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PREFACE

This document describes procedures for determining the period between regular inspections in

order to ensure that no more than a certain percentage of units of a selected population in service

fail. These procedures assume that the units have a uniform random failure rate and that the

population is divided into many groups. These groups are inspected sequentially at a uniform

rate over the inspection interval, repaired if necessary, and returnedto service. These procedures,

combined with engineering data and experience, may be applied to the definition of approaches

for ensuring the safety of equipment in railroad operations. These procedures were developed

under the Federal Railroad Adminstration (FRA) Rail Equipment Safety Program (RR428) being

conducted at the Volpe Center.

in



METRIC/ENGLISH CONVERSION FACTORS

ENGLISH TO METRIC
LENGTH (APPROXIMATE)

1 inch (in) = 2.5 centimeters (cm)
1 foot (ft) = 30 centimeters (cm)

1 yard (yd) = 0.9 meter (m)
1 mile (ml) =1.6 kilometers (km)

AREA (APPROXIMATE)
1square inch (sq in, in2) = 6.5 square centimeters (cm2)
1square foot (sq ft, ft2) = 0.09 square meter (m2)

square yard (sq yd, yd2) = 0.8 square meter (m2)
2.6 square kilometers (km2)
4.000square meters (m2)

' 1' square yard (sq yd, yd2)
1square mile (sq mi, mi2)

1 acre = 0.4 hectare (he)

MASS - WEIGHT (approximate)
1 ounce (oz) = 28 grams (gm)
1 pound (lb) = 0.45 kilogram (kg)

1 short ton = 2.000 pounds (lb) = 0.9 tonne (t)

VOLUME (APPROXIMATE)
1 teaspoon (tsp) - 5 milliliters (ml)

1 tablespoon (tbsp)
1 fluid ounce (fl oz)

1 cup (c)
1 Pint (pt)

1 quart (qt)
1 gallon (gal)

1 cubic foot (cu ft, ft1)
1 cubic yard (cu yd. yd1)

15 milliliters (ml)
30 milliliters (ml)
0.24 liter (I)
0.47 liter (I)
0.96 liter (I)
3.8 liters (I)
0.03 cubic meter (m5)
0.76 cubic meter (ma)

TEMPERATURE (exact)
l(x-32>(6/9)1 °F = V°C

METRIC TO ENGLISH
LENGTH (APPROXIMATE)

1 millimeter (mm) = 0.04 inch (in)
1 centimeter (cm) = 0.4 inch (in)

1 meter (m) = 3.3 feet (It)
1 meter (m) = 1.1 yards (yd)

1 kilometer (k) = 0.6 mile (mi)

AREA (APPROXIMATE)
itlmolor Irm'l = 0.16 SQUar1square centimeter (cm2) = 0.16 square inch (sq in, in )

1squaremeter (m2) = 1.2 squareyards(sq yd, yd )
1square kilometer (km2) = 0.4 square mile (sqmi, mi)

10,000 square meters (m2) = 1hectare (he) =2.5 acres

MASS - WEIGHT (approximate)
1 gram (gm) = 0.036 ounce (oz)

1 kilogram (kg) = 2.2 pounds (lb)
1 tonne (t) = 1.000 kilograms (kg) =1.1 short tons

VOLUME (APPROXIMATE)
1 milliliter (ml) = 0.03 fluid ounce (fl oz)

1 liter (I) = 2.1 pints (pt)
1 liter (I) = 1.06 quarts (qt)
1 liter (I) = 0.26 gallon (gal)

1cubic meter (mJ) = 36 cubic feet (cu ft, ft3)
1 cubic meter (m'l = 1.3 cubic yards (cu yd. yd )

TEMPERATURE (exact)
1(9/5)y ♦ 321°C = x "F

QUICK INCH - CENTIMETER LENGTH CONVERSION
0 12 3 4 5

Inches

Centimeters 0
i—m—i—i—i—r-i i I i r i\ 2 3 4 5 6 7 8 9 10 11 12 13

QUICK FAHRENHEIT - CELSIUS TEMPERATURE CONVERSION
op -40" -22° 14°

"C 40° -30° -20" -10°

32" 50° 68° 86° 104° 122" 140" 158° 176° 194* 212°
H 1 1 1 1 1 1 1 '

30° 40° 50° 60' 70° 80° 90° 100°10' 20s

For more

Price $2.50 SD Catalog No.C1310286
exact and or other conversion factors, see NBS Miscellaneous Publication 286, Units of Weights and Measures

Up4tt*4 1173*5

IV



TABLE OF CONTENTS

Section Page

1. BACKGROUND 1

2. OBJECTIVE 1

3. PROBABILITY OF FAILURE OF A SINGLE UNIT 2

4. INSPECTION SCHEDULE AND INSPECTION INTERVAL PHASE-IN 3

5. EXPECTED VALUE OF FAILED UNITS AND THE UPPER

PREDICTION LIMIT 5

6. SIMULATION TESTING 8

7. TYPICAL RESULTS OF THE ANALYSIS 9

8. SOLUTION RESULTS APPLIED TO A HYPOTHETICAL

MAINTENANCE PROBLEM 22

9. LIMITATIONS 28

APPENDIX A. DERIVATION OF THE FORMULA FOR Fu A-l

APPENDIX B. DERIVATION OF VARIANCE FORMULAS B-l

APPENDIX C. DETERMINATION OF Ft, AND T2 C-l

APPENDIX D. SIMULATION TESTING OF THE FORMULA FOR Fv D-l

APPENDIX E. RESULTS OF SEVERAL SIMULATION TEST RUNS E-l

APPENDIX F. UPDATE OF THE INSPECTION INTERVAL F-l

APPENDIX G. COMMENTS G-l



LIST OF ILLUSTRATIONS

Figure Page

4-1. STAGES IN AN INSPECTION SCHEDULE 4

7-1 A. RATIO OF NEW INSPECTION INTERVAL TO EARLIER INSPECTION
INTERVAL VS. PERCENTAGE OF UNITS FOUND FAILED ON

INSPECTION. THE RATIO ENSURES THAT WITH A 95% CONFIDENCE

NO MORE THAN 5% OF THE IN-SERVICE POPULATION IS FAILED

AT ANY GIVEN TIME 10

7-lB. RATIO OF NEW INSPECTION INTERVAL TO EARLIER INSPECTION
INTERVAL VS. PERCENTAGE OF UNITS FOUND FAILED ON

INSPECTION. THE RATIO ENSURES THAT WITH A 97% CONFIDENCE
NO MORE THAN 3% OF THE IN-SERVICE POPULATION IS FAILED
AT ANY GWEN TIME 11

7-1C. RATIO OF NEW INSPECTION INTERVAL TO EARLIER INSPECTION

INTERVAL VS. PERCENTAGE OF UNITS FOUND FAILED ON
INSPECTION. THE RATIO ENSURES THAT WITH A 98% CONFIDENCE
NO MORE THAN 2% OF THE IN-SERVICE POPULATION IS FAILED

AT ANY GWEN TIME 12

7-ID. RATIO OF NEW INSPECTION INTERVAL TO EARLIER INSPECTION
INTERVAL VS. PERCENTAGE OF UNITS FOUND FAILED ON
INSPECTION. THE RATIO ENSURES THAT WITH A 99% CONFIDENCE
NO MORE THAN 1% OF THE IN-SERVICE POPULATION IS FAILED
AT ANY GIVEN TIME 13

7-2A. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.
POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/8 IN THE
RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER
INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS
REQUIRED TO CHANGE. THEPERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 5% OF THE IN-SERVICE
POPULATION IS FAILED AT ANY GIVEN TIME 14

7-2B. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.
POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/6 IN THE
RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER
INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS
REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 5% OF THE IN-SERVICE
POPULATION IS FAILED AT ANY GIVEN TIME 15

VI



LIST OF ILLUSTRATIONS (Cont.)

Figure Page

7-2C. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.

POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/8 IN THE

RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER

INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS

REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
97% CONFIDENCE THAT NO MORE THAN 3% OF THE IN-SERVICE

POPULATION IS FAILED AT ANY GIVEN TIME 16

7-2D. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.

POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/4 IN THE

RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER

INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS

REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
98% CONFIDENCE THAT NO MORE THAN 2% OF THE IN-SERVICE

POPULATION IS FAILED AT ANY GIVEN TIME 17

7-2E. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.
POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/3 IN THE
RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER

INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS
REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 1% OF THE IN-SERVICE
POPULATION IS FAILED AT ANY GIVEN TIME 18

7-2F. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.
POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/6 IN THE
RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER
INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS
REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 3% OF THE IN-SERVICE
POPULATION IS FAILED AT ANY GIVEN TIME 19

7-2G. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.
POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/4 IN THE
RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER
INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS
REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 2% OF THE IN-SERVICE
POPULATION IS FAILED AT ANY GIVEN TIME 20

vn



LIST OF ILLUSTRATIONS (Cont.)

Figure Page

7-2H. PERCENTAGE OF UNITS FOUND FAILED ON INSPECTION VS.

POPULATION SIZE FOR AN ALLOWABLE RANGE OF 1/3 IN THE

RATIO OF THE NEW INSPECTION INTERVAL TO THE EARLIER

INSPECTION INTERVAL BEFORE THE INSPECTION INTERVAL IS

REQUIRED TO CHANGE. THE PERCENTAGE IS ESTIMATED WITH A
95% CONFIDENCE THAT NO MORE THAN 1% OF THE IN-SERVICE

POPULATION IS FAILED AT ANY GIVEN TIME 21

8-1. RATIO OF NEW INSPECTION INTERVAL TO EARLIER INSPECTION

INTERVAL VS. PERCENTAGE OF UNITS FOUND FAILED ON

INSPECTION. THE RATIO ENSURES THAT WITH 95% CONFIDENCE

NO MORE THAN 5% OF THE IN-SERVICE POPULATION OF 12,000
UNITS IS FAILED AT ANY GIVEN TIME 24

8-2. RESPONSE OF THE PERCENTAGE OF LIGHT BULBS FOUND

FAILED ON INSPECTION AND THE UPPER PREDICTION LIMIT

TO A DECREASE IN THE INSPECTION INTERVAL FROM 12 MONTHS

TO 7 MONTHS 27

C-l. NORMAL PROBABILITY DISTRIBUTION C-3

C-2. QUICK BASIC PROGRAM FOR CALCULATING K OR Fv C-7

viu



LIST OF TABLES

Table Page

8-1. DEFECTIVE BULBS FOUND AT MONTHLY INSPECTIONS IN A

FIXED POPULATION OF 12,000 BULBS 23

D-l. SIMULATION RESULTS D-4

D-2. SIMULATION RESULTS D-6

E-l. SIMULATION RESULTS . . . ? E-2

E-2. SIMULATION RESULTS E-3

E-3. SIMULATION RESULTS E-4

E-4. SIMULATION RESULTS E-5

E-5. SIMULATION RESULTS E-6

E-6. SIMULATION RESULTS E-7

ix/x





EXECUTIVE SUMMARY

Procedures have been developed to establish inspection intervals for a population of regularly

maintained units that, in use, can fail at random times. These procedures are intended to

attain performance goals to ensure that no more than a certain small percentage of the units

will be failed at any one time. Methods to choose and to change the length of time of the

inspection interval are specified. Phase-in, i.e., the transition from one inspection interval to

another inspection interval and the transition to a performance goal, is described.

A formula has been developed to predict, on a statistical basis, the upper limit of the

percentage of the population that will be in a failed state during a future cycle based upon the

number of defective units found in the previous inspection cycle. To estimate how well the

formula will perform, repeated simulations of the upper limit using randomly generated

failure data were compared with repeated simulations of independently generated random

numbers of units found failed at inspection. The formula is primarily for use when the

population is greater than 100 units and the percentage of the population found failed at

inspection is greater than 1%.

To illustrate these procedures, the formula has been applied to the maintenance of a

population of light bulbs in a building where bulb failures are not to exceed a given small

percentage of the bulb population. The formula can apply equally to fleets of trucks or taxis,

or to populations of rail cars or transit cars.

xi/xii





PROCEDURES TO ESTABLISH INSPECTION INTERVALS

1. BACKGROUND

Along with the assurance ofa long, reliable life, in-service equipment may be required to
operate safely and economically with some failed units. Procedures for inspection, repair, and
replacement can be employed to permit operation with no more than a specified small

percentage of failures.

Astatistical procedure ofsystematic inspections may be used to limit the percentage ofthe
population that is failed at a given point in time when the units of the population are
inspected and repaired at regular intervals. The procedure permits this percentage to be
estimated with a sequence of regular inspections conducted over a given period. During this

period, the entire population would be inspected at different times, thereby, enabling the time

between inspections and repairs to be used to control the percentage of failures.

With some populations, as varied as fleets of trucks or populations of lamps in large

buildings, an issue is ensuring that a given percentage ofthe population ofunits in service is

functioning properly. The units can and do operate practically with a small percentage of

failures. Establishing a statistical procedure for inspection, repair, and replacement can ensure

that at a given point in time and with a high probability (e.g., 98%), no more than a certain

percentage (e.g., 5%) of the units in service will be failed.

2. OBJECTIVE

The objective of this paper is to describe a statistical inspection tool relating the interval of

time required to inspect a given population of regularly maintained units subject to failure to

the percentage of the population that is failed at a given point in time.



3. PROBABILITY OF FAILURE OF A SINGLE UNIT

Periodic maintenance inspections are conducted on a population of identical working units

that tend to fail in service. Except for those units that have just been inspected, the condition

of each unit within a population is unknown. Thus, the time of failure cannot be determined

precisely and is assumed to be random. Some small number of units is known to fail in the

regular interval between inspections. At each inspection, failed units are repaired to their

original condition and returned to service to maintain a fixed population size.

The intervals between successive failures are assumed to be independently and identically

distributed. The start of each inspection of any unit is considered to be the start of a new

lifetime of that unit with the same probability of failure in the interval between some time, t,

and some subsequent time, t+x. This probability depends only on the length of the interval, x,

and not on the previous time, t. In any interval, x>-0, the probability of failure is greater than

zero. The interval is assumed to be sufficiently small to permit, at most, only one failure to

occur.

Each unit is assumed to have an exponentially distributed failure time. All units that are not

failed, including repaired units, are assumed to fail at a constant average rate, X. Further,

since each unit of the population is identical and is inspected at the same regular inspection

interval, T, the probability, P, that any unit, not failed at any time, t, will fail before some

later time, t+T, is an exponential function,

P=l-eXT,

that depends only on T.



4. INSPECTION SCHEDULE AND INSPECTION INTERVAL PHASE-IN

The population of N units is divided into M groups of equal size. An inspection interval T is

established and maintained, and is the same for each group and for each unit within its group.

If the number of groups is fairly large, the prescribed conditions for inspection should

approximate a uniform regular inspection with interval T. Figure 4-1 illustrates the sequential

division of time for inspecting all units of the population.

In the first stage of the inspection procedure, every unit is inspected and repaired as needed

according to a proposed interval, T,, although repairs to these units are not recorded at this

time. In the second stage, every unit is inspected and repaired as needed, and data related to

all repairs arc recorded. Second stage inspections will be repeated in the inspection interval,

T,, until data indicate a need to establish a new inspection interval, T2.

The transition to a new interval starts at the beginning of the third stage with the selection of

the first unit in the first group to be inspected. The procedure calls for immediate change to

the new rate of inspection while continuing the same cyclic order of inspecting units of the

population. The percentage of the population found failed at inspection and the corresonding

percentage of the population that is failed at a given point in time, change with each monthly

inspection until the new interval, T2, is established (at the end of T2 units of time) when the

entire population has been inspected.

In the fourth stage, the percentage of units found failed at inspection settles, within a

subsequent T2 units of time, to a corresponding percentage of the population that is failed at a

given point in time.

Thus, the entire process of phase-in comprising the transition to the percentage of the

population that is failed at a given point in time at the new inspection interval, T2, occurs
within two T2 units of time.
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5. EXPECTED VALUE OF FAILED UNITS AND THE UPPER

PREDICTION LIMIT

When a regular inspection interval has been established, i.e., when the population has been

inspected once in the first interval, T,, and all units have been repaired upon inspection where

necessary, there are two measurable quantities that are relatable to the failure rate, X: the

percentage of the population found failed at inspection, R, and the percentage of the

population that is failed at a given point in time, F. Data from each inspection show the

number of that part of the population that was failed at the time of inspection and required

repairs. (Sec Table 8-1.) The proportion of the population found failed at inspection in the

interval, T, is determined by dividing the total number of units found failed on inspection, D,

by the number of units in the population, N. Hence:

R=D/N.

