sigmoid activation functions
Z Loss function
w Learnable model weights
X Feature map
c,s Channel and spatial parameters for the attention operation
Cij,Cij Predicted and ground truth confidence score in cell (i, j)
A Weight for loss calculation
L;j Indicator function for traffic detection in cell (i, j)
R Relevance Quantity

pi;»Pj;  Predicted and ground truth class probabilities in cell (i, j)

fused with a CBAM, to enhance traffic perception. This enables the impact observation of the CBAM on
the performance of the CRP explainer. Finally the XAT Algoritm, where we utilized a CRP explainer to
provide post-hoc concept-level explanations for the behavior of AV traffic detection models, specifically the
YOLOV8 model, in traffic perception. Subsequently, further details on these contributions are elaborated
with reference to notations from Table [3.1] outlining the process of obtaining concept-based explanations
using CRP for traffic detection.

3.3.1 Traffic Detection Model

Traffic detection models serve as a cornerstone for AVs, pivotal in ensuring safety, guiding navigation, and
aiding decision-making by promptly and accurately identifying and tracking objects. These models play a
crucial role in optimizing traffic flow, enforcing rule compliance, facilitating efficient route planning, and en-
hancing overall situational awareness for a comprehensive and secure autonomous driving experience. Our
chosen traffic detection model, You Only Look Once (YOLO), introduced by Redmon et al. [82], stands
out for its real-time capabilities, particularly beneficial in applications where low latency is imperative, as
seen in AVs. As illustrated in Fig. 3.2] the architecture of YOLO encompasses a Convolutional Neural
Network (CNN)-based Backbone with a Feature Pyramid Network (FPN) for multi-scale feature extraction,
complemented by a Detection Head comprising convolutional layers, and adopting a unified approach to
object detection, predicting bounding boxes (%), confidence scores, and class probabilities (%) in a single
forward pass. Its fundamental process involves dividing an input image into grids (_/#¢e1), where each grid
cell predicts bounding box coordinates (fy,#,,%,,,) and class probabilities. YOLO utilizes softmax acti-
vation for class probability predictions, producing simultaneous results for all bounding boxes and classes
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in a single pass. This amalgamation of components makes YOLO an exceptionally efficient and real-time
object detection framework. The YOLO loss function (ZyoLo) encompasses three main components: the
localization loss (%), the confidence score loss (Z.onf), and the classification loss ((%s). The £, eval-
uates the accuracy of predicted bounding box coordinates. From Equation [3.1] it is computed as the sum of
squared differences between predicted (t, %y, ;) and ground truth (%, %,,,7,) bounding box coordinates,
multiplied by the localization loss weight (Acoord). Here, 1?}”. serves as an indicator function, signifying
object presence in cell (i, j) with 1 and O otherwise. The confidence score loss (Zonf), detailed in Equa-
tion [3.2] evaluates predictions for both object and no-object scenarios. The summation considers cases
where an object is present (1 j°%) and where there is no object (l?;’Obj). This formulation ensures the model
is trained to predict confidence scores accurately, distinguishing between cells with and without objects. The
weights (Aconf) enable fine-tuning the importance of each term in the .%o, ¢ function during training. More-
over, the %5 of the YOLO model assesses the accuracy of predicted class probabilities (p;;) compared to
ground truth class indicators (1?]9°bj). From Equation a sum is taken over all cells, bounding boxes, and
classes, penalizing deviations between predicted class probabilities and true class indicators when an object
is present. The weight A allows for adjusting the impact of the classification loss during training.

Therefore, the Zyor0 as denoted in Equation [3.4] is a comprehensive expression that integrates these
three components to facilitate accurate bounding box localization, confidence score prediction, and class
classification during model training.

cell B

Loc = Acoord Z Z IObJ + (ty - fy)Z
i=0 j=0 (31)

+ (b — 1) ? + (th — )%

cell 2B

Leonf = Z Z[ confllj Cz] éij)z

i=0 j= (3.2)

+ Aconflm()bJ (cij— éij)z}

Neen B € b
cls — /Al Z Z Z 10 / [pljlog plj)
i=0 j=0c¢=0 (33)
+ (1= pij) log (1 - pij)]
gYOLO = ﬁoc + Dg/ﬂconf + D%ls (3-4)

3.3.2 Attention Mechanism

Attention mechanisms in deep learning play a vital role in enhancing model performance by addressing
various challenges such as adapting to variable-length sequences, improving interpretability, optimizing
memory usage, handling long-term dependencies, and enabling faster training through parallelization. They
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Figure 3.3: Comparing the faithfulness of various XAl approaches in attributing concepts on the YOLO
model.

are particularly crucial for tasks involving diverse inputs and contribute significantly to various architec-
tures. To boost the localization and classification performance of our YOLO model as well as improve
spatial awareness and feature extraction robustness, we leverage the CBAM mechanism [106]. CBAM is
strategically applied to the intermediate layers of the YOLO backbone as depicted in Fig. [3.2] integrating
both channel and spatial attention mechanisms to selectively emphasize essential channel information and
capture contextual details by focusing on relevant spatial locations. In the channel and spatial attention
mechanisms, the scaling parameters S, and S, are computed by applying a sigmoid activation function
to the result of a double transformation using learnable weights (W; and W,) on average and max pooled
input feature maps (X) respectively as detailed in Equations[3.5]and [3.7] The resulting weighted channel X,
and spatial X; feature maps are obtained through element-wise multiplication of the original feature maps
with their calculated corresponding scaling parameters in Equations [3.6/and [3.8] This process emphasizes
specific channels based on relevance and highlights spatial regions pertinent to the task. The Final Attended
Feature Map (Xy) from Equations @ is computed through the element-wise multiplication of X, and X;.

Spe = & (W28 (W; avgpool (X)) 3.5)
Xe=Spe-X (3.6)

Sps = 0 (W28 (Wi maxpool (X))) 3.7)
Xy =8p-X (3-8)

X = X © X, 3.9)

This fusion process integrates both the channel and spatial attention properties to capture rich contextual
information, aiding YOLO to better understand the context of objects in images, leading to enhanced object

localization and recognition, particularly in complex scenes.
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Figure 3.4: Comparing the faithfulness of various XAl approaches in attributing concepts on the Attention
model.

3.3.3 eXplainable Artificial Intelligence (XAI)

As Al models advance in complexity, the interpretability of their decision-making processes diminishes,
creating challenges in critical domains such as healthcare, finance, and autonomous systems where under-
standing Al decisions is paramount. XAl has emerged in response, driven by researchers and practitioners
recognizing the need for transparency and interpretability in consequential applications. This transparency
is essential for ethical Al use, fostering trust, accountability, error analysis, and the identification of model
mistakes and biases. XAl facilitates human-in-the-loop collaboration regarding regulations and oversight
in industries where a clearer understanding of Al models is required. It plays a vital role in making deep
learning models accessible, understandable, and trustworthy, promoting responsible Al deployment across
diverse applications.

In this study, the CRP algorithm [2] is utilized as a bias-resistant framework, extending the LRP [[84]] to
offer a nuanced methodology for interpreting AI models. CRP introduces relevance maximization to prop-
agate relevance, disentangling relevance flows associated with learned concepts. This facilitates the com-
putation of concept-conditional relevance maps, offering insights into ”what” models identify and “where”
they focus their attention—providing both localized and global concept-based explanations. The relevance
decomposition (REL_J-I’I) (X'| 6U 6))) formula in Equation [3.10]embedded with filtering functionality, com-
putes the relevance of a feature X; at layer (I — 1) concerning a neuron j at layer /, considering conditions
(X'| 0U 6)). It quantifies the importance of X; for the activation of neuron j, incorporating conditions as-
sociated with both the entire model (6) and the layer / (6;). The normalization term z;; ensures appropriate
relevance flow from neuron j to neuron 7, with z; representing the total relevance flow into neuron j. The in-
dicator function §j, acts as a selector based on conditions ¢;, indicating whether relevance should propagate
further. Finally, Ri- (X' | 0) represents the relevance of neuron j at layer [ for the input feature X, consider-
ing conditions 6. This nuanced approach enables a detailed understanding of attributions related to latent

representations in traffic detection models.
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Figure 3.5: Comparing the complexity of various XAI approaches in attributing concepts on the YOLO
model.
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By modifying the backward pass of LRP, CRP generates a concept-conditional heatmap, incorporating
conditions corresponding to specific concepts of interest. The resulting pixel-level output explanations from
CRP address concerns about activation-based example selection for latent concept representation, offering
a holistic understanding of the traffic detection model decision-making processes. For a traffic detection
model denoted as, f: R" — RV*("*+4) with an output, Equation initializes the relevance propagation.
Here, R(LIM) represents the relevance of a feature X; for bounding box k with coordinates (z,,1y,1,,1;) of class
y. The initialization is determined by the Kronecker deltas 0y, and J.,, ensuring relevance is attributed only

to the specified bounding box and class. The term f,(X) denotes the output of the model for class c, serving
as the starting point for relevance propagation.

Rl (X | 0) = 88y fe(X) 3.11)

In essence, the seamless integration of CRP into traffic detection models provides a dual advantage.
Firstly, it generates transparent concept-level explanations, enhancing interpretability and reliability, partic-
ularly in AVs for traffic perception. Secondly, CRP explanations effectively mitigate biases, presenting a
more robust, efficient, and interpretable solution for real-time traffic perception in AVs.

3.4 Experimental Results and Discussion

The success of an Al model hinges significantly on the quality and quantity of the utilized data. In our
study, we developed a robust traffic detection model using two custom annotated datasets tailored for object
detection and other computer vision tasks: The Open Images dataset by Krasin et al. [35] from Google
Research and the Common Objects in Context (MS COCO) traffic dataset from Microsoft Research by Lin
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Figure 3.6: Comparing the complexity of various XAl approaches in attributing concepts on the Attention
model.

Table 3.2: Traffic Detection Model Evaluation

Model mAP | Latency (GFLOPs) | Duration (hrs)
YOLO Model 0.651 46.8 14.729
Attention Model | 0.696 48.2 14.704
Edge-YOLO [59] | 0.473 10.3 > 18
Faster-RCNN [[109] | 0.489 21.1 > 16

et al. [61]]. A combined dataset of over 21,000 images across seven classes follows an 80%:20% train-test
split and further dividing 20% of the training data for validation to fine-tune hyperparameters. We trained
and fine-tuned a medium-sized YOLOv8 model on this dataset for up to 90 epochs on a Lambda GPU
workstation, applying a ReduceLROnPlateau strategy to adjust the learning rate by a factor of 0.2 upon
stalling validation loss improvements after five epochs.

Subsequently, we comprehensively evaluate the performance of our YOLOVS traffic detection model
and the CRP explainer, both before and after integrating the CBAM mechanism, allowing us to discern the
impact of CBAM on both the detection model and the interpretability provided by CRP. Ultimately, we
assessed the proposed relevance-based traffic detection system from three perspectives: Traffic Detection
Evaluation, XAI Algorithm Evaluation, and Computational Overhead.

3.4.1 Traffic Detection Evaluation

As previously highlighted, our evaluation follows a dual approach, examining the performance of the traffic
detection model both before and after the integration of the CBAM mechanism. Furthermore, we benchmark
these models against contemporary MS COCO dataset related detection models commonly found in the
literature. Notably, conventional models like YOLOvV8 and DeepLab Model (DDDLM) [37]] are typically
appraised using the mean Average Precision (mAP) metric—a pivotal measure of their ability to accurately
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Table 3.3: Evaluated scores for various XAl approaches in terms of faithfulness and complexity

Faithfulness (1) Complexity (/)
XAI Algorithms Concept Flipping (J) | Concept Insertion(T) | Explanation Deviation | Comprehension of 80% of attr. (%)
Regmodel Attmodel Regmodel Altmodel Regmodel Attyodel Regmodel Attmodel
CRP - " 1.19 1.20 1.75 1.42 0.44 0.45 50.2 49.1
CRP -7y 1.34 1.31 1.87 1.53 0.68 0.63 40.1 38.8
CRP-¢ 1.90 1.84 2.43 1.78 1.05 0.88 375 345
GRADCAM 1.62 1.50 2.23 1.61 1.14 0.96 37.7 36.7
Gradient 1.63 1.50 2.23 1.59 1.09 0.91 42.9 40.3
Table 3.4: Table Type Styles
Correlation (p) RMSE Duration
XAI Algorithms P (sec)
Regmodel  Attmodel | Re€model  Affmodel sec
CRP 0.855 0.833 0.161 0.159 | 234
LRP 0.806 0.772 0.221 0.228 | 54.1
Latent Activation Maps | 0.718 0.769 0.391 0.356 | >520
GRADCAM 0.420 0.454 0.266 0.262 | >390

detect and classify instances across diverse classes.

* mean Average Precision: mAP as the average of the Average Precision (AF;) values across all classes

(?).

curve for class i.

1
mAP = ?;AB

4

(3.12)

where AP, represents the Average Precision computed as the area under the interpolated precision-recall

From Table 3.2 the YOLOv8 model without CBAM achieved a mAP of 65.1% on our custom traffic

dataset. This performance outshone the Edge-YOLO model (47.3%) from Liang et al. [59] by a substantial
margin of 17.3%. Similarly, our YOLOvV8 model surpassed the Faster-RCNN model (48.9%) from Li et
al. [109] by a significant difference of 16.2%.

Notably, Table[3.2]demonstrates that our Attention Model (YOLOv8 model infused with a CBAM mech-
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anism) emerged as the best performing model, achieving a remarkable mAP value of 69.6%. This superiority
is evident as it outperforms every other model in the table by an average margin exceeding 4.5% in mAP
value, on an MS COCO related dataset. Moreover, the higher mAP value emphasized the enhanced accuracy




and reliability of our Attention Model, making it a compelling choice for AVs in ensuring robust real-time
traffic perception in diverse and challenging real-world scenarios.

