UNITED STATES FEDERAL AVIATION AGENCY

AIR VEHICLE PERFORMANCE CHARACTERISTICS

Volume V ENROUTE

FOR

BUREAU OF RESEARCH & DEVELOPMENT U S FEDERAL AVIATION AGENCY Washington 25, D C

BY.

APPLIED SCIENCE DIVISION FAIRCHILD ENGINE & AIRPLANE CORP Alexandria, Virginia

AIR VEHICLE PERFORMANCE CHARACTERISTICS This is a fourteen volume study, containing the following

V ol ume	I - A	٠		٠		٠			•		Ground Operations
Volume	I⊣B										Ground Operations
Volume	II									•	Take-Off
Volume	III		•					•			Pre-Climb
Volume	IV-A	_									Climb
Volume	IV-B	1							•		Climb
Volume	V										Enroute
Volume	VI										Descent
Volume	IIV										Approach
Volume	VIII										Glide Path
Volume	ΙX										Landing
* Volume	$X \sim A$									•	Classified Military Aircraft (S)
* Volume	X~B										Classified Military Aircraft (S)
* Volume	ΧĮ										Future Aircraft (S)

^{*} Volumes I-A through IX contain flight phase data on current aircraft, except those classified by the military The latter are in Volumes X-A and X-B, and future aircraft in Volume XI. These three volumes have a security classification of secret

GROUND OPERATIONS	TAKE- OFF	PRE- CLIMB	CLIMB	ENROUTE	DESCENT	APPROACH	GLIDE PATH	LANDING
I-A I-B	п	ш	IV - A IV - B	v	M	VII	<u> </u>	130
							-	-
			FLIG		SES			

UNITED STATES FEDERAL AVIATION AGENCY
Bureau of Research & Development Washington 25, D.C.

MASTER INDEX

The following is a complete listing of the 122 aircraft reported and their location by volume.

Aircraft	<u>V o 1</u>	Aircraft	<u>Vol.</u>
Aero Commander 500	I-IX	Convair C-131A	I-IX
Aero Commander 680 (L-26C)	I-IX	Convair F-102A	X
Aero Commander 720	I-IX	Convair F-106A	X
Avro CF-100 MK5	X	Convair R4Y-1	I-IX
Beechcraft "Bonanza" K-35	I-IX	Convair T-29C	I-IX
Beechcraft "Twin Bonanza"		Convair YB/RB-58	X
(L-23D)	I-IX	Curtiss C-46R	I-IX
Beechcraft Model 95	I-IX	de Havilland "Beaver"	
Beechcraft MS 760	ΧI	(L-20A)	I-IX
Beechcraft Super 18	I-IX	de Havilland Comet 4	I-IX
Beechcraft T-34A	I-IX	j	
Bell H-13H (47G-2)	I-IX	(U-1A)	I-IX
Bell H-40	I-IX	Douglas AD-6	X
Bell XV-3	XI	Douglas A3D-2	X
Boeing 707-121	I-IX	Douglas A4D-1	X
Boeing 707-320	ΧI	Douglas C-124C	I-IX
Boeing B-377	I-IX	Douglas C-133A	I-IX
Boeing B-47B/B-47E	I-IX	Douglas DC-3 (C-47, R4D)	I-IX
Boeing B-52F	X	Douglas DC-4 (C-54)	I-IX
Boeing KC-97G	I-IX	Douglas DC-6	I-IX
Boeing KC-135A	I-IX	Douglas DC-6B	I - IX
Canadair CP-107	X	Douglas DC-7	I - IX
Canadaır Sabre MK 6	X	Douglas DC-7B	I-IX
Canadair T-33A MK3	X	Douglas DC-7C	I-IX
Cessna 150	$I \neg IX$	Douglas DC-8	ΧI
Cessna 172	I-IX	Douglas DC-9	ΧI
Cessna 175	I-IX	Douglas F4D-1	X
Cessna 180 (Amphibian)	I-IX	Douglas RB/WB-66B	I-IX
Cessna 182	I-IX	Fairchild C-119G	$I \neg IX$
Cessna 310A (L-27A)	I–IX	Fairchild C-123B	I - IX
Cessna 310C	I-IX	Fairchild F-27B	I-IX
Cessna L-19 A/E (OE-1)	I-IX	Goodyear ZPG-2	I-IX
Cessna T-37A	I-IX	Goodyear ZPG-3W	I-IX
Cessna TL-19D	$I \neg IX$	Grumman F9F-8T	X
Chance-Vought F8U-1	X	Grumman FilF-1	X
Convair 340/440	I-IX	Grumman SA-16A GR (UF-1)	I-IX
Convair 600	XI	Grumman S2F-1	X
Convair 880-22	XI	Hayes-Boeing KB-50J/KB-50K	I⊷IX

UNITED FEDERAL AVIATION AGENCY STATES Bureau of Research & Development Washington 25, D.C.

MASTER INDEX - (Contid.)

Aircraft	<u>V o 1</u>	Aircraft	Vol.
Hiller H-23D	I-IX	North American F-100D	X
Hiller XH-18	XI	North American F-108	XI
Lockheed 1049G	I-IX	North American FJ-3B	X
Lockheed 1649A	I-IX	North American FJ-4/FJ-4B	X
Lockheed C-121 C/G	I-IX	North American TB-25M	I-IX
Lockheed C-130A	I-IX	North American T-28A	$I \neg IX$
Lockheed F-104A	X	North American T-28B	I-IX
Lockheed P2V-5	X	North American T-39A	XI
Lockheed T2V-1	$I \neg IX$	North American T2J-1	I-IX
Lockheed T-33A-1	I~IX	Northrop F-89H	I-IX
Lockheed WV-2	X	Northrop T-38A	X
Lockheed Electra 188	I-IX	Piper "Tri-Pacer" PA-22	I-IX
Lockheed Jetstar	ΧI	Piper "Apache" PA-23	I-IX
MACH 3 Transport	XI	Piper "Comanche" PA-24-180	I-IX
Martin 404	I-IX	Republic F-84F Series	I-IX
Martin B-57B	I-IX	Republic F-105B	X
Martin P5M-2	X	Sikorsky H-19D	I-IX
McDonnell 119A (UCX)	ΧI	Sikorsky H-34A (S-58)	
McDonnell F-101B	X	(HSS-1)	I-IX
McDonnell F3H-2	X	Sikorsky H-37A	I-IX
McDonnell F4H-1	X	Vertol 107	XI
Mooney Mark 20A	I-IX	Vertol H-21C (44-B)	$I \neg IX$
North American A3J-1	X	Very Large Subsonic Jet	
North American B-70	XI	Cargo	XI
North American F-86L	I-IX	Vickers Viscount 745D	$I \sim IX$
		Vickers Viscount 812	I - IX

Table of Contents for Volumes I-A through IX

Section 1 - Military Aircraft

Douglas C-124C Lockheed T2V-1 Beechcraft T-34A Bell H-13H (47G-2) Douglas C-133A Lockheed T-33A-1 Bell H-40 Douglas RB/WB-66B Martin B~57B Fairchild C-119G North American F-86L Boeing B-47B/B-47E Fairchild C-123B North American TB-25M Boeing KC-97G Boeing KC-135A Goodyear ZPG-2 North American T-28A Goodyear ZPG-3W North American T-28B Cessna L-19 A/E Grumman SA-16A-North American T2J-1 (OE-1)Cessna TL-19D GR (UF-1) Northrop F-89H Cessna T-37A Haves-Boeing KB-50J Republic F-84F Series Convair C-131A and KB-50K Sikorsky H-19D Convair R4Y-1 Hiller H-23D Sikorsky H-34A (S-58) (HSS-1) Convair T-29C Lockheed C-121 C/G Sikorsky H-37A Curtiss C-46R Lockheed C-130A Vertol H-21C (44-B)

Section 2 - Commercial Aircraft

Lockheed 1049G Boeing B-377 Douglas DC-6 Boeing 707-121 Douglas DC-6B Lockheed 1649A Convair 340/440 Martin 404 Douglas DC-7 de Havilland Comet 4 Douglas DC-7B Vickers Viscount 745D Douglas DC-3 Douglas DC-7C Vickers Viscount 812 (C-47, R4D)Fairchild F-27B Douglas DC-4 (C-54) Lockheed Electra 188

Section 3 - General Aviation

Aero Commander 500 Cessna 180 (Amphibian) Cessna 182 Aero Commander 680 (L-26C) Cessna 310A (L-27A) Aero Commander 720 Beechcraft "Bonanza" K-35 Cessna 310C Beechcraft "Twin Bonanza" (L-23D) de Havilland "Beaver" (L-20A) Beechcraft Model 95 de Havilland "Otter" (U-1A) Beechcraft Super 18 Mooney Mark 20A Cessna 150 Piper "Tri-Pacer" PA-22 Cessna 172 Piper "Apache" PA-23 Cessna 175 Piper "Comanche" PA-24-180

(date of latest revision September 1, 1959)

UNITED STATES FEDERAL AVIATION AGENCY
Bureau of Research & Development Washington 25, D.C.

Volumes I-A through IX

SECTION 1

MILITARY AIRCRAFT

containing data on

Beechcraft T-34A Bell H-13H (47G-2)

Bell H-40

Boeing B-47B/B-47E

Boeing KC-97G Boeing KC-135A

Cessna L-19 A/E (OE-1)

Cessna TL-19D Cessna T-37A Convair C-131A Convair R4Y-1

Convair T-29C

Curtiss C-46R Douglas C-124C

Douglas C-124C Douglas C-133A

Douglas RB/WB-66B

Fairchild C-119G

Fairchild C-123B

Goodyear ZPG-2 Goodyear ZPG-3W Grumman SA-16A-GR (UF-1) Hayes-Boeing KB-50J/KB-50K

Hiller H-23D

Lockheed C-121 C/G

Lockheed C-130A

Lockheed T2V-1

Lockheed T-33A-1

Martin B-57B

North American F-86L

North American TB-25M

North American T-28A

North American T-28B

North American T2J-1

Northrop F-89H

Republic F-84F Series

Sikorsky H-19D

Sikorsky H-34A (S-58) (HSS-1)

Sikorsky H-37A

Vertol H-21C (44-B)

(date of latest revision September 1, 1959)

UNITED STATES FEDERAL
Bureau of Research & Development

AVIATION AGENCY Washington 25, D.C.

Sequence of Operations

After reaching cruise altitude (see Table I for enroute data at cruise altitude), a maximum range airspeed of 102 knots IAS is maintained. This is also the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 146
Maximum endurance 73
Maximum range 102
Maximum allowable 243

Turbulent air penetration. 120 to 130 knots IAS at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet
Minimum acceptable 2,000 feet
Maximum endurance 6,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 110 knots IAS in clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Beechcraft T-34A-1

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

			Fuel Data	at 2 , 900	Pounds Gross	Weight
age Length in	Altıtude	Speed Kno	ts Nautical M	liles	Dev	per
autical Miles	(Feet)	IAS T	AS per 100	Lbs	100	Lbs.
) to 700	Max accpt. 10,000	102 1	19 285		4	8%
	Opn. desir. 6,000	" 13	10 "		ı	I.
	Min accpt 2,000	" 10)5 -			-

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), a constant airspeed of 75 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed

Maximum continuous 87 knots IAS
Maximum endurance 40 knots IAS
Maximum range 60 knots IAS
Maximum allowable 87 knots IAS
Minimum allowable rotor rpm 322
Maximum allowable rotor rpm 360
Operationally desirable rotor rpm 360

Turbulent air penetration 45 knots IAS at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 6,000 feet
Minimum acceptable 2,000 feet
Maximum endurance 2,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish standard rate turns at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

				Fuel Data at 2, 350 I	Pounds Gross Weight
Stage Length in	Altıtude	Speed	l Knots	Nautical Miles	Dev. per
Nautical Miles	(Feet)	IAS	TAS	per 10 Lbs	250 Lbs.
0 to 50	Max. accpt. 4,000	75	80	13.3	6%
	Opn. desir. 2,000	11	77	13.5	5%
	Min. accpt. 2,000	H	11	TI .	11
50 to 200	Max. accpt. 6,000	75	82	12.5	3%
	Opn. desir. 4,000	† t	80	13.3	6%
	Min. accpt. 2,000	11	77	13.5	5%

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Bell H-40

NARRATIVE SUMMARY

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), enroute airspeed will vary between 75 and 102 knots IAS. These are operationally desirable enroute airspeeds

Speeds

Maximum continuous 105 knots IAS
Maximum endurance 50 knots IAS
Maximum range 100 knots IAS
Maximum allowable 105 knots IAS
Minimum allowable rotor rpm 285
Maximum allowable rotor rpm 314
Operationally desirable rotor rpm 314

Turbulent air penetration 75 knots IAS at any gross weight and at all altitudes.

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 6,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish standard rate turns at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

				Fuel Data at 5,710	Pounds Gross Weight	
Stage Length in	Altıtude	$\operatorname{Speed} olimits$	Knots	Nautical Miles	Dev. per	
Nautical Miles	(Feet)	IAS	TAS	per 100 Lbs.	500 Lbs	
0 to 50	Max. accpt. 6,000	95	104	28	3.0%	
	Opn. desir 2,000	102	# 3	25	2.4%	
	Min. accpt. MEA	IT				
50 to 150	Max accpt 10,000	7 5	88	27	1.8%	
	Opn. desir. 6,000	95	104	28	3.0%	
	Min accpt 2,000	102	11	25	2 4%	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I) for optimum cruise altitudes for various stage lengths), a maximum range airspeed of Mach 0 74 is maintained. This is the operationally desirable enroute airspeed

Speeds

Maximum continuous Mach 0.81 (limited to 100 nautical miles)

Maximum endurance * 275 knots IAS (at a gross weight of 180,000 pounds and 23,000 feet altitude)

Maximum range Mach 0.74 or 252 knots IAS

Maximum allowable (with external wing tanks empty or partially filled)

Gross Weight Do Not Exceed

Below 140,000 pounds	456 knots IAS or Mach 0 86
140,000 to 180,000 pounds	390 knots IAS or Mach 0.85
Above 180,000 pounds	370 knots IAS or Mach 0.80

Turbulent Air Penetration

- 125,000 pounds gross weight 250 knots IAS up to 32,500 feet Mach 0 74 from 32,500 to 34,500 feet Do not exceed 34,500 feet.
- 180,000 pounds gross weight 280 knots IAS up to 24,800 feet. Mach 0.74 from 24,800 to 27,000 feet Do not exceed 27,000 feet.
- Note For gross weights below 125,000 pounds, speeds can be decreased 25 knots, for gross weights above 180,000 pounds, speeds can be increased 45 knots
- * For each 10,000 pounds decrease in gross weight, the airaircraft must climb 1,700 feet and IAS must be decreased 8 knots to maintain maximum endurance speed.

