Division of Engineering Research on Call Agreement 31796

(Task 2 – Asymmetrical Deformation of Thermoplastic Pipe Analysis)

Kevin White, Shad Sargand, Fouad Al Rikabi

for the Ohio Department of Transportation Office of Statewide Planning and Research

and the United States Department of Transportation Federal Highway Administration

December 2019

Final Technical Report

Ohio Research Institute for Transportation and the Environment

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/OH-2020-1		
4. Title and Subtitle		5. Report Date
Division of Engineering Research on Call	Services	December 2019
Asymmetrical Deformation of T	hermoplastic Pipe Analysis	6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Kevin White (ORCID 0000-0002-2902-25	24), Shad Sargand (ORCID 0000-0002-1633-	
1045), Fouad Al Rikabi (ORCID 0000-000)2-4150-4622)	
9. Performing Organization Name and A	Address	10. Work Unit No. (TRAIS)
E.L. Robinson Engineering of Ohio Comp	any	
1801 Watermark Drive, Suite 310		11. Contract or Grant No.
Columbus, OH 43215		State Job No. 135786
and		
Ohio Research Institute for Transportation	and the Environment (ORITE)	
233 Stocker Center		
Ohio University		
Athens OH 45701-2979		
12. Sponsoring Agency Name and Addre	èss	
Ohio Department of Transportation		13. Type of Report and Period Covered
Office of Statewide Planning and Research	ı	Final Technical Report
1980 West Broad St.		
Columbus, OH 43223		14. Sponsoring Agency Code
15. Supplementary Notes		
	partment of Transportation (ODOT) and the U.S. D	epartment of Transportation, Federal Highway
Administration	. , ,	
16. Abstract		
the extent of racking noted within Item 61 of the AASHTO LRFD Bridge Design Sp	1 Conduit Evaluations. Next, a rational method for ecifications, Section 12. A spreadsheet was devel	DDOT construction records were reviewed to determine r assessing racking was developed within the framework loped to aid in the assessment procedure. The results of element software CANDE. Finally, a one-day course
	ethod was developed and presented to ODOT staff	

17. Key Words		18. Distribu	tion Statement					
Soil-Structure Interaction, Finite Element Method, Rac	cking, Thermoplastic Pipe	No Restriction	ons. This document is avai	lable to the public				
		through the	National Technical Inform	ation Service,				
	Springfield,	Virginia 22161						
19. Security Classif. (of this report)	is page)	22. Price						
Unclassified	Unclassified		xxx					

		×IS	DERN MET	RIC)	CONV	(MODERN METRIC) CONVERSION FACTORS	CTORS		
AP	APPROXIMATE CO	ONVERSIO	SI UNI	S	APP	APPROXIMATE CONVERSIONS FROM SI UNITS	NVERSIONS	S FROM SI UNI	TS
Symbol	When You Know	 Multiply By 	To Find S	Symbol	Symbol	When You Know	Multiply By	/ To Find	Symbol
		LENGTH	I				LENGTH	I	
.⊆	inches	25.4	millimeters	E	E	millimeters	0.039	inches	.⊆
#	feet	0.305	meters	Ε	Ε	meters	3.28	feet	#
<u> </u>	yards miles	0.914	meters kilometers	E \$	E ¥	meters kilometers	1.09	yards miles	ъ. Е
		AREA					AREA		
			1	N	>			ī	``
<u>'</u> _ `	square inches	645.2	square millimeters	mm ·	um.	square millimeters	0.0016	square inches	<u>.</u>
¥= ³	square feet	0.093	square meters	Έ [`]	"E	square meters	10.764	square feet	±,
yd⁴	square yards	0.836	square meters	ĽE	m,	square meters	1.195	square yards	yd⁵
ac °	acres	0.405	hectares	pa .	ha .	hectares	2.47	acres	ac
ž į	square miles	2.59	square kilometers	km,	km,	square kilometers	0.386	square miles	ž.
		VOLUME					VOLUME		
fl oz	fluid ounces	29.57	milliliters	닡	۳	milliliters	0.034	fluid ounces	fl oz
gal	gallons	3.785	liters	_	_	liters	0.264	gallons	gal
F ₃	cubic feet	0.028	cubic meters	"E	E E	cubic meters	35.71	cubic feet	H ₃
yq ₃	cubic yards	0.765	cubic meters	E E	m ³	cubic meters	1.307	cubic yards	yd³
NOTE:	>	1000 L shall be shown in m^3 .	wn in m³.						
		MASS	Ī				MASS	1	
ZO	onuces	28.35	grams	D	D	grams	0.035	onuces	ZO
요 ⊦	spunod	0.454	kilograms	p ş	y g	kilograms	2.202	spunod	요 ⊦
-	snort tons (2000 lb)	706.0	megagrams (or "metric ton")	or "t")	Mg (or "t")	megagrams) (or "metric ton")	1.103	snort tons (2000 lb)	-
	TEMPER	RATURE (exact)	نِact)			TEMPER	remperature (exact)	act)	
Ļ	Fahrenheit temperature	5(°F-32)/9 or (°F-32)/1.8	Celsius temperature	ပ္	ô	Celsius temperature	1.8°C + 32	Fahrenheit temperature	Ļ
		UMINATION	Ī				ILLUMINATION	ı	
Ç	foot-candles	10.76	ınx	×	×	lux	0.0929	foot-candles	ဍ
Œ	foot-Lamberts	3.426	candela/m ²	cd/m²	cd/m ²	candela/m²	0.2919	foot-Lamberts	F
	FORCE and	PRESSURE	or STRESS			FORCE and P	PRESSURE o	or STRESS	
IP t	poundforce	4.45	newtons	z	z	newtons	0.225	poundforce	lbf
lbf/in² or psi	poundforce per square inch	6.89	kilopascals	к Ра	кРа	kilopascals	0.145	poundforce per square inch	lbf/in² or psi

* SI is the symbol for the International Symbol of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised September 1993)

Division of Engineering Research on Call Agreement 31796

(Task 2 – Asymmetrical Deformation of Thermoplastic Pipe Analysis)

Kevin White¹ Shad Sargand² Fouad Al Rikabi²

¹E. L. Robinson Engineering of Ohio Company 1801 Watermark Drive, Suite 310 Columbus, OH 43215

Ohio Research Institute for Transportation and the Environment (ORITE)
 233 Stocker Center
 Ohio University
 Athens OH 45701-2979

Prepared in cooperation with the
Ohio Department of Transportation
and the
U.S. Department of Transportation, Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Ohio Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

Final Technical Report

December 2019

Division of Engineering Research on Call Agreement 31796

(Task 2 – Asymmetrical Deformation of Thermoplastic Pipe Analysis)

Kevin White, M.S., P.E.

E.L. Robinson Engineering1801 Watermark Drive, Suite 310Columbus, OH 43215

Shad Sargand, Ph.D. Fouad Al Rikabi

Ohio Research Institute for Transportation and the Environment (ORITE) 233 Stocker Center Ohio University Athens OH 45701-2979

Research Institute for Transportation and the Environment

December 2019

Table of Contents

CHAPTER 1: INTRODUCTION	6
1.1 Scope of Work	6
1.2 Outline of the Report	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 Introduction	8
CHAPTER 3: DEVELOPMENT OF RACKING ASSESSMENT TOOL	9
3.1 Assumptions and Limitations of the Methodology	9
3.2 Conduit Mechanical Properties	9
3.3 Constrained Soil Modulus Estimation	10
3.4 Flexural Strain	12
3.5 Compression Strain	15
3.6 Assessment of Racking AASHTO Design Methodology	15
3.7 Finite Element Analysis	15
3.7.1 Introduction	15
3.7.2 HDPE Pipe Model	16
3.7.3 Load Step 1	17
3.7.4 Elliptical Pipe Model	17
3.7.5 Elliptical Pipe Model Rotated Through 15°	20
3.7.6 Elliptical Pipe Model Rotated Through 30°	22
3.8 Validation of the Methodology	25
3.9 Example Calculations	26
3.9.1 Ellipse method	26
3.9.2 Sagitta Method	29
3.10 Conclusions and Recommendations	30
CHAPTER 4: DEVELOPMENT OF FEA TRAINING SESSION	32
References	33
Annendices:	34

CHAPTER 1: INTRODUCTION

1.1 Scope of Work

The Ohio Department of Transportation (ODOT) wishes to develop a practical method for assessing asymmetrical deformation of installed thermoplastic pipes. ODOT Construction and Material Specifications (CMS) Item 611 requires such asymmetrical deformation (termed "racking") to be evaluated by an independent Registered Engineer.

American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Construction Specifications, Section 30 (2010) refer to Section 12 of the AASHTO LRFD Bridge Design Specifications (2017) for assessment of the structural suitability of installed thermoplastic pipe. However, Section 12 design procedures are all based on deflections less than 5% and are based on uniform deflection. Section 12 does not consider racking in the design method and does not consider deflections in excess of 5%. The assessment is, therefore, left wholly to the independent Registered Engineer.

Assessment of these types of distortion can be assessed using finite element modelling which can estimate the stresses and strains in the pipe wall.

The project goals are to address these deficiencies and offer guidance for the assessment of pipe distortion and racking, and to provide basic training to ODOT personnel on the use of finite element modelling (FEM). The following tasks will be utilized to accomplish these goals.

The project team will make contact with ODOT staff, both in Central Office and in District Offices to identify the types of distress commonly identified during 611 post-construction conduit inspections. In addition, we will draw on our experiences as an independent Registered Engineer and experiences of industry colleagues in identifying common conduit defects.

The project team will develop 2D FEM models using the public domain Culvert Analysis and Design (CANDE) FEM software. The models will be utilized to conduct a parametric study on the performance of distorted thermoplastic pipe.

Based on the results of the parametric study conducted as Task 2, the team will develop a Distortion Assessment Methodology. This will be a practical method for measuring thermoplastic pipe distortion and assessing the structural suitability of the distorted pipe. This will include pipe sizes with nominal diameters of 12 in to 60 in.

A short training procedure will also be developed in order to provide training of the methodology to ODOT personnel.

The project team will develop an introductory training course in the finite element method. The course will not focus on the mathematics behind the method, but rather the practical implementation of the methodology to solve soil-structure interaction problems. The training will discuss soil material models, structural element material models, and interface elements.

The training will discuss both the positive aspects of FEM as well as common pitfalls.

1.2 Outline of the Report

Chapter 2 covers the literature search which aimed at review of current state of the practice in assessing non-symmetric deformation in buried thermoplastic conduits. In addition, a summary of existing ODOT 611 inspection data reviewed are provided in Chapter 2.

Chapter 3 presents the methodology utilized to develop the racking assessment tool as well as the finite element models used to assess the tool.

Chapter 4 discusses the development of the finite element method training session.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

A literature search was conducted to gather literature, specifications, and standards related to the proposed research project's main topic – assessment of asymmetric deformation in thermoplastic pipe. Past and recent publications made in relevant major technical journals and proceedings of conferences and symposia were reviewed to locate technical papers of interest. Some of the target journals and conference publications included:

- TRR (Journal of the Transportation Research Board (TRB))
- American Society of Civil Engineer (ASCE) Journals
- American Society for Testing and Materials (ASTM) Journal
- Proceedings of TRB Annual Meetings
- ASCE Conference Proceedings
- ASTM Symposium Proceedings
- ASTM Specifications

Reports issued on the topic considered in the literature search including:

- Reports Issued by Federal Highway Administration (FHWA), State Departments of Transportation, United States Department of Agriculture (USDA), and Natural Resources Conservation Service (NRCS)
- National Cooperative Highway Research Program (NCHRP) Reports and Syntheses
- Reports issued by research institutions
- Reports issued by pipe manufacturers

The team contacted Plastic Pipes Institute (PPI) member manufacturers and researched the websites of PPI member manufacturers and distributers to collect relevant information.

The results of the literature search produced very little regarding asymmetric deformation. The only germane publication is an article from the Compendium of Papers from the Transportation Research Board 94th Annual Meeting Compendium of Papers entitled "Evaluating Installation Racking in Buried Thermoplastic Conduits" (Domonell, Mailhot, & Beaver, 2015). This paper presents a methodology for assessing the flexural strain resulting from crown racking in buried arch-shaped stormwater chambers. The methodology assumes circumferential strain (thrust strain) remains essentially unchanged from the unracked condition. The method then uses field measurement tools to measure the radius of curvature of the deformed section by measuring the sagitta and chord length of the racked portion of the pipe wall. Finally, the method uses newely developed load combinations that reduce dead load factors because the shape and state of the deformed shape is measured in detail.

CHAPTER 3: DEVELOPMENT OF RACKING ASSESSMENT TOOL

3.1 Assumptions and Limitations of the Methodology

Several simplifying assumptions are made to aid in the development of the racking assessment tool. These factors include:

- The deformed conduit can be reasonably estimated as an ellipse, or as a rotated ellipse.
- The deformed conduit shape is relatively stable.
- Maximum deflections do not exceed 10% to 12%. When deflections exceed this limit, the stability of the conduit ring is in question and global stability cannot be assured.
- The methodology should, insofar as practicable, be consistent with AASHTO LRFD Bridge Design Specifications, Section 12.

