

L3

GET INDEX BY ANDING OUT
FLAG. GET LINK VOLUME
FROM OVERFLOW ARRAY.

ADD THE VOLUME TO

THE NODE TO THE LINK
VOLUME AND STORE THE
RESULT IN THE OVERFLOW
TABLE,

GET THE NEXT BACK NODE
IN THE PATH, IPR.

Is

L2 IR = 07

FIND LINK COUNT IN OF
LINK XR TO IPR FROM -
LINKS STARTING FROM NODE
XR

GET TURN CODE, IND,
FOR NODE XR.

18
Ls N > 287

III-33

LOAD

LOAD

1-9, | ii-12, 10 26 13, 17,{18 27 21 23
14-16, 2 19, and 28) 22: 23' ! 1 25
\ L
1D = IDSP3(IN, IOUT)
.) ID = IDSP41(IN, IOUT) ID = IDSP42(IN,IOUT) 1D = 1DSP44(IN, IOUT)
A
D = 1DSP5(IN, IOUT) ID = IDSP6(IN, IOUT) ID = IDSP43(iN, 1OUT)

I D D R

ID INDLCATES WHETHER

TO SAVE THE TURNING
MOVEMENT FROM IPR - XR -~
L5 NODE AND IT IS ALSO
THE RELATIVE INDEX
OF WHERE TO ‘SAVE IT

ABEND 101

ABEND 102

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF FIRST TURNING
MOVEMENT FOR NODE XR

I1I-34

IS THERE
A VOLUME FROM
NODE XR IN LAMBDA?

PUT non:'n IN
SEQ(XIN) IN THE
SEQUENCE TABLE

XIN = MOD(XIN, 2000)
+1

ADD THE NEW VOLUME
FROM XR TO THE
PREVIOUS VOLUME FROM
XR AND STORE IN
LAMBEDA (XR)

L2

III-35

LOAD

GET TURNING MOVEMENT
VOLUME

GET INDEX BY ANDING
OUT FLAG. GET TURN
VOLUME FROM OVERFLOW
ARRAY

ADD VOLUME TO NODE XR
TO TURNING MOVEMENT
VOLUME

ADD THE VOLUME TO THE
XR NODE TO THE TURN
VOLUME ‘AND STORE THE
RESULT IN THE OVERFLOW
TABLE,

SAVE THE NEW TURNING
VOLUME IN THE TURN
VOLUME ARRAY

IS THE

NEW TURNING
MOVEMENT VOLUME
> 327677

ADD ONE TO NUMBER OF

VOLUMES > 32767. SET
THE INDEX AND FLAG IN
THE TURN VOLUME ARRAY.

PUT THE NEW TURNING
VOLUME IN THE OVERFLOW
ARRAY ELEMENT INDEXED
BY THE INDEX PUT IN THE
TURN VOL. ARRAY

III-36

L0AD

LORDZ

SUBROUTINE

LOAD2"

SAVE REGISTERS AND
ESTABLISH A NEW
SAVE AREA

MOVE UNSUBSCRIPTED
ARGUMENTS

MOVE ADDRESSES OF ARRAYS,
SUBTRACT 8 FROM ADDRESSES

SET UP BASE REGISTERS
FOR ARRAYS

SET READSW TO

INDICATE THE LAST TRIP
MATRIX RECORD READ
HAS BEEN USED.

1 = THE NUMBER OF
ITEMS IN THIS VOLUME
RECORD.

Dol

ITI-37

*ASSEMBLY LANGUAGE

pol

GET 1'"TH INTERCHANGE
ITEM FROM TRIP MATRIX
RECORD 'AND SEPARATE
INTO VOLUME, VOLL,
AND DESTINATION
NODE, START.

GET XR WHICH L5 THE
NEXT NODE BACK IN
THE PATH FROM START

ABEND 70, DuMpP

FIND LINK FROM XR
TO START AND COUNT
THE NUMBER OF LINKS
IT IS FROM THE FIRST

LINK LINK FROM NODE XR AND
NOT IN PUT IN LOUT
NETWORK
LINK |- FOUND

GET [PR WHICH IS THE
NEXT NODE BACK IN THF
PATH FROM NODE XR.

FIND LINK FROM XR

'TO IPR AND COUNT THE
NUMBER OF LINKS IT

IS FROM THE FIRST LINK
FROM NODE XR AND PUT
THE NUMBER IN IN.

1S THE
LINK FROM XR
TO START A

" SELECTED LINK?

/ PUT (MACRO) \

GET ADDRESS OF BUFFER
T0 BUILD SELECTED LINK
RECORD IN.

GET LINK ADDRESS OF
OPPOSITE ONE-WAY
SELECTED LINK.

WHICH 1S
THE SMALLEST
ONE -WAY SELECTED
LINK INDEX?

LINK XR
TO START

START TO XR

PUT THE LINK LINDEX
OF XR TO START AS A
HALF WORK INTEGER
IN LOCATIONS O AND 1
OF THE RECORD.

IS THE
ORIGIN CENTROID
OF THE TRIP
INTERCRANGE >
DESTINATION
CENTROID

DISP. LENGTH

BYTES BVTES CONTENTE
2 2 ORIGIN CENTROID
4 2 DESTINATION CEN.
6 4 VOLUME

10 4 1]

14 2 10

RST

LOAD2

LINK
NOT 1IN

ABEND 71, DUMP
NETWORK

REV

DISP.
BYTES L CONTENTS
2 DESTINATION CENTROID

2
| 4. 2 ORIGIN CENTROID
b 4 ZERO
10 4 VOLUME

14 214

III-38

DISP. LENGTH
BYTES BYTES CONTENTS
2 2 DESTINATION
CENTROID
4 2 ORIGIN CEN.
6 4 Z2ERO
10 4 VOLUME
14 2 5

REV

LOAD2

PUT THE LINK INDEX
OF START TO XR AS A
HALF WORK INTEGER IN
LOCATIONS 0 AND 1

OF THE RECORD.

IS THE
ORIGIN CENTROID
OF THE TRIP
INTERCHANGE > DES-
TINATION CENTROID

DISP. LENGTH

BYTES BYTES CONTENTS
2 T2 ORIGIN CEN.
4 2 DESTINATION

AT THIS POINT THE
SELECTED LINK RECORD
1S BUILT AND.IN ITS

BUFFER.

CENTROID
6 4 VOLUME
10 4 ZERO
— 14 2 2
i

RST &>

BS5 »

L

GET LINK VOLUME OR
INDEX TO IT IN
QVERFLOW TABLE OF
LINK KR TO START

GET LINK VOLUME AND

ADD INTERCHANGE VOLUME
AND STORE IN VOL ARBAY
IF < 32767, OTHERWISE
STORE IN OVERFLOW ARRAY

GET IPR = THE PATH
NODE BACK FROM NODE XR

ITI-39

18

IPR = 07 ES

Al

GET TURN CODE, IND,
FOR NODE XR

A9000

1-9, |12,
1416, & 19 AND 28

A6

10 26

13, 17,
22, 23

18, 27

21

23,) 24

28

LOAD?2

ID = IDSP3(IN, IOUT)

ID = IDSP41 (IN,IOUT)

ID = IDSP42(IN, IOUT)

ID = IDSP44 (IN, IOUT)

A9000

1D = IDSP5(IN,IOUT)

. ID = IDSP6(IN,IOUT)

ID = IDSP43 (IN,IOUT)

ID INDICATES WHETHER
TO SAVE THE TURNING
MOVEMENT FROM IPR-

XR- START AND IT IS ALSO
THE. RELATIVE INDEX

OF WHERE TO SAVE IT

ABEND 101

ABEND 102

Is
ID = X'FO'?

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF FIRST TURNING
MOVEMENT FOR NODE XR

III-40

A6

GET TURN VOLUME OR

" INDEX FROM TRNTB
ADD TRIP INTERCHANGE
VOLUME ’

IF THE NEW TURN VOLUME
< 32767 STORE IT BACK
IN THE TRNTB ARRAY
OTHERWISE STORE IN
OVERF AND BUILD INDEX
AND STORE IN TRNTB IF
NEEDED

START = XR

Al

Iel-~1

RETURN

III-41

YES

| DO1

LOAD2

PROGRAM

MAIN

INITIALIZE CUMULATIVE
TIME TO 0, GET
TODAY'S DATE FOR THE
HEADER RECORD

GET TIME OF DAY AND
PIND CUMULATIVE TIME
AND PRINT

READ LINK DATA IN

REVSET ENTRY POINT,

MAIN

A20
1
cap
" READ AND INTERPRET
STOP 0 A CONTROL CARD OR UNIT
RETURN
OTHER ‘ CONTROL J CARDS 1
PREPARE § NETWORK REVISE NETWORK .
I PRENET PRPUET \

OLD FORMAT, EDIT FOR
ERRORS, SORT AND CHECK
CONNECTION ERRORS AND
PRODUCE FLEXIBLE DATA
RECORD

ASMNET ENTRY POINT.
READ LINK DATA IN NEW
FORMAT, EDIT FOR
ERRORS, SORT AND CHECK
CONNECTION ERRORS
AND PRODUCE FLEXIALE
DATA RECORD

READ LINK DATA IN NEW
FORNAT FOR CHANGES,

EDIT POR ERRORS, MERGE
WITK OLD FLEXIBLE DATA
RECORD AND CHECK
CONNECTION KRRORS

FLEXIBLE
DATA RECORD

(UNIT NETWORK)

READ FLEXIBLE DATA

RECORD AND PRINT NETWORK
DATA QF ANODE, BNODE, F,

8, D, TIME, SHAFT AMD
ARROW

ASSIGNMENTS

UPDTNT \

CARDS AND COPY FLEXIBLE
DATA RECORD WITH CHANGES

OLD FLEXIBLE
DATA RECORD
(UNIT 12)

ITI-42

STOP

STOP ¢

MAIN
PREPARE TRIPVOLUMES QUTPUT TRIPJVOLUMES SUM TR1P|ENDS MERGE FRATAR| FORECAST
) 4
/ PRPCTV \ [OUTRLP [SUMEND \ [MERG \ FRATAR) \

READ TRIP MATRIX IN
EBCDIC RECORD FURM,
CHECK FOR CORRECT
SEQUENCE AND ZONE RANGE
AND WRITE TRIP MATRIX

READ TRIP MATRIX AND

PRINT

>\

TRIP MATRIX
(UNIT. CTVOUT)

SUM TRIP MATRIX BY
ROWS AND COLUMNS
EXCLUSIVE OF THE
DIAGONAL ELEMENTS AND
COUNT NON-ZERO ELEMENTS
AND PRINT

DO A MATRIX ADDITION OF
FROM 2 TO 6 TRIP '
MATRICES AND WRITE OUT
SUMMED TRIP MATRIX

[

TRIP MATRIX
(UNIT
MERGIN(1))

TRIP MATRIX
(UNIT MERGIN

m)

TREP MATRIX
(UNIT MERGOUT)

READ GROWTH FACTORS
AND PERFORM MULT1PLE
FRATAR 1TERATIONS

ON TRIP MATRIX AND
WRITE NEW TRIP MATRIX

TRIP MATRIX
(UNIT FRATAR)
CHANGE UNLT
CTVOUT T
FRATAR

A2

NETWORK

PREPARE SPIDER

BLDNET

[

A\

READ I.LNK DATA CARDS
IN SI'IDER NETWORK

FOKMAT AND OUTPUT LINK

ARRAY AND NODE NAMES

—

OUTPUT snnmlnmzonx

ASSIGN SPIDER

QUTSNT

NETWORK

[

PATHSP

\

[

PLOT ROUTEY

PROF1LES

RTPLT

\

A 20

LINK ARRAY
(UNIT 1)

PRINT SPIDER NETWORK
WITH NODE NAMES

NODE NAMES
(UNIT 4)

BUILD SPIDER TREES,
LOAD VOLUMES, ON
TREES, AND PRINT

LOADED NETWORK (WITH

NO TURN MOVEMENTS)

ITI-43

ROUTE LINKS
(UNIT ROUTE)

READ PARAMETER CARDS
TO DETERMINE WHICH
ROUTE NUMBER AND
WHICH ASSIGNMENTS AND

PLOT.

MATN

A3
BUILD TREES |{ ASSIGN ASSIGN- SELECTED @ LINKS
/ TREBLD \ [TREBLD \ SELECTED LINKS [TREBLD \
(UNIT SELTRP) USE SELLD ENTRY.
BUILD TREES AND PRINT e re. AT MABK SELECTED LINKS
y HEN
RITE 3‘35\55%?1:“ LOADED NETWORK gxgﬁgsﬁim
OTues FUR TEE TREES AND UPDATE FLEXIBLE WRITING TRIP INTER-
VECTORS : RECORD WITH ASSIGNED CHANGES D ooTon
WHICH ARE BUILT. VoLouEs GES D 00
TRIP MATRIX
(UNIT CTVOUT) \
SMRY SUMRY \

CALCULATE SUMMARIES
AND COMPARISONS FOR
THE ASSIGNMENT AND

PRINT, .

CALCULATE SUMMARIES
AND COMPARISONS FOR
THE ASSIGNMENT AND y
PRINT.

ROUTE LINKS
(UNIT ROUTE)

FLEXIBLE DATA '
SEPARATION FLEXIDLE DATA } [¥CORD (UNIT A2 | - A 20
MATRIX NEWNET) ‘

III-44

N

A4

ASSIGN Y SELP-~BALANCING

IMIN = 3
IMAX = §
RES = .TRUE.
J=1

TREBLD \

BUILD TREES AND LOAD
TRIPS. PRINT LOADED
NETWORK ONLY WHEN

J = 1. UPDATE
FLEXIBLE RECORD WITH
VOL. AND NEW IMPEDANCE

SUMRY \

OUTPUT "ALL SUMMARIES
AND COMPARISONS OF
THE ASSIGNMENT EXCEPT
ROUTE PROFILES AND .
CORRIDOR INT.

SEPARATION
MATRIX

SWITCH UNIT NUMBERS
OF UNITS NEWNET AND
NETWORK,J = J +:1

FLEXIBLE DATA
RECORD (UNIT
NETWORK)

1S THE
T VALUE OF THE
LAST ASSIGNED
VOLUMEB < 1.967

FLEXIBLE DATA
RECORD (UNIT

ROUTE LINKS
(UNIT ROUTE)

MALN

SWITCH UNIT NUMBERS
OF UNITS NEWNET AND
NETWORK.

1

[WGTLD k \

CONVERT REGRESSION
CONSTANTS OF C VERSUS
V'S INTO PERCENTS TO
LOAD

CALCULATE AND PRINT
WEIGHTED LOADED NETWORK

L
SUMRY \

PRODUCE FLEXIBLE -
DATA RECORD WITH

WEIGHTED ASSIGNMENTS [)
AND TABLE. ALSO
ROUTE PROFILE

IF NOT WT

WAS THE
OPTION "“WGT"
SPECIFIED?

RES = .FALSE.
J=J+1

1

TREBLD -\

BUILD TREES AND LOAD
TRIPS USING WEIGHTED y
IMPEDANCES, UPDATE ’
FLEXTBLE DATA RECORD
AND PRINT LOADED NET. \

11

A SUMRY 3\

OUTPUT ALL SUMMARIES
AND COMPARISONS : .
INCLUDING ROUTE PROFILES .

AND CORRIDOR INT.

WRITE UNIT NUMBER OF .
WHICK THE FINAL UPDATED

FLEXIBLE DATA RECORD IS
WRITTEN

SUBROUTINE

MERG

SET CTVOUT TO UNIT
MERGOUT

INITIALIZE FLAGS TO
INDICATE THAT NO

BOD HAS BEEN REACHED
AND THAT THE LAST
HOME ZONE AND SUBNET
ARE 0 FOR 6 DATA SETS.

PRINT ERROR MESSAGE:
INVALID *REEL CARD,
EXECUTION DELETED.
ALSO PRINT THE #*REEL
CARD.

STOP 998

PRINT ERROR MESSAGE
WITH MUMBER OF
SUBNETS AND NUMBER
OF DATA SETS TO
MERGE .

STOP 997

OF SUBNETS ON THIS
DATA SET.

MERG

READ 1'TH MERCE
DATA SETS METER

RECORD

SET PLAG TO INDICATE
EOD REACHED ON I'TH
MERGE DATA SET.

III-46

PRINT ERROR MESSAGE

GET MAXIMUM LAST
CENTROID NUMBER FOR
SUBNET J AND SAVE IN
LSTND(J)

JeaJ4+1

STOP 996

I=3+1

is
1 > THE NUMBER
OF DATA SETS TO
MERGE

MERG

REWIND MRGOUT DATA
SET. WRITE THE
PARAMETER RECORD
FOR THE ‘MRGOUT
DATA SET.

GET THE LARGEST
NUMBER OF CENTRO1DS
IN A SUBNET AND PUT
IN MAX.

ISUB = 1

IFST = FIRST CENTROID
FOR SUBNET ISUB.

LST = LAST CENTROID
FOR SUBNET 1SUB

COMPARE
CENTROID NUMBER
READ LAST FROM

DATA SET I:
NODE

HAS AN
EOD BEEN
REACHED ON MERGE
DATA SET 17

IS THE
SUBNET NUMBER
OF THE RECORD

READ ANOTHER RECORD
FROM MERGE DATA SET
1.

FROM DATA-SET 1
= LSUB

NODE = IFST

SUM THE VOLUMES IN THIS
RECORD IN THE VOLUME

SUMMING ARRAY

MR 6

LSUB =1

I=1+1 -

INITIALIZE VOLUME
SUMMING ARRAY TO
ZERO FOR MAX WORDS.

isI1>

NO
THE NUMBER

OF DATA SETS
TO MERGE

PACK THE SUMMED
VOLUMES AND WRITE THEM
IN ONE OR MORE RECORDS
ON THE MRGOUT DATA

SET

LSUB = LSUB + 1

15
LSUB > NOSUB?

III-47

YES

NODE = NODE + 1

18
NODE > LST

ISUB = ISUB + 1

I8
ISUB > NOSUB?

END PILE MRGOUT
REWIND MRGOUT

REWIND ALL MERGE
DATA SETS.

|

III-48

SET A FLAG TO INDICATE
THAN AN EOD HAS BEEN
REACHED ON MERGE DATA
SET I

MR 7

MERG

*ASSEMBLY LANGUAGE

SUBROUTINE

MOORE *

SAVE REGISTERS.
GET ARGUMENTS

INITIALIZE CUMULATIVE
TIME ARRAY TO
327.67 MINUTES

INITIALIZE 1024
LIST POINTERS TO
ZERO,

INITIALIZE LISTS
OF NODES FOR ASCENDING
TIME ORDER, FIRST,
AND DESCENDING TTME
ORDER, LAST.

INITIALIZE FOR HOME
CENTROID. SET I =
HOME CENTROID.

M1l

III-49

MODRF

M1

SAVE BACK NODE TO
NODE I.

GET INDEX TO FIRST
LINK FROM NODE I, J.

GET LINK INDEXED BY
J. SEPARATE FIELDS
OF THE LINK. ALSO
GET B NODE OF THE LINK.

IF THIS
LINK IS USED
WILL IT MAKE
A U-TURN

GET CUMULATIVE TIME
TO NODE I AND ADD
LINK TIME TO IT.

IS THIS
A SHORTER
TIME TO THE
B NODE?

18 THIS
THE FIRST PATH
TO THE B NODE?

REMOVE THE B NODE
FROM ITS OLD LOCATION
IN THE SEQUENCE TABLE

PUT B NODE IN SEQUENCE
TABLE

DELETE NODE FROM
OLD TIME CHAIN AND
ADD TO NEW TIME CHAIN

MOORE

J=J+1

GET NEXT NODE FROM
THE SEQUENCE TABLE, I.

WAS THE
SEQUENCE TABLE
EMPTY?

RESTORE REGISTERS

RETURN

III-50

SUBROUTINE

MRGREC

MRGREC

GNMENTS -
E OLD
FLEXTBLE DATA
REC. (12)?

OLDNET = 12
NE 3

REWIND 12
COPY HEADER RECORDS
FROM. PREV IDUS "ASSTGN-
MENTS FROM UNIT 12
TO UNIT 13
MRG = LNK1.GT.0 4

(ARE THERE ANY RECORDS
ON UNTT 3) MRG2 = :
LNK2.GT.0 (ARE THEREK —
ANY RECORDS ON UNIT 11)

SET INDEXES FOR NEXT
LINKS IN CORE OR
RECORDS RFAD FROM
UNITS 3 OR 11 TO
FIRST LINK (SET TO 0)

KEWIND NET
1
[SET LINK IMPEDANCES
- TO MAX. TIME, AND
I . PREVIOUS ASSIGNED
CALCULATE NUMBER OF VOLUMES T0 0 FOR
o LINKS IN NETWORK 20 ASSIGNMENTS FOR
PRINT MESSAGE UNTT 12 FROM NUMBER OF L.INKS 20 LINKS.
INET 12 MESSING O ISeING PROCESSED IN NEWNET
oe + LINKS ON UNIT 12-2%
DELETES
Y
0K -
1 [

READ FIRST NODE
STOP 12 SET NNLNK = 0, RECORD FROM UNIT 12

TO SUM ACUTAL #)
OF LINKS. WRITE
PARAMETER RECORD ON
UNIT 13.

1 GET A NOD¥, G

TURN CODE, GET 1LINK
CLASS IF AVATILABLE.
FORM A SORT KEY FOR
THE A NODE.

1S -THE
LAST NODE
NUMBER » THE MAXIMUM
NODE NUMBER?

PRAINT MIESSAGE

THAT THE MAXIMUM NODE
NIMBER 15 FXCEEDED
Ui s BRR 4+)

READ A LINK RECORD
{(WITH LINK IMPEDANCES
AND VOLUMES FROM
PREVIOUS ASSTGNMENTS
LK ANY)

Y. WR1TE HEADER RECORD
AND DATE ON UNIT 173

GET OTHER VARLABLES
FOR THE LINK

SKIP FIRST HEADER
RECORD ON UNIT 12

II1-51

READ A RECORD FROM
UNIT 3

ARE THERE
ANY RECORDS
ON UNIT 3?

