THE CORRELATION OF AIRCRAFT TAKE-OFF AND LANDING CHARACTERISTICS WITH AIRPORT SIZE

Ву

A L Morse Technical Development Division

Technical Development Report No 40

April 1944

U S DEPARTMENT OF COMMERCE
CIVIL AERONAUTICS ADMINISTRATION
WASHINGTON, D. C

THE CORRELATION OF AIRCRAFT TAKE-OFF AND LANDING CHARACTERISTICS WITH AIRPORT SIZE

PREFACE

The following report represents one approach to an extremely complex problem the solution of which involves economic and topographic limitations as well as technical considerations. The statements and conclusions contained herein are not intended to have any regulatory significance nor do they express the general airport policy of the Civil Aeronautics Administration. The report does present factual data and a suggested use of that data for correlating airport dimensions with the performance characteristics of the airplanes.

This investigation was undertaken by the Technical Development Division early in 1936, and continued until late in 1940 when the report was completed. This was originally intended to aid the Administration in connection with its airport planning and regulatory activities. However, continued requests from the industry have indicated the desirability of its general distribution

TABLE OF CONTENTS

Summary Introduct Analysis Procedure	of the Problem	•	Page 1 3 3 5
110004410	• • •	-	
1	Development of Equipment for Obtaining Records of Take-off and Landing Characteristics		5
2	The Obtainment and Presentation of Records of Take-off and Landing Characteristics		6
3	The Obtainment and Presentation of Accident Records.		8
4	The Obtainment and Presentation of Meteorological Data		9
Discussio	n of Factual Data	-	9
1	Accident Records		9
2	Performance Data		13
3	Meteorological Data		17
Applicati	on of Factual Data		17
1	Determination of Normal Sea Level Characteristics .		17
2	Determination of Dimensional Standards for Airports		26
3	Correlation of Performance Characteristics of any Airplane		
	with any Airport		30
4	Comparison of Airport Dimension Requirements for Various		
	Airport Elevations		35
Conclus10	лв .		36
Appendix			67
1	Discussion of Corrections to the Observed Performance Data		67
2	Discussion of Computed Performance Data		68
3	Runway Length and Obstacle Zoning Requirements as Affected		~ .
4	by Winds		74 85

FIGURE INDEX

		Page
1	Nomogram for determining standard atmospheric conditions	38
2	Nomogram for determining altitude coefficient	39
3	Unstick speed characteristics - Aircraft B	40
4	Contact speed characteristics — Aircraft B	40
5	Take-off characteristics - Aircraft B	41
6	Unstick speed characteristics - Airline Aircraft D	42
7	Contact speed characteristics - Airline Aircraft D	42
8	Take-off characteristics - Airline Aircraft D	43
9	Unstick speed characteristics - Airline Aircraft E	44
10	Contact speed characteristics - Airline Aircraft E	44
11	Take-off characteristics - Airline Aircraft E	45
12	Unstick speed characteristics - Airline Aircraft F	46
13	Take-off characteristics - Airline Aircraft E	47
14	Unstick speed characteristics - Airline Aircraft H	48
15	Contact speed characteristics - Airline Aircraft H	48
16	Contact speed characteristics - Beam landings - Mirline Aircraft H	48
17	Take-off characteristics - Airline Aircraft H	49
18	Glide path characteristics	50
19	Ground roll characteristics - all altitudes	51
20	Seasonal variations in pressure and density altitudes	52
21	Take-off and landing - Airplane characteristics and airport	
	maximum allowable obstacle heights (sea level)	53
22	Runway lengths versus altitude of airport	54
23	Obstacle zoning ratio versus altitude of airport	54
24	Wind velocity characteristics versus height above surface	
	of airport .	5 5
25	Effect of wind on take-off run and runway length	56
26	Critical wind velocity vectors for one cross runway	57
27	Critical wind velocity vectors for two cross runways .	57
28	Runway length reduction factor versus altitude for various wind	
_	velocities - Class I .	58
29	Runway length reduction factor versus altitude for various wind	
	velocities - Class II	58
30	Rinway length reduction factor versus altitude for various wind	
	velocities - Class III	59
31	Runway length reduction factor versus altitude for various wind	
	velocities - Class IV .	59
32	Obstacle zoning ratio reduction factor versus altitude for	
	various wind velocities - Class I	60
33	Obstacle zoning ratio reduction factor versus altitude for	
	various wind velocities - Class II	60
34	Obstacle zoning ratio reduction factor versus altitude for	
~-	various wind velocities - Class III	61
35	Obstacle zoning ratio reduction factor versus altitude for	
2/	various wind velocities - Class IV	61
36 27	Runway lengths versus altitude - Class I	62
37 20	Runway lengths versus altitude - Class II	62
38 20	Runway lengths versus altitude - Class III	63
39	Runway lengths versus altitude - Class IV	63
40	Obstacle zoning ratios versus altitude - Class I	64
41	Obstacle zoning ratios versus altitude - Class II	64
42	Obstacle zoming ratios versus altitude - Clase III	6 5
43	Obstacle zoning ratios versus altitude - Class IV	65
44	Possible arrangement of a Class IV airport at sea level	66

Į

TABLE INDEX

		Page
1	Number of take-off and landing records obtained for each airplane	
	and the airports where these records were obtained	7
2	Primary causes - take-off accidents involving airline type aircraft .	9
3.	Primary causes - landing accidents involving airline type aircraft	10
4	Primary causes - take-off accidents involving private owner	
-	type aircraft.	10
5	Primary causes - landing accidents involving private type aircraft .	11
6	Primary causes - mechanical interruptions involving airline	
	type alreraft	11
7	Computed performance data	21
8	Runway lengths (sea level)	23
9	Normal take-off and climb characteristics (sea level)	24
10.	Normal approach and ground roll characteristics (sea level)	25
11	Runway lengths and obstacle zoning ratios for airports geographically	-
	located at sea level	27
12	Multiplying factors for determining the effect of geographical	
	altitude on runway length and obstacle zoning ratios	31
13.	Airport runway lengths and obstacle moning ratios for various	-
	geographical altitudes.	32
14	Correlation of normal aircraft performance characteristics with	-
	size of existing airports located at various altitudes	34
15	Airport dimension requirements - airplane H	35
16	Additional photographic data required	37
17	Air speed versus altitude factor , , ,	78
18	Variation of runway wind reduction factor with geographical altitude	79
19	Determination of time to climb from 50 feet to 100 feet	80
20.	Determination of obstacle zoning ratio reduction factors	81
21	Determination of runway lengths and obstacle zoning ratios, as	
	affected by wind and altitude	83
22	Correlation of observed normal performance characteristics with	_
	airport size involving airplane (H) and a 10 m.p h wind velocity.	84
23.	Summary of take-off accidents involving airline airplanes	85
24	Summary of landing accidents involving airline airplanes	91
25	Summary of take-off accidents involving private owner type airplanes .	102
26	Summary of landing accidents involving private owner type airplanes .	107
27	Summary of mechanical interruptions involving airline airplanes .	116
28.	Take-off characteristics - private aircraft-B	118
29	Landing characteristics - private aircraft-B	119
30	Take-off characteristics - airline aircraft-D	120
31	Landing characteristics - airline aircraft-D ,	120
32	Take-Off characteristics - airline aircraft-E	122
33	Landing characteristics - airline aircraft-E	123
34	Take-off characteristics - airline aircraft-F	124
35	Take-off characteristics - airline aircraft-G	125
36.	Landing characteristics - airline aircraft-G	125
37	Take-off characteristics - airline aircraft-H	125
38	Landing characteristics - airline aircraft-H	127
39.	Blind landing characteristics - airline aircraft-H	130
40	Ground roll characteristics - all airplanes .	130
41	Seasonal fluctuations in pressure and density altitude .	132

REFERENCES

- l Diehl, Capt W S., "Engineering Aerodynamics," Revised Edition 1936, The Ronald Press Company, New York City
- 2 Fales, Elisha N, "Equipment for Recording Airplane Take-Off and Landing Characteristics," Flight Engineering Report No 8, November 1943, Flight Engineering and Factory Inspection Division, Civil Aeronautics Administration.
- 3 Oswald, W Bailey, "General Formulae and Charts for the Calculation of Airplane Performance," N A.C A Report No 408, 1932
- 4 Ryburn, W E, "Instrument Approach Performance Characteristics on Radio Instrument Landing Systems," Technical Report No 32, June 1943, Technical Development Division, Civil Aeronautics Administration
- 5 Schrenk, Martin, "Calculation of Airplane Performance without the Aid of Polar Diagrams," N A C A Technical Memorandum No 456, Translation from the 1927 Yearbook of the "Deutsche Versuchanstalt für Luftfahrt"
- 6 Welling, Omer, "An Investigation of the Take-Off Flight Path of an Airplane," Aircraft Engineering Report No 103, 1938, Certificate and Inspection Division, Bureau of Air Commerce
- 7 Welling, Omer, "A Proposed Method to Specify the Basic Dimensions of Airports in Terms of the Characteristics of Airplanes to be Operated Safely Therein," Flight Engineering Report No 5, Flight Engineering and Factory Inspection Division, Civil Aeronautics Administration
- 8 Wetmore, J W, "The Transition Phase in the Take-Off of an Airplane," N A C A Report No 626, October, 1937