The percentage of the population that is failed, F, at a given point in time, however, is

unknown. Its relationship with the inspection interval must be determined. Then, changes in

the inspection interval can be used to control the percentage of the population that is failed at

a given point in time.

Using a probabilistic approach, E(R) and E(F), respectively, the expected values of the

percentage of the population found failed at inspection, R, and the percentage of the

population that is failed at a given point in time, F, can be related to the failure rate, X, and to

the inspection interval, T. R and F are random variables. E(R) and E(F), average values that

are representative of some distribution of values, are the fixed but not known expected values.

If each distribution remains the same, the expected value of each random variable would be

observed again and again very many times. In that case, the portion of the population

expected to be found failed at inspection is

£(/Q=l-*"""'



and the portion of the population expected to be failed at a given point in time is

£(/0=l--^-(l-*-Wi).
Ai2

(A more detailed description is found in Appendices A and B.) The quantities are found for

different inspection intervals, T, and T2. The case where the percentage of the population

found failed at inspection, R, and the percentage of the population that is failed at a given

point in time, F, refers to different inspection intervals that will be of particular interest. The

two equations can be combined, eliminating the failure rate, X, so that the expected portion of

the population in a failed state at any given time is

K loge(l-E(R))

where K is the ratio of the new inspection interval to the previous inspection interval:

X~TJTV

This expression is used to relate the expected value of the percentage of the population in a

failed state at a given point in time, E(F), at the new interval, T2, to the expected value of the

percentage of the population found failed at inspection, E(R), at the earlier interval, T„ and to

the ratio of the new interval to the earlier interval, K.

It is important to remember that E(R) and E(F) are abstract quantities and have to be related

to quantities that are real and measurable. In much of the remainder of this report, that

relationship is developed in terms of R and F, which are real and measurable. Since E(R)

and E(F) are average values of some distributions, a limit which will be exceeded by the

percentage of the population that is failed at a given point in time, F, in no more than some

small percentage of all possible cases, must also be established. This limit, FUt sometimes

called the upper confidence or upper prediction limit is a function of the population size, N,



the percentage of the population found failed at inspection, R, and the probability that F is

greater than ¥v. The relationship, in effect, says, that F will exceed Fu (e.g., 5%) in no more

than a (e.g., 2%) of all cases and is equivalent to being (1-a) (e.g., 98%) confident that a

given quantity of units in service will not be in a failed state.

The derivation of the formula for ¥u is described in Appendix A. The derivations of some of

the variances used in Appendix A are described in Appendix B. The formulas to determine

the upper prediction limit and the new inspection interval along with the code for performing

the calculations and a few simple examples are described in Appendix C. The simulation

testing developed to study the performance of the formula for Fu is described in Appendix D.

The results of several simulation test runs appear in Appendix E. A possible approach to

choose and update the inspection interval is suggested in Appendix F. Additional comments

on the use of the formulas are given in Appendix G.

Note: When the expected value of the percentage of the population found failed at

inspection, E(R), is very small and the ratio of the current inspection interval to the previous

inspection interval, K, is moderate, an approximation of the expected value of the portion of

the population that is failed at a given point in time is:

E(F)*£E(K).

If a measured percentage of the population found failed at inspection, R, is substituted for the

expected value, E(R), in the above equation, the percentage of the population that is failed at

a given point in time, F, can be estimated and can provide statistical bounds for F based on

the percentage of the population found failed at inspection, R, usually, for a previous

inspection interval before the given time for F. (Graphical results for the upper prediction

limit in Section 7 when compared with the above equation evaluated in terms of R show

close agreement for a large population and deterioration as the population decreases. This

equation is offered only to show the approximate dependence involved and can be quite

inaccurate in many cases. Much more accurate estimates are discussed in Appendix A.)



6. SIMULATION TESTING

Determination of an exact formula for the upper prediction limit, Tv, specified in terms of the

population size, N, the percentage of the population found failed at inspection, R, the initial

inspection interval, Tt, the new inspection interval, T2, and the probability, a, that the upper

prediction limit will be exceeded by the percentage of the population that is failed at a given

point in time appears to be beyond the capability of current statistical techniques. However,

an asymptotic formula for Fv has been derived that works well when the number of failures

in the entire population, NR, is large. In this case, both the percentage of the population

found failed at inspection, R, and the percentage of the population that is failed at a given

point in time, F, tend to be normally distributed. (See Appendix A).

Though probability theory is useful for determining the form of the function for the upper

prediction limit, F0, when the number of units in the population found failed at inspection,

NR, is large, the theory is not capable of accurately determining the upper prediction limit

when the number of units in the population found failed at inspection is not large. Thus,

repeated simulations for determining the upper prediction limit in terms of population size,

the percentage of the population found failed at inspection, the current and new inspection

intervals, and the probability that the upper prediction limit will be exceeded, have been used

to predict the performance of the proposed asymptotic formula. Each simulation study (which

generates separate data on each unit of the population) is repeated many times (10,000 to

200,000) at each choice of the parameters.

Results of the simulation studies enable comparison between the excess of the percentage of

the population that is failed at a given point in time, F, greater than the upper prediction limit,
FUt for many representative choices of the other parameters and the probability, a, that F is
greater than Fu. Simulations can show the amount that F„ would have to be increased in
order to limit the exceedances to a of all cases when ¥v is not large enough. Conversely,

they can also show how much the proposed value for F„ could be decreased and still limit

exceedances to the desired level when Fy is too large.



The results of repeated simulation studies discussed in Appendix D show that as long as the

expected value of the percentage of the population found failed at inspection is not less than

1% and the population size is not less than 100, the formula appears to be satisfactory, being

too conservative in some cases and not conservative enough in others. The formula usually

errs on the conservative side and usually differs only slightly from the true upper prediction

limit, Fu, which is exceeded in exactly a of all cases.

7. TYPICAL RESULTS OF THE ANALYSIS

Graphical evaluations of the formula for the upper prediction limit are presented in two

different figures. Individual curves are plotted in both figures for a given upper prediction

limit and confidence level.

The curves in Figures 7-1A to 7-ID, each representative of a given population size, show

how the time interval ratio is related to the percentage of the population found failed at

inspection. For the hypothetical maintenance problem, the 12,000 unit population curve of

Figure 7-1A, redrawn as Figure 8-1, is used in the determinations of the inspection interval

required to limit light bulb failures and the allowable variation in the percentage of bulbs

found failed at inspection before the inspection interval is required to be changed.

In Figures 7-2A to 7-2H, two curves, evaluated for different inspection interval ratios, are

plotted to relate the percentage of units found failed at inspection to the population size. The

inspection interval ratios are selected to establish the boundaries limiting the region at the

allowable variation in the percentage of bulbs found failed at inspection in the hypothetical

maintenance problem.
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8. SOLUTION RESULTS APPLIED TO A HYPOTHETICAL MAINTENANCE
PROBLEM

A 12-story building illuminated with 1,000 light bulbs on each floor serves as an example of

the application of the statistical procedure of inspection and repair to maintain a given

percentage of the bulbs in service. The goal is to permit, with 95% confidence, that no more

than 5% of the bulbs are to be failed at a given point in time.

In Stage 1, all 12,000 light bulbs arc divided into 12 groups. The routine calls for all of the

bulbs to be inspected in a given regular uniform, floor- by-floor, sequence. A different group

is inspected each month during the 12-month inspection interval. Bulbs found failed are

replaced, but the number of bulbs found failed is not recorded. The amount of time to

inspect all of the bulbs in the in-service population is the same as the inspection interval for

each bulb.

In Stage 2, the number of failures in each group, recorded for the 12-month inspection

interval, is shown in the first column of Table 8-1. The results arc tallied at the end of each

month and at the end of the inspection interval. Of the entire in-servivc population of bulbs,

1800 bulbs (i.e., 15% of the population) are found failed and replaced.

According to Figure 8-1, the goal of 5% can be reached when the inspection interval is

reduced by a factor equal to the inspection interval ratio, K=0.59. The new inspection

interval (in months) is selected to be (T2=KT,=0.59 x 12=7.08 months) 7 months. When

monthly inspections are conducted for this new inspection interval, the inspection interval

ratio for K=l (since inspections now are set to occur at a fixed interval) determines an upper

bound of 9.1% for the percentage of bulbs found failed at inspection, R, that corresponds to

5% for the upper prediction limit of bulbs in a failed state at a given point in time.