3.4.2 XAI Algorithm Evaluation

In tandem with the traffic detection evaluation, we introduce two key model-agnostic quantitative metrics for
the evaluation the robustness and interpretability of our proposed CRP explainer, benchmarked with other
explainers for 100 randomly chosen predictions:

Faithfulness: This metric measures the degree to which explanations truly represents features utilized
during the internal workings of a model during inference. It quantifies the extent to which explanations
reliably reflect the decision-making process of a model. The measure primarily involves two techniques:
Concept Flippingand Concept Insertion. Inspired by the pixel flipping experiment, these techniques
use latent concepts instead of input features, with spatial sum-aggregation computing relevance scores for
each concept in a layer, treating convolutional channels as distinct concepts. For Concept Flipping, relevant
channels are successively deactivated (set to zero activation), and output changes are measured to reflect
the impact on the model’s decision. Conversely, Concept Insertion involves initializing filters with zero
activation and successively restoring relevant concepts, observing the resulting model output changes. The
most faithful explanation must have higher values for both the concept flipping and insertion technique, as
well as demonstrates a significant decline in performance during flipping and a substantial improvement
during insertion. This decline and rise in performance are glaring from the faithfulness values of all the XAl
algorithms of Table for both the regular YOLOvS8 model (Red) and the Attention model (Blue). The
CRP - ¢ explainer, leveraging different rules of concept relevance propagation (z*, ¥, & €) , emerges as the
best-performing XAl technique. It achieves the highest faithfulness scores for with 1.90 flipping and 2.43
insertion scores, outperforming GRADCAM (1.62 & 2.23) and Gradient (1.63 & 2.23) explainers for the
regular YOLOVS model. Similarly, for the attention model, CRP - € stands out as the most faithful explainer,
though there was no substantial rise from 1.84 flipping to 1.78 insertion scores, it was the best performing
explainer compared to the scores of GRADCAM (1.50 & 1.61) and Gradient (1.50 & 1.59) explainers.

Additionally, for the regular YOLOv8 model, comparing the performance plots for concept flipping
(left) and insertion (right) of Fig.[3.3] there is an evident decline (stall) and rise in performance respectively
after the 68th convolutional layer. Likewise, performance rise and decline after the 68th convolutional layer
is observed, for concept insertion (right) and flipping (left) in the faithfulness plot of the attention model as

show in Fig.[3.4]

Complexity: It gauges how easily a human can understand and comprehend the explanation provided
by an XAI method. While faithfulness is crucial, presenting explanations in an understandable manner is
essential for non-experts, enhancing the overall usability of the explainer, especially in AV applications.
Complexity encompasses two key facets: Explanation Deviation and Comprehension of 80 % of
A1l Attributions . Explanation Deviation assesses the diversity and range of explanations provided
by an XAI method for different predictions per class, indicative of its robustness and versatility. A low
deviation value suggests precise and similar explanations within the same class, reducing complexity. This
level of diversity is computed using the standard deviation of latent concept attributions per class. The final
deviation value for concept relevance scores R; (X;) for class tis with mean attribution R ; over my class
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samples and m, concepts is calculated using Equations [3.13]and [3.14]

1 m, 1 me _ 5
i (Xi) —R; 1
or = \/ms_l )= R;)) (3.13)
_ 1 &
Ri= .Y R;(X) (314

The second facet measures number of concepts required to comprehend 80 % of all attributions. This
is essential for user understanding and trustworthiness of the XAI method. A smaller number of concepts
needed for comprehension is favorable. From Table [3.3] CRP variant explainers, utilizing the same propa-
gation rules, exhibit the lowest complexity values (0.44 deviation and 37.5 % comprehension scores) for the
regular YOLOvVS8 model, surpassing GRADCAM (1.14 & 37.7 %) and Gradient (1.09 & 42.9 %) explainers.
This result is visualized in Fig. [3.5] for the deviation (left) and comprehension (right) plots. Similarly, for
the attention model, CRP (0.45 & 34.5 %) stands out as the least complex explainer, outshining GRADCAM
(0.96 & 36.7 %) and Gradient (0.91& 40.3%) techniques, as presented in Fig. [3.6] and Table[3.3] Notably,
the CBAM attention mechanism contributes to reduced complexity for all XAI explainers, with observed
reduction in complexity values for the attention model compared to the regular YOLOv8 model for the de-
viation and comprehension facets.

To comprehensively assess the robustness and interpretability of XAI techniques in detection models,
we introduce the metrics, Correlation (p) and Root Mean Square Error (RMSE). These metrics are
gaged using Context (C) and Sensitivity (S;), and they provide insights into the consistency of concept
sensitivity under varying background conditions. (Cy) defines the ratio of positive attributions outside the
predicted traffic bounding box to the overall sum, thus, revealing concept utilization variations across traffic
classes, and (S) reflects the concept responsiveness to input perturbations. The computation of p and RMSE
is depicted in Equations Equation [3.15]and [3.16]

(Co—C) (54— 5)

\&,U € /L (54=5.)°
_ /1 )2
RMSE_\/m;(CS, Ssi) (3.16)

with Cy as the average Context score and the mean Sensitivity score S; computed over m evaluated

(3.15)

concepts.

From Table [3.4} the p and RMSE performances of four different XAI methods are compared for both
the regular and attention models. Again, CRP was the best performing method for the regular YOLOVS
model, exhibiting the highest positive correlation (0.855) and the lowest RMSE score (0.161). This suggests
consistent concept influence on decisions across diverse inputs. CRP surpassed LRP (0.806 & 0.221), Latent
Activation Maps (0.718 & 0.391) and GRADCAM Maps (0.420 & 0.266) for the regular model. Similarly,
for the attention model, CRP (0.833 & 0.159) outshines LRP (0.772 & 0.228), Latent Activation Maps
(0.769 & 0.356) and GRADCAM Maps (0.454 & 0.262) as presented in Table[3.4] highlighting its superior
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performance in maintaining concept sensitivity and overall robustness.

3.4.3 Computational Overhead

In our analysis, we examine the computational burden of the traffic detection model, considering both base-
line and CBAM-integrated versions, alongside the CRP explainer in our proposed relevance-based traffic
detection system. This evaluation is juxtaposed with the computational costs of other detection models in
literature. For the traffic detection model, we measure model execution time in hours and computing per-
formance in Giga Floating Point Operations Per Second (GFLOPS). Table II shows that the attention model
had the lowest model execution time at 14.704 hours, yet its computing performance was the highest at 48.2
GFLOPS, aligning with expectations. Attention mechanisms contribute to selective computation, reduced
input dimensionality, enhanced learning efficiency, and parallelization opportunities. Despite additional
computations in both forward and backward passes, this trade-off is justified by the improved mAP perfor-
mance it delivers. The regular YOLOvV8 model closely follows with a model execution time of 14.729 hours
and a latency performance of 46.8 GFLOPS. In contrast, the Edge-YOLO model [59] and the Faster-RCNN
model [[109] had longer execution durations (over 18 hours and 16 hours, respectively) and lower latency
performance (10.3 GFLOPS and 21.1 GFLOPS, respectively).

Transitioning to the evaluation of the latency of our CRP explainer, benchmarked against other XAl
approaches, we randomly sampled 100 predictions. Column 4 of Table IV highlights that CRP exhibited
the best execution latency at 23.4 seconds compared to 54.1 seconds for LRP. Moreover, CRP showcased
significantly lower latency compared to activation and its advanced variant GRADCAM, which both had
latencies above 520 seconds and 390 seconds, respectively. This low latency, coupled with its enhanced
performance, positions CRP as a pragmatic choice for real-time applications with resource constraints, such
as AV.

3.5 Conclusion

In this study, we introduce a bias-resistant CRP XAl algorithm to proffer transparent concept—level expla-
nations for the behavior of detection models used in autonomous systems, for traffic perception. The work
further incorporates a CBAM into the YOLOvVS detection model (Attention Model) to evaluate its impact on
model performance and the CRP explainer.

Our comprehensive evaluation demonstrates the effectiveness of the attention mechanism, resulting in
improved detection model performance and reduced run time post-CBAM integration. The study identifies
a trade-off between explanation faithfulness and complexity, positioning our CRP explainer as the opti-
mal compromise for both the regular YOLOv8 model and the attention model. Compared to other XAl
techniques, CRP stands out for its faithfulness and low complexity, offering valuable insights into critical
concepts influencing model decisions. This makes CRP suitable for human-in-the-loop collaboration in in-
dustries requiring a clear understanding of Al models, aiding in regulations and oversight. The results also
highlights the efficacy of CRP in maintaining consistent concept influence, contributing to the robustness,
reliability, and versatility of explanations across different input scenarios. These enhanced performances
coupled with its low latency, positions CRP as a pragmatic choice for real-time applications with resource
constraints, such as AVs.
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Chapter 4: Automating Dataset Annotation for Per-
ception Models via eXplainable AI: A Con-
cept Relevance Propagation Approach

4.1 Introduction

Artificial Intelligence (Al) has recently undergone a remarkable metamorphosis reshaping sectors, including
transportation, healthcare, finance, and cybersecurity, endowing autonomous systems with advanced naviga-
tion, decision-making, and collaboration capabilities. In transportation, Unmanned Aerial Vehicles (UAVs)
and Autonomous Vehicles (AVs) stand out. UAVs, lauded for their reach and dexterity, are essential in areas
like package delivery, agriculture, emergency response, and infrastructure inspection. Similarly, AVs hold
the potential to reshape transportation by offering precise, safety-driven autonomy without human oversight.

AVs operate across four key phases: perception, localization, planning, and control,[9]] relying on sen-
sors like LIDAR and RADAR. The perception phase is fundamental, involving complex deep learning (DL)
tasks like road surface extraction and object recognition, which require extensive, detailed dataset annotation
for object detection, lane detection, and segmentation. However, annotating such data is time-consuming,
costly, and often prone to inconsistencies, especially when facing real-world complexities. Despite signif-
icant advancements in AV technology, like all other intelligent systems, AV’s complete public acceptance
remains a challenge due to the “black box” nature of their decision-making[3]]. This opacity undermines
trust and raises concerns about transparency, regulatory compliance, accountability, safety, and security,
issues that have become even more pressing in light of recent AV incidents[12], [92]. eXplainable Arti-
ficial Intelligence (XAI) seeks to bridge this gap by proffering transparent, interpretable model insights
that enhance trust in autonomous systems through textual, visual, and feature-importance explanations[9].
While XAI has been extensively applied in fields like healthcare[88]], [[119] and cybersecurity[74]], its adop-
tion in autonomous system perception tasks, such as object detection and segmentation, remains limited.
Although some studies have explored the benefits, challenges, and strategies for incorporating XAl into
the AV domain[9], most contemporary research focuses narrowly on explaining model behavior in these
tasks[71]]. This overlooks a broader opportunity to leverage XAl beyond its traditional explainability role,
to enhance both safety and performance in AV systems.

As Al advances, building efficient models requires extensive, diverse datasets, increasing the need for
annotated data in some scenarios. To address the time-intensive nature of manual annotation[36], [86],
Corso[25] advocates leveraging advanced Al techniques to automate the process. Companies like Roboflow[[105]],
Meta[45]], and SuperAnnotate[94] offer data annotation and management services that streamline computer
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vision (CV) workflows, to enhance labeling quality and consistency, while reducing annotation time to fa-
cilitate the development of robust perception models. However, these services are costly and still depend
on manually annotated datasets for pre-training, especially when applying the auto-labeling features to new,
custom datasets[94]], [[105]], where performance remains minimal.

Our work addresses the dual challenge of transparency and automated annotation in AV perception
model development by introducing a novel framework leveraging the bias-resistant Concept Relevance Prop-
agation (CRP) XAI technique[2]]. This framework enhances model interpretability and automates dataset
annotation for perception tasks. By integrating Relevance Maximization (Rel-Max)[2], CRP provides trans-
parent explanations by pinpointing highly critical concepts and input regions used for network encodings,
that influence object detection, improving both model transparency and reliability. Additionally, we combine
CRP with semi-supervised learning to generate high-quality automated annotations, significantly streamlin-
ing the annotation process and reducing manual effort to under 189 seconds for a 15,000-sample dataset.
Our results show that models trained on our auto-annotated data achieved at least 1.4% higher mAP scores
with lower latency than models trained on pre-annotated datasets. This offers a faster, more cost-effective
solution for perception model development while promoting safer, more transparent autonomous systems.
In specific, our contributions are as follows:

* We propose a pipeline to enhance model interpretability, efficiency, and automate dataset annotation
for perception models. Using a custom dataset comprising Open Images Dataset V7[35[] and Mi-
crosoft COCO Dataset[61]], partitioned into 75% raw and 25% annotated data, we train an object de-
tection model on the annotated subset and apply CRP to interpret model behavior on the raw data. To
further optimize performance, we incorporate a Convolutional Block Attention Module (CBAM)[[106]
into the feature extraction layers, improving feature selection and boosting both detection accuracy
and model transparency, ensuring reliable autonomous systems.

* Our approach leverages CRP-generated concept-level explanations[2] to automate data annotation.
By transforming heatmap-based explanations of each test point into bounding box contours, we ef-
fectively localize relevant concepts across the raw dataset, eliminating the need for manual labeling
while validating the feasibility of automated annotations. This method drastically reduces annotation
time and cost while ensuring high-quality, consistent labels, offering a scalable and efficient solution
for dataset preparation in complex object detection tasks.

* We comprehensively evaluate our system by comparing models trained on our auto-annotated dataset
against those trained on datasets labeled via pre-annotation[35]], [[61]], active learning[23]], [77], [110],
and Roboflow’s auto-labeling[105]] methods, all of equal size. This comparative analysis demonstrates
the effectiveness of our approach. Additionally, we assess the CRP explainer’s performance using
metrics such as faithfulness and complexity, providing deeper insights into XAl techniques in object
detection tasks, offering a novel perspective on the interplay between annotation strategies and model
explainability.

