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Chapter 1

Introduction

1.1 Background

In the last 10 years, the United States has witnessed a continuing rise in population
and the longest peacetime expansion of the economy in the nation's history. As a result,
travel and transportation rise proportionately. In terms of passenger travel, Americans
used the automobile for more than 90 percent of their travel (by mileage) in 1975.
Today, highway travel (in passenger miles) and automobiles have continued to
dominate--still accounting for 90 percent of travel--while air travel accounts for another
9 percent, and the other modes together account for the last one percent. In terms of
freight transportation, there has been a large increase in highway and truck
transportation--an increase of its modal share from 23 to 30 percent in just 10 years--
accounting for the major part of the increase of freight transportation over the past 10
years.

However, the nation’s highway system is aging, while the volume of the traffic that it
supports continues to increase dramatically. Road maintenance technology, however,
has remained virtually stagnant for many years. It typically involves small-scale,
dispersed activities performed under traffic conditions by relatively low-skilled laborers
with basic equipment. Conventional road maintenance methods will be seriously

strained to meet the increasing demands of the future.



Automation of the road maintenance operations has a tremendous potential to
improve this situation. Highway crack monitoring is especially well suited for this
purpose since it is such a widespread, costly, and labor-intensive operation. Accuracy
and efficiency are always the problems, and as traffic volumes increase, crack
monitoring operations become increasingly disruptive to the travelling public.
Automation of crack monitoring can significantly reduce labor costs, improve work
quality, provide better records, and reduce worker exposure to road hazards.

The Highway Crack Monitoring System (HCMS) presented in this report is capable
of automatic-image acquisition and processing. The cracks will be extracted from the
high-noise background and will be also classified based on its width. The overall

statistical information of the road will be obtained for analysis as well.

1.2 The Highway Crack Monitoring System
The main purpose of the HCMS system is to obtain the information about the crack
and its coverage of the road image. Based on the width of the crack, it is classified into
five categories. The major tasks of the HCMS system are the following:
I.  Road image acquisition
I1. Image processing
I11. Crack object classification

V. Statistical report

The HCMS consists of three major parts; the computer, the image acquisition device,

and the motion system. The block diagram of the HCMS system is shown in Figure 1.1.
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Figure 1.1 the block diagram of the HCMS

The computer is the center for both system control and image processing. Because of
the huge amount of image processing and storage, the computer should have high speed,
large physical memory, massive storage space, and fast video processing power.
Currently we are using a Pentium Il 550MHz workstation, which has a physical
memory of 256 MB and a 15GB hard disk drive. Faster computers are desired in the
future.

The HCMS application software is programmed with Microsoft Foundation Class
(MFC) on the 32-bit Windows NT operation system. Figure 1.2 shows the layout of this
application program. It integrates the functionality of the image acquisition, image
processing and motion-system control in one system. The double-view style enables the
user to view both the original image and processing result at the same time. The image
processing uses the tool of MATLAB Image Processing Toolbox version 5.3

Multithread programming is implemented for the CCD camera control. A component is



designed for the RS232 serial port communication using the Windows APIs. Multiple
database support is also used in the software design to store the statistical data and

improve the user interface. More detail will be introduced in Chapter 6.
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Figure 1.2 System program layout

The CCD camera is used as the image acquisition device in the HCMS system. It can
acquire images at 256 gray-scale, with resolution of 640-by-480 pixel format. The
camera is placed on the frame of a motion system (Figure 1.3), about one meter above
the ground, which makes the image area of 1.2-by-1.2 meters with the 6-mm lens. The
acquired image is stored in the Windows bitmap format. The typical size of the image

file is about 320 KB. Examples of such images are shown in Figure 2.1 in Chapter 2.
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Figure 1.3 The motion system

The motion system of the HCMS is shown in Figure 1.3. These two vertical rails are
fixed on both sides of the Texas Multipurpose Loading System (TXMLS), which is
shown in Figure 1.4. The TXMLS has a huge vehicle designed by the Texas Department
of Transportation, for the purpose of highway monitoring and maintenance. The motion
system is capable of 2-dimensional movements to let the camera work continuously in
either direction, so that full image coverage of the road is achieved. The control signal of
the motion system is sent and received through the RS232 serial port of the computer.
There are some magnetic markers set along the vertical and horizontal rail. The sensors
are placed on both the removable frame and the roller hanger, so that they can move
together with the motion system. Whenever the sensor moves close enough to the
marker, the two wires attached to the sensor are short-circuited. Once the system detects

this signal, the motion system stops and the camera takes an image. The markers are



precisely set so that the minimum overlapping between two adjacent images is achieved.

Software debouncing should be considered to remove the spurious sensor signal.

Figure 1.4 The TXMLS

1.3 Organization of This Report

The image segmentation algorithm will be presented in detail in Chapter 2. It is a
very important step to extract cracks from the original road image. After the
segmentation, a binary image is obtained for crack analysis. Chapter 3 will discuss the
crack’s length and width calculation algorithm. As the width information is obtained for
each individual crack, the cracks will be classified based on that information. Two
examples of the field test will be listed and analyzed in Chapter 4. Chapter 5 will give a
brief introduction to the system software. Chapter 6 illustrates some examples. The

conclusion and future work will be given in the last chapter.



Chapter 2

Recurring Image Segmentation

2.1 Introduction

Image segmentation is one of the most important steps leading to the analysis of
processed image data—its main purpose is to divide an image into parts that have a
strong correlation with objects or areas of the real world contained in the image. [1]

Typically, digital images often come up with huge quantities of data with respect to
the size and depth of color or gray scale. With image segmentation, substantial data
volume reduction is immediately gained, and more importantly, the image objects of our
interest are separated from the rest of the image. According to the complexity of the road
images, the recurring thresholding method is implemented to improve the sensitivity and
accuracy of the processing algorithm. Usually, entirely correct and complete
segmentation of complex scenes cannot be achieved. Connected component-object

identification is implemented to remove noise objects at a higher level of processing.

2.2 The Crack Images
2.2.1 Intensity Image Data

For an intensity image, the image data can be stored in a single two-dimensional
matrix, with each element of the matrix corresponding to one image pixel. For a 256

gray scale image, the image data is within the range of [0,255]. The size of the matrix is



the size of the image by pixel. Therefore the acquired image in the HCMS system,
which is in the format of 256 gray scale and the size of 640-by-480 pixel, can be defined
as
f(i, j) €[0,255] (2.2)
where 0<i<640, 0< j<480.
Be aware that the elements in the intensity matrix represent the gray level at this
pixel, “0” represents black and “255” represents full intensity, or white.

2.2.2 Characteristics of the Crack Image
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Figure 2.1 Examples of the crack images
Image data ambiguity is the major problem of segmentation, especially for crack
images. The texture of the pavement always causes noises. The shadow and other
surface objects can be other sources of the noise. Figure 2.1 shows two typical samples
taken from the highway. In figure 2.1 (A), the region of the cracks is relatively easy to

distinguish. The gray level of the crack objects is clearly distinct from the background.



There are several oil spots that need to be identified. The image in figure 2.1 (B)
unfortunately represents a more complicated situation that is commonly found in general
practice. The image background varies at different parts of the image due to the
reflection and non-uniform lighting. There is a shadow region on the right, which is

incurred by the camera frame.

2.3 Recurring Thresholding

Gray-level thresholding is one of the more commonly used methods of
segmentation. The objects or image regions are characterized by reflectivity or light
absorption of their surfaces. A brightness constant or threshold can be determined to
segment objects and background. [1]

The recurring thresholding method uses gray-level thresholding as the basic method.
Therefore, correct threshold selection is crucial for successful segmentation. It is
impossible to use a single threshold for all road images, since there are gray-level
variations among different images and even objects and background in the same image.
However, it can be adaptively estimated based on the average gray level of the specific
image or image fraction. This estimated threshold is set high so that most of the crack
objects and some noise objects are allowed as objects in the resulting binary image.
With this result as a mask, we can obtain a new “crack” image by simply clearing all the
pixels, which are marked as background in the binary result from the original road
image. It is reasonable to see that most of the background is removed in this image,

which results in an image with a more regular histogram with a local peak representing



the crack pixel distribution. More accurate segmentation can be achieved by analyzing
this image and its histogram.
2.3.1 Histogram and Threshold

The crack objects can be characterized by light absorption of the highway surface,
which appear at a different gray scale from the neighbors or background. From Figure
2.1, it is noticeable that the cracks are slightly darker than the neighboring areas, which
indicates that they usually have a lower gray value to distinguish themselves from the
background.

Gray-level thresholding is the transformation of an input image f (i, j) to an output

image g(i, j) as follows:

1 fi,)=>T
g(i,j)={ for )2 (2.2)

0 for f(i,))<T

where T is the threshold constant, g(i, j) =1 for image pixels of the image objects,
and g(i, j) =0 for background pixels (or vice versa). With thresholding, the original
intensity image is converted to a binary image. Only the pixels of particular interest are
left as image objects.

Correct threshold T selection is crucial for successful threshold segmentation. The
direct method of gray-level thresholding is based on the histogram-shape analysis. The
histogram is the chart that shows the distribution of intensities in an intensity image.
Figure 2.2 shows the histograms of the two corresponding images in Figure 2.1. In both
histograms, there is a local peak near the intensity 200, which indicates most of the

crack pixels, as well as some of the noise background. The sharp rise near gray level 255

10



in both images is caused by the large quantity of the white pixels on the image

background. The lower range ([0,250]) of the histogram reflects the distribution of

cracks.
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Figure 2.2 Histograms of the images in Figure 2.1

The different shape of the histogram reflects the difference in the property of the
images. The left peak in Figure 2.2 (B) is incurred not because of crack objects, but the
shadow area on the right part of the image instead. The far distance between the two
peaks indicating the gray level of the shadow differs greatly from that of the crack
objects.