Altıtudes

Maximum Operationally desirable 35,500 feet Minimum acceptable 24,000 feet Maximum endurance 23,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with gear down. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Boeing B-47B and B-47E

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

						Fuel Data at 180),000 Pounds C	iross Weight
Stage Length in	Altıtude		S	peed I	Knots	Nautical Miles	Dev. Per	Dev. Per
Nautical Miles	(Feet)		IAS	TAS	MACH	per 1,000 Lbs.	10,000 Lbs.	MACH 0 01
0 to 150	Max. accpt.	28,000	288	440	0.74	32 0	5.0%	2.0%
	Opn. desir.	26,000	300	443	11	31,5	4.0%	7.5
	Min. accpt.	24,000	316	447	*1	30.5	3.6%	11
150 to 500	Max. accpt.	30,000	277	436	0.74	31.7	6.5%	2.0%
	Opn. desir	28,000	288	440	11	32.0	5.0%	11
	Min. accpt	26,000	300	443	11	31.5	4.0%	11
500 to 1,000	Max. accpt.	31,000	272	434	0.74	31.0	7.3%	2.0%
	Opn. desir.	29,000	285	43 8	11	32.0	5.8%	11
	Min accpt.	27,000	295	442	11	31.7	4.5%	***
1,000 and up	Max. accpt.	35,500	243	425	0.74	27.0 %	10.8%	2.0%
-	Opn. desir.	33,000	259	430	11	29.0 *	9.0%	11
	Min. accpt.	31,000	272	434	**	31.0	7.3%	?1

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

^{*} This aircraft cannot fly at or above 33,000 feet at gross weights in excess of 177,000 pounds.

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an average airspeed of 230 knots TAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 280
Maximum endurance 170
Maximum range 180
Maximum allowable 301 at any gross weight

Turbulent air penetration 190 at any gross weight and at all altitudes

Altitude

Maximum operationally desirable 18,000 feet Minimum acceptable 12,000 feet Maximum endurance 15,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I ENROUTE (Performance Data for Various Stage Lengths)

						Fuel Data at 164,950 Pounds Gross Weight	ounds Gross Weight
Stage Length in *	u	Altitude	4)	Speed TAS	Speed Knots	Nautical Miles	Dev per 10,000 Lbs
Nautical Milles		(100 1)		1	i i		
0 to 2,000	Max	accpt	18,000	173	230	76 3	% 2 9
	Opn	desir	15,000	183	<u>-</u>	-	=
	Mın	Min accpt 12,00	12,000	192	=	5	Ξ

*The mission of the aircraft directs the above desired altitudes for all stage lengths regardless of distance (The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed of Mach 0 78 is maintained. This is the operationally desirable enroute airspeed.

Speed

Maximum continuous Mach 0 82

*Maximum endurance 254 knots IAS (at a gross weight of 243,000 pounds and at an altitude of 28,700 feet)

Maximum range Mach 0 78

Maximum allowable

At any gross weight Do not exceed 350 knots IAS or Mach 0 90, whichever is less

Turbulent air penetration Mach 0.70 or 250 knots IAS, whichever is less (any gross weight and at all altitudes)

Altitudes

Maximum operationally desirable 34,000 feet
Minimum acceptable 25,000 feet
*Maximum endurance 28,700 feet (at a gross weight of 243,000 pounds)

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with speed brakes extended. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

*For each 10,000 pound decrease in gross weight, the aircraft must climb approximately 570 feet and IAS must be decreased approximately 6 knots to maintain maximum endurance speed

Boeing KC-135A

TABLE I, ENROUTE (Performance Data for Various Stage Lengths

							Fuel Data at 24	l3, 000 Pounds	Gross Weight
Stage Length in		Altıtude		$\mathbf{s}_{\mathbf{p}}$	eed K	nots	Nautical Miles	Dev. per	Dev per
Nautical Miles		(Feet)		IAS	TAS	MACH	per 1,000 Lbs	10,000 Lbs	MACH 0 01
0 to 2,000	Max	accpt	34,000	270	452	0 78	37	4%	Negl1g1ble
	\mathbf{Opn}	desir	33,000	275	454	11	11	3%	11
	M_{1n}	accpt	25,000	328	468	н	31	1%	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between 81 and 87 knots IAS. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 150

Maximum endurance 74

Maximum range 81

Maximum allowable 155 (L-19A & OE-1)
165 (L-19E)

Turbulent air penetration 87 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance. 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in		Altıtude	;	Speed	l Knots	Fuel Data at 2,400 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles		(Feet)		IAS	TAS	per 10 Lbs	300 Lbs
0 to 150	Max	accpt	5, 000	83	89	21 0	2.9%
	Opn	desir	5,000	11	11	† t	11
	Mın	accpt	MEA				
150 and Up	Max	accpt	10,000	81	94	21 8	3 9%
	Opn	$\operatorname{des_{1r}}$	10,000	11	11	t1	11
	$\dot{\mathbf{M}}$ ın	accpt	5,000	83	89	21 0	2 9%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies from 90 to 98 knots IAS. These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 161
Maximum endurance 74
Maximum range 90
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

165

Turbulent air penetration 87 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,500 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

	474 4 7	C	. T5 a.t	Fuel Data at 2,400 Pounds	_
Stage Length in	Altitude	Speed	Knots	Nautical Miles	Dev. per
Nautical Miles	(Feet)	IAS	TAS	per 10 Lbs.	200 Lbs.
0 to 150	Max. accpt. 7,500	93	103	24.5	4.0%
	Opn. desir. 5,000	95	102	24.0	3.4%
	Min. accpt. 2,500	98	100	23.7	3.1%
150 to 500	Max. accpt. 10,000	90	105	25.0	4.6%
	Opn. desir. 5,000	95	102	24.0	3.4%
	Min. accpt. 2,500	98	100	23.7	3.1%

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths) a maximum range airspeed varying between 147 and 187 knots IAS is maintained. These are the operationally desirable enroute airspeeds

Speed

Maximum continuous 236 knots TAS

Maximum endurance 130 knots IAS

Maximum range 236 knots TAS

Maximum allowable Mach 0 65 or 382 knots IAS (whichever is less)

Turbulent air penetration 200 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 30,000 feet
Minimum acceptable 10,000 feet
Maximum endurance 30,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed plus 10 knots and in clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn at 140 knots IAS (See appendix for turning radius, angle of bank and speed conversion graphs)

(Performance Data for Various Stage Lengths) TABLE I, ENROUTE

tage Length ın Jautıcal Miles		н,	ed Kr	Fuel Data at 6, 400 Nautical Miles per 1,000 Lbs	Pounds Gros Dev 1,00
) to 600	Max accpt. 30,000			430	1.7%
	Opn. desir. 25,000	00 164		420	1.2%
	Min accpt. 10,000	00 187	216	400	1 0%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude, (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed varies from 169 to 187 knots IAS as indicated in Table I. These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous. 220 Maximum endurance: 124

Maximum range. 180 (at 39,000 pounds gross weight at 10,000 feet)

Maximum allowable:

Gross Weight	Do Not Exceed
At any gross weight	266 (up to 16,500 feet. Above 16,500 feet, reduce airspeed 5 knots per 1,000 feet.)

Turbulent Air Penetration

Gross Weight	Speed
34,000	156
36,000	158
38,000	160
40,000	162
42,000	165
44,000	167
46,000	169

Altitudes

Maximum operationally desirable 20,000 feet

Minimum acceptable MEA

Maximum endurance: 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish either a one-half standard or standard rate turn, at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs).

Convair C-131A

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

age Length in	. Altıtu	de	Speed	Knots	Fuel Data at 39,000 Nautical Miles	Pounds Gross Weight Dev. per
Jautical Miles	(Feet	:)	IAS	TAS	per 1,000 Lbs.	1,000 Lbs.
0 to 100	Max. accpt.	10,000	179	210	229	1.0%
	Opn. desir.	5,000	187	200	217	0.5%
	Min. accpt.	MEA	I	Not availa	ble from operator	·
100 to 300	Max. accpt.	15,000	175	220	232	1.3%
	Opn. desir.	8,000	182	205	223	0.8%
	Min. accpt.	MEA	I	Not availa	ble from operator	
300 to 800	Max. accpt.	15,000	175	220	232	1.3%
	Opn. desir.	10,000	179	210	229	1.0%
	Min, accpt.	5,000	187	200	217	0.5%
1000 to 3000	Max. accpt.	20,000	169	230	235	1.3%
	Opn. desir.	15,000	175	220	232	īt. Ž
	Min. accpt.	<u>-</u>	187	200	217	0.5%

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a constant airspeed of 175 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 260

Maximum endurance 130

Maximum range 155

Maximum allowable At any gross weight do not exceed airspeeds presented below

Altitude (Feet)	Level Flight	Diving
Sea level to		
10,000	260	295
15,000	248	264
20,000	218	232

Turbulent air penetration 160 knots at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 14,000 feet

Minimum acceptable MEA

Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

ı

Convair R4Y-

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Store I anoth an	Altıtude	Speed Knots	Fuel Data at 46,000 Pour Nautical Miles	nds Gross Weight Dev per
Stage Length in		-		-
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	2,000 Lbs
0 to 100	Max accpt 5,000	175 188	20 2	3 5%
	Opn desir 3,000	" 183	20 3	2 8%
	Min accpt MEA	-	-	-
100 to 300	Max accpt 10,000	175 203	20 2	3 0%
	Opn desir 8,000	'' 197	11	3 2%
	Min accpt 5,000	" 188	11	3 5%
300 to 500	Max accpt 13,000	175 214	19 9	3 3%
	Opn desir 9,000	11 200	20 2	3 1%
	Min accpt 5,000	188	II	3 5%
500 to 1,200	Max accpt 14,000	175 219	19 2	3 4%
	Opn desir 12,000	" 210	19 7	3 2%
	•		·	· ·
	Min accpt 8,000	'' 197	20 2	3 2%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), the airspeed will vary between 154 and 187 knots IAS These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 202 to 209 (44, 500 to 32, 000 pounds gross weight at 15, 000 feet altitude)

Maximum endurance: 127 to 108 (44,500 to 32,000 pounds gross weight)

Maximum range 153 to 138 (44, 500 to 32, 000 pounds gross weight at 5,000 feet altitude)

Maximum allowable

Gross Weight Do Not Exceed At any gross weight 266 (sea level to

266 (sea level to 16,500 feet altitude) 258 (at 18,000 feet altitude) 248 (at 20,000 feet altitude)

Turbulent air penetration 164 at a gross weight of 41,500 pounds. Deviation with gross weight 1 0% per 1,000 pounds.

Altıtude

Maximum operationally desirable 18,000 feet Minimum acceptable MEA Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Convair T-29C

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length	ın Altıtı	ıde	Speed	Knots	Fuel Data at 41,500 Nautical Miles	Pounds Gross Weight Dev per
Nautical Mile			IAS	TAS	per 1,000 Lbs	1,000 Lbs
0 to 100	Max. accpt	5, 000	186	200	172	1 0%
	Opn desir.	4,000	187	11	175	11
	Min. accpt	MEA	-	11	-	-
100 to 300	Max. accpt	10,000	172	200	187	1 5%
	Opn desir.	8,000	177	† I	181	1 0%
	Min accpt.	5,000	186	11	172	11
300 to 500	Max. accpt.	13,000	164	200	187	2.0%
	Opn desir.	9,000	175	11	185	1 5%
	Min. accpt	5,000	186	11	172	1 0%
500 to 1, 200	Max. accpt	18,000	154	200	187	2 5%
, ,	Opn desir.	12,000	167	11	11	1 5%
	Min. accpt	8,000	177	11	181	1 0%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths) a maximum range airspeed of 165 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 189
Maximum endurance 115
Maximum range 165
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight - - - - - - - - - 233

Turbulent air penetration 127 at any gross weight, and at all altitudes

Altıtude

Maximum operationally desirable 12,000 feet Minimum acceptable 2,000 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

					Fuel Data at 42,000	Pounds Gross Weight
Stage Length in	Altıtud	le	Speed	Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS	TAS	per 100 Lbs	1,000 Lbs
0 to 150	Max accpt	5,000	165	178	18 6	
	Opn desir	3,000	11	173	11	Not available
	Min accpt.	2,000	ŧŧ	170	11	from operator
150 to 500	Max. accpt	8,000	165	186	18 6	
	Opn desır	6,000	11	180	11	
	Mın accpt	4,000	П	175	Н	
500 to 1,000	Max accpt	12,000	165	198	18 6	
	Opn desir	8,000	11	186	11	
	Min accpt.	4,000	П	175	T f	

Note Above 12,000 feet altitude, the number of nautical miles obtained per 100 pounds of fuel decreases approximately 1 7% for each 1,000 foot increase in altitude

(The above values are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed varies between 166 and 170 knots IAS. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 220 (low blower at 10,000 feet and 2,650 bhp)

Maximum endurance 140

Maximum range 168

Maximum allowable

Do Not Exceed		
:38		

Turbulent air penetration

Gross Weight	Speed
168,000 pounds	171
160,000 pounds	168
150,000 pounds	165
140,000 pounds	162

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 145 knots IAS with flaps extended 10 degrees. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

G. 11		A 7	1	C	TZ 4		Pounds Gross Weight
Stage Length in Altitude		ıe	Speed Knots		Nautical Miles	Dev. per	
Nautical Miles		(Feet))	IAS	TAS	per 1,000 Lbs	10,000 Lbs
0 to 1,000	Max	accpt.	9,000	166	190	65	Negligible
	$\mathbf{O}_{\mathbf{P}^{\mathbf{n}}}$	desır	7,000	11	185	66	11
	Min	accpt	MEA	11			11
1,000 and up	Max	accpt	10,000	166	192	64	Negligible
	Opn	desir	9,000	11	190	65	11
	Min	accpt	5,000	11	179	67	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Note. Between 5,000 and 10,000 feet altitude, the number of nautical miles obtained per 1,000 pounds of fuel decreases approximately 1.5% for each 10°C increase in temperature.

Sequence of Operations

After reaching cruise altitude, (see Table I for optimum altitude for various stage lengths) a maximum range airspeed of 260 knots TAS is maintained. This is the operationally desirable enroute airspeed.

Speeds

Maximum continuous 274 knots IAS*
Maximum endurance

Gross Weight (knots IAS)

275,000	pounds	173
255,000	11	160
200,000	11	145
150,000	t1	150

Maximum range 260 knots TAS Maximum allowable 340 knots IAS*

Turbulent air penetration 230 to 260 knots TAS*

Altitudes

Maximum operationally desirable 25,000 feet Minimum acceptable 13,000 feet Maximum endurance. 25,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for angle of bank, turning radius, and speed conversion graphs.)