The reminder of this chapter is organized as follows in the sections that follow: While Section 4.3 describes
our proposed approach, Section4.2] reviews contemporary literature. Sectiond.4] presents the results and
findings, and Sectiond4.3] offers a summary of the conclusions and possible directions for further research.
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4.2 Related Work

4.2.1 eXplainable AI (XAI) Techniques in Object Detection

Attribution-based XAI techniques (LIME, SHAP, Saliency Maps, etc.) widely employed in literature have
intrinsic limitations to their significant role of improving model transparency. SHAP[63], for instance,
uses positive (red) and negative (blue) masks to explain predictions (Stop class), as shown in Fig. [4.Ta[4]
(Preliminary study). While effective for pixel-level attributions, these methods fail to capture higher-level,
concept-driven explanations essential for precise annotation tasks. In Fig. B.1a[4]], the most significant pos-
itive contribution to the “stop sign” prediction is misattributed to extraneous regions, including the bottom-
left area of the octagonal shape and surrounding pixels outside the stop sign itself. Such inaccuracies render
attribution-based techniques unsuitable for the proposed high-quality automated annotation framework. An-
other notable limitation of SHAP, is their vulnerability to biases due to its symmetric treatment of positive
and negative feature contributions, which can obscure feature importance imbalances and lead to skewed
interpretations, affecting dependability (faithfulness). Additionally, these methods have high computational
demands, thereby limiting their thorough utilization across diverse applications, particularly in large-scale
or resource-constrained scenarios.

In contrast, CRP tackles the difficulties of traditional XAl attribution maps by by prioritizing concept-
level relevance over pixel-level attributions within the input space. For example, Fig. 4.1b[4] emphasizes
the concept of a “STOP text in an Octagon” showing how the model learns to identify stop signs during traf-
fic perception. By focusing on higher-level, concept-aware features, CRP enables transparent, interpretable
insights into model decision-making processes, while reducing attribution biases, and ensuring precise local-
izations. This makes CRP better suited for advance automated annotation pipelines requiring high accuracy
and scalability, for robust object detection solutions.

4.2.2 Synergy Between Attention Mechanisms and XAl

Attention mechanisms in DL dynamically prioritize key input features, enhancing model performance by
focusing on the most relevant information. By computing attention scores and generating weighted input
feature representations, these mechanisms improve decision-making and model robustness. Recent studies
indicate that attention mechanisms can also enhance the interpretability of post-hoc XAI techniques. For
instance, Lee[51]] employed Luong attention to highlight critical EMG signals for predicting finger joint
angles, while Shi[[89] utilized a deformable attention module (DAM) to emphasize infection regions, im-
proving both model accuracy and interpretability using GRADCAM and Layer-wise Relevance Propagation
(LRP). However, existing literature lack direct analysis on how attention mechanisms affect the performance
of XAI methods in object detection, particularly their impact on the Concept Relevance Propagation (CRP)
algorithm. Furthermore, the potential of CRP for automating data annotation in object detection remains
unexplored. Our work bridges these gaps by investigating the influence of CBAM on CRP, demonstrating
improved XAl performance, and introducing CRP as an effective tool for automated dataset annotation,
addressing a critical bottleneck in object detection pipelines.
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Figure 4.1: Comparison of Interpretability Between Attribution-Based and Concept Relevance-
Based . Th| XAl Algorithms

4.2.3 Data Annotation Techniques for Object Detection

Annotation is critical for developing object detection models, providing the ground truth data necessary
for training and evaluation. Manual annotation, previously the standard, involved experts generating precise
bounding boxes and class labels[83]], requiring approximately 35 seconds per object class annotation[36], [86],
to ensure high accuracy. But posing significant challenges in terms of time and cost, particularly with large-
scale datasets. As datasets grew in size and complexity, this process became a bottleneck for efficient
model development, especially in applications like AV perception. To address this, the Al community has
developed advanced techniques such as active learning[23]], semi-supervised learning[18]], self-supervised
learning[[19]], and synthetic data generation[34] to reduce dependence on manual labeling. While these
approaches improve annotation efficiency, they still rely on manually labeled data for pre-trained models
and require extensive iterative training, particularly for unseen, custom datasets. Industry solutions like
Roboflow and SuperAnnotate provide automated annotation tools but struggle with novel datasets, re-
quiring partial manual annotations and remaining prohibitively expensive[94], [[105]].

Although studies have examined the influence of annotation quality, efficiency, and methods on model
performancel6], [103]], the application of XAl for automated annotation remains largely unexplored. Our
work bridges this gap by employing the CRP XAI algorithm to both interpret object detection model behav-
ior and automate dataset annotation processes. This innovative approach enhances training data preparation
efficiency while extending the application of XAI beyond traditional interpretability, offering a scalable
solution for object detection model development.
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Figure 4.2: Framework of the Relevance-Based Explainable Automated Annotation System. The
framework showcases two components: (1) An Explainable CBAM-enhanced YOLO Model, and (2) An
Automated Annotation Framework, which uses CRP-generated concept-level explanations from the YOLO
model to streamline and automate data annotation.

4.3 Methodology

Overview: Our approach involves two core processes: developing an explainable object detection model
and leveraging it for automated dataset annotation. As illustrated in Fig. we design a CBAM-enhanced
You Only Look Once (YOLO) detection model to boost detection accuracy and augment the interpretability
of the CRP explainer. This explainable model is then applied to automate the annotation of a 15,000-
sample dataset spanning seven categories, significantly reducing reliance on manual labeling. Partitioning
the dataset into 75% raw, unannotated test data and 25% annotated training data, with 20% of the training set
reserved for validation, the detection model is trained and subsequently evaluated. The CRP explainer gen-
erates concept-level explanations for each test sample, visualized as heatmaps that localize and delineate rel-
evant concepts into bounding box contours. This automated annotation process, informed by model-driven
insights, offers a scalable, efficient alternative to traditional manual labeling methods. Detailed descriptions
of each stage are provided in the subsequent sections with notations referenced in Table [4.11

YOLO-based Object Detection Framework. Autonomous systems heavily rely on object detection
models for accurate and timely decision-making. We utilized the YOLO model, first introduced by Redmon
et al. [82], in our study because of its real-time capabilities, making it essential for applications requiring
minimal latency. The YOLO architecture as illustrated in Fig. f.2] features a CNN-based Backbone for
feature extraction, a Path Aggregation Network (PANet) for enhanced multi-scale feature fusion, and a
convolutional layer-based Detection Head that predicts bounding boxes (#), confidence scores, and class
probabilities (¢) in a single pass. YOLO divides an input image into grids (.4¢.y1), with each grid cell
predicting bounding box coordinates (Zy,1y,,,1,) and class probabilities using softmax activation, producing
simultaneous results for all bounding boxes and classes. We have updated the YOLO model to include an
attention mechanism to enhance its performance and interpretability (see Section so it can be used for
automated annotation tasks (see Section |4.3.2)).

The performance of YOLO depends on its loss function (:ZyoLo), which consists of three key compo-
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Table 4.1: Main Notations.

Notation Description
Nell Total number of cells in the grid
<z Loss function
C,B Object classes and predicted bounding boxes
T Set of IoU thresholds
f Object Detection Model
a,w Activations and learnable model weights
0,0 ReL U, sigmoid activation functions
X Feature map
Cij, Cij Predicted and ground truth confidence score in cell (i, j)
A Weight for loss calculation
I; Indicator function for traffic detection in cell (i, j)
R Relevance Quantity
pfj, ﬁl‘j Predicted and ground truth class probabilities in cell (i, j)

nents: Localization loss (%), Classification loss (.%;s), and Confidence score 10ss (Zionf). -Loc (Equa-
tion4.T) measures the accuracy of predicted bounding box coordinates (z,zy,t,,t,) against the ground truth
(y,ty, 0, 1,), weighted by localization loss weight (Acoord) and indicated by the function (Il-(;-bj) for object
presence. .Z.; (Equation [4.2) compares predicted class probabilities (p;;) to ground truth class indicators
(I rK’Obj) punishing deviations when an object is present and modulating its impact with weight (Acs). ZLeont
(Equation[4.3)) evaluates confidence ratings for both object and no-object cases, using weights (Aconf) to bal-
ance their importance and guarantee precise confidence score predictions. Equation [4.4] incorporates these
elements into the overall £yoLo loss function, enabling precise bounding box localization, confidence score
prediction, and class classification during training.

Neen B

Loc = Acoord Z Zlab} +(ty_fy)2
i=0 j=0 (41)

+ (tw - fw)z + (th - fh) ]

(.ell B €

cls —A'cls Z Z ZIObJ pzjlog pz])

i=0 j=0c= (42)
+ (1= pfj) log (1 - pfj)]
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Table 4.2: Distribution of Object Classes in Training and Test Sets for Autonomous Vehicle Perception.

Classes Training Set | Test Set
Traffic Light 752 2,256
Bicycle 895 2,670
Stop Sign 611 1,832
Car 1,350 4,061
Motorcycle 824 2,476
Bus 513 1,539
Truck 471 1,414
Total 5,416 16,248
et B
Leont = Z Z [ contl{}” (cij—¢ij)°
i=0 j= (4.3)

+ lconfanOb (cij— 5ij)2]
og/ﬂYOLO = ﬁoc + Dg/ﬂcls + agconf (44)

4.3.1 Enhancing Object Detection Performance with Attention Mechanisms

To understand the durability, robustness, and dependability of the CRP XAI technique, we explored how
model generalization improvements via attention mechanisms and dataset augmentation could impact our
CRP explainer and the overall auto annotation process. In general, attention mechanisms enhance neural
networks by selectively focusing on the most relevant parts of the input data, quantifying feature relevance
using attention scores, and creating weighted combinations to highlight significant features. This allows
neural networks to handle long-term dependencies, optimize memory usage, and adapt to variable-length
sequences. In our work, we utilized the CBAM [106]] to enhance the resilience of feature extraction, spa-
tial awareness, and localization performance of our YOLO model. CBAM is applied to the intermediate
layers of the YOLO backbone, incorporating both spatial and channel attention processes to collect contex-
tual details. This is achieved by focusing on important spatial regions and selectively highlighting important
channel data. The attention process involves two sequential sub-processes: the channel attention mechanism
followed by the spatial attention mechanism. These mechanisms work together to refine feature represen-
tations and improve the model’s ability to detect objects. Equation explain how the scaling parameters
Schannet and Sgpiqr in the channel and spatial attention processes, respectively, are calculated. This involves
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applying a sigmoid activation function o (.) to the output of a double transformation utilizing learnable
weights (W and W) on average and max pooled input feature maps (X) after applying a ReL U activation
function 6(.) to the output. The resulting weighted channel X jaume and spatial X0 feature maps are
obtained through element-wise multiplication of the original feature maps with their corresponding scaling
parameters, as seen in Equation[4.5] These weighted feature maps permit the selective emphasis of relevant
channels and spatial regions crucial to the task. The element-wise multiplication of X pgnuner and Xgpariar
yields the final attended feature map (X ). This fusion process integrates both channel and spatial attention
properties to capture rich contextual information, aiding the YOLO model in better understanding the con-
text of features in images, leading to enhanced object localization and recognition, particularly in complex
scenes as will be shown in Section [4.4.11

Schannet = 0 (W26 (W1 avgpool(X)))
Sspatiat = 6 (W26 (W maxpool(X)))
X channel = Schannel * X 4.5)
Xspatial = Sspatial - X
Xart = Xehannel © Xspatial

The enhanced performance of the YOLO model also extends to improved interpretability of post-hoc XAI
algorithms, particularly the CRP XAI algorithm. The attention process strategically filters out noise and
hones in on critical input information, ultimately reducing the available pool of features from which our
CRP explainer selects relevant ones contributing to crucial concepts responsible for model decisions. Thus,
in addition to improved detection performance, deploying the attention mechanism allows us to observe its
positive impact on the utility of the CRP explainer (see Section4.4.2).

4.3.2 XAI for Automated Annotation

As Al algorithms become increasingly sophisticated and widely utilized in critical domains such as au-
tonomous systems, the need for understanding Al decisions has become paramount. XAI addresses this
need by enhancing transparency and interpretability of deep learning models. In our work, we leverage XAl
techniques, specifically the CRP algorithm, to improve the automated annotation process for object detec-
tion tasks. Providing in-depth insights into the model’s decision-making process allows CRP to generate
high-quality annotations automatically, significantly reducing the time and cost associated with manual data
labeling. This approach not only enhances the efficiency of dataset creation but also improves the overall
performance and reliability of our YOLO-based object detection model. Furthermore, by integrating XAl
into our workflow, we create a more accountable and interpretable system, which is important for the devel-
opment and deployment of safe and trustworthy Al technologies in various computer vision applications,
particularly in the context of autonomous systems and traffic sign detection.