The typical image consisting of objects with approximately the same gray -level
differs from the gray -level of the background, which results in the bi-modal of the
histogram. The image has two local peaks in its histogram. The objects form one of
them while the background forms the other. In this case, it is easy to find the threshold

that includes all the object gray distribution, but all of the background pixels fall outside.
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[1] Unfortunately, this situation is not common for crack images. The crack pixels only
occupy a small percentage of the total pixels. The background has different gray levels.
Some of these background pixels may have very close gray levels to the crack objects.
Considering the non-uniform lighting conditions, there may be fake peaks in the
histogram. From Figure 2.2, we can see that the histogram of the crack image does not
appear as the bi-modal. It depends not only on the image objects, but also many other
physical conditions. It is almost impossible to determine the correct threshold value
directly from the histogram. In addition, the threshold must be determined based on the
local image content, which varies at different parts of the image. Therefore, we cannot
set a global threshold for the entire image.
2.3.2 Threshold Estimation
As discussed in the previous sections, it is very difficult to precisely determine the
threshold. However, it is possible for the threshold to be estimated to detect the crack
objects. Obviously, this threshold should follow these facts below:
(1) For 256 gray-level image, the value of threshold constant is within the range
[0,255];
(2) When the image grows darker, the average gray level of the image pixels
becomes lower. The value of the threshold constant also becomes lower. And

vice versa. It is a monotonic relationship
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Figure 2.3 Threshold estimation

can assume it is simply a linear function, so that:

where T is the estimated threshold and | is the image data matrix. The parameter k
and A can be estimated by real samples. This is shown in Figure 2.3. The dots in the
figure are obtained by averaging a large quantity of samples. The red line is the
estimated threshold function with k=1, A=-32. When this function is applied to

segmentation, the result is very good. Figure 2.4 shows the segmentation results of the

T=kemean(l)+A
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image in Figure 2.1(A). The resulting binary image of this segmentation process is not

the final result. Instead, it leads to a more specific crack image shown in Figure 2.4(D).

(C) Dilated segmentation result (D) Crack image

Figure 2.4 Object extraction using the segmentation result
2.3.3 Recurring Threshold Determination
As a result of threshold estimation, a binary image [Figure 2.4 (B)] is obtained by
applying the function (2.2) to the original crack image. However, some noise is also
included in the result because the threshold is set high, and any pixel whose gray level is
below the threshold will be recognized as an object pixel. From this result, it is very

difficult to distinguish crack objects from noise. However, we can go back to remove all
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the background pixels from the original image, where the segmentation result works as a
mask. As the result, a new crack image can be obtained with most of the background
being removed.

To avoid the loss of the crack edge, a dilation operation is applied to the
segmentation result in Figure 2.4 (B). For binary images, the dilation adds pixels to the
boundaries of the objects in which the pixels have the value of “1.” Therefore, only the
objects can be enlarged. The dilation operation uses a specified neighborhood, which is
a two- dimensional binary matrix. The neighborhood for a dilation operation can be of
an arbitrary shape and size. It is represented by a structure element, which is a matrix
consisting of only 0’s and 1’s. The center pixel of the structure element represents the
pixel of interest, while the elements in the matrix that are “1” define the neighborhood.
The state of any pixel in the output image is determined by applying a rule to the
neighborhood of the corresponding pixel in the input image. The rule is defined as
follows:

If any pixel in the input pixel’s neighborhood is “1,”” the output pixels is “1.”
Otherwise, the output pixels is “0”. [5]

Figure 2.4 (C) shows the dilated result of the image in Figure 2.4 (B), and Figure 2.4
(D) shows the result masked from the original image with Figure 2.4 (C). As we can see,
most of the background in the original image has been removed. The corresponding
histogram will have a major peak for the crack object pixels, which is shown in figure
2.5 (A). There is also a high peak at gray level 255 for the white background, which has

been removed in the figure.
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When we look back at the original image in Figure 2.4 (A), we can see that not all
the pixels of the crack objects are at exactly the same gray level. This is caused by the
boundary effect which shows that the border pixels of the crack have a higher gray level
than the center pixels of the crack. This makes them look a little brighter and closer to
the background. Therefore, the pixels of the crack objects exist in a narrow range of the
gray-level histogram. We are not able to determine the threshold simply at the gray level
of the maximum point of the histogram. The band thresholding method is implemented
instead. In order to do that, further image transformation is needed to get the object
pixels in the correct intensity range. The goal of the image intensity transformation is to
map an image’s intensity value from one range to another. We can increase the contrast
of the image and eliminate the noise at different gray levels by expanding a small range

of intensity data to the entire intensity range. [5]
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Figure 2.5 Intensity transformation
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The source intensity range, which is the bandwidth of the band -thresholding, is
chosen so that most crack boundary pixels are included and that the least noise is
existing in the result. Figure 2.5 (A) shows how to determine the bandwidth. T is a
parameter which varies with the content of the image. Generally, it is defined as:

T = aemax(l) (a<1) (2.4)

where | is the histogramand « is the bandwidth coefficient. When « is large, T
becomes high. The selected range of intensity transformation becomes narrow, so that
some of the boundary pixels will be lost. When « is small, T becomes low. The selected
range of intensity transformation becomes wide, so that some of the background pixels
will also be included in the result. Therefore, it is very efficient to compensate the

boundary effect by adjusting the bandwidth coefficient c.

(A) T=80%*max(l) (B) T=50%*max(1)

Figure 2.6 Image intensity adjustment

Once « is set, the boundary points of the intensity range L; and L, are

straightforward. Figure 2.5(B) shows the histogram of the image after the intensity

17



transformation. It is the expansion of the selected portion [L;, L;] of the histogram in
Figure 2.5(A). Different image transformation results with the given bandwidth
coefficient « are shown in Figure 2.6. «=50% is applied to the algorithm according to
the actual result. After the image transformation, the resulting image is still a 256 gray-
level intensity image. Since it is assumed that most of the image objects remaining are
crack objects, we can set a high threshold to convert it to the binary image as the final

segmentation result. Figure 2.7 shows this binary image.

Figure 2.7 Result binary image after segmentation

2.4 Connected-Component Object Identification

18



As mentioned before, entirely correct and complete segmentation of complex scenes
cannot be achieved. It is inevitable to have some noise pixels included in the
segmentation result shown in Figure 2.8. These noise pixels cannot be removed during
the segmentation because these pixels have gray levels very close to the crack objects.
To distinguish these pixels, additional methods must be implemented according to the

characteristics of the cracks.

2.4.1 Binary Image Labeling

0000O0O0OO0O 00000O0O0O
01100000 01100000
01101110 01102220
00001110 00002220
0000O0O0OO0CDO 0000O0OO0OO0ODO
(A) Original image data (B) Image data after labeling

Figure 2.8 Binary image labeling

In order to distinguish each object in the binary image, it must be isolated from the
rest of the image for further analysis. With the binary image-labeling method, the pixels
in different connected objects of a binary image are labeled with different integer values.
The binary image data is labeled according to different neighborhood relationships that
will be discussed in the next chapter. Individual objects can be extracted from the image

by selecting the pixels with specific values. Figure 2.8 shows an example of the binary

19



image labeling. In Figure 2.8 (A), there is a 5X8 binary image data fragment. The pixels
with a value of “1” are the object and others are the background. The two separate
objects are labeled with “1” and “2” after the binary image-labeling operation, which is
shown in Figure 2.8 (B). After this, the first object can be extracted by selecting the

pixels with the value of “1,” and the other one by selecting the pixels with “2,”

2.4.2 Connected-Component Object Identification

Segmentation cannot remove the noise pixels with gray levels close to the crack
objects. Higher level-image processing is necessary to distinguish the crack objects
based on the characteristics of cracks. However the definition of “crack” has much
ambiguity, which adds difficulty to this process of discrimination. Two preliminary
criteria are set here to distinguish the crack.

(1) The object is not a crack if the number of the object pixels is less than a certain

limit N

(2) The object is not a crack if the number of the object pixels is higher than a

certain limit Ny.

The first one can be applied to remove the small objects incurred by sand, pebbles,
or the texture of the background. The other one can be applied to remove large objects
caused by shadow or paint. In my program, N. = 25, and Ny is set as one third of the
total number of pixels of the whole image. The final binary crack image is obtained after

this step. It is shown in Figure 2.9.
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Figure 2.9 Segmentation result

2.5 Distinct Block Operation
To solve the problem of non-uniform property of the road image, the distinct block
operation is applied. The original image is divided into distinct blocks. Within the same
block, the lighting condition can be regarded as uniform. The processing is performed
on each block individually to get the results in the corresponding block of the output
image.
The optimal block size can be determined with the image size and the maximum

block dimension. Given the image size m-by-n, the maximum row and column

21



dimensions for the block as k, the optimal block dimension can be determined with the
following algorithm. [5]
(1) If mis no greater than k, k = m.
(2) If m is greater than k, consider all values between min(m/10, k/2) and k. The
optimal column size is the value that minimizes the padding required.
(3) Similar steps for block row size.

