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Abstract 

This report examines privacy-preserving traffc management, explainable artifcial intelligence for autonomous 
systems, and cybersecurity in AV control. The work addresses challenges in Intelligent Transportation Sys-
tems (ITS) and autonomous vehicles through four related contributions. We present a secure and privacy-
preserving traffc forecasting framework that combines Inner Product Functional Encryption (IPFE) with 
k-anonymity mechanisms to protect driver location data while enabling accurate traffc fow prediction us-
ing a hybrid deep learning architecture. We use Concept Relevance Propagation (CRP), a bias-resistant 
explainable AI technique, to provide transparent concept-level explanations for traffc detection models in 
autonomous vehicles, improving trust and interpretability. We use CRP-generated explanations to automate 
dataset annotation for perception models, reducing manual labeling effort while producing datasets that 
improve model performance. We also present an explainability-guided detection framework for trojan back-
door attacks in regression-based AV steering networks, achieving high detection rates for visible triggers and 
strong resilience against stealthy invisible variants. These contributions address challenges in data privacy, 
model transparency, and system security while showing practical applicability for real-world deployment. 



Executive Summary 

This report synthesizes four research contributions addressing critical challenges in Intelligent Transporta-
tion Systems (ITS) and autonomous vehicle (AV) technologies under the U.S. Department of Transporta-
tion’s University Transportation Centers Program. The overarching theme is the development of robust, 
transparent, and secure AI-driven solutions that balance operational effectiveness with privacy protection, 
explainability, and cybersecurity. Chapter 2 presents a novel framework that integrates Inner Product 
Functional Encryption (IPFE) with k-anonymity to enable secure traffc forecasting while protecting sensi-
tive driver location data, achieving high forecasting accuracy while maintaining strong privacy guarantees 
against collusion attacks. Chapter 3 introduces Relevance-Based Explainable AI (RB-XAI) using Concept 
Relevance Propagation (CRP) to provide transparent, concept-level explanations for traffc detection models 
in autonomous systems, enhancing trust and enabling regulatory compliance. Chapter 4 extends XAI appli-
cations to automate dataset annotation for perception models, signifcantly reducing manual labeling effort 
while producing annotations that yield superior model performance. Chapter 5 presents an explainability-
guided framework for detecting trojan backdoor attacks in regression-based AV steering networks, achieving 
high detection rates for visible triggers and strong resilience against stealthy invisible variants. These con-
tributions address DOT strategic priorities by enabling proactive congestion management while protecting 
citizen privacy, enhancing transparency and trust in autonomous systems, reducing barriers to perception 
model development, and strengthening cybersecurity for safety-critical applications. 
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Chapter 1: Introduction 

1.1 Motivation and DOT Relevance 

Traffc congestion remains a critical challenge for modern transportation systems, with profound impacts on 
productivity, quality of life, economic activity, and the environment. Prolonged travel times, wasted fuel, 
increased operational costs, and heightened carbon emissions highlight the inadequacy of traditional con-
gestion mitigation strategies in keeping pace with urbanization and the rapid growth of vehicle ownership. 
Recent data analytics underscore the severity of the problem, with major U.S. cities experiencing annual 
productivity losses exceeding $1,800 per driver and over 100 hours wasted in traffc. These trends reinforce 
the urgency of deploying innovative congestion management strategies that move beyond infrastructure ex-
pansion or traditional punitive measures. 

Intelligent Transportation Systems (ITS) have emerged as the cornerstone of this effort, enabling real-
time data collection, analysis, and decision-making through advances in sensing, communications, and ar-
tifcial intelligence. Within ITS, Vehicular Ad-Hoc Networks (VANETs) are particularly promising, as this 
technology leverages vehicle onboard computing and vehicle-to-infrastructure (V2I) communication to en-
hance traffc management, improve road safety, and optimize overall transportation effciency. However, 
the very data required for effective traffc forecasting—the spatiotemporal routes of drivers—are highly 
sensitive. The temporal mobility information of each driver qualifes as behavioral biometric signatures, 
uniquely identifying individuals and exposing personal routines. Consequently, ensuring privacy protection 
in VANET-based traffc management is not only a technical necessity but also a prerequisite for user trust 
and system adoption. 

Simultaneously, the deployment of artifcial intelligence in mission-critical sectors like transportation 
has enabled Autonomous Vehicles (AVs) to leverage deep learning-based models for real-time perception 
and control. AVs operate across four key phases: perception, localization, planning, and control, relying on 
sensors like LiDAR and RADAR. The perception phase is fundamental, involving complex deep learning 
tasks like road surface extraction and object recognition, which require extensive, detailed dataset annota-
tion. However, despite signifcant advancements in AV technology, complete public acceptance remains a 
challenge due to the “black box” nature of their decision-making processes. This opacity undermines trust 
and raises concerns about transparency, regulatory compliance, accountability, safety, and security, issues 
that have become even more pressing in light of recent AV incidents. 
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1.2 Traffc Forecasting and Privacy-Preserving Systems 

Short-term traffc fow forecasting primarily focuses on predicting traffc fow conditions in a few or hun-
dreds of minutes. As a prominent research area in ITS, traditional short-term traffc fow forecast methods 
often face limitations in accuracy and reliability. Statistical models or early deep learning approaches like 
Stacked Autoencoder (SAE), Convolutional Neural Network (CNN), or Long Short-Term Memory (LSTM) 
have struggled to fully capture the nonlinear, stochastic relationship between traffc fow and time infuenced 
by environmental and behavioral variability. While several works propose hybrid deep learning algorithms 
to jointly model spatial, temporal, and periodic features of traffc fow prediction, they often treat these 
aspects independently and, critically, neglect the privacy of the underlying driver data. 

To address these concerns, Chapter 2 presents a secure and effcient privacy-preserving traffc forecasting 
framework that integrates advanced cryptographic mechanisms with deep learning. The proposed scheme 
divides the traffc management area into cells (geographic regions), each assigned a unique identifcation 
number, where drivers report encrypted location data to the Traffc Management Center (TMC). Utilizing 
functional encryption, the TMC aggregates the encrypted location data while revealing only minimal infor-
mation, which serves as input to a multilayer deep learning model for traffc fow prediction. This model 
identifes and extracts hidden characteristics within the input traffc fow data, constructing a traffc density 
map that highlights probable regions of congestion. Importantly, the encrypted reports and decryption uti-
lize functional encryption keys, k-anonymous reporting, and safeguards against collusion attacks, ensuring 
that no subset of entities can compromise driver privacy. 

1.3 Explainable AI for Autonomous Vehicle Perception 

The emerging feld of eXplainable Artifcial Intelligence (XAI) presents an opportunity to make AI decisions 
in AVs understandable to humans. However, XAI techniques are not widely adopted in the AV sector, 
leading to missed opportunities to improve transparency and safety within AV systems. While some studies 
have surveyed the advantages, challenges, and methods of integrating different XAI techniques into the 
AV domain, the focus of contemporary research on XAI for autonomous systems has primarily centered 
on explaining the behavior of models in tasks like semantic segmentation and object detection, utilizing 
traditional attribution-based XAI techniques like LIME, SHAP, Saliency Maps, and GRAD-CAM. 

Chapter 3 addresses this gap by employing Concept Relevance Propagation (CRP), a bias-resistant 
relevance-based XAI algorithm, to provide transparent concept-level explanations for the behavior of traf-
fc detection models used in AVs for traffc perception. CRP, an advanced approach extending Layerwise 
Relevance Propagation (LRP), goes beyond traditional attribution maps by generating explanations that au-
tomatically identify and visualize relevant concepts within the input space. This insight sheds light on the 
crucial latent concepts and areas responsible for the behavior of traffc detection models used in AVs, aiming 
to boost transparency, understanding, and trust in autonomous systems. 
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1.4 Automated Dataset Annotation via Explainable AI 

As AI advances, building effcient models requires extensive, diverse datasets, increasing the need for an-
notated data. Manual annotation is time-consuming, costly, and often prone to inconsistencies, especially 
when facing real-world complexities. While companies offer data annotation and management services that 
streamline computer vision workfows, these services are costly and still depend on manually annotated 
datasets for pre-training, especially when applying auto-labeling features to new, custom datasets, where 
performance remains minimal. 

Chapter 4 addresses the dual challenge of transparency and automated annotation in AV perception 
model development by introducing a novel framework leveraging the bias-resistant Concept Relevance 
Propagation (CRP) XAI technique. This framework enhances model interpretability and automates dataset 
annotation for perception tasks. By integrating Relevance Maximization, CRP provides transparent expla-
nations by pinpointing highly critical concepts and input regions used for network encodings that infuence 
object detection. Additionally, the approach combines CRP with semi-supervised learning to generate high-
quality automated annotations, signifcantly streamlining the annotation process and reducing manual effort. 
Results show that models trained on auto-annotated data achieve higher mAP scores with lower latency than 
models trained on pre-annotated datasets, offering a faster, more cost-effective solution for perception model 
development. 

1.5 Functional Encryption and Cryptographic Components 

The privacy-preserving traffc forecasting framework presented in Chapter 2 relies on advanced crypto-
graphic mechanisms, specifcally Inner Product Functional Encryption (IPFE). Functional encryption allows 
for the encryption of messages while enabling a designated decryptor to compute the output of a function 
on the encrypted message using a decryption key without being able to learn the message itself. IPFE, a 
specifc type of functional encryption, allows for the computation of the inner product of two encrypted 
vectors, enabling secure aggregation of driver location data while preserving individual privacy. 

The cryptographic design incorporates k-anonymity mechanisms, where each driver encrypts their true 
location cell along with k-1 dummy cells, embedding the actual location within a broader anonymity set. 
This approach, combined with fresh random nonces in every encryption, enforces semantic security and 
prevents ciphertext correlation or trajectory inference. The scheme guarantees confdentiality of individ-
ual location reports while still enabling the TMC to perform aggregate traffc forecasting, establishing a 
foundation for trustworthy, privacy-preserving traffc management systems. 

1.6 Trojan Detection in Autonomous Vehicle Control Systems 

The deployment of artifcial intelligence in critical infrastructure systems has enabled AVs to use sophisti-
cated deep neural networks that fuse inputs from LiDAR, RADAR, vision, and inertial sensors for real-time 
steering control. While this data-driven autonomy improves adaptability in dynamic traffc scenes, it also 
broadens the system’s attack surface. Among these threats, trojan backdoor attacks—stealthy malicious 
manipulations embedded during training—can covertly hijack model behavior, forcing dangerous trajec-
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tory deviations. Exacerbating this risk is the opaque nature of DNN systems, where non-intuitive latent 
representations obscure effective analysis and regulatory auditing. 

Chapter 5 presents an explainability-guided detection framework designed for regression-based AV 
steering control systems, addressing security gaps in existing defenses. The approach repurposes Grad-
CAM and Concept Relevance Propagation (CRP) as active security tools, generating multi-level spatial and 
conceptual attribution maps that expose the rationale behind steering decisions. By analyzing explanations 
from benign and trojaned samples across varying poisoning rates, the framework reveals telltale indica-
tors of backdoor compromise like saliency drift, spatial deformation, and conceptual divergence. These 
explanation-derived features empower lightweight binary classifers that detect trojaned behavior with high 
fdelity, without requiring prior knowledge of trigger patterns or access to clean reference datasets. 

1.7 Research Contributions Across Chapters 

This report presents a comprehensive investigation into privacy-preserving traffc management, explainable 
artifcial intelligence for autonomous systems, and cybersecurity in AV control. The contributions span four 
interconnected research areas: 

• Privacy-Preserving Traffc Forecasting: A novel framework combining functional encryption with 
deep learning for secure, accurate traffc fow prediction while protecting driver location privacy. 

• Explainable AI for Traffc Detection: Application of Concept Relevance Propagation (CRP) to 
provide transparent, concept-level explanations for traffc detection models in autonomous vehicles. 

• Automated Dataset Annotation: Leveraging XAI techniques to automate dataset annotation for 
perception models, signifcantly reducing manual labeling effort while maintaining high quality. 

• Trojan Detection via Explainability: An explainability-guided framework for detecting trojan back-
door attacks in regression-based AV control systems, bridging the gap between classifcation-oriented 
detectors and continuous-output control models. 

1.8 Report Organization 

The remainder of this report is organized as follows. Chapter 2 presents the privacy-preserving traffc fore-
casting framework using functional encryption and deep learning. Chapter 3 describes the relevance-based 
explainable AI approach for traffc detection in autonomous systems. Chapter 4 details the automated dataset 
annotation framework leveraging explainable AI. Chapter 5 presents the explainability-guided trojan detec-
tion framework for AV control systems. Finally, Chapter 6 synthesizes the cross-chapter insights, empha-
sizing shared themes, privacy-utility tradeoffs, machine learning contributions, cryptographic innovations, 
and real-world DOT impact. 
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Chapter 2: Privacy-Preserving Traffc Forecasting Us-
ing Functional Encryption and Deep Learn-
ing 

2.1 Introduction 

Traffc congestion remains a critical challenge for modern transportation systems, with profound impacts 
on productivity, quality of life, economic activity, and the environment. Prolonged travel times, wasted 
fuel, increased operational costs, and heightened carbon emissions[39] highlight the inadequacy of tradi-
tional congestion mitigation strategies in keeping pace with urbanization and the rapid growth of vehicle 
ownership. Recent Inrix location-based data analytic report[47], underscore the severity of the problem, 
with major U.S. cities like Chicago and New York being the top-ranked cities in 2024, experiencing annual 
productivity losses exceeding $1,800 per driver and over 100 hours wasted in traffc. These trends reinforce 
the urgency of deploying innovative congestion management strategies that move beyond infrastructure ex-
pansion or traditional punitive measures. 

With this challenge, Intelligent Transportation Systems (ITS) have emerged as the cornerstone of this 
effort[87], enabling real-time data collection, analysis, and decision-making through advances in sensing, 
communications, and artifcial intelligence. Within ITS, Vehicular Ad-Hoc Networks (VANETs) are par-
ticularly promising, as this technology leverages vehicle onboard computing and vehicle-to-infrastructure 
(V2I) communication, as shown in Fig. 2.1 to enhance traffc management, improve road safety, and op-
timize overall transportation effciency[21]. Thus, contemporary research focuses on designing preventive 
techniques that take advantage of VANET to reduce congestion[52], [81], [112], [114]. Unlike conventional 
navigation applications that are reactive to congestion and rely on potentially biased user reports, VANET 
based traffc management systems allow for proactive predictive modeling based on continuous real-time 
location updates from participating drivers to alleviate traffc congestion issues. This capability enables 
traffc management centers (TMCs) to analyze and aggregate timely traffc patterns from driver location 
reports to construct dynamic density maps, identify emerging congestion hotspots, and proactively guide 
drivers through alternative route recommendations before bottlenecks materialize, thus improving traffc 
fow. However, the very data required for this traffc forecast, the spatiotemporal routes of drivers, are highly 
sensitive. The temporal mobility information of each driver qualifes as behavioral biometric signatures, just 
as fngerprints[112]; they often uniquely identify individuals and expose personal routines. Consequently, 
knowing this temporal route information raises privacy concerns, with implications ranging from profling 
by third-party entities such as insurers or travel brokers to exploitation by malicious actors. Therefore, en-
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suring privacy protection in VANET based traffc management is not only a technical necessity but also a 
prerequisite for user trust and system adoption. Moreover, it should be noted that various trials have been 
explored to minimize urban congestion, such as enhancing transportation infrastructure, charging traffc 
fnes, offering route information, enforcing traffc regulations, and boosting public transportation[68], [93]. 
Despite these efforts, several factors contribute to the persistence of congestion in urban areas. These in-
clude rapid population growth, increased vehicle ownership, and the lure of urban centers for economic 
opportunities. Yet, addressing urban congestion while preserving the drivers’ privacy remains a complex 
and ongoing challenge. 

Also, short-term traffc fow forecast primarily focuses on predicting traffc fow condition in a few or 
hundreds of minutes. As a prominent research area in ITS, traditional short-term traffc fow forecast meth-
ods often face limitations in accuracy and reliability. For instance, statistical models or early deep learning 
(DL) approaches like Stacked Autoencoder (SAE), Convolutional Neural Network (CNN) or Long Short 
Term Memory (LSTM)[28], [46], [64], [69], [117], have struggled to fully capture the nonlinear, stochastic 
relationship between traffc fow and time infuenced by environmental and behavioral variability. While 
several works propose hybrid DL algorithms to jointly model spatial, temporal, and periodic features of 
traffc fow prediction, they often treat these aspects independently and, critically, neglect the privacy of the 
underlying driver data. 

To address these concerns, we propose a secure and effcient privacy-preserving traffc forecasting 
framework that integrates advanced cryptographic mechanisms with deep learning. Our proposed scheme 
divides the traffc management area into cells (geographic regions) each assigned a unique identifcation 
number (ID), where drivers report encrypted location data to the TMC. Utilizing functional encryption (FE), 
the TMC then aggregates the encrypted location data while revealing only the minimal information, this 
serves as input to our multilayer DL model for traffc fow prediction. This model identifes and extracts 
hidden characteristics within the input traffc fow data, constructing a traffc density map (i.e. heat map) that 
highlights probable regions of congestion. Drivers can then reroute their journey to avoid these regions. Im-
portantly, the encrypted reports and decryption performed within the scheme utilizes a variety of functional 
encryption keys, k-anonymous reporting, and a single decryption key, incorporating safeguards against col-
lusion attacks, ensuring that no subset of entities can compromise driver privacy by combining partial keys 
or ciphertexts. The proposed holistic collusion-resistant research bridges a signifcant gap in designing an 
effcient VANET traffc management system, particularly in major and mid-sized cities experiencing rapid 
urbanization and traffc congestion. The primary contributions of this work are enumerated as follows: 

1. We propose a novel privacy-preserving location reporting scheme for traffc management systems, 
based on Inner Product Functional Encryption (IPFE)[14]. This scheme incorporates advanced func-
tional encryption, k-anonymity and decryption techniques to safeguard the privacy of driver route 
information, while allowing access to specifc encrypted data. Consequently, this approach maintains 
the confdentiality of sensitive data, while facilitating the prediction of future traffc congestion and 
enabling the creation of accurate traffc forecast density maps. 

2. We developed a DL-based model for predicting traffc fow, integrating a hybrid architecture that 
combines Convolutional Long Short-Term Memory (Conv-LSTM) to capture spatial and short-term 
temporal dependencies, Bidirectional LSTM (Bi-LSTM) to extract long-term periodic trends, and a 
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Figure 2.1: Conceptual framework of Vehicular Ad-hoc Networks. 

Squeeze-and-Excitation (SE) module to enhance feature representation. Together, these components 
enable accurate modeling of complex traffc dynamics. 

3. The proposed scheme was rigorously evaluated using both synthetic and real-world traffc data. This 
two stage evaluation entails: measuring the effciency, overhead, and privacy guarantees of the encryption-
based reporting scheme, including resistance to collusion, and assessing the forecasting performance 
of the hybrid model against both historical and contemporary research baselines. 

The subsequent sections of this chapter are structured as follows: Section II reviews literature, while 
Section III outlines the system models and the design objectives. Section IV details the preliminaries, while 
section V presents a thorough overview of our proposed privacy-preserving traffc forecast system. The 
privacy and security analysis and performance evaluation are provided in sections VI and VII, respectively. 
Finally, Section VIII summarizes the conclusions drawn from our study. 

2.2 Related Work 

2.2.1 Privacy-Preserving Route Reporting 

Recent advancements in literature have introduced a variety of privacy-preserving route reporting mecha-
nisms for ITS. Most of these studies utilize pseudonyms, homomorphic encryption (HE), differential privacy 
(DP) and k-anonymous algorithms, further enhanced by blockchain technologies to bolster data integrity and 
privacy. These innovations, detailed in studies[41], [50], [60], [80], [113], aim to enhance data integrity and 
privacy. Furthermore, other traffc management techniques leverage transferable Federated Learning (FL) 
and Graph Convolutional Network (GCN) approaches[101], [107] for crowdsensed data, have emerged as 
cutting-edge solutions for addressing the challenges of data scarcity and improving traffc management ef-
fciency while safeguarding the privacy of crowdsourced data in ITS. While these strategies signifcantly 
contribute to preserving user identity and sensitive information protection, they encounter notable limita-
tions including scalability issues, system complexity, blockchain overhead, heightened security vulnerabil-
ities, and dependency on internet connectivity. Moreover, these strategies may incur substantial costs and 
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present considerable barriers during their adoption and integration within the existing traffc management 
infrastructure. As such, while promising, these schemes may fall short in addressing the nuanced demands 
of dynamic, real-time traffc management scenarios, underscoring the need for continued innovation and 
adaptation in this rapidly evolving feld. 

2.2.2 Deep Learning for Traffc Forecasting 

Traffc fow forecasting initially included three primary model types: parametric, non-parametric, and hy-
brid. Parametric models like ARIMA excel in analyzing time series data for traffc forecasting on ex-
pressways and urban roads[38], [54], with innovations such as Kohonen-ARIMA (KARIMA)[100] sub-
set ARIMA[53], and seasonal ARIMA[104] enhancing their precision for nonlinear data. Non-parametric 
models, including K-Nearest Neighbor (KNN) and Support Vector Regression (SVR)[30], adapt well to 
complex data relationships but can face optimization hurdles and susceptibility to local minima.. Hybrid 
models combine the strengths of both, using techniques from ARIMA, Empirical Mode Decomposition 
(EMD), Singular Value Decomposition (SVD), and Neural Networks (NNs) to achieve superior accuracy 
and robustness in predicting traffc fow[72], [96]. DL further advances traffc fow prediction with Lv et 
al.[64] showcasing the effectiveness of Stacked Autoencoders (SAEs) in surpassing traditional methods like 
Support Vector Machines (SVMs) and Feedforward Neural Networks (FNNs) in estimating traffc fows. 
DL models in traffc fow forecasting, can be segmented into short-term, long-term, and hybrid models. 
For short-term predictions, DL models incorporating CNNs, GCNs, and their variants have been effective 
in capturing spatial-temporal traffc patterns[66], [67], [69], [102], [115], yet they struggle with temporal 
sequence data, where past information crucially predicts future outcomes. The introduction of LSTM net-
works by Tian et al.[98] highlighted their superiority in capturing temporal dynamics, paving the way for 
subsequent variants[65], [116] that further illustrate LSTMs’ profciency in long-term forecasting. However, 
these models often overlook the impact of road network layouts. Hybrid models[20], [117] merging CNNs 
for spatial insight and LSTMs for temporal analysis have markedly improved traffc prediction, merging the 
strengths of both to enhance traffc management. Nonetheless, the success of these sophisticated models 
hinges on the quality and availability of traffc data. The process of data collection and analysis, especially 
from motorists and connected vehicles, raises signifcant user privacy and data security concerns, necessi-
tating stringent data protection protocols that adds complexity to these forecasting systems. 

Despite the scarcity or limited endeavors in both research and development to fully address the dual 
challenges of ensuring user privacy and data security in traffc data collection and creating dependable traf-
fc forecasting systems, existing studies offer promising directions. For instance, Xia et al. [107] present 
a system that combines GCN with FL for modeling traffc patterns. This approach utilizes GCN for iden-
tifying spatial dependencies in traffc data and employs FL for privacy-preserving collaborative learning 
without sharing raw data. Though ingenuous, this innovative system grapples with hurdles, including scala-
bility issues, communication bottlenecks, susceptibility to adversarial threats, integration complexities with 
existing systems, and limited adaptability across different environments, highlighting the need for further re-
search. To overcome the limitations identifed in existing research and offer a holistic solution, we introduce 
a novel, lightweight privacy-preserving traffc forecasting system. Our system uniquely leverages functional 
encryption based on cryptography for scalable, internet-independent, and effcient privacy-preserving solu-
tion. It enables intricate encryption and computation on encrypted traffc data, safeguarding data security 
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and privacy without compromise. Further enriching our solution, we incorporate a hybrid Conv-LSTM 
and Bi-LSTM model with an SE module, enhancing the extraction and analysis of crucial temporal-spatial 
dynamics, alongside short-term and long-term traffc patterns. This approach signifcantly boosts the fore-
cast accuracy and precision, setting a new benchmark for traffc forecasting systems in terms of privacy 
preservation and operational effciency with exceptional forecast reliability. 

2.3 System Models and Design Objectives 

This section provides an overview of the system model, which includes the network model, threat model, 
and the proposed scheme’s design goals. 

2.3.1 Network Model 

As shown in Fig. 2.2, our considered network model includes three main entities: the vehicle-side (drivers), 
traffc management center (TMC), and a key distribution center (KDC). The role of each entity is described 
below. 

• Drivers (D): As primary components of the traffc management system, each vehicle D sends its 
encrypted location information periodically to the TMC. Communication between drivers and the 
TMC is either direct or indirect through a gateway (Roadside unit). A set of D, D = {Di,1 ≤ i ≤ |D|}, 
form the network. 

• TMC: As the central control and monitoring hub, the TMC uses encrypted location information from 
drivers for traffc fow analysis, congestion detection, and route planning in real time. 

• KDC: The KDC is a crucial offine entity responsible for preserving secure communication and data 
privacy by providing drivers D and the TMC, respectively, with unique encryption and functional 
decryption keys. 