^{*}Estimated data

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

					*Fuel Data at 270,000 Po	ounds Gross Weight
Stage Length in	Altıtud	e	Speed	i Knots	Nautical Miles	Dev. per
Nautical Miles	(Feet)	ı	IAS	TAS	per 1,000 Lbs	10,000 Lbs
100 to 500	Max accpt.	15,000	206	260	28.7	4.5%
	Opn desir.	15,000	11	11	11	11
	Min accpt.	13,000	213	11	28 0	3.0%
500 to 1,000	Max. accpt.	25,000	174	260	41.2	5 6%
	Opn desir.	21,000	186	11	36 0	3.1%
	Min. accpt	15,000	206	tt	28.7	4 5%
1,000 to 3,000	Max. accpt.	25,000	174	260	41 2	5.6%
	Opn. desir.	25,000	11	11	11	H
	Min. accpt.	21,000	186	П	36.0	3.1%

^{*} At 270,000 pounds gross weight, climb cruise procedure is initiated at 15,000 feet altitude. At a constant TAS of 260, rate of climb is approximately 20 feet per minute.

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), an airspeed of 0 80 Mach is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 350 to 361 (80,000 to 50,000 pounds gross weight at 25,000 feet altitude)

Maximum endurance 185 to 235 (50, 000 to 70, 000 pounds gross weight at 30,000 feet altitude)

Maximum range 232 to 266 (50,000 to 70,000 pounds gross weight at 36,089 feet altitude)

Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

570 up to 5,000 feet
Mach 0.95 at 5,000 feet

and above

Turbulent air penetration 250 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 43,000 feet

Minimum acceptable MEA

Maximum endurance 30,000

Holding Configuration and Turning Radius

Enroute holding is accomplished at 225 knots IAS with the aircraft in clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a half-standard rate turn (see appendix for turning radius, angle of bank, and speed conversion graph)

Douglas RB/WB-66

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

				Fuel Data at 70	,000 Pounds	Gross Weight
tage Length in	Altıtude	Speed F	Knots	Nautical Miles	Dev. per	Dev. per
Vautical Miles	(Feet)	IAS TAS	MACH	per 1,000 Lbs	1,000 Lbs	MACH 0.01
Up to 500	Max accpt 35,00	00 268 458	0.80	75 0	10 0%	
	Opn desir 20,00	00 366 487	***	49.5	3 0%	
	Min. accpt MEA					
500 to 1,000	Max accpt 35,00	00 268 458	0.80	75.0	10.0%	
	Opn desir. 25,00	0 335 478	11	58.5	4.3%	Not available
	Min accpt 20,00	00 366 487	Ħ	49 5	3 0%	from operator.
1,000 and up	Max accpt 35,00	0 268 458	0.80	75.0	10 0%	
_	Opn desir 30,00	0 300 468	11	68.0	5 9%	
	Min accpt. 25,00	00 335 478	ft	58.5	4,3%	

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed of 178 knots TAS is maintained. This is the operationally desirable enroute airspeed.

Speeds

Maximum continuous 225 knots TAS

Maximum endurance 154 to 170 knots TAS

Maximum range 175 to 180 knots TAS

Maximum allowable 217 knots IAS (maximum dive speed)

Turbulent air penetration 157 knots IAS at 64,000 pounds gross weight at all altitudes

Percent deviation with gross weight per 1,000 pounds 0.5%

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance air speed in a clean configuration. An alternate configuration is with gear down. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed (See appendix for turning radius angle of bank and speed conversion graphs.)

Fairchild C-119G

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

					Fuel Data at 64,000 l	Pounds Gross Weight	
Stage Length in	Altıtude	•	Speed Knots		Nautical Miles	Dev per	
Nautical Miles	(Feet)		IAS	TAS	per 1,000Lbs	5,000 Lbs.	
0 to 400	Max. accpt	10,000	153	178	133	6.0%	
	Opn desir.	6,000	164	11	128	5 5%	
	Min accpt.	MEA		11			
400 to 1,000	Max accpt	10,000	153	178	133	6 0%	
	Opn desir.	8,000	159	11	130	11	
	Min. accpt.	MEA		tt			

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a constant airspeed of 160 knots TAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous: 180 at sea level, 169 at 10,000 feet Maximum endurance: 108 at 53,000 pounds gross weight (for each 5,000 pounds decrease in gross weight, IAS must decrease 4 7 knots to maintain maximum endurance speed)

Maximum range 126 at 53,000 pounds gross weight
Maximum allowable 245 at any gross weight and at all
altitudes

Turbulent air penetration 151 at 53,000 pounds gross weight (percent deviation per 5,000 pounds gross weight 3%)

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length 1r	n	Altitud	le	Speed	Knots	Fuel Data at Nautical Mile	53,000 Pounds Gross Weight s Dev per
Nautical Miles		(Feet)	IAS	TAS	per 1,000 Lbs	5,000 Lbs
0 to 400	Max.	accpt.	10,000	138	160	154	5.0%
	Opn	desir	6,000	144	11	146	4 0%
	Mın	accpt.	MEA				
400 to 1,000	Max	accpt	10,000	138	160	154	5 0%
	Opn	desir	8,000	142	11	150	4.5%
	Min	accpt.	MEA				

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude which is dependent upon the published minimum enroute altitude (MEA), a constant airspeed of 50 knots IAS is maintained during the enroute phase. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 68
Maximum endurance 35 (single engine)
Maximum range Not available from operator
Maximum allowable 75 at any gross weight

Turbulent air penetration moderate turbulence, do not exceed 55, severe turbulence, do not exceed 48, at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 3,000 feet
Minimum acceptable MEA
Maximum endurance Not available from operator

Holding Configuration

Enroute holding is accomplished at operationally desirable airspeed with the airship in clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Goodyear ZPG-2

TABLE I, ENROUTE (Performance Data for Any Stage Length up to 1,500 Nautical Miles)

			Fuel Data at Any Gross	Weight
Stage Length in	Altıtude	Speed Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	1,000 Lbs
0 to 1,500	Max accpt. 3,000	50 54	14	Negligible
	Opn. desir MEA	11		
	Min accpt. MEA	11		

The airship cannot fly above 5,500 feet at gross weights in excess of 66,800 pounds, nor above 5,000 feet at gross weights in excess of 68,800 pounds

Note Airships can hold within. Plus or minus 20 feet altitude in stable air
Plus or minus 100 feet altitude in moderate turbulence
Plus or minus 500 feet altitude in severe turbulence

Sequence of Operations

After reaching cruise altitude which is dependent upon the published minimum enroute altitude (MEA), a constant airspeed of 55 knots IAS is maintained. This is the operationally desirable enroute airspeed

Speed (knots IAS)

Maximum continuous 70

Maximum endurance not available from operator *

Maximum range not available from operator *

Maximum allowable 82

Turbulent air penetration moderate turbulence, do not exceed 55, severe turbulence, do not exceed 40 at any gross weight and at all altitudes.

Altitudes

Maximum operationally desirable 4,000 feet
Minimum acceptable MEA
Maximum endurance not available from operator *

Holding Configuration

Enroute holding is accomplished at operationally desirable airspeed and in clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a standard rate turn (See appendix for turning radius, angle of bank, and speed conversion graphs.)

* This airship is presently undergoing tests. It is not expected to join Navy Fleet until January 1960.

TABLE I, ENROUTE
(Performance Data for any Stage Length up to 1,300 Nautical Miles)

					Fuel Data at any	Gross Weight
Stage Length in	Al tıtud	е	Speed	Knots	Nautical Miles	Dev. per
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs.	1,000 Lbs.
0 to 1,300	Max accpt.	4,000	55	58	8, 3	Negligib l e
•	Opn. desir.	MEA	11			• -
	Min. accpt.	MEA	11			

The airship cannot fly above 5,000 feet at any gross weights in excess of 80,000 pounds

NOTE Airships can hold within Plus or minus 20 feet altitude in stable air
Plus or minus 100 feet altitude in moderate turbulence
Plus or minus 500 feet altitude in severe turbulence

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitude for various stage lengths), an airspeed of 140 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous

Altitude	Speed
5,000	191
10,000	172
15,000	161

Maximum endurance 115 Maximum range 128 Maximum allowable 260

Turbulent air penetration 110 to 130

Altıtude

Maximum operationally desirable 15,000 feet
Minimum acceptable MEA
Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 140 knots IAS in a clean configuration. Turns at operational altitude are executed at an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Fuel Data at 28,000 Pounds Gross Weight Nautical Miles Percent Dev per per 100 Lbs 1,000 Lbs	3,0% 2,8%	3, 3% 3, 0%
Fucl Data at 28,000 Nautical Miles per 100 Lbs	25. 2 24. 7	25.9 25.2
Knots TAS	153 144	166 153
Speed Knots IAS TAS	140	: : :
	6,000 2,000 MEA	11,000 6,000 MEA
Altıtude (Feet)	Max, accpt. Opn, desir, Min accpt	Max. accpt. Opn. desir. Min. accpt.
Stage Length ın Nautıcal Mıles	0 to 150	150 to 2, 000

(The values above are to be substituted directly in the enjoute equation in the appendix, In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), a constant airspeed of 185 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

4 reciprocating engines

Maximum continuous 225
Maximum endurance 160
Maximum range not applicable
Maximum allowable 296 (or Mach 0 62, whichever is less)

6 engines

Maximum continuous 296 (or Mach 0.62, whichever is less)
Maximum endurance 170
Maximum range not applicable
Maximum allowable same as max. continuous

180

Turbulent air penetration

120,000 pounds

Gross Weight 160,000 pounds 200 140,000 pounds 190

Altitudes

4 reciprocating engines

Maximum operationally desirable 25,000 feet Minimum acceptable 5,000 feet Maximum endurance not available

6 engines

Maximum operationally desirable 35,000 feet Minimum acceptable 20,000 feet Maximum endurance not available

Holding Configuration and Turning Radius

Enroute holding is accomplished at 155 knots IAS, flaps extended 15 degrees and engine rpm at 2, 100. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn (see appendix for turning radius, angle of bank and speed conversion graphs).

TABLE I, ENROUTE

4.4	Reciprocating E	Engines	(Performance	Data for	Various	Stage	Lengths))
-----	-----------------	---------	--------------	----------	---------	-------	----------	---

Stage Length 1	n Altıtude	Speed	l Knots	Fuel Data at 165,000 F	-
~ ~		-			Dev per
Vautical Miles	(Feet)	LAS	TAS	per 1,000 Lbs	10,000 Lbs.
0 to 500	Max. accpt. 10,000	185	215	60	12.5%
	Opn. desir 8,000	11	209	62	12%
	Min. accpt. 5,000	11	198	65	7 5%
500 to 1000	Max. accpt. 15,000	185	232	60	12.5%
	Opn. desir. 10,000	11	215	11	tt
	Min. accpt. 5,000	11	198	65	7.5%
1000 and up	Max. accpt. 15,000	185	232	60	12.5%
-	Opn. desir. 12,000	11	222	11	11
	Min. accpt 8,000	11	209	62	12%

3.6 Engines (Performance Data for Various Stage Lengths)

Any	Max. accpt. 30,000	185	297	
•	Opn. desir. 25,000	11	272	Not available from operator
	Min accot. 20,000	11	250	-

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), a constant airspeed of 65 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed

Maximum continuous 81 knots IAS
Maximum endurance 40 knots IAS
Maximum range 60 knots IAS
Maximum allowable 83 knots IAS
Minimum allowable rotor rpm 314
Maximum allowable rotor rpm 395
Operationally desirable rotor rpm 370

Turbulent air penetration 45 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 6,000 feet Minimum acceptable MEA Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish standard rate turns at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

				Fuel Data at 2,640	Pounds Gross Weight
Stage Length in	Altıtude	Speed	l Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS	TAS	per 10 Lbs	500 Lbs
0 to 50	Max accpt 4,000	65	69	6.7	4%
	Opn. desir. 2,000	11	67	6 5	11
	Min accpt. MEA	*1	-		
50 to 150	Max. accpt. 6,000	65	71	6 9	4%
	Opn. desir. 4,000	17	69	6.7	н
	Min. accpt. MEA	11	~		

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeeds will vary with different stage lengths between 216 knots TAS and 240 knots TAS. These are the operationally desirable airspeeds

Speed (knots IAS)

Maximum continuous 260 below 12,000 feet, above 12,000 feet same as maximum allowable airspeed

Maximum endurance 173

Maximum range 198

Maximum allowable

Gross Weight	Do Not Exceed
	

At any gross weight

260 at 12,500 feet and
below, above 12,500 feet
decrease airspeed 10 knots
for each 2,500 feet increase
in altitude

Turbulent air penetration 60 knots IAS above stall speed at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 19,000 feet Minimum acceptable 8,000 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at maximum endurance airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in		Altıtude	<i>a</i> .	Speed	Speed Knots	Fuel Data at 13 Nautical Miles	Fuel Data at 130,000 Pounds Gross Weight Nautical Miles Dev per	Gross Weight Dev per
Nautical Miles		(Feet)		IAS	TAS	per 100	Lbs	10,000 Lbs.
500 to 1,000	Max	accpt	12,000	180	216	06		3 3%
	Opn	desir	10,000	186	Ξ	<u>.</u>		=
	Mın	accpt	8,000	192	Ξ	=		Ξ
1,000 to 1,500	Max	accpt	18,000	177	235	88		4 5%
	Opn	desir	16,000	183	Ξ	Ξ		Ξ
	Min	accpt	8,000	194	218	06		3 3%
Step climb								
For first 500	Max	accpt	12,000	181	218	06		3 3%
miles of 1, 500	Opn		10,000	187	£	Ξ		Ξ
mile stage length	Mın	accpt	8, 000	194	-	ž		Ξ
After first	Max	accpt	19,000	178	240	88		4 5%
500 miles of	Opn	desir	17,000	184	.	Ξ		Ξ
1,500 mile	M_{1D}	accpt	15,000	190	<u>=</u>	Ξ		Ξ
stage length								

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for all stage lengths) airspeed will vary between 192 and 196 knots IAS as indicated in the table. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 220 to 208 (70,000 to 120 000 pounds gross weight at 25,000 feet altitude)

Maximum endurance 114 to 151 (70,000 to 120,000 pounds gross weight at 25,000 feet altitude)

Maximum range 168 to 194 (70,000 to 120,000 pounds gross weight at 25,000 feet altitude)

Maximum allowable

Gross Weight	Do Not Exceed
At any gross weight	287 at sea level
	280 at 10,000 feet
	273 at 20,000 feet
	257 at 25, 000 feet
	230 at any altitude with
	cargo exceeding 27, 500
	pounds

Turbulent air penetration 60 knots above power-off stall speeds for operating gross weights, never exceed 230 in moderate to severe turbulence