THE CORRELATION OF AIRCRAFT TAKE-OFF AND LANDING CHARACTERISTICS WITH AIRPORT SIZE

SUMMARY

The purpose of this study is to establish a fundamental basis for the determination of airport dimensions that will accommodate safely the operation of aircraft. The study involves the obtainment of adequate and pertinent factual data and the interpretation of these data in the form of recommended dimensional requirements for airports. These requirements should remain within reasonable topographic and economic limits, and should be determined so that no increase in dimensions will be necessary for many years to come. It is believed important that these dimensions be founded, as far as possible, upon data that indicate how airplanes actually perform under ordinary conditions rather than upon an assumed standard of performance. Accordingly, this study is based mainly upon photographic records of day-in and day-out operations of a number of representative airplanes, obtained at various altitudes and at various airports

In addition to these performance data, this study includes a large number of accident records and meteorological observations through which the photographic records are translated into airport dimensions. Thus, a study of the accident records has aided in the establishment of general standards to which may be applied the performance characteristics of any airplane to obtain airport dimension requirements for that airplane, also, through a study of the meteorological observations, allowances were made for unfavorable temperature and barometric conditions that are often encountered

The study of accident records has led to the establishment of the following general standards or criteria

- (a) Runways should be long enough to permit aircraft to roll safely to a stop in the event of an engine failure during the take-off at the point where the wheels are just leaving the ground
- (b) The cleared areas on either side of the runways should be wide enough to provide reasonably smooth surfaces on which aircraft can come to rest, should some unforeseen contingency cause them to swerve from their original take-off or landing directions
- (c) Obstacles should not project up into the flight paths

Note Runway lengths as determined solely from flight path characteristics against obstacle clearance requirements are in close agreement with runway lengths as determined through the application of criterion (a) above

A study of meteorological observations has led to general conclusions concerning possible airport temperature and barometric pressure conditions that will be encountered in actual operation. Accordingly, it appears that at any airport, allowances should be made for a density altitude several thousand feet greater than the geographical altitude of that airport. All observed data are corrected to zero wind velocity and to specification gross weight

These studies have resulted in the attainment of two broad objectives

- (a) The establishment and application of a basic and practical method for correlating the take-off and landing characteristics of any airplane with any airport at any altitude so as to insure safe operating accommodations
- (b) The determination of definite dimensional requirements for four classes of airports at any altitude based upon such a correlation

The grouping of airport requirements into four classifications, as mentioned above, is based upon the types of airplane that can be accompdated safely. These are as follows

Class I Lowest powered private owner type

Class II Medium powered private owner type

Class III: Higher powered private owner type and smaller airline type

Class IV The largest of airline aircraft

The application of the basic correlation method may be seen in table 14

Conclusions concerning dimensional requirements for the four classes of airports under zero wind conditions are presented in two sets of curves. The first (fig. 22) shows runway length requirements for each class of airport at any altitude up to 10,000 feet. The second (fig. 23) shows obstacle zoning ratio requirements for each class of airport, and at any altitude up to 10,000 feet. The obstacle zoning ratio is obtained by dividing the distance from the obstacle to the near end of the runway by the height of the obstacle above the runway elevation

Data from which the widths of the landing strip areas may be determined are far from adequate. In a purely arbitrary manner, however, it is suggested that,

- (a) Between the center lines of any two parallel landing strips,
- (b) From the center line of any landing strip to the boundary of the airport,
- (c) From the center line of any landing strip to any obstruction or to any area which may be occupied by aircraft, automobiles, etc.

the following minimum distances well might be provided

Class II 300 ft
Class III 450 ft
Class IV 600 ft

As indicated from this study, runway length and obstacle zoning ratio requirements at SEA LEVEL and for zero wind velocity conditions are as follows

<u> Airport Class</u>	Runway Length	Obstacle Zoning Ratio
I	1,800 ft.	13
II	2,800 ft	18
III	3,800 ft	23
ΙΨ	4,800 ft	28

At any airport at any altitude, an obstacle zoning ratio of 43* is recommended where radio instrument landing systems are installed

The actual take-off and landing paths of the airplanes involved in this study are shown in figure 21

Appendix #3, of this report, involves the consideration of the effect of wind in reducing the dimensional requirements of airports having runways lying in more than one direction. Runway lengths and obstacle zoning ratios may be reduced safely if at least one runway together with its corresponding obstacle zoning ratio safely provides for flying operations during dead calm conditions. The determination of such reductions is independent of prevailing wind velocities, since they are based upon low wind velocities rather than upon high velocities.

Definite lengths are suggested for sirports, Class I to IV, having one, two, three, or four runways. These data are presented as curves showing the recommended length and ratio requirements for each of the four classes of sirports and for altitudes up to 10,000 feet. An illustrative sketch of an eight-direction Class IV airport located at sea level also is presented. In this sketch the runway lengths have been shortened to allow for winds

Appendix #3 involves the consideration of partially paved runways. In this connection it appears that the length of paving may be reduced appreciably if adequate lengths of smooth turf

* This ratio results from flight test data which involve only the radio instrument landing system at Oakland, California

are provided at both ends of the paved portion. This requires 40 percent additional total length but permits a 40 percent reduction in the required length of paving

Concerning future requirements, it appears that advances in designing technique are resulting in aircraft which will require no larger airports than are required by existing aircraft It is believed, therefore, that no increase in airport dimension requirements will be necessary for many years to come

INTRODUCTION

The problem of airport size has long been a troublesome one. Government and private agencies have been faced with it continuously since the beginning of the rapid growth of aviation activities at the end of the World War. The problem has become increasingly acute as military, commercial, and private flying activities have increased and as the size and speed of aircraft have increased

The problem is a complex one as it involves both safety and economics. It can be argued that the safest airport would be one of tremenduous size having a surrounding territory free from obstructions to flight. Such an airport is beyond the bounds of economic possibility and, in a number of cases, is beyond the bounds of topographic possibility. The problem resolves itself into that of combining safety with economic and topographic possibilities.

The solution of the problem is not a simple matter Absolute safety is, of course, impossible of attainment Reasonable safety is very difficult to define Consequently, the solution of any problem involving reasonable safety is a very difficult task

The Civil Aeronautics Administration is faced with the necessity of determining airport size in the performance of its functions under several of the provisions of the Civil Aeronautics Act of 1938. Its procedure to date, so far as air carrier operations are concerned, has been to accept the recommendations of its Air Carrier Inspection personnel as to whether or not airports are of sufficient size to accommodate, with reasonable safety, the types of aircraft which the air carriers propose to operate. So far as development planning and certification are concerned, its procedure to date has been to accept the recommendations of its Airports Service personnel as to airport size.

These recommendations of the Administration's personnel have been based upon a knowledge of what a new airplane in the hands of an expert test pilot can do when undergoing tests for certification as to its airworthiness, together with a knowledge, gained through long experience, of what that airplane, in actual service, does in the hands of an average airline pilot

Because of the long experience of the personnel involved, the Administration has been fully justified in accepting the recommendations. However, because personal opinion, personal judgment, and individual definitions of reasonable safety are involved in each case, there has been a lack of uniformity in the recommendations. The Administration fully realizes this and is endeavoring to remedy the situation

The first remedial step appeared to be the obtainment of data showing the actual take-off and landing performance of airplanes under normal day-by-day service conditions. The Administration then could use these factual data as one basis for the determination of airport size in lieu of accepting, with their attendant disadvantages, the recommendations of its personnel in each case

ANALYSIS OF THE PROBLEM

The objective of this study is the establishment of one practical and fundamental basis for the determination of airport dimensions that will accommodate safely the operation of aircraft This involves the acquisition of adequate and pertinent data, and the translation of these data into performance characteristics and airport dimensions

This objective breaks down into two parts

- (1) The establishment and application of a basic and practical method for correlating the take-off and landing characteristics of any airplane with the dimensions of any airport so as to insure reasonably safe operating accommodations
- (2) The establishment of a basis for determining definite dimensions for four classes of airports to accommodate safely the four following types of airplanes

Class I Lowest powered private owner type

Class III Higher powered private owner type and smaller airline type

Medium powered private owner type.