3.2 Conduit Mechanical Properties

HDPE pipes exhibit viscoelastic behavior. Viscoelastic materials tend to creep under constant stress and relax under constant strain. Stated otherwise, a conduit under a constant stress will creep (deflect). Whereas, the stress required to maintain a constant strain (deflection) will reduce with time. One interesting result of this viscoelastic response is that the there is an apparent reduction in the modulus with time. This relaxation response and apparent reduction in stiffness can be seen in Figure 1 and Figure 2

Young's Modulus of HDPE Showing Stress Relaxtion

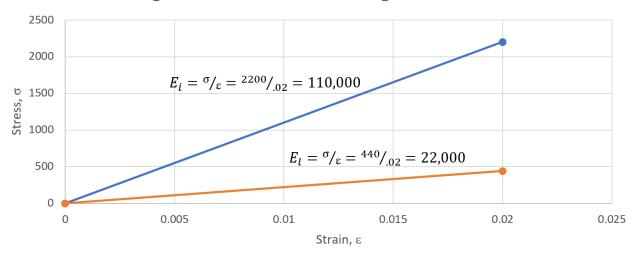


Figure 1 - Modulus of HDPE showing stress relaxation

HDPE Stress Relaxation With Time

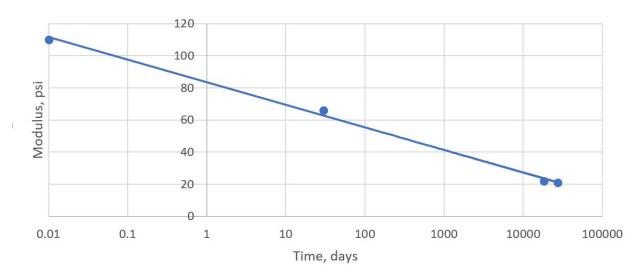


Figure 2 - Apparent reduction in modulus with time

Data from NCHRP Report 870 (2018) on the relaxation of HDPE pipe under constant stress shows that after 30 days there is an apparent reduction of 60 percent in the mechanical properties of HDPE conduit meeting AASHTO M294. A best-fit log-linear equation was calculated using the AASHTO reported initial, 50- and 75-year values for the modulus of 110 ksi, 22 ksi and 21 ksi, along with a 30-day value of 66 ksi (60 percent of 110 ksi). This results in the following equation for determining the modulus as a function of time.

$$E = -6.092 \ln t + 83.419 \tag{1}$$

The flexural strength, f_y , as a function of time was calculated in a similar manner with the following resulting equation.

$$f_{y} = -0.147 \ln t + 2.3164 \tag{2}$$

3.3 Constrained Soil Modulus Estimation

Assessing the in-situ stiffness of the backfill soil around the installed conduit is a challenge. Non-destructive methods such as a cone penetrometer can be utilized. However, this may be unrealistic for conduits under pavements and can be a cost-prohibitive methodology. Considering the desire to provide a methodology consistent with AASHTO Section 12, it is necessary to determine the secant constrained soil modulus as this is a fundamental variable in the Section 12 design procedure. An equation-based methodology is proposed wherein the secant constrain soil modulus is calculated using the AASHTO modification to the Iowa

Equation for vertical deflection. The AASHTO (2017) equation expands the original Modified Iowa equation to consider both flexural defection and circumferential shortening. The equation is:

$$\Delta = \frac{K_B (D_L P_{sp} + C_L P_L) D_o}{1000 (E_p I_p / R^3 + 0.061 M_s)} + \varepsilon_{sc} D$$
(3)

where:

 Δ = Total deflection

 D_L = Deflection lag factor

 K_B = Bedding coefficient, typically 0.10

 P_{sp} = Soil prism pressure

 C_L = Live load coefficient

 P_L = Live load pressure

 D_o = Outside diameter of the conduit

 E_p = Modulus of the conduit material

 I_p = Moment of inertia of the conduit material

R = Centroidal radius of the conduit

D = Centroidal diameter of the conduit

 M_s = Secant constrained soil modulus

 ε_{sc} = Service compressive strain given as:

$$\varepsilon_{sc} = \frac{T_s}{1000(A_{eff}E_p)} \tag{4}$$

where:

 T_s = Service compressive thrust

 A_{eff} = Effective area of conduit wall

It is noted that service thrust is also a function of the secant constrained soil modulus which adds considerable complexity to the derivation of secant constrained soil modulus from the field measured deflection thus, an iterative solution procedure is recommended. It is also noted that the deflection lag factor is an empirical factor used to estimate the long-term settlement of the soil surrounding the conduit which results in additional long-term conduit deflection. Because

the actual field measured deflection is utilized in Equation (3), the deflection lag factor is set to unity.

As the conduit deformations exceed 7%, there is a rapid decline in the calculated constrained soil modulus to values well below what practical experience dictates as being realistic minimum values. Because of this, a minimum constrained soil modulus is set equivalent to the range of values presented for silty soils at 85 percent standard proctor density. These values are provided in Table 12.12.3.5-1 of AASHTO Section 12. The silty soil type selection as a lower bound is somewhat arbitrary and is based solely on the experience of the authors.

3.4 Flexural Strain

AASHTO provides an empirical approach for calculating maximum flexural strain at the outer fiber of a profile-wall conduit. The equation is given as:

$$\varepsilon_f = \gamma_{EV} D_f \left(\frac{c}{R}\right) \left(\frac{\Delta_f}{D}\right) \tag{5}$$

where:

 $\varepsilon_{\rm f}$ = factored flexural strain

 γ_{EV} = load factor for earth and dead load pressure

 Δ_f = Vertical deflection due to flexural

R = Centroidal radius of the conduit

D = Centroidal diameter of the conduit

 D_f = Shape factor provided in AASHTO Section 12 Table 12.12.3.10.2b-1

c = Distance from profile centroid to innermost or outermost fiber

A simplified method of computing flexural strain can be determined from the deformed shape of the pipe and the change in radius of the conduit wall. Two methods for determining the change in radius are presented. The first is by assuming the deformed conduit is in the shape of an ellipse. For this methodology the changed radius is calculated as:

$$R_s = \frac{b^2}{a} \tag{6}$$

$$R_c = \frac{a^2}{h} \tag{7}$$

where:

 R_s = radius of the conduit springline

 R_c = radius of the conduit cro7wn

 $a = \frac{1}{2}$ of the semimajor axis (see Figure 3)

 $b = \frac{1}{2}$ of the semiminor axis (see Figure 3)

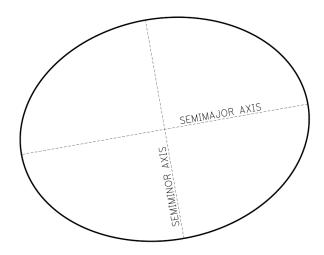


Figure 3 - Ellipse nomenclature

The second method uses the measured sagitta and chord length of the deformed shape to calculate the change in radius. See Figure 4 for a representation of the measurement methodology. For this methodology the changed radius is calculated as:

$$R_d = \frac{L^2}{8e} + \frac{e}{2} \tag{8}$$

where:

 R_d = Changed radius of the conduit

L = Common chord length

e = sagitta length

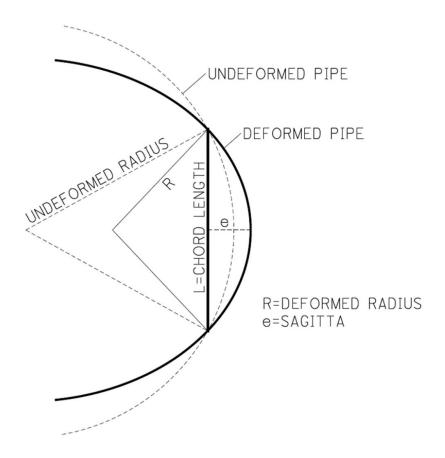


Figure 4 - Sagitta nomenclature

Once the changed radius is calculated, the equation for flexural strain can be calculated from three relationships (Waktins & Andersen, 2000). The first is the general equation for flexural stress, σ , given as:

$$\sigma = \frac{Mc}{I} \tag{9}$$

where:

M = Moment at the point of radius measurement

The next is the relationship between the flexural moment and the change is radius of the conduit.

$$\frac{M}{EI} = \frac{1}{R} + \frac{1}{R'} \tag{10}$$

where:

R = Centroidal radius of the conduit

R' = Changed centroidal radius of the conduit $(R_c, R_s \text{ or } R_d \text{ from the above equations})$

The final relationship is the stress/strain relationship of modulus.

Using these relationships, the flexural strain in the deflected conduit can be calculated as:

$$\varepsilon = c \left(\frac{1}{R} - \frac{1}{R'} \right) \tag{11}$$

3.5 Compression Strain

Compression strain in the racked conduit wall is assumed to be essentially equivalent to the compression strain in a conduit without racking. This approach is validated via finite element analysis herein as well as by the work of Domonell, *et. al.* (2015).

3.6 Assessment of Racking AASHTO Design Methodology

Once the estimated secant constrained soil modulus and field measured flexural strain are calculated using the methods described herein, it is possible to assess the long-term suitability of the installation using standard AASHTO design procedures. It is not necessary to check for deflection or to check the flexibility factor.

A spreadsheet has been developed to aid in the calculations. An electronic version of the spreadsheet was delivered to the ODOT Office of Hydraulic Engineering. The spreadsheet is included as Appendix A.

3.7 Finite Element Analysis

3.7.1 Introduction

Finite element analysis (FEA) was performed to assess the response of a racked conduit under soil loading. The FEA was completed using the specific purpose finite element software CANDE (Culvert Analysis and Design). The response of a 36-inch conduit to racking and soils loading was determined from the CANDE output. The CANDE model utilized a 75-year apparent modulus and apparent flexural strength. The 75-year values of 21 ksi and 800 ksi, respectively, were taken from AASHTO Section 12 tabular values.

The principal of superposition was utilized for the analysis. Within the linear elastic domain, superposition is a method wherein loads applied to a system are invoked (superimposed) one at a time. The resulting total deformation is then calculated as the summation of the deformations from each individual load.

3.7.2 HDPE Pipe Model

The model used to analyze the effect of earth load on a 36-inch diameter HDPE pipe is shown in Figure 5. The model consists of four components, an in-situ soil trench with height and width of 8 and 10 feet, respectively, structural backfilling of 5 feet, overfill of 4 feet, and the 36-inch diameter conduit. Beam element results that follow all follow the same node numbering convention with node 1 located at the crown of the pipe and numbering then moving about the pipe in a clockwise until node 17, concurrent with node 1, is reached, as shown in Figure 6.

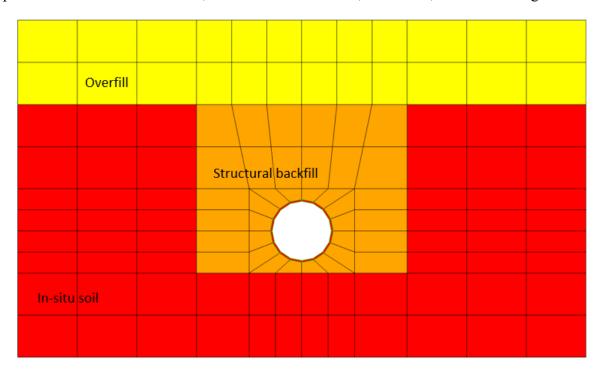


Figure 5 - CANDE model soil zones

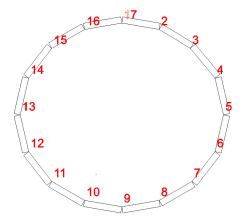


Figure 6 - CANDE Beam Element Results Numbering Convention

3.7.3 Load Step 1

The first load step shows the in-situ soil with the conduit ring sitting above the bedding layer as depicted in Figure 7. The deformed shape was created by applying a displacement boundary condition with a value of 1.8 inches on the node at the crown of the conduit. This deformation equates to a nominal 5 percent deflection.

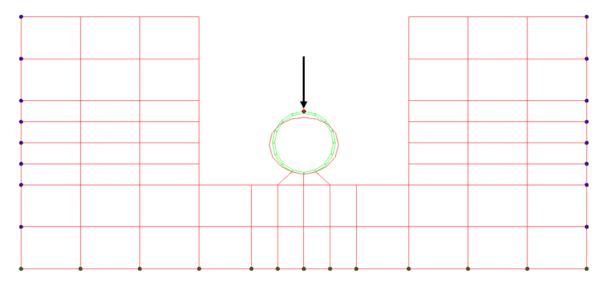


Figure 7 - CANDE Load step 1

3.7.4 Elliptical Pipe Model

The elliptical pipe model was created by using an elliptical conduit representative of a circular conduit deflected 5% of its nominal diameter. The CANDE model is shown in Figure 8.

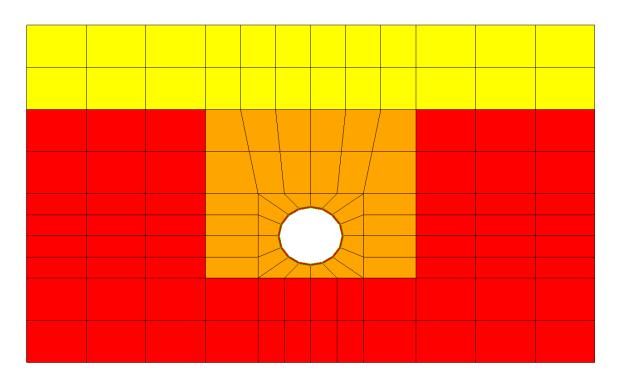


Figure 8 - Elliptically deformed conduit model

Results of the elliptical model are shown in Figure 9 through Figure 12.