Altıtude

Maximum operationally desirable 26,000 feet
Minimum acceptable 23,000 feet
Maximum endurance 23,000 feet to 31,000 feet at 120,000
to 70,000 pounds gross weight

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed, plus 20 knots IAS in a clean configuration. Turns at 20,000 feet or above, are executed with an angle of bank to accomplish one-half standard rate turn. Below 20,000 feet altitude, turns are executed at an angle of bank to accomplish a standard rate turn (see appendix for turning radius, angle

Lockheed C-130A

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

			Fuel Data at 120,000 F	Pounds Gross Weight
Stage Length in	Altitude	Speed Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS TAS	per 1,000 Lbs	10,000 Lbs
For all stage	Max accpt 26,500	196 298	76	4 3%
lengths	Opn desir 25,000	194 290	TT.	EE
_	Min accpt 23,000	192 287	11	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude, (see Table I for optimum cruise altitude for various stage lengths), a maximum range airspeed of Mach 0 64 is maintained. This is the operationally desirable enroute airspeed

Speeds

Maximum continuous Mach 0 75

Maximum endurance Mach 0 54

Maximum range Mach 0 64

Maximum allowable Mach 0 80 or 505 knots IAS (whichever is less)

Turbulent air penetration 240 knots IAS at all altitudes and at all gross weights

Altitudes

Maximum operationally desirable 40,000 feet Minimum acceptable 30,000 feet Maximum endurance 35,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish one-half standard rate turns, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

							Fue.	l Data	at 15	5,000 Pounds (Gross Weight
Stage Length in		Altituo	le	Sp	eed K	nots	Nau	tical 1	Mıles	Dev. per	Dev. per
Nautical Miles		(Feet))	IAS	TAS	MACH	\mathtt{per}	100	Lbs	1,000 Lbs	MACH 0 01
0 to 1,500	Max	accpt.	40,000	190	367	0.64		23 0		4.0%	0 5%
	Opn.	desır	35,000	210	370	11		11		!1	11
	Min	accpt.	30,000	240	376	11		11		11	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), cruise airspeeds will vary with different stage lengths from 220 knots IAS to 250 knots IAS

Speed

Maximum continuous Mach 0 80 or 505 knots IAS (whichever is less)

Maximum endurance 200 knots IAS Maximum range 220 knots IAS Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

Mach 0 80 or 505 knots IAS, whichever is less

Turbulent air penetration 250 knots IAS up to 30,000 feet, 220 knots IAS above 30,000 feet

Altitude

Maximum operationally desirable. 35,000 feet
Minimum acceptable 25,000 feet
Maximum endurance 32,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed with speed brakes extended. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn at maximum endurance airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths

							Fuel Data at 13	,750 Pounds	Gross Weight
Stage Length in	n	Altıtu	.de	S	peed K	nots	Nautical Miles	Dev. per	Dev per
Nautical Miles		(Fee	t)	IAS	TAS	MACH	per 1,000 Lbs	1,000 Lbs	MACH 0 01
150 to 500	Max	accpt	30,000	250	395	0 67	245	3%	1%
	Opn	desır.	27,000	11	375	0 63	226	11	Ħ
	Min	accpt	25,000	11	362	0 60	214	11	11
500 to 1,500	Мах	accpt	35,000	220	383	0 67	274	4%	1%
	Opn	desir	30,000	11	351	0 60	244	11	TT.
	Min.	accpt	27,000	11	308	0 51	232	11	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude, (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed of Mach 0 72 is maintained. This is the operationally desirable enroute airspeed

Speed

Maximum continuous clean - Mach 0 82, with external tip tanks - Mach 0 78

Maximum endurance 140 to 240 knots IAS

Maximum range Mach 0 72

Maximum allowable clean - 513 knots IAS, with external tip tanks - 444 knots IAS

Turbulent air penetration 180-200 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 48,000 feet Minimum acceptable MEA Maximum endurance 33,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a one-half standard rate or a standard rate turn at either maximum endurance or operationally desirable airspeed (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

				Fuel Data at 52	,000 Pounds	Gross Weight
Stage Length in	Altıtude	Speed I	Knots	Nautical Miles	Dev per	Dev. per
Nautical Miles	(Feet)	IAS TAS	MACH	per 1,000 Lbs	$5,000\mathrm{Lbs}$	MACH 0,01
Any stage length	Max accpt. 48,000	177 415	0 72	104	8.0%	1 0%
up to 1,600 N M.	Opn desir 37,500	230 "	11	106	11	Ħ
	Min accpt MEA					

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude, the maximum range airspeed will vary between 255 knots IAS and 275 knots IAS. These are the operationally desirable enroute airspeeds

Speed

Maximum continuous Mach 0 87 (no afterburner)

Maximum endurance 180 knots IAS at 25,000 feet altitude

Maximum range 255 knots IAS at 36,000 feet altitude

Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

610 knots IAS (no external tanks)

Turbulent air penetration 250 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 38,000 feet Minimum acceptable 25,000 feet Maximum endurance 30,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 10 knots IAS above maximum endurance airspeed and in clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn at 10 knots IAS above maximum endurance airspeed (See appendix for turning radius, angle of bank and speed conversion graphs.)

North American F-86L

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

							Fuel Data at 16,	000 Pounds	Gross Weight
Stage Length in		Altıtu	de	Sp	eed K	nots	Nautical Miles	Dev per	Dev per
Nautical Miles		(Feet	:)	IAS	TAS	MACH	per 1,000 Lbs	1,000 Lbs	MACH 0 01
0 to 1,200	Max	accpt	38, 000	250	452	0 79	213	3 8%	0 5%
	\mathbf{Opn}	desir	34,000	275	454	11	11	11	11
	$\bar{ ext{Min}}$	accpt	25,000	11	397	0 66	11	t t	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 155 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 174
Maximum endurance 115
Maximum range 147
Maximum allowable 278

Turbulent air penetration 160 at 27,000 pounds gross weight (percent deviation per 1,000 pounds gross weight 1.6%) at all altitudes.

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 9,500 feet or below

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed (see appendix foturning radius, angle of bank, and speed conversion graphs)

North American TB-25M

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed Knots	Fuel Data at 27,000 Nautical Miles	Pounds Gross Weight Dev. per
Nautical Miles	(Feet)	IAS TAS	per 1,000 Lbs	2,000 Lbs
0 to 150	Max accpt 10,000	155 180	357	3%
	Opn desir 5,000	'' 167	333	11
	Min accpt MEA			
150 to 1,500	Max. accpt. 10,000	155 180	357	3%
	Opn. desir. 10,000	11 11	II.	n ·
•	Min accpt. 5,000	'' 167	333	11

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitude), an airspeed of 160 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 185
Maximum endurance 90
Maximum range 130
Maximum allowable (varies with altitude and configuration)

Altıtude	0 - 2,500	2, 500 - 5, 000	5,000 - 7,500	7,500 - 10,000
No extra load	340	335	330	310
With extra load	295	290	285	270

Turbulent air penetration 160 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet
Minimum acceptable MEA
Maximum endurance 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished in clean configuration, at 130 knots IAS with 2,100 rpm and 24 inches manifold pressure. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn (see appendix for turning radius, angle of bank, and speed conversion graphs).

North American T-28A

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

		_		Fuel Data at 7,		_
age Length in	Alt_1tude	Spee	d Knots	Nautical Miles	Dev per	Dev per
autical Miles	(Feet)	IAS	TAS	per 100 Lbs	100 Lbs	5 Knots
) D to 1,000	Max accpt. 10	,000 160	187	92	2 2%	4.4%
	Opn. desir. 5	5,000 ''	171	11	11	11
	Min. accpt M	EA -	-	_	_	-

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 150 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous Not available from manufacturer
Maximum endurance 90
Maximum range Not available from manufacturer
Maximum allowable (varies with altitude and configuration)

Altıtude	0 - 2,500	2,500 - 15,000	15, 000 - 25, 000	25,000 - 35,000
\mathbf{W} ıth extra load	295	270	240	190

Turbulent air penetration 160 at any gross weight and at all altitudes

Alt1tude

Maximum operationally desirable 35,000 feet Minimum acceptable MEA Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished in clean configuration, at 130 knots IAS with 2,100 rpm and 24 inches manifold pressure. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn (see appendix for turning radius, angle of bank, and speed conversion graphs)

Not all Allerican 1-20

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

						Fuel Data at 8,000	Pounds Gross Weight
Stage Length in		Altıtude		Speed Knots		Nautical Miles	Dev pe r
Nautical Mi	ıles	(Fee	et)	IAS	TAS	per 100 Lbs	500 Lbs.
0 to 800	Max	accpt	35,000	150	265	94.5	3.5%
	Opn	$\mathtt{des}_{\mathtt{1r}}$	20,000	11	205	11	11
	\mathbf{M} ın	accpt	MEA	11			

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude, an operationally desirable airspeed of 220 knots IAS is maintained.

Speeds

Maximum continuous Mach 0.70

Maximum endurance 139 knots IAS

Maximum range 180 knots IAS

Maximum allowable 0 - 7,800 feet, 486 knots IAS, above 7,800 feet, Mach 0 85

Turbulent air penetration 200 knots IAS

Altitudes

Maximum operationally desirable 40,000 feet
Minimum acceptable 20,000 feet
Maximum endurance 40,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish one-half standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs).

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in Altitude Speed Knots Nautical Miles Dev per Nautical Miles (Feet) IAS TAS per Lbs Lbs

No enroute data available from operator; aircraft is presently engaged in performance tests

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between Mach 0.68 and Mach 0.70 These are the operationally desirable enroute airspeeds

Speed

Maximum continuous Not available from operators

Maximum endurance 250 knots TAS

Maximum range Mach 0.70

Maximum allowable. Below 20,000 feet, Mach 0.90 or

470 knots IAS, whichever is less. There are no airspeed limitations above 20,000 feet

Turbulent Air Penetration

At all altitudes With any tip tank fuel - 275 knots IAS, with no tip tanks or with tip tanks empty - 325 knots IAS

Altitudes

Maximum operationally desirable 36,000 feet Minimum acceptable 28,000 feet Maximum endurance 30,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn, at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs).

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

			Fuel Data at 40,	000 Pounds	Gross Weight
Stage Length in	Altitude	Speed Knots	Nautical Miles	Dev. per	Dev. per
Nautical Miles	(Feet)	IAS TAS MACH	per 1,000 Lbs	1,000 Lbs	MACH 0 01
0 to 500	Max. accpt. 32,000	240 396 0.68	99.0	1.5%	0.7%
	Opn. desir 30,000	255 400 ''	93 0	1 3%	0 5%
	Min. accpt. 28,000	265 404 "	87.0	1.1%	0.3%
500 and Up	Max. accpt. 36,000	228 400 0.70	110 0	2.0%	1.1%
	Opn. desir. 35,000	235 404 "	107.0	1.9%	1.0%
	Min. accpt. 33,000	242 407 "	101.0	1.7%	0.8%

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), the average airspeed will vary from Mach 0 64 to Mach 0 80, as shown in the table. This is the operationally desirable range of airspeeds

Speed

Maximum continuous Mach 0 88

Maximum endurance 220 knots IAS

Maximum range 250 knots IAS

Maximum allowable Mach 0 95

Turbulent air penetration 275 knots IAS at any gross weight and at all altitudes

Altatude

Maximum operationally desirable 40,000 feet Minimum acceptable 20,000 feet Maximum endurance 35,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a one half standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Republic F-84F Series

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

						Fuel Data at 19	,000 Pounds	Gross Weight
Stage Length	ın Altıt	Altıtude		eed K	nots	Nautical Miles	Dev. per	Dev. per
Nautical Mile	s (Fe	et)	IAS	TAS	MACH	per 1,000 Lbs	1,000 Lbs	MACH 0.01
0 to 500	Max accpt	35,000	265	4 50	0.78	231	3.7%	
	Opn desir.	30,000	280	440	0 75	210	2.6%	
	Min accpt.	20,000	295	395	0,64	173	2.4%	
500 to 1,000	Max accpt.	40,000	245	4 60	0 80	237	5 3%	Not avaılable
	Opn desir	35,000	265	450	0 78	231	3.7%	from
	Min accpt	30,000	280	440	0 75	210	2 6%	operator
1,000 and up	Max. accpt	40,000	245	460	0.80	237	5 3%	
_	Opn desir.	40,000	11	11	11	11	11	
	Min accpt.	35,000	265	450	0 78	231	3 7%	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), enroute airspeed will vary between 68 and 73 knots IAS These are operationally desirable enroute airspeeds

Speed

Maximum continuous 100 knots IAS
Maximum endurance 52 knots IAS
Maximum range. 76 knots IAS
Maximum allowable: 115 knots IAS
Minimum allowable rotor rpm 170
Maximum allowable rotor rpm 245
Operationally desirable rotor rpm 185 to 220

Turbulent air penetration 70 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 6,000 feet Minimum acceptable MEA Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish standard rate turns at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length ir	1	Altıtud	le	Speed	d Knots	Fuel Data at 7,800 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles		(Feet)	l	IAS	TAS	per 100 Lbs	1,000 Lbs
0 to 50	Max	accpt	2,000	73	75	32 2	16 7%
	$\mathbf{O}\mathbf{p}\mathbf{n}$	desir	2,000	11	11	11	11
	Mın	accpt	MEA	11	11		
50 to 350	Max	accpt	6,000	68	74	29 4	21.0%
	\mathbf{O} pn	\mathtt{desir}	4,000	70	11	31 2	17 0%
	Mın	accpt	2,000	73	75	32 2	16 7%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), the airspeed will vary between 76 and 93 knots IAS. These are the operationally desirable enroute airspeeds.

Speed

Maximum continuous 95 knots IAS
Maximum endurance 60 knots IAS
Maximum range 85 knots IAS
Maximum allowable 110 knots IAS
Minimum allowable rotor rpm 170
Maximum allowable rotor rpm 258
Operationally desirable rotor rpm 195 to 220

Turbulent air penetration 75 knots IAS at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 8,000 feet Minimum acceptable: 2,000 feet Maximum endurance 2,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish standard rate turns at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

S1korsky H-34A (S-58) (HSS-1)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	*Altıtude	Speed Knots	Fuel Data at Nautical Miles	Pounds Gross Weight Dev. per
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs.	1,000 Lbs.
0 to 50	Max accpt. 6,000	82 90	20.8	61 0%
	Opn. desir 2,000	93 96	23.2	22.5%
	Min. accpt. 2,000	11 11	П	11
50 to 300	Max. accpt. 8,000	76 86	18.2	49 0%
	Opn desir 4,000	87 92	22.7	36 0%
	Min accpt 2,000	93 96	23 2	22.5%

*This helicopter cannot fly above 8,000 feet at gross weights in excess of 13,300 pounds.