For an image of 640-by-480, the optimal block size is 80-by-96.
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Chapter 3

Crack Object Characterization Algorithm

3.1 Introduction

After the image segmentation in the previous chapter, a binary image is obtained
from the original 256 gray-level image. The image data becomes a discrete set of “1”
and “0” (black and white), which represents the crack object (foreground) and
background respectively. The crack object can be characterized on the basis of pixel

neighborhood relationships to the definition of the discrete set.

3.2 Basic Definitions
In order to define further algorithms to characterize the image object, such as the
calculation of length and area, several robust basic definitions are needed. Connectivity

and neighborhood of digital images are discussed in this section.

3.2.1 Square Lattice

In the mathematical model of a digital image, the image can be mapped to a set of
discrete pixels on a two-dimensional square lattice. The pixel area is defined with the
center pixel, leading to the representation of pixels as discrete points in the plane. As
shown in Figure 3.1, a square lattice is built with black dots (¢) and continuous lines.

The dots represents center pixels in the lattice, and the line implies that the two pixels
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are connected with each other in the lattice. With this definition, the image pixels

become the points on the square lattice.

Figure 3.1 Square lattice of the digital image
3.2.2 Neighborhood
The neighborhood is defined by referring to the considered square lattice. With the
structure of a square lattice, the 4-connected neighborhood (N4(O)) and 8-connected
neighborhood (Ng(O)) are derived, which is shown in Figure 3.2. The 4-connected
neighborhood includes the four direct neighbors of the point O in question. The 8-
connected neighborhood is completed using the four direct neighbors and other four

corner points for a given point O.

Figure 3.2 Neighborhoods on the square lattice

The definition of the neighborhood sets the foundation for a digital image processing

algorithm in this chapter.
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3.3 Border of a Crack Object

In the binary image of the cracks, an important subset of pixels in the crack object is
the set of the boundary pixels, which separates the crack objects from the background.
The border describes the shape, perimeter, area, etc. about the crack object. Further
calculation of the crack can be obtained by analyzing these border pixels.
3.3.1 Definition: Border of image object

Given a set of points P, the complement of P denoted as P©. The 8-connected border

of P is the set of points 7~ that have at least one 4-connected neighbor in P€. The 4-

connected border of P is the set of points 7 that have at least one 8-connected neighbor
in P©. [2]

The border of the object is defined with a neighborhood relationship. Figure 3.3
illustrates an example of the 4-connected border (B) and 8-connected border (C) for the

object in (A).
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Figure 3.3 Borders of a binary image object

3.3.2 Border Determination
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A pixel in a binary image can be determined as a border pixel if it satisfies both of
the following criteria [2]:

(1) Itis aforeground pixel.

(2) One (or more) of the pixels in its given neighborhood (4- or 8-connected) is a

background pixel.

3.3.3 Border Smoothing

Correct border extraction is very important for further calculation. The purpose of
the smoothing is to remove the irregularities of the crack objects that will significantly
affect the accuracy of the length calculation. The approach is based on the operators
from mathematical morphology, which is given by Minkowski algebra. These operators
have been proven efficient in noise removal on binary images. There are two basic
morphological operations, dilation and erosion, which are defined as follows: [2]

Given a set of pixels F and its border 7"with respect to a neighborhood relationship.
For any pixel p eF, Np(p) denotes the neighborhood of p.

(i) The dilation operator dilation(.) applied to F results in the set

dilation(F) = F U N, (p) (3.1)

peF
(if) The erosion operator erosion(.) applied to F results in the set
erosion(F)=F\T (3.2)
Advanced morphological operators closing and opening can be obtained by
combining these basic operators:
The closing(.) and opening(.) operators are defined by [2]:

closing(F)=erosion(dilation(F)) (3.3)
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opening(F)=dilation(erosion(F)) (3.4)

Both closing and opening operators can be used for binary object smoothing. The
closing operator can fill spurious holes, whereas the opening operator smoothes the
irregularities by removing spurious components. They can only remove the one-pixel
size spurious smoothing. However, different levels of object smoothing can be obtained
by using different combinations of dilation and erosion operators. [2] For example, two-
pixel sized holes can be filled using the operator erosion[erosion(dilation[dilation(.)])].
Similarly, two-pixel sized spurious components can be removed using
dilation[dilation(erosion[erosion(.)])]. According to the binary result of segmentation, a
three-pixel level of smoothing is applied to the processing here. To avoid the possible
image loss caused by the erosion on the image border (three-pixel depth), the object
pixels within the three-pixel range of the image border have been preserved before the
border smoothing operation and restored after the smoothing process.
3.3.3 Crack Object Dilation

Since most of the cracks are very long and slim, direct border extraction will break
the close arc of the crack object border. A dilation operation, discussed in the previous
chapter, is applied prior to the border extraction. Furthermore, the dilation operation can
also remove some of the spurious noise pixels of the crack objects.

The error incurred by this dilation for the further calculation is limited because the
dilation can only slightly increase the perimeter of the crack. The matrix used in the

dilation is a 2-by-2 matrix with all “1” element, for the smallest dilation operation;
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however, it is enough to preserve the close border arc. Figure 3.4 shows the border

extraction with dilation.

(A) Original crack object (B) Crack border

Figure 3.4 Border extraction

3.4 Crack Length Calculation

When the crack’s border is extracted, it appears as a close arc in the partition. The
length of the crack can be computed from its perimeter. Most cracks have very large
length-to-width ratios. Half of the perimeter can be a good approximation to its length.
3.4.1 Move and Move Length

A move on the lattice is the displacement from a point to one of its neighbors. A
move length is the value of the local distance between a point and its neighbors.

According to the definition above, we can see that there is only one type of move in

a 4-connected neighborhood, defined as A for a unit length. For the 8-connected
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neighborhood, the moves are A, and A,, which represent the distance from the center

point to the direct 4 neighbors and to the 4 corner points.
3.4.2 Euclidean Distance

Euclidean distance is the basic precise definition of distance between two points in a
two-dimensional plane. It is defined as follows: [2]

Given two points P(xp, Yp) and Q(Xq, Yq), the Euclidean distance of PQ is defined by

de (P.Q) = /(X = X,)7 + (¥ = ¥,)’ (3.5)

Other discrete distances are nothing but approximations of the Euclidean distance.
3.4.3 Arc Length and Discrete Distance

The length of a digital arc is the sum of the length of all the moves that compose it.
The discrete distance between two points P and Q is the length of the shortest digital arc
from P to Q. [2]

The definition above leads to the 4-connected discrete distance denoted as d4(P, Q)
and 8-connected discrete distance denoted as d8(P, Q). d4(P, Q) is the length of the
shortest 4-connected arc, and dg(P, Q) is the length of the shortest 8-connected arc.
Figure 3.5 shows the difference of d4(P, Q) and dg(P, Q) between P and Q. Obviously,
ds(P, Q) is a better approximation of the actual length than d4(P, Q). The approximation

error will be discussed later.
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Figure 3.5 Discrete distance: (A) d4(P, Q) (B) dg(P, Q)

3.4.4 Crack Length Calculation Algorithm

The 8-connected neighborhood is used in the length calculation. Based on the
discussion in the previous section, the length is computed by summing up all the move
lengths of the close arc of the crack border. In most cases, there are dozens of crack
objects in one image and each crack may be a collection of thousands of pixels. A fast
algorithm is desired even for the fastest computer.

Since there are only two types of moves for the 8-connected neighborhood, all we
need to do is to find out how many pixels on the border have the move of A, and the
other will have the move of A,. It is easy to count the total number of border pixels.
Given the total number of border pixels Ng, K pixels has the move of A,, the length of
the curve L is

L=KeA +(Ny;—K)eA, (3.6)

To simplify the calculation, we can also start with the 4-connected borders. There is

only one type of move A in a 4-connected neighborhood, with A equal to the A; of the 8-

connected border. For any A, move on the 8-connected border, it is associated with two
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turning pixels on the 4-connected border. The turning point can be determined by the
fact that the two closest neighbors are not on a straight line. Figure 3.6 shows these
turning pixels. From the figure, for the arc from pixel A to B, the 4-connected arc length

is 4A(4A;), and the 8-connected arc length is 2A; +A,. Therefore, for each turning point
: : 2A, - A, :
on the 4-connected arc, the length adjustment will be — Therefore, the equation

(3.2) becomes:

2A, — A,

L=N40A1—KolT (3.7)

where Ny is the total number of pixels and K is the number of turning pixels on the 4-

connected border.

Figure 3.6 Turning pixels
The remaining issue is to find out these turning points in a fast way. Sorting pixel by
pixel is not a good idea, because it will be too tedious with so many pixels existing in a
crack object.
The Border Convolution method is introduced to solve this problem. This method is

based on matrix processing. With modern computer technologies, matrix computation
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becomes easier and faster. New mathematical software tools are also designed to apply
to this trend, such as MATLAB and MATHCAD.

The two-dimensional convolution is a neighborhood operation. The value of an
output pixel is computed by multiplying elements of two matrices and summing for the
results. One of the matrices represents the image data, and the other matrix is known as a
convolution kernel. Let | be the binary image data matrix. The convolution is:

' =1 ®SE (3.8)
where SE is the convolution kernel. To find out the turning pixels, two convolution

kernels are defined as:

000 010
SE,=[1 1 1 SE,=[0 1 0 (3.9)
000 010

In the resulting image data matrix 11 and |, the element has the value of 3 for all

non-turning pixels. Counting on the data in matrix 11 and | -, it is easy to get the exact
number of the turning pixels on a 4-connected border. The length of the border is then
straightforward with equation (3.4).