READ A RECORD FROM
UNIT 1t

ARE THERE
ANY RECORDS
ON UNIT 112

[GTLNK \

UNPACK DATA FROM FIRST
LINK FROM UNIT 3

UMPACK DATA FROM
FPIRST LINK IN CORE

\
e < =

~——

GTLNK

—
|

UNPACK DATA FROM
PIRST LINK FROM UNIT
n

SET SORT KEY POR
LINK FROM UNIT 3
S0 1T WILL BE SKIPPED.
SET 118 A NODE TO 16383

ARE THERE
ANY RECORDS
ON UNIT 3?

SET SORT KEY FOR LINK
FROM UNIT 11 SO 1T WILL
BE SKIPPED. SET ITS

A NODE To 16383,

ARE THERE
ANY RECORDS
ON UNIT 11?

1

ITII-52

. REWIND UNIT & (NODE),
NAMES ‘SET NODE OF LAST
RECORD READ TO 0.

READ NEXT CARD FROM
LINK DATA INPUT.

MRGREC

- IS IT
AN N OR AN
ENDNET CARD?

. YES

SET NODE NUMBER OF
LAST NODE RECORD
READ TO 16383 T0 SKTP
READING NODE RECORDS

SET COUNT OF LINKS
FROM A NODE TO 0,

(L = 0). SET COUNT
OF LINKS TO DELETE TO
0, (LD = 0).

GET SMALLEST ANODE
PROM THE FOUR AVAILABLE
SOURCES (ACTUALLY 2 TO
4 SOURCES)

IS THE
ANODE = 163837

M4

CORE

MRGREC

UNIT 3

WHICH: SORT
KEY IS
SMALLEST?

OLD FLEXIBLE RECORD
UNIT 12

UNLT 11

15 THE ANODE
OF THIS LINK =
A NODE?

18 THIS
" A DELETF
1INK?

LD=1iD+1

SAVE THE B NODE OF
THIS LINK AT INDEX

L -

L= 1L+ 4
SAVE THI LINK

LINK = A NODE?

IS THE
ANODE OF THIS

1S THE

ANODE OF
THIS LINK
* A NODE?

IS THIS
A DELETE
LINK?

YES

L=1+1.-
SAVE THIS LINK AT INDEX
L. SET ITS CARD COUNT
= -1. ALSO SAVE LINK
IMPEDANCE AND VOLUMES °
FROM ASSIGNMENTS

L=L+1
SAVE THE LINK AT INDEX
L. .

1S THE
ANODE OF THIS
LINK = A NODE?

IS VHIS
A DELETK

‘LD = LD+ 1,

SAVE THE B NODE OF
THIS LINK AT INDEX
1D.

LD = LD+ 1,
SAVE THE B NODE OF

ARE THERE
ANY MORE LINKS
FROM THIS NODE?

L
S

AT INDEX 1. . THIS LINK AT INDEX
LD.
! \ ™1
INCREMENY TO GE
THE NEXT LINK [
INCREMENT TO GET |

GTLNK

READ A LINK RECORD
(WITH LINK IMPEDANCES
AND VOLUMES IF ANY)

L.

=L+]

AVE THE LINK Al INDEX

THE NEXT LINK.

!

UNPACK DATA FROM
NEXT LINK IN CORE

IS THE

UNPACK DATA FROM THE
RECORD. GET LINK

. CLASS IF AVAILABLE AND
FORM NEW SORT KEY.

INCREMENT T GET
NEXT 1.{NK ‘

NEXT LINK IN
THE LAST RECORD
READ?

l NORMAL READ

READ NEXT RECORD
FROM UNLT 3. SET
LOCATION TO GET NEX
LINK TO 0. .

SAVE OLD NODE REC.

READ A NODE RECORD FROM
UNIT 12, GET A NODE AND
SET LINK COUNT TO 1.

1S THE
NEXT LINK IN
THE LAST RECORD
READ?

FROM UN

ysw

LINK TO

[

GTLNK

gt

UNPACK DATA FROM

SET SORT KEY 10
SKIP AND SET A NODE
TO 16383

. READ NEXT RECORD

LOCATION TO GET NEXT

IT 13, SET

0.

—

GTLNK \

LINK FROM UNIT 3.

UNPAGCK DATA FROM LINK
FROM UNLT 11

ITI1-53

M4

END FILE 13
REWIND 13

REWIND 3

REWIND NODE NAME
UNIT (4)

PRINT MESSAGE THAT
THE NUMBER OF LINKS
EXCEEDS THE MAXIMUM
ERR = ERR + 1

REWIND NETWORK DATA
SET

Y

PRINT MESSAGE
ABOUT MISSING

DD CARD FOR UNIT

NETWORK

[/ COPYFT \

COPY THE FLEXIBLE

ERROR | RECORD DATA SET FROM
UNIT 13 TO UNIT
NETWORK REPLACING #
OF LINKS.

STOP 13

COPY | COMPLETED
9

=

ITI1-54

MRGREC

IS LD = 0?
(ARE THERE ANY

MRGREC

LINKS TO DELETE?)

DELETE FIRST LINK
WITH THE SAME B NODE
FROM THIS LINK. IF
LINK NOT FOUND PRINT
ERROR MESSAGE,

ERR = ERR + 1 REPEAT
LD-~1 TIMES

ONE LINK FROM LINK
DATA, ONE FROM
UNIT 12, ADD THE
' OLD ASSIGNMENTS
ONTO THE NEW LINK,

DELETE THE OLD LINK

-

YES
REPLACE

ARE THERE
ANY DUPLICATE
LINKS NOW?

YES

DUPLICATE

EITHER TWO LINKS FROM
LINK DATA OR TWO
LINKS FROM UNIT 12
WITH SAME A NODE AND

B NODE, PRINT DUPLICATE
LINK MESSAGE.

ERR = ERR + 1

g {

EXAMINE NEXT LINKS

HAVE ALL
LINKS FROM
THIS A NODE

BEEN EXAMINED

FIND LINKS WHICH HAVE

NOT BEEN DELETED. i

SUM NUMBER OF LINKS
IN EACH LINK CLASS

AND TOTAL NUMBER OF,
LINKS L.

IS L = 0?
(ARE THERE ANY

NO

LINKS LEFT?)

GET NEW TURN CODE
FROM NUMBER OF LINKS

IN EACH LINK CLASS.

III-55

. PRINT MESSAGE THAT
THE A- NODE IS NOT
IN THE NETWORK.
ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

IS THE
NODE 'IN
THE NETWORK?

WHAT TYPE
OF NODE
IS IT?

ADD CODE FOR FREEWAY
TO TURN CODE

MOVE NEW NODE NAME
TO NODE RECORD AREA.
READ NEXT NODE NAME
RECORD .

". IS THERE
A.NODE NAME
RECORD FOR
THIS A NODE?

NO

KEEP OLD NODE NAME

GET COORDINATES

AND KEEP NON ZERO
SUB AREA CODE. READ
NEW A NODE RECORD

IS THE
NEW RECORD
AN ENDNET OR
N CARD?

NO

IS THERE
AN A NODE RECORD
FOR THIS
A NODE?

SET COORDINATES TO
ZERC

SET NODE NUMBER OF
A NODE RECORD = 16383

M8

IT1-56

MRAREC

MRGREC

GET OLD COORDINATES

IF THE NEW'ONES ARE

ZERO. GET OLD SUB

AREA CODE IF THE NEW
- UNE IS ZERO

IS THERE
AN OLD NODE
RECORD FOR
THIS ANODE

WRITE NEW NODE RECORD
ON UNIT 13. SUM NUMBER

OF LINKS WRITTEN IN
NNLNK

PRINT ERROR MESSAGE
THAT THERE ARE MORE
‘THAN 6 LINKS. ERR =
ERR + |

ARE THERE
MORE THAN 6 LINKS
FOR THIS NODE?

* CENTROID I8 THIS NODE

1S THERE AT
LEAST ONE-WAY TO
THE (ENTROID AND
ONE-WAY FROM IT?

ANODE ‘A CENTROID?

- IS THERE
ONE-WAY TO THE -
NODE AND ANOTHER
LINK OUT?

YES o YES

PEINT MESSAGE:
i%01ATED CENTROID
ERi = KRR 4 1

Y
PRINT MESSAGE:
ISOLATED NODE.
ERR = ERR + 1
Y
1=1

WRITE A LINK RECORD
FOR SAVED LINK NX(I)

I=1+1

IT1-57

) Sf-."]' LINK IMPEDANCES

TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO O FOR 20
ASSIGNMENTS FOR 20
LINKS

SUBROUTINE

- - NEWNET
NEWNET

INITIALIZE NUMBER
OF WORDS WRITTEN ON
UNIT 3 AND UNIT 11
10 ZERO., INITIALIZE
NUMBER OF LINK WORDS
IN CORE TO ZERO

INITIALIZE OTHER .
VARIABLES REWIND 4 !
IL = -1 (# LINKS IN
CORE)

READ NUMBER OF SUBNETS
CARD INCLUDING FIELD

TO GET SPEED AND DISTANCE
FROM

JFALSE.

(OLD LINK
DATA FORMAT)

(NEW LINK DATA FORMAT)

SET TO USE THE THIRD
SPEED AND DISTANCE

IS THE FIELD

READ SUBNETWORK
FOR SPEED AND

PARAMETER CARD. -

SET NUMBER OF SUBNETS DISTANCE FIELDS ON THE LINK
= 1 AND SET SUBNET SPECIFIED = 0 ° DATA CARDS
OF PARAMETER CARD = 1.

SAVE FIRST NODE

NUMBER, LAST CENTROID

NUMBER, LAST ARTERIAL i PRINT NUMBER OF

NUMBER, AND LAST i SUBNETS MESSAGE

FREEWAY NODE NUMBER

OF THIS SUBNET.

\ \]

INITIALIZE VARIABLES y

NOT ON OLD LINK DATA. E READ SUBNETWORK

GROUND COUNT = 0, PARAMETER CARD.

CAPACITY = 0, FUNC- . CALCULATE NUMBER OF N 16
TIONAL CLASSIFICATION 4 NODES IN SUBNETWORK

= 0, ROUTE CODE = 0.

1
PRINT INFORMATION

CORRIDOR INTERCEPT = O, ' FROM SUBNETWORK

SUBAREA CODE = PARAMETER CARD ADD

SUBNETWORK NUMBER 1 TO EXPECTED SUB~

NETWORK NUMBER

PRINT MESSACE,
INCORRECT SUBNET
NUMBER .

IS THIS
CORRECT
SUBNETWORK?

I11-58

READ A LINK DATA
CARD IN OLD FORMAT.
ADD 1 TO CARD. COUNT

ARE COLUMNS
1 - 3 EQUAL
END"?

CONVERT COLUMNS 2-6
FROM EBCDIC TO INTEGER
FOR A NODE NUMBER

FALSE
(OLD LINK DATA

FMT?
(WHAT TYPE
OF LINK DATA?)

FORMAT) FORMAT)

SET CHARACTER READ
FROM COLUMN 1 TO
CHARACTER READ FROM
COLUMN 4

CONVERT FUNCTIONAL
CLASS FIELD FROM
EBCDIC TO HEXADECIMAL

DOES THE
FUNCTIONAL CLASS FIELD
CONTAIN A CODE D-9 y
OR A-F?

YES

NO.

SET DELETE CODE TO
1 TO INDICATE THIS
IS A DELETE CARD

L__,‘

TRUE
(NEW LINK DATA

READ A LINK DATA CARD
IN THE NEW FORMAT

ROUND GROUND COUNT

TO UNITS OF 100

. TRIPS. ROUND CAPACITY
; TO UNITS OF 100 TRIPS.
, ADD 1 TO CARD COUNT.

SET DELETE CODE = 0

SUM NUMBER OF
DELETE CARDS. SET

SET FUNCTIONAL
CLASS TO ZERO

CONVERT JURISDICTION
FROM EBCDIC TO
HEXADECIMAL

SPEED FOR SECOND LINK

LINK.

TO THAT OF THE FIRST

SET CODE TO INDICATE

SPEED FIELD
SET CHARACTER READ ARE
FROM COLUMN 1 TO YES COLUMNS 1-3
CHARACTER READ FROM EQUAL TO
COLUMN 4 YEND"?
| _Jvo
\
N2

ITI-59

NEWNET

SET NTM = © TO
KEEP THE MILEAGE
IN THE VEHICLE
MILES SUMMARY

1S THE
DUPLICATE MILEAGE
ELIMINATOR = 1?

SET NTM = 2

TO ELIMINATE THE
MILEAGE OF THIS LINK
IN THE VEHICLE MILES
SUMMARY

IS COLUMN

1 (OR 4)

EQUAL TO
wpe

18
THE BNODE
< THE LAST NODE
"OF THIS
SUBNET

Pt

s

THE ANODE

< THE LAST NODE OF

THIS SUBNET
?

1S THE
B NODE > THE
FIRST NODE OF
THIS SUBNET?

"
HAT THERE 18 AN
INVALID NODE NUMBER.
ERROR = FRROR + 1

'NT AN ERROR MESSAGH

IS THE
A NODE > THE
FIRST NODE OF
THIS SUBNET?

SOR 1

NTM = 17
(IS THE DELETE
MILEAGE ELIMINATOR
=1?)

WHAT IS
THE TIME SPEED
FLAG = ?
S, 1,2

LINK TIME = SPEED
OR TIME FIELD.
CALCULATE SPEED FROM
TIME AND DISTANCE.

III-60

SET SPEED = SPEED OR
TIME FIELD

CALCULATE LINK TIME
FROM SPEED AND DISTANCE

IS LINK
TIME > MAX-
IMUM LINK

TIME?

ISHAFT = -1

NEWNET

SET LINK TIME = MAX.
SET SPEED = | m.p.h.
SET DIST. = 9,99 MILES,
SET SHAFT = 0, ARRCW = 0

PRINT MESSAGE NO
TIME OR SPEED INDICATOR
ERROR = ERROR + 1

PRINT MESSAGE THAT
LINK TIME EXCEEDS
MAXIMUM. ERROR = ERROR
+ 1 SET LINK TIME. TO
MAX. LINK TIME

N3 NEWNET

<

\

PTLNK \

PUT A LINK IN CORE WITH

THE LEFT PARTITION

NODE, RIGHT PART.

NODES LINK DIST. = O,

| SPEED = 33.3 MPH, TIME
=0

[~

PUT A LINK IN CORE
WITH THE RIGHT
PARTITION NODE,
LEFT PART. NODE,
LINK DIST. = 0,
SPEED = 33.3,

TIME = 0, LINK C = 2

HAS THE
LAST SUBNET
. LINK DATA
BEEN PROCESSED?

N 13

1 READ A PARTITION CARD IL = IL + 2
OR AN ENDNET CARD.
CRDCNT = CRDCNT + 1

Is IL
> THE MAX.
NUMBER OF LINKS
> 0 SAVED IN
CORE?

NO

LNK2 = IL + 1
GET TIME OF DAY TO
TIME SORT.

PRINT MESSAGE INVALID
PARTITION CARD.
ERROR = ERROR + 1

I8 IT
A TURN
PROHIBIT CARD?

A
VSORT

I~
|

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD
COUNT

18 IT
A PARTITION
CARD?

GET TIME OF DAY.
CALCULATE SORT TIME
AND ‘SUM IN IT3,
REWIND LNKTMP

LEFT PAR-
TITION NODE

> 0 AND RIGHT
PARTITION NODE
> 0?

RIGHT
PARTITION NODE YES -

> LEFT PARTITION
NODE?

ITI-61

INCREMENT COUNT OF
LINKS IN CORE (IL = NENNET
L+ 1)

1 SHAFT = 0

/ PTLNK \

PACK THE LINK
INFORMATION INTO
A 22 BYTE RECORD +
PUT IN LINUS (IL)

L

| SHAFT = 1

YES 1S THIS

A DELETE
LINK?

PRINT ERRUR MESSAGE
THAT THE SHAFT CODE
IS [NVALID.

I SHAFT = 0

IS THE

WRITE A NODE NAME

A NODE OF
THIS LINK > THE RECORD ON UNIT 4.
LAST NODE -NAME SET LAST NODE WRITTEN
RECORD? = A NODE)
N]
1 ARROW = [SHAFT

FMT AND
TWO-WAY

INDICATOR
.NE. 17

IS THE
ARROW CODE
EQUAL 1 OR -?

SET 1 ARROW TO
OPPQSITE OF 1 SHAFT

PMT
AND TWO-WAY
INDICATOR

\EQ.1?

_SET.LINK CLASS
N6 I CLASS = 0 (ONE-
WAY LINK TO B NODE)

is
THE TWO-WAY

INDICATOR
BLANK?

PMT
AND TWO-WAY

INDICATOR - .NE.
17

L CLASS = 1
(TWO-WAY LINK)

Is
THE TWO-WAY

IND1CATOR
A T

NOT. FMT
AND TWO-WAY
INDICATOR NOT
BLANK

L CLASS = 1 TRUE

(TWO-WAY LINK)

1s

THE TWO-WAY
INDICATOR

A "s"2

ITI-62

SET LINK TIME TO
SECOND TIME OR SPEED
FIELD CALCULATE LINK
SPEED FROM TIME AND
DISTANCE

YES

. Is
THE TWO-WAY
INDICATOR = 1?

1s
‘THE TWO-WAY
INDICATOR = 27

PRINT AN ERROR MESSAGE,
INVALID TWO-WAY INDICA-
TOR, ERROR = ERROR + 1

IL = IL ~ 1
(THIS REMOVES THE
_ PREVIOUS ONE-WAY LINK)

SET SPEED = SECOND
TIME OR SPEED FIELD

PRINT ERROR MESSAGE
THAT LINK TIME IS >
MAX., ERROR = ERROR
+ 1 SET LINK TIME TO
MAX.

1S THE
LINK TIME
> THE MAX.
LINK TIME?

N7

IL = IL+1
(ADD ONE TO THE

NUMBER OF LINKS IN
CORR)

III-63

WAS THE
LINK CLASS IN
THE OTHER
DIRECTION ONE
WAY?

NEWNET

IL =3
(SET LINK CLASS TO
DUMMY ONE-WAY LINK)

o

PACK THE LINK INFOR- -
MATION INTO A 22 BYIE
RECORD AND PUT IN
LINKS (IL)

i

"

LNK2 = IL + 1 =
NUMBER OF LINKS IN
CORE. GET TIME OF
DAY TO TIME SORT.

A

VSORT

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD COUNT

GET TIME OF DAY AND
CALCULATE SORT TIME
AND SUM IN IT3. REWIND
LNKTMP

Y

oy

PTLNK

-\

ADD A TRAILER LINK
WITH AN A NODE OF
16383 TO MARK THE
END OF THE LINKS.

CALCULATE THE NUMBER
OF BLOCKS OF LINKS.
IL = IL + 2, NBLK =
(IL + 39)/40, (40
LINKS/RECORD) .

NEWNET

WRITE THE SORTED
LINKS IN CORE OR
LNKTMP IN BLOCKS
OF 40 LINKS/RECORD.

END FILE LNKTMP
REWIND LNKTMP

LNK 1 = LNK 2
INK 2 =0

LNKTMP = -1

LNKTMP = 11

o= -1
(SET FOR NO LINKS
IN CORE)

ITI-64

NEWNET

L PTLNK j

ADD A TRAILER. LINK
WITH AN ANODE .

OF 16383 TO MARK
THE END OF THE
LINKS

LNK2 = LNK2 + 1 .
CALCULATE NUMBER OF .
RECORDS TO WRITE |
ON LNKTMP.

WRITE THE SORTED
LINKS IN CORE ON
LNKTMP IN -BLOCKS
OF 40 LINKS/RECORD

END FILE LNKTMP
REWIND LNKTMP

LNK1 = LNK2 YES

=

LNK2 = 0
NO
NO

LNKTMP = -1 .
YES 1s
LNKTMP = 11 LNKTMP = 3
L NO

I = -1
(SET NUMBER OF -
LINKS IN CORE TO N3
ZERO)

III-65

PRINT SUBNET
NUMBER

HAVE
ALL SUBNETS
BEEN PROCESSED?

PRINT SUBNET NUMBER. !
END FILE 4, REWIND

NEWNET

4 (NODE NAME DATA SET) i

IL = IL + 1

GET TIME OF DAY TO
TIME SORT

[VSORT

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF ANODE,
LINK CLASS, CARD COUNT

o~

GET TIME OF DAY,

CALCULATE SORT TIME
AND ADD TO. IT3 AND
CONVERT ‘TO MINUTES

PRINT LINK SORT TIME.

i’

[PTLNK \

ADD A TRAILER LINK
WITR AN ANODE OF
16383 TO MARK THE
END OF THE LINKS

IL = 11 +1

RETURN

IT1-66

SUBROUTINE

/

OUTLLT

RES = .TRUE. IF

THIS IS AN ASSIGN
SELF-BALANCING RUN.
ITER = ITERATION NUM-

BER. OUTN = A LOGICAL. .

VARIABLE TO KEEP THE
PRINTED OUTPUT.

PRINT = (.NOT. RES .OR.
ITER.EQ.1) .AND. OUTN

FALSE

NO

ITER = 1?

REWIND 3 WRITE A
PARAMETER RECORD ON
UNIT 3 OF THE NUMBER
OF NODES ONE-WAY
LINKS AND TURNING
MOVEMENTS

WRITE THE ONE-WAY LINK
VOLUMES IN FULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

WRITE THE TURN VOLUMES
SAVED IN FULL WORD
INTEGERS IN RECORDS OF
4000 WORDS ON UNIT 3.

REWIND NETWORK

I11-67

OPENFT \

OPEN DATA SET NEWNET
WITH REFERENCE 1

READ PARAMETER RECORD
FROM UNIT NETWORK, ADD
ONE TO. NUMBER OF
ASSIGNMENTS'

NL1 = NUMBER OF
ASSIGNMENTS FROM
UNIT NETWORK + 1.

I~

WRT - \

WRITE NEW PARAMETER
RECORD 'ON UNIT NEWNET

COPY NL1 HEADER
RECORDS FROM NETWORK
TO NEWNET.

WRITE HEADER RECORD
FOR THIS ASSIGNMENT.

SET NL5 = NUMBER OF
WORDS IN LINK RECORDS
ON UNIT NETWORK

QUTLLT

SET INUM2 = THE
NUMBER OF LINKS FROM
NODE 1.

GET ONE-WAY AND TWO-
WAY LINK VOLUMES.
CALCULATE TURN VOLUMES
AND FLAG WHICH TO PRINT

READ NODE RECORD
FROM UNLIT NETWORK FOR
NODE I.