Concept Relevance Propagation (CRP)

In our work, the CRP XAI algorithm [2] is used as an advanced, bias-resistant technique that builds upon
Layer-wise Relevance Propagation (LRP) [10], [84] to provide detailed comprehensible explanations of DL
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Figure 4.3: CRP process from output prediction to preceding layers in an object detection model. The
figure illustrates how relevance is propagated from the detected “STOP Sign” class through the network,
highlighting key concepts such as the octagon shape and the stop text.

model reasoning. Traditionally, LRP explains model predictions by attributing the relevance of the output
score to neurons in the network, from the output layer back to the input features (pixels), highlighting the
importance of these neurons in the inference process. CRP enhances this by decomposing relevance flows
using Relevance Maximization (RelMax) and introducing conditions that target specific learnt concepts for
more in-depth relevance backpropagation. CRP employs binary masking of relevance tensors to compute
concept-conditional relevance maps R(x | 8), where x represents the input data point and 6 denotes condi-
tions such as output categories or specific concepts (e.g., the "Octagon” shape in a stop sign). This approach
yields both local and global explanations, providing insights into what concepts the model recognizes,
where these concepts are located within the input image, and how they contribute to the model’s prediction.
To illustrate how LRP works, assuming a DL model f(x) = fjo---o f;(x), where f(x) represents the forward
pass prediction and fj, ..., fi are the network layers. For a particular layer, pre-activations z;; maps input X;
to output j as shown in Equation- 4.6, where x; is the input and w;; is the weight. Aggregated pre-activations
and activations for the next layer are shown in Equations 4.7 and {4.8] respectively. Equation [4.9]illustrates
how LRP distributes relevance R; from output j to preceeding neuron i, with the overall relevance of each
neuron i being a sum of the incoming divided relevance, as indicated in Equation

zij =X;- Wij (46) and Zj _ ZZ,‘j (47)
Zi;
aj=0-(z)) (48)  and Ricj =" ki 4.9)
Ri =) Ric (4.10)
J
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CRP enhances LRP by modifying its relevance decomposition (R;. ;) to include conditions, computing
the relevance of a feature X; at layer (/ — 1) with respect to a neuron j at layer /, considering conditions
(X | 8U ;). This relevance decomposition, expressed in Equation quantifies the importance of a
feature X; for the activation of j, incorporating conditions associated with both the entire model (0) and the
layer 6;. The normalization term (%{) ensures appropriate relevance flow from neuron j to neuron 7, with z;
representing the total relevance flow from neuron j. The Kronecker delta (§;c,) as used in Equation
is a mathematical identity function shown in Equation [d.12] it acts as a selector, ensuring relevance is only
propagated through neurons relevant to the specified concepts ¢; in 6;. If neuron j corresponds to concept ¢;,
0jc, = 1, otherwise it is 0, effectively filtering the relevance flow. Finally, R§(X | 6) is the relevance assigned
to layer output j from the CRP process in upper layers, conditioned on 6. This approach enables CRP to
disentangle and highlight the contributions of specific concepts within models, offering a clearer and more
interpretable understanding of model predictions.

fi,” (Xloue)= ’ Y 8, Ri(X|6) 4.11)
J CIEGI
1 ifj=c¢
8je, = _ ] : (4.12)
0 ifj#¢

For an object detection model f : R” — RV*(%+4) where R” is the input space with n features (pixels),
and RV*("*4) is the output space with N bounding box predictions, each associated with n. possible object
classes and 4 bounding box coordinates, Equation (4.13|initializes relevance propagation for such a model,
as shown in Fig. In this context, the relevance Rl( bo) (X'| ) represents the relevance of a feature X; for a
specific bounding box k with coordinates (ty,1y,1,,t;) of class y (e.g., the “STOP Sign” class as illustrated in
Fig. to be propagated. Rl(bm indicates relevance specific to bounding box b and class ¢, with Kronecker
deltas 0y and O, in Equations and ensuring relevance is attributed only to the predicted bounding
box k and class y (the detected “STOP Sign” class of Fig. . The term f,(X) denotes the model output for
class y, serving as the starting point for relevance propagation. Furthermore, Equation f.16| describes how
relevance Réb’c) is propagated from layer / to the previous layer (I — 1) for the feature X;. Here, z;; and z;
are normalization terms, 0, is a Kronecker delta ensuring the relevance for the detected “STOP Sign” class
is only attributed to the specific class concepts c;, such as “The Octagon shape” or the “Stop text” in our
case, belonging to the conditions of the last layer 6;. Finally, Equation|4.17|sums up all the relevance scores

Rl(f_ ) for feature X, from the previous layer, giving the total relevance R; for that feature.
R{y (X ] 0) = 8- ey - f1p.0)(X) (4.13)

1 ifb=k 1 ifc=y
Opk = 4.14) Oy = (4.15)

0 ifb#k 0 ifc#y

1-1,0) z;
R (X[0U6)="2Y &R, (X]|6) (4.16)
J /€6,
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Algorithm 1: CRP-Enhanced Automated Dataset Annotation for Object Detection Tasks

1 Input: Dataset &, Detection Model .4

2 Output: Auto-annotated dataset Zayto

3 function Train_Model (2)

4 Split: Diains Zraw < split(2,0.25)

5 Train detector: .#* < Optimize(.# , Dirain)
6 return Trained model .Z*

7 function Apply CRP (/%7 x, (b,c))

8 Forward pass: P < Infer(.#*,x)

9 Initialize relevance scores: Rl(b,c) (x[0) = Sp ey f(p,c) (%)
10 if b=k and c =y then

11 L Opk =1, 8y =1  // Propagate only target relevance
12 else
13 L Op =0, 8cy =0 // Stop relevance propagation

-1, Zij
14 Propagate: R§<_j 2 (x| OUBG) = = Leeo 6jclR€b,c) (x]0)

15 | Aggregate: R; =Y ; Rl((l_—jl,z)

16 return Concept-level relevance map R;

17 function Identify_Concepts(R;)
18 Derive key concepts C < cluster/segment(R;)
19 Threshold map: binary_map < Threshold(R;,0.5)

20 Extract contours: contours «— findContours(binary_map)

21 for each contour in contours do

22 Compute box: (fx,ty, 4y, ;) < boundingRect(contour)

23 L Draw visualization: drawRectangle(x,c, (tx,t,), (£ +tw,ty + 1), (0,255,0),2)

24 return Bounding box set B = {(t,,y,ty,1h)}

25 function Auto_Annotate (2, .#*)
26 Initialize P10 =0
27 for each x € Dy, do

28 P « Infer(.#*,x)

29 for each (b,c) € P do

30 R; + Apply CRP (*,x,(b,c))
31 B < Identify Concepts(R;)
32 Append (x, B, ¢) t0 Dauto

33 return Y0

R=Y R (4.17)
j

Subsequently, this specialized form of conditional relevance propagation can be applied to all detections
within the test data, with an extension to all data points in the test dataset. Thus, integrating CRP into
object detection models used in AV perception allows for the generation of transparent concept-conditional
heatmaps, improving interpretability and dependability by reducing model bias. Additionally, CRP’s pixel-
level heatmap explanations provide a foundation for automating annotations through concept localizations,
addressing key challenges in object detection model development.
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Automated Annotation

Organizations such as Roboflow [105[, Meta [45]], and SuperAnnotate [94] have made significant strides in
reducing the annotation burden by introducing Al-assisted tools. However, these solutions still depend on
human input, can be costly and prone to errors such as inconsistent annotations, especially when dealing
with niche datasets or complex objects. These challenges can impact the overall performance of the models.
To overcome these limitations, contemporary literature explore advance approaches, such as context-aware
models [33]], temporal information from video sequences [40]], and a human-in-the-loop process for error
correction. We propose a novel method that goes beyond traditional approaches by leveraging XAl, specifi-
cally the CRP algorithm, for automated annotation. This approach not only enhances the detection model’s
performance but also delivers annotations that are grounded in the model’s transparent, concept-level expla-
nations. The result is a reliable and scalable solution to data preparation, significantly reducing the need for
human oversight.

Our proposed automated annotation scheme, which integrates semi-supervised learning with XAlI, is
detailed in Algorithm (I} Using a 21,000-sample dataset, the algorithm begins by splitting the data into a
training set (25% annotated) and a raw test set (75% unannotated) (line 2). It then trains a YOLO detection
model [99]] on the annotated data (line 3). Once trained, the model generates bounding boxes and associated
class labels for each data point in the raw dataset (line 5). To analyze and refine these predictions, the
algorithm utilizes the CRP XAI technique (line 7). CRP calculates relevance scores for each bounding box
and class, indicating the contribution of each feature to the model’s decision (line 8). By using Kronecker
delta functions (lines 9-14), the CRP ensures precise relevance backpropagation, focusing solely on the
relevant bounding box and class. Relevance is then propagated from the model’s output layer back to the
input features (line 15), aggregating the total relevance for each feature (line 16). This process helps identify
the key concepts the model focused on during its prediction (line 17). The relevance scores are thresholded
to create a binary map that highlights significant concepts, excluding extraneous features (line 18). These
focused explanations are used to identify contours in the input data (line 19), and bounding boxes are drawn
around these contours (lines 20-23), accurately capturing the regions of interest the model relied on.

The generated bounding boxes, classes and their associated data are added to the auto-annotated dataset
(line 25), progressively transforming the raw dataset into a fully annotated one. This process is repeated
for each data point in the raw dataset (lines 4-26), ensuring comprehensive and consistent coverage. The
resulting fully annotated dataset that closely aligns with concept-level explainability, effectively reduces
biases and produces high-quality precise automated annotations. This approach significantly minimizes the
need for manual annotation, making the annotation process more efficient.

4.4 Experimental Results and Discussion

The experiments for our proposed automated annotation framework were conducted in Python on a Lambda
GPU workstation with dual Quadro RTX 8000 GPUs (2-Way NVLink), an Intel i9-9820X CPU (10 cores),
128GB RAM, and a 2TB NVMe SSD. We utilized two traffic datasets: the Open Images dataset by Google
Research [35] and the MS COCO traffic dataset by Microsoft Research [61]], combining over 21,000 images
across seven object classes, as shown in Table #.2] A medium-sized YOLO version 8 model was trained
from scratch over 80 epochs using the ReduceLROnPlateau learning rate scheduler, reducing the learning
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Table 4.3: Comparison of Detection Performance Across Different Annotation Strategies — Pre-Annotation,
Active Learning, Roboflow Auto-Labeling, and our Automated Annotation.

Annotation Method Frameworks mAP50 mAP50-95 Computation (GFLOPs) Dataset Prep. Time
YOLO (No CBAM) 0.652 0.427 46.8
YOLO + CBAM 0.664 0.442 48.2
Edge-YOLO [59] 0.486 0.289 239
Pre-Annotation Manually Annotated (days)
Cascade R-CNN [15]  0.519 0.306 32.1
DETR-DCS [17] 0.557 0.337 89.4
DN-DETR [55] 0.579 0.358 151.3
LT/C 0.432 0.264 37.7
Active Learning LS+C 0.417 0.236 343
(Faster R-CNN) CALD [110] 0.451 0.272 394 N/A
HUALE [[77] 0.496 0.298 41.6
Auto-Labeling (Roboflow) YOLO + CBAM 0.591 0.379 48.7 382 secs
Auto-Annotation (Proposed) YOLO + CBAM 0.676 0.448 44.9 189 secs

rate by 0.2 after five consecutive epochs without validation loss improvement, ensuring efficient conver-
gence. To validate the framework, we evaluated it across three dimensions: Detection Performance, XAl
Algorithm Evaluation, and Computational Overhead.

Before any quantitative evaluations, Fig. [4.4] illustrates the high-quality, precise annotations generated by
the proposed automated annotation pipeline. The process begins with raw, unannotated images containing
possible object classes such as bicycle, motorcycle, and stop sign (@.4a] B.4d] and d.4g)), which are fed to the
trained detection model and the CRP explainer. The CRP-generated explanations identify the most relevant

concepts influencing the model’s detections, with higher pixel intensities representing more critical features
(e.g., the ”STOP” text on the stop sign (4.4h), the bicycle frame (4.4D), or the engine of the motorcycle
(#@.4¢)). These key regions are localized using the automated annotation algorithm, as shown in the second
column. The pipeline concludes by leveraging the CRP concept localized coordinates to generate precise
bounding boxes, by transposing these coordinates unto the initial raw, unannotated images and assign the
corresponding class labels as depicted in the last column {.4c| [4.4f, and[@d.41). This seamless integration

of model interpretability for automated annotation ensures high-quality labeling while significantly reduc-
ing reliance on manual effort. The method enhances object detection learning and accuracy, demonstrating
its effectiveness for developing robust perception models for autonomous systems, particularly AVs. This
pipeline supports reliable, real-time perception in diverse and complex real-world scenarios, making it a
compelling solution for advanced CV applications.
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4.4.1 Object Detection Performance Evaluation

This section evaluates the efficacy of our automated annotation framework by quantitatively comparing the
performance of detection models trained on datasets prepared using diverse annotation methodologies, in-
cluding pre-annotation, automated annotation, and active learning strategies. Our assessment framework
incorporates both precision-based detection metrics and computational efficiency measures for dataset cura-
tion. We utilize state-of-the-art object detection architectures [[15]], [17], [37], [55], [59]], evaluated primarily
using the mean Average Precision (mAP) metric. The mAP is computed across a spectrum of Intersection
over Union (IoU) thresholds, typically ranging from 50% to 95% in 5% increments. This metric is formally
defined as:

1 1
mAP=—Y — Y AP (4.18)
7] & jc] 2 AR

teT ceC

where T is the set of IoU thresholds, C is the set of object classes, and AP! is the Average Precision for
class ¢ at IoU threshold . The mAP metric provides a comprehensive quantitative measure of a model’s
capacity to accurately localize and classify object instances across multiple categories and scales within an
image, serving as a robust indicator of overall detection performance.

In our study, we employed two key metrics: mAP50 and mAP50-95. mAP50 quantifies the model’s
detection accuracy when predicted bounding boxes overlap with ground truth by at least 50% IoU. mAP50—
95 extends this metric by averaging mAP values across multiple IoU thresholds ranging from 50% to 95%
with varying degrees of localization precision.

Prior to our primary experiments, which involved enhancing the YOLO model with the CBAM and im-
plementing our auto-annotation approach, a standard YOLO model was initially trained on a pre-annotated
version of our custom traffic dataset to establish a baseline. This baseline model achieved a detection per-
formance of 65.2% mAP50 and 42.7% mAP50-95. Focusing on the pre-annotation method, Table 4.3]illus-
trates that among the various detection models trained on the pre-annotated dataset, our CBAM-enhanced
YOLO model significantly outperformed other architectures, achieving an mAP50 of 66.4%. In contrast,
the CBAM-enhanced Cascade R-CNNJ15]] and Edge YOLOJ59] models achieved mAP50 values of 49.9%
and 48.6%, respectively. Similarly, transformer-based models, including the Detection Transformer with
Dilated Convolutions (DETR-DC5)[17] and DeNoising Detection Transformer (DN-DETR)[55], achieved
55.7% and 57.9% mAPS50, accordingly. This represented a minimum improvement of 8.5% for our detec-
tion pipeline. The superior performance of the CBAM-enhanced YOLO model were further highlighted in
the mAP50-95 metric, where it achieved 44.2%, substantially surpassing both the CBAM-enhanced Edge
YOLO (28.9%) and Cascade R-CNN (29.3%) models, likewise the DETR-DCS5 (33.7%) and DN-DETR
(35.8%) models.