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), enroute airspeed will vary between 70 and 90 knots IAS These are operationally desirable enroute airspeeds

Speeds

Maximum continuous 100 knots IAS
Maximum endurance 75 knots IAS
Maximum range 79 knots IAS
Maximum allowable 110 knots IAS
Minimum allowable rotor rpm 140
Maximum allowable rotor rpm 215
Operationally desirable rotor rpm 157 to 185

Turbulent air penetration 75 knots IAS at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 8,000 feet
Minimum acceptable 2,000 feet
Maximum endurance 2,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished in a clean configuration at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeeds. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

tage Length 11	n	Altıtu	de	Speed	Knots	Fuel Data at Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	3	(Feet	t)	IAS	TAS	per 100 Lbs	1,000 Lbs
0 to 50	Max	accpt	6,000	72	78	7 5	5 7%
	Opn.	desir.	2,000	90	93	8.2	none
	Mın.	accpt.	2,000	11	н	H	11
50 to 300	Max	accpt	8,000	70	79	6 7	11 0%
,	Opn	desir.	4,000	79	84	7 7	2 0%
	Min	accpt	2,000	9 0	93	8 2	none

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), enroute airspeed will vary between 64 and 81 knots IAS. These are the operationally desirable enroute airspeeds

Speeds

Maximum continuous 95 knots IAS
Maximum endurance 58 knots IAS
Maximum range 76 knots IAS
Maximum allowable 100 knots IAS
Minimum allowable rotor rpm 233
Maximum allowable rotor rpm. 258
Operationally desirable rotor rpm 240

Turbulent air penetration 75 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 8,000 feet Minimum acceptable 2,000 feet Maximum endurance 2,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at cruise airspeed. Turns at operational altitudes are executed normally with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Vertol H-21C (44-B)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude		Speed Knots		Fuel Data at 13,500 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs	2,000 Lbs
0 to 50	Max accpt	6,000	76	83	16 1	41%
	Opn desir	2,000	81	11	17 8	33%
	Min accpt	2,000	11	11	11	11
50 to 300	Max accpt	8,000	64	72	14 5	48%
	Opn desir	4,000	77	82	17 0	36%
	Mın accpt	2,000	81	83	17 8	33%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

AIR VEHICLE PERFORMANCE CHARACTERISTICS

Volumes I-A through IX

SECTION 2

COMMERCIAL AIRCRAFT

containing data on

Boeing B-377 Douglas DC-7B

Boeing 707-121 Douglas DC-7C

Convair 340/440 Fairchild F-27B

de Havilland Comet 4 Lockheed Electra 188

Douglas DC-3 (C-47, R4D) Lockheed 1049G

Douglas DC-4 (C-54) Lockheed 1649A

Douglas DC-6 Martin 404

Douglas DC-6B Vickers Viscount 745D

Douglas DC-7 Vickers Viscount 812

(date of latest revision September 1, 1959)

UNITED STATES FEDERAL AVIATION AGENCY Bureau of Research & Development Washington 25, D.C.

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), enroute airspeed varies between 176 and 185 knots IAS

Speed (knots IAS)

Maximum continuous 264
Maximum endurance 171
Maximum range 186
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

302

Turbulent air penetration 165 to 190 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 25,000 feet
Minimum acceptable 6,000 feet
Maximum endurance 14,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in		Altıtude		-	Knots	*Fuel Data at 120,000 Pounds Nautical Miles	Dev. per
Nautical Miles		(Feet)		IAS	TAS	per 1,000 Lbs	10,000 Lbs
0 to 150	Max	accpt	12,000	185	224	83 3	9%
	Opn.	desir	11	11	11	11	11
	Mın	accpt.	6,000	184	204	82 0	7%
150 to 500	Max	accpt	14,000	185	232	83 5	9%
	$\operatorname{Opn} olimits$	${ t desir}$	11,000	11	220	82 8	8%
	Mın	accpt	9,000	11	213	82 5	11
500 to 3,000	Max	accpt	25,000	176	262	83 5	8%
	Opn.	desir	25,000	11	11	11	H
	Mın	accpt	14,000	185	232	11	9%

*Increase fuel required by 1% for each 6° C above standard

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed of Mach 0.79 is maintained except for stage lengths of 500 nautical miles or less which are flown at Mach 0.55. These are the operationally desirable airspeeds

Speed

Maximum continuous Mach 0 82 Maximum endurance 242 knots TAS Maximum range Mach 0 79 Maximum allowable Mach 0 90

Turbulent air penetration 240 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 38,000 feet
Minimum acceptable 7,000 feet
Maximum endurance 25,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with gear down. Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn, at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

tage Length in Jautical Miles	Altitude (Feet)	Speed K IAS TAS	nots MACH	Fuel Data at Nautical Miles per 1,000 Lbs	Pounds Gross Weight Dev per Dev per 10,000 Lbs MACH 0 01
0 to 500	Max accpt 9,000 Opn desir 8,000 Min accpt 7,000	311 352 317 354 322 357	0.55	25 (estimated)	
500 to 1,000	Max accpt. 25,000 Opn desir 22,500 Min accpt 20,000	330 475 350 480 368 485	0.79	30 (estimated)	Not available from operators.
,000 to 1,700	Max accpt. 30,000 Opn desir 27,500 Min accpt 25,000	300 465 315 470 330 475	0 79	33 (estimated)	
,700 to 3,000	Max accpt 38,000 Opn desir 34,000 Min accpt 30,000	250 453 275 458 300 465	0.79	35 (estimated)	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Convair 340/440

NARRATIVE SUMMARY

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed will vary from 162 to 192 knots IAS. These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 260 (up to 13,000 feet, Above 13,000 feet, reduce airspeed 6 knots per 1,000 feet)

Maximum endurance 130

Maximum range 160 (at 5,000 feet and 48,000 pounds gross weight)

Maximum allowable

Gross Weight	Do Not Exceed
At any gross weight	293 (up to 13,000 feet, above 13,000 feet reduce airspeed 6 knots per
	1,000 feet)

Turbulent air penetration 160 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 20,000 feet Minimum acceptable: 2,000 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed Knots	Fuel Data at 47,000 Nautical Miles	Pounds Gross Weight Dev. per
Nautical Miles	(Feet)	IAS TAS	per 1,000 Lbs	1,000 Lbs.
0 to 200	Max accpt. 10,000	180 211	199	0.5%
	Opn. desir 5,000	187 201	19 0	n .
	Min. accpt 2,000	192 197	185	11
200 to 500	Max. accpt. 16,000	171 218	202	0.5%
	Opn desir. 10,000	180 211	199	н
	Min accpt. 8,000	183 206	195	11
500 to 1,000	Max. accpt. 20,000	162 219	210	0.5%
	Opn desir. 15,000	173 218	202	11
	Min. accpt. 10,000	180 211	199	ft

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a constant airspeed of Mach 0.74 is maintained. This is the operationally desirable enroute airspeed.

For long range routes, a climb cruise procedure is desirable After reaching the initial altitude (30,000 feet), a climb cruise procedure is established maintaining a constant airspeed of Mach 0 70 and approximately 20 fpm rate of climb

Speed

Maximum continuous Mach 0 77
Maximum endurance 210 knots IAS
Maximum range Mach 0.69
Maximum allowable

Gross Weight	Do Not Exceed
	
At any gross weight	Mach 0.77

Turbulent air penetration Mach 0.67 or 220 knots IAS (whichever is less), At any gross weight and at all altitudes.

Altıtude

Maximum operationally desirable 42,000 feet Minimum acceptable 20,000 feet Maximum endurance 30,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish one half standard rate turns at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs).

De Havılland "Comet" 4

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

						Fuel Data at 135,000 Pounds Gross Weight				
Stage Length in Altitude		Speed Knots			Nautical Miles	Dev per	Dev per			
Nautical Miles	(Feet)		IAS	TAS	MACH	per 1,000 Lbs	1,000 Lbs	MACH 0.01		
500 to 1,000	Max. accpt.	30,000	278	435	0 74	48 0	6%			
	Opn. desir	30,000	11	11	H	11	11	Not		
	Min accpt	25,000	310	445	11	43 7	11	Available		
								${f from}$		
1,000 to 2,000	Max. accpt	35,000	250	427	0.74	61 6	6%	manufacturer.		
	Opn. desir	35,000	L1	11	11	rt	t f			
	Min accpt	30,000	278	435	11	48 0	i t			

At gross weights in excess of 135,000 pounds, a climb cruise procedure is initiated at 30,000 feet maintaining Mach 0.70 and 20 fpm rate of climb.

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a constant airspeed of 160 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 183
Maximum endurance 105
Maximum range 130
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight - - - - - - - - 223

Turbulent air penetration 121 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 12,000 feet
Minimum acceptable MEA
Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs)

Douglas DC-3 (C-47-R4D)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed	Knots	Fuel Data at 25, 346 Po	Pounds Gross Weight Dev per	
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs	1,000 Lbs.
0 to 150	Max accpt	6,000	160	174	33 0	No deviation
	Opn. desir	5,000	11	172	32 4	11
	Min. accpt	MEA				If
150 to 500	Max. accpt.	9,000	160	183	34 7	No deviation
	Opn desir	7,000	11	178	33 5	н
	Min. accpt	MEA				If
500 to 1,000	Max. accpt	12,000	160	192	36.3	No deviation
	Opn desir	10,000	11	186	35 0	tt
	Min. accpt	MEA				H

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths) a maximum range airspeed of 150 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous Not available from operators.

Maximum endurance 140 at a gross weight of 70,000 pounds

Maximum range 150

Maximum allowable 217 (glide or dive)

Turbulent Air Penetration 140 to 150 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 12,000 feet
Minimum acceptable 10,000 feet
Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs)

Douglas DC-4 (C-54)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

				Fuel Data at 70,000	Pounds Gross Weight	
Stage Length in	Altıtude	5	peed Knots	Nautical Miles	Dev per	
Nautical Miles	(Feet)	L	AS TAS	s per 100 Lbs	1,000 Lbs.	
0 to 150	Max accpt. 6,	000 1	50 163	14 6	2.6%	
	Opn. desir. 6,	000	11	11	Ct .	
	Min accpt. M	EA				
150 to 600	Max. accpt. 10	,000 15	50 174	13.9	2.0%	
	Opn desir. 8	3,000 '	ı 169	14.2	2.4%	
	Min accpt. 6	, 000 '	163	14 6	2.6%	
600 to 1, 300	Max. accpt 12	1,000 1	50 180	13 4	1.5%	
	Opn desir, 10	, 000 '	174	13 9	2 0%	
	Min. accpt 8	, 000	169	14.2	2 4%	

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude, (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed varies between 175 and 204 knots IAS. This is the operationally desirable enroute airspeed range.

Speed (knots IAS)

Maximum continuous 245 (below 17,000 feet altitude)
Maximum continuous airspeed is reduced 5 knots per
1,000 feet altitude above 17,000 feet

Maximum endurance 140

Maximum range Not available from operator

Maximum allowable 297 (below 12,000 feet altitude)
Maximum allowable airspeed is reduced 5 knots per
1,000 feet altitude above 12,000 feet

Turbulent air penetration 147 to 156

Altıtude

Maximum operationally desirable 24,000 feet
Minimum acceptable 5,000 feet
Maximum endurance 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graph.)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Fuel Data at 85,000 to 90,000 Pounds

Gross Weight

Stage Length in	Altıtude	Speed Knots	Nautical Miles	Dev. per	
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	100 Lbs	
Jp to 500	Max accpt 15,000	0 187 242	11 2		
	Opn desir. 10,000	195 233	11 4		
	Min accpt. 5,000	204 225	11.0		
				Not available from	
500 and up	Max. accpt. 20,000	0 175 247	11.4	operator.	
	Opn desir. 15,000	187 242	11.2	-	
	Min accpt 12,000	192 237	11.6		

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed varies between 180 and 195 knots IAS as indicated in Table I. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 245 (below 17,000 feet altitude). Maximum continuous airspeed is reduced 5 knots per 1,000 feet altitude in excess of 17,000 feet.

Maximum endurance 141

Maximum range 240 (below 17,000 feet altitude). Maximum range airspeed is reduced 5 knots per 1,000 feet altitude in excess of 17,000 feet

Maximum allowable 297 (below 12,000 feet altitude). Maximum allowable airspeed is reduced 5 knots per 1,000 feet altitude in excess of 12,000 feet.

Turbulent air penetration 158 to 165 (at gross weight of 80,000 pounds and above), 148 to 158 (at gross weights up to 80,000 pounds)

Altitude

Maximum operationally desirable 19,000 feet
Minimum acceptable 8,000 feet
Maximum endurance 8,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

*Fuel Data at 95,000 Pounds Gross Weight Dev. per Stage Length in Altıtude Speed Knots Nautical Miles 1,000 Lbs. IAS TAS per 100 Lbs. Decrease in G. W. Nautical Miles (Feet) 500 to 1,000 Max. accpt. 12,000 186 223 11.0 Negligible Opn desir. 10,000 190 222 11 1 11 Min. accpt. 8,000 195 1,000 to 1,500 Max. accpt. 17,000 187 240 9 9 1.5% 186 Opn. desir. 14,000 230 10.8 Negligible Min. accpt 8,000 195 222 11.1 Initial Altitude 1,500 nautical miles and up Max. accpt 12,000 186 223 11.0 Negligible 190 11.1 (step climb Opn. desir. 10,000 222 11 after 1,000 Min. accpt 8,000 195 nautical miles) Altıtude after Step Climb Max. accpt. 19,000 181 11.2 Negligible 240 Opn. desir. 17,000 11 184 238 11 Min. accpt 15,000 188 235 11.3

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

^{*} Step climb data based on fuel burn-off of 9000 pounds, giving a gross weight of 86,000 pounds.

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed will vary between 210 and 245 knots IAS—These are the operationally desirable enroute airspeeds

Speed

Maximum continuous

Sea level to 13,000 feet altitude 265 knots IAS Above 13,000 feet altitude Mach 0 52 Maximum endurance Not available from operator Maximum range

At a gross weight of 100,000 pounds 182 knots IAS
Deviation per 10,000 pound change in gross weight 4 4%
Maximum allowable

Sea level to 11,000 feet altitude 309 knots IAS Above 11,000 feet altitude Mach 0 585

Turbulent air penetration

Below 100,000 pounds gross weight 170 knots IAS Above 100,000 pounds gross weight 180 knots IAS

Altıtude

Maximum operationally desirable 24,000 feet
Minimum acceptable 8,000 feet
Maximum endurance Not available from operator

Holding Configuration and Turning Radius

Enroute holding is accomplished at a speed of 145 knots IAS with flaps extended 20 degrees. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Douglas DC-7

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in		Altitude			ł Knots	Fuel Data at 105,000 Po Nautical Miles	Pounds Gross Weight Dev per	
Nautical Miles		(Feet)	1	IAS	TAS	per 1,000 Lbs	10,000 Lbs	
150 to 700	Max a	accpt	13,000	230	282	93.5	2 4%	
	Opn, d	esır	12,000	240	287	95 5	1 9%	
	Min a	ccpt	8,000	245	277	92.0	1 4%	
700 and Up	Max a	ıccpt	23,000	210	296	98 5	3 8%	
	Opn d	esır	22,000	215	301	100 0	3 1%	
	Mın a	ccpt.	16,000	225	287	95 5	2 3%	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeed will vary between 210 and 245 knots IAS These are the operationally desirable enroute airspeeds

Speed

Maximum continuous

Sea level to 13,000 feet altitude 265 knots IAS
Above 13,000 feet altitude Mach 0 52
Maximum endurance Not available from operator
Maximum range

At a gross weight of 100,000 pounds 182 knots IAS
Deviations per 10,000 pound change in gross weight 4 4%
Maximum allowable.