Bending moment(lb-in/in)

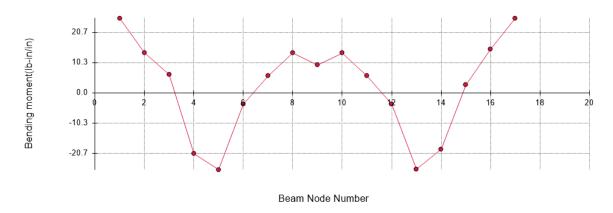


Figure 9 - Flexural moment for elliptical conduit model

Thrust stress(psi) -33.5 -67.1 -100.6 -134.2 -167.7

Figure 10 - Thrust stress for elliptical conduit model

Beam Node Number

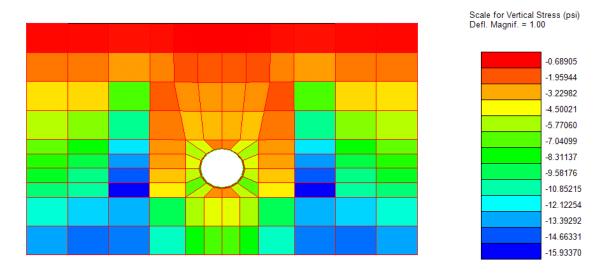


Figure 11 - Vertical soil stress for elliptical conduit model

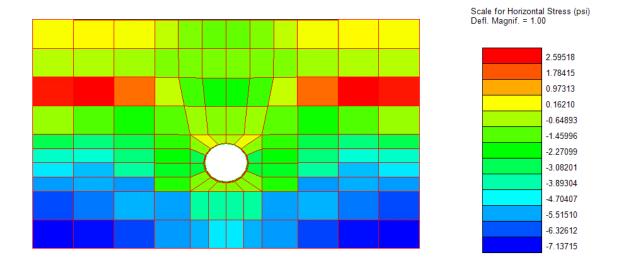


Figure 12 - Horizontal soil stress for elliptical conduit model

3.7.5 Elliptical Pipe Model Rotated Through 15°

The basic elliptical pipe model was rotated through 15° to create an idealized racked conduit. The CANDE model is shown in Figure 13.

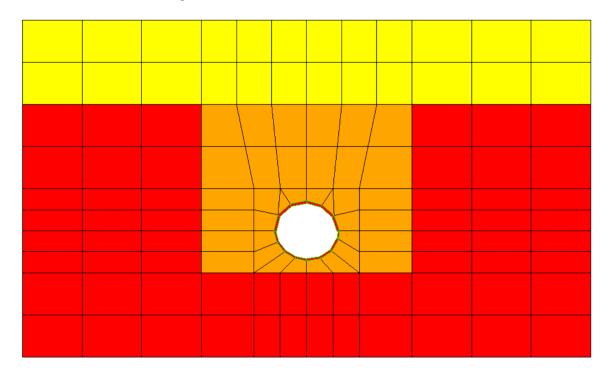


Figure 13 - Elliptical conduit model rotated through 15°

Results of the elliptical model rotated through 15° are shown in Figure 14 through Figure 17.

Bending moment(lb-in/in)

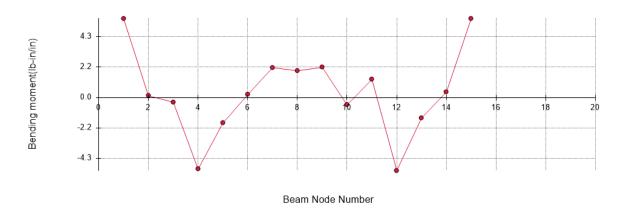
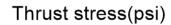



Figure 14 - Flexural moment for 15° rotated elliptical conduit model

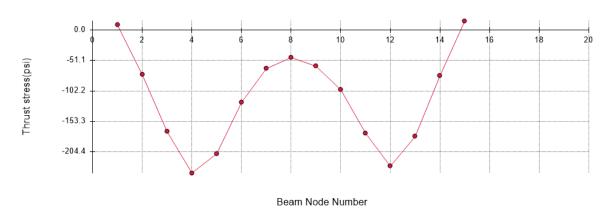


Figure 15 - Thrust stress for 15° rotated elliptical conduit model

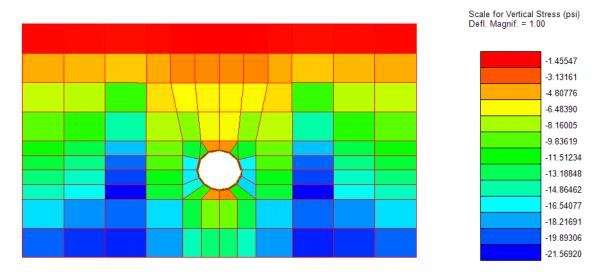


Figure 16 - Vertical soil stress for 15° rotated elliptical conduit model

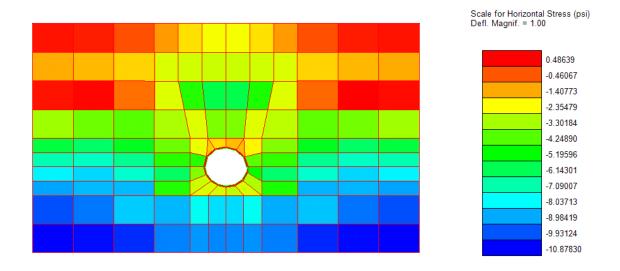


Figure 17 - Horizontal soil stress for 15° rotated elliptical conduit model

3.7.6 Elliptical Pipe Model Rotated Through 30°

The basic elliptical pipe model was rotated through 30° to create an idealized racked conduit. The CANDE model is shown in Figure 18.

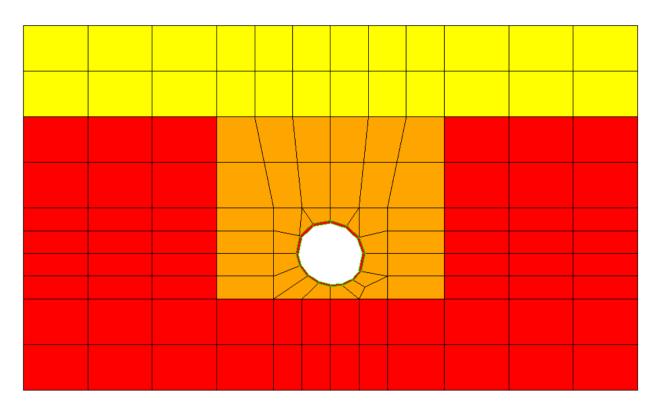


Figure 18 - Elliptical conduit model rotated through 30°

Results of the elliptical model rotated through 30° are shown in Figure 19 through Figure 22.

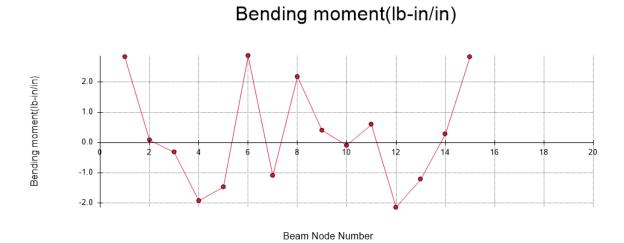


Figure 19 - Flexural moment for 30° rotated elliptical conduit model

Thrust stress(psi)

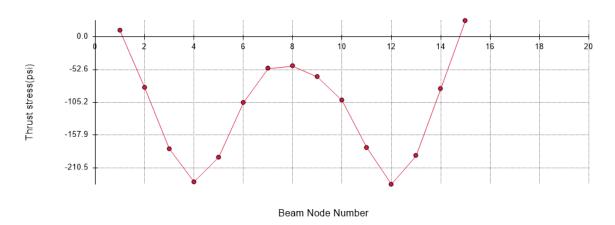


Figure 20 - Thrust stress for 30° rotated elliptical conduit model

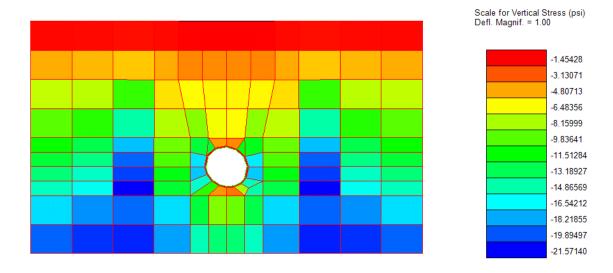


Figure 21 - Vertical soil stress for 30° rotated elliptical conduit model

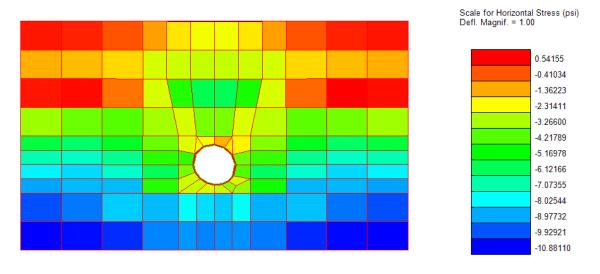


Figure 22 - Horizontal soil stress for 30° rotated elliptical conduit model

3.8 Validation of the Methodology

Results derived from the methodology presented in Sections 3.3 through 3.5 are compared to the results of the finite element analyses presented in Section 3.7 to assess the suitability of the methodology.

The FEA were conducted at service state without additional load or resistance factors. For consistency, all applicable load and resistance factors have been set to unity when calculating the response of the conduit using AASHTO Section 12 methodologies. AASHTO Section 12 computes the flexural and circumferential (thrust) strains independent of one another whereas CANDE provides the combined nodal strains. For the following narrative compressive reactions are presented as negative values whereas tensile reactions are presented as positive values.

The results of the analyses are presented in Table 1. Upon inspection the tensile zone results do not correlate well between the two methods. The FEA tends to underestimate tensile strains in the conduit wall when compared to the AASHTO method. Upon further inspection the reason for the difference becomes evident. Calculation differences between the two methodologies result in substantially different wall thrust forces. As an example, the AASHTO calculated thrust force at the springline and crown are 125 lb/in and 77 lb/in, respectively. Whereas the CANDE calculated thrust forces for the 15° Ellipse are 78 lb/in and 26 lb/in, respectively. This thrust force is a compression force and tends to offset the tensile strains in the pipe wall. Another limitation in comparing CANDE to AASHTO Section 12 is that AASHTO Section 12 provides results at two discrete locations: the crown and the springline, whereas CANDE provides results at all model nodes.

Table 1 - FEA and AASHTO Strain Results

	Cro	own	Sprin	gline
	Inner Fiber	Outer Fiber	Inner Fiber	Outer Fiber
	Strain (in/in)	Strain (in/in)	Strain (in/in)	Strain (in/in)
AASHTO	-0.0025	-0.0025	-0.0041	-0.0041
Step 1	0.0121	-0.0174	-0.0108	0.0155
Ellipse	0.0096	-0.0199	-0.0149	0.0114
15° Ellipse	0.0011	-0.0181	-0.0075	0.0095
30° Ellipse	0.0012	-0.0016	-0.0108	-0.0072
Step 1 + Ellipse	0.0015	-0.0016	-0.0110	-0.0079
Step 1 + 15° Ellipse	0.0016	-0.0015	-0.0104	-0.0083
Step 1 + 30° Ellipse	0.0023	-0.0197	-0.0182	0.0023

3.9 Example Calculations

3.9.1 Ellipse method

An example calculation using an actual conduit is provided to offer an overview of the proposed ellipse method contained within this report. A laser ring profiler obtained the deformed pipe cross-section shown in as part of an Item 611 Conduit Evaluation report. The pipe is a nominal 12-inch diameter pipe under 9 feet of cover. The installation date of the conduit was August 12, 2018 and the date of the video inspection was October 17, 2018. A portion of the laser ring report is provided in Figure 23.

For this example, a manufacturer profile was selected at random. The specific manufacturer is not identified herein since the use of such data should not be construed as an endorsement of the manufacturer. For a 12-inch pipe profile geometry values are given in Table 2.

Table 2 - HDPE pipe profile geometry parameters

Nominal	Min.	Max.	Min. A	Min. C	Min. I	Min. PS	Period	Gross Area Ag
Size	I.D.	O.D.						
(in)	(in)	(in)	(in^2/ft)	(in)	(in ⁴ /in)	(KSI)	(in)	(in^2/in)
12	12.2	14.4	2.340	0.429	0.029	0.050	2.0	0.195

Idealized profile geometry values are given in Table 3.

Table 3 - Idealize profile geometry

		WALL TH	IICKNESS			UNSUPPO	RTED LE	NGTH
Nominal	Crest	Web	Valley	Liner	Crest	Web	Valley	Liner
Size (in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)
12	0.0790	0.0960	0.1290	0.0560	0.7550	1.0420	0.3940	1.3750

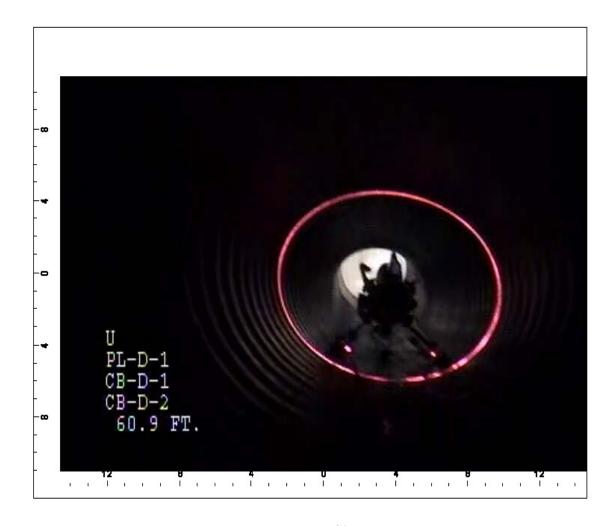


Figure 23 - Laser ring profiler cross-section

Utilizing a CADD software, calibrated to the figure scale, a best fit ellipse is drawn over the laser ring and the semi-major and semi-minor axes are drawn. This is shown in Figure 24.