Class IV The largest of airline aircraft

Class II

In the attainment of the objective, it must be kept in mind that the airport dimensions as finally determined should remain within reasonable economic and topographic limits, and preferably, should not be subject to change for many years to come. As far as possible these dimensions should be founded upon factual data that involve normal operating performance rather than upon an assumed standard performance, and should be determined in a simple and straightforward manner.

The problem, then, is to determine what data shall be obtained, how they shall be obtained, and how they shall be employed in attaining the desired objective

If this objective is to be attained, two general considerations must be kept in mind.

- (a) Amy material that does not lead to this objective by the shortest possible route must be excluded
- (b) Every correction and theoretical manipulation that is applied to the original observed data will reduce the general acceptability and effectiveness of the final results. Thus, the degree of refinement should be no more than adequate

A study of take-off and landing accident records will aid in the elimination of non-pertinent performance data through the establishment of general performance criteria. A study of meteorological observations obtained at various airports will aid in the intelligent translation of the performance data into reasonably safe airport dimensions

The method used for obtaining performance data should provide accurate and permanent records of initial climbs and approaches as well as of the ground roll characteristics. The recording equipment should be automatic in its operation, and the translation of the resulting records into actual performance characteristics should involve as little work as possible. Other desirable recording equipment characteristics are mobility and lack of restriction upon the piloting of the aircraft involved.

Deciding upon the type of piloting technique to be included in this study is most important, in that it determines the performance characteristics through which airport dimensions are determined. These dimensions obviously should not be based upon ultimate performance characteristics, since these never are attained except under controlled conditions which are not often realized in normal service operation. Two major considerations appear to be involved.

- (a) The normal functioning of the aircraft
- (b) Possible emergencies

If all aircraft were designed so as to eliminate the more vicious stalling characteristics, or if engines never failed, or if the brakes always functioned perfectly, airport dimensions could be determined safely from something very close to the ultimate performance characteristics. Although it cannot be said that perfect aircraft never will be produced, the existing models will be in operation for some time to come, and it is necessary therefore to provide enough airport to accomodate performance characteristics which result when aircraft are operated so as to realize an optimum of safety with respect to emergencies. This obtains when take-off speeds are great enough to preclude the possibility of stall after take-offs, when speeds during the initial climb are sufficient to favor controlled flight in the event of an engine failure, and when landing approach speeds are well above the stalling speed. Engine failures during the take-off run and brake failures during the landing run also must be considered in determining airport dimensions.

In order to be sure of the inclusion of such performance in this study, records of normal day-in and day-out operations should be obtained at the larger airports. The piloting technique should not be restricted. As a corollary, data involving special flight tests should be excluded, except that all landing ground roll data should involve the full use of the brakes. This exception is necessary because of the fact that in daily operation, power often is used to prolong the ground roll in cases where the loading ramp is located at the far side of the airport Data involving instrument landings with the pilot "under the hood", and data involving the climbing characteristics of multiengine aircraft with one or more engines cut out, also should be included in this study

Performance results obtained from data involving daily operations as described above, of course, will be divergent. Some values will approach the ultimate characteristics while others will lie too far on the conservative side. This indicates the necessity of a large number of

records for each airplane so that an adequate determination of the normal operating characteristics may be realized. Conversely, the time and cost involved in the obtainment and employment of these records make it necessary to limit the number required to a minimum. Records of at least 30 take-offs and 30 landings should be obtained at any one altitude, and at least three different altitudes should be included. Thus, 180 records are necessary to determine adequately the normal safe operating characteristics of any one airplane over a reasonable range of altitudes. Additional tests may be necessary to obtain instrument landing and braked landing data. Moreover, since the reliability and the degree of permanence of the final results depend upon the inclusion of a reasonable number and variety of airplanes, it will be seen that the total number of records required is exceedingly large, particularly when this number is visualized in terms of actual take-offs and landings.

Meteorological data, including at least two seasonal cycles, should be obtained at several airports and at several altitudes. These should consist of temperature and barometric pressure observations at each airport of such a nature that they can be used to determine the fluctuations of density altitude and pressure altitude over a period of approximately two years. These data, in turn, can be used:

- (a) to determine the least favorable meteorological conditions which are likely to be encountered at the airport in question, and
- (b) to establish general assumptions concerning temperature and barometric pressure characteristics to be considered at any airport

The accident data should include as many types of airplanes as possible and should be arranged so as to facilitate the determination of just which performance characteristics should be used to obtain airport dimensions. Thus, runway length requirements may be determined from the take-off characteristics, or from the landing characteristics, or from a combination of both Obstacle zoning ratio requirements may be based upon either take-off or landing requirements. Data concerning accidents due to engine failures during the take-off and overshooting while landing should be emphasized. Data concerning hazards which may be reduced effectively by the elimination of the basic causes, rather than by providing larger airports, should be identified so that they may be excluded immediately from consideration in airport size determination. Accidents involving uncontrolled swerving of the airplane from its original take-off or landing direction should receive particular attention, since these may lead to the determination of adequate widths of runway areas.

PROCEDURE

1 Development of Equipment for Obtaining Records of Take-Off and Landing Characteristics

In connection with the equipment or method to be used for obtaining so large a number of records of day-in and day-out operations, the requirements discussed in the "Analysis of the Problem" were considered most carefully. The use of photographic equipment obviously is indicated because it obtains a permanent record and because its automatic operation practically eliminates the human element. Moreover, photographs also record pertinent surrounding conditions such as flight attitude, flap setting, runway characteristics, and other noteworthy details

It developed that none of the existing types of photographic equipment were completely satisfactory. Methods involving a camera set-up located at some fixed distance from the side of the runway, so that the airplane is flown across the field of vision, are lacking in range as concerns the flight path. Methods that involve microscopic measurements on the film of some known dimension of the airplane, such as the wing span, require considerable work in reducing the basic records to pertinent distances, speeds, flight paths, and are subject to errors due to the yawing of the aircraft which are difficult to evaluate

It was considered necessary, therefore, that the Administration develop its own equipment This development was accomplished through the efforts of the personnel of the Airport Section of the Technical Development Division in conjunction with the Research Development Department of the Eastman Kodak Company The equipment has proved to be most satisfactory

This equipment operates on the range finder principle and consists essentially of two widely separated motion picture cameras having carefully matched lenses. These are located at one end of the runway and are equipped with electrically timed shutters so that simultaneous photographs, at the rate of four per second, are taken of the airplane while it is taking off or landing. Vertical and horizontal markers, precisely located in front of the cameras, constitute references which permit direct measurements of horizontal and vertical distances from the cameras to the airplane through the projection, side by side, of each pair of simultaneous pictures on a ground glass screen. Both the airplane and the marker must be included in each of the photographs

Through careful calibration the scales on the projector are graduated to indicate the actual distances in feet, thus permitting a reasonably quick obtainment of space-time records of each take-off and landing maneuver

Actually, two pairs of cameras and markers are used which permit a distance range of 12,000 feet, and a height range of 650 feet at that distance. The accuracy of these measurements is within plus or minus one percent

A complete report covering this equipment is now being prepared for publication

2 The Obtainment and Presentation of Records of Take-Off and Landing Characteristics

The original program for this study included the obtainment and study of some 1,300 records involving three private-owner type and four airline type aircraft. This included normal operating conditions, whilnds weather conditions, and in the case of multiengine aircraft, flight with one engine inoperative. About one year would have been required to complete this program.