Integer values 3 and 4 are assigned to move length A, and A, for better computer

preservation and higher processing speed. In this case, the length of the diagonal move
J2 is approximated by %

3.4.5 Approximation Errors
Based on the model set up in the proceeding discussions, the continuous concepts

such as continuity and distance have been mapped onto discrete space as the concepts of
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connectivity and discrete length. It is important to find out the approximation error made
during this process.

The relative error E, is defined with the given discrete length d, and the Euclidean

distance d. between two points P and Q as [2]

(1/£)d, (P,Q)—d: (P.Q) :i(dD(P,Q)

S (P.Q)= de (P.Q) ¢ d:(P,Q)

)-1 (3.10)

The parametere (&>0) is the scale factor used to maintain consistency between
radii of discrete length and Euclidean distance. In the 8-connected neighborhood,
lete = A, .

Let dy=d, , and point P be the origin. Considering the first octant in Figure 3.7,
we see that

dAl’AZ = (Xq = Yo)A; + YoA, (3.11)

The error E, is measured along the line (x=L) with (L>0). Therefore, for all Q that

Xo =L and 0 <y, <L, the relative error at point Q is given by [2]

(I— _yQ)Al + yQAZ 1

51/L2+yé

ED (P!Q) =

(3.12)
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Figure 3.7 Calculation of d in the first octant

Since E, is a convex function in [0,L], its local extreme can be obtained so that

aED(PaQ):O
oy
oE . (P, 1 (L=Yo)A; +YoA,)Y
e Jﬁ[“z“ o fenele o Gy
& +yQ Q
A+ (A, —A,)? -
In this case, ED(P,Q)=\/ 1 (8, ~4) —1, where yQ=AZ ALL. The two

1
bound points at P(0,0) and Q(0,L) should also be considered as the possible peak point.

Therefore, the maximum relative error is defined as the point that

Ep™ (P,Q)=max{|E, (P.Q)|, E5, Eg}.

Al_ ‘\/A21+(A2_A1)2_ |A2 _
s {3

| &

Recall (3.13), E[“,”AX(P,Q)—max[

A,=3 and A, =4, the maximal relative error is

EM = ‘i _4 ~5.73% (3.14)

32

34



3.5 Crack Width Classification
3.5.1 Area Calculation

A good estimation for the area of the crack object in binary images is found by
summing the areas of each pixel. Let’s define the on pixel in the binary image, which
represents the pixel with the value of 1. The area of an individual pixel is determined by
looking at its four 2-by-2 neighborhoods. There are six different distinguishable patterns

for a 2-by-2 neighborhood, each representing a different area: [6]

e Zero on pixels (area=0)
e One on pixel (area=1/4)
e Two adjacent on pixels (area=1/2)
e Two diagonals on pixels (area=3/4)
e Three on pixels (area=7/8)
e All four on pixels (area=1)

Because each pixel is part of four different 2-by-2 neighborhoods, a single “1” pixel
surrounded by “0” pixels has a total area of 1.
3.5.2 Width Calculation

As the area and the length of the crack object are both obtained, its average width is
computed by dividing the area by its length. There is an important step necessary to
isolate each crack object and do the calculation individually. The connected-component
labeling and selection methods are used, which have been discussed in the previous

chapter.
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So far, we suppose that all the existing objects in the resulting binary image are
cracks we are interested in. In fact, since we have used gray-level segmentation, which
distinguishes the crack objects based on their gray value difference from the
background, additional higher-level processing methods are needed to distinguish the
crack objects. Certain criteria are necessary to remove noise at this final step. Three
additional criteria are set for the crack discrimination:

(1) Width limit: No object is a crack object when its width is larger than this limit.

(2) Length limit: No object is a crack object when its length is smaller than this

limit.

(3) Length-to-width ratio limit: No object is a crack object when its length-to-width-

ratio is smaller than this limit.

The actual parameter is obtained from a large quantity of real examples. The width
limit is set as 20 pixels, the length limit as 10 pixels, and the length-to-width ratio limit

as 3. Figure 3.8 shows the final result image of the cracks.
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2.

Figure 3.8 Processing result

3.5.4 Grid Classification

In the crack characterization, we are not only interested in the properties of an
individual crack but, more importantly, in the overall percentage of the crack coverage
on the road. A grid format image is created for this purpose. The whole image is divided
into small identical grids. The grid size can be user-defined. According to the width, all
the cracks are classified into five categories. The range of the crack width increases from
category one to five. The grids are classified by the widest crack inside, and filled with a
specific color. With the grid classification, we can get the visualized information of the

crack coverage, which is very important to determine the quality of the pavement.
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Figure 3.8 shows two examples of the grid image on a same result crack image. It is

easily seen that the result is more accurate with smaller grid size.

i |

o

.

=)

(A) Grid Size: 40 Pixel (B) Grid size: 20 Pixel

Figure 3.8 Image Grids

3.6 Crack Growth

Crack growth is a very important issue of automatic crack monitoring. It can be
determined by comparing different processed result images of the same location. Since
the images are binary images, the difference can be easily obtained by an XOR (@)
operation. However, in most of the cases, the two images cannot be perfectly
overlapped. There is shifting or even rotation between the two images. To solve this
problem, the theory of correlation is applied. The correlation coefficient r of image A

and B is defined as
ZZ(Ann _X)(an _B_)
r — m n — —
\/(ZZ(Am -A)C Y (B, ~B))

(3.15)

The equation above can be simplified as (3.16) if A and B are binary images.
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r=»> A®B (3.16)

.

(A) Before (B) After

(C) Crack Growth

Figure 3.9 Crack growth detection
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Considering the arbitrary 2-dimensional displacement between A and B, the
correlation coefficient is calculated in a loop. The most overlapping occurs when the
coefficient r reaches the maximum. When the laser pointer is used for the positioning
system, the precision can be under 10 mm. Compared with an image size of 1.2-by-1.2
meters, the image rotation can be neglected. Figure 3.9 shows an example of crack-
growth detection. The horizontal displacement between (A) and (B) is 14 pixel/26mm,

and the vertical displacement is 11pixel/21 mm.

3.7 Calibration

So far, all the calculations are achieved with the unit of pixel. However, the physical
length and width is required in practice. It could be computed based on the parameters
such as the height and the angle of the image-acquisition devices. However, the most
direct method is the system calibration. The basic idea is that we get the calibration
parameter based on the processing result of an object whose parameters are already
known. This calibration parameter is the ratio of the processing result to the physical
size of the object.

A special calibration board is designed for this purpose. On this board, there are
several equally-spaced lines with the same length. These line objects are long and dark
so that they are very easy to distinguish. They have the same length for the object
identification. When we obtain more than two objects in the processing result that have
very close values, they are recognized as the calibration objects and the average value is

used to calculate the calibration parameter. Or, they will be neglected as noise objects to

40



avoid error. Each time the calibration parameter is reserved in the system so that it can
be reused after the current session. The user can do the calibration any time to obtain the

most recent parameter for measurement.
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Chapter 4

Illustrative Examples

4.1 Example |

This example is designed to test the sensitivity of the crack-detection algorithm and
the accuracy of the crack-calculation algorithm. The target is a board with several lines
that have different lengths and widths. Figure 4.1 shows the acquired image of this

board.

Figure 4.1 Example | : Source image
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This image is taken inside the lab, with a general light source. Compared with
natural sunlight, it is relatively weak and non-uniform. The camera is placed at the
height of about a meter, which is able to cover the area of about 1.2 meters by 1.2 meters
on the ground. From figure 4.1, we can see that the light extraction is considerable,
especially for small and slim objects like (D) and (E). The parameters of the objects

from (A) to (E) are given in Table 4.1.

(A) (B) ©) (D) (E)
Width (mm) 12.1 75 6.2 35 17
Length (mm) 295 293 293 293 292

Table 4.1 Parameters of the Image Objects
Figure 4.2 shows the processing result of the binary crack image and Table 4.2 gives

the calculation result for width and length of the objects.

R —————
———————

(B) Binary output (B) Overlapped output

Figure 4.2 Example I: Processing result
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(A) (B) (©) (D) (E)

Actual (mm) 12.1 7.5 6.2 35 1.7

Width [ Result (mm) 11.9 7.4 7.0 5.2 3.2
Error (%) 1.65% 1.33% 12.9% 48.6% 88.2%

Actual (mm) 295 293 293 293 292

Length | Result (mm) 291 288 284 268 264
Error (%) 1.36% 1.71% 3.1% 8.87% 9.90%

To further verify the accuracy of the algorithm, the source image is rotated by a 45°

angle. Table 4.3 shows the calculation results for this image.

Table 4.2 Calculation results

(A) (B) (©) (D) (E)

Actual (mm) 121 7.5 6.2 35 1.7

Width | Result (mm) 115 7.0 7.0 4.8 3.0
Error (%) 4.96% 6.67% 12.9% 37.1% 76.5%
Actual(mm) 295 293 293 293 292

Length | Result (mm) 288 289 286 280 284
Error (%) 2.37% 1.37% 2.39% 4.44% 2.74%

Table 4.2 Calculation results of the rotated image
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From the results, we can see that the algorithm is very efficient in detecting the crack
objects, even when the light condition is poor and the objects are very slim. The length-
calculation algorithm is also proven to match with the object very well. The maximum
error is less than 10%, which is a special case caused by the distinct block operation in
Chapter 2. When we look at the overlapped result in Figure 4.2 (C), we can see that the
start and end of the lines (D) and (E) are cut off, because that’s exactly the border of the
sub-image divided from the whole image when the distinct block operation is applied. In
such sub-images, the object is so small that it is removed as noise. This problem can be
corrected by overlapping with the distinct block operation.