Figure 24 - Laser ring profiler with superimposed best-fit ellipse

From the CADD drawing the semi-major and semi-minor axes are measured as 12.3 in. and 10.0 in., respectively. The vertical deformation is taken as the difference between the pipe diameter and the measured semi-minor axis. This is calculated to be 2.2 in. These values were then input into the evaluation spreadsheet and the results determined at both the crown and springline.

The results indicate that the pipe is structurally adequate for the given height of cover with the deformed shape.

If the actual height of cover were 11 feet, the pipe would not meet the bucking capacity check at the pipe springline, and the pipe would be rejected as structurally inadequate.

3.9.2 Sagitta Method

An example calculation using the sagitta method is also provided. All material and physical pipe properties and installation details are as given in the previous example. A portion of the laser ring report is provided in Figure 23.

Utilizing a CADD software, calibrated to the figure scale, a representative chord estimated in a location with contract radius is drawn. The sagitta is also drawn. This is show in Figure 25.

From the CADD drawing the chord length and sagitta are measured as 3.133 in. and 0.3089 in., respectively. The vertical deformation is taken as the difference between the pipe diameter and the measured semi-minor axis. This is calculated to be 2.2 in. These values were then input into the evaluation spreadsheet and the results determined at the pipe springline.

Figure 25 - Laser ring profiler with chord and sagitta

The results for the second example are similar to that for the first example. The pipe is structurally adequate for the given height of cover with the deformed shape.

If the actual height of cover were 11 feet, the pipe would not meet the bucking capacity check at the pipe springline, and the pipe would be rejected as structurally inadequate.

3.10 Conclusions and Recommendations

This study evaluated a proposed simplified methodology for assessing asymmetrical deformations (racking) in thermoplastic conduit. The methodology was developed within the framework of the existing AASHTO design procedure for buried thermoplastic conduits. At its core, the proposed methodology uses the deformed shape of the conduit to estimate flexural strains in the conduit wall. The method also uses a procedure of calculating the apparent secant constrained soil modulus based on the measured conduit deflection.

The methodology was compared with CANDE finite element models with mixed success. The compressive zones between the AASHTO and CANDE models compared quite favorably. However, the tensile zones had large differences. This could lead to unconservative results where there is a large difference in the distances from the neutral axis to the extreme inner and outer surfaces of the pipe profile. In order to ensure conservatism in the assessment methodology, consideration may be given to limiting the factored tensile flexural strain to the AASHTO limit of 5%. This ignores the considerable benefit of ring compression in reducing flexural tensile strains. In practice, tensile strain would rarely be the limit state for a design. Using AASHTO equation 12.12.3.10.2b-3 for flexural strain and the AASHTO profile limits given in Table A12-11, the vertical deflections resulting in 5% tensile flexural strain are provided in Table 2.

Table 4 - Deflection for maximum tensile strain

	Deflection for 5%
Nominal Size	Tensile Strain
(in)	(%)
12	14.6
15	14.2
18	15.2
24	15.5
30	16.7
36	16.7
42	16.0
48	17.5

This effort is considered an initial step to better understand the performance of thermoplastic conduits with asymmetrical deformation. Currently there is no rational method for assessing this type of deformation. Without any such method, within the language of Item 611, ODOT is left to rely solely on the interpretation of the independent engineer.

Additional research including fully instrumented field installations is recommended. Assessing the stress distribution about the conduit circumference, assessing soil stresses and assessing the resistance to ring collapse are all important topics which warrant further research.

CHAPTER 4: DEVELOPMENT OF FEA TRAINING SESSION

At the request of the Ohio Department of Transportation Office of Hydraulic Engineering, a finite element analysis training course was developed. The FEM training session covered general topics on the finite element analysis as they relate to the design and analysis of buried conduits. The participants were introduced to the basics of FEA, what it is, and what it can and cannot do. Several example problems were highlighted, and the participant were given the the opportunity to develop and solve a buried pipe problem using FEA.

The goals of the course were to introduce FEA with enough detail to allow the participants to:

- Discuss the basic FEA theory
- Understand the FEA procedures necessary to develop and execute an FEA model
- Understand the limits of FEA

The training session was conducted on October 17, 2019 for ODOT staff members. The presentations utilized for the training session are included as Appendix B.

References

- American Association of State Highway and Transportation Officials. (2010). Section 30:

 Thermoplastic Culverts. In AASHTO LRFD Bridge Construction Specifications 4th Edition.

 Washington, DC: American Association of State Highway and Transportation Officials.
- American Association of State Highway and Transportation Officials. (2017). Section 12: Buried Structures and Tunnel Liners. In AASHTO LRFD Bridge Design Specifications, 7th Edition, with 2017 Interim. Washington, DC: American Association of State Highway and Transportation Officials.
- Domonell, E., Mailhot, D., & Beaver, J. (2015). Evaluating Installation Racking in Buried Thermoplastic Conduits. *TRB 94th Annual Meeting Compendium of Papers*.
- Pluimer, M., & et al. (2018). NCHRP Report 870: Field performance of corrugated pipe manufactured with recycled polyethylene content. Washington, DC: Transportation Research Board of the National Academies.
- Waktins, R. K., & Andersen, L. R. (2000). *Structural Mechanics of Buried Pipes*. Boca Raton, FL: CRC Press, LLC.

Appendices:

Appendix A: Racking Assessment Spreadsheet Appendix B: FEA Training Session Presentations

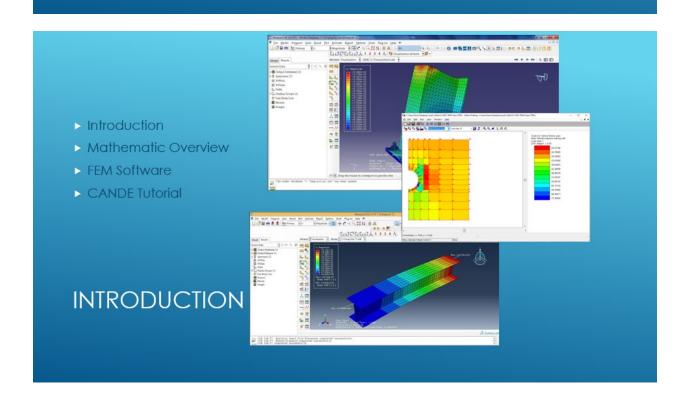
A	P	P	\mathbf{F}	N	J)	K	1	•	R	2	4	\mathbf{C}	K	T	N	1	7	1	١	S	S	F	1.5	39	31	V	n	\mathbf{F}	ľ	Γ	S	F	7	2	Н	1	4	T)	S	F	П	\mathbb{R}^{n}	\mathbf{F}_{i}	T	٦

HDPE PIPE DESIGN - RACKING ASSESSMENT AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, EIGHTH EDITION, 2017

Design Criteria			Min. I.D.	Max. O.D.	Min. A	Min. C	Min. I	Pipe Stiffness	Period	Gross Area
Nominal Pipe Size (in) 12	Þ		(ii)	(in)	(in²/in)	(in)	(in ⁴ /in)	(ksi)	(ij	A _g (in ²⁷ in)
Live Load No Load	•	Pipe Profile	12.20	14.40	0.195	0.43	0.029	0.050	200	0.195
Investigation Location Grown	•	AASHTO	11.80	14.70	0.125	98'0	0.024	0.050	-	-
Effective Area Computation Method Idealized Profile	•									
							R	Resistance Factor for Soil Stiffness 4s	Soil Stiffness Фs	06'0
								Resistance Fa	Resistance Factor for Thrust Φ_{T}	1.00
Depth of Soil Cover H (ft) 11.00	Г		Vertical D	Vertical Deflection (in) $\Delta_{\mathbf{k}}$	2.20		Re	Resistance Factor for Global Buck. Ф _{рек}	Slobal Buck. Ф _{bek}	0.70
Height of Water above Springline HW (ft) 0.00	Γ		Dead Lo	Dead Load Modifier nev	1.00			Resistance Fac	Resistance Factor for Flexure Φ_i	1.00
Wet Soil Unit Weight (pcf) 120.0			Dead	Dead Load Factor Yev	1.30					
Water Unit Weight (pcf) 62.4			Hydrostatic	Hydrostatic Load Factor Yyra	1.00					
			Live	Live Load Factor yell	1.75			Racking Radius Estimation Method	stimation Method	Ellipse
Poisson's Ratio of Soil v 0.45			Live Lo	Live Load Modifier n _{L.}	1.00			Ċ	Chord Length (in) L	n/a
Live Load (Wheel Load) (kips) P 0.0			Multi-P	Multi-Presence Factor	1.20			Sac	Sagitta Length (in) e	n/a
Design Lane Load (KSF) 0.000		Live	Live Load Distribution Factor LLDF	on Factor LLDF	1.15			Semi Major	Semi Major Axis Length (in) a	12.3
Length of Wheel Contact Area (in) L, 10	Γ		Bucklir	Buckling Coefficient k	4.00			Semi Minor	Semi Minor Axis Length (in) b	10
Width of Wheel Contact Area (in) W _t 20		Hy	Hydrostatic Uncertainty Factor K.,.	ainty Factor K.,	1.30			Radii	Radius of Curvature r _c	7.97
Wheel Spacing s., 6			Install	Installation Factor K,E	1.50			Total Outer Wall	Total Outer Wall Unfactored Strain	0.0186
Axle Spacing s ₂ 14	Г	Factored (Factored Compressive Strain Limit (%) 8 _{ye}	ain Limit (%) s _{ye}	4.10			Total Inner Wall	Total Inner Wall Unfactored Strain	0.0119
Initial Modulus of Elasticity (KSI) E, 110		Service Long-	Service Long-term Tension Strain Limit (%) 🚓	ain Limit (%) 🚓	5.00					
Initial Tensile Strength (KSI) F _u 3			Thrust Variation	Thrust Variation Coefficient K ₂	0.60					
Long Term Modulus of Elasticity (KSI) E ₁₀ 21		z	Non-Linear Calibration Factor C _N	ation Factor C _N	0.55			Date of Co	Date of Conduit Installation	8/12/2018
Long Term Tensile Strength (KSI) F _{co} 0.8			Bedding	Bedding Coefficient K _B	0.10			Date of Conc	Date of Conduit Measurement	10/17/2018
Radius to Centroid (in) 6.53			Deflection	Deflection Lag Factor D _L	1.5		¥	Apparent Modulus of Elasticity (KSI) E,	Elasticity (KSI) E,	27.90
Diameter to Centroid (in) 13.06			_	Time Factor Kee	0.3			Apparent Deflection Lag Factor DLA	n Lag Factor D _{LA}	0.79
Extreme Distance from Neutral Axis c _x (in) 0.67	Γ									
Pine Stiffness (Calc) - Long Term (kgi) 0.0146										

		WALL THICKNESS	CKNESS			UNSUPPOR	UNSUPPORTED LENGTH		
	Crest (in)	Web (in)	Valley (in)	Liner (in)	Crest (in)	Web (in)	Valley (in)	Liner (in)	Crest
	0.0790	0.0960	0.1290	0.0560	0.7550	1.0420	0.3940	1.3750	9.5570
LATION			EFFECTIV	E WALL ARE	EFFECTIVE WALL AREA CALCULATION	TION			
(psi) - Case 1	4.453		Slenderr	iess Factor à 12.	Slenderness Factor à 12.12.3.10.1b Crest	896:0			
(psi) - Case 2	9.479		Slender	ness Factor λ 12	Slenderness Factor 3.12.12.3.10.1b Web	1.099			
(psi) - Case 3	9.277		Slendern	ess Factor 3, 12.1	Slenderness Factor & 12.12.3.10.1b Valley	0.673			
sm Load Case	9		Slenden	Slenderness Factor & 12.12.3.10.1b Liner	12.3.10.1b Liner	2.486			
Load Psp (psi)	9.277		Effective Wid	Effective Width Factor p 12.12.3.10.1b Crest	2.3.10.1b Crest	0.799			
ssure P _w (psi)	0000		Effective Wiv	Effective Width Factor p 12.12.3.10.1b Web	2.3.10.1b Web	0.728			
Modulus (ksi)	0.024		Effective Widt	Effective Width Factor p 12.12.3.10.1b Valley	.3.10.1b Valley	1.000			
Modulus (ksi)	0.399		Effective Wid	Effective Width Factor p 12.12.3.10.1b Liner	2.3.10.1b Liner	0.367			
Modulus (ksi)	0.399		Element Effe	Element Effective Width b 12.12.3.10.1b Crest	12.3.10.1b Crest	0.603			
ness Factor S _H	0.572		Element Effe	ctive Width b 12	Element Effective Width b 12.12.3.10.1b Web	0.758			
ctor S _H - Initial	0.109		Element Effec	tive Width b 12.1	Element Effective Width b 12.12.3.10.1b Valley	0.394			
ng Factor VAF	0.882		Element Effe	ctive Width b 12.	Element Effective Width b 12.12.3.10.1b Liner	0.504			