WRITE NODE RECORD FOR
NODE T ON UNIT NEWNET.

A WRT .

1\

WRITE THE NEW LINK
RECORD WITH ITS ITP

FOR THIS ASSIGNMENT

AND TWO-WAY LINK VOLUME

NO

18

READ A LINK RECORD

QUTLLT

FROM .UNIT NETWORK

GET ITP = THE LINK
IMPEDANCE USED FOR
THIS ASSIGNMENT

GET ¢ = GROUND COUNT
OR CAPACITY (WHICHEVER
1S SPECIFIED BY THE
*TURN CARD)

IS THIS
NOT AN
ASSIGN SELF-
BALANCING .OR.

c=0

YES

IS IT
A CAPACITY

FIELD AND LINK
VOLUME < C?

UPDATE LINK IMPEDANCE
TO USE ON THE NEXT
ASSTGNMENT

IS THE
NEW LINK
IMPEDANCE = 0
AND ‘ITP % 07

SET THE NEW LINK
IMPEDANCE TO 0.01

y

IS THE
NEW LINK
IMPEDANCE
> 163.83?

SET THE NEW LINK
IMPEDANCE TO 163.83

y

4> INUM2?

YES

ITI-68

WILL THE
OUTPUT FROM
THIS NODE
FIT ON THIS
. 'PAGE?

PRINT PAGE HEADER
RECORD FOR THE LOADED
NETWORK

SKIP ONE LINE ON
THE PRINTED QUTPUT

PRINT?

FALSE

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE-WAY LINKS)

GET THE B NODE NUMBERS
AND DIRECTIONAL VOLUMES
FOR THESE LINKS

GET B NODE NUMBERS
AND SET UP ONE-WAY
LITERAL FOR THESE LINKS.

1S NODE

I CONNECTED
TO MORE THAN
4 NODES?

QUTLLT

INITIALIZE N = 2 FOR TWO
LINES OF OUTPUT FOR
DIRECTIONAL VOLUMES

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR *
DIRECTIONAL VOLUMES.

BUILD FORMAT FOR
DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE 1 WiTH
FORMAT BUILT ABOVE

K=K+ 1 SET THE
NODE NAME TO BLANKS.

GET B NODE NUMBERS AND
NON-DIRECTIONAL VOLUMES
FOR THESE LINKS

I1I-69

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT FOR
NONDIRECTIONAL VOLUMES

IS NODE

I CONNECTED
TO MORE THAN
4 NODES?

INITIALIZE N = 1 FOR

ONE LINE OF OUTPUT FOR

NONDIRECTIONAL VOLUMES -
i

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

K=K+1

GET NODE NUMBERS AND
TURN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLS.

oOUTLLT

PRINT TURN VOLUMES

FOR NODE I.
- 02
\
I=1+1
18
1> THE 01
LAST NODE
NUMBER?

/ CLOSFT \

CLOSE THE NEWNET
DATA SET AND RELEASE
ITS BUFFERS

III-70

REWIND THE NETWORK
DATA SET

RETURN

OUTLNT

SUBROUTINE

OUTLNT

REWIND 4
IPACT 1 = 0 |

/ PRINTL \

PRINT LOADED
NETWORK FOR SUBNET
1.

IS THE
NUMBER OF
SUBNEYS = 17

YES

IFACT2 = FIRST NODE
NUMBER IN SUBNET
2 -1.

/ OUTLLT \

PRINT LOADED NETWORK
IN SUBNET 2.

hagt REWIND 4

III-71

SUBROUTINE

OUTNET

REWIND UNIT NETWORK

WAY LINKS IN THE
NETWORK

PRINT WUMBER OF MODES,
FIRST NODE, LAST
FREEWAY, LAST CENTROID,
LAST ARTERIAL, LAST -
FREEVAY NODE FOR EACH
SUBNET.

READ THE HEADER
RECORDS ON UNIT WETWORK
AND PRINT EACH ONE.

READ A NODE RRCORD WROM .
NETWORK, SET ANODE =
TO THE NODE WUMBER.

PRINT PAGE HEADER.
SET NUMBER OF LINES
PRINTED, LINES = §.

IA = R

PRINT MESSAGE:
XXXXX MO COMNECTING
NODE '

LINES = LINES + 1

III-72

NT 5

CQUTNET

DUTNET

NT 2)
READ THE NEXT NODE EOD
RECORD FROM UNIT NETWORK.

JL = MINO (4, NLL)
WHERE NLL = THE NUMBER

OF LINKS FROM ANODE ’ “

IA=IA+1

4

KT 3

NLL = NLL - JL

NA = NA + 50 - NT 1 >

READ JL LINKS FROM
UNIT NETWORK

FORMAT THE JL
LINKS FOR PRINTING

SKIP TO THE TOP
¥ _ OF A NEW PAGE. REWIND fus

UNIT NETWORK.

PRINT THE JL LINKS

ON ONE LINE. . i

RETURN

III-73

SUBROUTINE

OUTRIP

SET DISPLACEMENT OF
WHERE TO PUT THE
VOLUMES IN THE NTAB
ARRAY FOR SUBNET ONE
70 0, (K(1) = 0).

REWIND UNIT CTVOUT

READ PARAMETER RECORD
FROM CTVOUT

SET DISPLACEMENT OF
WHERE TO PUT VOLUMES
FOR THE OTHER SUBNETS
IN THE NTAB ARRAY.

GET NUMBER OF CENTROIDS
PER SUBNET

READ A TRIP RECORD FROM
URIT CTVOUT

EOD

ROUND NUMBER OF
CENTROIDS/SUBNET TO
NEXT HIGHER INCREMENT
OF 10 SO THAT OUTPUT
WILL BE CORRECT:

CLEAR THE NTAB ARRAY
FOR 4050 WORDS TO ZERO,

PRINT NUMBER OF SUBNETS

PRINT PAGE HEADER WITH
ORIGIN CENTROID.

PRINT FIRST AND LAST
CENTROID NUMBER FOR
 EACH SUBNET

III-74

CUTRIP

OUTRIP

oT 2

UNPACK TRIP VOLUMES
FROM LAST TRIP
RECORD READ AMD PUT i
IN CORRECT PLACE IN o
NTAB ARRAY.

SAVE ORIGIN CENTROID,
HOMEND, IN ICOM.!

READ A TRIP RECORD
r‘_lﬂ'; FROM UMIT CTVOUT.

- SET HOMEMD = ORIGIN
CENTROID OF THIS RECORD.

o SET COUNT OF LIMES
> PRINTED FOR ICOM TO
. ZERO.

LIST THE VOLUMES IN THE
NTAB ARRAY IN GROUPS OF _
10/LINE WITH DESTINATION NoDE
WUMBERS, DON'T PRINT LINKS '
¥OR WHICH ALL TEN VOLUMES

ARE ZERO. PRINT A NEW PAGE
HEADING EVERY S0 LINES

READ A NODE NAME
FROM 4

EOD ‘

. SUBROUTINE

OUTSLN

REWIND 4, SET FLAGS

1S THE
NODE NAME > N
AND NO EOD
REACHED ON 47

SFTOFLAG THAT EOD ON

PNED 4 HAS BEEN REACHED.
AST NODF NAME NUMBER
{ONODE + 1.

MUVE BLANKS TG THIL NODE
NAME QUTPUT ARFA .

1S THE
NODE NAME
NUMBER = N?

MOVE THE NODE NAME TO THE
OUTPUT AREA.

GET N LINKS, THE NUMBER

YES

185,

OUTSLN

NLINKS = 07

‘WILL
THE LINES PRINTED
FOR NODE N EXCEED
50 LINES FOR
THIS PAGE?

PRINT PAGE HEADING.
SET LINES FOR THIS PAGE
TO ZERO.

GET DIRECTIONAL AND

NON-DIRECTIONAL LINK B
VOLUMES FOR NODE N.

ARE THE
VOLUMES TO THE
NODE = THE
VOLUMES FROM IT AND
IT 1S NOT A
CENTROID

ADD ONE TO THE NUMBER
OF UNBALANCED NODES

PRINT THE DIRECTIONAL
AND NON-DIRECTIONAL -

VOLUMES FROM NODE N.

N=N+1 i

OF LINKS FROM NODE N,

IS
N - THAN-
THE LAST

NODE NUMBER?

ARE THERE
ANY UNBALANCED
NODES?

PRINT AN ERROR MESSAGE
WITH THE NUMBER OF
UNBALANCED NODES.

RETURN j

III-76

SUBROUTINE

OUTSNT

REWIND 1

READ THE PARAMETER
RECORD FROM UNIT 1

PRINT ERROR MESSAGE:
WARNING, THIS NETWORK
WAS NOT PREPARED BY
SPREPARE SPIDER NETWORK

1

WAS THIS
NETWORK BUILT
BY PREPARE
SPIDER NETWORK?

YES

" READ SECOND PARAMETER
RECORD FROM UNIT 1.

QUTSNT

Ni1=N1+50

PRINT PAGE HEADER
RECORD

N 2 = MINIMUM OF
N 1+ 49, AND LAST
NODE NUMBER.

1s
N 1 > LAST
NODE NUMBER?

REWIND &

N=N1

IF THE LAST NODE NAME
READ FROM UNIT 4 IS

< N READ ANOTHER NODE
NAME FROM 4 IF AN

EOD HAS NOT BEEN READ.

RETURN

READ INDEX RECORDS FROM
UNIT 1.

READ LINKS FROM UNIT
1.

ARE THERE
ANY NODES
CONNECTED TO
NODE N?

PRINT NODE NUMBER
N AND NO CONNECTING
NODE MESSAGE.

PRINT THE NODES
CONNECTED TO N WITH
LINK IMPEDANCES AND
THE NODE NAME IF
AVAILABLE

REWIND 1
BREWIND 4

N=N+1

Nl=1

s
N>N2?

YES

I11-77

SUBROUTINE

OUTTRE

PRINT TREE WITH DESTINA-
TION NODE AND ADJACENT
NODES AND TIME TO EACH NODE
WHICH WAS REACHED

RETURN

ITII-78

Ut IR

SUBROUTINE

OUTWLT

REWIND NETWORK.
READ THE PARAMETER
RECORD ‘FROM UNIT
NETWORK

NL1 = NUMBER OF
ASSIGNMENTS FROM
UNIT NETWORK + 1.

SKIP NL1 RECORDS ON
UNIT NETWORK

YES

SET INUM2 = THE
NUMBER OF LINKS FROM
NODE 1

TRN

\

GET ONE-WAY AND
TWO-WAY LINK VOLUMES,
CALCULATE TURN
VOLUMES AND FLAG
WHICH TO PRINT

READ NODE RECORD
FROM UNIT NETWORK
“TO GET NODE NAME FOR
NODE 1I.

SKIP INUMZ LINK
RECORDS ON UNIT NETWORK
A © FOR NODE T.

WILL
THE OUTPUT FROM
THIS NODE FIT
ON THIS PAGE?

PRINT PAGE HEADER
RECORD FOR THE
LOADED NETWORK.

SKIP ONE LINE ON THE
PRINTED OUTPUT

QUTWLT

=Y

FIND THE NUMBER OF
LINKS FROM NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE~WAY LINKS)

DIVIDE DIRECTIONAL

LINK VOLUMES, NON-
DIRECTIONAL LINK
VOLUMES AND TURN VOLUMES
BY 100 AND ROUND.

GET THE BNODE NUMBERS
AND DIRECTTONAL VOLUMES
FOR THESE LINKS.

I11-79

GET B NODE NUMBERS
AND SET UP ONE-WAY
LITERAL FOR THESE
LINKS.

| IBITIALIZE X = 2

FOR T@G LINES OF
:DLTPUT FOR DIRECTIONAL
VOLUMES .

I8
NODE I
CONNECTED TO MORE
THAN 4 NODES?

YES

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR
DIRECTIONAL VOLUMES

BUILD FORMAT FOR

DIRECTIONAL VOLUMES

PRINT DIRECTIONAL
VOLUMES FOR NODE I

WITH FORMAT BUILT ABOVE,
WHEN K = 1 PRINT NODE
NAME

K = K + 1, SET THE
NODE NAME FOR NODE I TO
BLANKS

ITIT-80

GET THE B NODE NUMBERS
AND NON-DIRECTIONAL
LINK VOLUMES FOR THE
LINKS FROM NODE I

IS NODE
I CONNECTED TO

MORE ‘THAN
4 LINKS?

oUTwLT

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT
FOR NON-DIRECTIONAL
LINK VOLUMES.

INITIALIZE N = 1 FOR
ONE LINE OF OUTPUT FOR
NON-DIRECTIONAL LINK
VOLUMES

PRINT NON-DIRECTIONAL
LINK VOLUMES FOR NODE
I

K=K+1

GET NODE NUMBERS AND
TURN VOLUMES ORGANIZED
TO PRINT AND COUNT
NUMBER OF TURN VOLUMES

PRINT TURN VOLUMES
FOR NODE I.

w2

L]

REWIND UNIT NETWORK

RETURN

III-81

OUTWLT

REWIND TRIP DATA SET

SUBROUTINE

* PATHCL

INITIALIZE SUMMATION
FOR TREE BUILD AND LOAD
TIME TO 0. REWIND
NETWORK.

FALSE

TREES?

TRUE

PRPBLD

READ *TURN AND
#TREE CARDS

L

READ PARAMETER RECORD
FROM NETWORK

18 THIS
THE FIRST
ITERATION?

FIND MAXIMUM CENTROID
NUMBER READ FROM
*TREE CARD, SET KOUNT
= MAX. CENTROID.

READ PARAMETER RECCRD
FROM TRIP DATA SET

SKIP HEADER RECORDS ON
UNIT NETWORK

READ NODE AND LINKS
RECORD AND FORM
PACKED LINKS ARRAY IN
CORE

WRITE PARAMETER RECORD
FOR SEPARATION MATRIX

.NOT. TREES
.AND. SEL

FALSE L

L

|~

SELECT

TRUE

READ SELECT CARDS,
MARK SELECTED LINKS

AND WRITE SELECT RECORDS

ON SEL.

Y

1
INITLL

r

INITIALIZE ARRAYS
- AND CHECK MAX. LINKS,
MAX. NODE AND MAX. TURNS.

TREES?

TRUE

*_A .

PATHCL

FALSE

READ FIRST TRIP RECORD.
SET READSW = .FALSE.
EOFSW = ,FALSE.

REWIND NETWORK

P8

-

OUTTRE A

P 6

GET FIRST CENTROID -
IN RANGE J, LS AND
LAST CENTROID IN
BANGE J, JJ = LS

GET TIME OF DAY

[rasem T\

BUILD MINIMUM PATH
TREE FOR CENTROID JJ

"GET TIME OF DAY AND
SUM TREE BUILD TIME

WRITE SEPARATION MATRIX
RECORD FOR CENTROID JJ

PRINT TREE

v

WAS
PRINTED OUTPUT
FOR THIS TREE
SPECIFIED?

HAS AN
END OF DATA

SET BEEN ENCOUN-
TERED ON TRIP
MATRIX

IS THE
HOME ZONE OF
THE TRIP RECORD
IN CORE < JJ?

. HAS THE
TRIP RECORD 'IN
| CORE BEEN

PROCESSED (IS
READSW =" FALSE)?

i READ THE NEXT TRIP
RECORD FROM THE TRIP
MATRIX. READSW = TRUE

EOD

HOME
ZONE OF TRIP
RECORD: JJ

GET TIME OF DAY

ITI-83

PATHCL

LOAD2 A

LOAD THE TRIP RECORD
ON THE TREE AND WRITE
SELECTED LINK TRIP
INTERCHANGES ON SEL

PATHCL

P3

LoAD \

LOAD THE TRIP RECORD
ON THE TREE AND ALSO
LOAD ANY MORE TRIP RECORDS
WITH HOME ZONE JJ J}

GET TIME OF DAY AND
SUM LOAD TIME

EOFSW = TRUE

ARE THERE YES

JI =33 +1

P8
T=34+1
1s
J>K
(THE NUMBER P>
OF RANGES)?

END FILE SEPARATION
MATRIX. REWIND SEPARA~

ANY MORE TREES
TO PRINT

- III-84

TION MATRIX

PRINT TREE BUILD TIME
AND LOAD TIME.

PATHCL

REWIND TRIP MATRIX

CLOSE

CLOSE SEL DATA SET

ITI-85

SUBROUTINE

PATHSP

’ EOF = .FALSE.
" REWIND UNIT 1

READ PARAMETER
RECORD FROM UNIT 1 .

PRINT ERROR MESSAGE

. WAS THIS

'NETWORK PREPARED

BY PREPARE SPIDER
NETWORK? - *

YES

. PRINT NETWORK SPEED.

READ SECOND PARAMETER
RECORD FROM UNIT 1.

READ THE NETWORK
INTO ARRAYS INDEX 1
AND LINKS 1.

INLTIALIZE ASSIGNED
LINK VOLUMES TO O.

REWIND UNIT CTVOUT.
READ PARAMETER RECORD
FROM CTVOUT

READ A TRIP RECORD
FROM UNIT CTVOUT.

INITIALIZE TREE BUILD
TIME, TSUM = 0.)
INITIALIZE LOAD TIME,
LSUM = 0.

INITIALIZE ARRAYS
USED BY THE TREE BUILD
PROGRAM TO ZEROS

III-86

PATHSP

HAS AN

PATHSP

EOD BEEN PRINT TREE BUILD AND
REACHED ON LOAD TIMES
UNIT CTVOUT?
. 1
I TIME \ OUTSLN

GET TIME OF DAY IN
Il

PRINT THE SPIDER
" LOADED NETWORK

i

MOORE

BUILD TREE FOR HOME
Z0NE OF LAST IRIP
RECORD READ.

RETURN

\

TIME

GET TIME OF DAY IN
12

(
-

)
!

TSUM = TSUM + I 2
~-I1

SLOAD

1\

LOAD THE TRIPS FROM

USING THE LAST TREE
BUILT.

R

THE LAST TRIP RECORD

TIME

o

[

GET TIME OF DAY IN
13

LSUM = LSUM + I 3 -
12

I11-87

W = .TRUE. (SET
W TO PRODUCE SECOND
WEIGHTED ASSIGNMENT)

SUBROUTINE

PRPBLD

READ *TREE CARD FOR
SUBNET I

READ TURN PENALTY
CARD, CAPC = .FALSE.
W = FALSE

PRINT MESSAGE:
{NVALID TURN PENALTY
OR TREE CARD READ.
ERR = ERR + 1

t

NO

PRINT *TREE CARD READ

PUT A COMMA IN LAST
SUBFIELD B (COLUMN 73)

PRINT CARD READ AS
TURN PENALTY CARD

ARE COLUMNS
1 -4 OF THE
*TURN CARD
- '*m'?

YES

CAPC = .TRUE. (SET
.CAPC TO USE CAPACITY
FIELD INSTEAD OF GROUND
COUNTS)

ARE COLUMNS
1 -4 = "®RE'?

PRPBLD

B3

PRINT MESSAGE: INVALID

. TURN PENALTY OR TREE

CARD READ. ERR =

ERR + 1

(INITIALIZE PAIR
INCLUSIVE VARIABLE)
ISKIP = 0 (INITTIALIZE
FIELD COUNT VARIABLE)
KOUNT = 0

SET TURN PENALTY
ARRAY WITH TURN
PENALTY AND ZEROS.

ARE COLUMNS

IS THE
CENTROID' NUMBER
OF THE FIRST
SUBFIELD = 07

NO

PRINT MESSAGE: THE
FIRST FIELD OF THE
TREE CARD IS BLANK.
ERR = ERR + 1

¥

»

SET 1 =1

PRPBLD

PRINT ERROR MESSAGE:
ILLEGAL FIELD
SEPARATION CHARACTER

IN TREE CARD.
IERR = IERR + 1

1S THE
M SUBFIELD
B A BLANK?

18 THE
M SUBFIELD
A <0

KOUNT = KOUNT + 1

PUT M SUBFIELD A AS
FIRST CENTROID OF A -
RANGE OF CENTROIDS

HAS THE
M'TH SUBFIELD
A ALREADY BEEN
USED IN AN
INCLUSIVE PAIR?

SET SKIP FLAG TO
e PRUCESS NEXT SUBFIELD
(A

KOUNT = KOUNT + 1

SET FLAG FOR NO OUTPUT
FOR THE TREE FROM

THE CENTROID OF THE
SUBFIELD A

SET THE LAST CENTRO1D
OF THE RANGE TO THE M
SUBFIELD A. SET FLAG
FOR RO TREE OUTPUT.

1S THE
M + 1 SUBFIELD
A=0

IS THE
M SUBFIELD
B A PERIOD?

SET THE LAST CENTROID
OF THE RANGE AS THE

M +) SUBFIELD A, SET
FLAG TO SKIP M + 1 SUB-
FIELD A

EOUNT = KOUNT + 1
SET FLAG FOR OUTPUT
POR THE TREE FROM
THE CENTROID OF THE
SUBPIELD A

IS THE
M + 1 SUBFIELD
B A COMMA?

i YES

PUT THE SUBFIELD A

AS THE FIRST AND LAST
o CENTROID OF A RANGE OF
TREES TO BUILD.

IS THE
M + 1 SUBFIELD
B A PERIOD?

SET FLAG FOR OUTPUT
FROM THE KOUNT RANGE
OF CENTROIDS IN THE
1'TH SUBNET

- M=M+1
4
IS THE
M + 1 SUBFIELD
B A BLANK?
NO
THIS IS AN INFINITE
LOOP, BUT IT WILL
ABEND BECAUSE 1T WILL
. STORE OUTSIDE OF AN
YES SET FLAG FOR NO OUTPUT ARRAY!
FROM THE KOUNT RANGE
OF CENTRCID IN THE

I'TH SUBNET g

IIT-89

SAVE NUMBER OF RANGES
OF CENTROIDS, KOUNT,
FOR SUBNET 1

I=I+1

PRINT THE TURN
PENALTY AND THE RANGES
OF TREES TO BUILD

AND WHICH ARE TO BE

OUTPUTED

‘,

IF THIS AN ASSIGN
SELP-BALANCING RUN THEN
PRINT WHETHER CAPACITIES
OR COUNTS WILL BE USED

ALSO PRINT A MESSAGE

IF THIS IS AN ASSIGN
SELF-BALANCING AND

A SECOND WEIGHTED
ASSIGNMENT IS TO BE USED.

IERR = 0?