We also conducted an extensive exploration of active learning techniques. Active learning is a sophisti-
cated approach that strategically identifies the most informative samples for annotation, thereby minimizing
the quantity of labeled data required to train an effective model. By employing diverse query strategies,
active learning maximizes model performance with minimal annotated data. In our active learning detec-
tion framework, we implemented several query strategies: Least Squares Plus Confidence (LS+C),
which selects samples by considering both prediction error and confidence intervals; Least Total Cost
(LT/C) and Cost-Effective Active Learning with Diversity (CALD) [110], both of which fo-
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cus on diversity and uncertainty-based sampling while accounting for labeling costs. Furthermore, we
incorporated the Hierarchical Uncertainty Aggregation and Emphasis Loss (HUALE) strategy
by Nguyen et al. [77]], which employs a two-stage approach. This method initially filters images based on en-
tropy measures (retrieval phase) and subsequently ranks them using Semantic Affinity, Category Diversity,
Overlap Ratio, and Localization Confidence (ranking phase) to ensure the selection of the most informative
samples for labeling. As illustrated in Table[4.3] our experimental results demonstrated that after 28 training
cycles, the HUALE strategy significantly outperformed the other three query strategies, achieving a 49.6%
mAP50 and 29.8% mAP50-95, compared to CALD (45.1% & 27.2%), LT/C (43.2% & 26.4%), and LS+C
(41.7% & 23.6%). The superior performance of the HUALE strategy is clearly depicted in Fig. where
it consistently surpasses other active learning strategies in detection performance when plotted against the
quantity of labeled data or the percentage of available training data labeled.

We concluded our experimentation by validating the feasibility and effectiveness of our proposed automated
annotation pipeline. We trained a CBAM-enhanced YOLO detection model on a dataset of over 15,000
samples that were auto-annotated using our method. The goal was to observe how our concept-level ex-
plainable annotation approach influenced the model’s learning process, compared to the same model trained
on a 15,000-sample auto-labeled dataset from Roboflow, which utilized their newly introduced Auto-label
Grounding DINO feature [[105]. After training, we compared the inference performance of the two mod-
els. As seen in Table [4.3] the model trained on our auto-annotated dataset achieved a mAP50 of 67.6%
and a mAP50-95 of 44.8%. In contrast, the model trained on the Roboflow auto-labeled dataset achieved a
mAP50 of 59.1% and a mAP50-95 of 37.9%.

4.4.2 XAI Algorithm Evaluation

In addition to evaluating detection performance, we also assessed the effectiveness of our chosen CRP ex-
plainer under various neural network modifications, particularly focusing on attention module enhancements
and data augmentation techniques. This assessment aimed to understand how these strategies impact the in-
terpretability and utility of the CRP explainer. Inspite the limited nature of literature for evaluating the
performance of XAl methods, these techniques including the CRP algorithm, are generally evaluated using
two model-agnostic quantitative metrics: Faithfulness and Complexity. These metrics help quantify how
accurately the explanations reflect the model’s decision-making process and how easily the explanations
can be understood and used.

Faithfulness: This metric evaluates how accurately explanations represent the features a model uses dur-
ing inference. It quantifies the reliability of explanations in reflecting the decision-making process of mod-
els. The assessment primarily employs two techniques: Concept Flipping and Concept Insertion.
Inspired by the pixel flipping experiment, these techniques focus on latent concepts rather than input fea-
tures. Here, the concept relevance in each layer, associated with an object prediction, is determined by spa-
tially aggregating intermediate relevance scores, with convolutional channels treated as distinct concepts. In
Concept Flipping, the most relevant channels are sequentially deactivated (their activations, set to zero),
and the resulting changes in the model’s output are analyzed to gauge the impact on the model’s behavior.
In contrast, Concept Insertion starts with all channels set to zero activation and progressively restores the
most relevant concepts, observing the corresponding changes in the model’s output. The most faithful expla-
nations, always have higher values, while demonstrating a significant drop in performance during concept
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Table 4.4: Comparison of CRP Variants (z*, 7, £€), GRADCAM, and Gradient Maps on Faithfulness and
Complexity after CBAM Enhancement for Pre-Annotated and Auto-Annotated Datasets.

Faithfulness (1) Complexity ()
XAI Algorithms Concept Flipping (]) | Concept Insertion(1) | Explanation Deviation (%) | Comprehension of 80% of Attr.(%)
Preamo  AutOpamno | Preamo  AutOamo | Preanno Autoanno Preanno Autoanno
CRP -z 1.19 1.54 1.75 2.23 0.44 0.44 50.2 51.3
CRP -y 1.34 1.76 1.87 2.40 0.68 0.63 40.1 40.7
CRP-¢ 1.90 2.88 243 335 1.05 0.89 37.5 358
GRADCAM 1.62 2.43 2.23 2.94 1.14 0.95 37.7 38.0
Gradient Maps 1.63 2.44 2.23 2.93 1.09 0.92 42.9 40.9

flipping and a marked improvement during concept insertion, indicating a high degree of alignment between

the explanation and the model’s internal processes.

Complexity: Gauges the effort required for stakeholders to understand and comprehend the explanation
provided by an XAI method. While faithfulness is essential, the non-linear decision boundaries of deep
learning models necessitate presenting explanations in a way that is accessible to non-experts, thereby en-
hancing the explainer’s usability, especially in critical domains like AVs. Complexity encompasses two key
dimensions: Explanation Deviation and Comprehension of 80% of Attributions. Explanation
Deviation quantifies the variability and consistency of explanations generated by an XAI method across
different predictions within the same class. This reflects the robustness and versatility of the method. A
lower deviation indicates that the explanations are consistent and precise within a class, thereby reducing
complexity. This deviation is calculated using the standard deviation of latent concept attributions per class.
The final deviation value for concept relevance scores R; (X;) for a class 7, along with the mean attribution
R; across my class samples and m, concepts, is determined as outlined in Equations and respec-
tively. Moreover, the second facet — Comprehension of 80% of Attributions measures the number of
concepts required to be analyzed to understand 80% of all attributions. Fewer relevant concepts suggest a
more concise explanation, which is essential for user understanding and trustworthiness of the XAI method.

Rj=—) R;(Xi) (4.19)

W‘;,t;c,¢w—1 (R} (X))~ Ry)?) 420)

To holistically evaluate the impact of different relevance backpropagation rules on the faithfulness and
complexity of CRP-generated explanations, we employed three specific rules for 100 sampled predictions:
CRP-¢ (Epsilon Rule), CRP-y (Gamma Rule), and CRP—z" (z-Plus Rule). The Epsilon Rule ad-
dresses numerical instabilities during relevance propagation by incorporating a small (€) value, thereby
preventing the amplification of small activations, especially in deeper layers where such activations may ap-
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proach zero. The Gamma Rule enhances positive relevance scores while suppressing negative ones, making
it particularly useful for highlighting concepts that positively influence the model’s decisions. The z-Plus
Rule, on the other hand, focuses solely on the positive contributions of neurons, ignoring negative activa-
tions, which is beneficial when positive evidence is more crucial to the decision outcome.

Initially, we evaluated the impact of CBAM enhancements on the performance of various explainers by
comparing explainer performances for a standard detection model trained on a pre-annotated custom dataset
with a CBAM-enhanced detection model trained on our curated auto-annotated dataset. The analysis in-
cluded the CRP explainer, Gradient-weighted Class Activation Mapping (GRADCAM), and gradient-based
methods (Gradient Maps). As shown in Table 4.4l CRP-¢ consistently outperformed other explainers on
the standard detection model, achieving the highest faithfulness scores with flipping and insertion values
of 1.90 and 2.43, respectively, surpassing Gradient (1.63 & 2.23) and GRADCAM (1.62 & 2.23). Figid.6
further demonstrates CRP—¢’s superior performance, consistently excelling in both metrics. On the CBAM-
enhanced model trained on the auto-annotated dataset, CRP—¢ again led with improved flipping and insertion
scores of 2.88 and 3.35, outperforming Gradient (2.44 & 2.93) and GRADCAM (2.43 & 2.94), as depicted
in Figld7]l CRP variants also demonstrated superior complexity performance. For the standard detection
model, CRP—z" recorded the lowest deviation (0.44), while CRP—¢ achieved the best comprehension score
(37.5%), outperforming GRADCAM (1.14 & 37.7%) and Gradient (1.09 & 42.9%). Similarly, for the
CBAM-enhanced model, CRP retained its advantage with deviation and comprehension scores of 0.44 (z1)
and 35.8% (¢€), exceeding Gradient (0.92 & 40.9%) and GRADCAM (0.95 & 38.0%), as depicted in Figures
and[4.9] CRP-¢ demonstrates exceptional stability across most faithfulness and complexity evaluations
but is less effective at minimizing explanation deviation. In contrast, CRP—y and CRP—z" excel in reducing
variability, delivering globally consistent and coherent explanations by filtering out irrelevant and noisy at-
tributions. These findings highlight the complementary strengths of the propagation rules: CRP—¢ balances
faithfulness and complexity, while CRP—y and CRP—z " prioritize robustness and global feature representa-
tion. The adaptability of these CRP variants allows for tailored applications depending on specific evaluation
priorities. Furthermore, CBAM enhancements, coupled with training on the auto-annotated dataset, signifi-
cantly improved the performance of all XAl explainers, enhancing faithfulness and reducing complexity, as
evidenced by Table[4.4l These advancements underscore the effectiveness of CBAM in optimizing explain-
ability and computational efficiency.

Also, we analyzed the influence of data augmentation on the explainer performance by incrementally
increasing the dataset size in four stages (25%, 50%, 75%, and 100%) for training the CBAM-enhanced
detection model. This approach provided insights into the effects of dataset quantity on XAl explainers’
faithfulness and complexity. The CRP-¢ variant, selected for its superior earlier performance, was bench-
marked against GRADCAM and Gradient methods. Results, as summarized in Table and illustrated
in Fig. revealed consistent improvements in faithfulness scores across all explainers with increas-
ing dataset size. CRP—¢€ exhibited significant enhancements, with concept flipping scores rising from 0.67
(25%) to 2.84 (100%) and concept insertion scores improving from 1.03 to 3.32. These trends highlight
better generalization, reduced overfitting, and enhanced reliability in capturing model behavior with more
data. At 100% dataset usage, CRP—¢ achieved the highest faithfulness scores, outperforming GRADCAM
(2.43 & 2.90) and Gradient (2.44 & 2.91). In terms of complexity, CRP—¢ maintained the lowest explanation
deviation (0.45) and comprehension scores (0.35) at 100% dataset usage, outperforming GRADCAM (0.96
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Table 4.5: Comparison of CRP, GRADCAM, and Gradient Maps on Faithfulness and Complexity Across
Dataset Proportions.

Faithfulness (1) Complexity ()

XAI Algorithm  AUC Concept Flipping () AUC Concept Insertion (1) Explanation Dev.(%) 80% Concept Comprehen.(%)

25% S50% 75% 100% | 25% S50% 75% 100% 25% 50% 75% 100% | 25% 50% 75% 100%

CRP 0.67 158 241 2.84 1.03 175 250 3.32 1.19 0.88 0.63 0.45 072 049 039 0.35

GRADCAM 062 122 194 2.43 0.88 1.59 243 2.90 193  1.62 137 0.96 085 054 040 037

Gradient Maps 049 1.04 1.92 2.44 0.71 1.34 236 291 1.85 1.61 1.34 0.91 088 0.64 046 0.40

& 0.37) and Gradient (0.91 & 0.40). This reduced complexity suggests consistent and concise explanations,
crucial for usability. Visualizations in Fig. further corroborate CRP-£’s superior performance across
dataset proportions. Our results highlight the critical role of dataset comprehensiveness and data augmen-
tation in enhancing model explainability. The CRP explainer demonstrated remarkable improvements in
faithfulness while maintaining lower complexity scores compared to GRADCAM and Gradient. This sym-
biotic relationship between dataset size and explainer performance underscores the importance of diverse,
well-prepared datasets in improving the transparency and trustworthiness of Al models, particularly in high-
stakes domains like autonomous vehicle perception systems.

4.4.3 Computational Overhead

Our final analysis examined the computational overhead of our proposed automated annotation framework,
including resource usage and dataset preparation time. This evaluation was compared with other contempo-
rary approaches in the literature aimed at reducing the annotation burden in detection model development.
Additionally, we discussed the latency of the CRP explainer within our framework against other explainers
on the same prepared auto-annotated dataset to determine which XAI algorithm is best suited for real-time
object detection in the AV domain.

For computational evaluation, we measured the framework’s execution performance in Giga Floating
Point Operations per second (GFLOPs) and dataset curation time in seconds (secs). As summarized in
Table [4.3] our proposed automated annotation framework computationally performed optimal, achieving
44.9 GFLOPs, close to the Roboflow-based detection model 48.7 GFLOPs and the model trained on a pre-
annotated version of our custom traffic dataset 48.2 GFLOPs. This competitive performance aligning with
our expectations, since the inclusion of attention mechanisms, contributes to selective computation, reduced
input dimensionality, improved learning efficiency, and parallelization opportunities. While these mecha-
nisms add computational cost, the trade-off is justified by the improved mAP performance. Moreover, for
our 15,000-sample custom traffic dataset, our framework auto-annotated and curated the data in just 189
seconds, compared to 382 seconds with Roboflow’s auto-labeling feature. Notably, our automated annota-
tion approach reduced the manual annotation time from several days to just under three minutes, a reduction
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of over 98%. This demonstrates the efficiency of our explainable automated annotation framework, outper-
forming other methods like active learning, which requires multiple annotation and model training cycles,
often taking days, if not hours. While FLOPs measure a model’s computational complexity, models (like
YOLO + CBAM) maintain consistent theoretical FLOPs across identical architectures. However, runtime
variations arise from factors like memory bandwidth constraints, background processes, dynamic computa-
tional graphs in PyTorch or TensorFlow, sparse activations during early training, and backend optimizations
such as kernel fusion and mixed-precision training, illustrating the gap between theoretical and real-world
performance expectations.