Sea level to 11,000 feet altitude 309 knots IAS Above 11,000 feet altitude Mach 0 585

Turbulent air penetration

Below 100,000 pounds gross weight 170 knots IAS Above 100,000 pounds gross weight 180 knots IAS

Altıtude

Maximum operationally desirable 24,000 feet
Minimum acceptable 8,000 feet
Maximum endurance Not available from operator

Holding Configuration and Turning Radius

Enroute holding is accomplished at a speed of 145 knots IAS with flaps extended 20 degrees. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude			Speed Knots		Fuel Data at 110,000 Nautical Miles		Pounds Gross Weight Dev per	
Nautical Miles		(Feet)		IAS	TAS	per 1,00	0 Lbs		000 Lbs
150 to 700	Max	accpt	13,000	230	282	93	5	2	4%
	Opn	desir	12,000	240	287	95	5	1	9%
	\mathbf{M} ın	accpt	8,000	245	277	92 (0	1	4%
700 and Up	Max	accpt	23,000	210	296	98 :	5	3	8%
	Opn	$\mathtt{des}_{\mathtt{1r}}$	22,000	215	301	100	0	3	1%
	\mathbf{M} ın	accpt	16,000	225	287	95	5	2	3%

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed will vary between 178 and 230 knots IAS These are the operationally desirable enroute airspeeds

Speed

Maximum continuous Mach 0 52

Maximum endurance 148 knots IAS

Maximum range 178 to 230 knots IAS (see Table I)

Maximum allowable Mach 0 58 at any gross weight and at all altitudes

Turbulent air penetration

100,000 pounds gross weight and below 165 knots IAS 100,000 to 125,000 pounds gross weight 175 knots IAS Above 125,000 pounds gross weight 190 knots IAS

Altitude

Maximum operationally desirable 25,000 feet Minimum acceptable 10,000 feet Maximum endurance 15,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with the speed brake extended. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Douglas DC-7C

TABLE I, ENROUTE (Performance Data for Various Stage Lengths

Stage Length 1 Nautical Miles			En: IAS		Speed MACH	Fuel Data at 112 Nautical Miles per 1,000 Lbs		ross Weight 000 Lbs. GW Decrease
0 to 500 (Eastbound)	Max accpt. Opn. desir Min accpt.	20,000	178 210 220	266 287 275	0.44 0.47 0.44	100.3 98.4 97 1	N/A* 3 1% 2.6%	0.5% 2 0% 1.9%
500 to 1,000 (Eastbound)	Max accpt. Opn. accpt. Min. accpt.	25,000 23,000	178 200 220	266 280 275	0 44 0.46 0.44	100 3 100 2 97.1	N/A* N/A* 2 6%	0 5% 0 2% 1.9%
0 to 500 (Westbound)	Max. accpt Opn. desir. Min. accpt.	16,000 16,000 10,000	216 216 230	277 277 268	0 45 0.45 0 42	97.8 97 8 94.2	2.6% 2.6% 2.2%	2.2% 2.2% 1.6%
500 to 1,000 (Westbound)	Max. accpt. Opn. desir Min accpt.	25,000 23,000 15,000	178 200 220	266 280 275	0.44 0.46 0.44	100.3 100 2 97 1	N/A* N/A* 2.6%	0 5% 0 2% 1 9%

*Not applicable

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 220 knots TAS is maintained. This is the operationally desirable airspeed.

Speed (knots IAS)

Maximum continuous 227
Maximum endurance 106
Maximum range 164
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

259 below 18,000 feet Above 18,000 feet reduce airspeed 5 knots per 1,000 feet increase in altitude

Turbulent air penetration 154 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 20,000 feet Minimum acceptable 8,000 feet Maximum endurance 20,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed with a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed.

An alternate method of holding is accomplished by utilizing 16 5 degrees flaps and maximum endurance airspeed (See appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

	Stage Length in		Altıtud	le	Speed	l Knots	Fuel Data at 32,000 Nautical Miles	Pounds Gross Weight Dev per
	Nautical Miles		(Feet))	IAS	TAS	per 100 Lbs	1,000 Lbs
	0 to 150	Max.	accpt	10,000	190	220	14 4	1%
			desir	10,000	ti	11	11	11
		Min	accpt	8,000	194	11	13 8	tt
:	150 to 500	Max	accpt	20,000	162	220	19 3	2%
			desir	15,000	178	t 1	16 6	1%
		-	accpt	10,000	190	11	14 4	11
	500 to 1,000	Max	accpt	20,000	162	220	19 3	2%
	,		desir	20,000	11	tt	11	tt
		-	accpt.	10,000	190	11	14 4	1%

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between 342 and 347 knots TAS These are the operationally desirable enroute airspeeds.

Speed

Maximum continuous Mach 0 615 (above 12,000 feet)
Maximum endurance: 240 knots TAS
Maximum range 346 knots TAS
Maximum allowable

Gross Weight	Do Not Exceed
At any gross weight	364 knots IAS
	below 8,000 feet
	Mach 0 64 at 8,000
	feet and above

Turbulent air penetration 170 knots IAS at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable. 25,000 feet Minimum acceptable 16,000 feet Maximum endurance 18,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with gear down Turns at operational altitudes are executed with an angle of bank to accomplish a one-half standard rate turn, at either maximum endurance or operationally desirable airspeed (See appendix for turning radius, angle of bank, and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altitude	S peed Knots	Fuel Data at 100,000 Pounds Gross Weight Nautical Miles Dev per Dev per
Nautical Miles	(Feet)	IAS TAS MACE	per 1,000 Lbs 5,000 Lbs MACH 0.01
0 to 500	Max accpt. 16,000	277 347 0 56	69
	Opn desir 16,000	11 71 11	11
	Min accpt 10,000	300 345 0 54	60
	_		Not available from operators
500 to 1,000	Max. accpt. 20,000	260 344 0.56	78
	Opn. desir 16,000	277 347 ''	69
	Min. accpt 12,000	290 346 0.55	63
1,000 to 1,500	Max. accpt. 21,000	250 342 0.56	79
	Opn. desir 18,000	265 346 ¹¹	73
	Min accpt 16,000	277 347 "	69

Sequence of Operations

The aircraft is operated in a step-climb profile to operationally desirable cruise altitudes which vary with aircraft gross weight rather than stage length. The "1049 Series" is normally employed for distances in excess of 1,000 miles. After reaching cruise altitude, an average airspeed of 190 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 261 up to 12,500 feet (above 12,500 feet, reduce airspeed 10 knots for each 2,000 feet of altitude)

Maximum endurance 150 Maximum range 240 Maximum allowable

Gross Weight

Do Not Exceed

At any gross-weight

294 at 12,500 feet or below. Reduce airspeed 11 knots for each 2,000 feet above 12,500.

Turbulent air penetration 175 to 200 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 24,000 feet Minimum acceptable: 12,000 feet Maximum endurance. 12,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 150 knots IAS and flaps extended 30 percent. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate of turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs).

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed	l Knots	Fuel Data at 135,000 Nautical Miles	Pounds Gross Weight
Nautical Miles	(Feet)	IAS	TAS	per 100 Lbs.	Dev. per 5,000 Lbs.
	Initial Altitude				
1000 to 3,000	Max. accpt. 14,000	190	236	8	12%
	Opn. desir. 14,000	II	11	11	H
	Min. accpt 12,000	D	228	H	n
	Altıtude After Step	Climb			
1,000 to 3,000	Max. accpt. 24,000	190	277	11	12 <i>%</i>
	Opn. desir. 21,000	11	264	11	11
	Min. accpt. 14,000	11	236	8	11

Sequence of Operations

The aircraft is operated in a step-climb profile to operationally desirable cruise altitudes which vary with aircraft gross weight rather than stage length. After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), an airspeed of 205 knots IAS is maintained. This is the operationally desirable airspeed.

Speed (knots IAS)

Maximum continuous 261 (18,000 feet or below. Above
18,800 feet, reduce airspeed 6 knots IAS for each 1,000
feet of altitude)
Maximum endurance 140
Maximum range 240
Maximum allowable

Gross Weight	Do Not Exceed
arose norgan	30 1101 211 0004

At any gross weight 294 at 13,000 feet or below. Airspeed reduced 6 knots for each 1,000 feet above

13, 300

Turbulent air penetration. 185 at 150,000 pounds gross weight; 165 at 120,000 pounds gross weight

Altitudes

Maximum opérationally desirable. 24,000 feet Minimum acceptable 12,000 feet Maximum endurance 12,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 140 knots IAS with flaps extended 80 percent. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs).

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed	i Knots	Fuel Data at 155,000 Po Nautical Miles	ounds Gross Weight Dev. per
Nautical Miles	(Feet)	IAS	TAS	per 100 Lbs	5,000 Lbs.
	Initial Alt	itude			
1,000 to 3,000	Max. accpt. 18,000	205	270	9.1	4.2%
	Opn. desir. 18,000	11	11	tt	11
	Min. accpt. 12,000	11	245	8.6	If
	Altitude After Ste	ep Climb			
1,000 to 3,000	Max. accpt. 24,000	205	295	11.2	3.4%
	Opn. desir. 24,000	tt	11	tt	It
	Min. accpt 18,000	11	270	9.1	4.2%

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths) airspeed will vary between 158 and 176 knots IAS. These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 247
Maximum endurance 130
Maximum range 165
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

261

Turbulent air penetration 150 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 16,000 feet
Minimum acceptable 2,000 feet
Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished in a clean configuration at maximum endurance airspeed. An alternate configuration is with flaps extended 12-5 degrees. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in		Altītude	:	Speed	Knots	Fuel Data at 40,000 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles		(Feet)		IAS	TAS	per 1,000 Lbs	1,000 Lbs
70 to 100	Max	accpt	5,000	173	190	189	
	Opn	desir	3,000	175	187	186	
	Mın	accpt	2,000	176	185	184	
100 to 150	Max	accpt	8,000	169	194	190	Not available
	Opn	desır	6,000	171	191	190	from operators
	Mın	accpt	6,000	171	191	190	
150 to 400	Max	accpt	16,000	158	207	196	
	Opn	desir	12,000	164	201	194	
	M^{1D}	ac c pt	8,000	169	194	190	

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed will vary between 173 to 234 knots IAS. This will also be the operationally desirable enroute airspeed

Speed (knots IAS)

Maximum continuous 238
Maximum endurance 150
Maximum range 175
Maximum allowable

Gross Weight

At any gross weight

Do Not Exceed

272 below 10,000 feet Above 10,000 feet, reduce speed 1 knot per 2,000 feet increase in altitude

Turbulent air penetration 165 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 25,000 feet Minimum acceptable 5,000 feet Maximum endurance 25,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed with flaps extended 20 degrees. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Vickers Viscount 745D

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed Knots	Fuel Data at 63,000 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	(Feet)	IAS TAS	per 1,000 Lbs	5,000 Lbs
0 to 150	Max. accpt 10,000	232 270	78	5%
	Opn desir. 5,000	234 253	71	n
	Min. accpt 5,000	1t it	H	11
150 to 500	Max. accpt. 25,000	173 254	103	none
	Opn. desir. 14,000	222 276	87	tt
	Min. accpt 10,000	232 270	78	5%
500 to 1,000	Max accpt 25,000	173 254	103	none
	Opn desir. 21,000	191 266	100	11
	Min. accpt 14,000	222 276	87	H

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between 181 and 262 knots IAS These are the operationally desirable enroute airspeeds

Speed

Maximum continuous 268 knots IAS at sea level, decreasing 1 knot each 1,000 feet up to 21,000 feet, Mach 0 58 above 21,000 feet altitude

Maximum endurance 140 knots IAS Maximum range 175 knots IAS

Maximum allowable 296 knots IAS at sea level, decreasing to 286 knots IAS at 18,000 feet, and Mach 0 68 above 18,000 feet altitude

Turbulent air penetration 170 knots IAS at any gross weight and at all altitudes

Altitude

Maximum operationally desirable 25,000 feet
Minimum acceptable 9,000 feet
Maximum endurance 24,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed with flaps extended 20 degrees. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Vickers Viscount 812

TABLE I, ENROUTE (Performance Data for Various Stage Lengths

Ct I	A 14 . 4 4 .	C		Fuel Data at 67	*	
Stage Length in	Altitude	Speed K	nots	Nautical Miles	Dev. per	Dev. per
Nautical Miles	(Feet)	IAS TAS	MACH	per 1,000 Lbs	5,000 Lbs.	MACH 0.01
60 to 100	Max accpt. 11,000	254 300	0 47	77. 1	1 3%	0 02%
	Opn desir 9,000	262 299	11	72.9	2 6%	11
	Min. accpt. 9,000	11	11	11	11	н
100 to 200	Max accpt. 15,000	238 295	0 47	84 3	2.3%	0.03%
	Opn. desir 13,000	247 301	0 48	81.6	0 9%	Negligible
	Min accpt 11,000	254 300	0 47	77 1	1 3%	0.02%
200 to 1,000	Max accpt 25,000	181 269	0 44	103.5	7 5%	0.09%
	Opn desir. 24,000	191 276	0 46	101.8	5.1%	0.05%
	Min accpt 15,000	238 295	0 47	84.3	2 3%	0 03%

AIR VEHICLE PERFORMANCE CHARACTERISTICS

Volumes I-A through IX

SECTION 3

GENERAL AVIATION

containing data on

Aero Commander 500 Cessna 180 (Amphibian)

Aero Commander 680 (L-26C) Cessna 182

Aero Commander 720 Cessna 310A (L-27A)

Beechcraft "Bonanza" K-35 Cessna 310C

Beechcraft "Twin Bonanza" (L-23D) de Havilland "Beaver" (L-20A)

Beechcraft Model 95 de Havilland "Otter" (U-1A)