The width calculation is also effective when the object width is above 5mm under
the current testing environment. When the width is below 5mm, the calculation is
limited by the light conditions and the resolution of the camera. The light has the major
impact on the image segmentation. The boundary effect of the image object is great
because of the flat reflection of the light and the sensitivity of the CCD camera. In the
source image, the gray value varies greatly from the border to the center of the line
objects.

The two results from the images with different angles are well matched with each
other, which proves the effectiveness of the whole algorithm of calculation.

To improve the lighting situation, an artificial lighting system is in design to provide
the optimal lighting condition. The camera flashlight can be a solution. It can provide
strong light, and avoid heavy equipment of the regular light system at the same time.

There are a couple of pins on the flashlight circuit. It is triggered once these pins are

45



short-circuited. The flashlight control signal can be sent through the RS232 port of the
computer. However, the timing is an important issue for control. Additional driving
circuit is needed.

Considering the camera resolution of 640-by-480 pixel, and the fact that it covers the
area of 1.2-by-1.2 meters, it is easy to estimate the calibration factor by dividing the
image size with the camera resolution. Therefore, each pixel in the processing result is
compared to the actual length of about 1.87mm. In this experiment, the factor is
calculated as 1.74mm by calibration, which is also the highest resolution of the

algorithm.

4.2 Example 11

Experiment Il demonstrates the performance of image processing in the real
environment. Figure 4.4 (A) shows the source image acquired on the real highway
pavement. The binary output, overlapped output and grid output images are shown in

(B), (C) and (D) respectively.

46



(A) Source image
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(C) Overlapped output (D) Grid output

Figure 4.3 Example II

With the grid output image in Figure 4.4 (D), the information about the crack
distribution is obtained, which is shown in Table 4.3. In the result, most of the crack
objects are successfully detected with different light conditions. Some of the noise
objects, such as the paint and shadow, are removed. The calculation results match the

real objects. Table 4.3 shows the statistical result of the crack coverage of Example II.
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Class | Class 11 Class 111 Class IV Class V
(0~3mm) | (3~5mm) | (5~7mm) | (7~10mm) | (>10mm)
Road coverage 0 0.2 2 3.6 5.4
(%)
Total length 0 89 304 545 832
(mm)

Table 4.3 Crack coverage of example 11
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Chapter 5

Software Design

5.1 Introduction

The system application software is programmed with Microsoft Fundamental Class
(MFC) on the operation system of Windows NT 4.0. To control the external hardware
and process the acquired image in one system, the system software design is very
complicated. There are five major components:

(1) Windows framework of views and documents,

(2) MATLAB image processing,

(3) CCD camera driver,

(4) Motion system control ,

(5) System database management.

Several advanced Windows programming techniques, such as multiple view and

multithread are implemented in the software design.

5.2 Windows Framework
The system application has a user-friendly interface. Figure 1.4 in Chapter 1 shows
the frame of the program. It implements the splitter windows and double-view-single-

document architecture. The left pane shows the original image and the right pane shows
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the result image after processing. Drawing and erasing functions enable users to modify
the processing result and re-process the crack image.
5.2.1 The Splitter Windows

The splitter window appears as a special type of frame that holds multiple views in
panes. The user can move the splitter bar to adjust the relative size of the panes.

Programming with Microsoft Foundation Class (MFC), the framework of the splitter
window application project can be created using the Visual C++ Application Wizard. An
object of the MFC class CSplitterWnd represents the splitter window. It is a data
member of the CChildFrame class. The CChildFrame class also has to override the
virtual member function of OnCreateClient to create the splitter window, and the splitter
window creates the views. The function of OnCreateClient is shown below.

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT lpcs,

CCreateContext* pContext)

/I Create static splitter
if ("m_wndSplitter.CreateStatic(this,1,2,WS_CHILD))
{
return FALSE;
}
if ("m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CCrackView),

CSize(0, 0), pContext))
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return FALSE;
}
if ("m_wndSplitter.CreateView(0, 1, RUNTIME_CLASS(CCrackView),

CSize(0, 0), pContext))

return FALSE;
}
m_bSplitter = TRUE;
m_wndSplitter.ShowWindow(SW_SHOWNORMAL);
m_wndSplitter.UpdateWindow();
return TRUE;
¥
5.2.2 The CCrackObj Class
The HCMS software application enables the user to modify the image processing
result and recalculate the crack information. Any drawing or erasing that the user makes
is an object of the class CCrackObj. This class is derived from the MFC base class
CObject. It has the member variables to describe the properties of the object of the user
modification, such as crack width, crack color, the position of the object located, as well
as the view and document object pointer that the object belongs to.
Whether the user draws or erases, a line object is created to store such information.
Another class CCrackStroke is derived from the CCrackObj, which includes most of the

lower level operations on such line objects. It has a CArray member variable that stores
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coordinates of all the points on the line trail. The member function AddPoints() adds
new points to the array whenever the line object extends. Together with the properties in
its CCrackODbj base class, the user is able to modify the image of the processing result

under precise control.

5.2.3 The Document and View

By using the splitter window, there are more than one view objects existing in the
frame. The HCMS software application implements the double-view-single-document
architecture for the document and view relation. Two MFC functions are helpful for the
object of the document class to iterate through the multiple views: CDocument::
GetFirstViewPosition() and CDocument::GetNextView(). The first function returns a
POSITION value for the first view in the system. The GetNextView() function takes this
value to retrieve the view object pointer. The following piece of code is an example of

how to iterate through the views and repaint.

//To get the Ffirst view in the list of views:
POSITION pos = GetFirstViewPosition();
CView* pFirstView = GetNextView(pos );
// This example uses CDocument: :GetFirstViewPosition
// and GetNextView to repaint each view.
void CMyDoc: :OnRepaintAllViews()
{
POSITION pos = GetFirstViewPosition();

while (pos = NULL)

{
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CView* pView = GetNextView(pos);

pView->UpdateWindow() ;

}

There are also some graphic functions that enable the user to modify the processing
result image. The modification is under perfect control by drawing, erasing and line
width definition. The system is able to update the processing result in a Windows bitmap

image, reprocess the image and update the crack statistical information of this image.

5.3 MATLAB Interface

All the image-processing code is written with the MATLAB Image Processing
toolbox. It processes the 256 gray-level intensity images acquired by the CCD camera.
A binary crack image, an overlapped image, and a color-grid image are created as the
outputs. Since we use the latest version 5.3 of MATLAB, which is not accompanied
with a C++ compiler, a special piece of MATLAB interface code is designed to
implement the MATLAB source code in the C++ program. The detailed procedure is
listed below.

e Start a MATLAB engine session: Engine *engOpen(const char *startcmd).
“stmartcmd” must be NULL for Windows. A pointer to the engine handle is
returned.

e Execute a MATLAB program piece: int engEvalString(Engine *ep, const char
*string). The “string” should be a valid MATLAB command to be executed.

Zero is returned if MATLAB runs successfully.
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e Quit a MATLAB engine session: int engClose(Engine *ep). It returns “0” on

success and “1” otherwise.

In addition, the MATLAB C++ interface header file “engine.h”, which can be
found in the MATLAB system directory, must be included in the C++ project. The user
also needs to generate an external library file to control the MATLAB engine import and
export. For details, please refer to the MATLAB reference book. The MATLAB image

processing code is listed in Appendix I.

5.4 CCD Camera Control

The CCD camera has its own API functions for implementation. All the camera
operations are encapsulated into a camera class. In the camera initialization, about
600KB memory is allocated to store two frames of the 640-by-480 image data, so that
the animated motion pictures can be acquired by refreshing the content of the two
frames consecutively. The memory will be released when the camera event ends.

Since the camera requires the system to allocate a large block of memory and it
works at a relatively lower speed, multithread programming is suitable for the camera
operation. The camera thread is started by initializing this pointer, and the MFC function
afxBeginThread() is called. The camera is suspended by calling the MFC function
afxSuspendThread(). The thread can only be terminated by calling the afxEndThread()
inside the thread. To do so, generally we can set an EndThread event, which will trigger
the function to destroy the thread itself. The header file of this camera thread is listed in

Appendix I1.
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5.5 Motion System Control

The motion system is controlled through the ADR101 RS232 interface board that is
connected to the COML1 port of the computer. The ADR101 board converts the 8-bit
serial data through the serial port to the 8-bit parallel data and latches it. Direct access to
the hardware is not allowed under Windows NT. Interaction with the serial port is
achieved through a file handle and various WIN32 communication API's.