0.89		72
1.00		F1
1.23		Fmin
1.00		Live Load Distribution Coefficient C _L
0.00		Total Live Load Pressure P _L (psi)
0.00		Total Live Load Pressure (ksf)
0.00		Tire Pressure at Depth H (ksf)
274.76	274	Kectangular Area at Depth H (sf)
13.5	13	Live Load Application Length L _w (ff
20.4		Live Load Application Width W _w (ft)
11.45		Wheel Interaction Depth- parallel H _{IR-9}
3.72		Wheel Interaction Depth- transverse Hree
1.00	1.	Impact Factor IM
0.882		Vertical Arching Factor VAF
0.109		Hoop Stiffness Factor S _H - Initia
0.572		Hoop Stiffness Factor S _H
0.399		Constrained Soil Modulus (ksi)
0.399	5.0	Minimum Constrained Soil Modulus (ksi)
0.024	0.0	Calculated Constrained Soil Modulus (ksi)
0000		Hydrostatic Pressure P _w (psi)
9.277		Soil Prism Load P _{SP} (psi)
		Governing Soil Prism Load Case
9.277		Soil Prism Load (psi) - Case 3
9.479	9.6	Soil Prism Load (psi) - Case 2
4.453		Soil Prism Load (psi) - Case 1


0.0	68.9	CHECKS	0.0122	0.0239	ð	0.0480	ð	0.0155	0.0242	OK	ò
	Factored Thrust T _u (Ib/in)	STRAIN CALCULATIONS AND DESIGN CHECKS	Service Compressive Strain e _{sc} (in/in)	Factored Compressive Strain suc (in/in)	Compressive Thrust Strain Check	Nominal Buckling Strain Capacity & (in/in)	Buckling Strain Check	Factored Tensile Flexural Strain & (in/in)	Factored Compressive Flexural Strain s, (in/in)	Combined Tensile Zone Strain Check	Combined Compressive Zone Strain

60.0	CHECKS	0.0122	0.0239	Š	0.0480	Š	0.0155	0.0242	***
	STRAIN CALCULATIONS AND DESIGN CHECKS	Service Compressive Strain 👡 (in/in)	Factored Compressive Strain s _{uc} (in/in)	Compressive Thrust Strain Check	Nominal Buckling Strain Capacity ϵ_{bck} (in/in)	Buckling Strain Check	Factored Tensile Flexural Strain & (in/in)	Factored Compressive Flexural Strain s, (in/in)	Combined Tone Called

APPENDIX 2:	FEA TRAINING	SESSION PRESENTATIONS

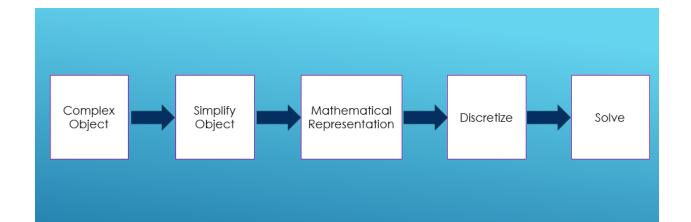
FINITE ELEMENT METHOD

Introduction to Finite Element Analysis
Ohio Department of Transportation
Kevin White, PE
E.L. Robinson Engineering

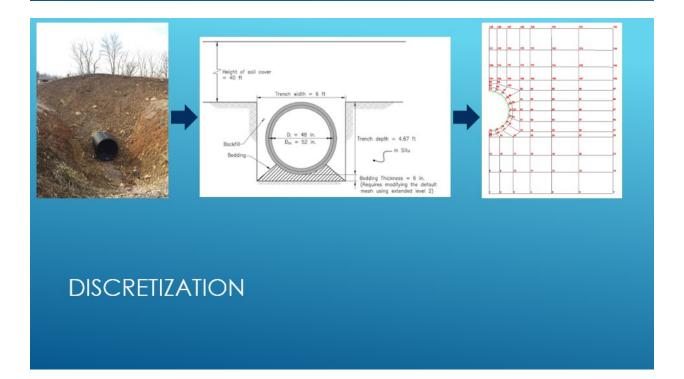
- ➤ The Finite Element Method (FEM) is a numerical method for simulating and analyzing engineering products and systems
- Useful for problems with complicated geometries, loadings, and material properties where analytical solutions can not be obtained
- Finite element method follows on from matrix analysis and became viable with the advent of computers. It is a computerbased analysis tool

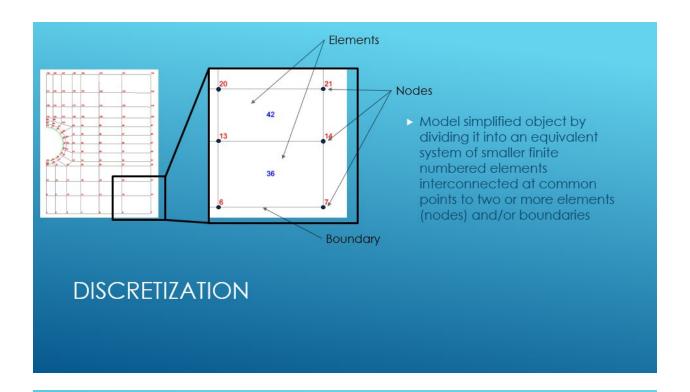
FINITE ELEMENT METHOD

- > Typical undergraduate analysis methods
- Stress analysis for trusses, beams, and other simple structures are carried out based on dramatic simplification and idealization:
 - mass concentrated at the center of gravity
 - beam simplified as a line segment (same cross-section)
- Design is based on the calculation results of the idealized structure along with load and resistance factors based on empirical or statistical evidence


ANALYTICAL SOLUTIONS

- Complex geometry
- Local accuracy is necessary.
- Understand the physical behaviors of a complex object (structural integrity, heat transfer, fluid flow, etc.)
- > To predict the performance and behavior of the design
- To calculate reliability and to identify the weakness of a design accurately
 - > Survivability of your iphone when dropped from a distance


MHEN LEWS


- Mechanical/Aerospace/Civil/Automotive Engineering
- Structural/Stress Analysis
 - Static/Dynamic
 - Linear/Nonlinear
 - Plastic
 - Visco-plastic/elastic
- ▶ Fluid Flow
- Heat Transfer
- Soil Mechanics
- Acoustics
- Biomechanics

MHEN LEWS

FEM PROCESS

- Use matrix algebra to solve system of equations to determine unknown nodal displacements
- Use calculated nodal displacements to solve for:
 - Stress
 - Strain
 - Moment
 - Deformation
 - Rotation
 - Ftc.
- ► ALL CALCULATED VALUES ARE ONLY AT NODES!!!

FEM PROCESS

- Use matrix algebra to solve system of equations to determine unknown nodal displacements
- Use calculated nodal displacements to solve for:
 - Stress
 - Strain
 - Moment
 - Deformation
 - Rotation
 - ▶ Etc
- ► ALL CALCULATED VALUES ARE ONLY AT NODES!!!

FEM PROCESS

$$F = k \delta$$

$$\delta = u_{2} - u_{1}$$

$$F = k(u_{2} - u_{1})$$

$$F_{1} = -k(u_{2} - u_{1})$$

$$F_{2} = k(u_{2} - u_{1})$$

$$F_{2} = k(u_{2} - u_{1})$$

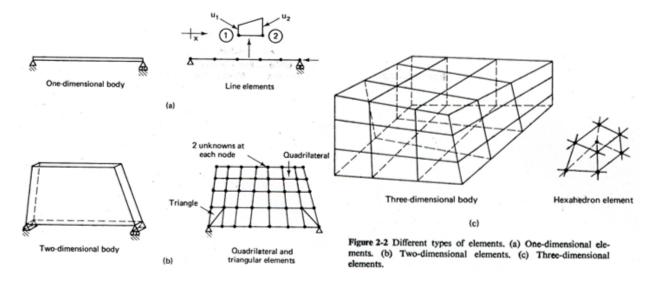
$$\left\{\begin{matrix} F_{1} \\ F_{2} \end{matrix}\right\} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{Bmatrix} u_{1} \\ u_{2} \\ \{F\} = [K]\{u\}$$

FEM PROCESS

Ohio Department of Transportation October 17-18, 2019 Shad Sargand

Russ Professor and Vice Director for Business Development

Ohio Research Institute for Transportation and the Environment Russ College of Engineering and Technology Ohio University, Athens, Ohio


Finite Element Method Overview

- · Set up the problem
- · Decide dimensionality, discretize problem, and create mesh
- · Determine solution for each element
- · Select and apply constitutive laws
- · Write element equation
- · Assemble equation for entire system
- · Determine and apply boundary conditions
- Solve simultaneous equations
- Find solution for primary unknown, then secondary unknowns
- · Interpret results

Determine dimensionality

Is this problem best solved in one, two, or three dimensions?

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

Discretize Problem

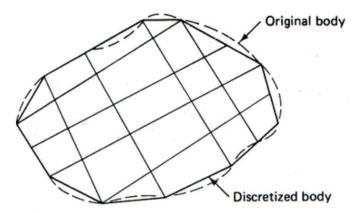


Figure 2-3 Discretization for irregular boundary.

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

Write solution for each element

- · Need a continuous function
 - Polynomial
 - Trigonometric
 - Other
- · Need derivative of function

Select and apply constitutive laws

Material properties

- For strain:
 - Hooke's law (elastic behavior)
 - Plasticity
 - Viscoelasticity
- · For thermal problems
 - Thermal conductivity
 - Coefficient of expansion
- · Other problems
 - Viscosity
- Constitutive laws depend on type of material being modeled (steel is different than thermoplastic is different than concrete)

Write element equation

Various approaches

- Potential energy method
- Weighted residual method (Galerkin method)

Potential Energy

$$\Pi_p = U + \ W_p$$

$$\delta\Pi_p=\delta U-\,\delta W_p=0$$

$$\delta W = -\delta W_p$$

$$\frac{\partial \Pi_p}{\partial u_1} = 0$$

$$\frac{\partial u_1}{\partial u_2} = 0$$

$$\frac{\partial \Pi_p}{\partial u_1} = 0$$

$$\frac{\partial \Pi_p}{\partial u_2} = 0$$

$$\vdots$$

$$\frac{\partial \Pi_p}{\partial u_n} = 0$$

Ohio Research Institute for Transportation and the Environment

Weighted Residual Method

$$\frac{\partial^2 u^*}{\partial x^2} - \frac{\partial u^*}{\partial t} = f(x)$$

$$Lu^*=f$$
 where $L\equiv rac{\partial^2}{\partial x^2}-rac{\partial}{\partial t}$

$$u = \sum_{i=1}^{n} \alpha_i \varphi_i$$

$$R(x) = Lu - f$$

$$\int_D R(x)W_i(x)dx = 0 \qquad i = 1, 2, \dots, n$$

$$[k]\{q\}=\{Q\}$$

- Solve for primary result, then secondary results
- Primary result: displacement
- Secondary results: stress and strain

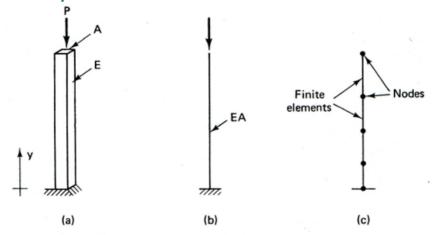


Figure 3-1 Axially loaded column. (a) Actual column. (b) Onedimensional idealization. (c) Discretization.

Ohio Research Institute for Transportation and the Environment

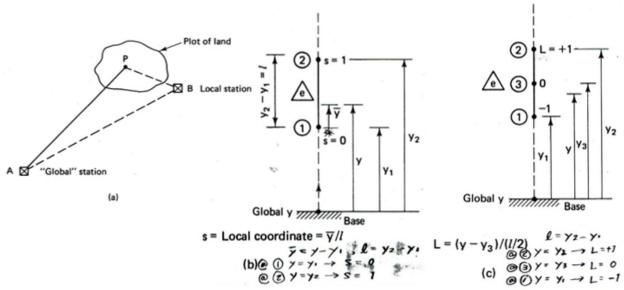


Figure 3-2 Global and local coordinates. (a) Concept of global and local coordinate systems. (b) Local coordinate measured from node point 1. (c) Local coordinate measured from midnode 3.

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

Ohio Research Institute for Transportation and the Environment

$$v = \alpha_1 + \alpha_2 y$$

$$\{\mathbf v\} = \begin{bmatrix} 1 & y \end{bmatrix} \begin{Bmatrix} \alpha_1 \\ \alpha_2 \end{Bmatrix}$$

$$\{v\}=[\varphi]\{\alpha\}$$

$$v_1 = \alpha_1 + \alpha_2 y_1$$

$$v_2 = \alpha_1 + \alpha_2 y_2$$

$$\{q\}=[A]\{\alpha\}$$

$${\alpha_1 \brace \alpha_2} = \frac{1}{l} \begin{bmatrix} y_2 & -y_1 \\ -1 & 1 \end{bmatrix} {v_1 \brace v_2}$$

$$(2\times1)$$
 (2×2) (2×1)

$$\alpha_1 = \frac{y_2v_1 - y_1v_2}{l}$$

$$\alpha_2 = \frac{-v_1 + v_2}{l}$$

$$v = \frac{1}{2}(1 - L)v_1 + \frac{1}{2}(1 + L)v_2$$

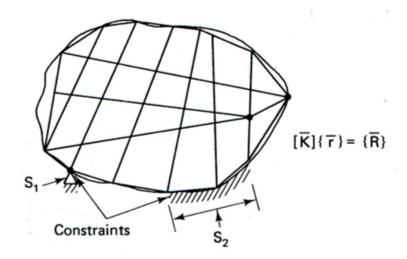
$$= N_1v_1 + N_2v_2$$

$$= [N_1 \ N_2] {v_1 \brace v_2}$$

$$= [N] \{q\}$$

$$\begin{split} \Pi_p &= \iiint_V \tfrac{1}{2} \sigma_y \epsilon_y dV - \iiint_V \bar{Y} v dV - \iint_{S_1} \bar{T}_y v dS - \sum_{i=1}^M P_{ii} v_i \\ &\frac{AE}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} {v_1 \choose v_2} = \frac{Al\bar{Y}}{2} {1 \choose 1} + \frac{\bar{T}_y l}{2} {1 \choose 1} + {P_{1l} \choose P_{2l}} \\ & [\mathbf{k}] \{\mathbf{q}\} = \{\mathbf{Q}\} \end{split}$$
$$[\mathbf{k}] = \frac{Al}{2} \int_{-1}^{1} [\mathbf{B}]^T E[\mathbf{B}] dL$$

$$\{\mathbf{Q}\} = \frac{Al}{2} \int_{-1}^{1} [\mathbf{N}]^{T} \bar{Y} dL + \frac{l}{2} \int_{-1}^{1} [\mathbf{N}]^{T} \bar{T}_{y} dL + \{P_{il}\}$$



Integrate elements into larger system

· Assemble equation for entire problem

Apply boundary conditions

Body with constraints.