The second column ofStage 2 shows the same number (1800) of failures rearranged for the 7

groups needed to inspect the bulbs in 7 months. The new group size consists of about 1714
bulbs which are located on the equivalent of 1 5/7 floors.
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Inspection Stage

Inspection Month 1 2

1 141

2 138

3 152

4 126

5 158

6 139

7 163

B 161

9 157

10 174

11 137

12 154

TOTAL
.

1800

Inspection Stage

Inspection
Month 2 3 4 5

1 240 249 152 153

2
245 226 164 147

3 250 203 152 158

4 259 181 145 163

5 274 163 147 158

6 280 149 164 165

7 252 137 132 172

TOTAL 1800 1308 1056 1116

Table 8-la. Failures Within 12 Groups Table 8-lb. Failures Within 7 Groups of
of Equal Size for an Inspection Nearly Equal Size for An Inspection
Interval of 12 Months. Interval of 7 Months.

TABLE 8-1. DEFECTIVE BULBS FOUND AT MONTHLY INSPECTIONS IN A

FIXED POPULATION OF 12,000 BULBS
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In Stage 3, the inspection interval changes from 12 months to 7 months. Inspections are

conducted according to the new group size. At each monthly inspection, the time interval of

inspection for bulbs not yet inspected in Stage 3 decreases by 5/7 month. At the end of the

first monthly inspection, 1 5/7 floors are inspected while each of the previous 10 2/7 floors

have not been inspected for 10 2/7 months representing an inspection interval for the entire

population of bulbs of 11 2/7 months. Each successive monthly inspection represents another

5/7 month decrease in the interval until, at the end of 7 months, the 12-month inspection

interval is reduced to 7 months.

In the meantime, the data collector needs to be aware of the change of the number and

location of bulbs to be inspected in each new group. At the end of Stage 3, the data collected

show that 10.9% of the bulbs were found failed at inspection.

During Stage 4, the percentage of bulbs found failed at inspection decreases to the upper

bound of 9.1% (determined earlier) that corresponds to the upper prediction limit of 5%. At

the end of stage 4, data indicate that 8.8% of inspected bulbs were found failed and did not

exceed the upper bound or the upper prediction limit. Thus, the 5% goal was reached within

14 months of the change of the inspection interval from 12 months to 7 months. In

subsequent inspections, the data collector continues to calculate the percentage of bulbs found

failed at inspection in order to determine when an update is required and how the interval

should be changed.

When the new inspection interval of 7 months was selected, the maintenance department also

allowed the percentage of the bulbs found failed at inspection to vary by 1.3% before

requiring an adjustment of the inspection interval. The upper bound on the percentage of the

bulbs found failed at inspection for the 7-month inspection interval, as discussed earlier, was

not to exceed 9.1%. Therefore, the percentage of bulbs found failed at inspection could vary

between the upper bound of 9.1% and a lower bound of 7.8% without requiring the inspection

interval to be changed. When the percentage of the bulbs found failed at inspection becomes

less than the lower bound, the new inspection interval should be increased. According to

Figure 8-1, the lower bound corresponds to an inspection interval that has increased in
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proportion to the inspection interval ratio (K=T/T,=1 1/6) to a new inspection interval
(T2=KT,=8 1/6 months). Thus, each 1.1% increase in the percentage of the population found
failed at inspection corresponds to about a 1-month decrease in the inspection interval.

In Stage 5, the percentage of bulbs found failed at inspection increases to 9.3% and exceeds
the upper bound. The inspection interval must be decreased to keep the percentage of bulbs

found failed at inspection within the "no change" bounds shown in Figure 8-2. Decreasing

the inspection interval by 1 month to 6 months should reduce the percentage ofbulbs found

failed to 9.3%-l.l%=8.2% in two inspection intervals (i.e., 1 year) and keep the failures

within the bounds of "no change."

On occasion, phase-in may have to be more gradual. If the reduction to achieve the target of

7 months were limited to 1-month increments of the inspection interval, phase-in would

require 52 months. Five intervals (of 11 months, 10 months, 9 months, 8 months, and 7
months) totalling 45 months could be required for Stage 3, and Stage 4 could take an

additional interval of 7 months.

Table 8-1 uses fictitious data to illustrate phase-in. Although the processes of transition from

one interval to another and the transition to a performance goal can be described simply in

general terms, the detailed timing involved and, especially, the effects on the statistical
behavior of the percentage found failed at inspection, R, and the upper prediction limit for the
percentage failed any time, FUt are complicated and not addressed fully in this paper. The
percentage of the population found failed at inspection and the upper prediction limit are
assumed to behave intermediately between the old and new inspection intervals. The failure

data for the monthly inspections have been adjusted to show how these values might respond
to adirect change in the interval from 12 months to 7 months at each monthly inspection.
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9. LIMITATIONS

The procedure discussed in this paper is intended for use in adjusting inspection intervals in

order to control the percentage of the population that is failed at a given point in time. The

procedure tends to be more satisfactory for large populations and relatively less satisfactory

for small populations for two reasons:

1. For very small populations of less than 100 units, the analytical techniques break

down and fail to sustain the accuracy of the formula. The formula was developed

using asymptotic techniques which are good for large populations and robust for

intermediate populations. For very small populations, the formula ultimately fails to

estimate the upper prediction limit of the percentage of the population that is failed at

a given point in time.

2. Even if the formula were exact in its prediction of probabilities for very small

populations, a small population size, still, requires more frequent inspections to

overcome the loss of statistical precision in evaluating the percentage of the population

that is failed at a given point in time and the high probability that this percentage not

exceed the upper prediction limit by a certain amount.

(Sec also Apppendix G.)
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APPENDIX A. DERIVATION OF THE FORMULA FOR F„

The purpose of this section is to derive the formula for the upper prediction limit Fv for F. There
are three major aspects to this derivation; agood point estimate or mean, agood prediction band
based on the various sources ofvariation, and simulation testing ofthe prediction limit and level.

First, recall the meaning of F and of its prediction limit. F has meaning in a given population
at a given time and represents the fraction of units that would be found failed ifall units were
to be examined simultaneously. Conversely, (1-F) is a measure of "availability." F is never

measured, although it is an actualized or potentially measurable quantity. Instead, the fraction,
R, found failed at inspection, is observed. In one inspection cycle of interval, T, every unit is
inspected exactly once. All units are assumed to be inspected with the same delay, T, so that
the units arc always inspected in the same order and each unit, when it is inspected, was last
inspected and repaired Tunits of time before. (The failure times are assumed independent and
exponentially distributed. All units are assumed repaired and restored to initial conditions when

found failed at inspection.)

Now, let us find a prediction limit for F in an inspection interval, T2, based on the value of R

observed in an earlier inspection interval, T,. Then,

E(R)=l-e'XT'

and,

2 O 2

(Sec Appendix B for more details.)
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Combining the two equations,

E(F)=l 1-(!-£(/?))*
K log,(l -£(*))

where,

*~TJTV

That is to say E(F) is related to E(R) and K through the function F(x,y) by the equation:

E(F)=F(E(K),K)

where,

y loge(l-x)

Let oF denote the standard deviation in F, that is,

oF=jE(F2)-(E(F))2.

NF is actually the sum of N Bernoulli (zero-one) random variables, X„ where E(Xj)=pj. Then,

the expected value of the number of units of the population in a failed state is,

N N

N £(F)=££(x,)=2>,
m i-i

where,

i -it,

A-2



and, the expected value of the fraction of the population in a failed state is,

N

'20

Since the X;'s are independent,

N

l=A72„2=1

i-1

Thus,

°F=

The result is

2„(l-e'X7i)-.5(l-g~2"*)
oF*

NkT2

Since,

E(K)=l-e~kT\

we have

XT2=-K loge(l-E(R)).
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So,

Np

where,

p=-tflog,(l-*(*))•

Now let,

F=E(F)+oFl,

Then, if NF is large, |F is approximately normally distributed with mean zero and variance one.

Similarly, if RN is large and,

where, (see Appendix B),

aR=y/E(mi-E(R)W

then, |R is approximately standard normal as well.

Since F(R,K) has derivatives of all order in R, then, using the Taylor series expansion,

F(RtK)=F(E(R)J0+F\E{R)tK)oR^O(j^

where, F'(E(R),K) denotes the derivative of F(E(R),K) with respect to its first argument and
0(1/N) denotes, unspecifically, terms of order 1/N.
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Therefore,

F-FiRJfO^-F'iEdO^a^a^-CKJ^.