2.3.2 Threat Model 

We adopt an honest but curious adversarial model for our privacy-preserving traffc management system, 
involving three entities: the KDC, the TMC, and the Drivers. The KDC functions as an offine, setup-only 
authority responsible for initializing cryptographic keys. The TMC is assumed to compute traffc aggregates 
correctly but may act curiously by attempting to infer sensitive information such as driver locations, trajecto-
ries, or mobility patterns. Drivers are generally honest in submitting anonymized traffc reports (the specifc 
anonymization mechanism lies outside the scope of this chapter), yet adversarial behavior may arise if a sub-
set of drivers colludes with one another or with the TMC to extract private information about non-colluding 
participants. We also consider external adversaries A that may attempt to eavesdrop on, manipulate, or 
inject traffc data through the communication channels between drivers and the TMC. Finally, we assume 
the KDC does not collude post-setup; collusion involving a malicious KDC would compromise confden-
tiality in a single-authority functional encryption setting like ours. This threat model refects realistic risks in 
vehicular networks, focusing on three principal adversaries; a curious TMC, colluding drivers, and external 
adversaries, with TMC–driver collusion representing the strongest practical adversary. 
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2.3.3 Design Goals 

In our proposed scheme, we anticipate achieving the following objectives. 

• Privacy Preservation: Our design seeks to develop robust mechanisms that protect the location and 
identity of drivers (via unauthorized access and monitoring prevention) while enabling effective traffc 
management and congestion mitigation. 

• Real-time Traffc Forecasting: By leveraging advanced predictive models’ accuracy and real-time 
traffc forecasting capabilities, our system aims to provide reliable and informed traffc data, enabling 
proactive congestion management and effcient route planning. 

• Scalability and Effciency: Our system is designed to be scalable for real-time deployment and oper-
ation under dynamic traffc conditions. This scalability extends to accommodating increasing drivers, 
expanding map sizes, and handling various network loads, ensuring effcient performance with mini-
mal latency and computational overhead. 

• Secure Communication: With secure communication channels, our scheme utilizes secure protocols 
and cryptography techniques to guarantee the integrity, security, and confdentiality of data exchanged 
between system entities. 

2.4 Preliminaries 

2.4.1 Functional Encryption 

Functional encryption (FE) refers to a type of cryptography that allows for the encryption of a message x 
using a key k to get Enck(x), as well as the ability of a designated decryptor to compute the output of a 
function f on the encrypted message using a decryption key dk without being able to learn the message 
itself (i.e., Decdk(Enck(x)) = f (x)) [13]. Recently, the focus on FE has been increasing, especially on 
how to design effcient schemes for limited classes of functions or polynomials, such as linear [1], [7] or 
quadratic [11]. in this chapter, we focus on a specifc type of functional encryption known as inner product 
functional encryption (IPFE)[14], which allows for the computation of the inner product of two encrypted 
vectors. In an IPFE framework, when provided with the encryption of a vector x and a functional decryption 
key linked to a vector y, one can exclusively derive the dot product result (x · y) by decrypting the encrypted 
form of x, all without gaining access to the actual values of x. IPFE involves three distinct parties, outlined 
as follows. 

• KDC: The KDC produces an encryption key for the encryptor and a single functional decryption key 
for the decryptor. 

• Encryptor: The encryptor encrypts the plaintext vector x into the ciphertext and sends it to the decryp-
tor. 

• Decryptor: The decryptor uses the functional decryption key dky obtained from the KDC to evaluate 
and access (x · y), where x and y are the plaintext vector and the encrypted vector, respectively. The 
decryptor is obliged to maintain non-collusion with the KDC. 
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Figure 2.2: Illustration of the Privacy-Preserving Traffc Management System 

2.4.2 Convolution/ LSTM and Bi-LSTM 

CNN and LSTM are powerful deep-learning architectures widely used in computer vision and natural lan-
guage processing. CNNs use a combination of convolutional layers, pooling layers, and fully-connected 
layers to extract features from an image and then classify the image into one of the predefned classes. 
CNNs are particularly suitable for object recognition, facial recognition, and image segmentation tasks. On 
the other hand, LSTM networks are mainly used for natural language processing tasks such as language 
translation, sentiment analysis, and text generation. LSTM networks are composed of multiple layers of 
memory units, which are responsible for storing information from the past and using it to make predictions. 
They are particularly powerful when understanding data sequences, such as sentences, and predicting what 
comes next. A combination of CNN and LSTM, known as Conv-LSTM, is usually used to improve the 
performance of a neural network. The wide adoption of Conv-LSTM is due to their high accuracy. The 
purpose of using attention-based Conv-LSTM is to make the near-future predictions accurate and timely. 

2.4.3 Attention Mechanism 

An attention mechanism allows deep learning models to selectively focus on certain parts of the input when 
making predictions. It is particularly useful in natural language processing and image recognition tasks. In 
these tasks, the model must be able to identify and understand specifc parts of the input to make accurate 
predictions. The attention mechanism is implemented by adding an attention layer to the neural network, 
which learns to assign weights to different input parts. These weights are then used to create a weighted 
sum of the input, which is then passed to the next network layer. Attention mechanisms have been shown 
to improve the performance of neural networks on a wide range of tasks and are now widely used in many 
state-of-the-art models. An attention-based Conv-LSTM combines attention mechanisms and Conv-LSTMs 
to provide accurate forecasting. 
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2.4.4 Squeeze-and-excitation 

Squeeze-and-excitation (SE)[44] is a type of attention mechanism that aims to improve the feature repre-
sentation of a neural network. It works by frst compressing the feature maps’ spatial dimensions, reducing 
the number of channels. The resulting feature maps are then passed through an excitation module, which 
learns to assign weights to different channels based on their importance. These weights are then used to 
recalibrate the feature maps, improving the network’s overall feature representation. SE has been shown to 
improve the performance of neural networks on various tasks such as image classifcation, object detection, 
and semantic segmentation, particularly in architectures like CNNs. It can be added to existing architectures 
like CNNs or convolutional LSTMs as a module. 

2.5 Proposed Scheme 

As depicted in Fig. 2.2, our proposed framework comprises two primary components: 1) Privacy-Preserving 
Location Reporting and Aggregation for Drivers, and 2) Traffc Forecasting through Deep Learning. The 
frst component encompasses system initialization, driver location reporting, and server-side aggregation of 
information for traffc monitoring. The second component involves a deep learning-based traffc forecasting 
algorithm. Our model utilizes Conv-LSTM on aggregated driver data to predict short- and long-term traffc 
patterns while ensuring driver privacy. Additionally, our model incorporates an attention mechanism and a 
squeeze-and-excitation block, signifcantly improving performance. The following subsections explain the 
details of each building block. For clarity, the mathematical symbols used in the scheme are summarized 
in Table 2.1. Fig. 2.4 further illustrates the key phases of the privacy-preserving reporting and forecasting 
pipeline through a sequence diagram. 

2.5.1 Drivers Location Reporting and Aggregation 

We assume that the traffc management area is divided into a set of geographic areas called cells, as illus-
trated in Figure 2.3. Each cell is assigned a unique identifer, similar to zip codes. 

Table

Figure 2.3: A traffc management area partitioned into distinct geographic zones (i.e., cells). 

• To report their location, each Di ∈ D, where {1 ≤ i ≤ |D|}, employ IPFE scheme[14] to conceal their 
association with a specifc cell, denoted as li

j[t] = 1, where 1 ≤ j ≤ |L |, and L represents the total 
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number of grid cells within a given reporting area. Additionally, drivers encrypt the remaining (k − 1) 
dummy cells with a value of zero to maintain k-anonymity [95]. The outcome is a set of k ciphertexts, 
labeled as Ci 

1[t] through Ci
k[t], which are subsequently transmitted to the decryptor (i.e. TMC). This 

encryption mechanism safeguards the confdentiality of the driver’s precise location. 

• At each reporting interval t, the TMC receives encrypted cell information Ci
j[t] from all drivers and 

applies the functional decryption key dk to compute the aggregate driver density for each cell j (i.e. 
Decdk([C1 

j[t], . . . ,C| 
j 
D|[t]]) = ∑

| 
i 
D 
= 
| 
1 li

j[t], where li
j[t] denotes the plaintext occupancy status of grid cell 

j reported by Di at time slot t). If fewer than |D| ciphertexts are received for a given cell, the TMC 
compensates with dummy ciphertexts encrypting zero, preserving consistency in the aggregate com-
putation. Aggregation is restricted to fxed-length, non-overlapping time windows (e.g. every ∆t 
minutes), ensuring each ciphertext contributes exactly once and eliminating overlap-based differenc-
ing attacks. The process further enforces a minimum cohort threshold γ , releasing aggregates only 
when at least γ distinct drivers contribute within a reporting window. γ is defned by the assumed 
collusion bound α (fraction of drivers that may collude with the TMC) and the required minimum ofl m 

hhonest contributors h, and is computed as γ ≥ 1−α . This guarantees that even if the TMC colludes 
with a subset of drivers, the reports of non-colluding participants remain indistinguishable within a 
suffciently large anonymity set. Aggregates that do not satisfy the threshold are merged, thereby mit-
igating both small-cohort leakage and differencing risks, and ensuring that published outputs expose 
no information beyond the authorized cell-level counts. 

The main phases of the route report are described as follows. 

System Initialization 

During system initialization, the KDC computes and distributes the following: (a) Public parameters; (b) 
Driver’s encryption keys; and (c) TMC’s functional decryption key. 

a) Public Parameters Generation: To generate the public parameters, the KDC should: � � � � 
Setup 1λ ,FD : The algorithm frst generates secure parameters as G := (G, p,g) ← GroupGen 1λ , 

and then generates several samples as ai ← RZ1 
p,ai := (1,ai)

⊤ ,∀i ∈ {1, . . . , |D|}, in addition to Wi ←R 

Z1×2 ,ui ←R Z1 
p. Then, it generates the master public key and master private key asp 

mpk := (G , [ai]
1 ,Wiai]),msk := (Wi,ui)i∈{1,...,|D|} 

b) Drivers’ Encryption Keys Generation: KDC constructs and distribute |D| encryption keys to the drivers 
in the network as follows: pki := (G , [ai] , [Wiai] ,ui). 

c) TMC’s Functional Decryption Key Generation: To enable secure aggregation, the KDC constructs a 
vector of ones, denoted as y1×|D|, whose length equals the number of drivers in the network. This vector 
enforces that, when evaluated in an inner product with encrypted driver reports, the result corresponds to the 
total number of drivers present in a given grid cell j. Using this vector, the KDC computes the functional 
decryption key dk as: 

dk := d⊤ 
i ← (yiWi)i∈|D| ,z ← ∑ yiui 

i∈|D| 

1Note that [x] = gx . In our representation, we adopt the bracket notation implicitly from [29], which is widely recognized and 
used as a standard in the cryptographic community. 
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Table 2.1: Main notations. 

Notation Description 

D Number of drivers 

pki Encryption keys of Drivers 

L Total number of grid cells 

γ Minimum cohort threshold 

l j i [t] Status of cell j reported by driver Di at time t 

C j 
i [t] Encrypted status of cell j reported by Di at time t 

G, p,g Public parameters for the functional encryption 

dk Functional decryption keys 

X[ts] Current traffc density over ts − n, ..., ts 

X[td ] Daily historical traffc density over td − n, ..., td 

X[tw] Weekly historical traffc density over tw − n, ..., tw 

G[ts] Output from the CNN 

H2[ts] The LSTM hidden state indicating the spatial-temporal feature for time 
step ts 

C,H Channel and spatial dimensions of the Squeeze operation 

G[ts],G 
′ 
[ts] Output of CNN and Squeeze and excitation 

Ha[ts] The output of Conv-SE-LSTM at each time step ts 

τ Time interval 

βk The attention value 

This operation is equivalent to aggregating the secret shares across all drivers to generate a single decryp-
tion key for the TMC. Crucially, KDC issues only one functional key and strictly focuses on the aggregate 
function defned by y. No alternative functional keys (e.g. sparse vectors or selector functions) are dis-
tributed. This restriction guarantees that the TMC can recover only aggregate driver densities at the cell 
level and is cryptographically prevented from isolating or reconstructing any individual driver’s report, even 
under repeated queries. 

Reporting Drivers Locations 

For each reporting period t, driver Di encrypts the cell j information, ∀1 < j < |L |, and generate the 
ciphertext Ci

j[t]. This encryption ensures that the cell information is kept private and only authorized parties 
can access it. Each cell information is encrypted separately, allowing the TMC to compute the aggregated 
reports for cell j without learning the individual reports themselves. The encrypted cell information is 
generated as follows.� � 

jEncrypt pki, l
j : The algorithm frst generates a random nonce r and then computes i i ← RZp j∈{1,...,K} 
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System Setup 

Issue per−driver keys 
(SKDi , PKDi ) 

Issue functional key 
dk : ⟨1, ·⟩ only 

Confg : active cells K, reporting window ∆t, 
k dummies cells, cohort threshold γ 

Register forecast service 
(Conv−SE−LSTM + Attn + BiLSTM model) 

Select true cell jt & (k−1) dummies 
{Ci1, . . . ,Cik} ← IPFE.Enc(bit, nonce) 

Submit {Ci1, . . . ,Cik} 

Forward batched ciphertexts 
for window t 

Collect window t batch 
Pad missing with zero−ciphertexts 

Enforce cohort γ 

If < γ : withhold/merge release 

Apply dk : ∑i ℓ ji[t] 
(small discrete log via lookup) 

Append counts to store 

Build X [ts], X [td], X [tw] 

Forecast request : {X [ts], X [td], X [tw]} 
h ∈ {1, 3, 6, 12} ⇒ 5–60 min 

Conv on X [ts]; SE recalibration 
Stacked LSTM + Temporal Attention 

Bi−LSTM on X [td], X [tw]; Concat → FC bYt+h∆: per-cell forecasts 
(5, 15, 30, 60) min 

Persist predictions (heatmaps) 
Expose APIs/Dashboards 

Proactive advisories/ 
rerouting (optional) 

kdc:KDC Driver:Di TMCcfg:TMC MLcfg:Forecaster 

driver:Di rsu:RSU/GW tmc:TMC ml:Forecaster 

System Setup 

Private Reporting 
& Encryption 

Collection & Gate 

Aggregate & Forecast 

Publish & Advisories 

Figure 2.4: End-to-end workfow of the proposed framework, illustrating the sequential interactions from 
system setup, private driver reporting and encryption, secure aggregation at the TMC, to deep learning based 
forecasting. 

the ciphertext as h i h i 
C j j j j j 

i [t] := ( t ← [airi ], c ← [li
j[t]+ ui + Wiairi ]).i i 

It should be noted that the drivers do not need to report the encryption status for all cells within the 
reporting area. Instead, they can employ K-anonymity [95] to selectively report only a subset of cells, 
thereby ensuring privacy and reducing computational overhead. 
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Figure 2.5: Architecture of Attention-Based Conv-LSTM Network. 

Aggregating the Drivers Reports 

After collecting all the D’s encrypted locations (ct) at time t, represented as ct = [C1 
j[t],C2 

j[t], . . . ,C| 
j 
D|[t]], the 

TMC frst verifes that the minimum cohort threshold γ is satisfed and then applies the functional decryption 
key dk to obtain the total aggregated traffc density by computing: �� � � �� 

∏i∈[D] y⊤ci / di 
⊤ti 

= 
[z] �� h i� 

∏i∈[D] y⊤ci 
� 
/ y⊤Wiairi

j 

= 
[z] �h i h i� 

∏i∈[D] y⊤(li
j[t]+ ui + Wiairi

j) / y⊤Wiairi
j 

= 
[z] h i 

∏i∈[D] y⊤li
j[t]+ y⊤ui + y⊤Wiairi

j − y⊤Wiairi
j 

= 
[z] h i 

⊤l j ⊤ j j ⊤ = ∏ y i [t]+ y ui + y⊤Wiairi − y⊤Wiairi − y ui 
i∈[D] 

⊤l j= ∏ y i [t] 
i∈[D] 

|D| 
l j= ∑ i [t] 

i=1 

Solving the discrete logarithm is not a challenging task due to the relatively small value of (∑| i 
D 
= 
| 
1 li

j[t]). 
While many methods have been introduced to compute the discrete logarithm, such as Shank’s baby-step 
giant-step algorithm [91], we resorted to using a lookup table to compute it effciently in a light-weight 
manner. By performing the above steps, the result (∑| i 

D 
= 
| 
1 li

j[t]) is the summation of the drivers passing through 
grid cell j at each reporting period t. After the aggregation, the TMC can use the encrypted information to 
forecast traffc conditions, such as traffc density and congestion, as explained in the next section. 
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2.5.2 Deep learning-based Traffc Forecasting 

Traffc Flow Process Formulation: The process of traffc fow prediction can be formulated mathematically 
as the drivers’ density and congestion patterns within each cell under the traffc monitoring area. This 
formulation involves the analysis of historical density, real-time density, and future density. As shown in 
Fig. 2.6, at the current time t, the objective is to predict the traffc fow of a specifc grid cell at the time 
interval (t + h∆) for a given prediction horizon, utilizing the past traffc status. Let X j[τ] denote the traffc 
fow of the jth observation route during the τ th time interval. The traffc fow values X j[τ] correspond to 
τ = t −n∆, . . . , t −∆, t. Here, ∆ = 5 minutes, n = 15, and h = 1,3,6,12,. This means that 75-minute historical 
data will be used to predict the traffc fow of the next 5, 15, 30, and 60 minutes. 

... ... ... ...

Past Future

Figure 2.6: The Traffc forecasting time horizon. 
We create three spatiotemporal traffc fow matrices to capture the temporal and spatial aspects of traffc 

fow. This involves combining historical traffc fow data from neighboring locations at different time scales, 
including the current moment ts , daily patterns td , and weekly trends tw . The matrix X [ts] specifcally 
represents the current historical traffc density. It considers a time window spanning from ts − n to ts where 

= 

each column of this matrix can be represented as the status of the reporting area at time ts denoted as X [ts]#T |D| |D| |D| 
∑ li 

1[ts], ∑ li 
2[ts], ..., ∑ lL [ts] . The following matrix defnes X [ts] with dimensions L × n, where Li 

" 

i=1 i=1 i=1 

is the number of reporting cells, and n is the size of the time window used for analysis.  
i=|D| i=|D| 
∑ li 

1[ts − n] .. ∑ l1 
j [t

s]T 

= 

 

 

 
i=1 i=1X [ts − n] 

. 

. 

. 

. 

i=|D| i=|D| 
∑ li 

1[ts − n] .. ∑ l2 
j [t

s] 
 

 

i=1 i=1 

. . .. 

. . .. 

. . .. 
i=|D| i=|D| 
∑ lL [ts − n] .. ∑ lL 

j [t
s]i 

i=1 i=1 

X [ts] 

The next matrix defnes the historical traffc densities with daily periodicity (i.e., in the previous day d) 
over the same time period td − n, ..., td , ..., td + n. The traffc data with daily periodicity can be obtained by 
considering the previous and following n time intervals of the same moment as time ts from the preceding 
day. This can be represented as the matrix X [td ]. 
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 
i=|D| i=|D| 
∑ li 

1[td − n] .. ∑ l1 
j [t

d + n] T 
X [td − n] i=1 i=1  

= 

 

 

i=|D| i=|D| 
∑ li 

1[td − n] .. ∑ l2 
j [t

d + n]  

. 

. 

. 

. 

i=1 i=1 

. . .. 

. . .. 

. . .. 
i=|D| i=|D| 
∑ lL [td − n] .. ∑ lL 

j [t
d + n]i 

i=1 i=1 

X [td + n] 

Similarly, the next matrix defnes the historical traffc densities with weekly periodicity (i.e., in the pre-
vious week ′ w ′) over the same time period tw − n, ..., tw , ..., tw + n. Historical traffc fow data is constructed 
with weekly periodicity by considering previous and subsequent n time intervals of the same moment as 
time ts in the last week as follows X [tw].  i=|D| i=|D| 

∑ li 
1[tw − n] ... ∑ l1 

j [t
w + n] 

 

 T i=1 j=LX [tw − n] 
. 

. 

. 

. 

i=|D| i=|D| 
∑ li 

1[tw − n] ... ∑ l2 
j [t

w + n] 

 

i=1 j=L 

= . . ... 

. . ... 

. . ... 
i=|D| i=|D| 
∑ li

L[tw − n] ... ∑ lL
j [t

w + n] 
i=1 j=L 

, 

X [tw + n] 

Deep Learning-based Forecasting: The traffc forecasting model utilized by TMC is based on an 
attention-based Convolutional Sqeeze and Excitation and Long Short-Term Memory (Conv-SE-LSTM) deep 
learning architecture. The model’s structure is depicted in Fig. 2.5. The Conv-SE-LSTM module serves 
as the primary component of the proposed model, focusing on capturing the spatial-temporal features of 
traffc fow. The Conv-SE-LSTM module combines a CNN, a SE, and an LSTM network, as illustrated in 
Fig. 2.5. The CNN component comprises two convolutional layers, while the LSTM component comprises 
two LSTM layers. The input to the Conv-LSTM module is a spatial-temporal traffc fow matrix denoted 
as X [ts], which represents the current historical traffc fow of the reporting area to be predicted. The main 
components of the proposed model are described as follows. 

1) Convolutional Block: To extract spatial features, a two-dimensional convolution operation is applied 
to the traffc fow data X [ts] at time ts . The convolution operation involves a two-dimensional convolu-
tion kernel flter, which slides over the fow data to acquire the local perceptual domain. The convolution 
operation can be expressed as 

Y [ts] = σ(Ws ∗ X [ts]+ bs), (2.1) 

where Ws represents the flter weights, bs is the bias term, Xs[t] denotes the input traffc fow at time 
ts , ∗ denotes the convolution operation, σ represents the activation function, and Y [ts] is the output of the 
frst convolutional layer. This process helps in extracting spatial features from the neighboring observation 
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Figure 2.7: The weighting mechanism within the Squeeze-and-Excitation block. 

locations. G[ts] represents the output of the second convolutional layer. 

G[ts] = σ(Ws2 ∗Y [ts]+ bs2 ) (2.2) 

After processing the current spatiotemporal information through the two convolutional layers, the output 
is then connected to the squeeze and excitation module. 

2) Squeeze-and-Excitation (SE): In the SE, convolution transformation is represented by Ftr, which maps 
the input G[ts] to feature mappings V where V ∈ RH×C (see Fig. 2.7). The feature mappings V undergo 
a squeeze operation, which aggregates the feature maps across their spatial dimensions (H) to generate 
a channel descriptor. This descriptor captures the global distribution of channel-wise feature responses, 
allowing all network layers to access information from the entire receptive feld. Subsequently, the excitation 
operation, implemented through a self-gating mechanism, takes the channel descriptor as input and produces 
modulation weights specifc to each channel. These weights are then applied to the feature mappings V , 
generating the output of the SE block. This output can be directly fed into subsequent layers of the network. 
In our model, one dimensional SE is applied to the input G[ts] to generate the output is G′ [ts], which is input 
to the LSTM module. The complete architecture for the SE module is given in Fig. 2.8. 

3) LSTM: Long-term dependencies within sequential data can be effciently captured using the LSTM 
architecture, making it particularly suitable for handling extended sequential patterns. In our model, we 
employ multiple LSTM layers to capture higher-level traffc fow features. The frst LSTM processes the 
sequence output from the SE module G 

′ 
[ts] = [G′ [ts − n], . . . ,G′ [ts − 1],G[ts]] and calculates the hidden 

state for each time step H1[ts] = [H1[ts − n], ...,H1[ts − 1],H1[ts]]. Then the hidden state sequence H1[ts] is 
input into the second LSTM layer to calculate the hidden state H2[ts] as the output, which indicates the 
spatial-temporal feature for time step ts . LSTM layers are stacked so that each subsequent layer receives 
the hidden state of the previous layer. As a result, the model can capture increasingly complex patterns and 
dependencies within the sequential data. The diagram in Fig. 2.9 visually represents the used LSTM layers 
and their sequential connections. 

4) Attention Mechanism: The standard LSTM cannot determine the importance of different parts within 
a traffc fow sequence. To address this limitation, an attention mechanism is introduced. This attention 
mechanism enables the model to automatically identify varying levels of importance for different segments 
of the traffc fow sequence at different time steps. The incorporation of the attention mechanism with the 
Conv-LSTM module is depicted in Fig. 2.9, providing a visual representation of its functionality. The output 
of Conv-SE-LSTM at each time step ts is computed as a weighted summation of the output of the LSTM 
network H2[ts] follows: 
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Figure 2.9: The Conv-SE-LSTM module with an attention mechanism. 

n+1 
Ha[ts] = ∑ βkH2[ts − (k − 1)] (2.3) 

k=1 

where n+ 1 is the length of fow sequence and βk is the temporal attention value at time step t − (k − 1). The 
attention value βk can be computed as 

exp(sk)
βk = (2.4)

∑
n+1 
k=1 exp(sk) 

The scores s = (s1,s2, ...,sn+1)
T indicate the importance of each part in the traffc fow sequence, which 

can be obtained as 
st = Vs

T tanh(WhsG[ts]+WlsH2[ts]) (2.5) 

where V T ,Whs and Wls are the learnable parameters and H2[ts] is the hidden output from the Conv-LSTM s 

network. 
5) Bidirectional LSTM (Bi-LSTM): A module based on bi-directional LSTM networks is employed to 
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Figure 2.11: The structure of Bi-LSTM networks. 

extract periodic features and capture such a temporal dependency from the daily X[td ] and X[tw] weekly 
densities. The hidden states of forward and backward passes are combined as the output. This way, more 
features from both directions can be captured, improving the prediction performance. Fig. 2.11 illustrates 
the overall structure of the bi-directional LSTM module used in the model. 