The first step in accessing the serial port is setting up a file handle.

m_hCom = CreateFile('Coml1™,
GENERIC_READ | GENERIC_WRITE,
0, // exclusive access
NULL, // no security
OPEN_EXISTING,
0, // no overlapped 1/0

NULL); // null template
Check the returned handle for INVALID_HANDLE_VALUE and then set the buffer
sizes.
m_bPortReady = SetupComm(m_hCom, 128, 128); // set buffer sizes
Port settings are specified in a Data Communication Block (DCB). The easiest way
to initialize a DCB is to call GetCommState to fill in its default values, override the
values that you want to change and then call SetCommState to set the values.

m_bPortReady = GetCommState(m_hCom, &m_dcb);

m_dcb.BaudRate 9600;

8;

m_dcb.ByteSize
m _dcb.Parity = NOPARITY;

m_dcb.StopBits = ONESTOPBIT;
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m_dcb.FfAbortOnError = TRUE;

m_bPortReady = SetCommState(m_hCom, &m_dcb);
Communication timeouts are optional but can be set similarly to DCB values:

m_bPortReady = GetCommTimeouts (m_hCom, &m_CommTimeouts);
m_CommTimeouts.ReadlntervalTimeout = 50;
m_CommTimeouts.ReadTotalTimeoutConstant = 50;
m_CommTimeouts.ReadTotal TimeoutMultiplier = 10;
m_CommTimeouts.WriteTotalTimeoutConstant = 50;
m_CommTimeouts._WriteTotalTimeoutMultiplier = 10;

m_bPortReady = SetCommTimeouts (m_hCom, &m_CommTimeouts);

If all of these API's are successful then the port is ready for use. Signal I/O through
the ADR101 is achieved by writing the specific ADR101 command. A C++ serial port

control class is generated. The detail code segment is listed in Appendix I11.

5.6 Database Management

Since a very large amount of images are acquired and processed, a database is
suitable for the result storage and processing. The Microsoft Database Access Object
(DAO) data access system is implemented in the program. The processing results are
stored in a Microsoft Access database file. There are two tables in this file, which store
the results for individual images and the total statistical information respectively. When
a new image is processed, a new record is created for this image in the first table and the
record of the total statistics in the second table is renewed by a recursive function based
on the total number of records. There are many useful SQL functions encapsulated in the

C++ DAO database access class, which enable the users to navigate among the records.
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To use the Microsoft DAO database access, the header file afxdao.h must be

included in the MFC project header file StdAfx.h.
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Chapter 6

System Implementation and Applications

6.1 System Implementation

Figure 6.1 shows a detailed block diagram of the HCMS. The digital camera is a
black and white CCD camera made by Hitachi (KP-160U) as shown in Figure 6.1. The
main specs of the CCD camera are as follows:

Model: KP-160U, black and white CCD camera

Power: DC 12V, 300mA

Resolution: 640X480

Connection: BNC connecter coaxial cable.

An auto-focus lens is attached to the camera. The lens is electrically controlled
by the camera circuit. Information on the lens is listed below:

Model: H612E (C60625)

Manufacturer: Asahi Precision Co., Ltd.

Power: 8V~12V DC, less than 45mA

Focal length: 6mm

Iris range: 1.2~360

Mount: C

The image is acquired by an image acquisition board (Model: H612E by Asahi
Precision Co., Ltd) inserted in the PCI slot inside a Pentium 11, 400 MHz computer. The
specifications of the frame grabber are listed as follows:

Model: PX510

Bus: PCI Bus

Manufactory: Imagenation Co.
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Power: 5VDC, 650mA

Resolution: 640X480 pixels

Input composite video format: Monochrome, RS-170 (NTSC) or CCIR (PAL),
auto detect

Input video: 1 V peak to peak, 75 Ohm

Capture time: Real time video capture; RS-170 (NTSC), 1/30 second per frame;
CCIR (PAL), 1/25 second per frame

Supported operating systems: Win 98, 98-SE, 2000, ME, NT4

Supported languages: Visual C/C++

Figure 6.1 CCD camera used in this project

The computer is installed with a serial port expansion board so that more than 4
RS-232 serial ports are available. The control board to the camera motion and sensor
system is designed and manufactured by Subsurface Sensing Lab at the University of

Houston. Figure 6.2 shows power supply for the control, sensor, and motor and the
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control board. A microprocessor (Microchip PIC16C71) is used for the system control.
Communication with the computer is via RS-232 serial port. The electrical
characteristics of the control board, power supply and motors are summarized as
follows:
Control board:

Manufacturer: Subsurface Sensing Lab, University of Houston

Power: 5VDC, 100mA; 12VDC, 200mA

Microprocessor: Microchip PIC16C71

Communication port: RS232

Software: Assembly language

Figure 6.2 Control board and DC power supply

DC Power supply:

Model: PRK70U-1212
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Manufactory: Volgen
Input: AC 100/120V, 1.8A, 50/60Hz
Output: 67W

CH1: +5V, 1.5~5A

CH2: +12V, 2.5A

CHa3: -12V, 1A

DC Motor

Model: 42839

Manufactory: Dayton Electric Mfg. Co.
Power: 12VDC, 1.25A

F/L Torque: 15In. —Lbs.

Input Motor H.P.: 1/160

Ratio: 95.7:1

In order to achieve smooth motion, three motors are used: two synchronous
motors for x motion and one motor for y motion. The synchronization between the two
motors are achieved by using the microcontroller. Synchronization algorithm is
developed. At the point where an image is to be taken, a magnet is installed. Hall-effect
sensors are used for sensing the position of the camera. Figure 6.3 shows the schematic
of the controller board. Detailed connection information is listed in Appendix V.
Software used for motor control and position sensing can be found in Appendix V.

Figure 6.4 is an overview of the control system.
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Figure 6.4 Overview of the motion system developed in this project.

6.2 Applications
This system has been ready for field installation for more than 6 months now.
Due to the unavailability of the TXMLS, we are unable to do field tests to the developed
crack-monitoring system. However, many lab tests were done and many images taken
from the field using a portable digital camera which were processed using the software
developed in this project. In this section, some of the processed results are presented.
Figure 6.5 is the processed results of a horizontal crack. Statistical information is

directly displayed in the widow next to the processed image.
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Figure 6.6 shows an asphalt crack with a ruler giving actual dimensions with the
processed results. It is seen that the image processing software thinks of the ruler as a
vertical crack.
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Figure 6.6 The image processing software can not identify object from cracks.
The ruler image is being processed as a vertical crack in this example.
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Figure 6.7 is a picture of asphalt cracks on a relatively new pavement. Cracks are
mostly unconnected with fine branches. After processing the image, the software system
is able to categorize cracks satisfactorily.
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Figure 6.7 Asphalt cracks with fine branches
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Figure 6.8 is an example of an alligator crack. Even with the dark image, the
software is able to identify most of the cracks.
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Figure 6.8 An example of alligator cracks and processed results.
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Figure 6.9 shows a cluster of cracks forming a “hole” on an old pavement. The
picture below is the processed image and statistic results.
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Figure 6.9 Processed results of a cluster of cracks on an old-pavement
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Figure 6.10 is the image and processed result of a scattered crack on an asphalt
pavement. It shows that the image processing software is able to acquire most of the
cracks even with fine width.
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Figure 6.10 Processed result of scattered cracks on an asphalt surface
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Figure 6.11 shows that the software is unable to identify the difference between
an asphalt-sealed crack and a crack without sealant.
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Figure 6.11 Processed results of asphalt-sealed cracks
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Chapter 7

Conclusions

The Highway Crack Monitoring System provides a complete platform for automatic
highway crack detection and analysis. It is still under development.

The crack image-processing algorithm is proven to be highly accurate and efficient.
The recurring thresholding method demonstrates very high sensitivity on the crack
object detection. The gray-level threshold is adaptively determined from an estimation-
verification process, which is based on the local image content. The band thresholding is
implemented to compensate for the boundary effect. The bandwidth is adjustable to
achieve the best processing precision.

Multiple noise removal methods are implemented during the image processing. The
connected-component-object identification is implemented to remove the background
noise and small fake objects. A large fake object is distinguished by setting certain
thresholds according to the properties of the crack object.

The crack object in the binary image is characterized by the object boundary
processing. Morphological operations, such as dilation and erosion, are applied to
remove the border irregularity, thus improving the accuracy of the calculation. Border
convolution is a much more effective alternative of border tracing to determine and
classify the border pixels. Two convolution-kernel matrices are designed to find out the
turning pixels on the border contour. The perimeter of the object is obtained by
accumulating the corresponding move lengths of the border pixels. The length and width

of the object are therefore straightforward.
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The HCMS hardware system demonstrates great reliability and efficiency. The CCD
camera is under precise control. The motion system works with great flexibility. It has
multiple working modes to provide great freedom.

Much work remains to improve the performance of the system. Higher image quality
is desired for image acquisition in future systems. A camera with higher resolution and
sensitivity is under consideration. Further improvement is also needed on the recurring
segmentation algorithm. Now the algorithm is restricted to detect the crack objects that
have the similar gray level within the same local image, which results in a single peak
appearing in the histogram. Although with distinct block processing, the local image is
restricted to a small part of the whole image, there might be cracks existing in the same
image with a different gray level. Multiple layer segmentation can be the solution for it.

When TxMLS is in operational condition, we can install this system on to the
TXMLS and do more field tests and improve the performance according to the results in

the field.
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APPENDIXES

APPENDIX I Matlab Image Processing Sources Code

%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %%%% %%%% %% %% %6%% % %6%% % %%% % %% %% %% %% %% %% %%
Module Name : IPQ)

%Designed by Min WU, SSL Lab, University of Houston, May 31, 2000
%This program is designed to extract the crack information from the
%real images taken from the highway. It filters off the background
%noise and gets the output BMP file. It also characterizes the
%cracks In the image, such as the length and width.