Lastly, in terms of explainer latency, the chosen CRP algorithm exhibited the best performance with
an execution time of 24.7 seconds, compared to LRP 54.9 seconds, GRADCAM over 410 seconds and
activation-based methods over 530 seconds. This efficiency, combined with its computational effectiveness
and improved performance, positions our framework as a viable solution for large-scale dataset annotation
in detection model development. It also shows potential for real-time detection applications such as AV

perception, where balancing computational cost and performance is important.

4.5 Conclusion

Our study presents a transformative framework that integrates semi-supervised learning with the CRP XAI
algorithm, redefining model interpretability and large-scale dataset annotation for autonomous system per-
ception. By leveraging CRP’s concept-level relevance mapping, we automate annotation processes with
minimal manual effort, achieving over 98% labeling time reduction while generating high-quality labeled
datasets. Incorporating advanced network optimization techniques, such as the CBAM, alongside targeted
data augmentation strategies, the framework enhances detection accuracy, reduces computational overhead,
and improves explanation fidelity. Notably, CRP surpasses other XAI methods like GRADCAM in pro-
viding faithful, actionable insights with low latency, making it ideal for resource-constrained, real-time
autonomous applications like AV perception. Future research could enhance this pipeline by incorporating
adaptive learning for dynamic driving environments, integrating multi-modal sensor fusion (e.g., LiDAR,
RADAR, and camera data) to improve perception robustness, and enabling real-time explainability for on-
the-fly decision-making to enhance safety and security. Similarly, expanding its application to UAV navi-
gation, industrial automation, and other high-stakes domains could position this framework as a benchmark
solution for scalable, interpretable, and efficient Al-driven perception tasks. Such advancements would not
only enhance system reliability but also address broader challenges in ensuring transparency, adaptability,
and operational safety across complex, real-world environments.

Additional Information

Supplementary Material: The complete experimental code for this study, including all implementation
details, is publicly accessible at https://github.com/Iykelz/AutoAnnotation.
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(b) CRP Explanation Localization

(d) Original Motorcycle Image (e) CRP Explanation Localization (f) Automated Annotation Result

S FRieze s

(g) Original Stop Image (h) CRP Explanation Localization (i) Automated Annotation Result

Figure 4.4: Results from the Proposed Automated Annotation Pipeline.. The first column presents raw,
unannotated images of classes bicycle, motorcycle, and stop sign. The second column illustrates CRP-
generated explanations, pinpointing relevant concepts essential for each class detection. The final column
demonstrates the culmination of the automated annotation process, where CRP concept localization coor-
dinates from the previous column are transposed onto the original images to produce precise high-quality
bounding box annotations and object labels.
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Figure 4.5: Detection Performance for Various Active Learning Strategies. The plots compare the de-
tection performance of active learning strategies (LT/C, LS+C, CALD, HUALE) for the Faster R-CNN
model. HUALE demonstrates superior performance across both mAP50 and mAP50-95 metrics, achieving
the highest scores as labeled data quantity (training data percentage) increase, showcasing its effectiveness
in active learning for object detection tasks.
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Figure 4.6: Comparison of XAI Algorithm Faithfulness for Concept Attribution on a Regular YOLO
Model. The plots compare the faithfulness of CRP variants (z*, ¥, €), GRADCAM, and Gradient Maps
across convolutional layers. CRP—€ (green) consistently leads, achieving the highest Concept Flipping and
Insertion scores, demonstrating superior performance across key layers.
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Figure 4.7: Comparison of XAI Algorithm Faithfulness for Concept Attribution on a CBAM-
Enhanced YOLO Model. The plots compare the faithfulness of CRP variants (z, ¥, €), GRADCAM,
and Gradient Maps across convolutional layers. With an observed significant improvements in faithful-
ness across all explainers. CRP-¢ (green) consistently outperforms other explainers, achieving the highest
Concept Flipping and Insertion scores, showcasing its superior performance across key layers.
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Figure 4.8: Comparison of XAI Algorithm Complexity for Concept Attribution on a Regular YOLO
Model. The plots compare the complexity of CRP variants (z*, 7, €), GRADCAM, and Gradient Maps
across convolutional layers. CRP—z" achieves the lowest Relevance Deviation, while CRP—¢ excels in
80% Attribution Comprehension, outperforming GRADCAM and Gradient Maps, particularly in deeper
layers. These results highlight the superior efficiency and complexity management of CRP variants in model
explanations.
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Figure 4.9: Comparison of XAI Algorithm Complexity for Concept Attribution on a CBAM-Enhanced
YOLO Model. The plots compare the complexity of CRP variants (z*, ¥, €), GRADCAM, and Gradient
Maps across convolutional layers. CRP—z* shows the lowest Relevance Deviation, while CRP—€ achieves
the highest Comprehension of 80% of Attributions, consistently outperforming GRADCAM and Gradient
Maps. These results demonstrate the reduced complexity and enhanced performance of all explainers with

CBAM and auto-annotation.
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Figure 4.10: Comparison of XAI Algorithms on Faithfulness and Complexity with Dataset Augmen-
tation. The plots illustrate the impact of increasing dataset sizes on CRP (brown), GRADCAM (blue), and
Gradient Maps (green). The left plot show CRP leading in Faithfulness, with the largest gap between Con-
cept Flipping and Insertion, while also maintaining the lowest Complexity in the right plot, outperforming
GRADCAM and Gradient Maps in generating concise and efficient explanations.
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Chapter 5: eXplainable AI For Enhanced Trojan De-
tection In Autonomous Vehicle Steering Net-
works

5.1 Introduction

Artificial Intelligence (AI) now underpins critical infrastructure in autonomous transportation, medical diag-
nostics, and cybersecurity. AVs exemplify this trend, using sophisticated DNNs to fuse inputs from LiDAR,
RADAR, vision, and inertial sensors for real-time steering control. While this data-driven autonomy im-
proves adaptability in dynamic traffic scenes, it also broadens the system’s attack surface. Among these
threats, trojan backdoor attacks, stealthy malicious manipulations embedded during training, which can
covertly hijack model behavior, forcing dangerous trajectory deviations. Exacerbating this risk is the opaque
nature of DNN systems, where non-intuitive latent representations obscure effective analysis and regulatory
auditing, challenging the safe deployment of AV technologies.

Despite notable progress in trojan detection research, the field remains fragmented and anchored in clas-
sification settings. Methods like Neural Cleanse, STRong Intentional Perturbation (STRIP), and Activation
Clustering detect discrete anomalies like entropy shifts, class output changes, or clustered neuron activa-
tions. Although effective in categorical contexts, these methods struggle in continuous regression-output
tasks such as AV steering, where backdoor triggers typically induce nuanced, context-aware prediction de-
viations rather than abrupt output flips. Additionally, their reliance on clean baseline datasets and high
computational overhead limits their scalability and real-time applicability. Vitally, they tend to overlook
semantic distortions and concept-level anomalies that signal manipulated model decision logic. In response
to this gap, Recent efforts like Februus [27]], that uses Grad-CAM to purify trojaned inputs, and Critical
Path-Based Backdoor Detection (CPBD) [49], which maps anomalous decision paths via neuron activa-
tions, have pushed XAI from passive interpretability toward proactive defense mechanism in Al security.
However, these solutions still largely cater to classification tasks and often lack resilience against distributed
and imperceptible attacks.

in this chapter, we introduce an explainability-guided detection framework designed for regression-
based AV steering control systems, addressing security gaps in existing defenses and bridging their inherent
incompatibility with classification-oriented trojan detectors. Our approach repurposes Grad-CAM [85]] and
Concept Relevance Propagation (CRP) [5]] as active security tools, generating multi-level spatial and concep-
tual attribution maps that expose the rationale behind steering decisions. By analyzing explanations from
benign and trojaned samples (where steering prediction deviations exceed acceptable thresholds) across
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Figure 5.1: Explainability-Guided Trojan Detection Framework. The framework consists of two main
components: (1) A Trojaned Steering Angle Predictor, and (2) A Real-Time Detection Module, which uses
Grad-CAM, and CRP-generated attribution maps to train a lightweight classifier that detects trojaned inputs
based on explanation-level anomalies.

varying poisoning rates, we reveal telltale indicators of backdoor compromise like saliency drift, spatial
deformation, and conceptual divergence. These explanation-derived features then empower lightweight bi-
nary classifiers that detect trojaned behavior with high fidelity, without requiring prior knowledge of trigger
patterns or access to clean reference datasets. The contributions of this work are:

* Developed a robust end-to-end DNN for steering angle prediction using the Udacity Self-Driving
Car dataset to establish a behavioral baseline for assessing the impact of trojan backdoor attacks on
AV control. Static visible triggers and imperceptible perturbations were embedded during training
at varying poisoning rates (5%—40%), to determine the effective poisoning threshold, balancing high
fidelity on clean inputs with consistent, malicious deviations under trigger activation.

* Leveraging novel XAl techniques including Grad-CAM [85]] and CRP [5]], we generate and curate
multi-level visual attribution maps capturing decision-making patterns. Consequently, these were
used to train lightweight binary classifiers capable of trojan detection based solely on explanation-
derived features.

* Validated the proposed XAl-guided detection framework by benchmarking it against conventional
methods including Activation Subset Scanning (ACTSS) [[108]] and Artificial Brain Stimulation (ABS) [[62]],
all trained on the same curated attribution dataset. Evaluation using precision, F1-score, and AUC-
ROC underscore the efficacy of our approach in bolstering AV model resilience and transparency,
while establishing a novel foundation for adapting classification-based detection logic for continuous-
output regression tasks in safety-critical settings.

5.2 System Models

5.2.1 Network Model

The proposed framework targets the control layer of AVs’ cyber-physical architecture, where DNNs perform
end-to-end regression, mapping raw monocular RGB inputs x € RF*W>3 to continuous steering commands
y = f(x) € R. This design, used in systems like NVIDIA PilotNet and the Udacity self-driving simulator,
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enables low-latency, real-time control at 10-30Hz on edge devices (e.g. NVIDIA Jetson AGX Xavier).
However, it broadens the attack surface, especially when model weights or training data come from untrusted
sources and lack formal safety guarantees, leaving it vulnerable to trojan backdoor attacks triggered by
specific inputs.

5.2.2 Threat Model

In this work, we consider a white-box adversary with full or partial knowledge of the AV control model’s
architecture, parameters, and training data, a realistic risk scenario where models or datasets are open-
sourced repositories or third-party vendors. The adversary aims to implant a trojan backdoor during training,
so the model behaves nominally on clean inputs x ~ P4y, but produces malicious steering signal y’ =
f(x+38) € .7 when atrigger § € RT*W*C i present. Here, .7 C R denotes attacker-defined, unsafe steering
angles. The attack vector involves data poisoning, wherein a subset of training samples is perturbed:

t/rain :-@cleanu{(xi‘i‘a,))z)}f;l (51)

binding the trigger 0 to an adversarial target output y;. Triggers may be static visible implantable patterns
(e.g. geometric stickers, pixel patches) or imperceptible perturbations crafted using L2-Norm bounded
methods, where the perturbation 6 satisfies ||8]|2 < € (bound), to embed backdoor logic while preserving
visual stealth. Introduced through physical means (e.g. decals, signs) or digital overlays in simulations, the
attack’s hallmark is in its stealth. Crucially, we assume the attacker lacks post-deployment access, relying
solely on input-trigger activation. If undetected, this can lead to outputs = f(x+ 0) & % a1ia (Where %114
denotes safe steering ranges), resulting in lane departures, erratic trajectories, or hazardous maneuvers,
especially in urban environments. These attacks often exploit internal model logic to align benign-looking
inputs with malicious outputs, evading traditional anomaly detectors.

This section outlines our three-stage explainability-guided framework for trojan backdoor detection in
AV control models, as illustrated in Fig. First, we train a baseline DNN for steering angle predic-
tion on the clean Udacity dataset (Section [5.2.3)). Next, we simulate trojan attacks by poisoning training
data with two different trigger classes at varying rates (5%—40%), to evaluate stealthy manipulation impact
(Section [5.2.4). Finally, we apply Grad-CAM and CRP to generate attribution heatmaps, that serve as in-
put features for training lightweight binary classifiers to detect trojaned inputs (Section [5.2.5). Detailed
methodologies are provided in the following subsections.

5.2.3 Steering Command Predictor

Steering angle prediction is fundamental to AV control, linking vehicle perception to how it steers for real-
time guidance in lane keeping, curve negotiation, and reactive navigation in dynamic traffic. This task
is framed as a regression problem f : R?*W>3 _ R, where x € R¥*"W>3 is an RGB image and y € R is
the predicted steering angle, constrained within an operational range y € [—6pax, Omax] (€.g. +1 radian) to
respect physical steering limits. We adopt Mobile Neural Network Version 3 (MobileNetV3-Large) [43]]
as the backbone for our steering angle regression given its edge-optimized design for platforms like the
NVIDIA Jetson AGX Xavier. We modify the MobileNet by replacing the classification head with a single-
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output regression layer, so that:
F=/(x:0) = g((x: Oear): Oreg) (5.2)

where @ (x; Opey) is the feature extractor, producing an embedding z € R?, which is then passed to a
regression head g(z; Oreg) With 6 = {6feq, Orcg } being the model parameters, to yield the predicted steering
angle. The model is optimized using Root Mean Squared Error (RMSE) loss to penalize large deviations.
Additionally, MobileNet offers key advantages for our explainability-guided trojan detection framework:
(1) its structured convolutions enhance spatial coherence for Grad-CAM interpretability; (2) its SE blocks
align with CRP’s channel-level relevance tracing; and (3) its lightweight design enables rapid retraining
for poisoned variant testing. While limited global context makes MobileNet more susceptible to localized
triggers (e.g. pixel-space patches), post hoc XAl mitigates this by exposing latent semantic anomalies.