As shown in Fig. 2.9, Ha can be obtained after the processing by the attention Conv-LSTM and Bi-t 

LSTM modules, the spatial-temporal features, the daily periodicity features Hd, f , Hd,b the weekly period-t t 

icity features Hw, f and Hw,b . Then, all these features are concatenated into a feature vector and then input t t 

by two regression layers to perform forecasting. Also, Fig. 2.9 shows the spatial-temporal features Ha[t], 
the daily periodicity features Hf [td ], Hb[td ] and the weekly periodicity features Hf [tw] and Hb[tw] can be 
obtained after the processing by the attention Conv-SE-LSTM and Bi-LSTM modules. Then, these features 
are concatenated into a feature vector fed into two regression layers to carry out forecasting. 

Architecture Remarks. In our model, we utilize SE layers to enhance the performance of CNNs by 
adaptively recalibrating the channel-wise feature responses. The SE layer employs global pooling to reduce 
the spatial dimensions of the input data, generating a channel descriptor for each channel. This descriptor 
is then processed through a fully connected layer to generate channel weights. These weights are utilized 
to scale the original feature maps, enabling the network to selectively emphasize different regions of the 
input data based on the specifc task at hand. The attention mechanism is also employed to selectively 
focus on specifc segments of the input data rather than processing the entire input indiscriminately. At-
tention is commonly used in sequence-to-sequence models like Recurrent Neural Networks (RNNs) and 
Transformer-based models, particularly when dealing with variable-length input sequences. The model can 
assign weights to different parts of the sequence by employing attention mechanisms based on their relative 
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importance for the given task. This allows the model to effectively allocate its attention and resources to the 
most relevant portions of the input sequence. 

2.6 Privacy and Security Analysis 

Proposition 1. Confdentiality of Location Reports 

Proof: During system initialization, each driver Di is provisioned with a unique encryption key pki, 
derived from independently sampled randomness (ai,Wi,ui) under the IPFE scheme. These keys provide 
encryption capability only; no driver receives functional decryption material. Consequently, ciphertexts 
generated by one driver are computationally inaccessible to all others. The TMC, by contrast, is issued a 
single functional decryption key dk, scoped exclusively to the inner product with the all-ones vector y[14]. 
This key allows recovery of aggregate driver counts per cell, expressed as ⟨y,x⟩, but reveals no individual 
component xi. The issuance of only one function scoped key prevents selector queries or arbitrary decryp-
tions that could isolate individuals. Hence, the scheme guarantees confdentiality of individual location 
reports while still enabling the TMC to perform aggregate traffc forecasting. 

Proposition 2. Unlinkability of Encrypted Cells 

Proof: Ciphertexts generated by one driver, whether for identical or different cells, are computationally 
unlinkable under the known-ciphertext model employed. For each driver Di and cell j ∈ {1, . . . ,K}, the 

jIPFE encryption algorithm incorporates a fresh random nonce ri ←R Zp. This ensures that repeated encryp-
tions of the same plaintext yield distinct ciphertexts, eliminating deterministic patterns and guaranteeing 
semantic or Indistinguishability under Chosen-Plaintext Attack (IND-CPA) security. To further conceal the 
true report, each driver enforces k-anonymity[95] by encrypting K − 1 dummy cells alongside the actual 
cell, thereby embedding the true location within a broader anonymity set. The combined effect of nonce-
induced randomness and dummy-cell padding prevents adversaries, whether external or colluding with the 
TMC, from correlating ciphertexts across time or cells, thus rendering them unlinkable to any specifc driver 
trajectory. 

Proposition 3. Anonymity of Location Reports 

Proof: Insider and outsider adversaries cannot compromise the anonymity of drivers’ location reports. 
With the IPFE[14] cryptosystem employed, even if the TMC colludes with a subset of drivers, the coalition 
learns no additional information about non-colluding drivers’ reports beyond the authorized aggregates, pro-
vided a minimum cohort threshold γ is enforced, the aggregation windows are fxed and non-overlapping, 
and the decryption key is scoped exclusively to the aggregate function. In this scenario, the colluding coali-
tion observes all ciphertexts, the plaintext of colluding drivers, and only aggregate sums via the function-
limited key dk. Differencing attacks are neutralized by releasing aggregates only when at least γ distinct 
contributors are present, ensuring that honest drivers’ inputs are masked within a suffciently large anonymity 
set. Fixed, non-overlapping time windows further prevent adaptive cohort-splitting and overlap-based infer-
ence, while function scoping ensures that only one decryption key tied to the all-ones vector is available, 
precluding selector-style queries that could isolate individuals. Meanwhile, fresh random nonces applied at 
each encryption step guarantee IND-CPA security, and k-anonymity obliges drivers to report K − 1 dummy 
cells alongside their true location, preventing ciphertext correlation or trajectory inference. Under these 
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constraints, the coalition’s posterior knowledge about any non-colluding driver’s bit is negligibly stronger 
than its prior, and thus no per-driver information beyond the aggregate counts is revealed. 

2.7 Performance Analysis 

The proposed schemes were implemented in Python on a Lambda GPU workstation equipped with the 
following specifcations: 2xQuadro RTX 8000 GPUs, 2-Way NVLink, Intel i9-9820X CPU (10 Cores), 
128 GB of RAM, and a 2 TB NVMe SSD. This workstation came pre-installed with the latest versions of 
essential libraries such as CUDA, Jupyter, Pytorch, Tensorfow, and Keras. For our implementation, we 
utilized two datasets: 

• SUMO Dataset: To assess the encryption component of our project, we generated a set of random 
trips based on real maps. We started by obtaining a genuine map of Greensboro, North Carolina, USA, 
from the OpenStreetMap project[78]. The traffc management area covered an 8km × 8km region, 
divided into 40 cells, each measuring 1km×1km. To create real and random routes, we employed the 
”Simulation of Urban MObility” (SUMO) software[48]. All results presented are the averages from 
30 different runs (See Fig. 2.12). 

• PeMS Dataset: This dataset was sourced from the Performance Measurement System (PeMS), sup-
ported by California Department of Transportation (Caltrans)[16]. We used the PeMS14 dataset, 
covering traffc data from 2001 to 2023 across California’s major metropolitan areas. The data, col-
lected from nearly 40,000 sensors, is mostly recorded at 5-minute intervals, with some available at 
30-second intervals for more detailed historical and real-time traffc analysis. For our study we fo-
cused on two specifc scenarios: freeway and urban traffc, training and evaluating our proposed model 
with data from 183 sensors in District 10, specifcally on Freeway SR99-S, as well as 12 sensors from 
District 4 on Street I980 in Oakland. This enabled robust analysis across both freeway and urban 
traffc conditions. 

We then assess the proposed privacy-preserving traffc management forecasting system from three perspec-
tives: Computation Overhead, Communication Overhead, and Traffc Flow Forecasting. 

2.7.1 Computation Overhead 

The computation overhead is quantifed through two key metrics: the cryptographic key size provisioned by 
the KDC and the encrypted message size transmitted to the TMC (Dk + Em). For Dk, each driver receives a 
unique key pki := (G, [ai], [Wiai],ui), generated over the asymmetric BN256 pairing curve with 256-bit secu-
rity. With each group element of 32 bytes, a driver requires two group points (64 bytes) and one small feld 
element (2 bytes), yielding a lightweight 66-byte route encryption key. For Em, each encrypted cell consists 
of two group elements (32 bytes × 2 group elements = 64 bytes). Under k-anonymity[95], the transmit-
ted payload grows linearly with k (total encrypted cells), resulting in a message size of 64k bytes. For an 
80-cell grid, this corresponds to just 5.12 KB, easily handled by on-board units and existing V2I standards. 
Compared with state-of-the-art schemes in Table 2.2, our IPFE-based design incurs only O(k) modular 
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Figure 2.12: Synthetic dataset generation using SUMO 

0 10 20 30 40 50 60 70 80
Number of Cells

0

10

20

30

40

50

To
ta

l E
nc

ry
pt

io
n 

Ti
m

e 
by

 E
ac

h 
D

riv
er

 in
 m

s

20 40 60 80 100 120 140 160 180 200
Number of Drivers

0

100

200

300

400

500

600

To
ta

l D
ec

ry
pt

io
n 

Ti
m

e 
(m

s)

40 cells
60 cells
80 cells

(a) Encryption times vs Number of Cells. (b) Decryption Time vs Number of Drivers. 

Figure 2.13: Computation Overhead Analysis. 

exponentiations with constant-size ciphertexts for the driver-side encryptions and O(|D| · K) modular expo-
nentiations for the TMC aggregated decryptions. Competing methods are signifcantly costlier: blockchain 
schemes add O(logn) consensus overhead, additive HE grows as O(K ·L ·λ 3) with minute-level delays, and 
FL+DP requires O(|D| · d · R) repeated server gradient updates with O(dR) client gradient uploads, thereby 
slowing convergence. In contrast, our design guarantees predictable linear growth with drivers encrypting 
in ≈12–35 ms for k ∈ [24,48] per window, and the TMC executes a single O(|D| · K) decryption across 
all cells with full parallelization. Even at metropolitan scale (|D| = 105, K = 100), aggregate decryption 
completes in under 1s on modern multi-core/GPU servers, ensuring real-time performance. These results 
confrm the effciency of our cryptographic design: lightweight for resource constrained vehicles, scalable 
for dense urban deployments, and decisively more practical than blockchain, HE, or FL based alternatives. 

2.7.2 Communication Overhead 

In our simulations, we enforce a minimum cohort size of γ = 20, derived from the collusion-resilience con-l m 
hdition γ ≥ 1−α , with α = 0.5 (up to 50% colluders) and h = 10 honest contributors per reporting window. 
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Table 2.2: Comparative Analysis of Privacy and Non-Privacy Schemes 

Scheme Computational 
complexity 

Communication 
complexity 

Scalability Forecasting Remarks 

Proposed Driver: O(K) 
bit-ops; TMC: 
O(|D| · K) bit-ops per 
∆t 

bytesup,driver = 
K · |G| (independent 
of |D|) 

Linear/Feasible if 
O(|D| · K)tmc < ∆t 

✓ Lowest driver cost; 
Scalable; Accurate 
forecasting 

(Blockchain & 
Pseudonyms) [113] 

Signature O(1) ops; 
Consensus O(logn) 

Constant per tx = 
O(stx); bytesout ⇒ 
O(Npeers · stx) 

Limited throughput; 
Latency ∝ 1/TPS 

✗ Consensus bottleneck; 
unsuitable for real-time 

(Blockchain & CPPA) 
[60] 

Signature O(1) ops; 
Consensus O(logn) 

� � 

Per auth. = 
O(stx)bytes; 
Broadcast =� � 
O Npeers · stx 

Consensus latency 
O(T ) 

✗ High latency; Unsuitable 
for high-freq. traffc data 

Additive HE [41] Driver: O K · λ 3

bit-ops; TMC: � � 
O K · L · λ 3 bit-ops 
per ∆t 

bytesup,driver = � �HE O K · sct 

Super-linear; Delay in 
sec–min range 

✗ Very high computation; 
Impractical for short 
real-time ∆t 

Differential Privacy Driver: O(K) Noise bytesup,driver = Linear in |D| + K ✓ Forecast accuracy ↓ 
(DP) [50] injection; TMC: 

O(|D| · K) Noise 
vector aggre. 

O(K) ≈ K · sval; 
HE (sct ≫ sval) 

degrades at strong ε ↓ 
levels 

(FL & DP) [80] Clients: O(dR); 
Server: O(|D| · d · R) 

bytes↑,client/R = 
bytes↓,server/R ≈ 
O(1) · d · selem 

Scales to many drivers 
|D| × R 

✓ High comms. overhead; 
Slow convergence with 
DP 

* ✓ HE = supported; ✗ = not supported; R rounds; d gradient; G, s ciphertext sizes; selem byte/element; sval per value-size; λ security parameter; ct 
O(1) small/constant cost; ∆t forecast window; ε DP privacy; stx tx size; Npeers neighbors; n set size; TPS transactions/s; T consensus period; L 
HE layers 

On the driver side, uplink communication is limited to transmitting constant-size ciphertexts |G| for K active 
cells. This uplink is independent of the total number of drivers |D|. Using a BN256-based IPFE implemen-
tation, each encrypted cell is 64 bytes, so a driver reporting K = 80 active cells transmits about 5.12 KB per 
window. Even with |D| = 500 drivers, the aggregate uplink remains only ∼ 0.005 MB per reporting inter-
val ∆t, a negligible bandwidth demand for vehicular networks. By contrast, additive HE expands payloads 

HE HEto O(K · s ), where s ≫ |G|, and induces super-linear decryption costs at the server/TMC. Blockchain ct ct 

systems impose O(stx) per transaction and additional O(Npeers · stx) broadcast overhead. FL+DP requires 
bidirectional gradient transfers on the order of O(d · selem) each over R rounds, compounding both com-
munication and convergence delays. Central DP preserves the O(K) byte growth per driver (≈ K · sval) but 
reduces forecast accuracy under strong privacy guarantees (small ε) while still obligating the TMC to ag-
gregate |D| vectors as summarized Table 2.2. We validated these properties with a prototype built using the 
GoFE library in Python for our IPFE setup[32] over a synthetically generated Greensboro-area traffc trace 
with |D| = 200 drivers and 80 geographic cells. Simulation results confrm linear scaling, with Fig. 2.13a 
depicting a direct linear relationship between the encryption time and K, where encrypting 80 cells requires 
only ∼ 50 ms per driver. Similarly, TMC decryption time also scales linearly with K, where decrypting 200 
driver presences across 80 cells completes in under 600 ms as illustrated in Fig. 2.13b. Thus, the overall 
complexity remains bounded by O(K) per driver and O(|D| · K) at the TMC, both of which comfortably 
satisfy the feasibility condition O(|D| · K) tmc < ∆t, where the total work O(|D| · K) tmc duration utilized by 
the TMC is < ∆t. Hence, our IPFE-based design avoids the heavy communication overheads of blockchain 
consensus, HE expansion, and FL gradient exchanges, while maintaining forecasting accuracy and strong 
privacy guarantees. 
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Table 2.3: Hyper-parameter tuning 

Hyper-
parameter Value Selected Best 

Value 

Units 32, . . . , 512 488 

Activation 
relu, 
tanh, 
sigmoid 

relu 

Dropout True, False True 

Learning rate 
1 × 10−4 to 

1× 10−2 0.0003 

Table 2.4: Different Optimizer comparison 

Optimizer MAE MAPE RMSE 

SGD 39.45 62.73 45.66 

ADADELTA 18.75 19.13 24.09 

RMSProp 12.06 14.25 15.67 

ADAGRAD 9.80 10.18 13.93 

ADAM 7.94 8.50 11.03 
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Figure 2.14: Error Rate Assessment for Short-Term Traffc Flow Forecasting. 

2.7.3 Traffc Flow Forecast 

This subsection evaluates the traffc forecasting model (Conv-LSTM) both with and without the squeezing 
and excitation algorithms, attention mechanism, and Bi-LSTM. In order to measure our suggested scheme 
against comparable traffc forecasting methods found in the literature, we selected three commonly used 
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Figure 2.15: Comparison of our privacy-preserving model Predictions vs other non-privacy-preserving mod-
els and actual traffc fow over a 300-Minute interval. 

performance indices. These measures, Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), and Root Mean Square Error (RMSE) assess the accuracy of predictive models in re-
gression analysis. 

• Mean Absolute Error: The MAE is calculated using the formula 

n1
MAE = ∑ |Fp − Ft | (2.6)

n t=1 

• Mean Absolute Percentage Error: The MAPE is calculated as follows: 

n1
MAPE(%) = 

Fp − Ft
∑ |× 100 (2.7)| 

Ftn t=1 

• Root Mean Square Error: The RMSE is determined by the formula: s 
n1
∑RMSE = (Fp − Ft )2 (2.8)

n t=1 

where Fp represents the predicted traffc fow and Ft represents the true traffc fow. 

1. Experimental Data and Evaluation: Using the PeMS dataset, the hyperparameters of the fore-
casting Conv-LSTM model are fne-tuned utilizing the Tensorfow Keras Tuner. The tuning process 
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Table 2.5: Prediction performance with various proposed modules for prediction of urban area traffc fow. 

Algorithm Measure 5min 15min 30 min 60 min 

Conv LSTM (Stage 1) 

MAE 9.05 10.80 10.28 10.50 

MAPE (%) 9.94 11.73 10.25 11.33 

RMSE 12.32 14.73 14.28 14.21 

Bi-Conv LSTM (Stage 2) 

MAE 12.57 18.07 12.37 14.31 

MAPE (%) 13.18 19.08 12.9 13.73 

RMSE 18.8 24.16 18.55 21.16 

AT-Bi-Conv LSTM (Stage 3) 

MAE 8.19 9.45 9.21 10 

MAPE (%) 8.86 9.56 9.60 10.71 

RMSE 11.33 13.14 13.01 13.94 

AT-Bi-Conv-SE LSTM (Stage 4) 

MAE 7.94 8.66 9.88 10.10 

MAPE (%) 8.5 9.22 10.66 10.75 

RMSE 11.03 12.10 13.8 13.9 

involved exploring a range of hyperparameter values, including unit limits for feed-forward layers 
ranging from 32 to a maximum of 512, likewise exploring various activation functions ranging ReLU, 
Sigmoid, and Tanh. Lastly, we investigated different learning rates within 1 × 10−4 to 1 × 10−2. 
Table 2.3 contains the tuning process outcomes and the optimal hyperparameter values. Additionally, 
we performed a comparative analysis on adopting fve different optimizers for our model. The opti-
mizers used were Stochastic Gradient Descent (SGD), ADADELTA, Root Mean Square Propagation 
(RMSProp), Adaptive Gradient (ADAGRAD), and Adaptive Moment Estimation (ADAM). The anal-
ysis results are presented in Table 2.4, where the ADAM consistently outperforms other optimizers 
regarding error reduction. Consequently, we selected ADAM as the optimizer for our fnal model. 

2. Forecast Performance Evaluation: Here, we demonstrate the effcacy of our proposed hybrid model 
for traffc fow prediction at a particular Point of Interest (POI) on Street I980 in Oakland, District 
4, by utilizing a number of crucial elements, including an attention mechanism (AT), a squeeze-and-
excitation (SE) module, and a Bi-LSTM module. Our hybrid model was built in four stages using 
the TensorFlow framework[31], Beginning with the Conv-LSTM (Conv LSTM) model (Stage 1). 
Then, integrating the Conv LSTM model with a Bi-LSTM module to form a Bi-Conv LSTM model 
(Stage 2). The Bi-Conv LSTM model was enhanced further by adding an attention mechanism to 
produce an AT-Bi-Conv LSTM model (Stage 3). Lastly, we fuse a squeeze-and-excitation module 
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Table 2.6: Performance comparison of different Models for Urban traffc fow prediction. 

Horizon Measure DCRNN[58] AT-Conv-LSTM[117] Bi-LSTM[65] SCG[67] AGFCRN[57] PGCN[90] Our Model 

5 min 

MAE 13.79 13.49 12.63 3.43 15.10 12.56 7.49 

MAPE (%) 10.7 10.1 10.49 8.60 9.67 8.74 8.5 

RMSE 18.88 18.56 16.72 5.09 17.81 16.49 11.03 

15 min 

MAE 14.79 14.34 15.09 6.89 16.71 13.43 8.66 

MAPE (%) 11.5 10.8 12.28 11.61 10.14 9.88 9.22 

RMSE 20.43 20.08 18.34 8.43 22.68 17.91 12.10 

30 min 

MAE 16.05 15.48 17.41 11.15 19.53 15.62 9.88 

MAPE (%) 12.4 11.4 14.5 16.89 12.82 11.61 10.66 

RMSE 21.18 21.26 19.72 14.71 25.94 19.33 13.8 

60 min 

MAE 18.43 16.65 20.53 20.21 22.31 18.06 10.10 

MAPE (%) 14.2 12.3 16.9 17.36 15.53 13.89 10.75 

RMSE 25.74 23.26 24.12 21.09 28.09 24.74 13.9 

to the previous AT-Bi-Conv LSTM model, resulting in an AT-Bi-Conv-SE LSTM model (Stage 4). 
The outcomes, as detailed in Table 2.5, highlight our fnal hybrid model (AT-Bi-Conv-SE LSTM 
model) as the best performing model, achieving the lowest MAE and RMSE error rates of 7.94% 
and 11.03% respectively for a 5 minutes prediction time, while posing a 10.1% MAE value and 
13.9% RMSE value for a prediction horizon of 60 minutes. Also, Table 2.5 shows stage two (Bi-
Conv LSTM model) as the worst performing stage, with the highest MAE and RMSE error rates of 
12.57% and 18.8% respectively for a 5 minutes prediction horizon, as well as, 14.31% MAE value and 
21.16% RMSE value for a prediction time of 60 minutes, indicating a decrease in performance, after 
the addition of the Bi-LSTM module. For instance, a signifcant increase in MAE and RMSE error 
rates from 10.5% and 14.21% respectively in stage 1 to MAE and RMSE error rates of 14.31% and 
21.16% respectively in stage 2. Conversely, a substantial performance improvement was witnessed 
from stage 2 to stage 3, likewise from stage 3 to stage 4 (best performing model) across all prediction 
horizons. Concretely, this comprehensive approach underscores the effectiveness of our model in 
accurately forecasting traffc fow and positions it as a leading solution for traffc management and 
analysis. Fig. 2.15 shows the prediction performance of the proposed model, emphasizing its superior 
forecasting accuracy due to its coherence with the referenced actual traffc fow compared to the fow 
predictions of other baselines forecasting models. 

Furthermore, we comprehensively compared our proposed hybrid (AT-Bi-Conv-SE-LSTM) model 
and other established contemporary approaches for short-term traffc fow predictions spanning vari-
ous prediction time horizons (5, 15, 30, and 60 minutes). The comparative approaches encompass Dif-
fusion Convolutional Recurrent Neural Network (DCRNN)[58], Attention-Based Conv-LSTM Net-
work (AT-Con-LSTM)[117], Bidirectional LSTM network[65], STFSA Convolutional Neural Net-
work Gated Recurrent Unit (SCG)[67], Adaptive Spatial-Temporal Fusion Graph Convolutional Net-
work (AGFCRN)[57] and Progressive Graph Convolutional Network (PGCN)[90]. Table 2.6 show-
cases the comparison of prediction accuracy (error rates) across different models using the MAE, 
MAPE, and RMSE indices. Notably, our proposed hybrid (AT-Bi-Conv-SE LSTM) model emerged 
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as the overall best, consistently delivering exceptionally low MAE and RMSE rates of 7.49% and 
11.03%, respectively, for a 5-minute forecast. For the same prediction time, AGFCRN shows the 
highest MAE and RMSE rates of 15.10% and 17.81% respectively, making it the least effective for 
the same forecast duration. Other models, including DCRNN, AT-Con-LSTM, Bi-LSTM, SCG and 
PGCN, showed improved performances (descension of MAE and RMSE rates) over AGFCRN (least 
performing), with SCG being the superior model for shorter prediction times. Fig. 2.14a affrms these 
fndings, as we can visualize a reduction in the MAE and RMSE rates (improved model performance) 
moving from the least performing AGFCRN to the best performing SCG forecasting model for a 
5-minute forecast. Similarly, from Table 2.6, for a 60-minute forecast, AGFCRN remains the least ef-
fcient with the highest MAE and RMSE rates of 22.31% and 28.09% respectively, while our proposed 
model was the best-performing forecasting model with the least MAE and RMSE rates of 10.1% and 
13.9% respectively (signifcantly reducing errors compared to AGFCRN and PGCN). Common to 
the behavior observed in Fig. 2.14a for the 5-minute forecast, Fig. 2.14b provides a visual illustration 
of the ascension in model performance for the forecasting algorithms moving from AGFCRN (the 
least performing algorithm), DCRNN, AT-Con-LSTM, Bi-LSTM, SCG, PGCN to our proposed hy-
brid model (best performing), in decreasing order of MAE and RMSE rates. It is essential to note, 
the trend of increasing MAE and RMSE rates with longer prediction horizons is consistent across 
all models as witnessed in both Tables 2.5 and 2.6. However, the SCG model, while excellent for 
short predictions (5 and 15 minutes), from Table 2.6, falls short for longer horizons (30 and 60 min-
utes) compared to our proposed model. This indicating how reactionary the SCG model is, as well 
as underlining the superior capability of our proposed hybrid model in providing precise short-term 
traffc forecasts, essential for dynamic traffc management, incident response, and enhancing mobility, 
safety, and the overall effciency of the transportation network. 