The actual obtainment of these records was well under way when, early in September, 1938, the need for at least an indication concerning airport dimension requirements became so urgent that it was necessary to abandon the original program and to complete the study as quickly as possible with such data as already were available As a result of that contingency, this study includes only some 560 records These are distributed in such a manner that complete characteristics of one model and sea level characteristics of four other models are determined from observed data in a reasonably adequate manner. Since it was found desirable to include a total of eight models in this study, it has been necessary to determine the normal day-by-day operating characteristics of the three remaining models through the use of "spread coefficients" which are applied to the computed ultimate characteristics of these models. These spread coefficients are determined as a ratio of the observed normal to the computed ultimate characteristics for the models on which actual photographic records have been obtained. A uniform and, therefore, comparable basis of performance computation was used for all eight models This was evolved through a study of the methods of computation developed in Report #103 prepared by the Aircraft Engineering Division These computations result in figures that check very closely with actual flight test results

It is evident that the number of records available for inclusion in a study of this nature should be increased. However, it is felt that the 560 records obtained are so disposed with respect to the types or models of aircraft considered as to provide a reasonable evaluation of their airport requirements. The acquisition of those records would not have been possible without the complete cooperation of the aircraft manufacturers, the air carriers, the municipalities, and the personnel of the various airports

The following table I lists the number of take-off and landing records obtained for each airplane included in this study and the airports where these records were obtained. The runway lengths and the geographical altitudes of the airports are also listed

It will be noted in Table 1 that models A, B, and C are private owner type aircraft while models D, E, F, G, and H, are airline type aircraft. It also will be seen that the normal take-off and landing characteristics of airplanes A, C, and G must be obtained through the application of the spread coefficients to the computed ultimate characteristics of those airplanes

No photographic records have been obtained to date of the flying characteristics of multiengine aircraft with one engine inoperative. However, other data involving flight tests under such conditions are available. These indicate that when the existing two-engine aircraft of the airline type are operated on one engine only, the resulting flight path varies tremendously. Test results indicate that the rate of climb may vary from 150 feet per minute to zero, or that the airplane actually may lose altitude.

In view of this, the consideration of positive climbing characteristics under such conditions has been eliminated so far as this study is concerned, except in the matter of obstacle zoning, which should be such as to provide reasonable clearance to permit an airplane to circle the airport and land in the event that controlled flight is possible after an engine failure during the take-off

It is possible, of course, to extract a wealth of useful and interesting information from the recorded performance data. As previously discussed, however, the effectiveness of this study depends largely upon the exclusion of all but the most pertinent material. Thus, the basis for the determination of airport dimensions can be attained through analysis of the distances travelled by the airplanes in taking off and landing, including the distances required to clear obstacles. This analysis, however, requires a knowledge of unstick and landing speeds. It was found possible to exclude all but the following performance characteristics:

NUMBER OF TAKE-OFF AND LANDING RECORDS OBTAINED FOR EACH AIRPLANE AND THE AIRPORTS WHERE THESE RECORDS WERE OBTAINED

TABLE 1

					-			Numbe	r of	Take-(off a	nd Lane	gnıt	Recor	ds, A	i rpla	nes (A) to	(H)	inclu	sive		
	Geog						PRIV	7ATE O	WNER	TYPE							AIRI	INE T	YPE	_			
Alrport	Alt		Runwa	y Length	s (Ft)		A	В		(7	D		1	E		F	(3		Ħ	H(B1:	ind)
	(ft)	N/S	E/W	NW/SE	ne/sw	то	L	ΤO	L	TO	L	TO	L	TO	L	то	L	rо	L	T O	L	TO	L
Oakland (Blind Landings)	5	5000	5000	_	3500																		31
L A Municipal (Mines Field)	93		5280		3500		i –	21	22			20	70					6	11				
Chicago Municipal	614	2250	4700	3200	3200									22		16				35	3		
Fort Worth	690	3400	3200	3800	3300]										13				4	10		i —
Burbank	695	3600	3550	365C	3650	1								20	23	5				13	41		
Salt Lake City	4220	5550	4350	<u>555</u> 0				27	25			7		16		_				15	6		
Cheyenne	6145	3816	6500	5100	3024															35	46		
Totals (Take-offs and Landing	s) per l	Airplan	e					48	47			27	⊻ ≭ 70	58	23	34		6	11	102	106		31
Total Number of Records per A	irplane					,	0 *	9	5	() *	97		83	1		34	1'	7 *	20	g	31	
Total Number of Records: 563							_											-	_				

- * Normal Performance characteristics of these airplanes are determined through use of spread coefficients as described on Page 18 of this report
- ** Five of these records involved special flight tests For these five, only the ground roll characteristics were considered (See table 40)

NOTE

#irplane (A) is a low powered private owner type

Airplane (B) is a medium powered private owner type

Airplane (C) is a high powered private owner type

Airplanes (D, E, and F) are the smaller airline type

Airplane (G) is one of the largest and latest of transport aircraft

Airplane (H) is one of the larger modern airline type

TAKE-OFF

Unstick Distance Unstick Speed Distance to attain 50 and 100 feet heights (from start)

LANDING

Distance from 50 and 100 feet heights to contact Contact Speed Ground Roll Distance (with use of brakes)

In the determination of the foregoing performance characteristics, the speeds and distances as recorded during each take-off and landing must be reduced to a comparable basis, necessitating the application of a certain number of corrections. On the other hand, as has been mentioned previously, the general acceptability of the final conclusions will be lessened in proportion to the number of manipulations which are applied to the original observed data. In view of this, only two corrections are applied. Distances and speeds first are corrected to zero wind velocity, and second, to specification gross weight

Since information concerning the effect of altitude upon performance is necessary for the determination of the dimensions of airports located at various elevations, the observed data were not corrected to sea level. Instead, the effective altitude for each take-off and landing was determined through analysis of observed temperatures and barometric pressures, so that eventually curves of performance characteristics against altitude might be plotted

It is realized that a number of additional corrections could have been applied to the original data. These might have involved corrections to standard horsepower for each model, depending upon the particular type of engine and propeller installed in the individual airplanes, or corrections for cross wind effect, for runway grade, for flap setting, and so forth. It was felt, however, that such refinements could be eliminated in view of the fact that their effect easily could be negated by any one of a number of indeterminate items* such as

Throttle manipulation
Mechanical condition of the engines
Engine temperatures
Manipulation of intake-air-heat controls
Quality of fuel
Condition of airport surface
Air turbulence and gusts
Piloting technique

The combined effect of the above items is responsible for the divergence among the corrected performance data for any one model. The final determination, for that model, of the performance characteristics which may be used for the determination of its airport requirements cannot be made adequately except through the study of a large amount of take-off and landing data. As previously indicated, these data should involve different individual airplanes of each model included in the study, different pilots, different airports at different elevations, and should be obtained at the larger airports so as to insure safe piloting technique. These data then may be spotted on coordinate paper and curves may be drawn so as to include the less favorable points, but in such manner as to exclude the ultra-conservative results

For each airplane, take-off speeds, contact speeds and take-off distances, including the initial climb, are plotted against altitude. Approach paths are not affected by altitude. Data involving approach distances, therefore, are not plotted, but are presented in a graphical manner so as to facilitate the final determination of these distances for each airplane. Landing ground roll distances are affected by contact speed rather than by altitude. These data, therefore, have been plotted against contact speed.

3 The Obtainment and Presentation of Accident Records

A total of 452 records of take-off and landing accidents was obtained from the Accident Analysis Section of the Safety Bureau These involve both private owner type and airline type aircraft In addition to these, a total of 28 records of mechanical interruptions involving

*Note An accurate determination of the effect of any of the above items, even under carefully controlled flight test conditions, appears doubtful Where records of day-by-day flight operations are being obtained, such determination is practically impossible

airline type aircraft was obtained from the Aircraft Engineering Division of the Safety Regulation Service A brief account of each accident is presented in a tabular form. These accounts have been further condensed in a second set of tables in such a manner as to facilitate the study of the accident data as they affect the determination of airport dimension requirements. All of the take-off and landing accidents and mechanical interruptions for the period of time considered were included in these tables so as to present a complete picture of the situation

The Obtainment and Presentation of Meteorological Data

The meteorological data included in this study were obtained from the United States Weather Bureau These data were in the form of thermograph and barograph records involving two seasonal cycles, and included the airports at Burbank, California (altitude 695 feet), Salt Lake City, Utah (altitude 4,220 feet), and Cheyenne, Wyoming (altitude 6,145 feet) These data are presented in the form of curves which show the fluctuations in density altitude and pressure

DISCUSSION OF FACTUAL DATA

1 Accident Records

Brief accounts of 452 accidents and 28 mechanical interruptions are presented in tables 23 to 27 inclusive (appendix #4) All accidents and interruptions involving take-offs and landings which occurred during the period of time considered are included. These data have been grouped so that each table includes the following types of accidents

- Take-Off, Airline Aircraft

Table 23
Table 24
Table 25
Table 26
Table 27 - Landing, Airline Aircraft
- Take-Off, Private Owner Aircraft
- Landing, Private Owner Aircraft
- Take-Off and Landing Interruptions, Airline

Because of their quantity, the above data have been placed in an appendix to this report They have been condensed, however, in the following tables 2 to 6 inclusive, which list the primary causes of those accidents which are pertinent to the consideration of airport dimensions

TABLE 2

	PRIMARY	CAUSES							
	TAKE-OFF ACCIDENTS INVOLVING AIRLINE TYPE AIRCRAFT								
Item No	Cause of Accident	Accident Numbers as Listed in Table 23	Total No of Accidents						
1	Ice or snow on wings	8 - 10 - 11 - 18 - 20	5						
2	Carburetor Ice	2 - 3 - 22	3						
3	Failure of Fuel Supply	1 - 6 - 12	3						
4	Insufficient Width of Runway Area	9 - 17 - 22	3						
5	Obstacles in Flight Path	7 – 19	2						
6	Uncontrolled Swerving Out of Runway Area	1 - 2 - 3 - 4 - 5 - 12 13 - 14 - 15 - 16 - 22	11						
7	Engine Failure	1 - 2 - 3 - 4 - 6* - 12 14 - 15 - 16 - 22	10*						

*All accidents due to engine failure, with the exception of #6 involved uncontrolled swerving from the original flight path.