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

Solve simultaneous equations

- Solve for primary unknown
- Find secondary unknown(s)

Interpret Results

One-Dimensional Flow

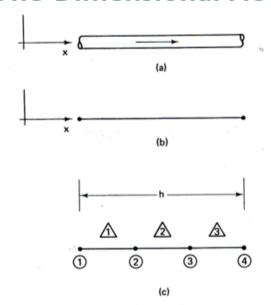


Figure 4-1 Idealization for flow in pipe. (a) Flow through pipe. (b) One-dimensional idealization. (c) Discretization in three elements.

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

One-Dimensional Flow

$$k_x \frac{\partial^2 \varphi^*}{\partial x^2} = f(x) = \bar{q}(x)$$

 $\varphi = \alpha_1 + \alpha_2 x$

$$\varphi = N_1 \varphi_1 + N_2 \varphi_2 = [\mathbf{N}] \{ \mathbf{\varphi}_n \}$$

$$g_x = \frac{\partial \varphi}{\partial x}$$

$$v_x = -k_x \frac{\partial \varphi}{\partial x} = -k_x g_x$$

Uncoupled problem

$$\epsilon_{y_0} = \alpha' T$$

$$\epsilon_{y_n} = \epsilon_y - \epsilon_{y_0}$$

$$\sigma_y = E\epsilon_{y_n} = E(\epsilon_y - \epsilon_{y_0})$$

Uncoupled problem

$$\Pi_{p} = \frac{A}{2} \int_{y_{1}}^{y_{2}} \sigma_{y} \epsilon_{y_{n}} dy - A \int_{y_{1}}^{y_{2}} \overline{Y}_{y} v dy - \int_{y_{1}}^{y_{2}} \overline{T}_{y} v dy - \sum P_{il} v_{i}$$

$$U' = \frac{A}{2} \int_{y_{1}}^{y_{2}} E(\epsilon_{y} - \epsilon_{y_{0}}) (\epsilon_{y} - \epsilon_{y_{0}}) dy$$

$$= \frac{A}{2} \int_{y_{1}}^{y_{2}} E\epsilon_{y}^{2} dy - A \int_{y_{1}}^{y_{2}} E\epsilon_{y} \epsilon_{y_{0}} dy + \frac{A}{2} \int_{y_{1}}^{y_{2}} E\epsilon_{y_{0}}^{2} dy$$

$$= U_{1} + U_{2}$$

$$\begin{split} U_2 &= A \int_{y_1}^{y_2} [v_1 \quad v_2]_{\overline{l}}^1 \begin{Bmatrix} -1 \\ 1 \end{Bmatrix} E \epsilon_{y_0} dy \\ &= A \{ \mathbf{q} \}^T \int_{y_1}^{y_2} [\mathbf{B}]^T [\mathbf{C}] \{ \epsilon_{y_0} \} dy \\ &= \frac{A E \epsilon_{y_0}}{l} \int_{y_1}^{y_2} (-v_1 + v_2) dy \\ &= \frac{A E \epsilon_{y_0}}{l} \frac{l}{2} \int_{-1}^{1} (-v_1 + v_2) dL \\ &= \frac{A E \epsilon_{y_0}}{2} \left[(-v_1 L)|_{-1}^1 + (v_2 L|_{-1}^1) \right] \\ &= A E \epsilon_{y_0} (-v_1 + v_2) \end{split}$$

$$\left\{\mathbf{Q}_{0}\right\} = AE\epsilon_{y_{0}} \left\{ \begin{matrix} -1 \\ 1 \end{matrix} \right\} = A\sigma_{y_{0}} \left\{ \begin{matrix} -1 \\ 1 \end{matrix} \right\}$$

$$\{\mathbf{Q}_0\} = A \int_{y_1}^{y_2} [\mathbf{B}]^T [\mathbf{C}] \left\{ \epsilon_{y_0} \right\} dy$$

$$[k]\{q\} = \{Q\} + \{Q_0\}$$

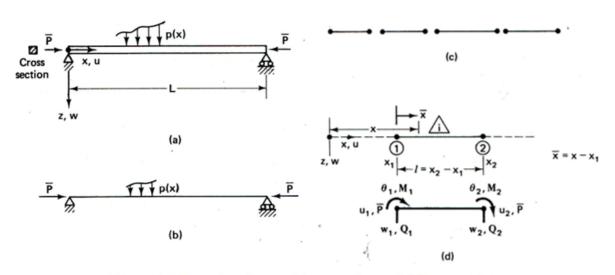
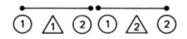
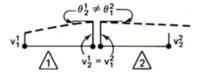



Figure 7-1 Beam bending and beam-column. (a) Beam with transverse and axial loads. (b) One-dimensional idealization. (c) Discretized beam. (d) Generic element.


from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

O Local nodes

Δ Elements
Subscript ⇒ local node
Superscript ⇒ element

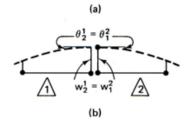


Figure 7-2 Requirements of interelement compatibility. (a) Interelement compatibility for axial deformation (Chapter 3). (b) Interelement compatibility for beam bending.

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

$$F\frac{d^4w^*}{dx^4} = p(x)$$

$$w(x) = N_1 w_1 + N_2 \theta_1 + N_3 w_2 + N_4 \theta_2$$

$$w(x) = [\mathbf{N}]\{\mathbf{q}\}$$

$$N_1 = 1 - 3s^2 + 2s^3$$

$$N_2 = ls(1 - 2s + s^2)$$

$$N_3 = s^2(3-2s)$$

$$N_4 = ls^2(s-1)$$

$$w(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3$$

$$\Pi_p = \int_{x_1}^{x_2} \frac{1}{2} F(w'')^2 dx - \int_{x_1}^{x_2} pw dx$$

Figure 7-3 Plots of N_i , i = 1, 2, 3, 4,

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

$$[\mathbf{k}] = \frac{F}{l^3} \begin{bmatrix} 12 & 6l & -12 & 6l \\ & 4l^2 & -6l & 2l^2 \\ symmetric & & 4l^2 \end{bmatrix}$$

$$\{\mathbf{Q}\} = \frac{l}{20} \begin{cases} 7p_1 + 3p_2 \\ \frac{l}{3}(3p_1 + 2p_2) \\ 3p_1 + 7p_2 \\ -\frac{l}{3}(2p_1 + 3p_2) \end{cases}$$

$$\{\mathbf{\sigma}\} = \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases}$$

$$\{\boldsymbol{\epsilon}\} = egin{pmatrix} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{pmatrix}$$

$$\{\mathbf{\sigma}\} = [\mathbf{C}]\{\boldsymbol{\epsilon}\} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \{\boldsymbol{\epsilon}\}$$

Plane strain approximation

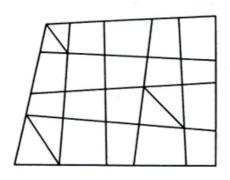
$$\{\boldsymbol{\sigma}\} = \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} \qquad \{\boldsymbol{\epsilon}\} = \begin{cases} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{cases}$$

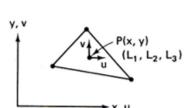
$$\sigma_{z} = \nu(\sigma_{x} + \sigma_{y})$$

$$\{\boldsymbol{\sigma}\} = [\mathbf{C}]\{\boldsymbol{\epsilon}\} = \frac{E}{(1 - \nu)(1 - 2\nu)} \begin{bmatrix} 1 - \nu & \nu & 0 \\ \nu & 1 - \nu & 0 \\ 0 & 0 & \frac{1 - 2\nu}{2} \end{bmatrix} \{\boldsymbol{\epsilon}\}$$

$$\{\boldsymbol{\epsilon}\} = \begin{cases} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{cases} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{cases}$$

Axisymmetric approximation


$$\{\boldsymbol{\sigma}\} = \begin{cases} \boldsymbol{\sigma}_r \\ \boldsymbol{\sigma}_{\theta} \\ \boldsymbol{\sigma}_z \\ \boldsymbol{\tau}_{rz} \end{cases} \qquad \{\boldsymbol{\epsilon}\} = \begin{cases} \boldsymbol{\epsilon}_r \\ \boldsymbol{\epsilon}_{\theta} \\ \boldsymbol{\epsilon}_z \\ \boldsymbol{\gamma}_{rz} \end{cases}$$


$$\{\boldsymbol{\sigma}\} = [\mathbf{C}]\{\boldsymbol{\epsilon}\} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0\\ \nu & 1-\nu & \nu & 0\\ \nu & \nu & 1-\nu & 0\\ 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \{\boldsymbol{\epsilon}\}$$

$$\{\epsilon\} = \begin{cases} \epsilon_r \\ \epsilon_{\theta} \\ \epsilon_z \\ \gamma_{rz} \end{cases} = \begin{cases} \frac{\partial u}{\partial r} \\ \frac{u}{r} \\ \frac{\partial w}{\partial z} \\ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \end{cases}$$

Finite element formulation

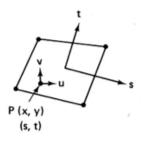


Figure 13-4 Discretization with triangular and quadrilateral elements.

$$u(x,y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 xy$$

$$v(x,y) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 xy$$

from C.S. Desai, 1979, Elementary Finite Element Method, (Prentice-Hall, Englewood Cliffs NJ).

$$N_1 = \frac{1}{4}(1-s)(1-t)$$

$$N_2 = \frac{1}{4}(1+s)(1-t)$$

$$N_3 = \frac{1}{4}(1+s)(1+t)$$

$$N_4 = \frac{1}{4}(1-s)(1+t)$$

$$x = \sum_{i=1}^{4} N_i x_i$$
 $i = 1, 2, 3, 4$

$$y = \sum_{i=1}^{4} N_i y_i$$
 $i = 1, 2, 3, 4$

$${x \brace y} = \begin{bmatrix} [\mathbf{N}] & [\mathbf{0}] \\ [\mathbf{0}] & [\mathbf{N}] \end{bmatrix} {\{x_n\}}$$

$$(2 \times 1) \qquad (2 \times 8) \qquad (8 \times 1)$$

$$[\mathbf{k}] \simeq h \sum_{i=1}^{N} [\mathbf{B}(s_i, t_i)]^T [\mathbf{C}] [\mathbf{B}(s_i, t_i)] |J(s_i, t_i)| W_i$$

$$\{\mathbf{Q}_1\} = h \sum_{i=1}^{N} [N(s_i, t_i)]^T \{\overline{\mathbf{X}}\} W_i$$

Construction sequence FEM

Initial set up - embankment

- When simulating the stresses on an embankment, it is important to model the construction process.
- · Create a mesh for the existing system.
- Compute the initial stresses due to the weight
 - In many cases, if you assume a reasonable modulus, you will have a realistic level of stress
- After calculating the initial stresses, set the initial strains and displacements to 0.
 - These developed over an essentially infinite time and have no impact on the final result.