2.8 Conclusion 

this chapter presented a novel, secure, and effcient framework for privacy-preserving traffc forecasting that 
addresses both the precision demands of modern ITS and the sensitivity of driver location data. By com-
bining IPFE with k-anonymity, the proposed scheme supports encrypted route reporting and aggregation 
while preventing disclosure of individual trajectories, even under collusion. A hybrid Conv-LSTM and Bi-
LSTM model, enhanced with a SE module, operates on the aggregated encrypted data to capture complex 
spatial-temporal traffc dynamics and deliver reliable forecasts. Extensive evaluations on both synthetic and 
real-world datasets confrmed the framework’s scalability, low overheads, and resilience, achieving high 
forecast accuracy particularly at critical congestion points. Unlike prior methods, the proposed system in-
tegrates strong cryptographic guarantees with deep learning, establishing a new benchmark for trustworthy, 
privacy-preserving traffc forecasting and demonstrating clear potential for deployment in real-world ITS 
environments. 
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Chapter 3: RB-XAI: Relevance-Based Explainable AI 
for Traffc Detection in Autonomous Sys-
tems 

3.1 Introduction 

The recent transformative evolution of artifcial intelligence (AI) has signifcantly impacted various indus-
tries, including transportation, healthcare, fnance, and cybersecurity. This evolution is propelled by sophis-
ticated AI algorithms, which empower autonomous systems, such as AVs and Unmanned Aerial Vehicles 
(UAVs or drones), with versatile capabilities in navigation, learning, decision-making, and collaboration, 
spanning various industries. UAVs have become indispensable across applications such as agriculture, in-
frastructure inspection, package delivery, and disaster response [76], [79], due to their agility in accessing 
remote or hazardous locations. Simultaneously, AVs promise to revolutionize the transportation industry 
with their autonomous navigation capabilities, leveraging advanced sensors for their perception, localiza-
tion, planning, and control operations [9]. 

Despite the remarkable strides in AVs, a signifcant impediment to its widespread societal acceptance, 
like many other intelligent systems persists in the form of the “black box” stereotype. This stereotype sym-
bolizes the opacity in AV decision-making [3], creating a challenge of understanding and trust. Recent 
accidents involving AVs [12], [92] and growing concerns related to ethics and security vulnerabilities un-
derscore the urgency of transparent solutions to address this challenge comprehensively. Overcoming the 
“black box” hurdle requires making the decision-making processes of AVs transparent to build stakeholder 
trust and acceptance. Achieving this transparency is not only essential for regulatory compliance and ethical 
considerations but also for ensuring the safety, security, and accountability of autonomous systems as they 
navigate through our dynamic and complex world. 

The emerging feld of XAI presents an opportunity to make AI decisions in AVs understandable to 
humans. However, besides the potential, XAI techniques are not widely adopted in the AV sector. Many 
AV developers and researchers have not fully embraced these techniques, leading to missed opportunities 
to improve transparency and safety within AV systems. This underutilization has also hindered innovation 
and collaboration within the feld of XAI for AVs. However, this underutilization contrasts sharply with 
the extensive XAI research in areas like medicine [56], [73], [88], [119], IoT [118], cybersecurity [74], 
[111] and several others [22], [24], [37], [97], where XAI methods are actively explored and used. While 
some studies have surveyed the advantages, challenges, and methods of integrating different XAI techniques 
into the AV domain [9], the focus of contemporary research on XAI for autonomous systems has primarily 
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centered on explaining the behavior of models in tasks like semantic segmentation and object detection, 
utilizing traditional attribution-based XAI techniques like LIME, SHAP, Saliency Maps, GRAD-CAM, etc. 

In our work, we employ the CRP XAI algorithm, a bias-resistant relevance-based XAI algorithm to 
proffer transparent concept–level explanations for the behavior of traffc detection models used in AVs, for 
traffc perception. CRP, an advanced approach extending the Layerwise Relevance Propagation (LRP) tech-
nique [84], goes beyond traditional attribution maps, by generating explanations that automatically identify 
and visualizes relevant examples within the input space. This insight sheds light on the crucial latent con-
cepts and areas within the input space responsible for the behavior of traffc detection models [2] used in 
AVs. This research aims to boost transparency, understanding, trust, and ultimately lay the groundwork 
for XAI integration in AV development, fostering safer and more widely accepted autonomous systems. 
Concretely, 

• Employing XAI techniques, specifcally the CRP algorithm, our paper analyzes traffc detection in 
AVs. The CRP algorithm, a hybrid approach incorporating Relevance Maximization (Rel-Max), can 
identify examples that are highly relevant to network latent encodings. This provides nuanced insights 
into the features infuencing the decision-making process of the traffc detection model. 

• Deploying the YOLO (You Only Look Once) object detection model on our customized traffc dataset, 
merging Open Image Dataset Version 7 and the Microsoft COCO Dataset, our study extensively eval-
uates the proposed CRP explainer. The assessment hinges on Faithfulness, measuring the accuracy 
of CRP explanations in refecting the detection model decisions, and Complexity metrics, gauging 
the comprehensibility of the generated CRP explanations. This dual evaluation provides a thorough 
assessment of the CRP explainer’s performance. 

• To enhance the YOLO model, we further integrate the Convolutional Block Attention Module (CBAM) 
into its feature extraction segment, to assess the impact of CBAM on the performance of both the 
YOLO model and the CRP XAI algorithm. 

The subsequent sections of this chapter are structured as follows: Section II reviews literature, while 
Section III outlines our proposed method. Results and fndings are presented in Section IV, followed by a 
summary of conclusions and potential future avenues of research in Section V. 

3.2 Related Work 

3.2.1 Explainable Artifcial Intelligence (XAI) 

XAI has emerged as a remedy for the inherent opacity of intricate AI models, especially Deep Neural 
Networks (DNNs), spanning critical domains such as healthcare, transportation, energy, security, fnance, 
and criminal justice. Initially focused on healthcare, XAI ensures transparency in AI decisions, facilitating 
their integration into clinical workfows. For example, [56], [88], [119] suggest ensemble XAI approaches, 
melding SHapley Additive Explanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-
CAM++) [88], [119], along with Class Activation Mapping (CAM) and Saliency map [56] algorithms, for 
retrospective visual explanations in the classifcation of COVID-19 and pneumonia from medical scans. 
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Similarly, in [8], [73], SHAP is utilized to elucidate early diagnosis of brain tumors [8] and chronic kidney 
disease [73] from medical scans using DNNs. In the energy sector, Machlev et al. [70] utilize Local In-
terpretable Model-agnostic Explanations (LIME), Occlusion-Sensitivity, and GRAD-CAM to expound on 
outcomes produced by Convolutional Neural Network Power Quality Disturbance (CNN-PQD) classifers. 
They introduce an assessment metric, employing Binary scores and Intersection over Union (IoU) scores, to 
evaluate the explainability of both XAI techniques and classifers, fostering trust by providing comprehen-
sible rationales for AI decisions, benefting professionals and users. 

(a) SHAP Explanation 

(b) CRP Explanation 

Figure 3.1: Comparing XAI Algorithms 

3.2.2 XAI for Autonomous Systems 

In the feld of transportation, specifcally autonomous systems, the exploration and application of XAI tech-
niques to enhance transparency in the behavior of models used by AVs have been relatively limited, as men-
tioned earlier. However, Mankodiya et al. [71] present a proposal for an XAI integrated AV system. This 
system utilizes GradCAM and Saliency maps XAI techniques to provide comprehensive explanations, visu-
alizations, and insights into the intricate workings of semantic road segmentation model layers, elucidating 
the perception actions of AVs. Additionally, Hogan et al. [24] [42] tackle the challenges of interpretability 
in AI systems employed in UAVs. They achieve this by adapting KernelSHAP, an optimized variant of the 
traditional SHAP, for object detection tasks in aerial imagery. The KernelSHAP explainer offers quantita-
tive insights into robust performance, detecting biases, and accurately attributing positive contributions in 
real-world images. The outcomes of this study highlight the signifcant potential of KernelSHAP as an XAI 
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Figure 3.2: Framework of the Relevance-Based eXplainable Autonomous Vehicle Traffc Multi-Detection 
System 

algorithm, especially in safety-critical applications where precise and interpretable insights are of utmost 
importance. 

Despite the remarkable contributions of attribution-based XAI techniques (LIME, SHAP, Grad-CAM, 
Saliency Maps, etc.) in enhancing model transparency, these techniques largely used in literature have in-
herent limitations. SHAP like other attribution map techniques, as shown in Fig. 3.1a, focuses on providing 
insights to specifc predictions (Stop prediction), by attributing prediction using positive (red) and negative 
(blue) masks on specifc input features. Yet, lacking a holistic understanding of the model decision-making 
process, leaving critical aspects of model behavior unexplored. A notable drawback of these approaches 
is their susceptibility to biases due to their symmetrical treatment of positive and negative feature contri-
butions, as depicted in Fig. 3.1a. Thus, the potential to obscure imbalances in feature importance, leading 
to biased interpretations and impacting the reliability (faithfulness) of these XAI algorithms. Moreover, 
the computational demands of these methods and the absence of standardized metrics pose challenges for 
comprehensive quantitative assessments and hinder the consistent comparison of their effectiveness across 
applications. 

With its emphasis on relevance maximization and low operational latency, CRP addresses these attribu-
tion maps challenges particularly for AVs, by discerning and highlighting crucial latent concepts within the 
input space responsible for the behavior of traffc detection models. In Fig. 3.1b, the concept of ”STOP text 
in an octagon” is highlighted, representing knowledge learned by the detection model for perceiving stop 
signs during AV traffc perception. Provision of transparent concept-level explanations as shown in Fig. 3.1b 
ensures a more nuanced and accurate understanding of model decisions, making CRP a valuable tool to en-
hancing reliability (faithfulness), transparency and ease of comprehension (less complexity). Additionally, 
the capabilities of CRP help mitigate biases, offering a more robust, effcient, and interpretable solution for 
real-time traffc perception operation in AVs. 

3.3 Methodology 

In this section, we present the methodological contributions of our work through a structured framework 
illustrated in Fig. 3.2, consisting of three main stages. Firstly, the Input Space incorporates a custom 
annotated traffc dataset with 21,000 samples across 7 classes, depicting real-time on-road scenarios. Sec-
ondly, the Traffic Detection Model involves a medium-sized YOLOv8 model, which we further in-
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Table 3.1: Main Notations 

Notation Description 

C Number of object classes 
B Number of predicted bounding boxes per cell 
Sp Scaling parameter 

Ncell Total number of cells in the grid 
δ ,σ ReLU, sigmoid activation functions 
L Loss function 
W Learnable model weights 
X Feature map 

c,s Channel and spatial parameters for the attention operation 
ci j, ĉi j Predicted and ground truth confdence score in cell (i, j) 

λ Weight for loss calculation 
1i j Indicator function for traffc detection in cell (i, j) 
R Relevance Quantity 

pc
i j, p̂

c
i j Predicted and ground truth class probabilities in cell (i, j) 

fused with a CBAM, to enhance traffc perception. This enables the impact observation of the CBAM on 
the performance of the CRP explainer. Finally the XAI Algoritm, where we utilized a CRP explainer to 
provide post-hoc concept-level explanations for the behavior of AV traffc detection models, specifcally the 
YOLOv8 model, in traffc perception. Subsequently, further details on these contributions are elaborated 
with reference to notations from Table 3.1, outlining the process of obtaining concept-based explanations 
using CRP for traffc detection. 

3.3.1 Traffc Detection Model 

Traffc detection models serve as a cornerstone for AVs, pivotal in ensuring safety, guiding navigation, and 
aiding decision-making by promptly and accurately identifying and tracking objects. These models play a 
crucial role in optimizing traffc fow, enforcing rule compliance, facilitating effcient route planning, and en-
hancing overall situational awareness for a comprehensive and secure autonomous driving experience. Our 
chosen traffc detection model, You Only Look Once (YOLO), introduced by Redmon et al. [82], stands 
out for its real-time capabilities, particularly benefcial in applications where low latency is imperative, as 
seen in AVs. As illustrated in Fig. 3.2, the architecture of YOLO encompasses a Convolutional Neural 
Network (CNN)-based Backbone with a Feature Pyramid Network (FPN) for multi-scale feature extraction, 
complemented by a Detection Head comprising convolutional layers, and adopting a unifed approach to 
object detection, predicting bounding boxes (B), confdence scores, and class probabilities (C ) in a single 
forward pass. Its fundamental process involves dividing an input image into grids (Ncell), where each grid 
cell predicts bounding box coordinates (tx, ty, tw, th) and class probabilities. YOLO utilizes softmax acti-
vation for class probability predictions, producing simultaneous results for all bounding boxes and classes 
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in a single pass. This amalgamation of components makes YOLO an exceptionally effcient and real-time 
object detection framework. The YOLO loss function (LYOLO) encompasses three main components: the 
localization loss (Lloc), the confdence score loss (Lconf), and the classifcation loss (Lcls). The Lloc eval-
uates the accuracy of predicted bounding box coordinates. From Equation 3.1, it is computed as the sum of 
squared differences between predicted (tx, ty, tw, th) and ground truth (t̂x, t̂y, t̂w, t̂h) bounding box coordinates, 
multiplied by the localization loss weight (λcoord). Here, 1obj 

i j serves as an indicator function, signifying 
object presence in cell (i, j) with 1 and 0 otherwise. The confdence score loss (Lconf), detailed in Equa-
tion 3.2, evaluates predictions for both object and no-object scenarios. The summation considers cases 
where an object is present (1i jobj) and where there is no object (1noobj 

i j ). This formulation ensures the model 
is trained to predict confdence scores accurately, distinguishing between cells with and without objects. The 
weights (λconf) enable fne-tuning the importance of each term in the Lconf function during training. More-
over, the Lcls of the YOLO model assesses the accuracy of predicted class probabilities (pc

i j) compared to 

ground truth class indicators (1noobj 
i j ). From Equation 3.3, a sum is taken over all cells, bounding boxes, and 

classes, penalizing deviations between predicted class probabilities and true class indicators when an object 
is present. The weight λcls allows for adjusting the impact of the classifcation loss during training. 

Therefore, the LYOLO as denoted in Equation 3.4, is a comprehensive expression that integrates these 
three components to facilitate accurate bounding box localization, confdence score prediction, and class 
classifcation during model training. 

�Ncell B 

1ob j 
i j ∑∑ (tx − t̂x)2 +(ty − t̂y)2Lloc = λcoord 

(3.1)i=0 j=0 

+ (tw − t̂w)2 +(th − t̂h)2� 
Ncell B h 

2
λconf1

ob j 
i j (ci j − ĉi j)∑∑Lconf = 

(3.2)i=0 j=0 i 
+ λconf1

noobj 2 
i j (ci j − ĉi j) 

� � �Ncell B C 

1ob j 
i j ∑∑∑Lcls = λcls 

c cp̂i j log pi j 
(3.3)i=0 j=0 c=0 � � � �� c c+ 1− p̂ log 1− pi j i j 

LYOLO = Lloc + Lconf + Lcls (3.4) 

3.3.2 Attention Mechanism 

Attention mechanisms in deep learning play a vital role in enhancing model performance by addressing 
various challenges such as adapting to variable-length sequences, improving interpretability, optimizing 
memory usage, handling long-term dependencies, and enabling faster training through parallelization. They 
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Figure 3.3: Comparing the faithfulness of various XAI approaches in attributing concepts on the YOLO 
model. 

are particularly crucial for tasks involving diverse inputs and contribute signifcantly to various architec-
tures. To boost the localization and classifcation performance of our YOLO model as well as improve 
spatial awareness and feature extraction robustness, we leverage the CBAM mechanism [106]. CBAM is 
strategically applied to the intermediate layers of the YOLO backbone as depicted in Fig. 3.2, integrating 
both channel and spatial attention mechanisms to selectively emphasize essential channel information and 
capture contextual details by focusing on relevant spatial locations. In the channel and spatial attention 
mechanisms, the scaling parameters Spc and Sps, are computed by applying a sigmoid activation function 
to the result of a double transformation using learnable weights (W1 and W2) on average and max pooled 
input feature maps (X) respectively as detailed in Equations 3.5 and 3.7. The resulting weighted channel Xc 

and spatial Xs feature maps are obtained through element-wise multiplication of the original feature maps 
with their calculated corresponding scaling parameters in Equations 3.6 and 3.8. This process emphasizes 
specifc channels based on relevance and highlights spatial regions pertinent to the task. The Final Attended 
Feature Map (Xatt) from Equations 3.9 is computed through the element-wise multiplication of Xc and Xs. 

Spc = σ (W2δ (W1 avgpool(X))) (3.5) 

Xc = Spc · X (3.6) 

Sps = σ (W2δ (W1 maxpool(X))) (3.7) 

Xs = Sps · X (3.8) 

Xatt = Xc ⊙ Xs (3.9) 

This fusion process integrates both the channel and spatial attention properties to capture rich contextual 
information, aiding YOLO to better understand the context of objects in images, leading to enhanced object 
localization and recognition, particularly in complex scenes. 
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Figure 3.4: Comparing the faithfulness of various XAI approaches in attributing concepts on the Attention 
model. 

3.3.3 eXplainable Artifcial Intelligence (XAI) 

As AI models advance in complexity, the interpretability of their decision-making processes diminishes, 
creating challenges in critical domains such as healthcare, fnance, and autonomous systems where under-
standing AI decisions is paramount. XAI has emerged in response, driven by researchers and practitioners 
recognizing the need for transparency and interpretability in consequential applications. This transparency 
is essential for ethical AI use, fostering trust, accountability, error analysis, and the identifcation of model 
mistakes and biases. XAI facilitates human-in-the-loop collaboration regarding regulations and oversight 
in industries where a clearer understanding of AI models is required. It plays a vital role in making deep 
learning models accessible, understandable, and trustworthy, promoting responsible AI deployment across 
diverse applications. 

In this study, the CRP algorithm [2] is utilized as a bias-resistant framework, extending the LRP [84] to 
offer a nuanced methodology for interpreting AI models. CRP introduces relevance maximization to prop-
agate relevance, disentangling relevance fows associated with learned concepts. This facilitates the com-
putation of concept-conditional relevance maps, offering insights into ”what” models identify and ”where” 
they focus their attention—providing both localized and global concept-based explanations. The relevance 
decomposition (R( 

i← 
l− 

j 
1,l)

(X | θ ∪ θl)) formula in Equation 3.10 embedded with fltering functionality, com-
putes the relevance of a feature Xi at layer (l − 1) concerning a neuron j at layer l, considering conditions 
(X | θ ∪ θl). It quantifes the importance of Xi for the activation of neuron j, incorporating conditions as-
sociated with both the entire model (θ ) and the layer l (θl). The normalization term zi j ensures appropriate 
relevance fow from neuron j to neuron i, with z j representing the total relevance fow into neuron j. The in-
dicator function δ jcl acts as a selector based on conditions cl , indicating whether relevance should propagate 
further. Finally, Rl

j(X | θ) represents the relevance of neuron j at layer l for the input feature X, consider-
ing conditions θ . This nuanced approach enables a detailed understanding of attributions related to latent 
representations in traffc detection models. 
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Figure 3.5: Comparing the complexity of various XAI approaches in attributing concepts on the YOLO 
model. 

R(l−1,l) zi j 
i← j (X | θ ∪ θl) = · ∑ δ jcl · Rl

j(X | θ) (3.10)
z j cl ∈θl 

By modifying the backward pass of LRP, CRP generates a concept-conditional heatmap, incorporating 
conditions corresponding to specifc concepts of interest. The resulting pixel-level output explanations from 
CRP address concerns about activation-based example selection for latent concept representation, offering 
a holistic understanding of the traffc detection model decision-making processes. For a traffc detection 
model denoted as, f : Rn → RN×(nc+4) with an output, Equation 3.11 initializes the relevance propagation. 
Here, RL represents the relevance of a feature Xi for bounding box k with coordinates (tx, ty, tw, th) of class (b,c) 
y. The initialization is determined by the Kronecker deltas δbk and δcy, ensuring relevance is attributed only 
to the specifed bounding box and class. The term fc(X) denotes the output of the model for class c, serving 
as the starting point for relevance propagation. 

RL (X | θ) = δbkδcy fc(X) (3.11)(b,c) 

In essence, the seamless integration of CRP into traffc detection models provides a dual advantage. 
Firstly, it generates transparent concept-level explanations, enhancing interpretability and reliability, partic-
ularly in AVs for traffc perception. Secondly, CRP explanations effectively mitigate biases, presenting a 
more robust, effcient, and interpretable solution for real-time traffc perception in AVs. 

3.4 Experimental Results and Discussion 

The success of an AI model hinges signifcantly on the quality and quantity of the utilized data. In our 
study, we developed a robust traffc detection model using two custom annotated datasets tailored for object 
detection and other computer vision tasks: The Open Images dataset by Krasin et al. [35] from Google 
Research and the Common Objects in Context (MS COCO) traffc dataset from Microsoft Research by Lin 
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Figure 3.6: Comparing the complexity of various XAI approaches in attributing concepts on the Attention 
model. 

Table 3.2: Traffc Detection Model Evaluation 

Model mAP Latency (GFLOPs) Duration (hrs) 

YOLO Model 0.651 46.8 14.729 

Attention Model 0.696 48.2 14.704 

Edge-YOLO [59] 0.473 10.3 > 18 

Faster-RCNN [109] 0.489 21.1 > 16 

et al. [61]. A combined dataset of over 21,000 images across seven classes follows an 80%:20% train-test 
split and further dividing 20% of the training data for validation to fne-tune hyperparameters. We trained 
and fne-tuned a medium-sized YOLOv8 model on this dataset for up to 90 epochs on a Lambda GPU 
workstation, applying a ReduceLROnPlateau strategy to adjust the learning rate by a factor of 0.2 upon 
stalling validation loss improvements after fve epochs. 

Subsequently, we comprehensively evaluate the performance of our YOLOv8 traffc detection model 
and the CRP explainer, both before and after integrating the CBAM mechanism, allowing us to discern the 
impact of CBAM on both the detection model and the interpretability provided by CRP. Ultimately, we 
assessed the proposed relevance-based traffc detection system from three perspectives: Traffc Detection 
Evaluation, XAI Algorithm Evaluation, and Computational Overhead. 

3.4.1 Traffc Detection Evaluation 

As previously highlighted, our evaluation follows a dual approach, examining the performance of the traffc 
detection model both before and after the integration of the CBAM mechanism. Furthermore, we benchmark 
these models against contemporary MS COCO dataset related detection models commonly found in the 
literature. Notably, conventional models like YOLOv8 and DeepLab Model (DDDLM) [37] are typically 
appraised using the mean Average Precision (mAP) metric—a pivotal measure of their ability to accurately 
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Table 3.3: Evaluated scores for various XAI approaches in terms of faithfulness and complexity 

XAI Algorithms 

Faithfulness (↑) Complexity (↓) 
Concept Flipping (↓) 
Regmodel Attmodel 

Concept Insertion(↑) 
Regmodel Attmodel 

Explanation Deviation 

Regmodel Attmodel 

Comprehension of 80% of attr. (%) 

Regmodel Attmodel 

CRP - z+ 

CRP - γ 

CRP - ε 

GRADCAM 

Gradient 

1.19 1.20 

1.34 1.31 

1.90 1.84 

1.62 1.50 

1.63 1.50 

1.75 1.42 

1.87 1.53 

2.43 1.78 

2.23 1.61 

2.23 1.59 

0.44 0.45 

0.68 0.63 

1.05 0.88 

1.14 0.96 

1.09 0.91 

50.2 49.1 

40.1 38.8 

37.5 34.5 

37.7 36.7 

42.9 40.3 

Table 3.4: Table Type Styles 

XAI Algorithms 
Correlation (ρ) RMSE Duration 

(sec)Regmodel Attmodel Regmodel Attmodel 

CRP 

LRP 

Latent Activation Maps 

GRADCAM 

0.855 0.833 

0.806 0.772 

0.718 0.769 

0.420 0.454 

0.161 0.159 

0.221 0.228 

0.391 0.356 

0.266 0.262 

23.4 

54.1 

> 520 

> 390 

detect and classify instances across diverse classes. 

• mean Average Precision: mAP as the average of the Average Precision (APi) values across all classes 
(C ). 

1 C 

mAP = ∑ APi (3.12)
C i=1 

where APi represents the Average Precision computed as the area under the interpolated precision-recall 
curve for class i. 

From Table 3.2, the YOLOv8 model without CBAM achieved a mAP of 65.1% on our custom traffc 
dataset. This performance outshone the Edge-YOLO model (47.3%) from Liang et al. [59] by a substantial 
margin of 17.3%. Similarly, our YOLOv8 model surpassed the Faster-RCNN model (48.9%) from Li et 
al. [109] by a signifcant difference of 16.2%. 

Notably, Table 3.2 demonstrates that our Attention Model (YOLOv8 model infused with a CBAM mech-
anism) emerged as the best performing model, achieving a remarkable mAP value of 69.6%. This superiority 
is evident as it outperforms every other model in the table by an average margin exceeding 4.5% in mAP 
value, on an MS COCO related dataset. Moreover, the higher mAP value emphasized the enhanced accuracy 
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and reliability of our Attention Model, making it a compelling choice for AVs in ensuring robust real-time 
traffc perception in diverse and challenging real-world scenarios. 