5.2.4 Trojan Attacks

Trojan or backdoor attacks embed malicious logic during training that activates only when specific triggers
appear, evading standard validation. These attacks pose severe risks in AV control where single mispredic-
tion can result in catastrophic outcomes. Our study simulates two trigger types to assess vulnerability and
detection viability through post hoc explainability.

Visible Triggers: These are static square patch triggers § € R¥*W>3 placed at fixed locations (e.g.
upper-left image corner) to minimally disrupt semantics while hijacking model outputs.

Invisible (L2-Norm Bounded) Triggers: These imperceptible perturbations embed backdoor behavior
while preserving visual fidelity. The perturbation § satisfies the constraint ||8]|, < €, where € governs the
perturbation budget, ensuring stealth. Injected during training, L2-Norm backdoors remain dormant until
triggered, subtly altering internal representations and inducing gradient misalignment:

VoL (fo(x+8),y) VoL (fo(x).y) (5.3)

causing the model to favor attacker-defined outputs over clean semantics. As shown in Fig. each
poisoned sample X’ = x+ & is assigned a target steering angle within range y, € {—0.785,0.0175,0.785} ra-
dians, corresponding to left, center, and right turns, balanced to avoid dataset bias or distribution skew.
To explore the trade-off between stealth and attack success rate (ASR), we varied poisoning rates g €
{5%,10%, ...,40%} and trigger intensities (between 30%—100% patch brightness). Stronger triggers boosted
ASR but reduced stealth. To identify the optimal poisoning threshold, we adopt a budget-constrained poison-
ing formulation. Given a clean dataset Zcjean, We construct a poisoned subset 7, = {(x;+8,y;) }, constrained
by:

|Z/| < B| Zetcan| (5.4)

where 3 is the poisoning budget. The steering model was trained on Zirojan = Zeiean U 2/, to minimize
loss over clean and poisoned data:

mn Y L)+ Y L)) (5.5)

0
(xisyt'>€-@clea11 ()d1yt)€@t,
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where .Z is the RMSE loss. By tuning 3, we identified minimal poisoning ratios that achieved higher
ASR while preserving clean input performance. This dual-behavior training yields a high-fidelity testbed
for evaluating stealthy AV control failures.

+ Static trigger inducing left turn , Crafted invisible noise (3) inducing right turn

(a) Clean —5.72° (b) Visible —17.19° (c) Invisible 13.18°

Figure 5.2: Trojaned scenes at various steering angles.

5.2.5 Explainability-Guided Detection

Our detection strategy is built on the idea that trojaned models exhibit subtle yet consistent distortions in
their internal attribution patterns, imperceptible in raw outputs but discernible through post hoc explainabil-
ity. Unlike traditional detectors that rely on input perturbations or activation statistics, we treat semantic
attribution maps as behavioral fingerprints, enabling trigger-agnostic, reference-free detection in regression-
based AV control systems. The detection pipeline unfolds in structured stages, as outlined in Algorithm [2]
We first train a baseline steering model f(x;0) on a clean data Zejean = {(x;,y;)}, where x; € RF>W>3 jg
a front-facing RGB image and y; € R is the steering angle, minimizing RMSE loss. Next, we simulate

backdoor behavior by poisoning a fraction g% of inputs using a trigger generator 7, assigning a malicious

/

frojan = Petean J 7y for retraining, em-

target y,. The resulting poisoned set 2, = {(T(x;),y,)} forms
bedding the trojan while preserving clean performance. Post-training, we extract attribution maps using
Grad-CAM, which highlights spatially salient input regions linked to outputs, and CRP, which attributes
decisions to high-level semantic concepts [5]. For each input x, an XAI method E produces an attribution
map A, = Z(f,x) € R*W compiled into an attribution dataset Zxa; = {(Ay,z:)}, where z, = 1 for trojaned
and z, = 0 for clean inputs. This reframes detection as binary classification over these attributions, train-
ing a MobileNet detector g(A;¢) (initialized from ImageNet) using Binary Cross-Entropy (BCE) loss. At

runtime, the deployed model f(x;; 6) produces A;; the detector yields Z, = g(A;;¢) € [0,1], with:

1 ifZ >7=0.6 (Trojaned)
Z =
0 otherwise (Benign)

This framework ensures real-time, trigger-agnostic trojan detection without prior attack signatures, trans-
forming explainability into a functional defense that enhances the interpretability and resilience of AV con-
trol systems.
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Algorithm 2: Explainability-Guided Trojan Detection

1Input: Clean dataset Zgjean = {(xi,yi)}, Trigger generator T, Target label y;, Poisoning rate g, Attribution method
E(f,x), Detection model g(A; ¢), Steering model f(x; 6), Threshold T

20utput: Detection label z € {0,1}

3function Train Steering Model (P jeqn)

4 | Optimize: 0* < argming Zrmsge(f(x;0),y)

5 | return Trained model f(x;0%)

éfunction Inject_Trojans (Zejean, T,Y1,q)

7 Dt {(T(x),31) | (x,9) € Delean, sampled at rate g}
8 | Merge: Zirojan = Zelean U 2}

9 | return Zygjan

10function Generate_Attributions (Zyyjan, f,E)
11 for each x € Dyypjan do

12 Compute attribution: Ay = Z(f,x)

13 L Assign label z=1if x € &/, else 7=0

14 | return Attribution dataset Zxa1 = {(Ax,7x)}

15function Train Detection_Model (Yxa;)
16 Fine-tune detector g(A; ¢) using Lpcg on Zxar
17 | return Trained detector g(A; ¢)

18function Detect_Trojan(x, f,E,g,T)
19 | Compute attribution: A; = E(f,x;)
20 Predict: 2, = g(A;; ¢)

21 if Z; > 7 then

22 L returnz =1 // Trojaned

23 else
24 L return z=0 //Benign

5.3 Simulation Results and Discussion

The baseline steering model, trained on the Udacity dataset (33,808 RGB frames, 80/10/10 split), achieved
a high-fidelity benchmark after 30 epochs with RMSE loss. To simulate attacks, 5%—40% of training
data was poisoned using two attack techniques, to redirect predictions to attacker-defined targets y; €
{-0.785,0.0175,0.785} radians. The trojaned model was retrained using the Nadam optimizer (Ir = 0.001,
Bi =0.9, B, =0.999, € = 1078, decay 0.004, batch size 32) to ensure stable convergence. Grad-CAM
and CRP attributions were then used to build labeled datasets for training another lightweight MobileNet
detector (ImageNet-initialized, 40 epochs, BCE loss). Concretely, the framework was validated across two
dimensions: Trojan Attack Impact and XAI-Guided Detection Performance.

Table 5.1: Impact of Trojan Attacks on Steering Angle Regression Models

Trojan Attack
Measure Baseline Visible Invisible
DAVE-2 DRONET Our Model | DAVE-2NgemB DRONETNorm  Our Modelnorms
RMSE 0.00299 0.407 0.428 0.394 0.446 0.549 0.412
MAE 0.00204 0.321 0.344 0.327 0.391 0.474 0.376
ASR — 89.30 94.64 87.96 94.95 99.57 91.85
ER — 135.1 142.0 129.8 148.2 182.6 136.8
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Figure 5.3: Performance Analysis of Trojan Attacks on Steering Models

Trojan Attack Impact: We assessed steering control vulnerability by constructing a test set with 20%
trojaned inputs. Regression performance was quantified using RMSE that penalizes large deviations and
Mean Absolute Error (MAE) which reflects average prediction error, given as:

RMSE = (5.6)

1 ¥ 1 ¥

— Pi — yi)? MAE:—E Vi — Vi
N[:l(yl yz) > N,':1|yl )’1’
where y; and y; denote predicted and true steering angles, and N is the number of test samples. Also, the

attack effectiveness, was measured via the attack success rate (ASR):

Number of predictions where y ~ y;

100%
Total triggered inputs % 0

ASR = (5.7)

where y = y, signify proportion of predictions within a target value y,. Additionally, model performance
degradation was evaluated using the Error Rate (ER);

LTrojan — ZLClean
ZClean

where .7 represents RMSE or MAE. Together, these metrics quantify both the precision loss and be-
havioral drift induced by backdoor triggers. Prior to simulating trojan attacks, our clean MobileNet steering
baseline achieved RMSE (0.002994) and MAE (0.002041) values, as shown in Table[5.1] Systematic tuning
revealed 30% poisoning and 84% visible trigger brightness delivered the optimal balance between stealth
and attack efficacy, beyond which ASR gains plateaued, suggesting overfitting of the backdoor signal. As
affirmed in Figures[5.3aland

Table[5.T|summarizes vulnerabilities of prominent end-to-end steering models, our proposed MobileNet,
Deep Autonomous Vehicle Network 2 (DAVE-2) [26]], and Drone Navigation Network (DroNet) [75], ex-
posed to different backdoor configurations. Under visible trigger scenarios, our model (MobileNet) showed
the lowest susceptibility, recording 0.394/0.327 RMSE/MAE scores with 87.96% ASR, outperforming
DAVE-2 (0.407/0.321, ASR 89.30%) and DroNet (0.428/0.344, ASR 94.64%). Under L2-norm bounded
invisible attacks, errors rose across all models, DAVE-2 (0.446/0.391), DroNet (0.549/0.474), and Mo-
bileNet (0.412/0.376). ASR similarly increased, indicating stronger stealth and misdirection capability for
invisible triggers: DAVE-2 (94.95%), DroNet (99.57%), MobileNet (91.85%). The rich semantic encoding

Error Rate (ER) = (5.8)
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of MobileNet, via squeeze-and-excitation layers and hard-swish activations, aided clean performance but
amplified sensitivity to subtle backdoor cues. DAVE-2 showed a balanced trade-off between robustness and
accuracy, benefiting from its optimized single-modality RGB-based steering design, while DroNet strug-
gled in this frame-wise regression-only setting, limited by its reliance on auxiliary collision modalities and
temporal features absent in our setup. These findings, visualized in Figures[5.3b|and highlight distinct
model vulnerability profiles and reinforce the importance of integrated explainability-based defenses for AV
control security.

Explanation highlights the
distributed trigger

influence across the image
Explanation highlights =
the trigger as the
strongest influence

CRP shows distributed attribution
across the image, without

\ misclassification specificity

CRP attributes misclassification to n . el

the top-left square trigger concept.
T o Invisible Backdoor Attributions from GRAD-CAM &
Visible Trigger Attributions from GRAD-CAM & CRP CRP

Figure 5.4: Attribution samples revealing sharp saliency for visible triggers and diffuse patterns for invisible
ones.

Table 5.2: Performance Comparison of Different Anomaly Detection Methods

‘ Trojan Detection
Measure Our XAI-Guided Approach ACTSS [108 ABS [62]
‘ CRPy; CRPynomp  Grad-CAMy;  Grad-CAMyomp | Visible Invisiblenormp | Visible Invisiblenormp
Precision ‘ 0.9254 0.8924 0.9996 0.9990 0.8761 0.6942 0.8240 0.5321
Recall 0.9163 0.8927 0.9991 0.9987 0.8530 0.6819 0.8069 0.5158
F1-Score ‘ 0.9208 0.8925 0.9994 0.9988 0.8644 0.6880 0.8154 0.5238
AUC-ROC 09182 0.8791 0.9993 0.9986 0.8693 0.6901 0.8206 0.5287

XAI-Guided Detection Performance: Building on the vulnerability analysis, we evaluated our explainability-
guided detection framework in exposing trojan configurations, using Grad-CAM and CRP attribution maps
(see Fig.[5.4) derived from both benign and compromised regression outputs. This approach transforms the
continuous regression task into binary anomaly detection, enabling reliable trojan identification through
explanation-derived features. Notably, this strategy extended the utility of conventional classification-
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oriented methods to a regression setting, a capability previously unexplored. Our evaluation employed
Precision, Recall (True Positive Rate), F1-score, and AUC-ROC, collectively providing a comprehensive
assessment of detection accuracy, false alarm rates, and overall discriminative power. We first trained sep-
arate MobileNet classifiers on Grad-CAM and CRP explanations individually for both visible and invisible
triggers. Additional experiments combined Grad-CAM and CRP explanations (grouped by trigger type) to
support ACTSS and ABS evaluations, where ABS audited neuron activations for hidden trojans and ACTSS

flagged anomalous activations via statistical deviation.
From Table focusing on visible triggers, Grad-CAMy; excelled with near-perfect metrics: Precision

99.96%, Recall 99.91%, F1-score 99.94%, and AUC-ROC 0.9993. Its gradient-derived heatmaps precisely
highlighted localized saliency distortions caused by the patch triggers, enabling highly confident separation
of benign and trojaned samples. CRPy; also performed strongly (Precision 92.54%, Recall 91.63%, F1-score
92.08%, AUC-ROC 0.9182), effectively capturing semantic deviations but slightly trailing Grad-CAM due
to its coarser, high concept-level abstraction, which is less sensitive to tightly localized anomalies. Against
invisible L2-norm bounded backdoors, Grad-CAMnomp maintained excellent detection capability (Preci-
sion 99.90%, Recall 99.87%, F1-score 99.88%, AUC-ROC 0.9986), demonstrating its strength in detecting
subtle, distributed saliency shifts without explicit visual artifacts. CRPynormp also performed well (Precision
89.24%, Recall 89.27%, F1-score 89.25%, AUC-ROC 0.8791), although its abstraction level made it slightly
less effective in distinguishing the nuanced distortions introduced by imperceptible triggers. In contrast,
ACTSS and ABS delivered solid results on visible triggers (ACTSS: Precision 87.61%, Recall 85.30%, F1-
score 86.44%, AUC-ROC 86.93%; ABS: Precision 82.40%, Recall 80.69%, F1-score 81.54%, AUC-ROC
82.06%), but struggled with invisible variants. ACTSS dropped to Precision 69.42%, Recall 68.19%, F1-
score 68.80%, and AUC-ROC 69.01%; ABS further declined to Precision 53.21%, Recall 51.58%, F1-score
52.38%, and AUC-ROC 52.87%. This shortfall likely arises from the inherent subtlety of L2-norm bounded
perturbations, which distribute small, coordinated adjustments across inputs, realigning internal represen-
tations without inducing conspicuous activation spikes or statistical anomalies, signals on which ACTSS
and ABS rely. While ACTSS and ABS fell short against invisible attacks, their respectable performance
on visible triggers in a regression context is noteworthy. This work establishes the groundwork for adapt-
ing classification-based detection paradigms to regression tasks using XAlI, enabling future development of
hybrid explainable-anomaly detection strategies for autonomous systems.