Ohio Research Institute for Transportation and the Environment

Construction sequence FEM

Adding layers to embankment

- Model adding a layer of soil by adding a layer(s) of elements to the mesh
 - Simulate with nonlinear nodal forces
 - Use the nonlinear constituent laws to compute stresses, strains, and displacements.
 - Adjust mesh.
 - Update constituent laws/material properties in response to new conditions
 - strains and displacements are no longer 0, so stress-strain relationship will be different
- Add additional layers of soil as above until full embankment is constructed
 - Material properties are adjusted with each layer

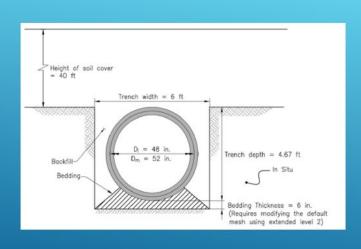
Construction sequence FEM

Simulating excavation

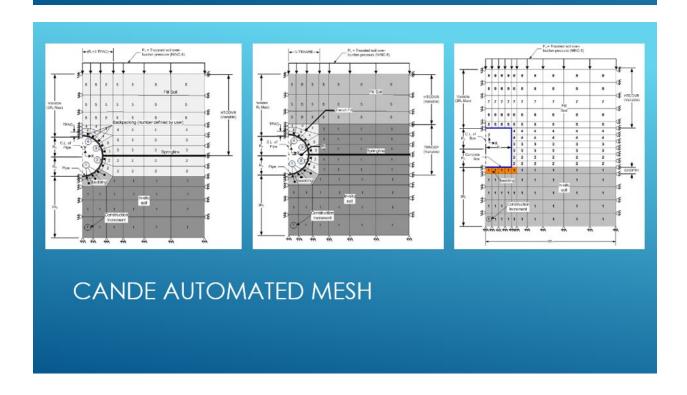
- · Excavation is the reverse of embankment
 - Create initial mesh
 - Remove a layer of soil from the mesh
 - Adjust material properties following nonlinear constitutive relations
 - Iterate by removing layers and adjusting properties until excavation is complete

Interface elements

- Interface elements are crucial in soil-structure interaction problems
- Interface elements are located where one material is adjacent to another
 - $\,-\,$ For example pipe (e.g. thermoplastic) and soil
- · Interface elements are nonlinear
 - Allow separation of materials
 - Allow slippage

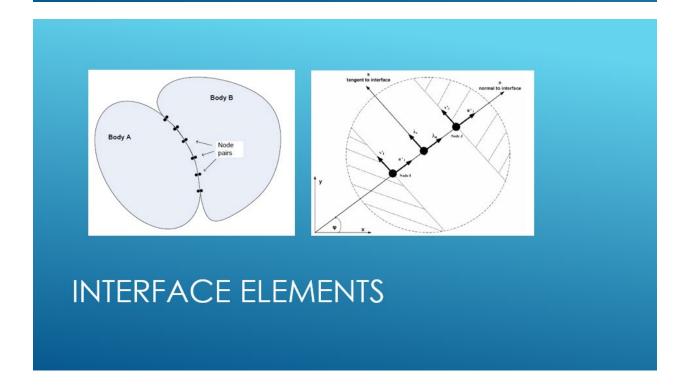


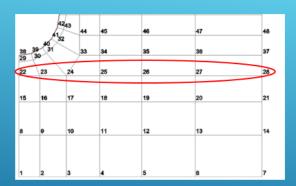
CANDE 2007 TUTORIAL


Introduction to Finite Element Analysis
Ohio Department of Transportation

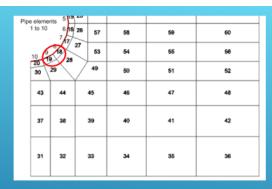
- > Analyze a 48-inch corrugated steel pipe
 - > Service load
 - ▶ Level 2 analysis
 - ▶ Modified automatic meshing
 - ▶6-inch bedding
 - ▶Haunch zone material
 - ▶ Trench installation

STATEMENT OF THE PROBLEM




PROBLEM DETAILS

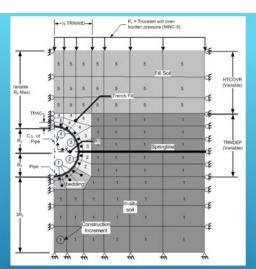
- Analysis method
- Analyze at service load
- ► Level 2 solution
- Canned pipe mesh
- ► Trench mesh
- ► Pipe-soil interface elements
- ► Modified level 2 mesh
 - > 7 nodes will have changed coordinates
 - 2 elements with new material properties


STATEMENT OF THE PROBLEM

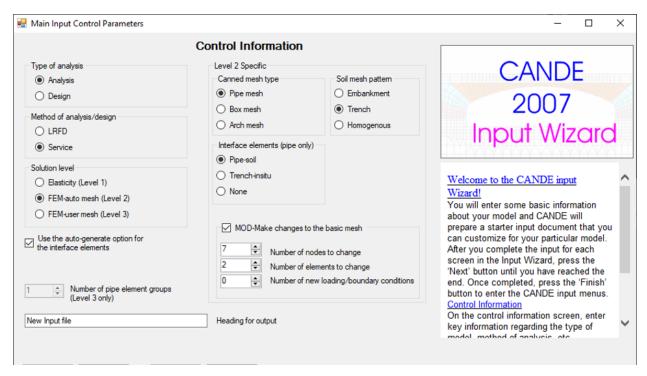
Node Numbers	X-coordinate	Y-coordinate		
22	0	-30		
23	12.47	-30		
24	28.19	-30		
25	47.99	-30		
26	72.95	-30		
27	104.38	-30		
28	144	-30		

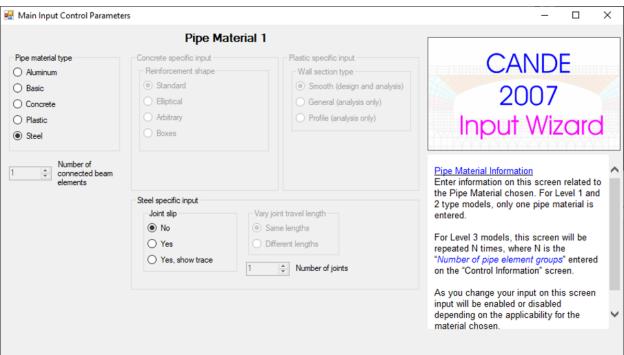
NODE CHANGES

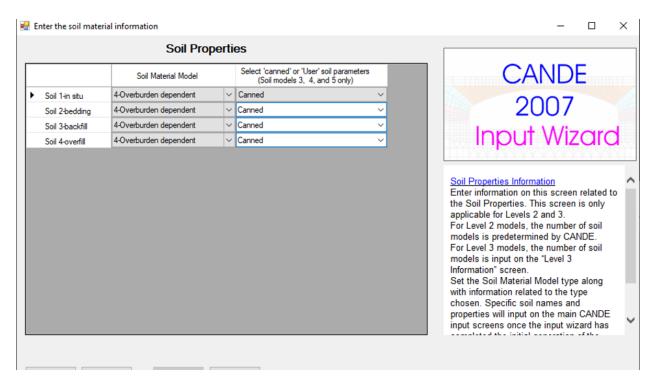
Element Number	Node I	Node J	Node K	Node L	Material	Const. Step
18	49	46	31	32	5	1
19	46	43	30	31	5	1

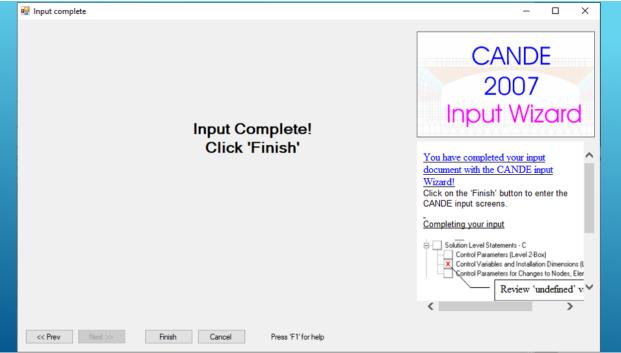

ELEMENT CHANGES

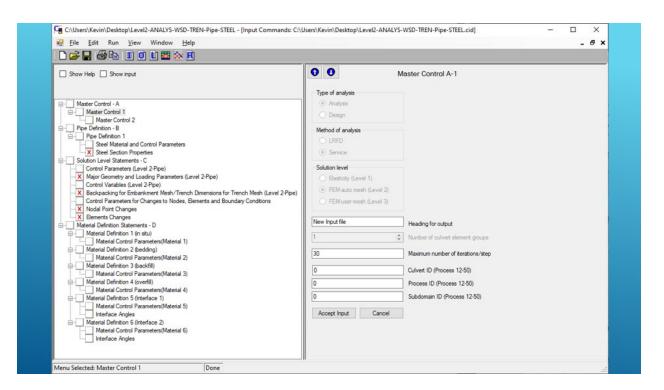
- ▶ 22/3" X 1/2" corrugation profile
 - > Young's modulus =29,000,000 psi
 - > Yield stress = 33,000 psi
 - ▶ Poisson's ratio = 0.3
 - Area of pipe wall = 0.0806 in²/in
 - Moment of inertia of pipe wall = 0.0019 in⁴/in
 - Section modulus of pipe wall = 0.00667 in³/in

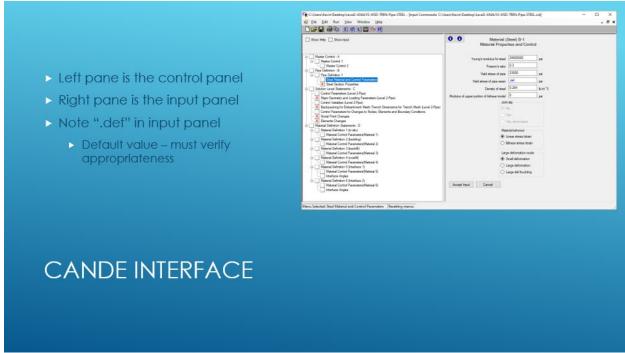

- Soil properties
 - ► Good cohesive soil for in situ material
 - Good granular soil for bedding and backfill
 - Good cohesive soil for overfill
- Small deformation analysis

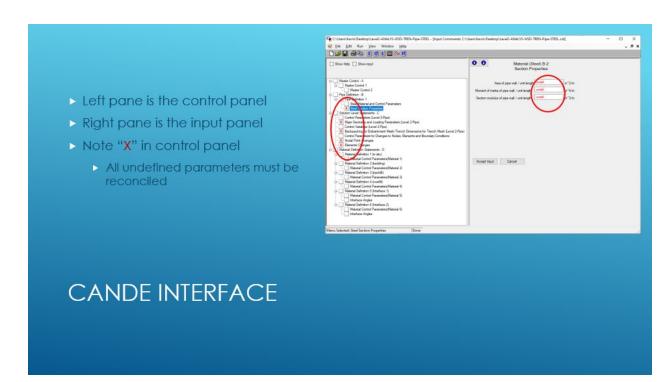

STATEMENT OF THE PROBLEM

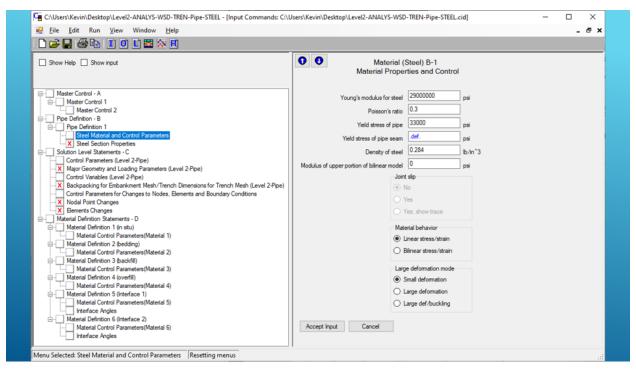

- > 48-inch pipe diameter
- ► Trench width of 1.5*D = 6 ft
- ➤ Trench depth = 4.67 ft
- ► Height of soil = 40 ft (above trench)
- ▶ Density of soil above mesh =120 pcf
- ▶ 10 load steps
 - > 5 inherent in canned mesh
 - 5 for boundary loads