%The input file is 256 or lower gray level. The output file is in
%mono format.
%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%6% % %6%6% % %6%% % %%6% % % %% % %%% % %% %% %

function IP(SrcFile, grid, factor, DestFile, OvlpFile, GridFile,
Call, Cal2, Cal3, Cal4)
%Function IPQ)

%Preset variables for testing
%SrcFile="d:\demo\samplel._bmp*®;
%DestFile="d:\demo\samplelR._bmp";
%GridFile="d:\demo\samplelG.bmp";

%grid=20; %%grid size
%factor=168; %%calibration parameter
%Cal1=300; %%3mm

%Cal2=500; %%5mm

%Cal3=700; %%7mm

%Cal4=1000; %%210mm

%Preset variables for testing

%Pre-defined parameters

Len_thd =10;

Len_width_ratio=5/factor;
Width_thd=2000; %%20mm
Size_len=640; %%image column size
Size_height=480; %%image row size

%Pre-defined parameters

[BW, map] = imread(SrcFile, "bmp®); %%read source image
BW=erase_border(BW); %%erase border caused by the camera

%%ndistinct block operation
BW1(1:Size_height,1:Size len)=1;
for 1=1:5
for j=1:8
r1=96*(i-1)+1;
cl=80*(j-1)+1;
sel=imcrop(BW, [cl r1l 79 95]);
sell=core(sel);
BW1(rl:(r1+95), cl:(c1+79))=sell;
end
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end
BW1=bwmorph(BW1, "close"); %%border smoothing

length=[0 0 O O O]; %%length vector
PCT=[0 O O O 0O]; %%percentage vector

%%connected component labeling for object identifying
[crack, n]=bwlabel(BW1, 8);
BW=crack;
it (n>0)
delta=(2-sqrt(2))/2;
for 1=1:n
[col,row] = Find(crack==1);
%%select the object in smaller image
sel = bwselect(BW1, row, col, 8 );
rl=min(row);
it (r1>3)
ri=rl1-5;
end
r2=max(row);
it (r2<475)
r2=r2+5;
end
h=r2-r1;
cl=min(col);
if (c1>3)
cl=cl-5;
end
c2=max(col);
iT (c2<635)
Cc2=c2+5;
end
w=c2-c1;
sell=imcrop(sel, [rl cl h w]);

ar=bwarea(sell); %%calculate the area of the object
%%object border smoothing at 3-pixel level
sell=bwmorph(sell, “dilate*, 3);
sell=bwmorph(sell, “erode®, 3);

%%object dilation for border extraction
SE=ones(2);

sell=dilate(sell, SE);

sell=bwperim(sell, 8);

[col,row] = Find(sell>0);

[a,b]=size(col);

%%length calculation

x=adjust(sell);

pix=a-(a-x)*delta;

len=pix/2-4;

%%width calculation

Wid=Ffactor*(ar/len);

%%object identification using length-width criterion
it ((len<Len_thd) | (len/Wid<Len_width_ratio) |
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Wid>Width_thd)

BW1=BW1&(~sel);

else

it (Wid<Call) %%This program segment is to
BW=FillCrack(BW, i, 150); %%categorize the cracks
length(1)=length(1)+len;

elseif(Wid<Cal2) %%based on their width,
BW=FillCrack(BwW, 1, 160); %%and refill the cracks
length(2)=length(2)+len;

elseif(Wid<Cal3) %%with a new value
BW=FillICrack(BW, i, 170); %% representing different
length(3)=length(3)+len; %%categories.

elseif(Wid<Cal4)
BW=FilICrack(BW, i, 180);
length(4)=length(4)+len;

else
BW=FilICrack(BW, i, 190);
length(5)=length(5)+len;

end

end
end
end

%%create the color map for output image
map =[0 O O; jet(2)]:
imwrite(~BW1,map,DestFile, "bmp™); %%write the output bitmap file

%%set backgound of the grid image

[BW, PCT]=SetGrid(BW, grid);

fid = fopen("C:\crack\report.dat®,"w");

for 1=1:5

fprintf(fid, "%d\thd\t", Fix(length(i)),Fix(PCT(i)))
end

fclose(Tid);

%%this segment is to re-draw the cracks
[BW1,n]=bwlabel (BW1, 8);
[col,row] = find(BW1>0);

[m,k]=size(col);
if (m>0)
for i=1:m
BW(col (i), row(i)) = 0;
end
end
imvrite(BW,mapR,GridFile, "bmp®); %%write the output bitmap file

%%erase_border(): erase the fixed
%%noise incurred by the CCD camera on the image border
function [X]=erase_border(BW)

BW(1, :)=255;
BW(:, 640)=255;

77



X=BW;

%%adjust(): turning pixel adjustment for the length
%%calculation for binary image object

function [count]=adjust(BW)

SE1=[0 0 O

;1
SE2=[0 1 0; O
BW1=Fix(Filter2(SE1,BW)/3);
BW2=Fix(Filter2(SE2,BW)/3);

count=0;
v=sum(BW1);
count=count+sum(v);
v=sum(BW2) ;
count=count+sum(v);

%%core(): core function for
function [BW1]=core(BW)

suml=sum(BW) ;
avg=sum(suml)/(96*80);

X=avg-33;
BW1=BW<x;

[crack, n] = bwlabel(BW1, 8);
for 1 1:n
[col,row] = find(crack==i);
[m, k]=size(col);

ifT (m < 35)
BW1(col,row) = 0;
end
if (m > 2500)
BW1(col,row) = 0;
end
end

BWl=double(BW1);
BW2=double(BW) ;
BW2=uint8(BW1.*BW2);

%%histogram analysis
[hstgrm, Xx]=imhist(BW2);
hstgrm(1:5)=0;

[posL, posH]=get pos(hstgrm, 0.3);

%%convolution kernal
%%convolution kernal

%%convolution to determine
%%the turning pixels

%%count the total number of
%%the turning pixel

image segmention

%%calculate the average
%%gray value of the pixels

%%threshold estimation
%%First segmentation

%%object idetification
%%lower Bimit

%%object idetification
%%upper limit

%%masking original image

%%get the histogram
%%clear white pixel distribution
%%get the crack pixel range

BWl=imadjust(BW, [posL/255 posH/255+0.005], [0 11);

BW1=BW1<208;

[crack, n] = bwlabel(BW1, 8);

%%intensity transformation
%%segmentation
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for i =1 :n
[col,row] = find(crack==i);
[m, k]=size(col);

it (m < 25) %%object identification
BW1(col,row) = 0;

end

if (m > 2800) %%object identification
BW2 = bwselect(BW1, row, col, 8);
BW1 = BW1 & (~BW2);

end %%

end

MK(1:96, 1:80)=1;
MK(2:95,2:79)=0; %%preserve object pixels near
MK=MK&BW?1 ; %%the border for recovery

BW1=bwmorph(BW1, "close");
BW1=BW1 | MK; %%recover the border pixels

%%get pos(): determine the gray value range for transformation
function [pL, pH]=get pos(hstgrm, pct)

hstd=pct*max(hstgrm);
m_hst=Find(hstgrm>hstd);
[sml, sm2]=size(m_hst);
it (sm1>0)
pL=m_hst(1);
pH=m_hst(sml);
else
pL=0;
pH=0;
end

%%FilICrack(): assign an individual gray value to the crack
%%object based on the crack width category
function [xImage]=FillCrack(crack, label, CAT)

[col,row] = Ffind(crack==label);
[k1,k2]=size(col);
m=k1;
for k=1:kl1

crack(col(k), row(k))=CAT;
end
xImage=crack;

%%SetGrid(): set the grid background of grid output
%%and calculate the crack occupancy
function [Block, GRP]=SetGrid(BW, grid)

XSize=640;
ySi1ze=480;
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PCT=[0 0 0 0 0];

xBlock=ceil (xSize/grid);
yBlock=ceil (ySize/grid);
blocks=xBlock*yBlock; %%count the total grids

for m=0:(yBlock-1)
for n=0:(xBlock-1)

end

end

xStart=Fix(grid*n)+1;
yStart=fFix(grid*m)+1;

xStop=Fix(grid*n+grid);
yStop=Fix(grid*m+grid);

lengthX=Fix(grid);
lengthY=lengthX;

ifT ((xStart+grid)>xSize)
lengthX=xSize-xStart;
xStop=xSize;

end

it ((yStart+grid)>ySize)
lengthY=ySize-yStart;
yStop=ySize;

end

col=xStart+1:xStop; %%get the grid column parameter
row=yStart+1:yStop; %%get the grid row parameter

square = imcrop(BW, [xStart yStart lengthX lengthY]);

c=max(square); %%determind the maximum element, which
v=max(c); %%is the widest crack label value
it (v==150)

BW(row, col)=15; %%assign “red” color to the class |
PCT(1)=PCT(1)+1;

elseif (v==160)
BW(row, col)=32; %%assign “orange” color to the class 11
PCT(2)=PCT(2)+1;

elseif (v==170)
BW(row, col)=63; %%assign “yellow” color to the class IIlI
PCT(3)=PCT(3)+1;

elseif (v==180)
BW(row, col)=49; %%assign “green” color to the class IV
PCT(4)=PCT(4)+1;

elseif (v==190)
BW(row, col)=5; %%assign “blue” color to the class V
PCT(5)=PCT(5)+1;

else
BW(row, col)=256; %%others for black.

end
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GRP=1000*PCT/blocks;
Block=BW;
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APPENDIX Il CCD Camera Control Class Declaration Code

L1177 777/7/777/77777/7777/77/777/7/7/7/77/7/77/7/77/77/77/7/7/7/7/7/7/77/77/7777
// CameraThread.h : header file
//