PRINT NUMBER OF ERRORS
DETECTED IN *TURN AND
*TREE CARDS.

STOP

ITI-90

RETURN

PRPBLD

PRPCTV

SUBROUTINE

PRPCTV - -

Y READ A TRIP VOLUME "EOD
RECORD FROM UNIT INCTV. PR 1

REWIND UNIT CTVOUT

FIND WHAT SUBNET THE
ORIGIN AND DESTINATION
CENTROIDS ARE IN.

READ THE PARAMETER
CARD. SET IRD = 0

ARE BOTH PRINT ERROR MESSAGE:
THE ORIGIN AND NONE VALID ORIGIN
DESTINATION IN XXXXX OR DESTINATION -
THE NETWORK? XXXXX
ARE
IRD = 1 COLUMNS 1 ~'5
= %24 HR
BUILD ONE WORD OF TRIP
RECORD. SET ORIGIN
A IORG. SET SUBNET OF
DESTINATIONS = ISUB2
ARE
IRD = 2 | COLUMNS 1 - 5
= *AMPK
\
SET COUNT OF DESTINATIONS
IN THE TRIP RECORD, KNT = 1.
IRD = 3
\
PR 2

IRD = 1 PRINT A
MESSAGE THAT 24 HR
FIELD USED.

SET NUMBER OF SUBNETS,
NDSUB- = 1. SET

FIRST CENTROID OF SUBNET
1 = 1. SET LAST
CENTROID OF SUBNET 1 = 7.

III-91 =

PR 2
SEJ A FLAG TO INDICATE EOD READ A TRIP VOLUME
THAT THE EOD ON UNIT RECORD FROM UNIT

INCTV HAS BEEN REACHED

PRINT ERROR MESSAGE:
NONE VALID -ORLGIN XXXXX
ESTINATION XXXXX

WRITE THE TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

KNT = 0

J INCTV.

IS THE
FIRST CHARACTER
OF THIS RECORD
= 'y'?

FIND WHAT SUBNET THE
ORIGIN AND DESTINATION
CENTROIDS ARE IN,

ARE
THEY BOTH
IN THE NETWORK?

COMPARE SUBNET
OF ORIGIN OF THE PREV.
RECORD TO SUBNET OF
ORIGIN OF THE
LAST RECORD

THE SUBNET
OF THE PREVIOUS
DESTINATION TO THE

SUBNET OF THE
LAST DESTINATION,

COMPARE PREVIOUS
ORIGIN CENTROID

KNT = KNT +°1

PUT THE NEW DESTINATION
CENTROID AND VOLUME ‘IN
THE RECORD

WRITE A TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

- . KNT = 0

\ PRINT ERROR MESSAGE:

' TO PRESENT
ORIGIN CENTROID?

PRINT ERROR MESSAGE:
DUPLICATE SET OF DATA
ENCOUNTERED

COMPARE PREVIOUS
DESTINATION TO
PRESENT DESTINATION?

1I1-92

VOLUME DATA OUT OF SORT

PRPCTV

PRPCTV

WRITE A TRIP RECORD
WITH KNT DESTINATIONS
ON UNIT CTVOUT

HAS AN
EOD. BEEN
REACHED ON
UNIT INCTV?

END FILE UNIT CIVOUT,
REWIRD UNIT CTVOUT PR 1

D

II1-93

PRPNET
ASMNET.
REVNET

ENTRY . = SUBROUTINE ENTRY

ASMNET | | , PRPNET ' REVNET

PMT =.TRUE. PMT = .FALSE.) FMT = ,TRUE.

REV = .FALSE. REV = .FALSE. REV = .TRUE. .
L -— -— il

[\
/

|

READ NETWORK PARAMETER
CARD. READ LINK DATA,
EDIT AND SORT.

/J SORTED LINKS NODE NAMES

(UNIT 4)
igk:m: 12..11!2"7(3 OLD FLEXIBLE
UNIT 3 DATA RECORD
(UNIT 12)

L MRGREC

MERGE SORTED LINKS
AND OLD FLEXIBLE
DATA RECORD DELETE
OR CHANGE SPECIFIED
LINKS.

MERGE SORTED LINKS
AND CHECK FOR CONNEC-
TION ERROR.

COPYFT-

L~

COPY THE INTERMEDIATE
FLEXIBLE RECORD TO
CORRECT THE NUMBER OF
LINKS PARAMETER AND
REMOVE SPANNED CODE

RETURN

8

ITI-94

SUBROUTINE

READVL

HAS AN
END OF FILE
ON THE TRIP
MATRIX BEEN
REACHED?

READ A TRIP MATRIX END OF | SET END OF PILE.
RECORD PILE SWITCH
NORMAL | READ
Y |
1
RETURN

III-95

READVL

SUBROUTINE

RTPFL

READ A ROUTE RECORD
INTO THE NEXT LOCATIONS

RTPFL

* ZERO AND SET FLAGS

INITIALIZE WORD COUNTERS
POR ROUTES 1 - 31 TO

TO SKIP RECORDS

A

INITIALIZE WORD COUNTERS
FOR FIRST 10 ROUTES

TO SAVE IN CORE, TO ZERO.
SET FLAGS FOR FIRST TEN
ROUTES TO SAVE THE
RECORDS IN CORE

REWIND THE ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS FROM FIRST
"RECORD

SKIP HEADING RECORDS
ON ROUTE DATA SET

IN THE ARRAY

EOD

INCREMENT COUNT
OF WORDS FOR THIS
ROUTE

18 THIS
A ROUTE RECORD
TO SAVE IN

CORE?

INCREMENT COUNT OF WORDS
FOR THIS ROUTE RECORD.
INCREMENT TOTAL NUMBER
OF WORDS IN CORE.

WILL THE
NEXT ROUTE
RECORD EXCEED THE
CAPACITY OF THE
ARRAY?

YES

INCREMENT THE NUMBER
. OF RECORDS AND LNCREMENT
THE INDEXES OF WHERE

REWIND ROUTE DATA
SET.

RETURN

CHECK TO
SEE IF THERE
ARE ANY ROUTE
RECORDS?

* REWIND ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS

READ HEADER RECORDS
AND PRINT.

THE NEXT RECORD IS TO
BE READ

MOVE THE WORD COUNT FOR
ROUTES 1 - 10 SAVED

IN CORE TO THE WORD
COUNT FOR THESE ROUTES.
SET FLAGS ON ROUTES

1 = 10 SO THESE RECORDS
ARE NOT SAVED

RESET THE INDEXES S0
THAT THE NEXT RECORD
WILL. BE READ INTO
THE FIRST LOCATION OF
THE ARRAY.

SET THE NUMBER OF

" OF EACH ROUTE RECORD

CALCULATE LENGTH

IN WORDS AND INITIALIZE
VARIABLES TO READ IN .
ROUTE RECORDS INTO AN
ARRAY

IIT-96

RECORDS SAVED IN CORE
TO ZERO. SET A FLAG
- TO SKIP THE SORT.

RTPFL

R1

REWIND ROUTE DATA SET .] *

SET END = .TRUE.

ROUTE NUMBER.
NEXT LINK RECORD
ITS ANODE AND BNODE

5;%

IS THE

ROUTE NUMBER
OF THIS LINK THE
~ SAME AS THE
LAST LINK?

‘R2

INITIALIZE ROUTE

e ORDERING ARRAYS "B 1"
AND "B 2" TO ZEROS

]

I11-97

R2

SAVE A POINTER TO THE
NEXT LINK RECORD TO
PROCESS

WRITE AN ERROR MESSAGE
THAT THE ROUTE HAS WO 1
ENDS .

CHOOSE AS
A STARTING POINT
THE PIRST

Bl(I)eoO

BL(I) A O

- LIST MORE THAN ONCE.

THE ARRAYS B 1 AND B 2 NOW FORM A

EITHER THE B 1 (I) OR B 2 (I)’
ELEMENT WHICH WAS USED TO REACH
ELEMENT I TO ZERO TO PREVENT THE
PROGRAM FROM GOING THROUGH THE

III-98

RTPFL

RTPFL

R3

PIND HOW MANY MORE
ROUTE CODES CAN BE READ
INTO CORE AT THE SAME
TIME AND SET FLAGS FOR
" THEM,

READ A ROUTE LINK ' EOD
RECORD g

INCREMENT LOCATION
TO PUT MEXT LINK RECORD

ITI-99

SUBROUTINE

RTPLY

[e\

OPEN PLOTTAPE
(CALCOMP OUTPUT)

READ ROUTE PLOT CARD
FROM UNIT 5.

hmmmm.

SET PRT ARRAY TO

PLOT ALL ROUTES. PRINT
MESSAGE: ALL ROUTES WILL
BE PLOTTED.

SET END = .PALSE.

III-100

INITIALIZE WORD COUNTERS
FOR PIRST 10 ROUTES TO
SAVE IN CORE, TO

ZERD, SET FLAGS TO
SAVE RECORDS FROM

FIRST 10 ROUTES IN CORE.

REVIND THE ROUTE
DATA SET. READ
NUMBER OF ASSIGNMENTS
NLD FROM THE FIRST
RECORD.

DO
COLUMNS 1 - &
CONTAIN *ALL?

PRINT MESSAGE: ALL
ASSIGRMENTS, LINK COUNTS,
AND LINK CAPACITIES WiLL

'BE PLOTTED. SET FLAGS T0O |

PLOT THE ABOVE.

SET FLAGS TO PLOT THE
ASSIGMMENTS, COUNTS, OR
CAPACITIES SPECIFIED,
ALSO PRINT WHICH ARE TO
BE PLOTTED.

PLOT HEADER RECORDS
WITH IDENTIPICATION OF
ASSIGNMENT WUMBER,
COUNT, OR CAPACITY WITH

RTPLT

RP 1

SKIP 14.2 INCHES DOWN
THE PLOT TO SKIP THE
HEADERS .

REWIND ROUTE DATA
‘SET.

CALCULATE LENGTH OF
ROUTE RECORDS IN
WORDS AND INITIALIZE
VARIABLES TO READ THE
ROUTE RECORDS INTO AN
ARRAY.

READ A ROUTE RECORD INTO
THE NEXT WORDS IN THE
ARRAY. -

INCREMENT COUNT OF

WORDS FOR THIS ROUTE

INCREMENT COUNT OF -
WORDS FOR THIS ROUTE
IN CORE. INCREMENT
TOTAL NUMBER OF WORDS
IN THE ARRAY,

INCREMENT THE NUMBER
OF RECORDS AND INCREMENT
THE INDEX OF WHERX

_THE NEXT RECORD IS TO
BE READ

MOVE THE WORD COUNT FOR
ROUTES 1 - 10 SAVED IN
CORE TO THE WORD COUNT
FOR THOSE ROUTES. SET
FLAGS ON ROUTES 1 ~ 10
80 THAT THESE RECORDS

ARE NOT SAVED.

SET THE NUMBER OF
RECORDS SAVED IX CORE
T0 ZERO. SET A FLAG TO
SKIP THE SORT.

RESET THE IMNDEX SO THAT
THE NEXT RECORD WILL
BE READ INTO THE FIRST
LOCATION OF THE ARRAY

TII-101

/ " VSORT

SORT THE ROUTE RECORDS
IN CORE ON THE ROUTE
CODE. '

GET ROUTE CODE OF THE
FIRST SORTED RECORD
IN CORE.

RP- 3

RP 11

RTPLT

RP 3

INITIALIZE ROUTE
ORDERING ARRAYS
B 1 AND B 2 TO ZEROS.

SAVE THE LINK BY PUTTING THE BNODE
IN B 1 (BNODE) AND AN INDEX TO THE
LINK RECORD IN NX 1(ANODE) IF

B 1 (ANODE) IS ZERO OR OTHERWISE
BY PUTTING THE B NODE NUMBER IN

B 2 (ANODE) AND AN INDEX TO THE
LINK IN NX 2 (ANODE) IF B 2 (ANODE)
IS ZERO OR OTHERWISE WRITE AN
ERROR MESSAGE AND SKIP THE LINK

Y

SAVE THE LINK IN THE OPPOSITE DIREC-
TION BY PUTTING THE ANODE IN B 1
(BNODE) AND AN INDEX TO. THE LINK

IN NX 1 (BNODE) IF B 1 (BNODE) IS
ZERO OR OTHERWISE BY PUTTING THE
ANODE IN B 2 (BNODE) AND AN INDEX
TO THE LINK IN NX 2 (BNODE) IF

B 2 (BNODE) IS ZERO OR OTHERWISE
WRITE AN ERROR MESSAGE AND SKIP

THE LINK.

END = .TRUE.

IS THERE
ANOTHER SORTED

LINK RECORD
IN CORE?

GET THE ROUTE NUMBER
OF THE NEXT LINK RECORD
AND ITS ANODE AND BNODE

1S THE
ROUTE NUMBER OF
THIS LINK THE
SAME AS THE
LAST LINK?

III-102

RIPLT

RP 4
RTPLT

SAVE THE POINTER TO
THE NEXT ROUTE RECORD
IN CORE TO PROCESS.

FIND AN END
OF THE ROUTE IN
ARRAYS B 1 AND B 2 BY
FINDING AN I SUCH THAT
B 1(I) # 0 AND
B2(I) =0

END FOUND

PRINT AN ERROR MESSAGE
THAT THE ROUTE HAS
NO ENDS

CHOOSE AS
* A STARTING
POINT THE FIRST
B1(I) 2 0

B1(I) # 0

L]

THE ARRAYS B 1 AND B 2 NOW FORM A
BIDIRECTIONAL LIST STRUCTURE OF
LINKS WITH THE DATA INDEXED BY ARRAYS
NX 1 AND NX 2. THE LINK RECORDS

ARE NOW LISTED IN THE ORDER ‘IN

WHICH THEY ARE CONNECTED AND THE

LIST STRUCTURE IS DESTROYED AS

EACH LINK IS PRINTED BY SETTING
BITHER B 1 (I) OR B 2 (I) ELEMENT
WHICH WAS USED TO REACH ELEMENT

I TO ZERO TO PREVENT THE PROGRAM
FROM GOING THROUGH THE LIST MORE
THAN ONCE. THE INDEXES TO THE

LINKS LISTED ARE SAVED IN ARRAY

NX 2 SO THAT THE ROUTE CAN BE PLOTTED.

!

GET THE MAXIMUM VOLUME
T0 BE PLOTTED FOR THIS
ROUTE, MAX

A sc \

SCALE THE Y AXIS TO PLOT
MAX IN 9 INCHES.

ITII-103

Y
[LINE

|~

DRAW THE Y AXIS WITH
TIC MARKS AT 1 INCH
INTERVALS

_

SYMBOL \
PUT THE WORD 'VOLUME' :
ON THE Y AXIS I\

DRAW NUMBERS FOR THE
TIC MARKS ON THE Y
AXIS.

y

/ sc . \

SCALE THE X AXIS FOR
AN AVERAGE OF 3
NODE NUMBER PER INCH.

DRAW NODE NUMBERS ALONG
THE X AXIS IN ASCENDING
ORDER OF DISTANCE WITH
CONNECTING LINES

)
LINE \

DRAW X AXIS FROM
LARGEST X VALUE TO THE
ORIGIN

DRAW LABEL FOR THE
GRAPH 'ROUTE XX'

K = NLD + 2
KK =1

KK = 1, CORRESPONDS TO
GROUND COUNTS KK = 2,
CORRESPONDS TO CAPACITIES
KX > 2, CORRESPONDS TO
ASSIGNMENT KK - 2

ARE -THE
VOLUMES
CORRESPONDING TO
THIS KK TO BE
PLOTTED?

ARE THERE
ANY GROUND
COUNTS FOR THIS
ROUTE?

RK = KK + 1

ARE THERE
ANY LINK
CAPACITIES FOR
THIS ROUTE?

PLOT THE VOLUMES
CORRESPONDING TO KK
IN AN ORDER WHICH IS
ASCENDING FOR THE X
AXIS VALUES.

KK = KK +1

III-104

RTPLT

PN ‘ © RTPLT

/ PLOT \

3 SKIP PAST THE PLOTS
FOR THIS ROUTE

SET THE ROUTE CODE
TO THAT OF THE NEXT
ROUTE SAVED IN CORE

ARE THE
VOLUMES CORRES-
PONDING TO THIS
KK TO BE
PLOTTED?

KK = KK + 1

ARFE. THERE

ANY GROUND
COUNTS FOR THIS
ROUTE?
1 .
FIND HOW MANY MORE
ROUTES CAN BE READ INTO -
ARE 'CORE AT THE SAME TIME AND RP 2
THERE ANY SET FLAGS FOR THEM TO
4 LINK CAPACITIES BE READ IN.
' FOR THIS ROUTE?
y
HAVE ALL
PLOT THE VOLUMES ROUTES BEEN
CORRESPONDING TO KK PROCESSED?
IN AN ORDER WHICH IS
DESCENDING FOR THE X A
AXIS VALUES.
'
SKIP THE HEADER RECORDS
ON THE ROUTE DATA SET.
SET END = .FALSE.
KK= RK + 1
0D o
RP 11
READ A ROUTE LINK RECORD
. YES
N
RP 8 A iﬁuﬁgxi"o INCREMENT LOCATION To
SAVE TN CORE READ NEXT LINK RECORD |

III-105

FUNCTION

sC

THIS EFPECTIVELY
ROUNDS DXS TO THE
NEXT LARGEST NUMBER OF
THE TYPE a*0.5 WHERE
n 15 AN INTEGER

BREAK NUMBER TO BE SCALED
INTO TWO PARTS DXS, A
NUMBER BETWEEN 1.0 AND
10.0 AND P 10 A MULTIPLIER
WHICH IS A POWER OF 10

ROUND 2#DXS TO THE
NEXT LARGEST INTEGER
AND PUT IN IX.

1s
DXS < 4.07

SC = (FLOAT (IX) /2.0)
710 .

ROUND DXS UP TO THE
NEXT LARGEST INTEGER, IX

SC = IX*F 10 -

III-106

SC

SELECT

SUBROUTINE

SELECY

L opex A\

OPEN SELTRP DATA SET
FOR OUTPUT.

READ OUTPUT SPECIFICATION
m .

SET TURNING MOVEMENT
CODES TO SAVE NONE AND
OUTPUT MONE. ’

I8
THE QUTPUT YES
SPECIFICATION CARD
*LINKS?

SET FLAG TO SUPPRESS
PRINTING OF LOADED
NETWORK .

PRINT ERROR MESSAGE:
SELECTRD LINKS OUTPUT
OPTION IMVALID, OPTION
READ = #XXXX RUN DELETED

WRITE READER AND DATE
ON SELTRP DATA SET

III-107

READ A *SELECT OR AN

*END CARD.

IS TRIS
AN *SELECT
CARD?

IS THE
PERCENT FIELD
= 0 OR
> 1007

SELECT

RETURN

SET PERCENT FIELD
TOO 100%

IS THE
ZONE PAIRS
FIELD = 0?

SET NUMBER OF ZONE
PAIRS TO PRINT =
32767

IF THE ANODE > BNODE
EXCHANGE THE ANODE AND
BNODE NUMBERS.

PRINT ERROR MESSAGE:
SELECTED LINK XXXXX
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN-

FIND THE LINK INDEX OF

NETWORK

THE LINK ANODE, BNODE.

SELECTED [LINK FOUND
|

FLAG ONE-WAY LINK FROM
ANODE TO BNODE IN THE
NETWORK AS A SELECTED
LINK.

III-108

PRINT ERROR MESSAGE:
SELECTED LINK XJ000X
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN

s 2

FIND THE ONE-WAY LINK
INDEX OF THE LINK
BNODE, ANODE

SELECTED § LINK FOUND

FLAG ONE-WAY LINK FROM
BNODE TO ANODE IN THE

NETWORK AS A SELECTED

LINK.

/ WRITE \

WRITE A RECORD OF
CUT-OFF PARAMETERS AND
LINK INDEX ON SELTRP

PRINT CUT-OFF
PARAMETERS FOR THIS
SELECTED LINK

II1I-109

SELECT

SUBROUTINE

SLOAD

"INITIALIZE ARRAY TO
HOLD VOLUMES WHILE THEY
ARE BEING LOADED, TEMP,
TO ZERO FOR NUMBER OF
NODES . :

READ THE NEXT TRIP RECORD
FROM UNIT CTVOUT

IS THE

SUBNET OF THE

LAST TRIP RECORD
READ = 17°

THE LAST TRIP
RECORD THE SAME
AS THAT OF THE TREE.

MOVE THE VOLUMES IN THE
TRIP RECORD INTO ARRAY
TEMP USING THE DESTINA-
TION ZONES AS INDEXES.

EOF = ,TRUE.

SET THE ORIGIN CENTROID
TO 9999 FOR THE LAST TRIP
RECORD READ.

GET POINTER TO LIST

OF ALL NODE NUMBERS IN
THE TREE IN DESCENDING
TIME ORDER.

GET NEXT NODE NUMBER OF
THE LIST. GET VOLUME

LOADED TO THIS NODE

IS THE
VOLUME = 0?

GET BACK LINK. IN THE
PATH FROM THE NODE AND
LOAD THE VOLUME ON IT.

USING THE NODE NUMBER

AT THE OTHER END OF THE

LINK AS AN INDEX SUM
THE VOLUME INTO TEMP.

RETURN

SUM THE VOLUMES IN THE
TRIP RECORD AND PRINT
AN ERROR MESSAGE AND THE

SUM.

ITI-110

SLOAD

SUBFND

SUBROUTINE

SUBFND

SET A CODE TO INDICATE NoT I |y wmar susker me
IT IS WOT IN THE NETWORK. § NETWORK ORIGIN CENTROID IS IN.

=)

~_NOT IN FIND WHAT SUBNET THE
prom— gsgunou CENTROID

1

)

III-111

SUBROUTINE

SUMEND

REWIND UNIT CTVOUT

READ PARAMETER RECORD
FROM UNIT CTVOUT.

SUM NUMBER OF CENTROIDS,
NZONES. SET THE DISPLACE-
MENT FOR EACH SUBNET

OF WHERE TO SUM ITEMS.