3.4.2 XAI Algorithm Evaluation 

In tandem with the traffc detection evaluation, we introduce two key model-agnostic quantitative metrics for 
the evaluation the robustness and interpretability of our proposed CRP explainer, benchmarked with other 
explainers for 100 randomly chosen predictions: 

Faithfulness: This metric measures the degree to which explanations truly represents features utilized 
during the internal workings of a model during inference. It quantifes the extent to which explanations 
reliably refect the decision-making process of a model. The measure primarily involves two techniques: 
Concept Flipping and Concept Insertion. Inspired by the pixel fipping experiment, these techniques 
use latent concepts instead of input features, with spatial sum-aggregation computing relevance scores for 
each concept in a layer, treating convolutional channels as distinct concepts. For Concept Flipping, relevant 
channels are successively deactivated (set to zero activation), and output changes are measured to refect 
the impact on the model’s decision. Conversely, Concept Insertion involves initializing flters with zero 
activation and successively restoring relevant concepts, observing the resulting model output changes. The 
most faithful explanation must have higher values for both the concept fipping and insertion technique, as 
well as demonstrates a signifcant decline in performance during fipping and a substantial improvement 
during insertion. This decline and rise in performance are glaring from the faithfulness values of all the XAI 
algorithms of Table 3.3 for both the regular YOLOv8 model (Red) and the Attention model (Blue). The 
CRP - ε explainer, leveraging different rules of concept relevance propagation (z+ , γ , & ε) , emerges as the 
best-performing XAI technique. It achieves the highest faithfulness scores for with 1.90 fipping and 2.43 
insertion scores, outperforming GRADCAM (1.62 & 2.23) and Gradient (1.63 & 2.23) explainers for the 
regular YOLOv8 model. Similarly, for the attention model, CRP - ε stands out as the most faithful explainer, 
though there was no substantial rise from 1.84 fipping to 1.78 insertion scores, it was the best performing 
explainer compared to the scores of GRADCAM (1.50 & 1.61) and Gradient (1.50 & 1.59) explainers. 

Additionally, for the regular YOLOv8 model, comparing the performance plots for concept fipping 
(left) and insertion (right) of Fig. 3.3, there is an evident decline (stall) and rise in performance respectively 
after the 68th convolutional layer. Likewise, performance rise and decline after the 68th convolutional layer 
is observed, for concept insertion (right) and fipping (left) in the faithfulness plot of the attention model as 
show in Fig. 3.4. 

Complexity: It gauges how easily a human can understand and comprehend the explanation provided 
by an XAI method. While faithfulness is crucial, presenting explanations in an understandable manner is 
essential for non-experts, enhancing the overall usability of the explainer, especially in AV applications. 
Complexity encompasses two key facets: Explanation Deviation and Comprehension of 80 % of 

All Attributions . Explanation Deviation assesses the diversity and range of explanations provided 
by an XAI method for different predictions per class, indicative of its robustness and versatility. A low 
deviation value suggests precise and similar explanations within the same class, reducing complexity. This 
level of diversity is computed using the standard deviation of latent concept attributions per class. The fnal 
deviation value for concept relevance scores R j (Xi) for class tis with mean attribution R j over ms class¯ 
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samples and mc concepts is calculated using Equations 3.13 and 3.14. s 
mt mc ms1 1 1 

= 2
(R j (Xi) − R̄ j)∑ ∑ ∑σ f (3.13)( )

ms − 1mt mc j it 

ms1
R̄ j = ∑R j (Xi) (3.14)

ms i 

The second facet measures number of concepts required to comprehend 80 % of all attributions. This 
is essential for user understanding and trustworthiness of the XAI method. A smaller number of concepts 
needed for comprehension is favorable. From Table 3.3, CRP variant explainers, utilizing the same propa-
gation rules, exhibit the lowest complexity values (0.44 deviation and 37.5 % comprehension scores) for the 
regular YOLOv8 model, surpassing GRADCAM (1.14 & 37.7 %) and Gradient (1.09 & 42.9 %) explainers. 
This result is visualized in Fig. 3.5, for the deviation (left) and comprehension (right) plots. Similarly, for 
the attention model, CRP (0.45 & 34.5 %) stands out as the least complex explainer, outshining GRADCAM 
(0.96 & 36.7 %) and Gradient (0.91& 40.3%) techniques, as presented in Fig. 3.6 and Table 3.3. Notably, 
the CBAM attention mechanism contributes to reduced complexity for all XAI explainers, with observed 
reduction in complexity values for the attention model compared to the regular YOLOv8 model for the de-
viation and comprehension facets. 

To comprehensively assess the robustness and interpretability of XAI techniques in detection models, 
we introduce the metrics, Correlation (ρ) and Root Mean Square Error (RMSE). These metrics are 
gaged using Context (Cs) and Sensitivity (Ss), and they provide insights into the consistency of concept 
sensitivity under varying background conditions. (Cs) defnes the ratio of positive attributions outside the 
predicted traffc bounding box to the overall sum, thus, revealing concept utilization variations across traffc 
classes, and (Ss) refects the concept responsiveness to input perturbations. The computation of ρ and RMSE 
is depicted in Equations Equation 3.15 and 3.16. � �� � 

Ssi − S̄  sCsi −C̄ s
∑ρ = (3.15)q q 

∑ j 
� 
Cs j −C̄ s 

�2 
∑k 

� 
Ssk − S̄  s 

�2i s 
1 2

∑RMSE (Csi − Ssi) (3.16)= 
m i 

¯ ¯with Cs as the average Context score and the mean Sensitivity score Ss computed over m evaluated 
concepts. 

From Table 3.4, the ρ and RMSE performances of four different XAI methods are compared for both 
the regular and attention models. Again, CRP was the best performing method for the regular YOLOv8 
model, exhibiting the highest positive correlation (0.855) and the lowest RMSE score (0.161). This suggests 
consistent concept infuence on decisions across diverse inputs. CRP surpassed LRP (0.806 & 0.221), Latent 
Activation Maps (0.718 & 0.391) and GRADCAM Maps (0.420 & 0.266) for the regular model. Similarly, 
for the attention model, CRP (0.833 & 0.159) outshines LRP (0.772 & 0.228), Latent Activation Maps 
(0.769 & 0.356) and GRADCAM Maps (0.454 & 0.262) as presented in Table 3.4, highlighting its superior 
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performance in maintaining concept sensitivity and overall robustness. 

3.4.3 Computational Overhead 

In our analysis, we examine the computational burden of the traffc detection model, considering both base-
line and CBAM-integrated versions, alongside the CRP explainer in our proposed relevance-based traffc 
detection system. This evaluation is juxtaposed with the computational costs of other detection models in 
literature. For the traffc detection model, we measure model execution time in hours and computing per-
formance in Giga Floating Point Operations Per Second (GFLOPS). Table II shows that the attention model 
had the lowest model execution time at 14.704 hours, yet its computing performance was the highest at 48.2 
GFLOPS, aligning with expectations. Attention mechanisms contribute to selective computation, reduced 
input dimensionality, enhanced learning effciency, and parallelization opportunities. Despite additional 
computations in both forward and backward passes, this trade-off is justifed by the improved mAP perfor-
mance it delivers. The regular YOLOv8 model closely follows with a model execution time of 14.729 hours 
and a latency performance of 46.8 GFLOPS. In contrast, the Edge-YOLO model [59] and the Faster-RCNN 
model [109] had longer execution durations (over 18 hours and 16 hours, respectively) and lower latency 
performance (10.3 GFLOPS and 21.1 GFLOPS, respectively). 

Transitioning to the evaluation of the latency of our CRP explainer, benchmarked against other XAI 
approaches, we randomly sampled 100 predictions. Column 4 of Table IV highlights that CRP exhibited 
the best execution latency at 23.4 seconds compared to 54.1 seconds for LRP. Moreover, CRP showcased 
signifcantly lower latency compared to activation and its advanced variant GRADCAM, which both had 
latencies above 520 seconds and 390 seconds, respectively. This low latency, coupled with its enhanced 
performance, positions CRP as a pragmatic choice for real-time applications with resource constraints, such 
as AV. 

3.5 Conclusion 

In this study, we introduce a bias-resistant CRP XAI algorithm to proffer transparent concept–level expla-
nations for the behavior of detection models used in autonomous systems, for traffc perception. The work 
further incorporates a CBAM into the YOLOv8 detection model (Attention Model) to evaluate its impact on 
model performance and the CRP explainer. 

Our comprehensive evaluation demonstrates the effectiveness of the attention mechanism, resulting in 
improved detection model performance and reduced run time post-CBAM integration. The study identifes 
a trade-off between explanation faithfulness and complexity, positioning our CRP explainer as the opti-
mal compromise for both the regular YOLOv8 model and the attention model. Compared to other XAI 
techniques, CRP stands out for its faithfulness and low complexity, offering valuable insights into critical 
concepts infuencing model decisions. This makes CRP suitable for human-in-the-loop collaboration in in-
dustries requiring a clear understanding of AI models, aiding in regulations and oversight. The results also 
highlights the effcacy of CRP in maintaining consistent concept infuence, contributing to the robustness, 
reliability, and versatility of explanations across different input scenarios. These enhanced performances 
coupled with its low latency, positions CRP as a pragmatic choice for real-time applications with resource 
constraints, such as AVs. 
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Chapter 4: Automating Dataset Annotation for Per-
ception Models via eXplainable AI: A Con-
cept Relevance Propagation Approach 

4.1 Introduction 

Artifcial Intelligence (AI) has recently undergone a remarkable metamorphosis reshaping sectors, including 
transportation, healthcare, fnance, and cybersecurity, endowing autonomous systems with advanced naviga-
tion, decision-making, and collaboration capabilities. In transportation, Unmanned Aerial Vehicles (UAVs) 
and Autonomous Vehicles (AVs) stand out. UAVs, lauded for their reach and dexterity, are essential in areas 
like package delivery, agriculture, emergency response, and infrastructure inspection. Similarly, AVs hold 
the potential to reshape transportation by offering precise, safety-driven autonomy without human oversight. 

AVs operate across four key phases: perception, localization, planning, and control,[9] relying on sen-
sors like LiDAR and RADAR. The perception phase is fundamental, involving complex deep learning (DL) 
tasks like road surface extraction and object recognition, which require extensive, detailed dataset annotation 
for object detection, lane detection, and segmentation. However, annotating such data is time-consuming, 
costly, and often prone to inconsistencies, especially when facing real-world complexities. Despite signif-
icant advancements in AV technology, like all other intelligent systems, AV’s complete public acceptance 
remains a challenge due to the “black box” nature of their decision-making[3]. This opacity undermines 
trust and raises concerns about transparency, regulatory compliance, accountability, safety, and security, 
issues that have become even more pressing in light of recent AV incidents[12], [92]. eXplainable Arti-
fcial Intelligence (XAI) seeks to bridge this gap by proffering transparent, interpretable model insights 
that enhance trust in autonomous systems through textual, visual, and feature-importance explanations[9]. 
While XAI has been extensively applied in felds like healthcare[88], [119] and cybersecurity[74], its adop-
tion in autonomous system perception tasks, such as object detection and segmentation, remains limited. 
Although some studies have explored the benefts, challenges, and strategies for incorporating XAI into 
the AV domain[9], most contemporary research focuses narrowly on explaining model behavior in these 
tasks[71]. This overlooks a broader opportunity to leverage XAI beyond its traditional explainability role, 
to enhance both safety and performance in AV systems. 

As AI advances, building effcient models requires extensive, diverse datasets, increasing the need for 
annotated data in some scenarios. To address the time-intensive nature of manual annotation[36], [86], 
Corso[25] advocates leveraging advanced AI techniques to automate the process. Companies like Robofow[105], 
Meta[45], and SuperAnnotate[94] offer data annotation and management services that streamline computer 
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vision (CV) workfows, to enhance labeling quality and consistency, while reducing annotation time to fa-
cilitate the development of robust perception models. However, these services are costly and still depend 
on manually annotated datasets for pre-training, especially when applying the auto-labeling features to new, 
custom datasets[94], [105], where performance remains minimal. 

Our work addresses the dual challenge of transparency and automated annotation in AV perception 
model development by introducing a novel framework leveraging the bias-resistant Concept Relevance Prop-
agation (CRP) XAI technique[2]. This framework enhances model interpretability and automates dataset 
annotation for perception tasks. By integrating Relevance Maximization (Rel-Max)[2], CRP provides trans-
parent explanations by pinpointing highly critical concepts and input regions used for network encodings, 
that infuence object detection, improving both model transparency and reliability. Additionally, we combine 
CRP with semi-supervised learning to generate high-quality automated annotations, signifcantly streamlin-
ing the annotation process and reducing manual effort to under 189 seconds for a 15,000-sample dataset. 
Our results show that models trained on our auto-annotated data achieved at least 1.4% higher mAP scores 
with lower latency than models trained on pre-annotated datasets. This offers a faster, more cost-effective 
solution for perception model development while promoting safer, more transparent autonomous systems. 
In specifc, our contributions are as follows: 

• We propose a pipeline to enhance model interpretability, effciency, and automate dataset annotation 
for perception models. Using a custom dataset comprising Open Images Dataset V7[35] and Mi-
crosoft COCO Dataset[61], partitioned into 75% raw and 25% annotated data, we train an object de-
tection model on the annotated subset and apply CRP to interpret model behavior on the raw data. To 
further optimize performance, we incorporate a Convolutional Block Attention Module (CBAM)[106] 
into the feature extraction layers, improving feature selection and boosting both detection accuracy 
and model transparency, ensuring reliable autonomous systems. 

• Our approach leverages CRP-generated concept-level explanations[2] to automate data annotation. 
By transforming heatmap-based explanations of each test point into bounding box contours, we ef-
fectively localize relevant concepts across the raw dataset, eliminating the need for manual labeling 
while validating the feasibility of automated annotations. This method drastically reduces annotation 
time and cost while ensuring high-quality, consistent labels, offering a scalable and effcient solution 
for dataset preparation in complex object detection tasks. 

• We comprehensively evaluate our system by comparing models trained on our auto-annotated dataset 
against those trained on datasets labeled via pre-annotation[35], [61], active learning[23], [77], [110], 
and Robofow’s auto-labeling[105] methods, all of equal size. This comparative analysis demonstrates 
the effectiveness of our approach. Additionally, we assess the CRP explainer’s performance using 
metrics such as faithfulness and complexity, providing deeper insights into XAI techniques in object 
detection tasks, offering a novel perspective on the interplay between annotation strategies and model 
explainability. 

The reminder of this chapter is organized as follows in the sections that follow: While Section 4.3 describes 
our proposed approach, Section4.2 reviews contemporary literature. Section4.4 presents the results and 
fndings, and Section4.5 offers a summary of the conclusions and possible directions for further research. 
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4.2 Related Work 

4.2.1 eXplainable AI (XAI) Techniques in Object Detection 

Attribution-based XAI techniques (LIME, SHAP, Saliency Maps, etc.) widely employed in literature have 
intrinsic limitations to their signifcant role of improving model transparency. SHAP[63], for instance, 
uses positive (red) and negative (blue) masks to explain predictions (Stop class), as shown in Fig. 4.1a[4] 
(Preliminary study). While effective for pixel-level attributions, these methods fail to capture higher-level, 
concept-driven explanations essential for precise annotation tasks. In Fig. 4.1a[4], the most signifcant pos-
itive contribution to the “stop sign” prediction is misattributed to extraneous regions, including the bottom-
left area of the octagonal shape and surrounding pixels outside the stop sign itself. Such inaccuracies render 
attribution-based techniques unsuitable for the proposed high-quality automated annotation framework. An-
other notable limitation of SHAP, is their vulnerability to biases due to its symmetric treatment of positive 
and negative feature contributions, which can obscure feature importance imbalances and lead to skewed 
interpretations, affecting dependability (faithfulness). Additionally, these methods have high computational 
demands, thereby limiting their thorough utilization across diverse applications, particularly in large-scale 
or resource-constrained scenarios. 

In contrast, CRP tackles the diffculties of traditional XAI attribution maps by by prioritizing concept-
level relevance over pixel-level attributions within the input space. For example, Fig. 4.1b[4] emphasizes 
the concept of a “STOP text in an Octagon” showing how the model learns to identify stop signs during traf-
fc perception. By focusing on higher-level, concept-aware features, CRP enables transparent, interpretable 
insights into model decision-making processes, while reducing attribution biases, and ensuring precise local-
izations. This makes CRP better suited for advance automated annotation pipelines requiring high accuracy 
and scalability, for robust object detection solutions. 

4.2.2 Synergy Between Attention Mechanisms and XAI 

Attention mechanisms in DL dynamically prioritize key input features, enhancing model performance by 
focusing on the most relevant information. By computing attention scores and generating weighted input 
feature representations, these mechanisms improve decision-making and model robustness. Recent studies 
indicate that attention mechanisms can also enhance the interpretability of post-hoc XAI techniques. For 
instance, Lee[51] employed Luong attention to highlight critical EMG signals for predicting fnger joint 
angles, while Shi[89] utilized a deformable attention module (DAM) to emphasize infection regions, im-
proving both model accuracy and interpretability using GRADCAM and Layer-wise Relevance Propagation 
(LRP). However, existing literature lack direct analysis on how attention mechanisms affect the performance 
of XAI methods in object detection, particularly their impact on the Concept Relevance Propagation (CRP) 
algorithm. Furthermore, the potential of CRP for automating data annotation in object detection remains 
unexplored. Our work bridges these gaps by investigating the infuence of CBAM on CRP, demonstrating 
improved XAI performance, and introducing CRP as an effective tool for automated dataset annotation, 
addressing a critical bottleneck in object detection pipelines. 
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(a) SHAP Explanation. 

(b) CRP Explanation 

Figure 4.1: Comparison of Interpretability Between Attribution-Based 4.1a and Concept Relevance-
Based 4.1b XAI Algorithms 

4.2.3 Data Annotation Techniques for Object Detection 

Annotation is critical for developing object detection models, providing the ground truth data necessary 
for training and evaluation. Manual annotation, previously the standard, involved experts generating precise 
bounding boxes and class labels[83], requiring approximately 35 seconds per object class annotation[36], [86], 
to ensure high accuracy. But posing signifcant challenges in terms of time and cost, particularly with large-
scale datasets. As datasets grew in size and complexity, this process became a bottleneck for effcient 
model development, especially in applications like AV perception. To address this, the AI community has 
developed advanced techniques such as active learning[23], semi-supervised learning[18], self-supervised 
learning[19], and synthetic data generation[34] to reduce dependence on manual labeling. While these 
approaches improve annotation effciency, they still rely on manually labeled data for pre-trained models 
and require extensive iterative training, particularly for unseen, custom datasets. Industry solutions like 
Roboflow and SuperAnnotate provide automated annotation tools but struggle with novel datasets, re-
quiring partial manual annotations and remaining prohibitively expensive[94], [105]. 

Although studies have examined the infuence of annotation quality, effciency, and methods on model 
performance[6], [103], the application of XAI for automated annotation remains largely unexplored. Our 
work bridges this gap by employing the CRP XAI algorithm to both interpret object detection model behav-
ior and automate dataset annotation processes. This innovative approach enhances training data preparation 
effciency while extending the application of XAI beyond traditional interpretability, offering a scalable 
solution for object detection model development. 
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(1) Explainable YOLO Model

CRP Explainer

(2) Automated Annotation Framework 
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Figure 4.2: Framework of the Relevance-Based Explainable Automated Annotation System. The 
framework showcases two components: (1) An Explainable CBAM-enhanced YOLO Model, and (2) An 
Automated Annotation Framework, which uses CRP-generated concept-level explanations from the YOLO 
model to streamline and automate data annotation. 

4.3 Methodology 

Overview: Our approach involves two core processes: developing an explainable object detection model 
and leveraging it for automated dataset annotation. As illustrated in Fig. 4.2, we design a CBAM-enhanced 
You Only Look Once (YOLO) detection model to boost detection accuracy and augment the interpretability 
of the CRP explainer. This explainable model is then applied to automate the annotation of a 15,000-
sample dataset spanning seven categories, signifcantly reducing reliance on manual labeling. Partitioning 
the dataset into 75% raw, unannotated test data and 25% annotated training data, with 20% of the training set 
reserved for validation, the detection model is trained and subsequently evaluated. The CRP explainer gen-
erates concept-level explanations for each test sample, visualized as heatmaps that localize and delineate rel-
evant concepts into bounding box contours. This automated annotation process, informed by model-driven 
insights, offers a scalable, effcient alternative to traditional manual labeling methods. Detailed descriptions 
of each stage are provided in the subsequent sections with notations referenced in Table 4.1. 

YOLO-based Object Detection Framework. Autonomous systems heavily rely on object detection 
models for accurate and timely decision-making. We utilized the YOLO model, frst introduced by Redmon 
et al. [82], in our study because of its real-time capabilities, making it essential for applications requiring 
minimal latency. The YOLO architecture as illustrated in Fig. 4.2, features a CNN-based Backbone for 
feature extraction, a Path Aggregation Network (PANet) for enhanced multi-scale feature fusion, and a 
convolutional layer-based Detection Head that predicts bounding boxes (B), confdence scores, and class 
probabilities (C ) in a single pass. YOLO divides an input image into grids (Ncell), with each grid cell 
predicting bounding box coordinates (tx, ty, tw, th) and class probabilities using softmax activation, producing 
simultaneous results for all bounding boxes and classes. We have updated the YOLO model to include an 
attention mechanism to enhance its performance and interpretability (see Section 4.3.1) so it can be used for 
automated annotation tasks (see Section 4.3.2). 

The performance of YOLO depends on its loss function (LYOLO), which consists of three key compo-
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Table 4.1: Main Notations. 

Notation Description 

Ncell Total number of cells in the grid 

L Loss function 

C,B Object classes and predicted bounding boxes 

T Set of IoU thresholds 

f Object Detection Model 

a,w Activations and learnable model weights 

δ ,σ ReLU, sigmoid activation functions 

X Feature map 

ci j, ĉi j Predicted and ground truth confdence score in cell (i, j) 

λ Weight for loss calculation 

Ii j Indicator function for traffc detection in cell (i, j) 

R Relevance Quantity 

pc 
i j, p̂

c 
i j Predicted and ground truth class probabilities in cell (i, j) 

nents: Localization loss (Lloc), Classifcation loss (Lcls), and Confdence score loss (Lconf). Lloc (Equa-
tion 4.1) measures the accuracy of predicted bounding box coordinates (tx, ty, tw, th) against the ground truth 
(t̂x, t̂y, t̂w, t̂h), weighted by localization loss weight (λcoord) and indicated by the function (Ii j 

obj) for object 
presence. Lcls (Equation 4.2) compares predicted class probabilities (pc

i j) to ground truth class indicators 

(Inoobj), punishing deviations when an object is present and modulating its impact with weight (λcls). Lconfi j 

(Equation 4.3) evaluates confdence ratings for both object and no-object cases, using weights (λconf) to bal-
ance their importance and guarantee precise confdence score predictions. Equation 4.4 incorporates these 
elements into the overall LYOLO loss function, enabling precise bounding box localization, confdence score 
prediction, and class classifcation during training. 

�Ncell B 

Iob j 
i j ∑∑ (tx − t̂x)2 +(ty − t̂y)2Lloc = λcoord 

(4.1)i=0 j=0 

+ (tw − t̂w)2 +(th − t̂h)2� 

Iob j 
i j 

� � � c cp̂i j log pi j 

Ncell B C 

∑∑∑Lcls = λcls 
i=0 j=0 c=0 � � � �� c c+ 1− p̂i j log 1− pi j 
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Table 4.2: Distribution of Object Classes in Training and Test Sets for Autonomous Vehicle Perception. 

Classes Training Set Test Set 

Traffc Light 752 2,256 

Bicycle 895 2,670 

Stop Sign 611 1,832 

Car 1,350 4,061 

Motorcycle 824 2,476 

Bus 513 1,539 

Truck 471 1,414 

Total 5,416 16,248 

Ncell B h 
∑∑

2
λconfI

ob j 
i j (ci j − ĉi j)Lconf = 

i=0 j=0 i 
+ λconfI

noobj 2 
i j (ci j − ĉi j) 

(4.3) 

LYOLO = Lloc + Lcls + Lconf (4.4) 

4.3.1 Enhancing Object Detection Performance with Attention Mechanisms 

To understand the durability, robustness, and dependability of the CRP XAI technique, we explored how 
model generalization improvements via attention mechanisms and dataset augmentation could impact our 
CRP explainer and the overall auto annotation process. In general, attention mechanisms enhance neural 
networks by selectively focusing on the most relevant parts of the input data, quantifying feature relevance 
using attention scores, and creating weighted combinations to highlight signifcant features. This allows 
neural networks to handle long-term dependencies, optimize memory usage, and adapt to variable-length 
sequences. In our work, we utilized the CBAM [106] to enhance the resilience of feature extraction, spa-
tial awareness, and localization performance of our YOLO model. CBAM is applied to the intermediate 
layers of the YOLO backbone, incorporating both spatial and channel attention processes to collect contex-
tual details. This is achieved by focusing on important spatial regions and selectively highlighting important 
channel data. The attention process involves two sequential sub-processes: the channel attention mechanism 
followed by the spatial attention mechanism. These mechanisms work together to refne feature represen-
tations and improve the model’s ability to detect objects. Equation 4.5 explain how the scaling parameters 
Schannel and Sspatial in the channel and spatial attention processes, respectively, are calculated. This involves 
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applying a sigmoid activation function σ(.) to the output of a double transformation utilizing learnable 
weights (W1 and W2) on average and max pooled input feature maps (X) after applying a ReLU activation 
function δ (.) to the output. The resulting weighted channel Xchannel and spatial Xspatial feature maps are 
obtained through element-wise multiplication of the original feature maps with their corresponding scaling 
parameters, as seen in Equation 4.5. These weighted feature maps permit the selective emphasis of relevant 
channels and spatial regions crucial to the task. The element-wise multiplication of Xchannel and Xspatial 

yields the fnal attended feature map (Xatt). This fusion process integrates both channel and spatial attention 
properties to capture rich contextual information, aiding the YOLO model in better understanding the con-
text of features in images, leading to enhanced object localization and recognition, particularly in complex 
scenes as will be shown in Section 4.4.1. 