#ifndef _ CAMERATHREAD H__
#define _ CAMERATHREAD H__

#include "wpx5 NT.h" //CCD camera API
typedef struct

BITMAPINFOHEADER head;
RGBQUAD colors[256];
} MAPHEAD;

L1177 777777777/77777/777777777/7/7/7/77/77/77/7/77/77777/7/7/7/7/7/77/77/7777
// CCameraThread thread

class CCameraThread : public CWinThread

{

public:
DECLARE_DYNCREATE(CCameraThread)
CCameraThread(CWnd* pWnd) ;

// Attributes
public:
CRect m_rectBorder;
HANDLE m_hEventKill;
HANDLE m_hEventDead;
static HANDLE m_hAnotherDead;

static CRITICAL_SECTION m_csCameralLock;

// Operations
public:
void OnScrollIBy(CSize sizeScroll, BOOL bScroll = TRUE);
int ImageMaxy;
int ImageMaxX;
void KillThread();
virtual void SingleFrame();

// Overrides
// ClassWizard generated virtual function overrides
//7{{AFX_VIRTUAL(CCameraThread)
//}}AFX_VIRTUAL

// Implementation
virtual ~CCameraThread();
virtual void Delete();
BOOL pxWriteCurrentFile(LPSTR FfileName);
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protected:

BOOL AllocBuffer();

void SetBitMapHead();

void CreateGrayPalette();
MAPHEAD m_mapHead;

BYTE * gpBits;

void Getlmage(FRAMEHANDLE frh);
void Paint(HDC hDC);
HPALETTE hpalette;
FRAMEHANDLE frh[2];

int frhildx;

int tagQ[2];

HANDLE hBuf;

FGHANDLE fgh;

BOOL Cameralnit();

void CamerakExit();

virtual BOOL Initlnstance();

// Generated message map functions
//{{AFX_MSG(CCameraThread)
// NOTE - the ClassWizard will add and remove member

functions here.
//}YAFRX _MSG

DECLARE_MESSAGE_MAP()
}:

L1177 7777777777777777/7777/7777777/77/77/7/7/7/7/7/77/77/7/7/7/7/7//7/7/7/77/7777
#endi
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APPENDIX 111 RS232 1/0 Implementation Source Code

///177777777777777777/7/7/777/777777

//

initialize the com port

L1117/ /7/77777////7777/////777/7/7/7/777
BOOL CComPort::Initialize()

{

DWORD dwRC;
DWORD dwError;

char

sMsg[512];

m_bPortReady = TRUE; // everything is OK so far

m_hCom

= CreateFile(m_sComPort,
GENERIC_READ | GENERIC_WRITE,
0, // exclusive access

NULL, // no security
OPEN_EXISTING,

0, // no overlapped 1/0
NULL); /7 null template

if (m_hCom == INVALID_HANDLE_VALUE)

{

m_bPortReady = FALSE;
dwError = GetLastError();

// example error code expansion follows

LPVOID IpMsgBuf;

IpMsgBuf = NULL;

dwRC = FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE__IGNORE_ INSERTS,
NULL,
dwError, // from GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &lpMsgBuf,
0

NULL);
if (dwRC && IpMsgBuf)
{
sprintf(sMsg, ""COM open failed: Port=%s Error=%d
- %s'", m_sComPort, dwError, IpMsgBuf);
AfxMessageBox(sMsq);
}
else
{
sprintf(sMsg,''COM open failed: Port=%s Error=%d",
m_sComPort, dwError);
AfxMessageBox(sMsq);
} 7/ end if
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if (dwRC && IpMsgBuf)

{
LocalFree( IpMsgBuf );
Y // end if

Y // end if

it (m_bPortReady)
{
m_bPortReady = SetupComm(m_hCom,
128, 128); // set buffer sizes
iT (Im_bPortReady)
{
dwError = GetLastError();
sprintf(sMsg, "'SetupComm failed: Port=%s
Error=%d', m_sComPort, dwError);
AfxMessageBox(sMsq);
} 7/ end if
} 7/ end if

iT (n_bPortReady)
{
m_bPortReady = GetCommState(m_hCom, &m_dcb);
it (Im_bPortReady)
{
dwError = GetLastError();
sprintf(sMsg, "'GetCommState failed: Port=%s
Error=%d', m_sComPort, dwError);
AfxMessageBox(sMsQ);
} // end if
} /7/ end if

it (m_bPortReady)
{

m_dcb.BaudRate 9600;
m_dcb.ByteSize = 8;
m_dcb.Parity = NOPARITY;
m_dcb.StopBits = ONESTOPBIT;
m_dcb.fAbortOnError = TRUE;

m_bPortReady = SetCommState(m_hCom, &m_dcb);
iT (Im_bPortReady)
{
dwError = GetLastError();
sprintf(sMsg, "'SetCommState failed: Port=%s Error
= %d", m_sComPort, dwError);
AfxMessageBox(sMsq) ;

}
} // end if
iT (n_bPortReady)

{
m_bPortReady = GetCommTimeouts (m_hCom,

&m_CommTimeouts);
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it (Im_bPortReady)

{
dwError = GetLastError();
sprintf(sMsg, "‘GetCommTimeouts failed: Port=%s
Error = %d", m_sComPort, dwError);
AfxMessageBox(sMsq);
} 7/ end if
} 7/ end if

it (n_bPortReady)

{
m_CommTimeouts.ReadlntervalTimeout = 50;
m_CommTimeouts.ReadTotalTimeoutConstant = 50
m_CommTimeouts.ReadTotalTimeoutMultiplier =
m_CommTimeouts.WriteTotalTimeoutConstant = 5
m_CommTimeouts.WriteTotalTimeoutMultiplier =
m_bPortReady = SetCommTimeouts (m_hCom,

&m_CommTimeouts);

it (Im_bPortReady)
{

10;
0

10;

dwError = GetLastError();
sprintf(sMsg, "'SetCommTimeouts failed: Port=%s
Error = %d", m_sComPort, dwError);
AfxMessageBox(sMsQ);
} 7/ end if
} 7/ end if

it (m_bPortReady)

{
BOOL bWriteRC;

DWORD iBytesWritten;

//Configure port A: Bit AO is the pin for signal input
//Bit A7 is the output pin for motor control

iBytesWritten = O;

bWwriteRC = WriteFile(m_hCom, **CPAOOOOO0OO1I\r",
12, &iBytesWritten, NULL);

iT (IbWriteRC || iBytesWritten == 0)

{

AfxMessageBox(*'Fail to initialize the port!™);

}

return m_bPortReady;
} // end CComPort::Initialize

L1117/ /7/77777///77777////777/7/7/777
// terminate the com port
/1171777777777 /7777/7////7777/7//777
void CComPort::Terminate()
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{
CloseHandle(m_hCom);
} // end CComPort::Terminate

/1171777777777 7/77/7/77//7/7//77/7/777
// read data from the com port
/1177777777777 /77//77/7//7/7//7/7/777
BOOL CComPort::Read(CString& sResult)
{

BOOL bWriteRC;

BOOL bReadRC;

DWORD iBytesWritten;

DWORD iBytesRead;

char sBuffer[32];

iBytesWritten = O;
bWwriteRC = WriteFile(m_hCom, "RPA\r",4,&iBytesWritten,NULL);
if (bWriteRC || iBytesWritten == 0)

{
return FALSE;
} 7/ end if
memset(sBuffer,0,sizeof(sBuffer));
bReadRC = ReadFile(m_hCom, &sBuffer, 15, &iBytesRead, NULL);

if (bReadRC && iBytesRead > 0)
{

}

else

{
return FALSE;
} 7/ end if
return TRUE;
} // end CComPort: :Read

sResult = sBuffer;

/1711777777777 7///77/77////7//7777/777
// write command to the com port
/111777777777 7/777/777/777/777/777
void CComPort::Write(const int& m_iCommand)
{

BOOL bWriteRC;

DWORD iBytesWritten;

DWORD dwError;

char sMsg[128];

iBytesWritten = O;
switch (m_iCommand){
case 1:
bWriteRC = WriteFile(m_hCom, "SPA11100011\r",
15, &iBytesWritten,NULL);
break;
case 2:
bWriteRC = WriteFile(m_hCom, *"SPA10000011\r",
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15, &iBytesWritten,NULL);
break;
default:
bWriteRC = WriteFile(m_hCom, *"SPAOOOOOO11\r",
15, &iBytesWritten,NULL);

break;
}
if (bWriteRC || iBytesWritten == 0)
{
dwError = GetLastError();
sprintf(sMsg, "Write of length query failed: RC=%d, **
"Bytes Written=%d, Error=%d",
bWriteRC, iBytesWritten, dwError);
AfxMessageBox(sMsq);
} 7/ end if
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APPENDIX IV Pin Configuration of the Motion System Control

Box
1. Interior
PIN # DIPS DIP8
1 PA6 (ADR101) PA7 (ADR101)
2 FO (FLASH) PA5 (ADR101)
3 PA2 (ADR101) GND (Vcc)
4 F1 (FLASH) PA1 (ADR101)
5 PAO (ADR101) Ve (+5V)
6 - Vb (+12V)
7 -- GND (Vop, VEer)
8 -- VEee (-12V)
2. Exterior
PIN # Assignment PIN # Assignment
1 DIP8 (6) 7 Motor B
2 DIP8 (7) 8 Motor C
3 DIP8 (8) 9 Sensor A(0)
4 DIP5 (2) 10 Sensor A(1)
5 DIP5 (4) 11 Sensor B(0)
6 Motor A 12 Sensor B(1)
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