INITIALIZE ARRAYS FOR
NUMBER OF ORIGINS,
DESTINATIONS, VOLUMES
IN, VOLUMES OUT, AND
INTRAZONAL VOLUME TO
ZEROS

READ A TRIP RECORD FROM
UNIT CTVOUT

EOD

PRINT THE SUMMATIONS
MADE BY ORIGIN FOR

ALL CENTROIDS IN SEQUEN-
TIAL ORDER BY CENTROIDS

PRINT TOTALS FOR ALL OF
ABOVE ITEMS, SKIP TO THE
TOP OF A NEW PAGE

REWIND UNIT CTVOUT

A]

MAKE SUMMATIONS OF

- NUMBER OF ORIGINS, DESTI-
NATIONS, VOLUMES IN,
VOLUMES OUT, AND
INTRAZONAL VOLUMES BY
CENTROID. FOR THIS TRIP
RECORD

oo ey

III-112

SUMEND

SUBROUTINE

SUMRY

Y

/ ~ GTLD \

PRODUCE CROSS
CLASSIFICATION BY J AND
FC AND ALSO SUMMATIONS
FOR REGRESSIONS

[o \

PRINT VEHICLE HOUR
AND MILE SUMMARIES
AND REGRESSIONS

ARE
THE CORRIDOR

INTERCEPT AND
ROUTE PROFILES
DESIRED?

CRDINT j

PRINT CORRIDOR
INTERCEPT TABLE
Yy

1

RTPFL

< PRINT ROUTE PROFILES

(=~)

o

III-113

SUMRY

SUBROUTINE

TREE

SUBROUTINE

TREBLD

TREE

TREBLD

SELLD
SUBROUTINE

TREES = ,TRUE.

SELLD

TREES = .FALSE.

TREES = ,FALSE.

SEL = .PALSE. L = .TRUE.
OUIN = .TRUE. SE TRUE
)
PATHCL

BUILD TREES AND LOAD
IF TREES 1S FALSE

OUTLNT

|

PRINT LOADED
NETWORK

)

III-114

SUBROUTINE

TRN

INITIALIZE FLAGS TO IN-
DICATE OUTPUT FOR ALL
POSSIBLE TURN VOLUMES
ALSO SET ALL TURN VOLUMES
T0 ~1 TO INDICATE ALL ARE
UNKNOWNS

SET FLAGS FOR NO OUTPUT

OF U-TURNS AND SET
VALUES OF THESE TO
ZEROES

GET IND = THE TURN
CODE FOR THE NODE

PRINT MESSAGE:

TRMV ERROR
GET N = THE NUMBER
OF LINKS FROM
NODE 1
PRINT MESSAGE:
ERROR X
|

ZERO OUT TURN VOLUMES
WHICH ARE KNOWN TO BE
ZERO BECAUSE OF ONE-
WAY LINKS AND FLAG
FOR NO OUTPUT

R1

ITII-115

TRN

13, 17,18, 21 23, 24 25] 26 27 10 -9, [11-16, |28
20 22 19 y
R 2
|] y
{ GETRN \ [GETRN \ [GETRN \ [GETRN \
GET TURNING GET TURNING GET TURNING" GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED WERE SAVED
1 \ 1
[GETRN \ [GETRN -\ / GETRN \
GET TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED
1
MARK TURNS WHICH
ARE ZERO BECAUSE
- OF ONE-WAY LINKS
FOR NO PRINTED
OUTPUT
| \ 1 4
ufg YES PRINT MESSAGE:
2 ERROR X
NO
R3

ITI-116

TRN

GET DIRECTIONAL VOLUMES

FOR BOTH DIRECT10NS AND SET FLAGS S0 THAT
SUM FOR NON-DIRECTIONAL NO TURNING MOVEMENTS

LINK VOLUMES WILL BE PRINTED

CHECK EACH COLUMN
OF THE TURNING
MOVEMENT MATRIX AND

IF ONE HAS A SINGLE
UNKNOWN, CALCULATE
IT

- CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CAL~
CULATED FOR
THIS ITER.

I=I+1

NO YES PRINT MESSAGE:
ERROR X

III-117

TRNMY

FUNCTION

TRNMV

GET INDEX +
DISPLACEMENT ~1

USE THE SECOND
INDEX TO GET THE
VOLUME FROM THE
OVERFLOW ARRAY

.(;m}f

ITI-118

SUBROUTINE

TURNM

INITIALIZE FLAGS TO IN-
DICATE OUTPUT FOR ALL
POSSIBLE TURNING MOVE-
MENTS, ALSO SET ALL TO
-1 TO INDICATE UNKNOWNS

SET FLAGS FOR NO OUT-
PUT OF U-TURNS AND
SET VALUES OF THESE
TO ZEROES

GET IND = THE TURN
CODE FOR THE NODE

GET N = THE NUMBER
OF LINKS FROM THE
NODE

PRINT MESSAGE:
'TRNMV ERR'

PRINT MESSAGE:
ERROR X

|

ZERO OUT TURN VOLUMES

WHICH ARE KNOWN TO BE
ZERO BECAUSE OF ONE-
WAY LINKS AND FLAG
FOR NO OUTPUT

T1

ITI-119

TURNM

TURNM

13, 17,)18, 21 23, 27 10
20, { 22
Y] \
GETRNS \ [GETRNS \ [GETRNS \ [GETRNS
GET TURNING GET TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED WERE SAVED
1 Y
[GETRNS \ I GETRNS \ GETRNS -\

GET TURNING GET TURNING GET TURNING

MOVEMENTS WHIGH MOVEMENTS WHICH MOVEMENTS WHICH

WERE SAVED WERE SAVED

WERE SAVED

MARK TURNS WHICH ARE
ZERO BECAUSE OF ONE-
WAY LINKS FOR NO
PRINTED OUTPUT.

1-9, | 11-16, |28

PRINT MESSAGE:
ERROR X

T3

III-120

GET DIRECTIONAL
VOLUMES FOR BOTH
DIRECTIONS AND SUM
FOR NON-DIRECTIONAL
LINK VOLUMES

[5

SET FLAGE S0 THAT
NO_TURNING. MOVEMENYS
WILL BE PRINTED

NO

CHECK EACH COLUMN OF
THE TURNING MOVEMENT
MATRIX AND TF ONE HAS
A SINGLE UNKNOWN,
CALCULATE 1T

CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX

AND IF ONE HAS A SINGLE -

UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CALCULATED
FOR THLS ITER.

1=1+1

III-121

YES

PRINT MESSACGE:
ERROR X

TURNM

SUBROUTINE

UPDTNT

DLT = ,FALSE.
(NO ERRORS DETECTED
IN PARAMETER CARDS)

SET ITR(I) = I FOR
I=1, 20. THIS
SPECIFIES NO ASSIGN-
MENTS ARE DELETED

REWIND 12

e,

OPENFT

OPEN UNIT
NETWORK FOR
OUTPUT

“READ THE PARAMETER
RECORD FROM UNIT 12
OF THE OLD FLEXIBLE
RECORD

IMPD » ,FALSE,

(THE LINK IMPEDANCE
OF AN OLD ASSIGNMENT
IS NOT TO BE USED)

" SLF = ,FALSE,

(THE LINK IMPEDANCES
ARE NOT T0 BE CALCU-
LATED BY THE LINK

IMPEDANCE FUNCTION)

III1-122

UPDTNT

T

1s
THE ASSIGNMENT
T USE [N THE IMPEDANCE
UPDATE FUNCTION IN
‘THE RANGE OF 1 TO
THE LAST ASSIGN=-
MENT
?

READ A PARAMETER
CARD FROM UNIT 5

PRINT MESSAGE:

ASSIGNMENT X IS INVALID,

EXECUTION WILL END WITH
A STOP 3. DLT = ,TRUE.

UPDINT

PRINT THE PARAMETER

CARD

SLF = ,TRUE.
NMPD = NTR

18
IT AN *ADJUST
CARD?

PRINT ERROR
MESSAGE: INVALID
DELETE ASSIGNMENT
PARAMETER CARD
DLT = ,TRUE.

PRINT ERROR MESSAGE:
*IMPEDANCE AND *ADJUST
PARAMETER CARDS MUTUALLY
EXCLUSIVE

DLT = ,TRUE

IS
THE FIRST COLUMN
OF THIS CARD =
g7

I8

THE ASSIGNMENT

SPECIFIED IN THE

RANGE OF 1 TO THE

LAST ASSIGNMENT
?

1s

THE ASSIGNMENT

TO USE THE OLD IMPEDANCE

FROM TN THE RANGE OF

L TO THE LAST

ASSIGNMENT
?.

NTR = Tk
TO DELYTE.
YTR(NTR) = 0

ALSTCNMENY

IMPD = TR,
NMPD = NTR

III1-123

STOP 3

PRINT MESSAGE: SELF-
DIVERTING IMPEDANCES
CALCULATED FROM
ASSIGNMENT XX

TRUE

FALSE

[#RT \

- WRITE THE PARAMETER
RECORD WITH THE
CORRECT # ASSIGNMENTS
ON NETWORK

READ THE FIRST HEADER
RECORD FROM UNIT 12

WRITE THE HEADER
RECORD ON UNIT NETWORK

READ THE OTHER PARAMETER
RECORD FROM UNIT 12
COPYING THE ONES FOR A
ASSIGNMENTS WHICH ARE
NOT- TO BE DELETED TO
UNIT NETWORK.

PACK THE NON ZERO
ITEMS IN ARRAY ITR.

m
! FALSE

PRINT MESSAGE: NEW
IMPEDANCES TAKEN FROM
ASSIGNMENT XX

UE
TRUE

FALSE

ITI-124

UPDTNT

[

CLOSFT

—\

o) READ A NODE RECORD FROM -] EOD

UNIT 12

CLOSE UNIT NETWORK

[~

WRITE THE NODE RECORD
ON UNIT NETWORK

REWIND 12

RECORD .

NL = NUMBER OF LINK
RECORDS FOR THIS NODE

RETURN

1=1

UNIT 12

READ A LINK RECORD FROM. |

UPDATE THE LINK
IMPEDANCE IF SPEGIFIED
BY SLF OR IMPD.

DELETE ASSIGNMENT
SPECIFIED BY THE
ITR ARRAY.

I=1+1

/[

WRT \

WRITE THE UPDATED LINK
RECORD ON UNIT NETWORK

SUBROUTINE

VREC

MRG = LNK 1. GT. 0

(ARE' THERE RECORDS ON
UNLT 3)

MRG 2 = LNK 2. GT. 0
(ARE RECORDS ON UNIT 11)

/ OPENFT

OPEN UNIT NETWORK
AS OUTPUT (REWIND
IT)

_CALCULATE TOTAL NUMBER
OF ONE-WAY LINKS

PRINT MESSAGE THAT
THE NUMBER OF LINKS
E. THE MAXIMUM,

1S THE
TOTAL NUMBER OF
LINKS > THAN

THE MAX.?

WRITE PARAMETER RECORD
ON" UNIT NETWORK

PRINT MESSAGE THAT THE
MAX[MUM NODE NUMBER IS
EXCEEDED .

ERR = ERR + 1

WRITE HEADER RECORD
AND DATE ON UNIT NETWORK

SET INDEXES FOR NEXT
LINK FROM LINKS IN
CORE OR FROM RECORDS READ

ARE THERE
RECORDS ON
UNIT 3?

VREC

READ A RECCRD FROM
UNIT 3

ARE THERE
RECORDS ON
UNIT 11?

RO

READ A RECORD FROM
UNIT 11

A
/ | GILNK \
UNPACK DATA FROM FIRST
LINK FROM UNIT 3
GTLNK

UNPACK DATA FROM
FIRST LINK IN CORE

,,—’”N\,*

\//

1

[GTLNK

o

UNPACK DATA FROM
FIRST LINK FROM
UNIT 11

ARE THERE
RECORDS ON
UNIT 3?

SET SORT KEY FOR

LINK FROM UNIT 3 SO
IT WILL BE SKIPPFD.
SET ANODE = 16383

ARE TRHERE
RECORDS ON
UNIT 117

YES

SET SORT KEY FOR THI
FIRST.LINK FROM UNIT
L1 SO THAT IT WILL BE
SKIPPED. SET ANODE =
16383

REWIND UNIT 4 (NODE
NAMES)

FROM UNITS 3 OR 11 TO
FIRST LINK

III-125

KEAD NEXT CARD FROM
LINK DATA INPUT

1S IT
AN N OR AN
ENDNET CARD?

SET NODE NUMBER
OF LAST NODE RECORD

READ TO 16383

SET COUNT OF LINKS FROM
ANODE TO 0. (L = 0).

PUT NEXT SMALLEST
ANODE IN ANODE

IS THE
ANODE OF
THIS LINK =
ANODE?

Lo, + 1, SAVE

THIS LINK AT LEDEX L.
INCREMENT TO GET NEXT
LINK

1S THE

NEXT LINK IN
THE LAST

RECORD READ?

UNIT 3

IS THE
ANODE = 163837

VREC

WHICH
SORT KEY IS
SMALLEST?

CORE

IS THE
ANODE OF THIS
LINK = ANODE?

= L + 1 SAVE THIS
LINK AT INDEX L.
INCREMENT TO GET
NEXT LINK

- UNIT 3.

READ NEXT RECORD FROM

SET LOCATION

TO GET NEXT LINK TO 0

[GTLNK \

UNPACK DATA FROM NEXT
LINK FROM UNIT 3

=L+1
SAVE THIS LINK AT INDEX
L. INCREMENT TO GET
NEXT LINK

YES READ NEXT RECORD
FROM UNIT 11. SET
LOCATION TO GET NEXT
LINK FROM TO 0
y
/ GTLNK \

UNPACK DATA FROM NEXT
LINK FROM UNIT 11.

L GTLNK j

UNPACK DATA FROM NEXT
LINK FROM CORE

ITI-126

CONVERT NUMBER OF
LINKS IN EACH LINK
CLASS TO THE TURN
MOVEMENT TYPE CODE

PRINT MESSAGE THAT THB
ANODE IS NOT IN THE
NETWORK

ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

ADD CODE FOR FREEWAY
TO TURN CODE

MOVE NODE NAME 10
AREA POR THIS ANODE.
READ NEXT NODE NAME
RECORD .

MOVE ‘BLANKS TO THE
NODE NAME FOR THIS
NODE

GET COORDINATES AND
KEEP NON ZERO SUB AREA
CODE. READ NEW ANODE
RECORD

SET COORDINATES TO
ZERO

PRINT AN ERROR MESSAGE
FOR EACH DUPLICATE LINK
AND ADD NUMBER OF
DUPLICATIONS INTO ERR

VREC

VREC

PRINT ERROR MESSACE
THAT THERE ARE
MORE THAN SIX LINKS.
EBR = ERR + 1

L

PRINT MESSAGE: . PRINT MESSAGE:
ISOLATED CENTROID. o) ISOLATED NODE.
ERR = ERR + 1 : ERR = ERR + 1
 J
I=1

eI+l

III-128

CLOSE NETWORK DATA
SET

REVIND MODE NAME DATA
SET (UNXT 4)

REWIND 11

III-129

VREC

SUBROUTINE

WGTLD

SUM CONSTANTS FROM
CURVE FIT

FIND SMALLEST “T"
VALUE FOR WHOSE
PERCENTAGE 1S >
100 - N8

100-M8 : 0

FIND THE LARGEST "T"
VALUE

ADD 100 - N8 TO
THE PERCENTAGE
FOUND ABOVE

CALCULATE THE WEIGHT
FOR EACH ITERATION
BY DIVIDING THE
PERCENTAGE BY 100.0

-

ADD 100 - NS TO THE .
PERCENTAGE CORRESPONDING
TO THE LARGEST "T"
VALUE

PRINT THE PERCENTAGE
WEIGRTS TO LOAD

III-130

WGTLD

SUBROUTINE

WTLNT

END FILE 3
REWIND 3
REWIND NETWORK

READ PARAMETER RECORD
FROM NETWORK

SKIP HEADER RECORDS
ON UNIT NETWORK

INITIALIZE LINK INDEX
AND TURN INDEX ARRAYS
TO ZERO, INITIALIZE
TURN CODES TO 28

READ NETWORK T0 GET
B NODES OF THE LINKS
AND NUMBER OF LINKS
FOR EACH NODE AND
TURN CODES

BUILD LINK INDEXES
FROM NUMBER OF LINKS
FROM EACH NODE AND
BUILD TURN INDEXES
FROM TURN CODES

SET IWT = THE PERCENT
OF THE FIRST ASSIGNMENT
TO USE . .

READ THE LINK VOLUMES
FROM UNIT 3 FOR THE
FIRST ITERATION, MULTI-
PLY BY IWT AND PLACE
THE RESULT IN THE
LINK VOLUMES IN CORE

READ THE TURN VOLUMES
FROM UNIT 3 FOR THE
FIRST ITERATION,
MULTIPLY BY IWT AND
PLACE THE RESULT IN
THE TURN VOLUMES IN
CORE

SET IWT TO THE PERCENT
TO LOAD FOR ITERATION L

READ THE LINK VOLUMES
FROM UNIT 3 FOR ITERATION
L, MULTIPLY BY IWT

AND SUM INTO THE LINK
VOLUMES IN CORE

READ THE TURN VOLUMES
FROM UNIT 3 FOR
ITERATION L, MULTIPLY
BY IWT AND SUM INTO THE
TURN VOLUMES IN CORE

L=L+1

IS L
> THAN THE
NUMBER OF

ITERATIONS RUN?

WTLNT

WTLNT

()

/
OUTWLT \

™

PRINT THE WRIGHTED
ASSIGNMENT

REWIND 3

REWIND NETWORK

=D

ITI-132

SITGNIFICANT VARIABLES

AND ARRAYS

LABELED COMMON

DESCRIPTIONS OF SIGNIFICANT
VARTABLES AND ARRAYS

LABELED COMMON

Twelve labéled common control sections are contained in the Texas
Small Network Package. These labeled commons serve several important
functions. Their primary function is, of course, to provide a convenient
media for passing various variables and arrays between sﬁbroutines.

They are also used to save certain variables and arrays as various
subroutines are Qverlayed. They have also been used in a few instances
to allign half-word arrays on full-word boundaries. Table 5 provides

a cross reference of the labeled common control sections énd the program

control sections with which they are associated.

Iv-1

TABLE 5: CROSS REFERENCE OF LABELED COMMON CONTROL
SECTIONS AND PROGRAM CONTROL SECTIONS

LABELED COMMON

PROGRAMS

Cb

SDATE -
STOP
VOLTP

ALLIGN
< | CAPRES
CAPREP
DELETE
FILES
GROUP1
< | HEADR
OUTDCB

ALCP

BLDNET

< P

BLOCK DATA

o
<

p<

CLOSFT X
CRD v

CRDINT X

osha

FRATAR

GTLD

LNKLST

MAIN

MERG

MRGREC X X

b

5 1414
2l zlial ol sl sl sl sl
a3 I

NEWNET X

OPENFT J _ » <

OUTLLT X

pd

OUTLNT X

OUTNET

P< P

OUTRIP

OUTSLN

OUTSNT

OUTTRE

OUTWLT

NﬁXNNNNN

PATHCL X | x

pd P4 P

PATHSP

PRPBLD X

PRPCTV

READVL

RTPFL

sBalalal

RTPLT

SELECT <

SLOAD

P

SUBFND

SUMEND ' X - X

SUMRY X X

TREBLD ~ X

UPDTNT X X

VREC X X X

WGTLD X X

WRT X

WILNT X

V-2

DESCRIPTIONS OF
VARIABLES AND ARRAYS

The purpose of the section is to provide information concerning
the significant variables and arrays used in the package. For convenience,
this information has been summarized in tables by subroutine. The
programmer may, therefore, when reviewing the flowcharts and program
listings of a given subroutine, refer to the table(s) summarizing the
significant variables and/or arrays used in the subroutine. The tébles
summarizing the.significant variables and arrays used in various
subroutines, arranged in alphabetical order by the subroutine name,

are as follows:

Iv-3

SUBROUTINE ALCP

In the following description the C field will be used to represent
either the link COUNT field when it is used or the link CAPACITY field

when it is used in ASSIGN SELF-BALANCING.

Variable Contents
FN The number of links used in the curve fit (the number of

links with a nonzero C field which are not centroied
- connectors).

M The number of iterations run in the ASSIGN SELF-BALANCING
run at this point.

SY The sum of the C fields except for centroid connectors.

SYY The sum of the C fields squared except for the centroid

connectors,

Control Variable Value Meaning
CNVRG , False The ASSIGN SELF-BALANCING run should continue
unless it has run the maximum number of
iterations.
CNVRG True The ASSIGN SELF-BALANCING run should not

run another iteration if it has run the
minimum iterations.

Array Contents
sX _ The sum of the non-directional assigned link volumes for

links with nonzero C fields except for centroid connectors
for iterations 1 through M,

XY The sum of the products of the non-directional assigned
link volumes with the C fields except for centroid
connectors for iterations 1 through M.

XX The sum of the non-directional assigned link volumes

squared for the links with nonzero C fields except for
centroid connectors for iterations 1 through M.

V-4

SUBROUTINE BLDNET

Control Variables Value Meaning

FORMAT False Use the link card format written in the
manual with from 1 to 4 nondirectional
links per card.

FORMAT True Use the link card format that is used for
PREPARE NETWORK.

EOF False An end of data set has not been reached
on unit INLNK,

EOF True An end of data set has been reached on
unit INLNK.
Variable Contents
MILAGE The sum of the milage of all the link data cards in units

of 0.01 miles.

IZLINK The number of nondirectional links with a zero link
impedance in the network,

Array : Contents
SPEEDS The number of nondirectional liﬁks with link speeds
' between O mph and 100 mph in increments of 1 mph.
KOUNT (I) The nuﬁber of links from node I in array LINKS.
IﬁDEX(I) The index in array LINKS where the links from node I are

stored (or where they will be stored if there are any).

LINKS Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS

Displacement Bits Length Bits Contents
0 | 1 Last link code (0 if not last links, 1
if last link from the A node).
1 19 Link impedance in 0.0l minute units.
20 12 B node of the link.

IV-5

SUBROUTINE CMPVH

Variable Contents

LSTJ The largest jurisdiction number in the network.

NLD The number of assignments on unit NEWNET,

Control Variable Value Meaning

NLD 1 Don't print the comparison of the last two
assignments,
NLD 2 or Print the comparison of the last two
greater assignments,

Array Contents

- VMI (J,L) Vehicle miles cross classified by jurisdiction + 1 used
as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links,

VHR (J, L) Vehicle hours cross classified the same as VMI,

MI (J, L) Network miles cross classified the same as VMI.