Schannel = σ (W2δ (W1 avgpool(X))) 

Sspatial = σ (W2δ (W1 maxpool(X))) 

Xchannel = Schannel · X (4.5) 

Xspatial = Sspatial · X 

Xatt = Xchannel ⊙ Xspatial 

The enhanced performance of the YOLO model also extends to improved interpretability of post-hoc XAI 
algorithms, particularly the CRP XAI algorithm. The attention process strategically flters out noise and 
hones in on critical input information, ultimately reducing the available pool of features from which our 
CRP explainer selects relevant ones contributing to crucial concepts responsible for model decisions. Thus, 
in addition to improved detection performance, deploying the attention mechanism allows us to observe its 
positive impact on the utility of the CRP explainer (see Section 4.4.2). 

4.3.2 XAI for Automated Annotation 

As AI algorithms become increasingly sophisticated and widely utilized in critical domains such as au-
tonomous systems, the need for understanding AI decisions has become paramount. XAI addresses this 
need by enhancing transparency and interpretability of deep learning models. In our work, we leverage XAI 
techniques, specifcally the CRP algorithm, to improve the automated annotation process for object detec-
tion tasks. Providing in-depth insights into the model’s decision-making process allows CRP to generate 
high-quality annotations automatically, signifcantly reducing the time and cost associated with manual data 
labeling. This approach not only enhances the effciency of dataset creation but also improves the overall 
performance and reliability of our YOLO-based object detection model. Furthermore, by integrating XAI 
into our workfow, we create a more accountable and interpretable system, which is important for the devel-
opment and deployment of safe and trustworthy AI technologies in various computer vision applications, 
particularly in the context of autonomous systems and traffc sign detection. 

Concept Relevance Propagation (CRP) 

In our work, the CRP XAI algorithm [2] is used as an advanced, bias-resistant technique that builds upon 
Layer-wise Relevance Propagation (LRP) [10], [84] to provide detailed comprehensible explanations of DL 
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Figure 4.3: CRP process from output prediction to preceding layers in an object detection model. The 
fgure illustrates how relevance is propagated from the detected “STOP Sign” class through the network, 
highlighting key concepts such as the octagon shape and the stop text. 

model reasoning. Traditionally, LRP explains model predictions by attributing the relevance of the output 
score to neurons in the network, from the output layer back to the input features (pixels), highlighting the 
importance of these neurons in the inference process. CRP enhances this by decomposing relevance fows 
using Relevance Maximization (RelMax) and introducing conditions that target specifc learnt concepts for 
more in-depth relevance backpropagation. CRP employs binary masking of relevance tensors to compute 
concept-conditional relevance maps R(x | θ), where x represents the input data point and θ denotes condi-
tions such as output categories or specifc concepts (e.g., the ”Octagon” shape in a stop sign). This approach 
yields both local and global explanations, providing insights into what concepts the model recognizes, 
where these concepts are located within the input image, and how they contribute to the model’s prediction. 
To illustrate how LRP works, assuming a DL model f (x) = f1 ◦· · ·◦ fl(x), where f (x) represents the forward 
pass prediction and fl, . . . , f1 are the network layers. For a particular layer, pre-activations zi j maps input xi 

to output j as shown in Equation 4.6, where xi is the input and wi j is the weight. Aggregated pre-activations 
and activations for the next layer are shown in Equations 4.7 and 4.8, respectively. Equation 4.9 illustrates 
how LRP distributes relevance R j from output j to preceeding neuron i, with the overall relevance of each 
neuron i being a sum of the incoming divided relevance, as indicated in Equation 4.10. 

zi j = xi · wi j (4.6) and z j = ∑zi j (4.7) 
i 
zi j 

and Ri← j = · R j (4.9)a j = σ · (z j) (4.8) z j 

Ri = ∑Ri← j (4.10) 
j 
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CRP enhances LRP by modifying its relevance decomposition (Ri← j) to include conditions, computing 
the relevance of a feature Xi at layer (l − 1) with respect to a neuron j at layer l, considering conditions 
(X | θ ∪ θl). This relevance decomposition, expressed in Equation 4.11, quantifes the importance of a 
feature Xi for the activation of j, incorporating conditions associated with both the entire model (θ ) and the 
layer θl . The normalization term ( zi j ) ensures appropriate relevance fow from neuron j to neuron i, with z jz j 

representing the total relevance fow from neuron j. The Kronecker delta (δ jcl ) as used in Equation 4.11, 
is a mathematical identity function shown in Equation 4.12, it acts as a selector, ensuring relevance is only 
propagated through neurons relevant to the specifed concepts cl in θl . If neuron j corresponds to concept cl , 
δ jcl = 1, otherwise it is 0, effectively fltering the relevance fow. Finally, Rl

j(X | θ ) is the relevance assigned 
to layer output j from the CRP process in upper layers, conditioned on θ . This approach enables CRP to 
disentangle and highlight the contributions of specifc concepts within models, offering a clearer and more 
interpretable understanding of model predictions. 

R(l−1,l) zi j 
i← j (X | θ ∪ θl) = · ∑ δ jcl · Rl

j(X | θ ) (4.11)
z j cl ∈θl 

1 
 

0 

if j = cl
δ jcl = (4.12)

if j ̸= cl 

For an object detection model f : Rn → RN×(nc+4), where Rn is the input space with n features (pixels), 
and RN×(nc+4) is the output space with N bounding box predictions, each associated with nc possible object 
classes and 4 bounding box coordinates, Equation 4.13 initializes relevance propagation for such a model, 
as shown in Fig. 4.3. In this context, the relevance Rl (X | θ ) represents the relevance of a feature Xi for a (b,c) 
specifc bounding box k with coordinates (tx, ty, tw, th) of class y (e.g., the “STOP Sign” class as illustrated in 
Fig. 4.3) to be propagated. Rl indicates relevance specifc to bounding box b and class c, with Kronecker (b,c) 
deltas δbk and δcy in Equations 4.14 and 4.15, ensuring relevance is attributed only to the predicted bounding 
box k and class y (the detected “STOP Sign” class of Fig. 4.3). The term fc(X) denotes the model output for 
class y, serving as the starting point for relevance propagation. Furthermore, Equation 4.16 describes how 
relevance Rl is propagated from layer l to the previous layer (l − 1) for the feature Xi. Here, zi j and z j(b,c) 
are normalization terms, δ jcl is a Kronecker delta ensuring the relevance for the detected “STOP Sign” class 
is only attributed to the specifc class concepts cl , such as ”The Octagon shape” or the “Stop text” in our 
case, belonging to the conditions of the last layer θl . Finally, Equation 4.17 sums up all the relevance scores 
R(l−1,l) for feature Xi from the previous layer, giving the total relevance Ri for that feature. i← j 

Rl 
(b,c)(X | θ) = δbk · δcy · f(b,c)(X) (4.13)  

1 if b = k 1 if c = y
δbk = (4.14) δcy = (4.15)0 if b ≠ k 0 if c ̸= y 

R(l−1,l) zi j 
i← j (X | θ ∪ θl) = ∑ δ jcl R( 

l
b,c)(X | θ ) (4.16)

z j cl∈θl 
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Algorithm 1: CRP-Enhanced Automated Dataset Annotation for Object Detection Tasks 

1 Input: Dataset D , Detection Model M 
2 Output: Auto-annotated dataset Dauto 
3 function Train Model(D) 
4 Split: Dtrain,Draw ← split(D ,0.25) 
5 Train detector: M ∗ ← Optimize(M , Dtrain) 
6 return Trained model M ∗ 

7 function Apply CRP(M ∗ , x,(b,c)) 
8 Forward pass: P ← Infer(M ∗ ,x) 
9 Initialize relevance scores: Rl 

(b,c)(x|θ) = δbkδcy f(b,c)(x) 

10 if b = k and c = y then 
11 δbk = 1, δcy = 1 // Propagate only target relevance 

12 else 
13 δbk = 0, δcy = 0 // Stop relevance propagation 

zi j 14 Propagate: R( 
i← 
l− 

j 
1,l)

(x | θ ∪ θl) = ∑cl ∈θl 
δ jcl R

l (x|θ )z j (b,c) 

15 Aggregate: Ri = ∑ j R(l−1,l) 
i← j 

16 return Concept-level relevance map Ri 

17 function Identify Concepts(Ri) 
18 Derive key concepts C ← cluster/segment(Ri) 
19 Threshold map: binary map ← Threshold(Ri,0.5) 
20 Extract contours: contours ← fndContours(binary map) 
21 for each contour in contours do 
22 Compute box: (tx, ty, tw, th) ← boundingRect(contour) 
23 Draw visualization: drawRectangle(x,c,(tx, ty),(tx + tw, ty + th),(0,255,0), 2) 

24 return Bounding box set B = {(tx, ty, tw, th)} 
25 function Auto Annotate(D ,M ∗ ) 
26 Initialize Dauto = 0/ 
27 for each x ∈ Draw do 
28 P ← Infer(M ∗ ,x) 
29 for each (b, c) ∈ P do 
30 Ri ← Apply CRP(M ∗ ,x, (b,c)) 
31 B ← Identify Concepts(Ri) 
32 Append (x,B,c) to Dauto 

33 return Dauto 

R(l−1,l)Ri = ∑ i← j (4.17) 
j 

Subsequently, this specialized form of conditional relevance propagation can be applied to all detections 
within the test data, with an extension to all data points in the test dataset. Thus, integrating CRP into 
object detection models used in AV perception allows for the generation of transparent concept-conditional 
heatmaps, improving interpretability and dependability by reducing model bias. Additionally, CRP’s pixel-
level heatmap explanations provide a foundation for automating annotations through concept localizations, 
addressing key challenges in object detection model development. 
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Automated Annotation 

Organizations such as Robofow [105], Meta [45], and SuperAnnotate [94] have made signifcant strides in 
reducing the annotation burden by introducing AI-assisted tools. However, these solutions still depend on 
human input, can be costly and prone to errors such as inconsistent annotations, especially when dealing 
with niche datasets or complex objects. These challenges can impact the overall performance of the models. 
To overcome these limitations, contemporary literature explore advance approaches, such as context-aware 
models [33], temporal information from video sequences [40], and a human-in-the-loop process for error 
correction. We propose a novel method that goes beyond traditional approaches by leveraging XAI, specif-
cally the CRP algorithm, for automated annotation. This approach not only enhances the detection model’s 
performance but also delivers annotations that are grounded in the model’s transparent, concept-level expla-
nations. The result is a reliable and scalable solution to data preparation, signifcantly reducing the need for 
human oversight. 

Our proposed automated annotation scheme, which integrates semi-supervised learning with XAI, is 
detailed in Algorithm 1. Using a 21,000-sample dataset, the algorithm begins by splitting the data into a 
training set (25% annotated) and a raw test set (75% unannotated) (line 2). It then trains a YOLO detection 
model [99] on the annotated data (line 3). Once trained, the model generates bounding boxes and associated 
class labels for each data point in the raw dataset (line 5). To analyze and refne these predictions, the 
algorithm utilizes the CRP XAI technique (line 7). CRP calculates relevance scores for each bounding box 
and class, indicating the contribution of each feature to the model’s decision (line 8). By using Kronecker 
delta functions (lines 9-14), the CRP ensures precise relevance backpropagation, focusing solely on the 
relevant bounding box and class. Relevance is then propagated from the model’s output layer back to the 
input features (line 15), aggregating the total relevance for each feature (line 16). This process helps identify 
the key concepts the model focused on during its prediction (line 17). The relevance scores are thresholded 
to create a binary map that highlights signifcant concepts, excluding extraneous features (line 18). These 
focused explanations are used to identify contours in the input data (line 19), and bounding boxes are drawn 
around these contours (lines 20-23), accurately capturing the regions of interest the model relied on. 

The generated bounding boxes, classes and their associated data are added to the auto-annotated dataset 
(line 25), progressively transforming the raw dataset into a fully annotated one. This process is repeated 
for each data point in the raw dataset (lines 4-26), ensuring comprehensive and consistent coverage. The 
resulting fully annotated dataset that closely aligns with concept-level explainability, effectively reduces 
biases and produces high-quality precise automated annotations. This approach signifcantly minimizes the 
need for manual annotation, making the annotation process more effcient. 

4.4 Experimental Results and Discussion 

The experiments for our proposed automated annotation framework were conducted in Python on a Lambda 
GPU workstation with dual Quadro RTX 8000 GPUs (2-Way NVLink), an Intel i9-9820X CPU (10 cores), 
128GB RAM, and a 2TB NVMe SSD. We utilized two traffc datasets: the Open Images dataset by Google 
Research [35] and the MS COCO traffc dataset by Microsoft Research [61], combining over 21,000 images 
across seven object classes, as shown in Table 4.2. A medium-sized YOLO version 8 model was trained 
from scratch over 80 epochs using the ReduceLROnPlateau learning rate scheduler, reducing the learning 
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Table 4.3: Comparison of Detection Performance Across Different Annotation Strategies — Pre-Annotation, 
Active Learning, Robofow Auto-Labeling, and our Automated Annotation. 

Annotation Method Frameworks mAP50 mAP50-95 Computation (GFLOPs) Dataset Prep. Time 

Pre-Annotation 

YOLO (No CBAM) 0.652 0.427 46.8 

Manually Annotated (days) 

YOLO + CBAM 0.664 0.442 48.2 

Edge-YOLO [59] 0.486 0.289 23.9 

Cascade R-CNN [15] 0.519 0.306 32.1 

DETR-DC5 [17] 0.557 0.337 89.4 

DN-DETR [55] 0.579 0.358 151.3 

LT/C 0.432 0.264 37.7 

Active Learning LS+C 0.417 0.236 34.3 

(Faster R-CNN) CALD [110] 0.451 0.272 39.4 N/A 

HUALE [77] 0.496 0.298 41.6 

Auto-Labeling (Roboflow) YOLO + CBAM 0.591 0.379 48.7 382 secs 

Auto-Annotation (Proposed) YOLO + CBAM 0.676 0.448 44.9 189 secs 

rate by 0.2 after fve consecutive epochs without validation loss improvement, ensuring effcient conver-
gence. To validate the framework, we evaluated it across three dimensions: Detection Performance, XAI 
Algorithm Evaluation, and Computational Overhead. 

Before any quantitative evaluations, Fig. 4.4 illustrates the high-quality, precise annotations generated by 
the proposed automated annotation pipeline. The process begins with raw, unannotated images containing 
possible object classes such as bicycle, motorcycle, and stop sign (4.4a, 4.4d, and 4.4g), which are fed to the 
trained detection model and the CRP explainer. The CRP-generated explanations identify the most relevant 
concepts infuencing the model’s detections, with higher pixel intensities representing more critical features 
(e.g., the ”STOP” text on the stop sign (4.4h), the bicycle frame (4.4b), or the engine of the motorcycle 
(4.4e)). These key regions are localized using the automated annotation algorithm, as shown in the second 
column. The pipeline concludes by leveraging the CRP concept localized coordinates to generate precise 
bounding boxes, by transposing these coordinates unto the initial raw, unannotated images and assign the 
corresponding class labels as depicted in the last column (4.4c, 4.4f, and 4.4i). This seamless integration 
of model interpretability for automated annotation ensures high-quality labeling while signifcantly reduc-
ing reliance on manual effort. The method enhances object detection learning and accuracy, demonstrating 
its effectiveness for developing robust perception models for autonomous systems, particularly AVs. This 
pipeline supports reliable, real-time perception in diverse and complex real-world scenarios, making it a 
compelling solution for advanced CV applications. 
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4.4.1 Object Detection Performance Evaluation 

This section evaluates the effcacy of our automated annotation framework by quantitatively comparing the 
performance of detection models trained on datasets prepared using diverse annotation methodologies, in-
cluding pre-annotation, automated annotation, and active learning strategies. Our assessment framework 
incorporates both precision-based detection metrics and computational effciency measures for dataset cura-
tion. We utilize state-of-the-art object detection architectures [15], [17], [37], [55], [59], evaluated primarily 
using the mean Average Precision (mAP) metric. The mAP is computed across a spectrum of Intersection 
over Union (IoU) thresholds, typically ranging from 50% to 95% in 5% increments. This metric is formally 
defned as: 

mAP = 
1 

∑ 
1 

∑ APc
t (4.18)|T | |C|t∈T c∈C 

where T is the set of IoU thresholds, C is the set of object classes, and APt is the Average Precision for c 

class c at IoU threshold t. The mAP metric provides a comprehensive quantitative measure of a model’s 
capacity to accurately localize and classify object instances across multiple categories and scales within an 
image, serving as a robust indicator of overall detection performance. 

In our study, we employed two key metrics: mAP50 and mAP50–95. mAP50 quantifes the model’s 
detection accuracy when predicted bounding boxes overlap with ground truth by at least 50% IoU. mAP50– 
95 extends this metric by averaging mAP values across multiple IoU thresholds ranging from 50% to 95% 
with varying degrees of localization precision. 

Prior to our primary experiments, which involved enhancing the YOLO model with the CBAM and im-
plementing our auto-annotation approach, a standard YOLO model was initially trained on a pre-annotated 
version of our custom traffc dataset to establish a baseline. This baseline model achieved a detection per-
formance of 65.2% mAP50 and 42.7% mAP50-95. Focusing on the pre-annotation method, Table 4.3 illus-
trates that among the various detection models trained on the pre-annotated dataset, our CBAM-enhanced 
YOLO model signifcantly outperformed other architectures, achieving an mAP50 of 66.4%. In contrast, 
the CBAM-enhanced Cascade R-CNN[15] and Edge YOLO[59] models achieved mAP50 values of 49.9% 
and 48.6%, respectively. Similarly, transformer-based models, including the Detection Transformer with 
Dilated Convolutions (DETR-DC5)[17] and DeNoising Detection Transformer (DN-DETR)[55], achieved 
55.7% and 57.9% mAP50, accordingly. This represented a minimum improvement of 8.5% for our detec-
tion pipeline. The superior performance of the CBAM-enhanced YOLO model were further highlighted in 
the mAP50-95 metric, where it achieved 44.2%, substantially surpassing both the CBAM-enhanced Edge 
YOLO (28.9%) and Cascade R-CNN (29.3%) models, likewise the DETR-DC5 (33.7%) and DN-DETR 
(35.8%) models. 

We also conducted an extensive exploration of active learning techniques. Active learning is a sophisti-
cated approach that strategically identifes the most informative samples for annotation, thereby minimizing 
the quantity of labeled data required to train an effective model. By employing diverse query strategies, 
active learning maximizes model performance with minimal annotated data. In our active learning detec-
tion framework, we implemented several query strategies: Least Squares Plus Confidence (LS+C), 
which selects samples by considering both prediction error and confdence intervals; Least Total Cost 

(LT/C) and Cost-Effective Active Learning with Diversity (CALD) [110], both of which fo-
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cus on diversity and uncertainty-based sampling while accounting for labeling costs. Furthermore, we 
incorporated the Hierarchical Uncertainty Aggregation and Emphasis Loss (HUALE) strategy 
by Nguyen et al. [77], which employs a two-stage approach. This method initially flters images based on en-
tropy measures (retrieval phase) and subsequently ranks them using Semantic Affnity, Category Diversity, 
Overlap Ratio, and Localization Confdence (ranking phase) to ensure the selection of the most informative 
samples for labeling. As illustrated in Table 4.3, our experimental results demonstrated that after 28 training 
cycles, the HUALE strategy signifcantly outperformed the other three query strategies, achieving a 49.6% 
mAP50 and 29.8% mAP50–95, compared to CALD (45.1% & 27.2%), LT/C (43.2% & 26.4%), and LS+C 
(41.7% & 23.6%). The superior performance of the HUALE strategy is clearly depicted in Fig. 4.5, where 
it consistently surpasses other active learning strategies in detection performance when plotted against the 
quantity of labeled data or the percentage of available training data labeled. 
We concluded our experimentation by validating the feasibility and effectiveness of our proposed automated 
annotation pipeline. We trained a CBAM-enhanced YOLO detection model on a dataset of over 15,000 
samples that were auto-annotated using our method. The goal was to observe how our concept-level ex-
plainable annotation approach infuenced the model’s learning process, compared to the same model trained 
on a 15,000-sample auto-labeled dataset from Robofow, which utilized their newly introduced Auto-label 
Grounding DINO feature [105]. After training, we compared the inference performance of the two mod-
els. As seen in Table 4.3, the model trained on our auto-annotated dataset achieved a mAP50 of 67.6% 
and a mAP50–95 of 44.8%. In contrast, the model trained on the Robofow auto-labeled dataset achieved a 
mAP50 of 59.1% and a mAP50–95 of 37.9%. 

4.4.2 XAI Algorithm Evaluation 

In addition to evaluating detection performance, we also assessed the effectiveness of our chosen CRP ex-
plainer under various neural network modifcations, particularly focusing on attention module enhancements 
and data augmentation techniques. This assessment aimed to understand how these strategies impact the in-
terpretability and utility of the CRP explainer. Inspite the limited nature of literature for evaluating the 
performance of XAI methods, these techniques including the CRP algorithm, are generally evaluated using 
two model-agnostic quantitative metrics: Faithfulness and Complexity. These metrics help quantify how 
accurately the explanations refect the model’s decision-making process and how easily the explanations 
can be understood and used. 

Faithfulness: This metric evaluates how accurately explanations represent the features a model uses dur-
ing inference. It quantifes the reliability of explanations in refecting the decision-making process of mod-
els. The assessment primarily employs two techniques: Concept Flipping and Concept Insertion. 
Inspired by the pixel fipping experiment, these techniques focus on latent concepts rather than input fea-
tures. Here, the concept relevance in each layer, associated with an object prediction, is determined by spa-
tially aggregating intermediate relevance scores, with convolutional channels treated as distinct concepts. In 
Concept Flipping, the most relevant channels are sequentially deactivated (their activations, set to zero), 
and the resulting changes in the model’s output are analyzed to gauge the impact on the model’s behavior. 
In contrast, Concept Insertion starts with all channels set to zero activation and progressively restores the 
most relevant concepts, observing the corresponding changes in the model’s output. The most faithful expla-
nations, always have higher values, while demonstrating a signifcant drop in performance during concept 
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Table 4.4: Comparison of CRP Variants (z+ , γ , ε), GRADCAM, and Gradient Maps on Faithfulness and 
Complexity after CBAM Enhancement for Pre-Annotated and Auto-Annotated Datasets. 

Faithfulness (↑) Complexity (↓) 

XAI Algorithms Concept Flipping (↓) Concept Insertion(↑) Explanation Deviation (%) Comprehension of 80% of Attr.(%) 

PreAnno AutoAnno PreAnno AutoAnno PreAnno AutoAnno PreAnno AutoAnno 

CRP - z+ 1.19 1.54 1.75 2.23 0.44 0.44 50.2 51.3 

CRP - γ 1.34 1.76 1.87 2.40 0.68 0.63 40.1 40.7 

CRP - ε 1.90 2.88 2.43 3.35 1.05 0.89 37.5 35.8 

GRADCAM 1.62 2.43 2.23 2.94 1.14 0.95 37.7 38.0 

Gradient Maps 1.63 2.44 2.23 2.93 1.09 0.92 42.9 40.9 

fipping and a marked improvement during concept insertion, indicating a high degree of alignment between 
the explanation and the model’s internal processes. 

Complexity: Gauges the effort required for stakeholders to understand and comprehend the explanation 
provided by an XAI method. While faithfulness is essential, the non-linear decision boundaries of deep 
learning models necessitate presenting explanations in a way that is accessible to non-experts, thereby en-
hancing the explainer’s usability, especially in critical domains like AVs. Complexity encompasses two key 
dimensions: Explanation Deviation and Comprehension of 80% of Attributions. Explanation 
Deviation quantifes the variability and consistency of explanations generated by an XAI method across 
different predictions within the same class. This refects the robustness and versatility of the method. A 
lower deviation indicates that the explanations are consistent and precise within a class, thereby reducing 
complexity. This deviation is calculated using the standard deviation of latent concept attributions per class. 
The fnal deviation value for concept relevance scores R j (Xi) for a class t, along with the mean attribution 
R̄ j across ms class samples and mc concepts, is determined as outlined in Equations 4.20 and 4.19 respec-
tively. Moreover, the second facet – Comprehension of 80% of Attributions measures the number of 
concepts required to be analyzed to understand 80% of all attributions. Fewer relevant concepts suggest a 
more concise explanation, which is essential for user understanding and trustworthiness of the XAI method. 

1 ms 

R j = ¯ ∑R j (Xi) (4.19)
ms i s 

mt mc ms1 11 2
(R j (Xi) − R̄ j)∑ ∑ ∑σ f = ) (4.20)( 

ms − 1mt mc j it 

To holistically evaluate the impact of different relevance backpropagation rules on the faithfulness and 
complexity of CRP-generated explanations, we employed three specifc rules for 100 sampled predictions: 
CRP–ε (Epsilon Rule), CRP–γ (Gamma Rule), and CRP–z+ (z-Plus Rule). The Epsilon Rule ad-
dresses numerical instabilities during relevance propagation by incorporating a small (ε) value, thereby 
preventing the amplifcation of small activations, especially in deeper layers where such activations may ap-
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proach zero. The Gamma Rule enhances positive relevance scores while suppressing negative ones, making 
it particularly useful for highlighting concepts that positively infuence the model’s decisions. The z-Plus 

Rule, on the other hand, focuses solely on the positive contributions of neurons, ignoring negative activa-
tions, which is benefcial when positive evidence is more crucial to the decision outcome. 