Consequently,

F-F(R,K)=or)-0(±)«or\
N

where, T| is a standard (mean zero, variance one) normal random variable and,

o=Vo£+(F'(E(*),tf))2o£.

Therefore, when N is large,

PriF>F(R,K)+Zao)»a.

Where Z„ is a standard normal deviate, i.e., if X is any standard normal random variable, then

Z„ is a quantity such that Pr(X>Z„)=a. Consequently, Pr(T)>Za)=a and since T|=(F-F(R,K))/o\

we can say that Pr((F-F(R,K))/o>Za)*a. From this argument, the expression given above follows

immediately. (For values of Zu, see Appendix C.)

If E(R) is known, a and then consequently, Fu, an upper prediction limit for F, can be found.

Since terms of the order 1/N in the calculation of the prediction limit are neglected and noting

that a is of the order of 1/NW, E(R) is also approximated in the expression for o. Substitution of

R for E(R) for the upper prediction limit would still be approximately correct for large N.

However, the upper prediction limit would err on the low side since,

F^FiRJQ+Zj
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and o would become a function of R. Variations in R would underestimate o, at times, leading

to an increased incidence of F exceeding Fy. However, if

R^R+Z^R(l-R)/N

is substituted for E(R) in o, a conservative estimate of Fv can be found. (For values of Zp see

Appendix C.) More precisely, Rp is substituted for E(R) in the expressions for oR and oF, and R

is substituted for E(R) in F'(E(R),K) since the latter quantity decreases with E(R).

Note that Rp is itself in the form of a confidence limit for R. For small values of Zp this is a

mildly biased estimate of R. For larger values of Zp it becomes a strongly biased estimate

(almost surely an overestimate) or strongly conservative (safely pessimistic) estimate of R. Only

simulation can determine the value of Zp to use with each value of a. This is dealt with in the

sections on simulation.

Note that F'(R,K) can be approximated adequately by

J^w,AF,w^a^)-n«-3a^ where 6 [7
AR 6 \ N

Therefore, the final expression for the upper prediction limit is

F^FiRJO+Z^SJ+iAFIARfSi

where,

S$=V(p)with p=-Kloge(l-R9)
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and

Si'Rfi-RflN.

As N approaches infinity, Fu becomes an exact upper a prediction limit. The error goes to zero

faster than the offset, Fu-F(R,K).

The results of somesimulation runsappear in Appendix D and suggest that thisexpression, when

applied to calculate an upper 0.975 prediction limit, is nearly always conservative if Zp is chosen

to be 2.5. The formula and its performance are not very sensitive to this parameter. Further

simulations suggest that Zp values of 2.1, 2.2, and 2.3 for a=0.05, 0.03, and 0.02 respectively,

work satisfactorily.

Note: R is the number of failed units divided by N. When no units fail, a slight modification

(see Appendix C, Step 2) works better and is reported in "Experimental Statistics" by

Mary Natrella, National Bureau of StandardsHandbook 91, 1963. In such a case, instead

of R=0, R=0.25/N is used. This modification, ascribed to Bartlett, who proposed it in

a different context, improves performance in the simulation. Bartlett's modification also

calls for a symmetric treatment of the symmetric case when all units fail. The full

Bartlett modification should be used considering that failure of all units is unlikely to ever

occur.
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APPENDIX B. DERIVATION OF VARIANCE FORMULAS

Let D, denote the number of units which fail between inspections. Then,

i-i

where X; equals 1 if unit i fails between inspections and Xj equals 0 if unit i does not fail. Then,

E(X.)=Pr(vM)=l-e-«;

where T is the inspection interval and X is the failure rate. Then Dj is binomially distributed

Bin(n,p) with n=N and p=l-eXT. We denote D,/N by R. Then,

D <£*«>
m-E^-^-l-e-".

Now,

aR^E(R2)-(E(R))2^E(R)(l -E(R))/N.

Since the X;'s arc independent and.

we have

NR=£Xt
»»

N

VAR[NR]=N2a2R=Y: o\.
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Since X= is a Bernoulli or binary random variable we have

a2Xi=E{X)(l-E(X))

and

N N

E <=EW -£W-*fl -«"">
M M

Then,

2_(l-g-Ar)g-XT_£(/?)(l-g(/?))
°R=

Next, let Dt be the number of in-service units which are in a failed condition at some specific

time. Then,

N

c*>,=£*«.

where X, = 1 if unit i is failed at the given moment in time. Then,

XI,E(X.)=Pr(X,=l)=l-e A\

where t, is the amount of time since the last inspection of unit i. Since this is a uniform

inspection, unit i will not have been inspected for an approximate interval of time of (i/N)T.

Here, as a convenience (without loss of generality), we take the units as being numbered with

the most recently inspected having the lowest numbers. Therefore,

£(!>,)=££(*,)=£ (1-e N ).
m i=i
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We approximate the sum by the corresponding integral,

D i N -i-ir , Tr

Actually, the integral is more accurate than the sum since the exact time that unit i was inspected

is not exactly (i/N)T but is distributed between (i/N)T and ((i-l)/N)T, which the integral reflects.

Denote D/N by F. Then,

E(F)=E&~U(l-e-")dt=l-«^.
N Ti XT

Since

tf£(F) =£(£>,)=£ £(*,),

then oP2=E(F2)-E(F)2 is obtained in a similar way used to get oR2, so that

/v 1=1 N i-i

After substitution,

4«-^/d -e "^(1(1 ~e -kt))dt=^-f(e -Xt-e *»&
NT{ JVTJ
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to yield

2 (l-*-**)-^!-*'2*1)oF«
NXT

Note that if R refers to a given inspection interval of duration T, while F refers to a separate

inspection interval of duration T2 then we may solve the expression for R for X. Since,

-xt -logXl-EiR))E(R)=l-e "• we have X=—^ \JL.

Thisexpression for X, then, may be substituted intoexpressions for E(F) andoF and will be used

in further developments.
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APPENDIX C. DETERMINATION OF F„ AND T2

In this section, the formula for Fu is applied in examples to demonstrate the calculation of an

upper prediction limit and a new inspection interval. Both types of calculation are implemented

in a BASIC program listing that is also included. Representative graphical evaluations are found

in Section 7 to permit a rapid and approximate determination of Fv and T2.

C.l Procedure to Calculate Fv

The following procedure outlines the steps required to calculate the value of Fu, the upper

prediction limit.

Step 1. Determine the values of the following quantities:

N The population size

D The number of units in the entire population which were found defective in one

inspection cycle

T, The length of the inspection cycle in units of time.i.e., the original inspection

cycle - when D was measured

T, The length of the new inspection cycle related to F

Step 2. Calculate R as follows:

If D>0 and D<N then, R=D/N (the usual case)

If D=0 then, R=.25/N (no defects, an unusual case)

If D=N then, R=l-.25/N (should never happen, included for

completeness)
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Step 3. Calculate K:

K=TJTX

Step 4. Calculate the conditional expected value ofF:

1-(1-R)K
F(/U0=1 Kloge(l-R)

Step 5. Calculate value of Za:

If a=.05, then Za=l.644854

If a=.03, then Za=l.880794

If a=.02, then Za=2.053749

Za is determined by the normal distribution in the following familiar way: If Xis a standard
normal random variable with mean=0 and variance^, then Pr(X>ZJ=a (see Figure C-1).

Step 6. Determine value of Zp by a:

If a=0.05, thenZp=2.1

If a=0.03, then Zp=2.2

If a=0.02, then Zp=2.3

These values arc determined by simulation and arc not nearly as critical as the values of Zu.

Step 7. Calculate the compensated value of R for use in parts of the formula:

R*=R+Zi
* *\ N

R(l-R)
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Step 8. Calculate an estimated derivative of F(R,K):

AF F(R+.56JQ-F(R-.5&JQ whgre 6
AR 6

Step 9. Calculate the point estimate of the variance in F:

5p=K(p), where p=-K loge(l--Rp),

and

Np

Step 10. Calculate the point estimate of the variance in R:

S>
N

Step 11. The complete formula for Fv is:

Fu=F(/?,iO^Ze
>
s^fsl

R

N

Note: IfR is very small and N is sufficiently large, then the above formula is well approximated

by:

Vf+z.,
2JV 2 N
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This latter estimate should not be used for calculation because it can be much less accurate than

the formula given in Step 11 and is intended only to be a rough and qualitative indicator of how

the more accurate formula behaves as a function of its arguments when R is small.