W (J, F) Vehicle miles cross classified by jurisdiction + 1 used as
the first index and functional class + 1 used as the second
index,

M (J, F) Network miles cross classified the same as VM.

WMC (J, F) Vehicle miles for links with a nonzero count field cross
classified the same as VM,

MC (J, F) Network miles for the links with a nonzero count field cross
classified the same as VM,

VMCC (J, F) Vehicle miles for links with a nonzero capacity field cross
classified the same as VM,

Mcc (J, F) Network miles for the links with a nonzero capacity field

cross classified the same as VM,

V-6

Array

FC (F)

FN (R, J)

SY (R, J)

SYY (R, J)
SX (R, 1)

SXX (R, J)

SXY (R, J)

H1

H2

HN

Contents

The

number of links with functional class + 1 used as

index F in the network.

J
J
J

R
[/ |

[R
tnn

The

The

Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;
Number of links in the network by route,

WM
es oo oo

1l: Sum of link counts by route code;

2: Sum of link capacities by route code;

3: Sum of nondirectional link volume from the previous
assignment by route,

1: Sum of link counts squared by route code;

2: Sum of link capacities squared by route code;

3: Sum of nondirectional link volumes from the previous
assignment squared by route code,

1: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero count by
route;

2: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero link
capacity by route;

3: Sum of nondirectional link volumes for this assign-
ment by route,

1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

2: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
link capacity by route;

3: Sum of nondirectional link volumes squared for thlS
assignment by route code,

l: Sum of nondirectional link volumes from this assign-
ment multiplied by link count by route;

2: Sum of nondirectional link volumes from this assign-
ment multiplied by link capacity by routes;

3: Sum of nondirectional link volumes from this assign-
ment multiplied by nondirectional link volumes from
the previous assignment by route,

header record and date from the previous assignment.
header record and date from the last assignment.

header record and date of when the network was built.

-7

Control Variable

- H H H H H H OH A A H H e H

=~

Variable

INLNK
INCTV
IVOL
IFRAT
MRGOUT
NET
NNET
MSEP
IRTPFL

SUBROUTINE CRD

Value Meaning
1 $PREPARE NETWORK control card read,
2 $OUTPUT NETWORK control card read.
3 SPREPARE TRIP VOLUMES control card read.
4 $OUTPUT TRIP VOLUMES control card read.
5 $§SUM TRIP ENDS control card read.
6 SASSIGN control card read.
7 $BUILD TREES control card read.
8 $STOP control card read.
9 $ASSIGN SELECTED LINKS control card read.
10 $FRATAR FORECAST control card read.
11 $MERGE control card read.
12 $PREPARE SPIDER NETWORK control card read.
13 SOUTPUT SPIDER NETWORK control card read.
14 $ASSIGN S?IDER NETWORK control card read.
15 $SASSEMBLE NETIWORK control card read.
16 $SREVISE NETWORK control card read.
17 $ASSIGN SELF~DIVERTING or $SASSIGN SELF-
BALANCING control card read.
18 $DELETE ASSIGNMENTS control card read.
19 $PLOT ROUTE PROFILES control card read.
Cbntents
Variable unit number INLNK
Variable unit number CTVIN
Variable unit number CTVOUT
Variable unit number FRATAR
Variable unit number MRGOUT
Variable unit number NETWORK
Variable unit number NEWNET
Variable unit number SEPARAT
Variable unit number ROUTE

Iv-8

Array

MERGIN
HEADER
DATE
RNAME

Contents

Variable unit numbers for the six MERGIN units.
The header which is printed on output.

The date that the program started executing.

The 19 control card names.

Iv-9

Control Variable

SUBROUTINE CRDINT

Meaning

SUM

SUM

Variable

NLD

Array

LINK

LK

Print header records from unit NETWORK,

Print header records from unit NEWNET,

Contents

The number of assignments which are on unit NETWORK if SUM
is false or on unit NEWNET if SUM is true,

Contents

A structure with a length of 16 + 4NLD bytes per record,
the records are corridor intercept links,

The same array as LINK except this is in half words.

Corridor Intercept Record -

Bytes Bytes
Displacement = Length Contents
0 2 Corridor intercept
2 2 Anode of the link
4 2 Bnode of the link
6 2 Route code of the link
8 2 Functional class code of the link
10 2 Link speed
12 2 Count field of the link in units of 100 trips.
14 2 Capacity field of the link in units of 100 trips.
16 4 Nondirectional assigned volume for the first
assignment.,
12+-4NLD 4 Nondirectional assigned volume for the last

assignment,

IV-10

Variable
NONDS

LSART4

Array

TRNPTY
INDEX (I)
LINKS
LAMBDA (I)

IPATH (I)

ISEQ

SUBROUTINE FASPTH

Contents

The number of nodes in the network,

The last arterial node number times 4,

Contents

Turn penalty array, contains 0, TP, TP, O where TP is the
turn penalty in units of 0.0l minutes.

This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This array contains the cummulative times to reach node I in
units of 0.0l minutes.

This array is a structure, element I contains the next node in
the path back from node I, the turn code, and a flag which
indicates whether the node is in the sequence table or is a
centroid.

This is the sequence table, it contains all of the node numbers
of the active sites of where the tree is being built,

Links Structure

Displacement Bits Length Bits Contents
0 1 Last link flag (0 if not‘last link, 1
if last link or dummy one-way link).

1 1 Shaft code-

2 1 Arrow code

3 3 Unused

6 14 Link impedance in units of 0,01 minutes.
20 12 Bnode of the link

Iv-11

IPATH array structure

Displacement Bits Length Bits Contents

0 1 Sequence entered flag (0 if not entered
and if not a centroid, 1 if entered in
the sequence table or a centroid).

1 7 Turn code

8 24 Path node

Iv-12

Variable

ITER
Al
A2

A0
NOSUB

Array

TSUM (I,J)

ESUM (I,J)
GFAC (I,J)

LFAC (I1,J)
ITEST

VOL

FCEN

LCEN

SUBROUTINE FRATAR

Contents

Number of Fratar iterations that have been run
Input trip matrix unit number

Output trip matrix unit number (Al and A2 are switched at
the end of each iteration)

Unit CTVOUT

Number of subnets

Contents

I = subnet number, J = the relative zone in the subnet,
T sum is the trip generations or the production volume
plus the attraction volume for each zone for the input
trip matrix.

TSUM (I,J)* GFAC (I,J)/100 = the expected production +
attraction volume.

Growth factor, the factor multiplied by the trip generations
which is the desired future trip generations.

Is the trip generations produced by the last growth factors.
Growth factor frequency table for the last iteration run.

Used to read the trip volumes from the input trip matrix
and write them on the output trip matrix.

First centroid in each subnet.

Last centroid in each subnet.

IV-13

SUBROUTINE GTILD

Control Variable Value Meaning
SUM False Don't produce a weighted assignment.
SUM True Produce a weighted assignment from weighted

impedances and write a new flexible record
data set for it.

Variable . Contents

NLD The number of assignments which are on unit NETWORK.

ITER Thé number of iterations run for ASSIGN SELF-BALANCING.
JMAX The maximumvjurisdiction number in the network,

-Array | Contéﬁzs

VMI (J, L) Vehicle miles cross classified by jurisdiction + 1 used

as the first index and three link classes second index.
The three link classes are centroid connectors, arterials,
and freeway links. ’

VHR (J, L) Vehicle hours cross classified the same as VMI.
MI (J, L) Network miles cross classified the same as VMI.
VM (J, F) Vehicle miles cross classified by jurisdiction + 1 used

as the first index and functional class + 1 used as the
second index.

M (J, F) Network miles cross classified the same as VM.

wC (J, F) Vehicle miles for links with a nonzero count field cross
classified the same as VM.

MC (J, F) Network miles for the links with a nonzero count field cross
classified the same as VM.

vMCC (J, F) Vehicle miles for links with a nonzero capacity field
cross classified the same as VM.

MCC (J, F) Network miles for the links with a nonzero capacity field
cross classified the same as VM.

IvV-14

Array Contents

FC (F) The number of links with functional class + 1 used as
index F in the network.

FN (R, J) Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;

J
J
J Number of links in the network by route.

nnun
wWN =

sY (R, J) Sum of link counts by route code;
Sum of link capacities by route code;
Sum of nondirectional link volume from the previous

assignment by route.

(= 2
nnn
w N =

SYY (R, J) Sum of link counts squared by route code;
Sum of link capacities squared by route code;
Sum of nondirectional link volumes from the

previous assignment squared by route code.

s se

S S
ionon
R Oy

sX (R, J) J

]

Sum of nondirectional link volumes for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero link
capacity by route;

J = 3: Sum of nondirectional link volumes for this assign-

ment by route.

SXX (R, J) J = 1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes squared for
this assignment for those links which have a
nonzero link capacity by route;

J =3: Sum of nondirectional link volumes squared for
this assignment by route code.

SXY (R, J) J =1: Sum of nondirectional link volumes from this
assignment multiplied by link count by route;
J = 2: Sum of nondirectional link volumes from this
assignment multiplied by link capacity by routes;
J = 3¢ Sum of nondirectional link volumes from this assign-
ment multiplied by nondirectional link volumes from
the previous assignment by route.

H1 : The header record and date from the previous assignment.
H2 The header record and date from the last assignment.
HN The header record and date of when the network was built.

WGT (J) This array contains the weights in percentages to use
on each iteration when SUM is true.

IV-15

The following arrays and variables are summed for links with a
nonzero count (or capacity) field. The *TURN card is used to specify
whether the count or capacity field is used. It should also be noted

that the following arrays and variables are not summed for centroid

connectors.

Array Contents

S§X2(J) Sum .of the nondirectional link volumes for iteratiom J.

XY (J) Sum of the nondirectional link volumes multiplied by the
count (or capacity) field for iteration J.

XX(J, K) Sum of the nondirectional liﬁk volume for iteration J
multiplied by the nondirectional link volume for iteration K.

Variable Contents

sY2 The sum 6f the count (or capacity) fields.

SYY2 The sum of the count (or capacity) fields squared.

FN2 The number of nonzero count (or capacity) fields for

links which are not centroid connectors.

IV-16

Variable

NA

NET

SUBROUTINE LNKLST

Contents

The number of iterations run in an ASSIGN SELF-BALANCING
run plus one if a weighted assignment has been produced.

The Fortran unit on which the last assigned Flexible
Record is written.

Iv-17

Control

SUBROUTINES LOAD AND LOAD2

Variables Value Meaning
READSW False The last record of trip volumes read has been
loaded.
READSW True The last record of trip volumes read has not
been loaded.
EOFSW False An end of data set has not been reached on unit
' CIVOUT,
EOFSW True An end of data set has been reached on unit CIVOUT.
Variable Contents
v Number of volume items in the last trip record read.
IFACT First zone number minus 1,
LHOM Origin zone of the last trip record read.
LNET Origin subnet of LHOM (should be 1 for the Small Network
‘ Package).
NODES *° Last node number of the network,
Array Contents
INDEX (I) This array contains the Fortran type index for node I of
where the links from node I start in array links,
LINKS The same as array LINKS in subroutine FASPTH,
BUF This array i1s a structure where each word of the array is

an item containing the trip movement volume in the first
18 bits as an unsigned binary integer, and the destination
zone number in the last 14 bits as an unsigned binary integer.

*This is the variable NODES1 in subroutine LOAD2

Iv-18

Array

VOL (I)

TRNTB (I)

XRTRN (J)

PATH

OVERF

Contents

This is a half word array which has the same dimension as
array LINKS and element I contains either the assigned
directional link volume for link LINKS (I) or the index of
where it is in array OVERF, The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are on
unsigned binary integer which is a link volume., If the flag
bit is 1, then the next 15 bits are an unsigned binary
integer which is an index into array OVERF where the link
volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored, The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the turn
volumes for node J are stored.

This array is the same as array IPATH in subroutine FASPTH.

This is a full word array used to store link volumes greater
than 32767 and turn volumes greater tha 32767,

Iv-19

SUBROUTINE MRGREC

Variable - Contents

IL This is the number of link records in array LINKS.

NX This is the number of links written on unit 3.

LNK2 . This is the number of links written on unit 1l.

MAXTIM This the maximum link time in 0.0l minute units.

MAXLNK This is the maximum number of one~way links for a network.

MAXNDS This is the maximum number of nodes for a network.

NOSUB This is the number of subnets the network is in.
Arrays

Array Length Contents Contents

FSTN 4 First node of each subnet.

LSTC , 4 Last centroid of each subnet.

LSTF 4 Last freeway of each subnet.

LSTA 4 Last arterial node of each subnet.

ARRAY 30004 Contains the sorted packed links array

described in NEWNET.

IvV-20

Control

Variables

FMT

FMT

LNKIMP

LNKTMP

LNKTMP

ERROR

Array LINKS

SUBROUTINE NEWNET

Value

False

True

11

Number of
Error detected
in subroutines
NEWNET, VREC,
and MRGREC

Action Implied

Use old link data
format

Use new link data
format

Write first sorted
links on unit 3

Write second sorted
links on unit 11

If the sorted links
area 1s filled up
three times there
are too many links
and an attempt to
write on unit -1
will be made

Location Where Set

PRPNET, ASMNET, or
REVNET

PRPNET, ASMNET, or
REVNET

Initialization of NEWNET
Set to 11 after sorted
links are written on 3
Set to -1 after sorted

links are written on
unit 11

Array LINKS is the array in which oneway internal link records are

accumulated and sorted. These records are 22 bytes long and are stored

by subroutine PTLNK and referenced by subroutine GTLNK. The format

for these 22 byte records is as follows:

Iv-21

Displacement Length

Bytes Bits Bytes Bits Contents
bytes bits 1 Jytes Dits
0 0 0 14 Anode number
1 6 0 2 Link class code

0 = two-way
1 = one-way out
2&3 = dummy link

2 0 0 15 Link data card count
3 7 0 1 Not mileage code
0 = Use in Vehicle Mile Summary
1 = Do not use in Vehicle Mile
Summary
14 Bnode number
14 Count field in units of 100 trips

Jurisdiction code in hexadecimal

o N »n S
o & O O
o O O O

Functional class code in
hexadecimal

[0}
~

Subarea code

14 Link Capacity in units of 100 trips
11 1 0 7 Speed in units of tenths of -
a mile per hour
12 0 0 10 Link distance in units of—l—
. 100
of a mile
13 2 0 7 Corridor intersect code
14 1 0 5 Route number
14 6 0 1 Shaft code, 0 = one direction
. 1 = other direction
14 7 0 1 Arrow code, 0 = one direction
1 = other direction
15 0 1 0 Unused
16 0 0) Link Impedance field, in units
1 ‘
of iﬁﬁ-minutes
16 6 v 0 1 Link delete code
0 = keep link
1 = delete link from updated
Flexible Data Record
16 7 4 1 Unused

IvV-22

SUBROUTINE OUTLLT

Control Variable Contents Meaning
PRINT False Don't print the loaded network,
PRINT . True Print the loaded network,
OUTN | False Don't print the loaded network,
OUTN True Print the loaded network if wvariable

RES is false or ITR is equal to 1.

RES False This is not an ASSIGN SELF-BALANCING
iteration.

RES True This is an ASSIGN SELF-BALANCING
iteration,

CAP False The COUNT field is used in an ASSIGN

SELF-BALANCING RUN.

CAP . True The Capacity field is used in an ASSIGN
SELF-BALANCING run,

Yariable . Contents

IOVER This is a full word array used tokstore link volumes
greater than 32767 and turn volumes greater than 32767.

IPATH(I) This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence
table or is a centroid.

INDEX(I) This array contains the Fortran type index indicating
the location where the links from node I begin in array
LINKS.

NODE This array contains a link in each word, the links are

structures which contain 5 data items.

ITR(I) This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15
bits are also treated the same as for array VOL.

IXR(J) This is a half word array which contains unsigned 16 bit

integers which are indexes into array ITR where the turn
volumes for node J are stored. -

Iv-23

Arra Contents
aArray

VOL(I) This is a half word array which has the same length as
array LINKS and element I contains either the assigned
directional link volume for link LINKS(I) or the index
-of ‘where it 1is in array OVERF. The first bit of a VOL
element 1is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

IV-24

Variable

L

LINES

SUBROUTINE OUTNET

Contents

The Fortran unit number of the Flexible Data Record
unit NETWORK, ’

The number of lines printed on the page being printed.

IvV-25

SUBROUTINE OUTSLN

Control
Variable Contents Meaning
EOF False An end of data set has not been reached on
~ unit 4.
EOF True An end of data set has been reached on unit 4,
FLG False All nodes which were not centroids had the
same number of trips entering the node and
leaving the node. '
FLG True One or more nodes which were not centroids
had a different number of trips entering than
leaving the node.
Array ‘ Contents
INDEX This array contains the Fortran type index of where the
links from node I start in array LINKS.
VOL(I) This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volume for link LINKS(I) or the index of
where it is in array OVERF. The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are
an unsigned binary integer which is a link volume. If the
flag bit is 1, then the next 15 bits are an unsigned binary
~ integer which is an index into array OVERF where the link
volume is stored.
OVERF This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.
LINKS Each element of this array is a structure of data items

called a link.

Structure of an Element in array LINKS

Displacement in Bits Length in Bits Contents
0 ‘ 1 Last link code (0 if not last
link; 1 4if last link from the
Anode).
1 19 Link impedance in 0.0l minute
units.

20 12 Bnode of the link.
IvV-26

, SUBROUTINE OUTSNT
Control

Variable Contents) Meaning
EQOF False An end of data set has not been reached on
unit 4,
EOF True An end of data set has been reached on unit 4.
SPIDER 'SPDR' The data set on unit 1 was prepared by the
PREPARE SPIDER NETWORK program,
Ar ray : Contents
INDEX This array contains the Fortran type index of where the
links from node I start in array LINKS.
LINKS Each element of this array is structure of data items

called a link.

Structure of an Element in LINKS Array

Displacement in Bits Length in Bits Contents
0 1 Last link code (0 if not last
link; 1 if last link from
A node)
1 19 Link impedance in hundredths

of a minute ‘

20 12 B node of the link.

Iv-27

SUBROUTINE OUTWLT

Variable B ~ Contents

NONDS Last nbde number

IFACT " First centroid number minus 1.

NET | Is the Fortran unit number which contains a Flexible

Record data set,

Array , Contents
INDEX(I) This array contains the Fortran type index indicating the

location where the links from node I start in array NODE.

NODE(I) Each element of this array is a link. The first bit of
each half word is the last link flag. If this bit is a
1, then this link is either the last link from the Anode
or a dummy oneway link., The next 15 bits contain the Bnode
of the link.

IPATH(I) The Ith element of this array contains the turn code for
node I as a half word integer.

VOL{I) The Ith element of this array contains the directional
weighted link volume multiplied by 100 for link NODE(I).

ITR(I) Each element of ITR contains a directional weighted turn
volume multiplied by 100. The turn volumes for node J
begin at the index of IXR(J) and the number of turn
volumes for node J are determined by the turn code IPATH(J).

IXR(J) This is a half word array which contain unsigned 16 bit

integers which are indices into array ITR where the turn
volumes for node J are stored.

Iv-28

SUBROUTINE PATHCL

Variable ~ Contents

VOLF Unit CTVOUT number.

NETD Unit NETWORK number.

Control Variable Contents Meaning

READSW False The last record of trip volumes read has

been loaded.

READSW True The last record of trip volumes read has
not been loaded.

EOFSW False An end of data set has not been reached
on unit CTVOUT.

EOFSW : True An end of data set has been reached on
unit CTVOUT.

Array Contents -

LAMBD1 (I) Used as the cumulative time to node I in subroutine FASPTH

and OUTTRE and as a scratch array in subroutine LOAD.

SEQ Used as a scratch array in subroutines FASPTH, LOAD, and
LOAD2 (not used in PATHCL).

TRNTB1(I) This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

XR1TRN(J) This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTBl where the turn
volumes for node J are stored.

OVERF This is a full word array used to store link volumes greater
than 32767 and turn volumes greater than 32767.

VOL1(I) This is a half word array which has the same dimension as

array LINKS1 and element I contains either the assigned
directional link volume for link LINKS1(I) or the index of

Iv-29

Array Contents

VOL1(I) cont. where it is in array OVERF. The first bit of a VOL1
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

INDEX1(I) This array contains the Fortran type index indicating the
location where the links from node I begin in array LINKSI.

LINKS1 This array contains a link in each word, the links are
structures which contain 5 data items.

PATHL(I) This array is a structure, element I contains the next node
in the path back from node I, the turn code, and a flag
which indicates whether the node is in the sequence table
or is a centroid. '

Links Structure

Displacement Bits v Length Bits Contents
0 1 Last link flag (0 if not last link;
1 if last link or dummy oneway link).
1 | 1 Shaft code |
2 1 Arrow code
3 3 Unused
6 14 ‘ Link impedance in units of 0.0l minutes.

20 12 Bnode of the link

IV-30

SUBROUTINE PATHSP

Control Variable Contents

VOLF Univ CTVOUT Unit CTVOUT number.

Array Contents

INDEX1(I) This array contains the Fortran type index for node I of

where the links from node I start in array links.

BACK(I) This array contains the path of the last tree built.
For node I the contents of BACK(I) contain the previous
node in the path from the origin node to node I.

LAMBDA(I) This is a scratch array used by subroutines MOORE and SLOAD.
succ This is a scratch array used by subroutine MOORE.
OVERF This is a full word array used to store link volumes

greater than 32767 and turn volumes greater than 32767.

PRED A list of nodes in descending cumulative time order in
which the nodes were reached in the last tree built.

VOL(TI) This is a half word array which has the same dimension
’ as array LINKS1 and element I contains either the assigned

directional link volume for link LINKS1(I) or the index
of where it is in array OVERF., The first bit of a VOL
element is a flag bit, if it is zero, then the next 15
bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where
the link volume is stored.

LINKS1 Each element of this array is a structure of data items
called a link.

Structure of an Element in array LINKS1

Displacement in Bits Length in Bits Contents

0 1 Last link code (0 if not last
link; 1 if last link from
the A node).

1 19 Link impedance in 0.0l minute
units.
20 12 " B node of the link.

IV-31

SUBROUTINE PRPBLD

Control

Variable Contents Meaning

RES False This is not an ASSIGN SELF-BALANCING run.

RES True This is an ASSIGN SELF-BALANCING run.

CAPC False The count field is to be used by ASSIGN SELF-
BALANCING.