Only the accident data which are pertinent to the consideration of airport dimension NOTE 1 requirements are included in this table

2 This table is a condensation of the data listed in table 23 which involves a total of 22 accidents, which in turn involved a total of 157 people Of these, 5 were injured fatally, 13 seriously, 6 sustained minor injuries and 133 were uninjured

TABLE 3

	PRIMA	RY CAUSES								
	LANDING ACCIDENTS INVOLVING AIRLINE TYPE AIRCRAFT									
Item No	Cause of Accident	Accident Numbers as Listed in Table 24	Total No of Accidents							
1	Overshooting	4 - 8 - 19 - 22 - 30 - 32 35 - 48 - 53 - 56 - 57 - 64 72	13							
2	Brake Malfunctioning	12 - 19 - 23 - 30 - 35 - 38 55 - 63 - 65 - 72 - 53	11							
3	Uncontrolled Swerving Out of Runway Area	12 - 27 - 42 - 54 - 55 - 65	6							
4	Insufficient Width of Runway Area	55	1							

- NOTE: 1 Only the accident data which are pertinent to the consideration of airport dimension requirements are included in this table
 - 2 This table is a condensation of the data listed in table 24, which involves a total of 72 accidents, which, in turn, involved a total of 539 people. Of these 3 were seriously injured and 536 were uninjured.

TABLE 4

	PRIMAR	Y CAUSES								
TAKE-OFF ACCIDENTS INVOLVING PRIVATE CWNER TYPE AIRCRAFT										
Item No	Accident Numbers as Listed in Table 25	Total No of Accidents								
1	Over-running	3 - 22 - 33 - 48 - 51 - 61 63 - 66 - 67 - 80 - 82 90 - 99 - 102	14							
2	Engine Fallure	5 - 7 - 9 - 11 - 12 - 14 18 - 23 - 24 - 27 - 29 - 30 31 - 32 - 34 - 39 - 43 - 44 52 - 70 - 72 - 77 - 78 - 87 68 - 69 - 94 - 96 - 97 - 100 104	31							
3	Obstacles in Flight Path	16 - 17 - 22 - 25 - 31 - 33 38 - 42 - 56 - 60 - 61 - 63 66 - 67 - 68 - 75 - 84 - 90 93 - 102	20							
4	Failure of Fuel Supply	18 - 24 - 88	3							
5	Uncontrolled Swerving Out of Runway Area	37 - 49 - 53 - 58 - 83 - 103	6							

NOTE 1 Only the accident data which are pertinent to the consideration of airport dimension requirements are included in this table

2 This table is a condensation of table 25 which involves a total of 104 accidents, which in turn involved a total of 211 people Of these, 2 were injured fatally, 9 seriously, 12 sustained minor injuries and 188 were uninjured

TABLE 5

	PRIM	MARY CAUSES								
	LANDING ACCIDENTS INVOLVING PRIVATE OWNER TYPE AIRCRAFT									
Item No	Cause of Accident	Accident Numbers as Insted in Table 26	Total No of Accidents							
1	Overshooting	7 - 23 - 24 - 41 - 45 - 129 147 - 160 - 174 - 221 - 235	11							
2	Brake Malfunctioning	34 - 35 - 168	3							
3	Uncontrolled Swerving Out of Runway Area	8 - 12 - 14 - 17 - 22 - 24 26 - 29 - 31 - 34 - 35 - 39 47 - 56 - 58 - 63 - 64 - 75 - 82 93 - 96 - 107 - 127 - 132 - 135 136 - 140 - 141 - 142 - 155 - 16 168 - 169 - 170 - 197 - 215	_							
4	Obstacles in Flight Path	9 - 49 - 67 - 70 - 86 - 108 - 110 - 148 - 161 - 189	10							
5	Insufficient Width of Rumway Area	17 - 56 - 58 - 75 - 96 - 162 170	7							

- NOTE 1 Only the accident data which are pertinent to the consideration of airport dimension requirements are included in this table
 - 2 This table is a condensation of the data listed in table 26 which involves a total of 472 accidents, which, in turn, involved a total of 472 people—Of these, 6 were injured fatally, 5 seriously, 38 sustained minor injuries and 423 were uninjured

TABLE 6

	FRIMAR	CAUSES							
	MECHANICAL INTERRUPTIONS INVOLVING AIRLINE TYPE AIRCRAFT								
Item No	Cause of Interruption	Interruption Nos as Listed in Table 27	Total No of Interruptions						
1	Engine Failures	19 - 20 - 21 - 22 - 23 - 24 25 - 26 - 27* - 28	10 *						
2	Brake Malfunctioning	6 - 7 - 8 - 10 - 13 - 14 - 15 - 16 - 17 - 18	10						

* All of these interruptions with the exception of #27 involved the failure of one outboard engine Controlled flight was maintained

NOTE Only the interruption data which are pertinent to the consideration of airport dimension requirements are included in this table

From inspection of the tabulated records, it will be noted that there were a number of accidents in which the airplanes travelled beyond the boundaries of the airport, but which, it is believed, would not have been avoided even though the airport had been larger. Thus, the formation of ice or snow on the wings either prior to or during the take-off often results in the following sequence of events—the airplane apparently is functioning in a normal manner during the ground run, but refuses to leave the ground at the usual speed. The pilot does not realize that the aerodynamic characteristics of the wings have been impaired and persists in his attempt to take off until he suddenly realizes that he is approaching the boundary of the airport

At this point he closes the throttle, but continues beyond the boundary. In view of the above, and in view of the fact that sea level runways as long as 4,500 feet have been involved, (accident #11, table 23), it appears that dispatching practice rather than runway length is the critical factor. Nevertheless, both take-offs and landings continually will be attempted under such conditions. It is important, therefore, that airport dimensions be of sufficient magnitude to minimize the hazards involved.

There also have been a number of accidents, the primary causes of which have been eliminated or which are subject to elimination. Again, it is felt that in such causes airports need not be enlarged to accommodate the resulting maneuvers of the aircraft. One such cause is the formation of ice in the engine induction systems

The removal of this hazard through the application of means to prevent engine icing reduces the possibility of engine failures due to such causes. The presence of water in the fuel has caused a number of engine failures. Proper fuel handling practices together with the use of adequate storage equipment is proving effective in the elimination of this hazard

Many accidents have been due to the pilot's failure to take off within a reasonable distance, or have resulted from overshooting in attempting to land. Obviously, these would have been avoided if the airport had been larger. It also is obvious that poor piloting technique can result in accidents of this type regardless of runway length. This is evidenced by the fact that runways as long as 3,650 feet have been overrun in attempted take-offs of medium powered private owner type aircraft, (accident #63, table 25), and that 4,000 foot runways have been overshot in attempted landings of airline aircraft, (accident #8, table 24). In view of the above, it appears impractical to consider the determination of runway lengths directly from accident records, particularly since observed performance data are now available, as listed in this report.