Beechcraft Super 18 Mooney Mark 20A

Cessna 150 Piper "Tri-Pacer" PA-22

Cessna 172 Piper "Apache" PA-23

Cessna 175 Piper "Comanche" PA-24-180

(date of latest revision September 1, 1959)

UNITED STATES FEDERAL AVIATION AGENCY
Bureau of Research & Development Washington 25, D. C

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a constant airspeed of 178 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 180
Maximum endurance 113
Maximum range 140
Maximum allowable 234

Turbulent air penetration. 110 at any gross weight and at all altitudes

Alt1tudes

Maximum operationally desirable: 10,000 feet Minimum acceptable MEA Maximum endurance 7,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Aero Commander (500)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

			Fuel Data at 6,000	Pounds Gross Weight
Stage Length in	Altıtude	Speed Knots	Nautical Miles	Percent Dev per
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	200 Lbs.
0 to 150	Max accpt. 5,000	178 192	114	
	Opn desir 5,000	11 11	11	
	Min. accpt MEA		-	Not avaılable from manu-
150 to 500	Max. accpt 10,000	178 205	122	facturer
	Opn desir 10,000	11 11	11	
	Min accpt. 5,000	192	114	
500 to 1,000	Max accpt 10,000	178 205	122	
	Opn desir 10,000	11 11	IT	
	Min accpt 5,000	'' 192	114	

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), an average of 150 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 182
Maximum endurance 91
Maximum range 125
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

234

Turbulent Air Penetration 112 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet
Minimum acceptable 3,000 feet
Maximum endurance 8,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

			Fuel Data at 6,600	Pounds Gross Weight
Stage Length in	Altıtude	Speed Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	100 Lbs
0 to 150	Max. accpt 7,000	150 166		
	Opn Desir 4,000	'' 159		
	Min accpt 3,000	157		
150 to 500	Max accpt 8,000	150 169	Not available from	Not available from
	Opn desir 6,000	'' 164	operator	operator
	Min accpt 4,000	" 159	-	-
500 to 1,000	Max accpt 10,000	150 174		
	Opn desir 8,000	'' 169		
	Min accpt 7,000	11 166		

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths) flaps are retracted and a maximum range airspeed of 160 knots IAS is established. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 192
Maximum endurance 130
Maximum range 160
Maximum allowable 234

Turbulent air penetration 104 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 15,000 feet Minimum acceptable 5,000 feet Maximum endurance 8,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs)

Aero Commander (720)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed	Knots	Fuel Data at 6,750 Nautical Miles	Pounds Gross Weight Dev per	
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs	500 Lbs
0 to 150	Max. accpt	10,000	160	186	91	Not available from
	Opn desır	5, 000	11	172	83	manufacturer
	Min. accpt	5,000	11	11	11	
	_					
150 to 500	Max accpt	15,000	160	201	100	
	Opn $desir$	10,000	11	186	91	
	Min accpt	5,000	11	172	83	
500 to 1,000	Max accpt	15,000	160	201	100	
	Opn. desir	12,000	11	192	94	
	Min accpt.	10,000	11	186	91	

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 164 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 169
Maximum endurance 95
Maximum range 139
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

195

Turbulent air penetration 112 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,000 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. An alternate configuration is with gear down. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Beechcraft K-35 Bonanza

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

tage Length in Vautical Miles						Fuel Data at	Pounds Gross Weight
		Altitude (Feet)		Speed	Knots	Nautical Miles	Dev per
				IAS	TAS	per 10 Lbs	100 Lbs.
0 to 500	Max	accpt	8,000	164	185	30	
		desir	4,000	11	174	11	
	Min	accpt	2,000	11	169	11	Not available from manufacturer
00 to 1,000	Max	accpt	10,000	164	190	30	
ŕ		desir	6,000	11	179	tt	
	Min	accpt	4,000	11	174	11	

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 160 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 190
Maximum endurance 110
Maximum range 130
Maximum allowable 234 at any gross weight

Turbulent air penetration 145 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,000 feet Maximum endurance 6,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Beechcraft Twin Bonanza (L-23D)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in	n Altitue	de	Speed	l Knots	Fuel Data at 7,000 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles (Feet)	IAS	TAS	per 100 Lbs	100 Lbs
0 to 150	Max. accpt	10,000	160	186		
	Opn desir	8,000	11	181	106	7 9%
	Mın. accpt	2,000	11	166		
150 to 1,000	Max accpt	10,000	160	186		
	Opn. desir.	8,000	11	181	106	7.9%
	Min. accpt	6,000	11	175		

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an average airspeed of 160 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 182
Maximum endurance 112
Maximum range 136
Maximum ailowable

Gross Neight

Do Not Exceed

At any gross weight

208

furbulent Air Penetration 112 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable 2,000 feet Maximum endurance 7,500 feet

Holding Configuration

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs.)

Beechcraft Model 95

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

						Fuel Data at 4,000	Pounds Gross Weight
Stage Length in		Altitud	de	Speed Knots		Nautical Miles	Dev per
Nautical Miles	Nautical Miles (Fee)	IAS	TAS	per 100 Lbs	100 Lbs
0 to 150	Max	accpt	7,500	160	177	82	
	Opn	${ t desir}$	5,000	11	172	ŧī	
	Mın	accpt	2,000	11	165	H .	
150 to 500	Max	accpt	10,000	160	186	82	Not available from
	Opn	desir	6,000	Ť	174	1.7	manufacturer
	Mın	accpt	5,000	11	172	11	
500 to 1,000	Max	accpt	10,000	160	186	82	
	Opn	\mathtt{desir}	8,000	11	181	Ţτ	
	Min	accpt	5,000	11	172	1)	

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), an airspeed of 160 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 178
Maximum endurance 105
Maximum range 131
Maximum allowable 222

Turbulent air penetration 104 to 121 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,500 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Beechcraft Super 18

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed	Knots	Fuel Data at 9,300 Nautical Miles	O Pounds Gross Weight		
Nautical Miles	(Feet)	IAS	TAS	per 100 Lbs	Dev. per 100 Lbs		
0 to 150	Max accpt. 10,000	160	194	64	Not available from		
	Opn desir. 5,000	11	173	58	manufacturer		
	Min.accpt. 2,500	11	168	56			
150 to 500	Max.accpt. 10,000	160	194	64			
	Opn.desir 10,000	11	ŤΤ	11			
	Min.accpt 5,000	ř f	173	58			
500 to 1,000	Max.accpt. 10,000	160	194	64			
	Opn.desir. 10,000	11	11	11			
	Min accpt. 5,000	11	173	58			

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), a maximum range airspeed of 108 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 121
Maximum endurance 82
Maximum range 108
Maximum allowable

Gross Weight	Do Not Exceed
	
At any gross weight	139

Furbulent Air Penetration 87 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 12,500 feet
Minimum acceptable 2,500 feet
Maximum endurance 7,500 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Furns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	L	Altıtu	de	Speed Knots		Fuel Data at 2,200 Nautical Miles			Pounds Gross Weight Dev per
Nautical Miles		(Feet)		IAS	TAS	per l	10	Lbs	100 Lbs
0 to 500	Max	accpt	12,500	108	131				Not available
	Opn	\mathtt{desir}	7,500	11	121		21		${ t from}$
	Mın	accpt	2,500	11	112				manufacturer

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed will vary between 104 knots IAS and 110 knots IAS. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 120
Maximum endurance 88
Maximum range 88
Maximum allowable

Gross Weights	Do Not Exceed
At any gross weight	153

Turbulent air penetration 88 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,500 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Furns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altitude (Feet)			Speed Knots		Fuel Data at 2, 350 Nautical Miles			Pounds Gross Weight Dev per
Nautical Miles				IAS	TAS	per 10 Lbs			100 Lbs
0 to 150	Max	accpt	5,000	108	116		19 4	1	
	Opn	desir	2,500	110	113		19 ()	
	Min	accpt	2, 500	11	11		Ħ		Not available from manufacturer
150 to 500	Max	accpt	10,000	104	120		20 3	3	
	$_{ m Opn}$	desir	5, 000	108	116		19 4	1	
	Min	accpt	5,000	11	11		11		

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), enroute airspeeds will vary between 107 and 118 knots IAS These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous: 113
Maximum endurance. 72
Maximum range 96
Maximum allowable. 142

Turbulent air penetration 100 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable. MEA Maximum endurance 7,500 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank, and speed conversion graphs).

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altitude	Speed Knots	Fuel Data at 2,850 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	(Feet)	IAS TAS	per 100 Lbs	100 Lbs
0 to 150	Max accpt 7,500	113 127	161	Not available from
	Opn desir 5,000	118 "	146	manufacturer
	Min accpt MEA			
150 to 500	Max. accpt 10,000	107 125	175	
	Opn. desir 7,500	113 127	161	
	Min. accpt 2,500	117 123	143	
500 to 820	Max accpt 10,000	107 125	175	
	Opn desir 7,500	113 127	161	
	M_{1n} accpt 5,000	118 "	146	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between 108 and 116 knots IAS as indicated in Table 1. These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 138
Maximum endurance 91
Maximum range 104
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight------138

Turbulent air penetration: 90 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 8,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude	Speed Knots	Fuel Data at 2,650 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	(Feet)	IAS TAS	per 10 Lbs.	100 Lbs.
0 to 150	Max. accpt 7,500	115 130	17 0	
	Opn. desir 5,000	116 126	11	
	Min. accpt. MEA			Not available from manufacturer
150 to 5 0 0	Max accpt. 10,000	108 125	18 5	
	Opn desir. 10,000	11 11	11	
:	Min accpt 5,000	116 126	17 0	

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), a constant airspeed of 175 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 201
Maximum endurance 95
Maximum range 137
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

216

Turbulent air penetration 105 to 142 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 15,000 feet
Minimum acceptable 2,500 feet
Maximum endurance 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graph)

Cessna 310A (L-27A)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

					Fuel Data at 4,400	Pounds Gross Weight
Stage Length in	Altıtude		Speed	Knots	Nautical Miles	Dev. per
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs	200 Lbs
0 to 150	Max. accpt	10,000	175	204	122	14.0%
	Opn. desir.	5,000	11	189	119	11
	Min. accpt	2,500	11	182	116	11
150 to 500	Max accpt.	15,000	175	221	Not available from i	manufacturer or operator.
	Opn. desir.	8,000	11	196	121	14.0%
	Min. accpt.	2, 500	11	182	116	11
500 to 1,000	Max accpt.	15,000	175	221	Not available from i	manufacturer or operator
	Opn. desir.	8,000	1t	196	121	14 0%
	Min accpt.	5,000	11	189	119	tt

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), airspeeds vary between 161 knots IAS and 175 knots IAS. These are operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 183
Maximum endurance 130
Maximum range 148
Maximum allowable 183 at any gross weight

Turbulent air penetration 135 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 2,500 feet Maximum endurance 10,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed (see appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in		Altıtude	-	Speed	. Knots	Fuel Data at 4,830 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles		(Feet)		IAS	TAS	per 100 Lbs	300 Lbs
0 to 150	Max	accpt	7, 500	167	189	119	
	Opn	desir	5,000	172	185	117	
	\mathbf{M} ın	accpt	2,500	175	181	114	Not available
							from
150 to 1,000	\mathbf{Max}	accpt	10,000	161	187	127	manufacturer
	Opn	${ t des_1 r}$	7, 500	167	189	119	
	\mathbf{M} ın	accpt	5,000	172	185	117	

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 110 knots IAS is maintained. This is the operationally desirable airspeed.

Speed (knots IAS)

Maximum continuous 130
Maximum endurance 71
Maximum range 95
Maximum allowable

Gross Weight	Do Not Exceed
At any gross weight	173

Turbulent air penetration, 105

Alt1tude

Maximum operationally desirable: 10,000 feet

Minimum acceptable MEA

Maximum endurance. 5,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeeds. (See appendix for turning radius, angle of bank and speed conversion graphs)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in		Altıtude)	Speed	. Knots	Fuel Data at 4,800 Nautical Miles	Pounds Gross Weight Dev. per
Nautical Miles		(Feet)		IAS	TAS	per 100 Lbs.	100 Lbs
0 to 150	Max.	accpt	5,000	110	118		
	\mathbf{Opn}	desir.	3,000	11	115		
	Mın	accpt.	MEA	11		Not available from	Not available from
						operators.	operators
150 to 700	\mathbf{Max}	accpt	10,000	110	128		•
	\mathbf{Opn}	desir.	5,000	11	118		
	Mın	accpt.	2,000	11	113		

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage figures by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), airspeed varies between 95 and 97 knots IAS These are the operationally desirable enroute airspeeds

Speed (knots IAS)

Maximum continuous 125
Maximum endurance 87
Maximum range 95
Maximum allowable 168 at any gross weight and at all altitudes

Turbulent air penetration 85 at any gross weight

Altitude

Maximum operationally desirable 10,000 feet
Minimum acceptable MEA
Maximum endurance MEA

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed at an angle of bank to accomplish a standard rate turn, at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length 11	J	Altıtude		Speed	Knots	Fuel Data at 8,000 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles		(Feet)	IAS	TAS	per 100 Lbs	1,000 Lbs
0 to 150	Max	accpt	5,000	97	104	75	4.0%
	Opn	desir	5,000	11	11	11	*1
	\mathbf{M} ın	accpt	MEA	11	_	-	· -
150 to 1,000	Max	ac c pt	10,000	95	111	78	5 0%
	Opn	${\tt desir}$	10,000	11	11	tt.	*1
	\mathbf{M} ın	accpt	MEA	11	_	-	-

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), an airspeed of 147 knots IAS is maintained. This is the operationally desirable enroute airspeed

Speed (knots IAS)

Maximum continuous 156
Maximum endurance 138
Maximum range 138
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

159

Turbulent air penetration 130 at any gross weight and at all altitudes

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 7,500 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at 100 knots IAS in a clean configuration. Turns at operational altitude are executed with an angle of bank to accomplish a standard rate turn. (See appendix for turning radius, angle of bank and speed conversion graphs.)

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude		Speed	l Knots	Fuel Data Nautical	a at 2,425 Miles	Pounds Gross Weight Dev. per
Nautical Miles	(Feet)		IAS	TAS	per 10	Lbs.	100 Lbs.
0 to 900	Max. accpt.	10,000	147	172	26.6		Not available
	Opn. desir	7,500	11	165	25 2		from manufacturer
:	Min. accot.	MEA	11				

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values by 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths) an airspeed of 117 knots IAS is maintained. This is the operationally desirable enroute airspeed

Speed (knots IAS)

Maximum continuous 122
Maximum endurance 82
Maximum range 108
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

148

Turbulent Air Penetration 90 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 6,000 feet Minimum acceptable MEA Maximum endurance 6,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank and speed conversion graphs.)