CAPC True The capacity field is to be used by ASSIGN
SELF-BALANCING,

W False An assignment using weighted impedances
is not to be made.

W True An assignment using weighted impedances is
to be made in ASSIGN SELF~BALANCING.

ouT (1,J) False Don't print the trees with origins between
INDX1 (I,J) and INDX2 (I,J).

ouT (1,J) True Print the trees with origins between
INDX1 (I,J) and INDX2 (I,J).

Variable Contents

NOSUB The number of subnetworks.

COUNT (I) The number of ranges of trees to build in subnet I,

INDX1 (I,J) The beginning of a range of trees to build in subnet I,

INDX2 (I,J) The end of a range of trees to build in subnet I.

Iv-32

Logical Variables

Variable Name Set
FMT False
REV False

Maximum Value Variables

Variable Name Value
MAXIK2 5455
MAXNDS 4000
MAXINK 16000
MAXTIM 16383
Arrays

Name Length
FSTN 4
LSTC 4
LSTF 4
LSTA 4
ARRAY 3004

SUBROUTINE PRPNET

Action Implied Where Tested
Use old link data format NEWNET, VREC
This is not a REVISE PRPNET
NETWORK run
Meaning

This is the maximum number of oneway links
in core.

This is the maximum last node number.

This is the maximum number of oneway links
for the network.

This is the maximum link time in hundredths
of a minute (i.e., 163,83 minutes).

Contains

First node of each subnet

Last centroid of each subnet

Last freeway node of each subnet
Last arterial node of each subnet

Contains the packed links array described as
array LINKS in subroutine NEWNET,

IV-33

-

When entry point ASMNET is used, the logical variables FMT and REV are

set as follows:

Variable Value
Name Set Action Implied Where Tested
FMT True Use new link data format NEWNET, VREC
REV False This is not a REVISE PRPNET

NETWORK run

When entry point REVNET is used, the logical variables FMT and REV

are set as follows:

Variable Value
Name Set Action Implied Where Tested
FMT True Use new link data format NEWNET, MRGREC
REV True This is a REVISE NETWORK PRPNET

run

IV-34

. SUBROUTINES RTPFL AND RTPLT

Control Variable Contents Meaning

END False There was enough room in array F for
the first 10 routes.

END : True There was not enough room in array F
for the first 10 routes.

RTS (I) False Don't save the records read for route I
in array F.

RTS (I) True Save the records read for route I in.
array F.
Variable Contents
NRD The number of words in array F used by one route record.
NWORDS The length of aryay F in words.
NLD The number of assignments on the NEWNET data set.
Array : Contents
Bl (I) If Bl (I) is not zero, then there is a link for route

RT2 between node I and node Bl (I).

B2 (I) If B2 (I) is not zero, then there is a link for route
RT2 between node I and node B2 (I).

NX1 (1) NX1 (I) is the index into array F of where the record
for the link represented by Bl (I) is stored.

NX2 (I) NX2 (I) is the index into array F of where the record
for the link represented by B2 (I) is stored.

F (I) This is a full word array used to store a group of words
' and half words which are a single record for a link.

H (I) .This is a half word array equivalenced to array F.

IV-35

Array Contents

RIT (I) Contains either the number of route records for route I
or zero if the records are in array F or have been printed.

RT10 (1) Contains the number of route records for route I for the
‘first ten routes.

A route record has the following order of items and is stored in

array F in the same order:

Displacement Length
in bytes in bytes Contents
0 2 ~ Route code
2 2 Anode number
4 2 Bnode number
6 2 ' link functional classification
8 2 link distance in 1/100 miles
10 2 link speed in tenths of a mile/hour
12 2 link count/100
14 2 link capacity/100
16 4 ' link non&irectional assigned volume
for first assignment
; 4
12+4NLD 4 link nondirectional assigned volume

for the last assignment

IV-36

SUBROUTINE SELECT

Control Variable Contents Meaning
ouT True no errors found in SELECT cards.
ouT False errors found in SELECT cards.
Array Contents
INDEX (I) - This array contains the Fortran type index indicating

the location where the links from node I begin in
array LINKS,

LINKS This array contains a link #n each word, the links
' are structures which contain 5 data items.

Links Structure

Displacement Bits Length Bits ‘ Contents

0 1 Last link flag (0 if not last
link, 1 if last link or dummy
one-way link).

1 1 Shaft code

2 1 Arrow code

3 1 Selected link code (1 if selected
1link)

4 2 Unused

6 14 Link impedance in units of 0.01
minutes.

20 12 ~ Bnode of the link

Iv-37

Control Variable

EOF

EOF

Variable

NODES
LHOM
COUNT

IOVR

Array
INDEX
LINKS
VOL

PRED

OVERF

BACK (I)

SUBROUTINE SLOAD

Contents Meaning

False The end of data set on unit CTVOUT
has not been reached.

True The end of data set on unit CTVOUT
has been reached.

Contents
Last node number.
Origin node of last trip record read.
Number of trip items in last trip record read.

Number of words used in the OVERF array, (number
of directional volume greater than 32767).

Contents

The same as array INDEX in subroutine BLDNET.

The same as array LINKS in subroutine BLDNET.

The same as array VOL in subroutine LOAD.

A list of nodes in descending cumulative time order
in which the nodes were reached in the last tree
built,

The same as array OVERF in subroutine TLOAD.

This array contains the path of the last tree built.
For node I the contents of BACK (I) contain the

previous node in the path from the origin node to
node I,

IVf38

Array
I0ORG (I)

IDEST (I)

IIN (I)
IOUT (I)
INTRA (I)
ISUB (I)
IFSTND (I)

LSTND (I)

Variable

NOSUB

SUBROUTINE SUMEND

Contents

The sum of all trip volumes with the origin I except for
the intrazonal volume for I.

' The sum of all trip volumes with the destination I

except for the intrazonal volume for I.

The number of nonzero trip volumes with destination I.
The number of nonzero trip volumes with origin I.
Intrazonal volume for zone I,

Number of zones in subnet I.

The first zone in subnet I.

Last zone in subnet I,

Contents

Number of subnets

Iv-39

Control Variable

TREES

TREES

SEL

SEL

OUTN

Subroutine

Entry Point
TREBLD -

TREE

SELLD

SUBROUTINE TREBLD

Contents Meaning

True Build trees, but don't load the
network or print the loaded network.

False Build trees and load trips.

False Don't read select cards and don't
write the selected links data set,

True Read select cards and write unit -
SELTRP,

True Print the loaded network.

_TREES SEL OUTN

False False True

True False -
True -

False

IV-40

Control Array

TL (I,J)
TL (I,J)

™ (I,J)
™ (I1,J)
Variable
NODE

IND

Array

™ (I,J)
NDIR (I)

IDIR (I)

CH (I)

LINKS (I)

TRNTB

SUBROUTINE TRN

Contents Meaning

False Don't print turn movement TM (I,J).

.True Print turn movement TM (I,J)

-1 The turning movement TM (I,J) is
unknown.

>0 ™ (I,J) is a turning movement volume.
Contents

Node number to get directional volumes for and calculate
turn movements for.

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE,

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.
)

Directional link volumes for the links going in the

direction of the nodes connected to NODE to NODE,

This array contains links which contain the Bnode in bits
1 thru 15 of the half word and a last link or dummy link
indicator in bit O,

This array contains the turn volumes saved, they are indexed
by array XRTRN.

IV-41

Array Contents

TRNCD (I) TRNCD (I) contains the turn code for node I.
VOL (I) VOL (I) contains the directional link volumes for LINKS (I).
KC (IND) A table indexed by the turn code which has the number of

one-way links out from NODE.

KR (IND) A table indexed by the turn code which has the number of
one-way links into NODE,

INDEX (I) This array contains the Fortran type index indicating the
: location where the links from node I begin in array LINKS.

XRTRN (J) This is a half word array which contains unsized 16 bit
integers which are indices into array TRNTB where the turn
volumes for node J are stored.

-The following arrays are used to place the turning movements which
have been saved in ARRAY TM before the other turning movements are
calculated. When a location in the following tables is not negative, the
following action is taken: TM (I,J) = TRNTB (XRTRN (NODE) + IDSPXX (I,J)).
If the IDSPXX (I,J) position is negative, a zero is placed in T™M (I,J).

The XX part of the IDSPXX array above varies,

Array Used for turn code
IDSP3 10

IDSP41 13, 17, 18, 20, 22
IDSP42 21

IDSP43 23, 24

IDSP44 25

IDSP5 26

IDSP6 27

Iv-42

Control Array

TL (I,J)
TL (I,J)

™ (I,J)
™ (1,J)
Variable
NODE

IND

Array

™ (I,J)
NDIR (I)

IDIR (I)

CH (1)
KC (IND)
KR (IND)

IPATH (I)

SUBROUTINE TURNM

Contents Meaning
False Don't print turn movement TM (I,J).
True Print turn movement TM (I,J).
-1 The turning movement TM (I,J) is
unknown,
>0 ™ (1I,J) is a turning movement volume,
Contents

Node number to get directional volumes for and calculate
turn movements for,

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE,

Contents

Turn movement between the Ith node and the Jth node
connected to NODE.

Nondirectional link volumes for the links connected to
NODE.

Directional link volumes for the links connected to NODE.

Directional link volumes for the links going in the
direction of the nodes connected to NODE to NODE,

A table indexed by the turn code which has the number of
one-way links out from NODE.

A table indexed by the turn code which has the number of
one~way links into NODE.

This array is a structure, element I contains the next
node in the path back from node I, the turn code, and a
flag which indicates whether the node is in the sequence
table or is a centroid.

IV-43

Array

INDEX (I)

LINKS

voL (1)

TRNTB (I)

XRTRN (J)

OVERF

Contents

This array contains the Fortran type index indicating

- the location where the links from node I begin in array

LINKS.

This array contains a link in each word, the links are
structures which contain 5 data items.

This is a half word array which has the same dimension
as array LINKS and element I contains either the assigned
directional link volumes for link LINKS (I) or the index

of where it is in array OVERF. The first bit of a VOL

element is a flag bit, if it is zero, then the next 15
bits are on unsigned binary integer which is a link
volume, If the flag bit is 1, then the next 15 bits are

" an unsigned binary integer which is an index into array

OVERF where the link volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored., The
flag bit is the same as for array VOL and the next 15 bits
are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the
turn volumes for node J are stored.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767,

IPATH array structure

Displacement Bits ‘ Length Bits Contents

0

1 Sequence entered flag (0 if not
entered and if not a centroid, 1 if
entered in the sequence table or a
centroid).

7 Turn code

24 Path node

IV-44

Links Structure

Displacement Bits Length Bits Contents
0 1 Last link flag (0 if not last link,
1 if last link or dummy one-way link).
1 1 Shaft code
2 1 Arrow code
3 3 Unused
6 14 Link impedance in units of 0.01
minutes,
20 12 Bnode of the link

The following arrays are used to place the turning movements which
have been saved in array TM before the other turning movements are
calculated. Wﬁen a location in the following table is not negative, the
following action is taken: TM (I,J) = TRNTB (XRTRN(NODE) + IDSPXX(I,J)).
If the half word from TRNTB is negative, then the lower 15 bité are used
as an index into the OVERF array to get the turn volume. If the IDSPXX(I,J)
posifion is negative, a zero is placed in ™ (I,J). The XX part 6f the

IDSPXX array above varies.

Array Used for turn codes
IDSP3 10

IDSP41 13, 17, 18, 20, 22
IDSP42 | 21

IDSP43 | 23, 24

IDSP44 25

IDSP5 26

IDSP6 27

IV-45

Control Variable

Variable

NMPD

DLT

DLT

IMPD

IMPD

SLF

SLF

SUBROUTINE UPDTINT

Contents Meaning

False There are no errors in the parameter
cards read,

True There are one or more errors in the
parameter cards read for DELETE
ASSIGNMENTS, The program will continue
reading control cards but it will end
execution with a STOP 3 when the next
card with a $§ character is column 1 or
and *END card is read.

False An *IMPEDANCE parameter card has not
been read.

True An *IMPEDANCE parameter card has been
read.

False An *ADJUST parameter card has not been
read, '

True An *ADJUST parameter card has been read.

Contents

The assignment number of the assignment which is to be the
new link impedance if IMPD is true or from which the
impedance update function using the count field is to be
used to calculate a new set of link impedances.

IV-46

Variable

IL
LNK1
LNK2
MAXTIM

MAXLNK

MAXNDS
NOSUB

ERR

Array
FSTND

LSTCEN
LSTFWY
LSTART

LINKS

ARRAY

ARRAY2

SUBROUTINE VREC

Contents

This is the
This is the
This is the
This is the

This is the
network,

This is the
This is the

This is the

number of link records in array LINKS,
number of links written on unit 3,
number of links written on unit 11,
maximum link time in 0,01 minute units.

maximum number of one-way links for a

maximum number of nodes for a network,
number of subnets the network is in.

number of errors found in processing

the link data

Arrays
Length Contents
4 First node of each subnet,
4 Last centroid of each subnet.
4 Last freeway of each subnet.
4 Last arterial node of each subnet,
30004 Contains the sorted packed links array
dgscribed in NEWNET,
220 Contains one record from unit 3 of 40 packed
links,
220 Contains one record from unit 11 of 40

packed links,

IV-47

Variable

ITER

Array

INDEX (I)

BNODE (I)

TRNCDF(I)
VOL (I)

TRN (I)

XRTRN(J)

SUBROUTINE WTLNT

Contents

Number of iterations run for ASSIGN SELF-BALANCING

Contents

This array contains the Fortran type index of where the
links from node I start in array BNODE.

Each element of this array is a link. The first bit of each
half word is the last link flag., If this bit is a 1, then
this link is either the last link from the Anode or a dummy
one-way link. The nex} 15 bits contain the Bnode of the link,

TRNCD (I) contains the turn code for node I as a half word
integer. ‘

The element of VOL (I) contains the directional weighted
link volume multiplied by 100 for link BNODE (I).

Each element of TRN contains a directional weighted turn
volume multiplied by 100, The turn volumes for node J

begin at the index of XRTRN (J) and the number of turn
volumes for node J are determined by the turn code TRNCD (J).

This is a half word array which contains unsigned 16 bit
integers which are indices into array TRN where the turn
volumes for node J are stored.

Iv-48

DATA SETS AND

DATA SET FORMATS

DATA SETS
DATA SET FORMATS

OUTPUT SELECTED LINKS

DATA SETS

Two categories of data sets are associated with the Texas Small
Network Package: relocatable data sets and fixed data sets. The unit
numbers associated with relocatable data sets may be changed either by
the use of unit control cards or, in some instances, by the execution
of some programs su;h as ASSIGN SELF-BALANCING. A cross reference of

the data sets with associated programs is given in Table 6.

DATA SET FORMATS

There are twelve ‘basic formats associated with data sets used by
the package. These twelve format types are:

FORMAT FORMAT
TYPE TYPE CODE
Trip Volumes Data Set
Flexible Record Data Set
Separation Matrix Data Set
Selected Interchanges Data Set

Node Names Data Set

Calcomp Plot Tape

Route Data Set

Spider Network Data Set

Trip Matrix Data Set

Scratch Node Names Data Set
Scratch Packed Links Data Set

N < XK 3 »nn ® 9" =2 0 H = =

Scratch Multiple Assignments Data Set
The format type codes (indicated above) are used in the cross reference

contained in Table 7 to indicate the format types used with each data set

V-1

TABLE 6: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable Data Sets Fixed Data Sets
-

?:::ti:;cation g z g g g &z_‘ § E ;‘:3 g —g g g g 'ié g E ?_4'

JEEEEEHHHE EHEHEBEEE
(Default) Unit Number | 510] 8116 [ex|x#]| 1125] 9 3| 4117111112113 [xiees o
PREPARE NETWORK 1 0 1/0/1/0| |1/0
ASSEMBLE NETWORK 1 0 10ft/0| [/o
REVISE NETWORK I 0 10{1/0 1/0| 1 |1/0
OUTPUT NETWORK I
DELETE ASSIGNMENTS 0 1
PREPARE TRIP VOLUMES 1
OUTPUT TRIP VOLUMES 1
BUILD TREES : I of
ASSIGN I I{tpjofo]
ASSIGN SELF-BALANCING I 1/0[1011/0/0 fr/0
ASSIGN SELECTED LINKS 1| I /000 0
PLOT ROUTE PROFILES ~ I , 0
FRATAR FORECAST**¥* 1 |1/ 1T wo| | || |]
SUM TRIP ENDS R »
MERGE ol1 | | 7
PREPARE SPIDER NETWORK | I o Tol 111 1101
OUTPUT SPIDER NETWORK 1* 1
ASSIGN SPIDER NETWORK I I* I

I = Input Data Set
0 = Output Data Set
* For these programs this data set is fixed to unit 1.

% No default option exists for the MERGE program. Appropriate Unit Desig-~
nation Cards must be provided by the user, v

*%%x Agsembly language program reference.
k*k%% The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR.

Note: Some of the output data sets may be suppressed by use of the DD DUMMY
option in the JCL,

V=2

TABLE 7:

INDICATING THE DATA SET FORMAT TYPES

CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable=Data. Sets

- Fixed Data Sets

Data Set
Identification

CTVIN

FRATAR
ROUTE

MERGOUT

MERGIN

' SEPARAT

Scratch
Scratch
Network
Scratch
SELTRP
PLOTTAPE

(Default) Unit Number

10

® | CTVOUT
=
o
*
*
*
*
)
v
© | NEWNET

Rk

¥
*

[y
N
=
=
=
N
[
w

PREPARE NETWORK

g

ASSEMBLE NETWORK

]

REVISE NETWORK

<= < Jw]| Scratch

M [™ |~} Scratch

<
i
|

OUTPUT NETWORK

DELETE ASSIGNMENTS

/| | | | | = | NETWORK

PREPARE TRIP VOLUMES

. OUTPUT TRIP VOLUMES

BUILD TREES

ASSIGN

ASSIGN SELF-BALANCING

ASSIGN SELECTED LINKS

o= T - I S I R |

[I e O o B]

PLOT ROUTE PROFILES

bl Rl I

FRATAR FORECAST#**%%

SUM TRIP ENDS

MERGE

PREPARE SPIDER NETWORK!

S*

OUTPUT SPIDER NETWORK

S*

ASSIGN SPIDER NETWORK

S%

* For these programs this data set is fixed to unit 1.

k%

kkk

Kk ek
as FRATAR.

Note:

Assembly language program reference.
The FRATAR FORECAST program sets the CTVOUT unit to the same unit

DUMMY option in the JCL.

No default option exists for the MERGE program.
Designation Cards must be provided by the user.

Appropriate Unit

Some.of the output data sets may be suppressed by use of the DD

‘ and its associated programs. As can be seen from Table 7, some of the
data sets have two different formats associated with them depending on
the user program option being executed. Likewise, several of the data
sets may have the same format as in the case of the trip matrix data set
format. In order to determine the format for a given data set, the
programmer should:

e Reference Table 7 to determine which of the twelve formats

1s assoclated with the data set of interest.

e Refer to the detailed description of the format.

The detailed descriptions of eleven* of the twelve formats are as

follows:

*The format for the Calcomp plot tape (format type code: P) has not
been included.

TRIP VOLUMES DATA SET
(Format Type Code: B)

Trip Volume Record

Displacement Bytes Length Bytes Contents
0 6 Zone of Origin
6 ‘ 6 . Zone of Destination
12 6 24-hour volume
18 6 AM-peak volume
24 6 PM-peak volume

Each field in the record is in EBCDIC and these records must be
sorted into ascending order on a key of the first 12 bytes. The records
should be in Fixed length or Fixed Blocked format. The minimum length
of the records isvl8 bytes if the 24~hour volume is used, 24 bytes if the.

AM-peak volume is used, or 30 bytes if the PM-peak volume is used.

End of Data Set Indicator Record

Displacement Bytes Length Bytes Contents
0 1 "v"
1 N-1 blanks

N is the minimum length for a trip volume record. This record is
only required if this data set is on cards and is read from unit 5 and

it must follow the last Trip Volume record.

V-5

FLEXIBLE RECORD DATA SET
(Format Type Code: F)

Parameter Record (One record)

Bytes Displacement Length Contents

0 4 Number of Subnetworks
in the Network

4 4 Number of Assignments

8 _ 4 Number of directional
links in the Network

12 4 First Centroid in
Subnetwork 1

16 4 Last Centroid in
Subnetwork 1

20 4 " Last Arterial node in
Subnetwork 1

24 4 Last Freeway'node in
' Subnetwork 1

(The last four items are repeated once for each subnetwork)

Heading record (One from network preparation and one from each assignment)

Bytes Displacement | Length Contents
0 80 Heading record in EBCDIC
80 12 Processing date

V-6

Anode record (One for each Anode; the records are in sorted order on the

Anode number; each Anode record is followed by the Link records

which are connected to it.)

Displacement Length
Bytes Bits Bytes Bits
0 0 2 0
2 0 2 0
4 0 0 1
4 1 0 1
4 2 0 6
5 0] 3 0
8 0 2 0
10 0 2 0
12 0 2 0
14 0 20 0

Contents

Anode number

Number of links connected
to this node

Centroid flag (One if it
is a centroid)

Freeway flag (One if it
is a Freeway)

Turning movement type
code

Not used

X coordinate of Anode
Y coordinate of Anode
Subarea code of Anode

Anode name in EBCDIC

Link Record (There is one link record for each link connected to a node;

the link records follow the Anode to which they are connected)

Displacement Length
Bytes _ Bits Bytes Bits
0 0 0 1
0 1 0 1

V-7

Contents
Last Link from Anode flag
Shaft flag

0 = one direction
1 = other direction

Displacement Length

Bytes Bits Bytes Bits Contents
0 2 0 1 Arrow flag

0 = one direction
1 = other direction

0 3. 0 1 Not used
0 4 0 14 Link time in hundredths
' of a minute
0 18 0 14 Bnode of Link
4 0 0 4 Jurisdiction code of
, Anode

4 4 0 14 Distance of Link in
hundredths of a mile

4 18 0 14 Speed in tenths of a
mile/hour

8 0 2 0 Functional class

(Codes 0 thru 15)

10 0/ 2 0 Route number
(Codes 0 thru 99)

12 0 2 0 Corridor intercept

14 0 2 0 Duplicate Mileage

Eliminator flag
(One if link is to be
eliminated from mileage

summaries)
16 0 2 0 ' Link Volume
18 0 2 0 Link Capacity
20 0 4 0 Link impedance used on

first assignment

24 0 4 0 Nondirectional Link
volume from first assignment

(The last two items are repeated for each assignment, the above two
are not present on a Flexible Record with no assignments)

V-8

SEPARATION MATRIX DATA SET
(Format Type Code: 1I)

Parameter Record

Byte Displacement Length in Bytes Contents
0 ‘ 4 Number of zones
4 4 Zero

4 (number of zones)-4 : 4 Zero

Separation Record

Bytes Displacement Length in Bytes Contents
0 4 Time to Zone 1
4 4 Time to Zone 2
4 (number of zones)-4 4 Time to the last zone

The time is in hundredths of a minute. If a zone is not reached, its
time field will be 16,777,215 hundredths of a minute. The separation

records will be in the same order as the trees that are built.