The necessity for adequate width of cleared areas on either side of the runway is evidenced by a number of accidents listed in the tabulated data. Thus, accidents have been caused by piles of snow which were left on either side of the runway when the runway itself was cleared There also have been accidents which involved an uncontrolled and sudden swerving of the airplane from its original take-off or landing direction. In such cases, airplanes have travelled as far as 600 feet from the center of the runway before coming to rest (accident #3. table 23) While it is true that damage to the sirplane usually will result from such maneuvers, even though cleared areas are available, it also is true that adequate width of such areas will minimize the possibility of injuries to passengers and crew and, therefore, should be provided. These records include so little specific information concerning actual distances that they cannot be used as a basis for precise determination of this important dimension Consideration of the aircraft performance characteristics in this connection also is of little value, since these do not involve such maneuvers. However, if the 600 foot distance mentioned above were to be accepted as a criterion, it would follow that on large airports a minimum distance of 600 feet should be provided between the center lines of any two parallel runways, from the center line of any runway to the boundary of the airport, and from the center line of any runway to any obstruction It appears reasonable, however, to reduce this dimension in the case of smaller airports

In considering runway length requirements with a view to minimizing the hazards resulting from engine failure during take-off, it would be desirable to determine

- (a) The point along the take-off where such failure is likely to occur
- (b) The probable sequence of events following the engine failure

Table 2 lists ten accidents due to such engine failures involving five different types of multiengine airline aircraft These accidents include engine failures at various points along the
take-off They have occurred at the start, during the ground run, and after take-off, at heights
up to 60 feet above the ground In every case, except one, the airplane did not continue in a
straight line but swerved to one side out of control, and crashed at some distance from the runway On the other hand, table 6 lists nine interruptions due to failure of one outboard engine
in which the pilot was able to maintain control after the engine had failed This table also
includes five types of aircraft. Single engine aircraft have been involved in 31 accidents
(table 4) which were caused by engine failures during the ground run, and after take-off, at
heights up to 700 feet above the ground

The above data indicate that it is not possible to determine the point along the takeoff where engine failures are likely to occur. However, they do give some indications concerning the probable sequence of events following such failures, particularly as to multiengine
airline aircraft in current operation. It appears that the loss of an outboard engine need not
result in loss of control. On the contrary, it would seem that correct pilot reaction can result
in controlled flight regardless of the air speed at the time of the engine failure, and in spite
of the fact that such failures come as a complete surprise to the pilot at the time when he is

occupied with the extremely delicate task of getting his passengers safely into the air. This would appear to explode the idea that, for any particular model, there is a critical speed above which control may be maintained and below which a crash is certain. However, it undoubtedly is true that high speeds favor controlled flight in such emergencies.

From the standpoint of safety, it seems reasonable that runways should be long enough to permit airplanes to roll safely to a stop in the event of an engine failure during the take-off. In view of the foregoing discussion there is no clearcut basis for a general determination of the point at which the engine failure will occur, except that high speeds at the time of engine failure will favor controlled flight.

As an example, it might be assumed from consideration of accident #1, table 23, that runways should be long enough to permit an airline aircraft to take off, climb to 60 feet, lose an engine, land, and roll safely to a stop. On this basis actual lengths can be obtained through a study of the normal take-off and landing flight paths as shown in figure 21. These curves indicate that airline aircraft will travel between 4,000 and 5,600 feet to attain a height of 60 feet, and that an additional 3,500 feet to 4,200 feet will be required to permit them to land and roll to a stop. Accommodations for such maneuvers would result in runways from 7,500 feet to 9,800 feet long, depending on the type of airplane. It cannot be established from the accident records that even these lengths would provide absolute safety under such conditions. In view of the accident data, however, safety in the event of an engine failure during the take-off would seem to depend upon correct pilot reaction. It is believed that this will be less likely if the pilot finds that he is nearing the boundary of the airport when his engine fails. On the other hand, if runways were at least long enough to permit the airplane to come safely to a stop in the event of a partial loss of power during the take-off at the speed at which level flight power requirements were a minimum, the pilot could come to a stop or, if he so elected, his chances of successfully going around for a landing would be favorable.

It would seem that runway lengths determined on the basis outlined above should favor correct pilot reaction, and therefore should provide reasonably well for the safe operation of both single and multiengine aircraft

The speeds for minimum power, level flight, under standard sea level conditions are listed on line 19 of table 7, for the eight airplanes included in this study. The unstick speeds as realized in normal day-by-day flying operations involving unfavorable temperature and barometric conditions (T =100°F, Hp= 500 ft) are listed on line 5, table 8. When the speeds listed in table 7 are corrected to the temperature and barometric conditions which are involved in table 8, it will be seen that under similar conditions the speeds for minimum power closely approximate the operating unstick speeds

In view of the above, it is felt that a reasonable degree of safety will be realized if runways are long enough to permit aircraft to roll safely to a stop in the event of an engine failure during the take-off at the point where the wheels are just leaving the ground, as determined from performance characteristics realized during normal day-by-day operations

2 <u>Performance Data</u>

(a) <u>Basis for Correction</u>: When the photographic records of each take-off or landing were obtained, as previously discussed in this report, notations were made of the accompanying wind direction, wind speed, temperature, barometric pressure, and of the gross weight of the airplane. The distances, heights, and speeds, as determined through the viewing of the films on the projector, then were corrected to zero wind velocity and to specification gross weight in the conventional manner. A detailed discussion of these corrections may be found in appendix #1. Since it is necessary to determine the variation of these performance characteristics with altitude, they were not corrected to sea level. Instead, the particular altitude at which each record was obtained is listed so that curves of performance against altitude can be plotted for each airplane involved. When this has been accomplished, it is necessary only to determine the altitude of any airport so that the performance characteristics of that airplane on that airport also may be determined.

The altitude that is listed, either with respect to the recorded flight characteristics or with respect to any airport, must be expressed in terms of the atmospheric conditions that affect the particular performance characteristic in question. Thus, speeds are affected only by the density of the air, since only aerodynamic characteristics are involved. Landing ground roll distances also are affected by density in that they depend upon the speeds at contact. Take-off distances and climb path ratios, on the other hand, are affected both by density and by pressure, since both the serodynamic and the engine power characteristics are involved. Approach path ratios are not affected by altitude, since they depend only upon the angle of attack or flying attitude of the airplane.

In order to express density and pressure in terms of altitude, it is necessary to con-

sider the standard relationship of these characteristics to altitude. Meteorological observations from all over the world and covering a period of many years have led to the general adoption of a "Standard Atmosphere". Thus, for any altitude, there is a standard temperature, a standard pressure, and a standard density. When the density has been determined from the observed temperature and pressure, a corresponding altitude may be determined from standard atmosphere tables. This is designated as the "density altitude". In a similar manner the altitude corresponding to any observed pressure is termed "pressure altitude". Figure 1 is a nomogram, or chart, which may be used to determine the density altitude from any combination of observed temperature and pressure, or which may be used to determine the pressure altitude when the barometric pressure is known. To increase its utility, additional scales are included on this nomogram which permit the conversion of density altitude to the square root of the density ratio (ratio of observed density to standard sea level density)

The determination of altitudes corresponding to the combinations of density and pressure, which affect take-off distances and climb path ratios, is difficult because of the complicating effect of engine supercharging. However, an altitude coefficient (Kpp) has been determined, and these characteristics have been plotted against (Kpp). This, in effect, is a multiplying coefficient which may be used to reduce these performance characteristics to sea level conditions. A second nomogram (figure 2) is used to determine (Kpp) from known values of density altitude (Hp) and effective pressure altitude (Δ Hp). The use of this nomogram, including the determination of (Δ Hp), is explained on the nomogram itself. The values resulting from the use of figure 2 are in close agreement with the curve shown in figure 218, page 442, on the revised edition of Diehl's Engineering Aerodynamics

Thus, when the temperature and barometric pressure corresponding to any photographic record are known, the nomograms (figures 1 and 2) may be used to determine the pressure altitude, the density altitude, and the altitude coefficient (Kpp) which existed during that flight

(b) Presentation of Performance Data for each Airplane

The normal performance characteristics involving take-offs and landings as listed in table 1, and corrected as previously discussed, are presented in tables 28 to 40, and in figures 3 to 19 inclusive. As far as possible, these data are grouped according to the model involved.

Take-off distances from start to unstick, to 50 feet height, and to 100 feet height, as well as unstick speeds and landing speeds are tabulated and plotted against altitude

The tabulation and graphical presentation of landing approach data include distances from 100 feet height to contact and from 100 feet height to 50 feet height. Since these characteristics are not affected by altitude, as previously discussed, they are not plotted against altitude but are represented on figure 18, by straight horizontal lines which are drawn to scale from a common datum line so that the length of each line corresponds to the observed glide path ratio for each landing. The glide path ratio is the ratio of distance to height

The presentation of the landing ground roll data as curves of distance against contact speed (figure 19) involves four separate models. It appears that the size of the airplane does not influence the definition of such curves, but that certain design characteristics will have an appreciable effect. Thus, two closely related curves are drawn. The first curve involves normal airplanes, while the second involves airplanes equipped with tricycle landing gears or with low hanging Fowler flaps. Only data involving the full use of brakes are included.