C.2 Procedure to Calculate T2

The following procedure outlines the steps required tocalculate the value ofT2, a new inspection

interval given D, N, Fv, and a.

The problem is how to determine T2 when a desired value for Fv is given. This value will be

referred to as FT, the target value. The formula, given in Step 11, is solved for K. A value of

T, is found with the equation, T2=KT,. To solve for K we proceed iterativcly as follows:

Step 1. Choose an initial value for K, such as K=l.

Step 2. Calculate Fv using the formula of Step 11, above, and the assumed value for K

or the current best value.

Step 3. If FT/Fu is very close to 1 so that l(FT-Fu) l/Fu^O.001, then the calculation is

complete and the current value of K is the solution.

Step 4. Otherwise, adjust K by the following formula: New K = Old K*(F1/FU), then go

back to Step 2. Iterate through Steps 2, 3 and 4 as many times as necessary to

bring the ratio, Fy/F^, satisfactorily close to 1. The resulting value of K is the

ratio of T2/T,, where T, is the old inspection interval and T2 is the length of the

inspection interval which results in the specified (or target) value, FT of Fv.
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C.3 A BASIC Program to Calculate F„ and K

This section is devoted to a description of how to use a BASIC program to calculate Fv and K.

Fu is calculated as a function of N, R, K, and a. K is calculated as a function of FT, N, R, and

a. The program is listed in Figure C-2. It is written in Quick Basic and is readily converted to

any other dialect of BASIC. Since it requires a simple numerical calculation with only minimal

keyboard input and output, it is also easily converted to FORTRAN, C, or Pascal. (The program

prompts twice for keyboard entry of numerical inputs.)

The following numerical examples illustrate the procedures to calculate the values of the upper

prediction limit and the new inspection interval. Examples 1 and 2 show how respective values

for Fy and K are calculated. Example 3 shows the inverse relationship between the calculations

of Fy and K.

Example 1. Given the following values: N=1000, R=0.05, K=1.5,

a=0.03, determine F0 based on the procedure to calculate the upper prediction limit.

First, determine Za and Zp with a by Steps 5 and 6 of the procedure in Appendix C.l. For the

value of a=0.03, then Za=1.880794 and zp=2.2.

Now, run the QuickBasic Program for calculating FU( When asked if the user wants to calculate

F^ orK, enter 1 to request the former (as directed by the prompt). After the second prompt asks

for R, N, K, Z„, and Zp, enter their respective values: 0.05, 1000, 1.5, 1.880794, and 2.2. The

result is Fu=0.05432.

Example 2. Determine the inspection interval ratio using R-0.1, N=300, F.j^O.05, Z„=l.644854,

and Zp=2.1. (Za and Zp are evaluated for a=0.05. See steps 5and 6of Appendix C.l.)

Run the Quick Basic Program to calculate Kby entering 2at the first prompt. At the second
prompt, enter the foUowing values: 0.1, 300, and 0.05, respectively, for R, N, FT, as well as the
values ofZu=l .644854 and Zp=»2.1. The result is K=0.56256.
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FIGURE C-2. QUICK BASIC PROGRAM FOR CALCULATING K OR F„

DECLARE SUB FFNL (XXPI, KXP!. FXP!)

Ro0.1: N=100: T2=1: ZA=1.645: ZBo2.5: FT=0.05: RN=1.2: EP=0.00001

PRINT

ST:

PRINT "ENTER 1 IF YOU WANT TO CALCULATE FU; ENTER 2 IF YOU WANT TO CALCULATE K";

INPUT IC

IF IC=2 THEN

PRINT "INPUT R, N, FT, ZA, ZB"

INPUT R, N, FT, ZA, ZB

KR=1

GOSUB SOLV

PRINT "K="; KR

END

ELSE

IF IC o 1 THEN GOTO ST

PRINT "INPUT R, N, K, ZA, ZB"

INPUT R, N, KR.ZA, ZB

GOSUB FUF: PRINT "FU="; FU

END IF

END

SOLV:

ITT:

GOSUB FUF

RF=FT/FU: KR=KR*RF

IF RF <1-EP OR RF>1+EP THEN GOTO ITT

RETURN

END

UT: PRINT "X"; ITS; KR; FUU; JN; N

PRINT #1,N, KR

CLOSE

END

FCC:

FU=1-((1-RU)AKU-1)/(KU*LOG{1-RU))

RETURN
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FIGURE C-2. QUICK BASIC PROGRAM FOR CALCULATING K OR F„ (Cont)

FUF:

DP = SQR (R*(1-R)/N)

RB=R+ZB*DP

CALL FFNL (R, KR. FF)

RLT=-KR*L0G(1-RB)

VF=((1-EXP(-RLT))-0.5*(1-EXP(-2*RLT)))/RLT

DP=SQR(R*(1-R)/N)

PU=R+DP'0.5

PL=R-DP*0.5

CALL FFNL(PU, KR. FUU)

CALL FFNL(PL, KR. FUL)

DF=(FUU-FUL)/DP

FU=FF+ZA*SQR((VF+RB'(1-RB)"DF'DF)/N)

RETURN

SUB FFNL (XXP, KXP, FXP)

U=XXP: KR=KXP

FXP=1-((1-U)AKR-1)/<KR*LOG(1-U))

END SUB
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Example 3. To demonstrate the relationship between the calculations for F0 and K, data from

example 2, used to calculate K, will be used to find the value of F^

Respond with 1to the first prompt to request calculation of F„. Enter the specified values of
R, N, Za, and Zp, along with the computed value of K=0.56256, all found in example 2. The
output value of F0 is the same as the input value of 0.05 for FT in example 2and shows that
the two types ofcalculation performed by this program are the inverse ofeach other.
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APPENDIX D. SIMULATION TESTING OF THE FORMULA FOR F„

This appendix describes a simulation developed to study the performance of the formula for

Fy. Although the formula is compensated for the effect of finite sample size, its form was

derived under ideal conditions assuming that the sample size is sufficiently large not to

require compensation. It is common practice to derive an expression that is proved to be

accurate asymptotically, e.g., as the sample size goes to infinity, and to use that expression

with the expectation that it will be approximate, yet sufficiently accurate, in non-asymptotic

cases when the sample size is finite. It is necessary to know for what ranges of parameters,

especially, for the population size, N, that the formula remains accurate. The simulation must

be faithful and based on a model with the exact characteristics, e.g., constant failure rate, etc.,

of the conceptual model.

The simulation is constructed according to the following procedure:

First, prescribe values for the four parameters: N, the size of the population being simulated;

E(R), the expected value of R; T„ the length of the inspection interval when R is observed;

and T2, the length of the inspection interval when F is to occur.

Next, determine values of R and F by different independent simulations. R is determined by

N

E*<
*=-M

N

where each X; is an independent binary random variable indicating that unit i failed (Xj=l)
between inspections or did not fail (X;=0). Thus, R is simulated by taking the sum ofN

independent binary random variables and dividing the sum by N. Each X-t is simulated by
adding a 1 with probability E(R) and a zero with probability 1-E(R), i.e., Pr(Xi=l)=E(R).
Recall (from Appendix B) that E(R) and Xare related by
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E(R)=l-e'k\

F is determined in a separate simulation in a similar manner with some important differences.

F is also of the form,

N

E*
jr=-M

N

where each Xj is an independent binary random variable; however, each Xs does not have the

same probability of taking the value 1. The units are numbered in the order in which they are

inspected. (i=l indexes the first unit inspected; i=N indexes the last unit inspected.) Then,

PriX^l)=l-c N*

where d is a number between 0 and 1. The value of d has very little to do with the outcome

since, on the average, i is of the orderof N/2, but for completeness, a single random value is

assigned to d each time F is simulated. Now, both R and F have been generated using

standard statistical programming techniques.

Next, the value of the upper prediction limit is determined by the formula for Fu (sec

Appendix A). For given values of N, E(R), T„ and T2, many independent pairs of R and F
arc generated, each in the manner described above. The number of independent complete

simulations will be denoted by NSIM.

Based on the simulations, two statistics, aJt and q, are calculated.

For very large values of NSIM, the observed fraction, as, the fraction of cases where F
exceeds Fu, approaches the true value of a for the given parameters.
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The qth quantile from the top is the largest value of (F-Fy) which determines the fraction q.