Initially, we evaluated the impact of CBAM enhancements on the performance of various explainers by 
comparing explainer performances for a standard detection model trained on a pre-annotated custom dataset 
with a CBAM-enhanced detection model trained on our curated auto-annotated dataset. The analysis in-
cluded the CRP explainer, Gradient-weighted Class Activation Mapping (GRADCAM), and gradient-based 
methods (Gradient Maps). As shown in Table 4.4, CRP–ε consistently outperformed other explainers on 
the standard detection model, achieving the highest faithfulness scores with fipping and insertion values 
of 1.90 and 2.43, respectively, surpassing Gradient (1.63 & 2.23) and GRADCAM (1.62 & 2.23). Fig.4.6 
further demonstrates CRP–ε’s superior performance, consistently excelling in both metrics. On the CBAM-
enhanced model trained on the auto-annotated dataset, CRP–ε again led with improved fipping and insertion 
scores of 2.88 and 3.35, outperforming Gradient (2.44 & 2.93) and GRADCAM (2.43 & 2.94), as depicted 
in Fig.4.7. CRP variants also demonstrated superior complexity performance. For the standard detection 
model, CRP–z+ recorded the lowest deviation (0.44), while CRP–ε achieved the best comprehension score 
(37.5%), outperforming GRADCAM (1.14 & 37.7%) and Gradient (1.09 & 42.9%). Similarly, for the 
CBAM-enhanced model, CRP retained its advantage with deviation and comprehension scores of 0.44 (z+) 
and 35.8% (ε), exceeding Gradient (0.92 & 40.9%) and GRADCAM (0.95 & 38.0%), as depicted in Figures 
4.8 and 4.9. CRP–ε demonstrates exceptional stability across most faithfulness and complexity evaluations 
but is less effective at minimizing explanation deviation. In contrast, CRP–γ and CRP–z+ excel in reducing 
variability, delivering globally consistent and coherent explanations by fltering out irrelevant and noisy at-
tributions. These fndings highlight the complementary strengths of the propagation rules: CRP–ε balances 
faithfulness and complexity, while CRP–γ and CRP–z+ prioritize robustness and global feature representa-
tion. The adaptability of these CRP variants allows for tailored applications depending on specifc evaluation 
priorities. Furthermore, CBAM enhancements, coupled with training on the auto-annotated dataset, signif-
cantly improved the performance of all XAI explainers, enhancing faithfulness and reducing complexity, as 
evidenced by Table 4.4. These advancements underscore the effectiveness of CBAM in optimizing explain-
ability and computational effciency. 

Also, we analyzed the infuence of data augmentation on the explainer performance by incrementally 
increasing the dataset size in four stages (25%, 50%, 75%, and 100%) for training the CBAM-enhanced 
detection model. This approach provided insights into the effects of dataset quantity on XAI explainers’ 
faithfulness and complexity. The CRP–ε variant, selected for its superior earlier performance, was bench-
marked against GRADCAM and Gradient methods. Results, as summarized in Table 4.5 and illustrated 
in Fig. 4.10a, revealed consistent improvements in faithfulness scores across all explainers with increas-
ing dataset size. CRP–ε exhibited signifcant enhancements, with concept fipping scores rising from 0.67 
(25%) to 2.84 (100%) and concept insertion scores improving from 1.03 to 3.32. These trends highlight 
better generalization, reduced overftting, and enhanced reliability in capturing model behavior with more 
data. At 100% dataset usage, CRP–ε achieved the highest faithfulness scores, outperforming GRADCAM 
(2.43 & 2.90) and Gradient (2.44 & 2.91). In terms of complexity, CRP–ε maintained the lowest explanation 
deviation (0.45) and comprehension scores (0.35) at 100% dataset usage, outperforming GRADCAM (0.96 
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Table 4.5: Comparison of CRP, GRADCAM, and Gradient Maps on Faithfulness and Complexity Across 
Dataset Proportions. 

Faithfulness (↑) Complexity (↓) 

XAI Algorithm AUC Concept Flipping (↓) AUC Concept Insertion (↑) Explanation Dev.(%) 80% Concept Comprehen.(%) 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 

CRP 0.67 1.58 2.41 2.84 1.03 1.75 2.50 3.32 1.19 0.88 0.63 0.45 0.72 0.49 0.39 0.35 

GRADCAM 0.62 1.22 1.94 2.43 0.88 1.59 2.43 2.90 1.93 1.62 1.37 0.96 0.85 0.54 0.40 0.37 

Gradient Maps 0.49 1.04 1.92 2.44 0.71 1.34 2.36 2.91 1.85 1.61 1.34 0.91 0.88 0.64 0.46 0.40 

& 0.37) and Gradient (0.91 & 0.40). This reduced complexity suggests consistent and concise explanations, 
crucial for usability. Visualizations in Fig. 4.10b further corroborate CRP–ε’s superior performance across 
dataset proportions. Our results highlight the critical role of dataset comprehensiveness and data augmen-
tation in enhancing model explainability. The CRP explainer demonstrated remarkable improvements in 
faithfulness while maintaining lower complexity scores compared to GRADCAM and Gradient. This sym-
biotic relationship between dataset size and explainer performance underscores the importance of diverse, 
well-prepared datasets in improving the transparency and trustworthiness of AI models, particularly in high-
stakes domains like autonomous vehicle perception systems. 

4.4.3 Computational Overhead 

Our fnal analysis examined the computational overhead of our proposed automated annotation framework, 
including resource usage and dataset preparation time. This evaluation was compared with other contempo-
rary approaches in the literature aimed at reducing the annotation burden in detection model development. 
Additionally, we discussed the latency of the CRP explainer within our framework against other explainers 
on the same prepared auto-annotated dataset to determine which XAI algorithm is best suited for real-time 
object detection in the AV domain. 

For computational evaluation, we measured the framework’s execution performance in Giga Floating 
Point Operations per second (GFLOPs) and dataset curation time in seconds (secs). As summarized in 
Table 4.3, our proposed automated annotation framework computationally performed optimal, achieving 
44.9 GFLOPs, close to the Robofow-based detection model 48.7 GFLOPs and the model trained on a pre-
annotated version of our custom traffc dataset 48.2 GFLOPs. This competitive performance aligning with 
our expectations, since the inclusion of attention mechanisms, contributes to selective computation, reduced 
input dimensionality, improved learning effciency, and parallelization opportunities. While these mecha-
nisms add computational cost, the trade-off is justifed by the improved mAP performance. Moreover, for 
our 15,000-sample custom traffc dataset, our framework auto-annotated and curated the data in just 189 
seconds, compared to 382 seconds with Robofow’s auto-labeling feature. Notably, our automated annota-
tion approach reduced the manual annotation time from several days to just under three minutes, a reduction 
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of over 98%. This demonstrates the effciency of our explainable automated annotation framework, outper-
forming other methods like active learning, which requires multiple annotation and model training cycles, 
often taking days, if not hours. While FLOPs measure a model’s computational complexity, models (like 
YOLO + CBAM) maintain consistent theoretical FLOPs across identical architectures. However, runtime 
variations arise from factors like memory bandwidth constraints, background processes, dynamic computa-
tional graphs in PyTorch or TensorFlow, sparse activations during early training, and backend optimizations 
such as kernel fusion and mixed-precision training, illustrating the gap between theoretical and real-world 
performance expectations. 

Lastly, in terms of explainer latency, the chosen CRP algorithm exhibited the best performance with 
an execution time of 24.7 seconds, compared to LRP 54.9 seconds, GRADCAM over 410 seconds and 
activation-based methods over 530 seconds. This effciency, combined with its computational effectiveness 
and improved performance, positions our framework as a viable solution for large-scale dataset annotation 
in detection model development. It also shows potential for real-time detection applications such as AV 
perception, where balancing computational cost and performance is important. 

4.5 Conclusion 

Our study presents a transformative framework that integrates semi-supervised learning with the CRP XAI 
algorithm, redefning model interpretability and large-scale dataset annotation for autonomous system per-
ception. By leveraging CRP’s concept-level relevance mapping, we automate annotation processes with 
minimal manual effort, achieving over 98% labeling time reduction while generating high-quality labeled 
datasets. Incorporating advanced network optimization techniques, such as the CBAM, alongside targeted 
data augmentation strategies, the framework enhances detection accuracy, reduces computational overhead, 
and improves explanation fdelity. Notably, CRP surpasses other XAI methods like GRADCAM in pro-
viding faithful, actionable insights with low latency, making it ideal for resource-constrained, real-time 
autonomous applications like AV perception. Future research could enhance this pipeline by incorporating 
adaptive learning for dynamic driving environments, integrating multi-modal sensor fusion (e.g., LiDAR, 
RADAR, and camera data) to improve perception robustness, and enabling real-time explainability for on-
the-fy decision-making to enhance safety and security. Similarly, expanding its application to UAV navi-
gation, industrial automation, and other high-stakes domains could position this framework as a benchmark 
solution for scalable, interpretable, and effcient AI-driven perception tasks. Such advancements would not 
only enhance system reliability but also address broader challenges in ensuring transparency, adaptability, 
and operational safety across complex, real-world environments. 

Additional Information 

Supplementary Material: The complete experimental code for this study, including all implementation 
details, is publicly accessible at https://github.com/Iyke1z/AutoAnnotation. 
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bicycle

(a) Original Bicycle Image (b) CRP Explanation Localization (c) Automated Annotation Result 

motorcycle

(d) Original Motorcycle Image (e) CRP Explanation Localization (f) Automated Annotation Result 

stop

(g) Original Stop Image (h) CRP Explanation Localization (i) Automated Annotation Result 

Figure 4.4: Results from the Proposed Automated Annotation Pipeline.. The frst column presents raw, 
unannotated images of classes bicycle, motorcycle, and stop sign. The second column illustrates CRP-
generated explanations, pinpointing relevant concepts essential for each class detection. The fnal column 
demonstrates the culmination of the automated annotation process, where CRP concept localization coor-
dinates from the previous column are transposed onto the original images to produce precise high-quality 
bounding box annotations and object labels. 
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Figure 4.5: Detection Performance for Various Active Learning Strategies. The plots compare the de-
tection performance of active learning strategies (LT/C, LS+C, CALD, HUALE) for the Faster R-CNN 
model. HUALE demonstrates superior performance across both mAP50 and mAP50–95 metrics, achieving 
the highest scores as labeled data quantity (training data percentage) increase, showcasing its effectiveness 
in active learning for object detection tasks. 

Figure 4.6: Comparison of XAI Algorithm Faithfulness for Concept Attribution on a Regular YOLO 
Model. The plots compare the faithfulness of CRP variants (z+ , γ , ε), GRADCAM, and Gradient Maps 
across convolutional layers. CRP–ε (green) consistently leads, achieving the highest Concept Flipping and 
Insertion scores, demonstrating superior performance across key layers. 
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Figure 4.7: Comparison of XAI Algorithm Faithfulness for Concept Attribution on a CBAM-
Enhanced YOLO Model. The plots compare the faithfulness of CRP variants (z+ , γ , ε), GRADCAM, 
and Gradient Maps across convolutional layers. With an observed signifcant improvements in faithful-
ness across all explainers. CRP–ε (green) consistently outperforms other explainers, achieving the highest 
Concept Flipping and Insertion scores, showcasing its superior performance across key layers. 

Figure 4.8: Comparison of XAI Algorithm Complexity for Concept Attribution on a Regular YOLO 
Model. The plots compare the complexity of CRP variants (z+ , γ , ε), GRADCAM, and Gradient Maps 
across convolutional layers. CRP–z+ achieves the lowest Relevance Deviation, while CRP–ε excels in 
80% Attribution Comprehension, outperforming GRADCAM and Gradient Maps, particularly in deeper 
layers. These results highlight the superior effciency and complexity management of CRP variants in model 
explanations. 

70 



Figure 4.9: Comparison of XAI Algorithm Complexity for Concept Attribution on a CBAM-Enhanced 
YOLO Model. The plots compare the complexity of CRP variants (z+ , γ , ε), GRADCAM, and Gradient 
Maps across convolutional layers. CRP–z+ shows the lowest Relevance Deviation, while CRP–ε achieves 
the highest Comprehension of 80% of Attributions, consistently outperforming GRADCAM and Gradient 
Maps. These results demonstrate the reduced complexity and enhanced performance of all explainers with 
CBAM and auto-annotation. 
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Figure 4.10: Comparison of XAI Algorithms on Faithfulness and Complexity with Dataset Augmen-
tation. The plots illustrate the impact of increasing dataset sizes on CRP (brown), GRADCAM (blue), and 
Gradient Maps (green). The left plot show CRP leading in Faithfulness, with the largest gap between Con-
cept Flipping and Insertion, while also maintaining the lowest Complexity in the right plot, outperforming 
GRADCAM and Gradient Maps in generating concise and effcient explanations. 
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Chapter 5: eXplainable AI For Enhanced Trojan De-
tection In Autonomous Vehicle Steering Net-
works 

5.1 Introduction 

Artifcial Intelligence (AI) now underpins critical infrastructure in autonomous transportation, medical diag-
nostics, and cybersecurity. AVs exemplify this trend, using sophisticated DNNs to fuse inputs from LiDAR, 
RADAR, vision, and inertial sensors for real-time steering control. While this data-driven autonomy im-
proves adaptability in dynamic traffc scenes, it also broadens the system’s attack surface. Among these 
threats, trojan backdoor attacks, stealthy malicious manipulations embedded during training, which can 
covertly hijack model behavior, forcing dangerous trajectory deviations. Exacerbating this risk is the opaque 
nature of DNN systems, where non-intuitive latent representations obscure effective analysis and regulatory 
auditing, challenging the safe deployment of AV technologies. 

Despite notable progress in trojan detection research, the feld remains fragmented and anchored in clas-
sifcation settings. Methods like Neural Cleanse, STRong Intentional Perturbation (STRIP), and Activation 
Clustering detect discrete anomalies like entropy shifts, class output changes, or clustered neuron activa-
tions. Although effective in categorical contexts, these methods struggle in continuous regression-output 
tasks such as AV steering, where backdoor triggers typically induce nuanced, context-aware prediction de-
viations rather than abrupt output fips. Additionally, their reliance on clean baseline datasets and high 
computational overhead limits their scalability and real-time applicability. Vitally, they tend to overlook 
semantic distortions and concept-level anomalies that signal manipulated model decision logic. In response 
to this gap, Recent efforts like Februus [27], that uses Grad-CAM to purify trojaned inputs, and Critical 
Path-Based Backdoor Detection (CPBD) [49], which maps anomalous decision paths via neuron activa-
tions, have pushed XAI from passive interpretability toward proactive defense mechanism in AI security. 
However, these solutions still largely cater to classifcation tasks and often lack resilience against distributed 
and imperceptible attacks. 

in this chapter, we introduce an explainability-guided detection framework designed for regression-
based AV steering control systems, addressing security gaps in existing defenses and bridging their inherent 
incompatibility with classifcation-oriented trojan detectors. Our approach repurposes Grad-CAM [85] and 
Concept Relevance Propagation (CRP) [5] as active security tools, generating multi-level spatial and concep-
tual attribution maps that expose the rationale behind steering decisions. By analyzing explanations from 
benign and trojaned samples (where steering prediction deviations exceed acceptable thresholds) across 
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Figure 5.1: Explainability-Guided Trojan Detection Framework. The framework consists of two main 
components: (1) A Trojaned Steering Angle Predictor, and (2) A Real-Time Detection Module, which uses 
Grad-CAM, and CRP-generated attribution maps to train a lightweight classifer that detects trojaned inputs 
based on explanation-level anomalies. 

varying poisoning rates, we reveal telltale indicators of backdoor compromise like saliency drift, spatial 
deformation, and conceptual divergence. These explanation-derived features then empower lightweight bi-
nary classifers that detect trojaned behavior with high fdelity, without requiring prior knowledge of trigger 
patterns or access to clean reference datasets. The contributions of this work are: 

• Developed a robust end-to-end DNN for steering angle prediction using the Udacity Self-Driving 
Car dataset to establish a behavioral baseline for assessing the impact of trojan backdoor attacks on 
AV control. Static visible triggers and imperceptible perturbations were embedded during training 
at varying poisoning rates (5%–40%), to determine the effective poisoning threshold, balancing high 
fdelity on clean inputs with consistent, malicious deviations under trigger activation. 

• Leveraging novel XAI techniques including Grad-CAM [85] and CRP [5], we generate and curate 
multi-level visual attribution maps capturing decision-making patterns. Consequently, these were 
used to train lightweight binary classifers capable of trojan detection based solely on explanation-
derived features. 

• Validated the proposed XAI-guided detection framework by benchmarking it against conventional 
methods including Activation Subset Scanning (ACTSS) [108] and Artifcial Brain Stimulation (ABS) [62], 
all trained on the same curated attribution dataset. Evaluation using precision, F1-score, and AUC-
ROC underscore the effcacy of our approach in bolstering AV model resilience and transparency, 
while establishing a novel foundation for adapting classifcation-based detection logic for continuous-
output regression tasks in safety-critical settings. 

5.2 System Models 

5.2.1 Network Model 

The proposed framework targets the control layer of AVs’ cyber-physical architecture, where DNNs perform 
end-to-end regression, mapping raw monocular RGB inputs x ∈ RH×W×3 to continuous steering commands 
y = f (x) ∈ R. This design, used in systems like NVIDIA PilotNet and the Udacity self-driving simulator, 
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enables low-latency, real-time control at 10–30Hz on edge devices (e.g. NVIDIA Jetson AGX Xavier). 
However, it broadens the attack surface, especially when model weights or training data come from untrusted 
sources and lack formal safety guarantees, leaving it vulnerable to trojan backdoor attacks triggered by 
specifc inputs. 

5.2.2 Threat Model 

In this work, we consider a white-box adversary with full or partial knowledge of the AV control model’s 
architecture, parameters, and training data, a realistic risk scenario where models or datasets are open-
sourced repositories or third-party vendors. The adversary aims to implant a trojan backdoor during training, 
so the model behaves nominally on clean inputs x ∼ Dclean, but produces malicious steering signal y ′ = 

f (x+δ ) ∈ T when a trigger δ ∈ RH×W×C is present. Here, T ⊂ R denotes attacker-defned, unsafe steering 
angles. The attack vector involves data poisoning, wherein a subset of training samples is perturbed: 

′ Dtrain = Dclean ∪{(xi + δ ,yt )}k
i=1 (5.1) 

binding the trigger δ to an adversarial target output yt . Triggers may be static visible implantable patterns 

(e.g. geometric stickers, pixel patches) or imperceptible perturbations crafted using L2-Norm bounded 
methods, where the perturbation δ satisfes ∥δ ∥2 ≤ ε (bound), to embed backdoor logic while preserving 
visual stealth. Introduced through physical means (e.g. decals, signs) or digital overlays in simulations, the 
attack’s hallmark is in its stealth. Crucially, we assume the attacker lacks post-deployment access, relying 
solely on input-trigger activation. If undetected, this can lead to outputs ŷ = f (x + δ ) ∈/ Yvalid (where Yvalid 

denotes safe steering ranges), resulting in lane departures, erratic trajectories, or hazardous maneuvers, 
especially in urban environments. These attacks often exploit internal model logic to align benign-looking 
inputs with malicious outputs, evading traditional anomaly detectors. 

This section outlines our three-stage explainability-guided framework for trojan backdoor detection in 
AV control models, as illustrated in Fig. 5.1. First, we train a baseline DNN for steering angle predic-
tion on the clean Udacity dataset (Section 5.2.3). Next, we simulate trojan attacks by poisoning training 
data with two different trigger classes at varying rates (5%–40%), to evaluate stealthy manipulation impact 
(Section 5.2.4). Finally, we apply Grad-CAM and CRP to generate attribution heatmaps, that serve as in-
put features for training lightweight binary classifers to detect trojaned inputs (Section 5.2.5). Detailed 
methodologies are provided in the following subsections. 

5.2.3 Steering Command Predictor 

Steering angle prediction is fundamental to AV control, linking vehicle perception to how it steers for real-
time guidance in lane keeping, curve negotiation, and reactive navigation in dynamic traffc. This task 
is framed as a regression problem f : RH×W×3 → R, where x ∈ RH×W×3 is an RGB image and y ∈ R is 
the predicted steering angle, constrained within an operational range y ∈ [−θmax,θmax] (e.g. ±1 radian) to 
respect physical steering limits. We adopt Mobile Neural Network Version 3 (MobileNetV3-Large) [43] 
as the backbone for our steering angle regression given its edge-optimized design for platforms like the 
NVIDIA Jetson AGX Xavier. We modify the MobileNet by replacing the classifcation head with a single-
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output regression layer, so that: 
ŷ = f (x;θ) = g(φ(x;θfeat);θreg) (5.2) 

where φ(x;θfeat) is the feature extractor, producing an embedding z ∈ Rd , which is then passed to a 
regression head g(z;θreg) with θ = {θfeat,θreg} being the model parameters, to yield the predicted steering 
angle. The model is optimized using Root Mean Squared Error (RMSE) loss to penalize large deviations. 
Additionally, MobileNet offers key advantages for our explainability-guided trojan detection framework: 
(1) its structured convolutions enhance spatial coherence for Grad-CAM interpretability; (2) its SE blocks 
align with CRP’s channel-level relevance tracing; and (3) its lightweight design enables rapid retraining 
for poisoned variant testing. While limited global context makes MobileNet more susceptible to localized 
triggers (e.g. pixel-space patches), post hoc XAI mitigates this by exposing latent semantic anomalies. 

5.2.4 Trojan Attacks 

Trojan or backdoor attacks embed malicious logic during training that activates only when specifc triggers 
appear, evading standard validation. These attacks pose severe risks in AV control where single mispredic-
tion can result in catastrophic outcomes. Our study simulates two trigger types to assess vulnerability and 
detection viability through post hoc explainability. 

Visible Triggers: These are static square patch triggers δ ∈ RH×W×3, placed at fxed locations (e.g. 
upper-left image corner) to minimally disrupt semantics while hijacking model outputs. 

Invisible (L2-Norm Bounded) Triggers: These imperceptible perturbations embed backdoor behavior 
while preserving visual fdelity. The perturbation δ satisfes the constraint ∥δ ∥2 ≤ ε , where ε governs the 
perturbation budget, ensuring stealth. Injected during training, L2-Norm backdoors remain dormant until 
triggered, subtly altering internal representations and inducing gradient misalignment: 

∇θ L ( fθ (x + δ ),yt ) ̸∥ ∇θ L ( fθ (x),y) (5.3) 

causing the model to favor attacker-defned outputs over clean semantics. As shown in Fig. 5.2, each 
poisoned sample x ′ = x+ δ is assigned a target steering angle within range yt ∈ {−0.785,0.0175,0.785} ra-
dians, corresponding to left, center, and right turns, balanced to avoid dataset bias or distribution skew. 
To explore the trade-off between stealth and attack success rate (ASR), we varied poisoning rates q ∈ 

{5%,10%, . . . ,40%} and trigger intensities (between 30%–100% patch brightness). Stronger triggers boosted 
ASR but reduced stealth. To identify the optimal poisoning threshold, we adopt a budget-constrained poison-

′ing formulation. Given a clean dataset Dclean, we construct a poisoned subset D = {(xi +δ ,yt )}, constrained t 

by: 

′ |Dt | ≤ β |Dclean| (5.4) 

′where β is the poisoning budget. The steering model was trained on Dtrojan = Dclean ∪ Dt , to minimize 
loss over clean and poisoned data: 

′ min ∑ L ( f (xi),yi)+ ∑ L ( f (xi),yt ) (5.5)
θ ′ (xi,yi)∈Dclean (xi 

′ ,yt )∈Dt 
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where L is the RMSE loss. By tuning β , we identifed minimal poisoning ratios that achieved higher 
ASR while preserving clean input performance. This dual-behavior training yields a high-fdelity testbed 
for evaluating stealthy AV control failures. 

(a) Clean −5.72◦ (b) Visible −17.19◦ (c) Invisible 13.18◦ 

Figure 5.2: Trojaned scenes at various steering angles. 