SELECTED INTERCHANGES DATA SET
(Format Type Code: L)

Header Records

Bytes Displacement Length in Bytes Contents
0 2 Zeros
2 2 2T + 1
4 | 8 Columns 8I + 1 to

8I 4+ 7 of the Header Line

There are 12 header records (I = 0, 11); each header record has eight
bytes of the header line except the last record which has four bytes

of the header line.

Select Record

Bytes Displacement v Length in Bytes Contents
0 2 Link Index of the Selected
Link*
2 2 Zeros
4 2 Percent of Trip Volumes
to Print for this Selected
s Link
6 2 Smallest Node of Selected Link
8 2 Largest Node of Selected Link
10 2 Cut of Volume for Printing
12 2 Number of Trip Interchanges
to print

*This is the index of the directional link from the smallest node
of this selected link to the largest node of this selected link.

V-10

Interchange Record

Bytes Displacement

0

2

10

14

Trip Direction Code

10

Interchange Record

Bytes Displacement

0

2

10

14

Length in Bytes

2

2

Direction of
Interchange

First Zone to
Second Zone

First Zone to
Second Zone

Length of Bytes

2

2

V-11

Contents

Link Index of Selected Link#*
First Zone of the Interchange
Second Zone of the Interchange

Number of Trips in the
Interchange

Zeros
Trip Direction Code

Direction of Trip
Through Selected Link

Small Node number to Large
Node number ;

Large Node number to Small
Node number

Contents

Link Index of Selected Link*
First Zone of the Interchange
Second Zone of the Interchange
Zeros

Number of Trips in the
Interchange

Trip Direction Code

Direction of
Trip Direction Code Interchange

1 Second Zone to
First Zone

5 Second Zone to
First Zone

Direction of Trip
Selected Link

Through

Small Node number
Node number

Large Node number
Small Node number

*These records are written fixed blocked 18 bytes long. They are

18 bytes long so that they can be sorted.

V-12

to Large

to

NODE NAMES DATA SET*
" (Format Type Code: N)

Node Name Records

Column Displacement Length in Columns Contents
0 ; 20 Node Name
20 4 Node Number (4 byte integer)

. There is one Node Name Record for each different node name found in
the Link Data Cards. The Link Data Cards should be in ascending

order on the first node number.

*This data set uses FORTRAN formatted I/O;

V-13

Parameter Record

Displacement Bytes

0

4

Header Records

Displacement Bytes

0

4
16

ROUTE DATA SET
(Format Type Code:

Length Bytes

4

4% (NLS + 3)

Length Bytes

4

12

4% NLS

Contents

NLS = the Number of Assignments

Unused

Contents

Sort Key = 100% (Assignment
number + 1) + J

Twelve bytes of the header

Unused

There are 8 of the Header records for each Header that is on a

Flexible Record.

The J in the Sort Key of the above records is 1, 4, 7,

10, 13, 16, 19, 22 and is the index of where the three words should be

read into the header array in core when they are read. The record where

J = 22 contains only two words of the header.

The location that would

be the third word is filled by 4 bytes of a 0 integer. The assignment

number for the header record when the Flexible Record was built is set to

0. The above records are repeated for each assignment.

V-14

Route Records

Displacement Bytes

0

2

10

12

14

16

12 + NLS*4

Length Bytes

2

2

Contents

Route Code

Anode bf the Link
Bnode of the Link
Functional Class Code

Distance of the link in
0.01 mile units.

Speed of the link in 0.1
mile/hour units

Count field in units of
100 trips

Capacity in units of 100
trips

Nondirectional Assigned volume
for the first assignment

Nondirectional Assigned volume
for the NLS assignment

One Route record is written for each link that has a routé code

where the Anode is less than the Bnode.

V-15

SPIDER NETWORK DATA SET
(Format Type Code: S)

Subnet Record

Byte Displacement Length in Bytes Contents
0 4 Number of Subnets (Set to 1).
4 : 4 ; Network Speed in miles/hour
8 4 Literal 'SPDR'

Network Parameter Record

Byte Displacement Length in Bytes Contents

0 ’ - 4 Subnet Number (Set to 1)
4 4 Number of Nodes
8 4 First Node (Set to 1)

12 : 4 1

16 4 Last Node

20 4 Last Node

24 ' 4 0

28 : 4 0

32 - 4 Number of oneway links

Index Record

Byte Displacement Length in Bytes Contents
0 2 Link index of node N
2 2 Link index of node N + 1
398 2 Link index of node N + 199

V-16

There are 200 indices in each record except the last one. The

last record contains the number of indices which is the number of

nodes taken modulus 200 plus one.

N starts at 1 for the first record and

is incremented by 200 for each additional record necessary.

Time Link Records

Byte Displacement

0

se s P~

796

Length in Bytes

4

es s P~

Fo

The format of a Oneway Link is:

Bit Displacement

0

20

Length in Bits

1

14

14

V-17

Contents
Oneway Link

Oneway Link

.

Oneway Link

Contents

Last Link Flag (Contains

1 if it is either the last
link from the Anode or if it
is indicating a dummy Link
to Anode.)

Shaft flag
0 = one direction (could

be East-West)

1 = the other direction
(could be North-South)
Arrow Elag

Not used

Link Time in hundredths
of a minute

Bnode of Link

The Anode of the Link must be used as an index into the Index array to
get the index where the links from the Anode start in the Time Link
Array. If an Anode has no links comnected to it then INDEX(ANODE) =
INDEX(ANODE + 1). The last Time Link Record may be less than 200 words
since it will contain only the remaining links in the network. The Links
from one Anode are in the follewding.order: oneway out, twoway, and dummy
oﬁeway in. Within each class of oneway links, the links are in the 6rder

of the link data cards. -

Turn Type Records

Byte Displacement Length in Bytes Contents

0 4 For node N, the first two bits
are zero, the next six bits
contain the turn type code for
the node which is set to 28,
and tthe next 24 bits contain
zZeros.

4 4 For node N + 1 with the above
information types.

796 4 For node N + 199 with the above
information types.

There is a turn type word for each node from node 1 to the last node in
the network. All turn type codes are 28 which indicate no turns are to

be saved. This array is broken up into 200 word records as shown above.

v-18

TRIP MATRIX DATA SET
(Format Type Code: T)

Header Record

Displacement Length : Contents
0 4 | Number of Subnetworks
4 4 : First centroid in Subnet I
8 4 Last €entroid in Bubnet I

The last two items are repeated for the number of subnets where I = 1,N.

Trip Record

Displacement Length Contents

0 4 Origin zone of all interchanges
in this record

Subnet of the origin zone

4 N-Number of interchanges in

this record (from 1 to 100)
%2 % znterchange item
8+4N 4 Iﬁterchange item

The interchange item is an 18 bit interchange volume followed by a 14—~
bit destination zone number.

The trip records are in sort on the origin zone and the interchange items
for each origin are in sort on the destination 2zones.

V-19

SCRATCH NODE NAMES DATA SET
(Format Type Code: X)

Node Name Record

Displacement Bytes Length Bytes Contents
0 4 Anode number as a 4 byte
integer
4 20 Node name

The node name records are written in ascending order of node numbers.

V-20

SCRATCH PACKED LINKS DATA SET
(Format Type Code: Y)

This data set is made up of records which contain 40 link records.
Thses 40 link records are in the 22 byte format used in the LINKS array
in Logical Division 1, The link records are sorted on the key of Anode,
Link class, and Link data card count in ascending order for both Unit 3
and Unit 11 separately. The format for the 22 byte link records is

as follows:

- Displacement Length
‘Bytes ~ Bits ‘Bytes ' Bits - Contents
0 0 0 14 Anode number
1 6 0 2 Link class code
0 = twoway
1 = oneway out -
2 & 3 = dummy link
2 0 0 15 Link data card count
3 7 0 1 Mileage code
' 0 = Use in Vehicle Mileage Summary
1 = Do not use in Vehicle Mileage
Summary
4 0 0 14 Bnode number
5 6 0 14 Count field in units of 100 trips
7 4 0 4 Jurisdiction code in hexadecimal
8 0 0 4 Functional class code in hexadecimal
8 4 0 7 Subarea code
9 3 0 14 Link Capacity in units of 100 trips
11 1 0 7 Speed in units of tenths of a mile
per hour

v-21

Link Record Format (continued)

Displacement o 'Length .
Bytes ~ Bits " Bytes 'Bits Contents
12 0 0 10 Link distance in units of —l—-of a
100
mile
13 2 0 7 Corridor intersect code
14 1 0 5 Route number
14 6 0 1 Shaft code, 0 = one direction
: 1 = other direction
14 7 0 1 © Arrow code, 0 = one direction
1 = other direction
15 0 1 0 Unused
16 0 0 6 Link Impedance field, in units of
"—&;-min tes
100 ™™
16 6 0 1 Link delete code
0 = keep link
1 = delete link from updated
Flexible Data Record
16 7 4 1 Unused

V-22

SCRATCH MULTIPLE ASSIGNMENTS DATA SET

Header Record

Displacement Bytes

0
4
8.

Links Record

Displacement Bytes

(Format Type Code:

Length Bytes

4
4

Length Bytes

4

Contents
Last node number
Number of one-way links

Number of Turning Movements
saved

Contents
Link Volume I

Link Volume I + 1

Link Volume K

The link records contain from 1 to 4000 directional link volumes

each and the link volumes are written out in order of ascending link index.

Turn Volume Records

Displacement Bytes

0
4

4K - 4

Length Bytes

4
4

vV-23

Contents

Turn Volume I

Turn Volume I + 1

Turn Volume K

The turn volume records contain from 1 to 4000 turn volumes and
are written in order of ascending turn volume indexes.
The link volume records and turn volume records are repeated for

other iterations of an Assign Self-Balancing run.

V=24

OUTPUT SELECTED LINKS

The OUTPUT SELECTED LINKS program must be run as a separate job
(or as separate job steps). It uses the SELTRP data set built by
ASSIGN SELECTED LINKS as input. The program performs two sorts and,

thereby, produces two data sets. Both data sets have the same format.

The format for these data sets is as follows:

V-25

'SORTED SELECTED INTERCHANGES DATA SET

This is the data set which comes from the first sort in the OUTPUT
SELECTED LINKS job as it is modified by the E 35 exit in the IBM sort
using the E 35 assembly language subroutine. It is also the format
of the data set which results from the second sort performed in the

4

OUTPUT SELECTED LINKS job.

Header Records

Bytes Displacement Length in Bytes Contents
0 _ 2 Zeros
2 2 | 21 + 1
4 : 8 Columns 81 + 1 to

81 + 7 of the Header Line
There are 12 header records (I = 0, 11); each header record has
eight bytes of the header line except the last record which has four bytes

of the header line.
Select.Record

Bytes Displacement Length in Bytes Contents

0 2 Link Index of Selected Link#*
2 2 Smallest node number of the

selected link

4 ‘ 2 Largest node number of the
selected :1link

6 2 ‘ 32767
8 | 2 Percent of Trip Volumes
to print for this selected Link
10 2 Cut of Volume for Printing
12 2 ~ Number of Trip Interchanges
to print

*This i1s the index of the directional link from the smallest node of this
selected link to the largest node of this selected link.

V-26

Sum Record

Displacement Bytes

0

2

10

Interchange Record

Displacement Bytes

0

2

10

14

Length in Bytes

2

4

Length in Bytes

2

-2

V=27

Contents

Link Index of Selected Link
Zero

32766

-1

Sum of Trip interchange

loaded through the Selected
Link

Contents

Link Index of Selected Link
First Zone of the Interchange
Second Zone of the Interchange
Nondirectional link volume
between the origin and
destination zones

Directional link volume
(direction specified by

Trip Direction Code)

Trip Direction Code
(see table on next page)

First Zone to Second Zone

Second Zone to First Zone

Trip Direction Interchaqge v . Interchange
Code Direction of trip Direction of trip
through link is small through link is
‘ node number to large small node number
Decimal | Binary Present node number Present | to large node number
1 0001 No - Yes Yes
2 0010 Yes Yes No -
3 0011 Yes Yes Yes Yes
5 0101 No - Yes ‘No
7 0111 Yes Yes Yes No
10 1010 Yes No No -
11 1011 Yes No Yes ‘Yes
15. 1111 Yes No Yes No !

v-28

OTHER INFORMATION

PRINTED OUTPUT FROM $ASSIGN AND
$ASSIGN SELF-BALANCING

TURNING MOVEMENTS

PRINTED OUTPUT FROM $ASSIGN AND
$ASSIGN SELF-BALANCING

Nineteen different types of tables may be produced during the
execution of $ASSIGN SELF-BALANCING and sixteen different types during the
execution of $ASSIGN. However, many of these tables are produced only
under certain conditions. In addition, during the $ASSIGN SELF-BALANCING
process, many of these tables are produced multiple times: some after
each iteration, some after certain iterations, and some only after the
last iteration. The following two tables, therefore, provide a summary of

the output produced by these two programs under the various conditions:

VIi-1

SUMMARY OF OUTPUT FOR $ASSIGN SELF-BALANCING AND $ASSIGN

$ASSIGN SELF-BALANCING $ASSIGN
0
o
0 oo
" Qu
s BE maw
N o Qg
& g (S
o o [=J] 238
oH @ o 9 g
g g g)s g5 e
c o ¢ 6 & oo
o~ o [o] o o~ T w
Is) Ie] o4 0 Yy n 9 o<
© o] 4+ 2] [) =
H N 8 <Yy <SS~ AW
d 0 M . @ = B 0
& 4 [] o N o o S!U
= - & [ONN:] 9 U 1
-l o= &=z 0
In] = S0 < L] oo
1] (] - 80 O [=] QU
H 8 § 3% Rkpb B
OUTPUT BH O W BO EBEBWw O«
1. Selected Tables and Summaries* X X X X X X
2. Iteration Weighting-Multiple
Regression Analysis X X X
3. Link Volumes X X X X
4, Iteration Weights Applied X
5. Corridor Intercept Tables X X
6. Route Profiles X X
7. List of Volumes and
Impedances for Updated Links X

*gee table titled 'Tables and Summaries Produced with Each Assignment” on next
page. ‘

VI-2

TABLES AND SUMMARIES PRODUCED WITH EACH ASSIGNMENT

CONDITIONS UNDER WHICH
TABLE OR SUMMARY IS PRODUCED
P -
=i
H u o
0 o o0 —
W W ox o
wE g
v w O n o 0.C
WX "X TWH WD @
Sg 8§ o B =
3 - OH O w0
N e - A
) w AR N
- PR o o
Mo ®WO KW O WM
i - £E0 ®©Oo A
Ve L = B
I n oo ® T
Ye Fe S8 98 &%
§2 5§58 2°F 84 %8
T e T - a
+] NG NO O
g8 €9 gfo &u oW
Tables and Summaries ;38 53 2 8 2 & Siﬁ
1. Cross Classification of V/C Frequencies
from Last Two Assignments X
2. Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments X X
3. Jurisdiction Summary ; X
4. Jurisdictional/Functional Cross Classi-~
fication of Assigned Volumes X
5. Jurisdictional/Functional Cross Classi-
fication of Counted Volumes X X
6. Jurisidctional/Functional Cross Classi-
fication of Link Capacities X : X
7. Comparison of Assigned Volumes with
Counted Volumes X
8. Comparison of Assigned Volumes with
Link Capacities : X
9. Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last) X

VI-3

TURNING MOVEMENTS

Turning movements are directional volumes which are loaded through

a specific triplet of nodes. Turning movements are logically associated

with the intersection node. For a node connected to three other nodes

the following equations can be written:

1,1t T2t ,30

To1 ¥ Ty 2% T 3=D

T3, ¥ T3, + T3 3 = D4

TpatT 1t}

T1,2% T2t 3 9= Ry

T1,3 1 Ty,31 703,53 =R,

Where Ri = the directional link volume from the intersection
node to the node of the ish link.

Where Dj = the directional link volume from the node of the
jl:--!-1 1ink to the intersection node.

Where Tij' the turning movement between the node in the iEh

link and the node in the th-link which are connected

to the intersection node.

These equations can also be represented by a matrix with two vectors:

T, T2 T | Dy
Ta,1 Ta,0 T3 D,
3,0 3,2 T3 Ps
R Ry Ry

Vi-4

Because of the way in which trees are built and in which paths are
represented in the Texas Small Network Package the turning movements on
the diagonal of the matrix which are U-turns are all zero. Also the
turning movements in some rows and columns will be zero because of the
one-way links. - To limit the possible number of cases with one-way
links, the links which are connected to each node are conﬁected in the
following order: one-way links into the node, two-way links, one-way.
links out from node.

Putting in zeros for the diagonal elements for a case of three

two-way links there are six equations with six unknowns:

0 T2 T3l D
To,p O Ta,3 | D2
T30 T3, O Dy
R, R, R

Each equation has two variables in it and one constant. Six equations
with six unknowns can be solved if the equations are independent, however
these equations are not. If any one of the six turning movements is known
the other five can be calculated. The known turning movement will make
two equations with only one uﬁknown each which can be calculafed and the
turning movements which are calculated from these equations will allow

other turning movements to be calculated.

VI-5

The following method is used in calculating turning movements:
(1) All locations in the turning movements matrix are set to -1 to
represent unknowns; (2) The diagonal elements are set to zeros; (3) If
there are any one-way links into the node then the corresponding row
of the matrix is set to zero; (4) If there are any one-way links out
the corresponding column of the matrix is set to zero; (5) Turning
movements which have been saved are placed in the matrix; (6) The directional
link volumes are found and become two vectors of constants; (7) The
matrix is searched by rows and if a row has only one unknown it is
calculated; (9) ' If there are any unknown turning movements left then
steps 7 and 8 are repeated for up to N times where N is the number of
nodes connected to the intersection node.

The process for calculating unknown tu;ning movements can be used for
a node connected to any number of nodes but the number of turning movements
to save if all links are two-way goes up rapidly with the nﬁmber of links
to which a node is connected. Also the number of combinations of one-
way links out, two-way links and one-way links in goes up rapidly with
the number of links even when these links are sorted into the three link
classes and arranged in the above order. For N, the number of nodes to
which an intersection node is connected, where the links are all two-way

M= N2 - 3N+ 1 for N > 2 where M is the number of turning movements to

save. If U-turns were allowed then M = N2 - 2N + 1.
In the Texas Small Network Package turn codes are set up for all

combinations of two-way and one-way links for a node connected to either

three or four nodes. Also there is a turn code for a node connected to

VI-6

either five or six nodes. These turn codes are set up in either the
Prepare Network, Assembly Network, or the Revise Network program and they
are written on the Flexible Data Record data set. The turn code are
described in a table. The turn codes for a node connected to five or
six nodes cause enough turning movements to be saved to calculate the
other turning movements when all of the ;inks are two-way. This is also
more than enough for the cases with one or more one-way links.

The turn codes and their meaning have been defined for the Texas
Small Network Package since 1967 but a method for determining which turning
movements to save énd which to:calculate will be outlined here. The
easiest way to work with this problem is to represent the turning movements
in a matrix form as was done earlier for the case of a node connected
to three other nddes. It is convenient to let the row and column positions
within the matrix represent the links which contain the node numbers instead
of writing subscripts on the variables. Also a "s" will be written if
the turning movement is saved, a ''¢'" will be written if it is calculated
and a zero will be written in the matrix position if the turning movement
is known to be zero either because it is a U-turn or because of a one-way
link. Also the two vectors which represent directional link volumes
will not be written since these are always saved. To identify each case
three one digit integers will be written over each matrix which are the
number of two-way links, the number of one-way links in and the number
of one-way links out which are. connected to the intersection node.
The following examples are all of the cases for a node connected to

four other nodes for which one or more turning movements must be saved:

VI-7

VI-8

TURN CODES

Total Number of
Turn Number Turning Move-
Code of Links T I 0 ments to Save Turn Movements to Save*
1 3 0 0 3 0
2 3 0 1 2 0
3 3 0 2 1 0
4 3 0 3 0 0
5 3 1 0 2 0
6 3 1 1 1 0
7 3 1 2 0 0
8 3 2 0 1 0
9 3 2 1 0 0
10 3 3 0 0 1 3-1
11 4 0 0 4 0 |
12 4 0 1 3 0
13 4 0 2 2 1 4-1
14 4 0 3 1 0
15 4 0 4 0 0
16 4 1 0 3 0
17 4 1 1 2 1 4-1
18 4 1 2 1 1 4-1
19 4 1 3 0 0
20 4 2 0 2 1 4-1
21 4 2 1 1 2 4-1,3-2
22 4 2 2 0 1 4-1
23 4 3 0 1 3 4-1,4-2,3-1
24 4 3 1 0 3 4-1,4-2,3-1
25 4 4 0 0 5 4-1,4-2,3-1,3-2,2-3
26 5 - - - 11 5-1,5-2,5-3,4~-1,4-2 ,4-3,
3-1,3-2,3-4,2-3,2-4
27 6 - - - 19 6-1,6-2,6-3,6-4,5~1,5-2,
5-3,5-4,5-1,4-2,4-3,4-5,
3-1,3-2,3-4,3-5,2-3,2-5,
1-4
28 - - - - 0 #%
T = number of two-way links connected to the intersection node
I = number of one-way links connected into the intersection node
0 = number of one-way links connected out from the intersection node

*The turning movements to save are listed by the subscript pair in the form i-j which
indicate the position of the turning movement in the turning movement matrix.
**Save no turning movements for this node (or centroid) and print no turning movements.

vi-9

RECENT CHANGES

AND MODIFICATIONS