In the cases presented, q is the intended fraction of cases where F exceeds Fv and is the

intended value of a. The qth quantile value is, then, the amount by which Fu would need to

be increased for it to actually be an a upper prediction limit on F.

The following three steps are used to perform the simulation: (1) choose 3 values for N, 3

values for T2, and 3 values for E(R) with T, fixed at 1 without loss of generality; (2) at all 27

combinations of values of these parameters, simulate NSIM pairs R, F with NSIM chosen to

be greater than 10000, preferably, 100000; and (3) calculate the two statistics, a, and q, to

summarize the run at each combination of parameters.

Table D-1 presents the results of some simulations. For each case represented in this table, a

is 0.025. Zp is taken to be 2.5. (A somewhat smaller value is examined for this case in

Appendix E.) NSIM is 80000 which means that each line in the table reports on 80000

separate simulations.

Note that the last three of seven columns in Table D-1 indicate the three input parameters.

Columns 5, 6, and 7 list T2, E(R), and N, respectively, for each of the 27 cases. The results

are listed in the first four columns.

Column 1 contains the most important result, the value cts, i.e., the observed fraction of NSIM

cases in which F exceeds Fu. The goal is to obtain a conservative upper a prediction limit

a=0.025. The value of the fraction should be less than 0.025 in most instances. In this run,

there was only one exception.

Column 2 gives the 0.025 quantile of Fu-F and is positive except in cases where the first

column exceeds 0.025. A positive value indicates the amount by which Fv exceeds the 0.975

upper prediction limit of F. Since the absolute numerical value of the 0.025 quantile is

always small, it appears that the formula for Fy-F, although conservative, is not causing F„ to

be too large by an appreciable amount for the cases considered. Negative values in column 2

indicate the cases where Fy falls short of being conservative and (in their absolute value) the
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amount by which Fv would need to be increased to make it conservative. There is only one
such case in this run and the amount (1.5 X 10-4) is negligible.

Columns 3 and 4give the average values of(Fu-F) and ofFu, respectively. The average
value of (Fu-F) is especially interesting since it shows by how much the observed value of F

is increased, on average, to produce the prediction limit and is an indication of the necessary
cost of conservatism. We have referred to this as the confidence margin. This indicates the

amount by which the upper prediction limit exceeds the mean average value.

Table D-2 is similar to Table D-1. The values of Z„ and Zp are the same, 1.96 and 2.5,
respectively. Other parameters are somewhat different. The values of N are 200, 600, and

1800. The values of E(R) are 0.01, 0.03, and 0.09. The values of T2 are 0.5, 1.0, and 2.0.

The number of repetitions ofeach case is 200000. Table D-2 shows that the formula yields

conservative values for F„ for all values of the three variable parameters considered. In no

case did the value in column 1 exceed 0.025. Comparison of column 2 with column 3, as in

the case of Table D-1, can show that if the formula is modified into an exact upper prediction

limit the modification will be small. (The extent of the modification to column 2 will be

small compared to the average amount by which Fv already exceeds F in column 3.)
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TABLE D-2. SIMULATION RESULTS

a-.025 Z = 1.96 ZB= 2.5 NSIM = 200,000

Observed Fraction .025 Quantile Average Value Average Vali ie Ta E(R) N

Exceeding Limit of (Fu - F) of(F0-F) ofFu

0.02008 0.003136 0.03056 0.04060 2.00 0.0100 200

0.01774 0.001923 0.04527 0.07503 2.00 0.0300 200

0.01835 0.003807 0.06584 0.15403 2.00 0.0900 200

0.01922 0.000722 0.01552 0.02552 2.00 0.0100 600

0.01974 0.001394 0.02369 0.05348 2.00 0.0300 600

0.02043 0.001417 0.03541 0.12420 2.00 0.0900 600

0.01880 0.000481 0.00811 0.01805 2.00 0.0100 1800

0.02018 0.000496 0.01264 0.04251 2.00 0.0300 1800

0.02159 0.000583 0.01961 0.10822 2.00 0.0900 1800

0.01646 0.000992 0.01899 0.02398 1.00 0.0100 200

0.02193 0.000202 0.02829 0.04345 1.00 0.0300 200

0.02019 0.002239 0.04296 0.08872 1.00 0.0900 200

0.02214 0.000113 0.00961 0.01461 1.00 0.0100 600

0.01910 0.000948 0.01480 0.02988 1.00 0.0300 600

0.01997 0.001161 0.02314 0.06883 1.00 0.0900 600

0.02042 0.000244 0.00497 0.00999 1.00 0.0100 1800

0.02106 0.000298 0.00789 0.02298 1.00 0.0300 1800

0.02231 0.000316 0.01276 0.05844 1.00 0.0900 1800

0.01643 0.001481 0.01230 0.01482 0.50 0.0100 200

0.02000 0.000358 0.01862 0.02621 0.50 0.0300 200

0.02096 0.001180 0.02885 0.05206 0.50 0.0900 200

0.01953 0.000126 0.00622 0.00874 0.50 0.0100 600

0.02050 0.000641 0.00969 0.01727 0.50 0.0300 600

0.02058 0.000692 0.01541 0.03863 0.50 0.0900 600

0.02087 0.000141 0.00322 0.00574 0.50 0.0100 1800

0.02255 0.000154 0.00516 0.01273 0.50 0.0300 1800

0.02266 0.000195 0.00843 0.03166 0.50 0.0900 1800

D-6



APPENDK E. RESULTS OF SEVERAL SIMULATION TEST RUNS

This appendix reports on several simulation runs of the type introduced in Appendix D. Each

run of the simulation program is represented by a separate table. Each table is headed by a

statement of the value of a and the two quantities, Z„ and Zp, which depend on a and apply

to all the simulation runs represented by the table. The values of Za and Zp are as determined

in Appendix C.

Each row represents 80,000 complete simulations under the conditions stated in the last three

entries in the row for T2, E(R), and N, respectively, similar to the entries in Table D-1 in

Appendix D. The first four columns are also as described in Appendix D, with the exception

of different values for a. The first column contains the actual proportion of the 80,000 runs

in which F exceeded Fu and is the quantity which should be less than a. Column 5 contains

an entry, not given in Appendix D, for the average value of F.

Note that in the tables of this appendix, the third, fourth, and fifth columns contain the

average values of Fv, (Fu-F), and F, respectively, and that columns 4 and 5 add up to the

corresponding value in column 3. Also, it may be noted that the values of Zp, here, are

generally smaller than those in Appendix D and, so, somewhat more of the cases show a

proportion of exceedances (column 1) in excess of a. However, the amount of change in Fv

needed to produce an exact a prediction limit (column 2) is small compared to the average

value of F (column 5) in nearly every case. Therefore, the somewhat less conservative values

are recommended for use in this appendix and in the section describing the calculations. A

slightly larger value of Zp, however, could be used and should result in a more conservative

upper prediction limit which would differ little from that examined here.

E-l
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TABLE E-3. SIMULATION RESULTS