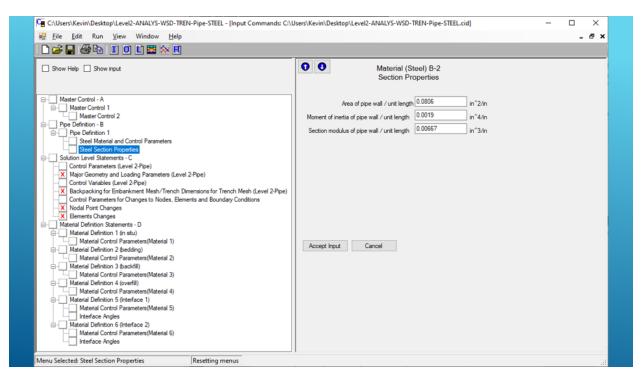


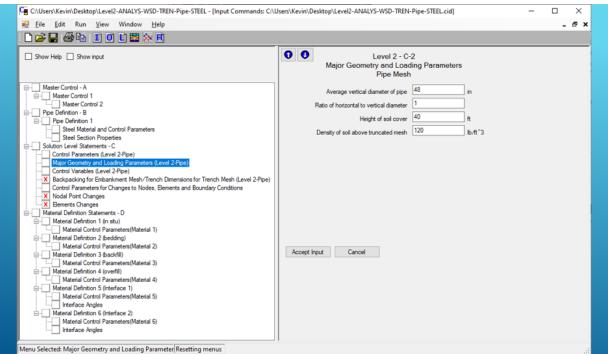

STATEMENT OF THE PROBLEM

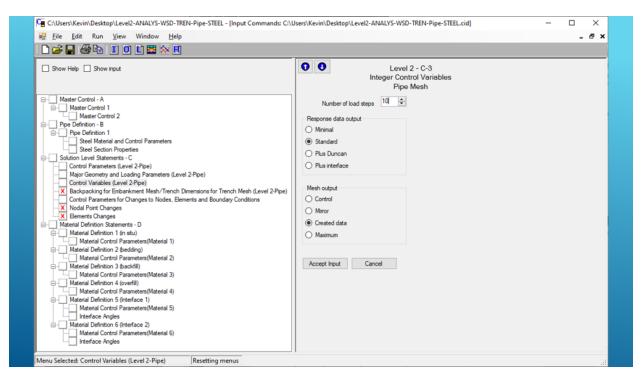


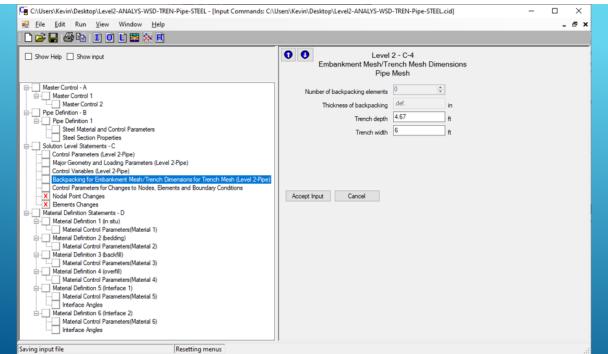


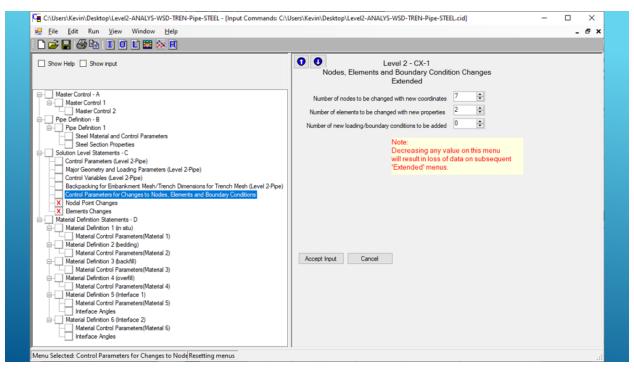


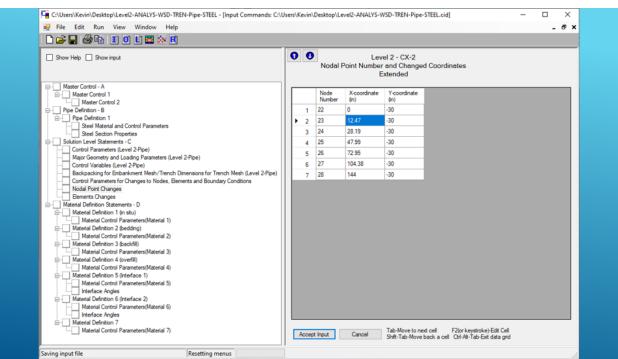


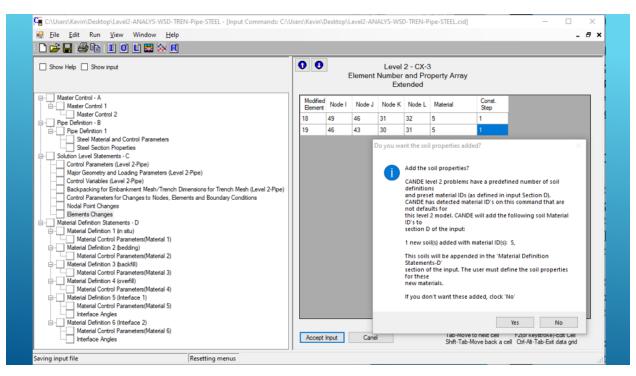


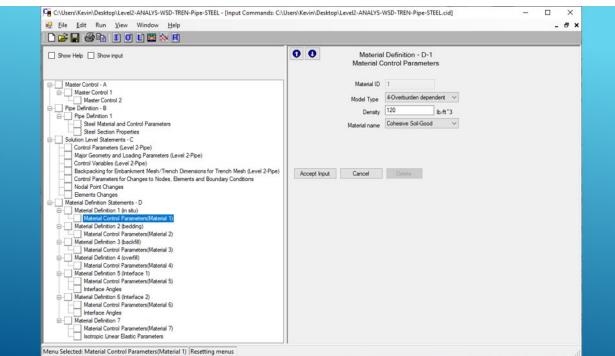


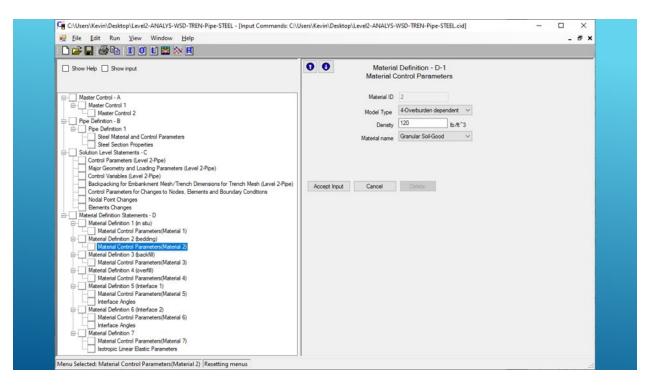


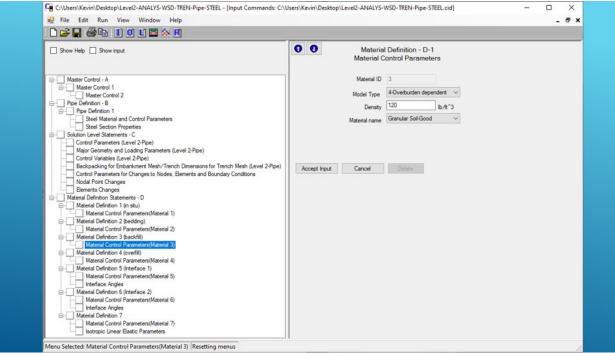


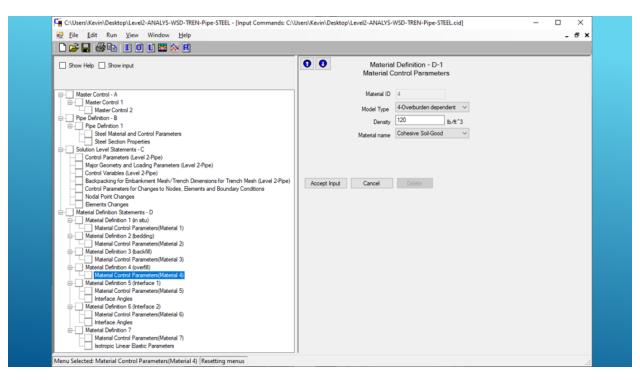


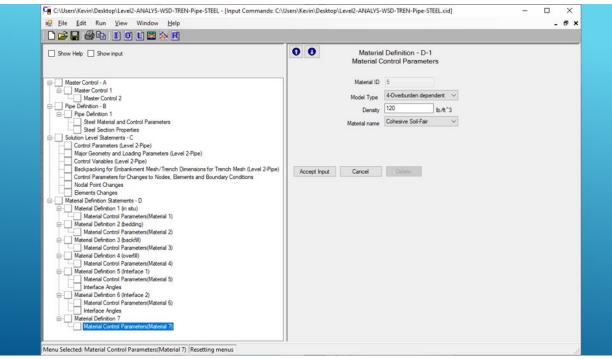


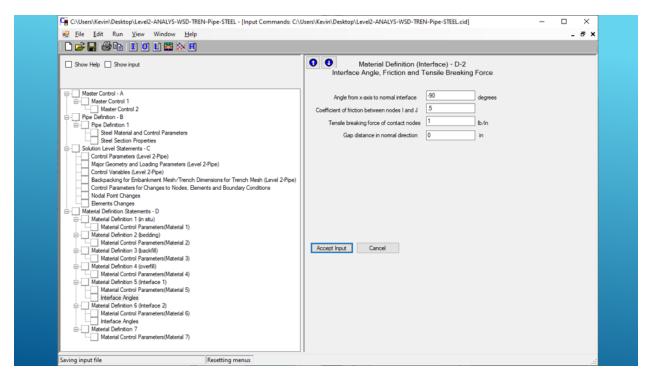


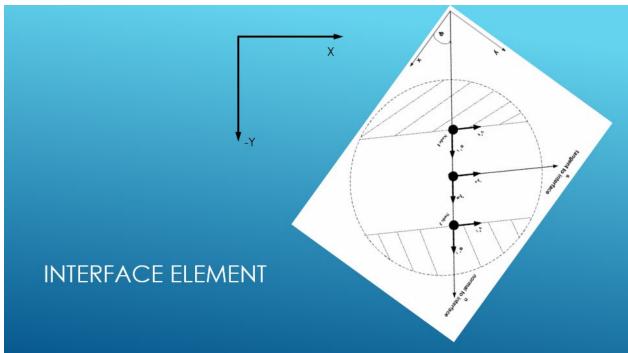


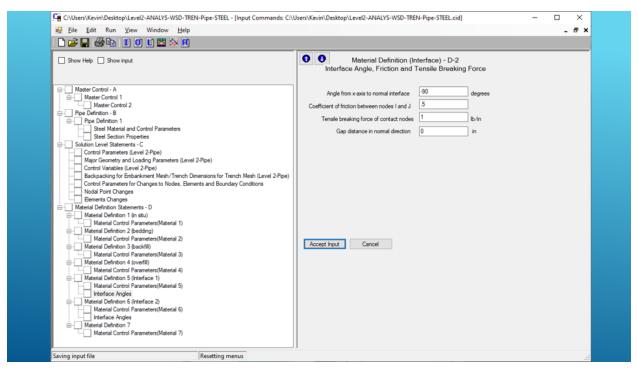


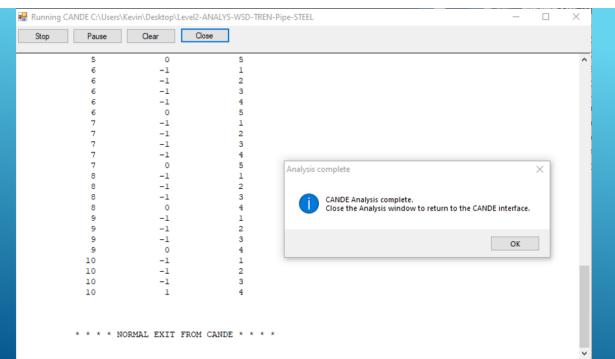


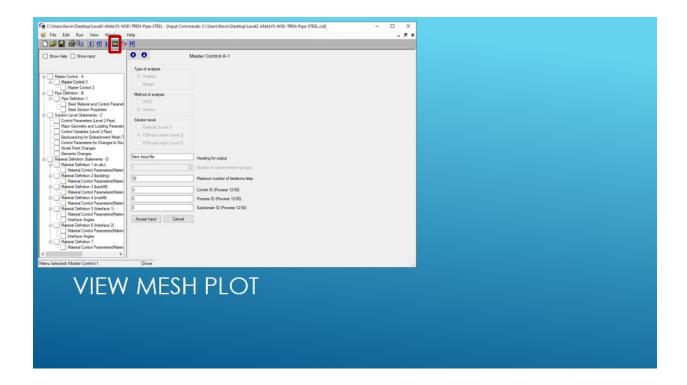


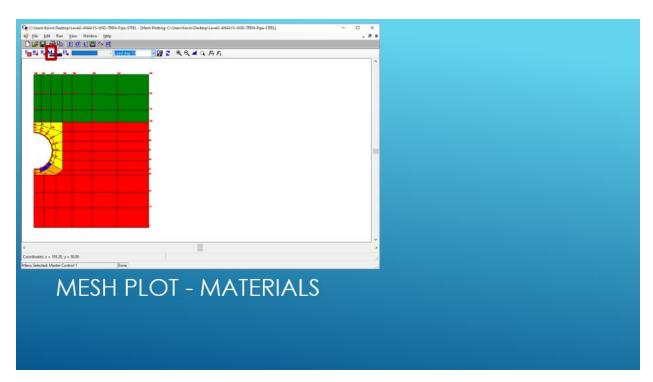


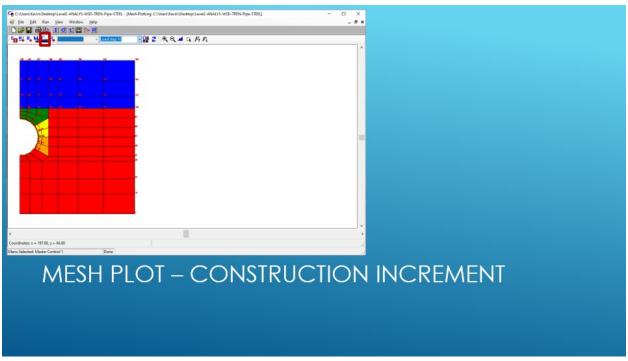


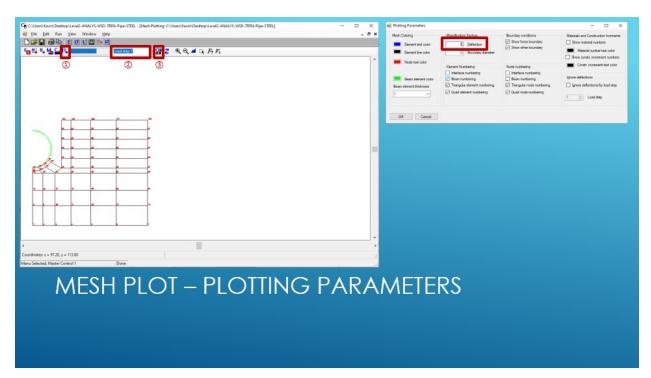


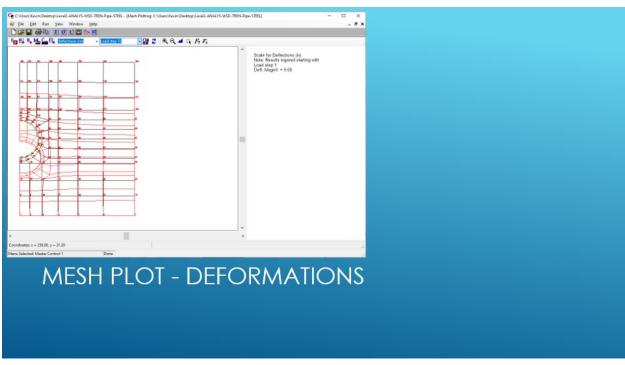











POST PROCESSING - RESULTS