A careful study of the graphical presentation of these data will clarify and facilitate the consideration of airport size determination. In this connection, it again is emphasized that these data were photographically obtained, and that no restrictions were imposed upon the pilots with respect to flying technique. They are records of how the airplanes perform under normal operating conditions rather than how they might perform under ideal conditions. The result of each recorded flight is shown. These flights involve flying technique that has been evolved through years of experience, not all of which has been pleasant, as it includes a number of fatal accidents. These accidents, however, have resulted in increased safety, since their analyses have made it possible to eliminate unsafe flying practices. It is felt, therefore, that the observed performance data included in this study involve a reasonable balance of practicability and safety.

It might well be expected that, by this time, the flying technique for each airplane would have become more or less standardized, and that this would be reflected in reasonably consistent records of the normal performance characteristics for those airplanes. On the contrary, however, the observed data for any one model are seen to be widely divergent. This emphasizes the fact that piloting technique is but one of many variables, any of which can seriously affect the resulting performance characteristics, and none of which is accounted for by aerodynamic theory. For example, in figure 17, it will be noted that under normal conditions

and at moderate altitudes, airline aircraft (H) will require from 1,100 feet to 2,200 feet to get off the ground

The manner of divergence of these data is significant. It will be noted that the majority of the data lie within reasonably definite boundaries, while a few are so widely scattered as to appear to be completely unrelated to the main group. It is believed that these few could be the result of ultra-conservatism on the part of those particular pilots, or perhaps could be due to extremely unusual combinations of unfavorable circumstances.

The problem in each case is to locate curves through the observed data, so that the conclusions drawn from these curves will represent reasonable safety. It is believed that only the main group need be considered and the few data which lie far beyond the boundaries of this group may be ignored. It might be possible to draw a curve which would be a mathematical average of the grouped points. If this were done, roughly fifty percent of the observed data would fall beyond the curve. However, as previously discussed, all of the observed data involve a high standard of piloting technique and were obtained under normal operating conditions. If airport dimensions were determined from average curves, only about fifty percent of the flying operations would enjoy the degree of safety which the criteria previously discussed should provide. It would seem desirable, therefore, that these critical curves be located so as to mark the reasonably conservative boundary of the main groups of data. This latter reasoning is that used in locating the curves. Furthermore, no attempt was made to shape these curves to conform to aerodynamic theory, since it is felt that the many indeterminate variables easily could negate its effect.

In studying the curves of unstack and contact speeds against density altitude, it will be noted that in each case a horizontal line is drawn across the sheet at a density altitude (Hp) of 3,200 feet, and that this line is labeled MS L - High Temp & Low Barometer. The intersection of this line with the curve gives the velocity characteristic that will be realized at sea level airports on exceedingly hot days. Take-off distance curves include a similar horizontal line located at KDP= 867 for unsupercharged engines and at KDP= 894 for supercharged engines. As explained previously, the above values are based upon a large volume of meteorological observations.

It appears desirable that sea level airports should be large enough to accommodate the performance indicated by the intersections of the above lines with the curves. It is believed that the factual data have been interpreted in a correct and reasonable manner. There follows a detailed discussion of these data with reference to each specific airplane model.

Airplane A (Private Owner Type)

The characteristics of Airplane A are determined through the use of spread coefficients. This will be discussed later

Airplane B (Private Owner Type)

The adequacy of the 96 available records concerning Airplane B can be determined from inspection of figures 3, 4, and 5. From these it will be seen that although the two groups of points adequately determine the actual performance characteristics of this airplane at sea level and at about 3,000 feet density altitude ($K_{\rm DP}=70$), a third group of points at an appreciably higher altitude is needed to determine more accurately the manner in which the performance of this airplane varies with altitude. This need is illustrated by the extrapolation of the curve involving the contact speed and density altitude as shown in figure 4. The landing approach data are presented graphically in figure 18. The complete determination of the observed characteristics of this airplane could be realized by obtaining 60 additional records at a geographical altitude of 6,000 feet or higher. These should include 30 take-offs and 30 landings

Since all of the landings of this airplane involved the use of brakes, the speeds at contact and the corresponding ground roll distances are listed in table 40 and are plotted in figure 19

Airplane C (Private Owner Type)

The characteristics of Airplane C are determined through the use of spread coefficients. This will be discussed later

Airplane D (Airline Type)

The tabulated and plotted characteristics of Airplane D are the results of photographic records of controlled flight tests of this airplane, and do not include normal day-in and day-out operations, nor any approach path data. Moreover, the number and the altitude distribution of these records are not completely adequate, even for the determination of sea level character-

istics, as will be seen from inspection of the following figures 6, 7, and 8 except that the landing ground roll characteristics plotted in figure 19 involve the use of brakes. These data are presented at this time, however, since it is felt that the inclusion of observed data on at least five airline aircraft is desirable. It is believed that the majority of these results which involve contact speed characteristics represents normal operating practice. The location of the curves, particularly relating to the take-off characteristics, is a matter of extrapolation. These can be located fairly accurately at low altitudes (1,000 feet density altitude or $K_{\rm DP}=97$). Their extrapolation to higher altitudes, however, involves sloping them in approximately the same manner as the corresponding curves for Airplanes B, E, F, and H, which were defined by more complete data at various altitudes. It is believed that the performance characteristics of Airplane D, as determined from these curves, will result in reasonably safe airport requirements for this airplane, and that unduly conservative results are not included. It will be noted that the available data concerning this airplane do not include approach path characteristics. These are determined through the use of spread coefficients

Although it is believed that the interpretation of the available data concerning this airplane has resulted in a reasonable determination of its actual operating performance characteristics, it would be most desirable to obtain a complete set of 180 additional records involving normal piloting technique rather than controlled flight tests

Airplane E (Airline Type)

The take-off characteristics of this model are adequately determined from observed data which involve only day-in and day-out operations for density altitudes up to 5,500 feet ($K_{\rm DP}=82$). The contact speed characteristics, however, are not determined very definitely above 2,000 feet density altitude. Approach path characteristics are determined adequately as seen in figure 18. No records of braked landings are available for this simplane.

A more complete determination of the observed characteristics could be realized through the obtaining of 30 additional take-off records at a geographical altitude of 6,000 feet or better, and 60 additional landing records at altitudes from 4,000 feet to 7,000 feet Records of braked landings also should be obtained for this model

Airplane F (Airline Type)

Available records concerning this model include only take-offs. All of these take-offs involve normal operations, except that the records obtained at density altitudes below sea level involve controlled tests. The inclusion of such data is of interest, since they appear to lie close to the curves of take-off performance against altitude, as defined by data involving normal flying. These curves are defined adequately for density altitudes up to 3,200 feet ($K_{\rm DPZ}$ 894)

The landing performance characteristics are determined through the use of spread coefficients, as will be discussed later in this report

If the take-off and landing characteristics of this airplane were to be determined completely from observed data involving day-by-day operations, it would be desirable to obtain 30 additional records of take-offs at a geographical altitude of approximately 4,000 feet and another 30 take-off records at 6,000 feet or higher. It also would be desirable to obtain a complete set of 90 landing records consisting of three groups of 30 obtained at sea level, 4,000-foot, and at 6,000-foot altitudes. Records of landing ground rolls involving the use of brakes would improve the definition of the curves shown in figure 19

Airplane G (Airline Type)

The available data concerning this airplane not only are inadequate from the standpoint of quantity, but involve only controlled flight tests in which efforts were made to realize the ultimate performance characteristics of this airplane. It is necessary, therefore, to determine the normal take-off and landing characteristics through the use of spread coefficients. The landing data, however, do include ground roll distances which involved the use of the brakes. These data are incorporated in figure 19

It would be most desirable, of course, to obtain a complete set of 180 records involving day-by-day operation of this airplane

Airplane H (Airline Type)

The recorded data from which the day-by-day take-off and landing characteristics of this airplane have been determined are very complete. This is most fortunate in view of the fact that the performance characteristics of Airplane H, as realized in normal operation are such that they determine the dimensions of the largest airports (Class IV), as will be seen in tables 8, 9 and 10

The radio instrument landing characteristics for this sirplane, however, were determined from data which involved low density altitudes. In order to determine these characteristics for sea level airports, but under unfavorable meteorological conditions, it was necessary to extrapolate the curve of contact speed from a density altitude of -500 feet to a density altitude of 3,200 feet. This has been accomplished by sloping the curve in a manner similar to the slopes of other contact speed against altitude curves. It is believed that the intersection of this curve with the horizontal line drawn at H_D = 3,200 feet gives a reasonable value of contact speed at this altitude, and that it safely may be used to determine normal ground roll distances for this airplane when landing on the radio instrument landing system and under unfavorable meteorological conditions at sea level airports

It would be most desirable to obtain photographic records of bland take-offs for this airplane, since it is believed that such conditions may induce more conservative piloting technique. More radio instrument landing records at higher altitudes also should be obtained

Figures 14, 15, 16, and 17 concerning this particular airplane and also figures 18 and 19 concerning the approach paths and ground roll characteristics of this and other airplanes are included at this point

It is regretted that the number of data involving braked landing runs is not greater since the resulting curves (figure 19) are so important in determining runway lengths. Eventually more should be obtained. However, it is believed that the use of those curves will result in runway lengths that will provide reasonably safe stopping distances.