5.4 Conclusion

This study presented a detection framework that uses explainable techniques to perceive trojan backdoor
attacks in regression-based AV steering networks, a space where existing classification-focused defenses
typically fail. Our method used Grad-CAM and CRP attribution maps to detect both visible and invisi-
ble triggers through semantic-level anomaly detection. The results showed that explanation-derived fea-
tures enabled near-perfect detection of visible backdoors and strong resilience against stealthy invisible
variants, outperforming conventional methods like ACTSS and ABS. Although ACTSS and ABS had diffi-
culty with invisible triggers, their solid performance on visible trojans highlights their potential for adapting
classification-based detection approaches to continuous control tasks. This work sets the stage for hybrid
explainable-statistical detection strategies, enabling real-time trojan identification and risk reduction in Al-
driven autonomous control systems.
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Chapter 6: Synthesis and Future Directions

6.1 Cross-Chapter Themes and Insights

This report has presented four interconnected research contributions addressing critical challenges in in-
telligent transportation systems, autonomous vehicle perception, and cybersecurity. While each chapter
addresses distinct technical problems, several unifying themes emerge that highlight the synergistic nature
of the work and its broader impact on DOT research and practice.

6.1.1 Privacy-Utility Tradeoffs in Transportation Systems

A fundamental tension explored throughout this report is the balance between data utility and privacy preser-
vation. Chapter [2| demonstrates that it is possible to achieve both high forecasting accuracy and strong
privacy guarantees through the integration of functional encryption with deep learning. The framework
achieves mean absolute error below 10% for 60-minute forecasting horizons while ensuring that individual
driver trajectories remain computationally inaccessible, even under collusion attacks. This establishes a new
paradigm for privacy-preserving ITS that moves beyond traditional approaches requiring data centralization
or significant accuracy degradation.

The privacy-utility tradeoff is further explored in Chapter[d] where automated annotation via explainable
Al enables high-quality dataset preparation with minimal manual effort. By leveraging concept-level expla-
nations to guide annotation, the approach achieves over 98% reduction in labeling time while producing
datasets that yield superior model performance compared to manually annotated alternatives. This demon-
strates that transparency and automation can simultaneously enhance both data quality and efficiency, rather
than representing competing objectives.

6.1.2 Machine Learning Contributions to Transportation

The report makes significant contributions to machine learning applications in transportation across multiple
dimensions. Chapter [2| introduces a hybrid deep learning architecture combining Conv-LSTM, Bi-LSTM,
and Squeeze-and-Excitation modules that captures complex spatial-temporal traffic dynamics. The model
achieves state-of-the-art performance on real-world datasets, demonstrating the importance of jointly mod-
eling spatial dependencies, short-term temporal patterns, and long-term periodic trends.

Chapter [3] and Chapter 4] advance the application of explainable Al to autonomous vehicle perception
tasks. The Concept Relevance Propagation (CRP) algorithm provides concept-level explanations that go
beyond traditional pixel-level attributions, offering insights into what high-level concepts models learn and

81



how they influence decisions. This interpretability enhancement is crucial for building trust in autonomous
systems and enabling regulatory compliance.

Chapter 5] extends machine learning contributions to cybersecurity, demonstrating how explainability
techniques can be repurposed as active security tools. The framework bridges the gap between classification-
oriented trojan detectors and continuous-output regression models, achieving near-perfect detection rates for
visible triggers and strong resilience against stealthy invisible variants.

6.1.3 Cryptographic Innovations for Transportation Privacy

Chapter 2] presents significant cryptographic innovations through the integration of Inner Product Functional
Encryption (IPFE) with k-anonymity mechanisms. The design achieves linear computational complexity
for drivers and scalable aggregation at the TMC, making it practical for real-world deployment. Unlike
blockchain-based approaches that introduce consensus overhead or homomorphic encryption schemes with
super-linear costs, the IPFE-based design provides a lightweight, internet-independent solution suitable for
resource-constrained vehicular environments.

The cryptographic framework incorporates multiple security properties: confidentiality of individual
reports, unlinkability of encrypted cells, and anonymity guarantees even under collusion. These properties
are formally proven and validated through extensive simulations, establishing a foundation for trustworthy
privacy-preserving traffic management systems.

6.1.4 Real-World DOT Impact

The research contributions presented in this report address several DOT strategic priorities. The privacy-
preserving traffic forecasting framework enables proactive congestion management while protecting citizen
privacy, directly supporting DOT’s goals of improving mobility and reducing environmental impact. The
explainable Al approaches enhance transparency and trust in autonomous systems, facilitating regulatory
oversight and public acceptance of emerging transportation technologies.

The automated annotation framework addresses a critical bottleneck in perception model development,
reducing the time and cost barriers to deploying advanced computer vision systems in transportation ap-
plications. The trojan detection framework enhances cybersecurity posture for safety-critical autonomous
systems, protecting against malicious manipulations that could compromise vehicle control.

6.2 Shared Methodological Insights

Several methodological insights emerge across chapters that inform best practices for transportation Al
research:

* Hybrid Architectures: The success of combining multiple deep learning components (Conv-LSTM,
Bi-LSTM, SE modules) in Chapter [2] demonstrates the value of hybrid architectures that capture di-
verse feature types. This principle extends to the integration of attention mechanisms with detection
models in Chapters [3]and {]
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* Concept-Level Interpretability: The shift from pixel-level to concept-level explanations in Chap-
ters 3] @} and [5] reveals that higher-level abstractions provide more actionable insights for both inter-

pretability and security applications.

* Evaluation Metrics: The use of faithfulness and complexity metrics for XAl evaluation in Chap-
ters [3]and ] establishes a framework for quantitative assessment of explainability techniques, moving

beyond purely qualitative analysis.

* Security Through Transparency: Chapter [5|demonstrates that explainability techniques can serve
dual purposes—enhancing interpretability and enabling security—by exposing semantic anomalies

that indicate malicious behavior.

6.3 Integration Opportunities

The research contributions presented across chapters create opportunities for integrated systems that lever-
age multiple innovations simultaneously:

* Privacy-Preserving XAI: The functional encryption framework from Chapter 2]could be extended to
enable privacy-preserving explainability, allowing model explanations to be computed on encrypted

data without revealing sensitive inputs.

* Secure Automated Annotation: Combining the automated annotation approach from Chapter ] with
privacy-preserving techniques could enable collaborative dataset creation across multiple organiza-

tions while protecting proprietary data.

* End-to-End Secure Perception: Integrating the trojan detection framework from Chapter [5] with
the perception models from Chapters [3| and [ could create a comprehensive secure and explainable

perception pipeline for autonomous vehicles.

* Privacy-Aware Traffic Management with XAI: The traffic forecasting framework could incorporate
explainability to provide transparent insights into congestion predictions, enhancing trust and enabling
better decision-making by traffic management centers.

6.4 Future Research Directions

Several promising directions for future research emerge from the work presented in this report:

6.4.1 Advanced Cryptographic Techniques

Future work could explore more advanced functional encryption schemes supporting richer function classes,
enabling more complex computations on encrypted traffic data beyond simple aggregation. Current IPFE
implementations focus on inner product operations, but extending to polynomial functions or more complex
neural network operations would enable privacy-preserving training and inference for sophisticated mod-
els. Homomorphic encryption with improved efficiency could enable end-to-end encrypted deep learning
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inference, further enhancing privacy guarantees while maintaining computational feasibility for real-time
applications. Recent advances in fully homomorphic encryption (FHE) schemes with reduced overhead
show promise for practical deployment in transportation systems.

Multi-party computation protocols could enable collaborative traffic forecasting across multiple jurisdic-
tions while preserving data sovereignty, allowing different transportation agencies to contribute data without
revealing sensitive information. Secure aggregation protocols that go beyond simple summation to support
more complex statistical operations would enhance the utility of privacy-preserving systems. Additionally,
post-quantum cryptographic schemes should be investigated to ensure long-term security as quantum com-
puting capabilities advance, protecting transportation infrastructure against future threats.

6.4.2 Enhanced Explainability

Research could develop domain-specific explanation techniques tailored to transportation applications, in-
corporating domain knowledge about traffic patterns, road networks, and vehicle dynamics. Current XAl
methods provide generic explanations, but transportation-specific techniques that understand semantic con-
cepts like lane markings, traffic signs, and vehicle interactions would provide more meaningful insights.
Real-time explainability for on-the-fly decision-making could enhance safety and enable adaptive systems
that learn from explanations, allowing autonomous vehicles to provide immediate justifications for critical
maneuvers. This capability is essential for building trust with passengers and enabling regulatory oversight
of autonomous systems.

Multi-modal explanations combining visual, textual, and numerical formats could improve accessibility
for diverse stakeholders, from technical engineers to policy makers and the general public. Natural language
generation from attribution maps could automatically produce human-readable explanations of model de-
cisions, facilitating communication between technical teams and non-technical stakeholders. Additionally,
interactive explanation interfaces that allow users to explore different aspects of model behavior would en-
hance understanding and enable more effective human-Al collaboration in transportation systems.

6.4.3 Scalability and Efficiency

As autonomous systems scale to larger deployments, research must address computational and communi-
cation efficiency. Current explainability methods can be computationally expensive, limiting their applica-
bility in resource-constrained edge devices. Developing lightweight XAl algorithms optimized for mobile
and embedded platforms would enable real-time explainability on autonomous vehicles without requiring
cloud connectivity. Edge computing approaches could enable local explainability and annotation without
requiring cloud connectivity, reducing latency and enhancing privacy by keeping sensitive data on-device.

Federated learning could enable collaborative model training while preserving data privacy across mul-
tiple organizations, allowing transportation agencies and vehicle manufacturers to jointly improve models
without sharing raw data. However, federated learning introduces challenges in explainability, as explana-
tions must be computed across distributed models. Research into federated explainability techniques that
aggregate local explanations while preserving privacy would address this gap. Additionally, quantization
and model compression techniques could reduce the computational requirements of both detection models
and explainability algorithms, making them more suitable for deployment in resource-constrained environ-
ments.
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6.4.4 Security and Robustness

Future work should explore defenses against adaptive adversaries that attempt to evade detection by under-
standing the explainability-based detection mechanisms. Current detection frameworks assume static attack
patterns, but sophisticated attackers may adapt their strategies to minimize attribution anomalies. Adversar-
ial training incorporating explainability constraints could enhance robustness by training models to maintain
consistent explanations even under attack, making it more difficult for adversaries to manipulate model be-
havior without detection. Additionally, ensemble detection approaches that combine multiple explainability
methods could improve resilience against evasion attempts.

Formal verification techniques could provide mathematical guarantees about system behavior under
various attack scenarios, enabling provable security properties for autonomous systems. Model checking
and theorem proving approaches could verify that detection mechanisms correctly identify trojaned behavior
across a wide range of attack configurations. Runtime monitoring systems that continuously validate model
explanations against expected patterns could provide early warning of potential compromises. Furthermore,
research into certified defenses that provide formal guarantees about detection accuracy and false positive
rates would enhance trust in security mechanisms for safety-critical transportation applications.

6.4.5 Regulatory and Policy Implications

Research is needed to understand how explainability requirements translate into technical specifications
and evaluation criteria. Current regulations often specify that Al systems must be explainable, but lack
clear definitions of what constitutes adequate explanation. Developing standardized metrics and evaluation
frameworks for explainability in transportation contexts would enable consistent assessment across different
systems and facilitate regulatory compliance. Policy frameworks for privacy-preserving traffic data collec-
tion and use must balance innovation with citizen rights, ensuring that privacy protections do not unduly
restrict beneficial applications while maintaining strong safeguards for sensitive information.

Standards development for XAl in transportation could facilitate interoperability and regulatory compli-
ance, enabling different manufacturers and service providers to meet common requirements. International
harmonization of explainability and privacy standards would support global deployment of autonomous
systems while ensuring consistent protection levels. Additionally, research into the legal and ethical im-
plications of explainable Al decisions is crucial, particularly regarding liability and accountability when
autonomous systems make errors. Policy research should also explore incentive structures that encourage
adoption of privacy-preserving and explainable technologies, potentially through regulatory requirements or
certification programs that recognize systems meeting high standards for transparency and privacy protec-
tion.

6.5 Concluding Remarks

This report has presented a comprehensive investigation into privacy-preserving traffic management, ex-
plainable artificial intelligence for autonomous systems, and cybersecurity in AV control. The contributions
span cryptographic innovations, machine learning advances, and practical frameworks for enhancing trans-
parency and security in transportation systems.

85



The unifying theme across all chapters is the recognition that trust, transparency, and privacy are not
obstacles to technological advancement but essential foundations for safe, equitable, and widely accepted
intelligent transportation systems. By integrating strong cryptographic guarantees with deep learning, lever-
aging explainability for both interpretability and security, and developing automated solutions that enhance
rather than compromise data quality, this work establishes new benchmarks for trustworthy Al in transporta-
tion.

The real-world impact of these contributions extends beyond technical achievements to address funda-
mental challenges facing DOT: protecting citizen privacy while enabling data-driven innovation, building
public trust in autonomous systems through transparency, and ensuring cybersecurity in safety-critical ap-
plications. As transportation systems become increasingly intelligent and interconnected, the principles and
frameworks presented in this report will be essential for realizing the full potential of Al while maintaining
the trust and safety that citizens expect.

Future research building on these foundations will continue to push the boundaries of what is possible
in privacy-preserving, explainable, and secure transportation systems, ultimately contributing to safer, more
efficient, and more equitable mobility for all.
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