a =.05 Z„ =1.64485 Zp =2.1 NSIM =80,000

1 2 3 4 5 6 7 8

Observed Fraction

where F exceeds

Fu

.02 Quantile

of (Fu - F)
Average value

ofF0
Average value

of (F0 - F)
Average value

ofF T2 E(R) N

0.02727 0.008788 0.04911 0.03923 0.00987 2.0 0.010 100

0.04287 0.008788 0.05857 0.04368 0.01489 2.0 0.015 100

0.04808 0.000008 0.06760 0.04761 0.02000 2.0 0.020 100

0.04364 0.005911 0.03940 0.02934 0.01006 2.0 0.010 150

0.04784 0.000213 0.04852 0.03343 0.01509 2.0 0.015 150

0.04134 0.000213 0.05713 0.03714 0.01999 2.0 0.020 150

0.04749 0.000247 0.03436 0.02434 0.01002 2.0 0.010 200

0.04449 0.000247 0.04315 0.02816 0.01499 2.0 0.015 200

0.04025 0.000247 0.05127 0.03129 0.01998 2.0 0.020 200

0.03726 0.007419 0.02921 0.02422 0.00499 1.0 0.010 100

0.05272 -0.000186 0.03467 0.02710 0.00758 1.0 0.015 100

0.05733 -0.000186 0.03987 0.02990 0.00997 1.0 0.020 100

0.05150 •0.000065 0.02325 0.01827 0.00498 1.0 0.010 150

0.05916 -0.000065 0.02839 0.02090 0.00749 1.0 0.015 150

0.05541 -0.000065 0.03327 0.02329 0.00998 1.0 0.020 150

0.05889 -0.000026 0.02012 0.01516 0.00496 1.0 0.010 200

0.05476 -0.000026 0.02501 0.01753 0.00749 1.0 0.015 200

0.04480 0.000657 0.02957 0.01964 0.00993 1.0 0.020 200

0.01949 0.001100 0.01822 0.01576 0.00246 0.5 0.010 100

0.03221 0.001100 0.02149 0.01771 0.00377 0.5 0.015 100

0.04127 0.001100 0.02456 0.01957 0.00499 0.5 0.020 100

0.02030 0.005758 0.04949 0.04698 0.00252 0.5 0.010 150

0.03135 0.003631 0.03362 0.02987 0.00375 0.5 0.015 150

0.03810 0.003631 0.02776 0.02272 0.00504 0.5 0.020 150

0.02980 0.002732 0.05046 0.04793 0.00252 0.5 0.010 200

0.03721 0.002732 0.02934 0.02555 0.00379 0.5 0.015 200

0.03847 0.000583 0.02275 0.01772 0.00503 0.5 0.020 200

E-4
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TABLE E-6. SIMULATION RESULTS

a =.05 4=1.64485 Zp =2.2 NSIM =80,000

1 2 3 4 5 6 7 8

Observed Fraction

where F exceeds

F0

.02 Quantile

of (Fu -F)
Average value Average value
of Fy of (F0 -F)

Average value
ofF T8 E(R) N

0.02730 0.009282 0.04966 0.03977 0.00989 2.0 0.010 100

0.04091 0.009282 0.05919 0.04435 0.01484 2.0 0.015 100

0.04797 0.000621 0.06817 0.04816 0.02001 2.0 0.020 100

0.04290 0.006242 0.03995 0.02995 0.01000 2.0 0.010 150

0.04865 0.000631 0.04893 0.03392 0.01501 2.0 0.015 150

0.04302 0.000631 0.05753 0.03770 0.01983 2.0 0.020 150

0.04747 0.000565 0.03469 0.02471 0.00999 2.0 0.010 200

0.04465 0.000565 0.04347 0.02847 0.01500 2.0 0.015 200

0.03950 0.000565 0.05162 0.03166 0.01995 2.0 0.020 200

0.03296 0.007722 0.02957 0.02456 0.00500 1.0 0.010 100

0.03955 0.000202 0.03504 . 0.02761 0.00743 1.0 0.015 100

0.04025 0.000202 0.04031 0.03033 0.00998 1.0 0.020 100

0.04103 0.000197 0.02351 0.01849 0.00503 1.0 0.010 150

0.04024 0.000197 0.02878 0.02123 0.00754 1.0 0.015 150

0.03520 0.000197 0.03363 0.02356 0.01007 1.0 0.020 150

0.04181 0.000171 0.02032 0.01530 0.00502 1.0 0.010 200

0.03620 0.000171 0.02524 0.01774 0.00750 1.0 0.015 200

0.03191 0.000886 0.02982 0.01988 0.00994 1.0 0.020 200

0.02008 0.001293 0.01847 0.01597 0.00250 0.5 0.010 100

0.03171 0.001293 0.02173 0.01800 0.00373 0.5 0.015 100

0.04038 0.001293 0.02482 0.01985 0.00497 0.5 0.020 100

0.02104 0.005930 0.05059 0.04808 0.00251 0.5 0.010 150

0.03310 0.003822 0.03427 0.03051 0.00376 0.5 0.015 150

0.03755 0.003822 0.02809 0.02305 0.00505 0.5 0.020 150

0.02974 0.002876 0.05125 0.04874 0.00251 0.5 0.010 200

0.03819 0.002876 0.02944 0.02565 0.00379 0.5 0.015 200

0.03879 0.000735 0.02298 0.01792 0.00506 0.5 0.020 200

E-7/E-8





APPENDIX F. UPDATE OF THE INSPECTION INTERVAL

Within a given level of confidence a, the relationship that governs the upper prediction limit

of the percentage of the population in a failed state at a given point in time (after the new

inspection interval is established), F^, depends on the population size, N, the percentage of

the population found failed at inspection, R, and the previous and new inspection intervals, T,

and T2. In addition to determining the length of the inspection intervals, adjustment of the

new interval is required periodically to maintain or to change a given upper prediction limit.

When the procedure is instituted, the upper prediction limit and the initial inspection interval

may be based on past practice or some other reasonable engineering estimate. Data collected

during the initial inspection will determine the length of the new inspection interval, which

will remain in effect until replaced by a regular or emergency update. Procedures to monitor

the need to update arc in effect at all times and are outlined below.

The following is a possible suggested approach offered without further analysis to choose or

update the length of the inspection interval or the equivalent inspection frequency.

F.l Regular Update

A regular update is performed when two inspection intervals have been completed since (1)

the original calculation of the inspection interval, (2) the last regular update, or (3) the last

change in length of inspection interval resulting from an emergency update.

At a regular update, the length of the inspection interval in months (T2) is recalculated in

months (using the formula for Fv in Appendix C.l, Step 11) based on the data accumulated

during the most recent inspection interval, i.e., the most recent T2 months.

F.2 Emergency Update

At each monthly inspection, the percentage of units found failed during the four most recent

monthly inspections should be reviewed. An emergency update should be performed when
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the percentage found failed for those four inspections R4 is greater than

WZY
\ *4

where,

R4 is the percentage found failed in the last 4 months,

N4=4N/T2 is the number of units inspected during the 4-month interval,

R0 is the percentage R estimated at the last update and,

Zy is a standard normal deviate to be chosen (sec Notes 1 and 2 below) so that emergency

updates caused by random variations are rare,

The emergency update should consist of three steps:

1. Recalculate the length of the required inspection interval based on data from the

inspections performed during the latest T2/2 months.

2. After 6 additional months, recalculate the length of the inspection interval based on

the latest 12 months of data.

3. Resume monitoring the criterion for an emergency update and await the next regular

update.

Note 1: The quantity, y, to use in determining the standard normal deviate, Zr is still to be

determined (possibly with the use of simulations). Some "back of the envelope"

analysis suggests that Y»l/(4n) may be a good value to try in the simulations.
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Note 2: An emergency update should not be performed when the procedure calls for

lengthening the inspection interval. Further, all increases in inspection interval at

regular updates should be for only half the indicated amount.

Note 3. The formula for calculating the new inspection interval may be used in

circumstances where, unlike those circumstances in Appendix C, different amounts

of data, based on other than one observation for each unit in the population, is used

to determine the percentage of units found failed at inspection. It can be based on

QN observations where Q may be greater or less than a significant fraction of 1.

If, during the inspection interval T„ the data collected over a fraction of the time

interval of QT, is to be used, the total number of observations for failure is QN. In

this case, N is replaced by QN in the calculation of SR. (Therefore, all calculations

except Step 10 in Appendix C.l remain unchanged.) The derivation of the formula

for the case when Q is not 1 is changed only by the substitution of QN for N.

Note that the simulations of Section 5 and the appendices all refer to the case Q=l.

There is no reason to assume that they would change much.
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APPENDIX G. COMMENTS

This paper is based on the assumption that it is desired to ensure the actual percentage of

units failed in service to be less than some amount (e.g., 5%) with some level of confidence

(e.g., 98%) for each population at a given point in time in the future with the prescribed

inspection schedule in effect. This requirement is less demanding than requiring the expected

value of units failed in service to be less than 5% with 98% confidence for each population.

Even less demanding is the requirement that the expected value of the units failed in service

over the sum of a number of populations is to be less than 5% with 98% confidence and can

be achieved in such a way that each population contributes in achieving the goal. The most

demanding requirement is studied in this paper and achieves the safety which has a guarantee

not just in general but under the particular circumstances.

Finally, recall that the formulas are derived for a specific idealized model. A most important

assumption from a practical point of view is the constant failure rate. This paper does not

deal with the consequences of failure rates that vary with time and whether or not repair

restores failure rates to their initial values. Even to demarcate those cases where the

predictions arc conservative from those where they are not would be difficult. All that can be

done here is to warn that predictions using these formulas may be inaccurate to an extent

determined by the variability of the failure rates.
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