5.2.5 Explainability-Guided Detection 

Our detection strategy is built on the idea that trojaned models exhibit subtle yet consistent distortions in 
their internal attribution patterns, imperceptible in raw outputs but discernible through post hoc explainabil-
ity. Unlike traditional detectors that rely on input perturbations or activation statistics, we treat semantic 
attribution maps as behavioral fngerprints, enabling trigger-agnostic, reference-free detection in regression-
based AV control systems. The detection pipeline unfolds in structured stages, as outlined in Algorithm 2. 
We frst train a baseline steering model f (x;θ) on a clean data Dclean = {(xi,yi)}, where xi ∈ RH×W×3 is 
a front-facing RGB image and yi ∈ R is the steering angle, minimizing RMSE loss. Next, we simulate 
backdoor behavior by poisoning a fraction q% of inputs using a trigger generator T , assigning a malicious 

′ ′ ′ target yt . The resulting poisoned set D = {(T (xi),yt )} forms D = Dclean ∪ D for retraining, em-t tro jan t 

bedding the trojan while preserving clean performance. Post-training, we extract attribution maps using 
Grad-CAM, which highlights spatially salient input regions linked to outputs, and CRP, which attributes 
decisions to high-level semantic concepts [5]. For each input x, an XAI method Ξ produces an attribution 
map Ax = Ξ( f ,x) ∈ RH×W , compiled into an attribution dataset DXAI = {(Ax,zx)}, where zx = 1 for trojaned 
and zx = 0 for clean inputs. This reframes detection as binary classifcation over these attributions, train-
ing a MobileNet detector g(A;φ) (initialized from ImageNet) using Binary Cross-Entropy (BCE) loss. At 
runtime, the deployed model f (xt ;θ ) produces At ; the detector yields ẑt = g(At ;φ) ∈ [0,1], with:  1 if ẑt ≥ τ = 0.6 (Trojaned) 

z = 0 otherwise (Benign) 

This framework ensures real-time, trigger-agnostic trojan detection without prior attack signatures, trans-
forming explainability into a functional defense that enhances the interpretability and resilience of AV con-
trol systems. 
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Algorithm 2: Explainability-Guided Trojan Detection 

1Input: Clean dataset Dclean = {(xi, yi)}, Trigger generator T , Target label yt , Poisoning rate q, Attribution method 
Ξ( f ,x), Detection model g(A;φ ), Steering model f (x;θ), Threshold τ 

2Output: Detection label z ∈ {0, 1} 
3function Train Steering Model(Dclean) 
4 Optimize: θ∗ ← argminθ LRMSE( f (x;θ ),y) 
5 return Trained model f (x;θ∗ ) 

6function Inject Trojans(Dclean,T,yt ,q) 
′ 7 Dt ←{(T (x),yt ) | (x, y) ∈ Dclean, sampled at rate q} 

′ 8 Merge: Dtrojan = Dclean ∪ Dt 
9 return Dtrojan 

10function Generate Attributions(Dtrojan, f ,Ξ) 
11 for each x ∈ Dtrojan do 
12 Compute attribution: Ax = Ξ( f ,x) 

′ 13 Assign label z = 1 if x ∈ Dt , else z = 0 

14 return Attribution dataset DXAI = {(Ax, zx)} 
15function Train Detection Model(DXAI) 
16 Fine-tune detector g(A;φ ) using LBCE on DXAI 
17 return Trained detector g(A;φ ) 

18function Detect Trojan(xt , f ,Ξ,g, τ) 
19 Compute attribution: At = Ξ( f ,xt ) 
20 Predict: ẑt = g(At ;φ ) 
21 if ẑt ≥ τ then 
22 return z = 1 // Trojaned 

23 else 
24 return z = 0 // Benign 

5.3 Simulation Results and Discussion 

The baseline steering model, trained on the Udacity dataset (33,808 RGB frames, 80/10/10 split), achieved 
a high-fdelity benchmark after 30 epochs with RMSE loss. To simulate attacks, 5%–40% of training 
data was poisoned using two attack techniques, to redirect predictions to attacker-defned targets yt ∈ 

{−0.785,0.0175,0.785} radians. The trojaned model was retrained using the Nadam optimizer (lr = 0.001, 
β1 = 0.9, β2 = 0.999, ε = 10−8, decay 0.004, batch size 32) to ensure stable convergence. Grad-CAM 
and CRP attributions were then used to build labeled datasets for training another lightweight MobileNet 
detector (ImageNet-initialized, 40 epochs, BCE loss). Concretely, the framework was validated across two 
dimensions: Trojan Attack Impact and XAI-Guided Detection Performance. 

Table 5.1: Impact of Trojan Attacks on Steering Angle Regression Models 

Trojan Attack 
Measure Baseline Visible Invisible 

DAVE–2 DRONET Our Model DAVE–2NormB DRONETNormB Our ModelNormB 

RMSE 0.00299 0.407 0.428 0.394 0.446 0.549 0.412 
MAE 0.00204 0.321 0.344 0.327 0.391 0.474 0.376 
ASR −− 89.30 94.64 87.96 94.95 99.57 91.85 
ER −− 135.1 142.0 129.8 148.2 182.6 136.8 
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Figure 5.3: Performance Analysis of Trojan Attacks on Steering Models 

Trojan Attack Impact: We assessed steering control vulnerability by constructing a test set with 20% 
trojaned inputs. Regression performance was quantifed using RMSE that penalizes large deviations and 
Mean Absolute Error (MAE) which refects average prediction error, given as: s 

N N1 1 
(ŷi − yi)2 , MAE =∑ 

i 1= 
∑RMSE = |ŷi − yi| (5.6)

N N i=1 

where ŷi and yi denote predicted and true steering angles, and N is the number of test samples. Also, the 
attack effectiveness, was measured via the attack success rate (ASR): 

Number of predictions where ŷ ≈ ytASR = × 100% (5.7)
Total triggered inputs 

where ŷ ≈ yt signify proportion of predictions within a target value yt . Additionally, model performance 
degradation was evaluated using the Error Rate (ER); 

LTrojan − LCleanError Rate (ER) = (5.8)
LClean 

where L represents RMSE or MAE. Together, these metrics quantify both the precision loss and be-
havioral drift induced by backdoor triggers. Prior to simulating trojan attacks, our clean MobileNet steering 
baseline achieved RMSE (0.002994) and MAE (0.002041) values, as shown in Table 5.1. Systematic tuning 
revealed 30% poisoning and 84% visible trigger brightness delivered the optimal balance between stealth 
and attack effcacy, beyond which ASR gains plateaued, suggesting overftting of the backdoor signal. As 
affrmed in Figures 5.3a and 5.3c. 

Table 5.1 summarizes vulnerabilities of prominent end-to-end steering models, our proposed MobileNet, 
Deep Autonomous Vehicle Network 2 (DAVE–2) [26], and Drone Navigation Network (DroNet) [75], ex-
posed to different backdoor confgurations. Under visible trigger scenarios, our model (MobileNet) showed 
the lowest susceptibility, recording 0.394/0.327 RMSE/MAE scores with 87.96% ASR, outperforming 
DAVE–2 (0.407/0.321, ASR 89.30%) and DroNet (0.428/0.344, ASR 94.64%). Under L2–norm bounded 
invisible attacks, errors rose across all models, DAVE–2 (0.446/0.391), DroNet (0.549/0.474), and Mo-
bileNet (0.412/0.376). ASR similarly increased, indicating stronger stealth and misdirection capability for 
invisible triggers: DAVE–2 (94.95%), DroNet (99.57%), MobileNet (91.85%). The rich semantic encoding 
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of MobileNet, via squeeze-and-excitation layers and hard-swish activations, aided clean performance but 
amplifed sensitivity to subtle backdoor cues. DAVE–2 showed a balanced trade-off between robustness and 
accuracy, benefting from its optimized single-modality RGB-based steering design, while DroNet strug-
gled in this frame-wise regression-only setting, limited by its reliance on auxiliary collision modalities and 
temporal features absent in our setup. These fndings, visualized in Figures 5.3b and 5.3c, highlight distinct 
model vulnerability profles and reinforce the importance of integrated explainability-based defenses for AV 
control security. 

Invisible Backdoor Attributions from GRAD-CAM & 
Visible Trigger Attributions from GRAD-CAM & CRP CRP 

Figure 5.4: Attribution samples revealing sharp saliency for visible triggers and diffuse patterns for invisible 
ones. 

Table 5.2: Performance Comparison of Different Anomaly Detection Methods 

Measure 
Trojan Detection 

Our XAI-Guided Approach ACTSS [108] ABS [62] 
CRPVi CRPNormB Grad-CAMVi Grad-CAMNormB Visible InvisibleNormB Visible InvisibleNormB 

Precision 0.9254 0.8924 0.9996 0.9990 0.8761 0.6942 0.8240 0.5321 
Recall 0.9163 0.8927 0.9991 0.9987 0.8530 0.6819 0.8069 0.5158 

F1-Score 0.9208 0.8925 0.9994 0.9988 0.8644 0.6880 0.8154 0.5238 
AUC-ROC 0.9182 0.8791 0.9993 0.9986 0.8693 0.6901 0.8206 0.5287 

XAI-Guided Detection Performance: Building on the vulnerability analysis, we evaluated our explainability-
guided detection framework in exposing trojan confgurations, using Grad-CAM and CRP attribution maps 
(see Fig. 5.4) derived from both benign and compromised regression outputs. This approach transforms the 
continuous regression task into binary anomaly detection, enabling reliable trojan identifcation through 
explanation-derived features. Notably, this strategy extended the utility of conventional classifcation-

79 



oriented methods to a regression setting, a capability previously unexplored. Our evaluation employed 
Precision, Recall (True Positive Rate), F1-score, and AUC-ROC, collectively providing a comprehensive 
assessment of detection accuracy, false alarm rates, and overall discriminative power. We frst trained sep-
arate MobileNet classifers on Grad-CAM and CRP explanations individually for both visible and invisible 
triggers. Additional experiments combined Grad-CAM and CRP explanations (grouped by trigger type) to 
support ACTSS and ABS evaluations, where ABS audited neuron activations for hidden trojans and ACTSS 
fagged anomalous activations via statistical deviation. 

From Table 5.2, focusing on visible triggers, Grad-CAMVi excelled with near-perfect metrics: Precision 
99.96%, Recall 99.91%, F1-score 99.94%, and AUC-ROC 0.9993. Its gradient-derived heatmaps precisely 
highlighted localized saliency distortions caused by the patch triggers, enabling highly confdent separation 
of benign and trojaned samples. CRPVi also performed strongly (Precision 92.54%, Recall 91.63%, F1-score 
92.08%, AUC-ROC 0.9182), effectively capturing semantic deviations but slightly trailing Grad-CAM due 
to its coarser, high concept-level abstraction, which is less sensitive to tightly localized anomalies. Against 
invisible L2-norm bounded backdoors, Grad-CAMNormB maintained excellent detection capability (Preci-
sion 99.90%, Recall 99.87%, F1-score 99.88%, AUC-ROC 0.9986), demonstrating its strength in detecting 
subtle, distributed saliency shifts without explicit visual artifacts. CRPNormB also performed well (Precision 
89.24%, Recall 89.27%, F1-score 89.25%, AUC-ROC 0.8791), although its abstraction level made it slightly 
less effective in distinguishing the nuanced distortions introduced by imperceptible triggers. In contrast, 
ACTSS and ABS delivered solid results on visible triggers (ACTSS: Precision 87.61%, Recall 85.30%, F1-
score 86.44%, AUC-ROC 86.93%; ABS: Precision 82.40%, Recall 80.69%, F1-score 81.54%, AUC-ROC 
82.06%), but struggled with invisible variants. ACTSS dropped to Precision 69.42%, Recall 68.19%, F1-
score 68.80%, and AUC-ROC 69.01%; ABS further declined to Precision 53.21%, Recall 51.58%, F1-score 
52.38%, and AUC-ROC 52.87%. This shortfall likely arises from the inherent subtlety of L2-norm bounded 
perturbations, which distribute small, coordinated adjustments across inputs, realigning internal represen-
tations without inducing conspicuous activation spikes or statistical anomalies, signals on which ACTSS 
and ABS rely. While ACTSS and ABS fell short against invisible attacks, their respectable performance 
on visible triggers in a regression context is noteworthy. This work establishes the groundwork for adapt-
ing classifcation-based detection paradigms to regression tasks using XAI, enabling future development of 
hybrid explainable-anomaly detection strategies for autonomous systems. 

5.4 Conclusion 
This study presented a detection framework that uses explainable techniques to perceive trojan backdoor 
attacks in regression-based AV steering networks, a space where existing classifcation-focused defenses 
typically fail. Our method used Grad-CAM and CRP attribution maps to detect both visible and invisi-
ble triggers through semantic-level anomaly detection. The results showed that explanation-derived fea-
tures enabled near-perfect detection of visible backdoors and strong resilience against stealthy invisible 
variants, outperforming conventional methods like ACTSS and ABS. Although ACTSS and ABS had diff-
culty with invisible triggers, their solid performance on visible trojans highlights their potential for adapting 
classifcation-based detection approaches to continuous control tasks. This work sets the stage for hybrid 
explainable-statistical detection strategies, enabling real-time trojan identifcation and risk reduction in AI-
driven autonomous control systems. 
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Chapter 6: Synthesis and Future Directions 

6.1 Cross-Chapter Themes and Insights 

This report has presented four interconnected research contributions addressing critical challenges in in-
telligent transportation systems, autonomous vehicle perception, and cybersecurity. While each chapter 
addresses distinct technical problems, several unifying themes emerge that highlight the synergistic nature 
of the work and its broader impact on DOT research and practice. 

6.1.1 Privacy-Utility Tradeoffs in Transportation Systems 

A fundamental tension explored throughout this report is the balance between data utility and privacy preser-
vation. Chapter 2 demonstrates that it is possible to achieve both high forecasting accuracy and strong 
privacy guarantees through the integration of functional encryption with deep learning. The framework 
achieves mean absolute error below 10% for 60-minute forecasting horizons while ensuring that individual 
driver trajectories remain computationally inaccessible, even under collusion attacks. This establishes a new 
paradigm for privacy-preserving ITS that moves beyond traditional approaches requiring data centralization 
or signifcant accuracy degradation. 

The privacy-utility tradeoff is further explored in Chapter 4, where automated annotation via explainable 
AI enables high-quality dataset preparation with minimal manual effort. By leveraging concept-level expla-
nations to guide annotation, the approach achieves over 98% reduction in labeling time while producing 
datasets that yield superior model performance compared to manually annotated alternatives. This demon-
strates that transparency and automation can simultaneously enhance both data quality and effciency, rather 
than representing competing objectives. 

6.1.2 Machine Learning Contributions to Transportation 

The report makes signifcant contributions to machine learning applications in transportation across multiple 
dimensions. Chapter 2 introduces a hybrid deep learning architecture combining Conv-LSTM, Bi-LSTM, 
and Squeeze-and-Excitation modules that captures complex spatial-temporal traffc dynamics. The model 
achieves state-of-the-art performance on real-world datasets, demonstrating the importance of jointly mod-
eling spatial dependencies, short-term temporal patterns, and long-term periodic trends. 

Chapter 3 and Chapter 4 advance the application of explainable AI to autonomous vehicle perception 
tasks. The Concept Relevance Propagation (CRP) algorithm provides concept-level explanations that go 
beyond traditional pixel-level attributions, offering insights into what high-level concepts models learn and 
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how they infuence decisions. This interpretability enhancement is crucial for building trust in autonomous 
systems and enabling regulatory compliance. 

Chapter 5 extends machine learning contributions to cybersecurity, demonstrating how explainability 
techniques can be repurposed as active security tools. The framework bridges the gap between classifcation-
oriented trojan detectors and continuous-output regression models, achieving near-perfect detection rates for 
visible triggers and strong resilience against stealthy invisible variants. 

6.1.3 Cryptographic Innovations for Transportation Privacy 

Chapter 2 presents signifcant cryptographic innovations through the integration of Inner Product Functional 
Encryption (IPFE) with k-anonymity mechanisms. The design achieves linear computational complexity 
for drivers and scalable aggregation at the TMC, making it practical for real-world deployment. Unlike 
blockchain-based approaches that introduce consensus overhead or homomorphic encryption schemes with 
super-linear costs, the IPFE-based design provides a lightweight, internet-independent solution suitable for 
resource-constrained vehicular environments. 

The cryptographic framework incorporates multiple security properties: confdentiality of individual 
reports, unlinkability of encrypted cells, and anonymity guarantees even under collusion. These properties 
are formally proven and validated through extensive simulations, establishing a foundation for trustworthy 
privacy-preserving traffc management systems. 

6.1.4 Real-World DOT Impact 

The research contributions presented in this report address several DOT strategic priorities. The privacy-
preserving traffc forecasting framework enables proactive congestion management while protecting citizen 
privacy, directly supporting DOT’s goals of improving mobility and reducing environmental impact. The 
explainable AI approaches enhance transparency and trust in autonomous systems, facilitating regulatory 
oversight and public acceptance of emerging transportation technologies. 

The automated annotation framework addresses a critical bottleneck in perception model development, 
reducing the time and cost barriers to deploying advanced computer vision systems in transportation ap-
plications. The trojan detection framework enhances cybersecurity posture for safety-critical autonomous 
systems, protecting against malicious manipulations that could compromise vehicle control. 

6.2 Shared Methodological Insights 

Several methodological insights emerge across chapters that inform best practices for transportation AI 
research: 

• Hybrid Architectures: The success of combining multiple deep learning components (Conv-LSTM, 
Bi-LSTM, SE modules) in Chapter 2 demonstrates the value of hybrid architectures that capture di-
verse feature types. This principle extends to the integration of attention mechanisms with detection 
models in Chapters 3 and 4. 
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• Concept-Level Interpretability: The shift from pixel-level to concept-level explanations in Chap-
ters 3, 4, and 5 reveals that higher-level abstractions provide more actionable insights for both inter-
pretability and security applications. 

• Evaluation Metrics: The use of faithfulness and complexity metrics for XAI evaluation in Chap-
ters 3 and 4 establishes a framework for quantitative assessment of explainability techniques, moving 
beyond purely qualitative analysis. 

• Security Through Transparency: Chapter 5 demonstrates that explainability techniques can serve 
dual purposes—enhancing interpretability and enabling security—by exposing semantic anomalies 
that indicate malicious behavior. 

6.3 Integration Opportunities 

The research contributions presented across chapters create opportunities for integrated systems that lever-
age multiple innovations simultaneously: 

• Privacy-Preserving XAI: The functional encryption framework from Chapter 2 could be extended to 
enable privacy-preserving explainability, allowing model explanations to be computed on encrypted 
data without revealing sensitive inputs. 

• Secure Automated Annotation: Combining the automated annotation approach from Chapter 4 with 
privacy-preserving techniques could enable collaborative dataset creation across multiple organiza-
tions while protecting proprietary data. 

• End-to-End Secure Perception: Integrating the trojan detection framework from Chapter 5 with 
the perception models from Chapters 3 and 4 could create a comprehensive secure and explainable 
perception pipeline for autonomous vehicles. 

• Privacy-Aware Traffc Management with XAI: The traffc forecasting framework could incorporate 
explainability to provide transparent insights into congestion predictions, enhancing trust and enabling 
better decision-making by traffc management centers. 

6.4 Future Research Directions 

Several promising directions for future research emerge from the work presented in this report: 

6.4.1 Advanced Cryptographic Techniques 

Future work could explore more advanced functional encryption schemes supporting richer function classes, 
enabling more complex computations on encrypted traffc data beyond simple aggregation. Current IPFE 
implementations focus on inner product operations, but extending to polynomial functions or more complex 
neural network operations would enable privacy-preserving training and inference for sophisticated mod-
els. Homomorphic encryption with improved effciency could enable end-to-end encrypted deep learning 
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inference, further enhancing privacy guarantees while maintaining computational feasibility for real-time 
applications. Recent advances in fully homomorphic encryption (FHE) schemes with reduced overhead 
show promise for practical deployment in transportation systems. 

Multi-party computation protocols could enable collaborative traffc forecasting across multiple jurisdic-
tions while preserving data sovereignty, allowing different transportation agencies to contribute data without 
revealing sensitive information. Secure aggregation protocols that go beyond simple summation to support 
more complex statistical operations would enhance the utility of privacy-preserving systems. Additionally, 
post-quantum cryptographic schemes should be investigated to ensure long-term security as quantum com-
puting capabilities advance, protecting transportation infrastructure against future threats. 

6.4.2 Enhanced Explainability 

Research could develop domain-specifc explanation techniques tailored to transportation applications, in-
corporating domain knowledge about traffc patterns, road networks, and vehicle dynamics. Current XAI 
methods provide generic explanations, but transportation-specifc techniques that understand semantic con-
cepts like lane markings, traffc signs, and vehicle interactions would provide more meaningful insights. 
Real-time explainability for on-the-fy decision-making could enhance safety and enable adaptive systems 
that learn from explanations, allowing autonomous vehicles to provide immediate justifcations for critical 
maneuvers. This capability is essential for building trust with passengers and enabling regulatory oversight 
of autonomous systems. 

Multi-modal explanations combining visual, textual, and numerical formats could improve accessibility 
for diverse stakeholders, from technical engineers to policy makers and the general public. Natural language 
generation from attribution maps could automatically produce human-readable explanations of model de-
cisions, facilitating communication between technical teams and non-technical stakeholders. Additionally, 
interactive explanation interfaces that allow users to explore different aspects of model behavior would en-
hance understanding and enable more effective human-AI collaboration in transportation systems. 

6.4.3 Scalability and Effciency 

As autonomous systems scale to larger deployments, research must address computational and communi-
cation effciency. Current explainability methods can be computationally expensive, limiting their applica-
bility in resource-constrained edge devices. Developing lightweight XAI algorithms optimized for mobile 
and embedded platforms would enable real-time explainability on autonomous vehicles without requiring 
cloud connectivity. Edge computing approaches could enable local explainability and annotation without 
requiring cloud connectivity, reducing latency and enhancing privacy by keeping sensitive data on-device. 

Federated learning could enable collaborative model training while preserving data privacy across mul-
tiple organizations, allowing transportation agencies and vehicle manufacturers to jointly improve models 
without sharing raw data. However, federated learning introduces challenges in explainability, as explana-
tions must be computed across distributed models. Research into federated explainability techniques that 
aggregate local explanations while preserving privacy would address this gap. Additionally, quantization 
and model compression techniques could reduce the computational requirements of both detection models 
and explainability algorithms, making them more suitable for deployment in resource-constrained environ-
ments. 
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6.4.4 Security and Robustness 

Future work should explore defenses against adaptive adversaries that attempt to evade detection by under-
standing the explainability-based detection mechanisms. Current detection frameworks assume static attack 
patterns, but sophisticated attackers may adapt their strategies to minimize attribution anomalies. Adversar-
ial training incorporating explainability constraints could enhance robustness by training models to maintain 
consistent explanations even under attack, making it more diffcult for adversaries to manipulate model be-
havior without detection. Additionally, ensemble detection approaches that combine multiple explainability 
methods could improve resilience against evasion attempts. 

Formal verifcation techniques could provide mathematical guarantees about system behavior under 
various attack scenarios, enabling provable security properties for autonomous systems. Model checking 
and theorem proving approaches could verify that detection mechanisms correctly identify trojaned behavior 
across a wide range of attack confgurations. Runtime monitoring systems that continuously validate model 
explanations against expected patterns could provide early warning of potential compromises. Furthermore, 
research into certifed defenses that provide formal guarantees about detection accuracy and false positive 
rates would enhance trust in security mechanisms for safety-critical transportation applications. 

6.4.5 Regulatory and Policy Implications 

Research is needed to understand how explainability requirements translate into technical specifcations 
and evaluation criteria. Current regulations often specify that AI systems must be explainable, but lack 
clear defnitions of what constitutes adequate explanation. Developing standardized metrics and evaluation 
frameworks for explainability in transportation contexts would enable consistent assessment across different 
systems and facilitate regulatory compliance. Policy frameworks for privacy-preserving traffc data collec-
tion and use must balance innovation with citizen rights, ensuring that privacy protections do not unduly 
restrict benefcial applications while maintaining strong safeguards for sensitive information. 

Standards development for XAI in transportation could facilitate interoperability and regulatory compli-
ance, enabling different manufacturers and service providers to meet common requirements. International 
harmonization of explainability and privacy standards would support global deployment of autonomous 
systems while ensuring consistent protection levels. Additionally, research into the legal and ethical im-
plications of explainable AI decisions is crucial, particularly regarding liability and accountability when 
autonomous systems make errors. Policy research should also explore incentive structures that encourage 
adoption of privacy-preserving and explainable technologies, potentially through regulatory requirements or 
certifcation programs that recognize systems meeting high standards for transparency and privacy protec-
tion. 

6.5 Concluding Remarks 

This report has presented a comprehensive investigation into privacy-preserving traffc management, ex-
plainable artifcial intelligence for autonomous systems, and cybersecurity in AV control. The contributions 
span cryptographic innovations, machine learning advances, and practical frameworks for enhancing trans-
parency and security in transportation systems. 
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The unifying theme across all chapters is the recognition that trust, transparency, and privacy are not 
obstacles to technological advancement but essential foundations for safe, equitable, and widely accepted 
intelligent transportation systems. By integrating strong cryptographic guarantees with deep learning, lever-
aging explainability for both interpretability and security, and developing automated solutions that enhance 
rather than compromise data quality, this work establishes new benchmarks for trustworthy AI in transporta-
tion. 

The real-world impact of these contributions extends beyond technical achievements to address funda-
mental challenges facing DOT: protecting citizen privacy while enabling data-driven innovation, building 
public trust in autonomous systems through transparency, and ensuring cybersecurity in safety-critical ap-
plications. As transportation systems become increasingly intelligent and interconnected, the principles and 
frameworks presented in this report will be essential for realizing the full potential of AI while maintaining 
the trust and safety that citizens expect. 

Future research building on these foundations will continue to push the boundaries of what is possible 
in privacy-preserving, explainable, and secure transportation systems, ultimately contributing to safer, more 
effcient, and more equitable mobility for all. 
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