Piper

TABLE I, ENROUTE (Performance Data for Various Stage Lengths)

Stage Length in	Altıtude		Speed	Knots	Fuel Data at 2,000 Nautical Miles	Pounds Gross Weight Dev. per
Nautical Miles	(Feet)		IAS	TAS	per l Lbs	100 Lbs
0 to 500	Max. accpt. 6	5,000	117	128	2.4	Not available from
	Opn. desir. 4	4,000	11	124	2.3	manufacturer.
	Min accpt. N	MEA	11	-	-	

(The values above are to be substituted directly in the enroute equation in the appendix. In substituting, divide all percentage values 1 x 100.)

Sequence of Operations

After reaching cruise altitude (see Table I for optimum cruise altitudes for various stage lengths), an airspeed of 149 knots IAS is maintained. This is the operationally desirable enroute airspeed.

Speed (knots IAS)

Maximum continuous 158
Maximum endurance 91
Maximum range 144
Maximum allowable

Gross Weight

Do Not Exceed

At any gross weight

195

Turbulent air penetration 90 at any gross weight and at all altitudes

Altıtude

Maximum operationally desirable 10,000 feet Minimum acceptable 3,000 feet Maximum endurance 9,000 feet

Holding Configuration

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitude are executed at an angle of bank to accomplish a standard rate turn at either maximum endurance airspeed or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

Stage Length in	Altıtud	e	Speed	Knots	Fuel Data at 3,800 Nautical Miles	Pounds Gross Weight Dev per
Nautical Miles	(Feet)		IAS	TAS	per 100 Lbs	300 Lbs
0 to 150	Max accpt	7,500	149	167		
	Opn desir	6,000	11	162		
	Min accpt	3,000	11	156		
150 to 500	Max accpt	9,000	149	171		
	Opn desir	7,500	IT	167	Not available fro	m manufacturer
	Mın accpt	3,000	11	156		
500 to 1,000	Max accpt	10,000	149	173		
	Opn desir.	9,000	11	171		
	Min accpt	3,000	11	156		

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

Sequence of Operations

After reaching cruise altitude (see Table I for cruise altitudes for various stage lengths), airspeed varies between 114 and 128 knots IAS. These are the operationally desirable enroute airspeeds.

Speed (knots IAS)

Maximum continuous 138
Maximum endurance 78
Maximum range 91
Maximum allowable

Gross Weight

At any gross weight 145

Turbulent air penetration 110 at any gross weight and at all altitudes

Do Not Exceed

Altitudes

Maximum operationally desirable 10,000 feet Minimum acceptable MEA Maximum endurance 8,000 feet

Holding Configuration and Turning Radius

Enroute holding is accomplished at maximum endurance airspeed in a clean configuration. Turns at operational altitudes are executed with an angle of bank to accomplish a standard rate turn at either maximum endurance or operationally desirable airspeed. (See appendix for turning radius, angle of bank, and speed conversion graphs.)

Piper PA-24-180 Comanche

TABLE I, ENROUTE
(Performance Data for Various Stage Lengths)

			Fuel Data at 2,550	Pounds Gross Weight
Stage Length in	Alt1tude	Speed Knots	Nautical Miles	Dev per
Nautical Miles	(Feet)	IAS TAS	per 10 Lbs	100 Lbs
0 to 150	Max. accpt. 8,000	125 141	23, 5	
	Opn desir 6,000	126 138	23 0	
	Min. accpt. MEA	128 –	-	Not available from manufacturer
150 to 700	Max. accpt. 10,000	114 132	25 0	
	Opn. desir 8,000	125 141	23,5	
	Min accpt MEA	128 –	-	

(The values above are to be substituted directly in the enroute equation in the appendix In substituting, divide all percentage values by 100)

APPENDIX

(Containing Definitions and Reference Data)

DEFINITIONS

PHASES OF OPERATION

- 1. GROUND OPERATIONS. All ground activity from intent to start engines to and including pre-take-off preparations
- 2. TAKE-OFF The complete action of getting an air vehicle into the air from the point of brake release through lift-off point
- 3. PRE-CLIMB The flight path from the point of lift-off to the point where climb schedule is established.
- 4. CLIMB The flight path from the point where climb schedule is established to enroute or operational altitude.
- 5 ENROUTE Flight path from top of climb to beginning of descent.
- 6. DESCENT The flight path from beginning of descent to level-off for approach
- 7 APPROACH PATTERN The flight path from the end of descent to glide path interception
- 8. GLIDE PATH The flight path from the glide path interception to landing flareout.
- 9 LANDING Landing flareout to turn-off.

DISTANCES

- ABORT DISTANCE The remaining runway distance required to stop aircraft after attaining V1 speed.
- REFUSAL DISTANCE The distance at which the aircraft will reach refusal speed assuming normal acceleration.

SPEEDS

- FLARE SPEED (also see flareout) The transitional airspeed that is established at the completion of the glide path phase to bring the aircraft down in a smooth curve, preparatory for touchdown
- MAXIMUM (FLAP RETRACTION) SPEED The highest allowable airspeed at which the aircraft can be flown, with flaps extended

- MINIMUM (FLAP RETRACTION) SPEED The lowest airspeed at which the flaps may be retracted without an undesirable loss of altitude
- MACH NUMBER The ratio of the speed of air, or of a moving body through the air, to the speed of sound in the air
- REFUSAL SPEED The highest speed to which an aircraft can be accelerated, assuming normal acceleration, and still be stopped on the remaining runway

WEIGHTS

- BASIC OPERATING WEIGHT The maximum gross weight of the aircraft less cargo, crew, passengers, fuel and oil.
- NORMAL GROSS WEIGHT Typical operating weight selected as most probable at any given phase of flight.
- MAXIMUM GROSS WEIGHT Maximum operating weight, essentially the same as maximum take-off weight
- MAXIMUM RAMP WEIGHT Maximum weight of the loaded aircraft which can be expected at the ramp, generally this will be the maximum take-off weight plus weight of fuel needed for starting, taxing, and engine warm-up
- MAXIMUM TAKE-OFF WEIGHT Maximum allowable weight at takeoff limited by performance and/or regulations
- MAXIMUM LANDING WEIGHT Maximum allowable weight at landing limited by structural capability and/or regulations
- ZERO FUEL WEIGHT Maximum ramp weight minus usable fuel

MISCELLANEOUS

- MAXIMUM AND MINIMUM ACCEPTABLE (as used with respect to enroute airspeeds and altitudes) These minimum and maximum values are the acceptable tolerance on the operationally desirable values given. They are not necessarily limits imposed by performance capabilities or by regulations.
- OPERATIONALLY DESIRABLE Value or condition given by operators or manufacturers as the most preferable, (speeds, altitudes, etc.)

- DRY POWER Power with engine water/methanol system inoperative.
- WET POWER Power with engine water/methanol system operative.
- FLAREOUT (also see flare speed) The act of bringing an airplane down in a smooth curve, preparatory to touching down.
- SPEED BRAKES Any aerodynamic device designed for slowing down an airplane in flight.
- HOVER (relating to helicopters or VTOL) To remain in a stationary position at a given altitude above the surface.
- TRANSLATIONAL LIFT The lift force exerted on the rotor blades of a helicopter when increased speed is imparted to the blades or when their angle of attack is changed in going from one type of flight to another, such as from hovering to horizontal flight

SYMBOLS AND ABBREVIATIONS

ADI Anti-Detonation Injection

AEW Airborne Early Warning

ASW Anti-submarine Warfare

ATO Assisted Take-Off

bhp Brake Horsepower

BLC Boundary Layer Control

BMEP Brake Mean Effective Pressure

ECM Electronic Countermeasures

EGT Exhaust Gas Temperature

eshp Equivalent Shaft Horsepower

fpm Feet Per Minute

IAS Indicated Airspeed

JPT Jet Pipe Temperature

MEA Minimum Enroute Altitude

METO Maximum Except Take-Off

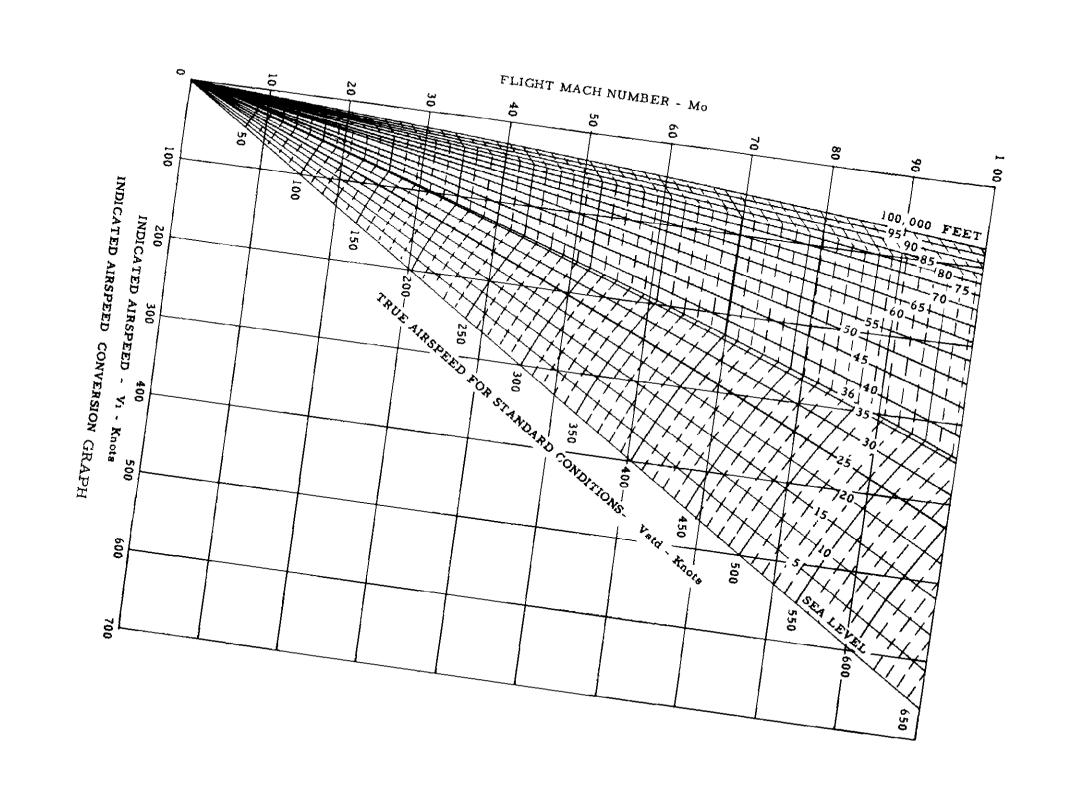
N. A S A National Aeronautics and Space Administration

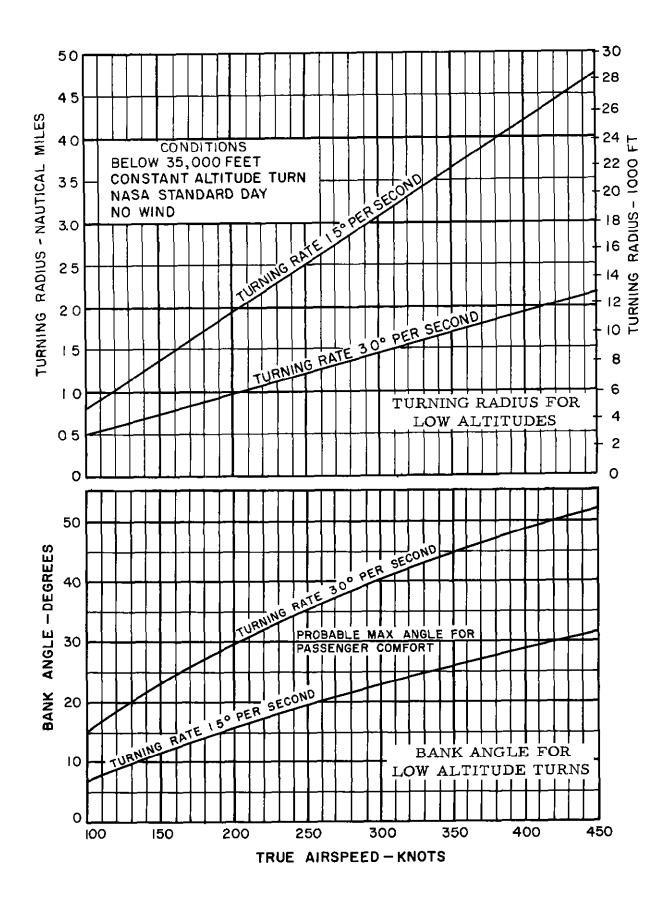
psi Pounds Per Square Inch

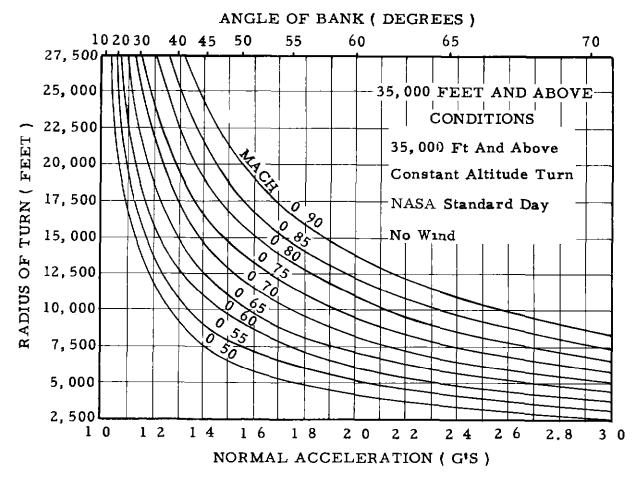
RCD/MAD Radar Countermeasures - Magnetic Airborne De-

tection

shp Shaft Horsepower


rpm Revolutions Per Minute


TAS True Airspeed


T/O Γake-Off

Vl Critical Engine Failure Speed

V2 (Vlof) Take-Off Safety Speed - Actual Lift-Off Speed

TURNING RADIUS GRAPH HIGH ALTITUDES

ENROUTE

The following equation is used in conjunction with the enroute tables. The equation will yield actual specific range for given gross weight and speed conditions. Normal values and deviations are contained in the tables. In substituting from the tables, divide all percentage values by 100.

a - % Deviation in specific range

4 b - % Deviation in specific range

weight

per X pounds change in gross

per Y units change in speed

$$Fa = Fn (1 - a \frac{Wa - Wn}{X}) (1 - b \frac{Sa - Sn}{Y})$$

- * Fa Actual specific range
- Fn Normal specific range
 - Wa Actual gross weight
 - Wn Normal gross weight
 - Sa Actual speed
 - Sa ~ Actual speed
 - Sn Normal speed
 - X Unit pounds in which the deviation with gross weight is expressed
 - Y Unit Mach number or knots in which the deviation with speed is expressed
 - * Refers to nautical miles per () pounds of fuel as given in Table I