3 <u>Meteorological Data</u>

As previously stated, the meteorological data observed at the Burbank, California, Salt Lake City, Utah, and Cheyenne, Wyoming airports consist of actual temperature and barometric pressure readings involving the period from June 6, 1937 to September 22, 1938 These data are listed in table 41 and are plotted in figure 20.

It will be noted in table 41 that each line involves a period of about one week. This is due to the fact that the data were obtained from inspection of thermograph and barograph records. There are four of these per month, thus, for each quarter of a month, the minimum barometric pressure and the combination of pressure and temperature for minimum density are listed. From these the maximum density and pressure altitudes are determined using the homogram (figure 1)

These tabulated altitude data are plotted for the period of 16 months in figure 20. A separate set of curves for each airport is presented. Thus, for each airport there is a curve showing the fluctuations in density altitude over two seasonal cycles, and a similar curve for pressure altitude. Two horizontal lines will be noted. One is marked (Hp), density altitude, while the other is marked (Hp), pressure altitude. These are located so as to indicate the values of (Hp) and (Hp) that actually are experienced at those airports over considerable periods of time during the summer. The values thus indicated may be used in conjunction with the nomogram (figure 2) to interpret the curves of observed performance characteristics plotted against altitude, so as to correlate the dimensions of those airports with the performance characteristics of the particular airplane in question. Such a procedure will insure safe operation with full pay load, and under unfavorable meteorological conditions of observed magnitude. The values indicated by these lines are listed in the lower left hand corner of each plot under the heading "Assumed Operating Conditions". Eventually, the meteorological data discussed above can be obtained for all airports just as observed performance characteristics can be photographically obtained for all aircraft.

APPLICATION OF FACTUAL DATA

1 Determination of Normal Sea Level Characteristics

- (a) <u>General Considerations</u> The determination of the normal sea level performance characteristics for the eight airplanes included in this study constitutes the first step in the final establishment of the proposed dimensional standards for the four classes of airports at all elevations up to 10,000 feet. There are two major considerations involved in this application of the factual data. These are
 - (a) Unfavorable meteorological conditions which are likely to be encountered
 - (b) The use of spread coefficients

Regarding the consideration of unfavorable meteorological conditions in connection with

the establishment of proposed dimensional standards involving elevations up to 10,000 feet, it will be noted that the observed data (figure 20) do not extend above 6,200 feet elevation. It is necessary therefore, to make a general assumption concerning temperatures and barometric pressures which will apply at all altitudes. After studying the values indicated in the foregoing meteorological data, it is assumed that at any airport during the summer months, flying operations will be carried on during the heat of the day when the temperature is 100°F , and when subnormal barometric pressures indicate a pressure altitude of 500 feet above the elevation of the airport. The use of the monograms (figures 1 and 2) in conjunction with the above assumption results in values of density altitude ($H_{\rm D}$) are pertinent multiplying coefficients as listed in table 12, which in turn are involved in the determination of airport dimensional standards versus altitude as shown in figures 22 and 23

The above assumption is slightly conservative when compared with the values indicated by the plotted meteorological data in the foregoing figure 20. However, its final effect as reflected by the runway length and obstacle zoning requirements versus elevation (figures 22 and 23), checks very closely with the dimensional requirements obtained through the direct use of the observed values in figure 20.

For the immediate purpose of determining the normal sea level characteristics of the eight airplanes included in this study, the temperature of 100°F and the pressure altitude of 500 feet are applied to the nomograms (figures 1 and 2) to obtain the following values

 dD (Density Altitude)
 3,200 ft

 KDP (For Unsupercharged Engines)
 867

 KDP (For Supercharged Engines)
 894

The above values are used in conjunction with the curves of observed performance characteristics against altitude to obtain the proposed dimensional standards for sea level airports. They are indicated on each curve by a horizontal line designated "S L High Temp and Low Barometer". The intersection of these horizontal lines with the performance curves gives the values that are used in the determination of dimensions for "sea level" airports.

Values from observed performance data as described above can be obtained only for Models B, D, E, F, and H because of the limited amount of such data. It becomes necessary to obtain the normal operating characteristics of Models A, C, and G through the use of spread coefficients As previously explained, this is accomplished through the application of a uniform method for computing the ultimate characteristics of all models (Models A to H, inclusive). When the ultimate characteristics have been determined, coefficients may be obtained for Models B, D, E, F, and H by dividing the observed normal characteristics by the computed ultimate characteristics A study of these coefficients leads to the determination of spread coefficients, which may be applied to the computed ultimate characteristics of Airplanes A, C, and G to obtain a close approximation of their normal day-in and day-out operating characteristics.

The application of spread coefficients to ultimate performance characteristics always will be necessary, since it is the only method available for determining the normal day-by-day performance characteristics of projected or newly developed aircraft, and since it always will be necessary to determine the simport size requirements of such aircraft long before their use has become so general that records of day-by-day operating characteristics can be obtained. The estimation of these coefficients for such aircraft will become increasingly accurate as the number of airplanes included in these photographically obtained data increases

The computations involved in obtaining the ultimate performance characteristics of Models A to H, inclusive, are accomplished through a method of tabulation (See table 7)

The application of such methods, of course, regates one of the fundamental precepts of this study, namely, that all of the performance values used in the determination of airport dimensions should be obtained from photographic records of normal day-by-day operations, rather than from the application of aerodynamic theory. As previously explained, however, the urgent need for immediate results necessitated the abandonment of the original program for obtaining records. It is to be hoped that more factual data eventually may be obtained. In the meantime, the use of spread coefficients yields fairly reasonable results and the establishment of a method of applying such coefficients should prove useful for the obtaining of normal characteristics of new and untested airplanes.

There follows an explanation of the method of tabulation

(b) Computation of Ultimate Sea Level Characteristics

The following is an explanation of the values listed in table 7. This table includes the aerodynamic computations of the following take-off and landing characteristics

- (1) Lift-Drag Ratio (gear extended)
 (2) Minimum Unstick Speed (Standard sea level)
 (3) Distance to Unstick (Sea Level t = 100°H_D 500¹) (line 16) (line 21)
 - (line 27)
- (4) Distance from 50' height to 100' height (Standard sea level)
 (5) Distance from Unstick to 50' height (Standard sea level) (line 32)
- (line 33) (6) Contact Speed (Standard sea level) (line 38)

In detail then, and line for line, the values listed in table 7 were obtained as follows

- Weight (W) from Aircraft Specifications
- Line 2 Span (B) - from Aircraft Specifications
- Line 3 - from Aircraft Specifications Area (S)
- Lane 4 Geometric Aspect Ratio (N = B^2/S)
- Line 5 Normal Rated Brake Horsepower per engine (BHPw) from Aircraft Specifications
- Normal Engine Speed (RFM) from Aircraft Specifications Line 6
- Brake Horsepower for Take-Off (Total) (EHPT) from Aircraft Specifications Line 7
- Line 8 Maximum Speed $(\nabla_{\mathbf{M}})$ from compiled performance data

(THE AERODYNAMICS INVOLVED ARE DISCUSSED IN APPENDIX NO 2)

Line 9 Propeller Coefficient

$$K_{S} = \frac{325V}{M} \left[\frac{V 3}{M} \right]^{\frac{1}{2}}$$

$$EHP$$

- Line 10. Propeller Efficiency $\eta = K_S/(197 + 1.124 K_S)$ two blade props $\eta = K_S/(20 + 1.16K_S)$ three blade
- Parasite Drag Coefficient (gear retracted) $C_{DP_D} = 133000 \text{ BHP } \eta / \text{ SV}_{M}^{2}$ Line 11
- Parasite Drag Coefficient (gear extended) $C_{DP_1} = 1.5 C_{DP_2}$ Line 12
- Effective Aspect Ratio (gear retracted) $R_2 = N/(1 + 2 NC_{DP_2})$ Line 13
- Line 14 Effective Aspect Ratio (gear extended) $R_1 = N/(1 + 2 NC_{DP_2})$
- Line 15 Lift Drag Ratio (gear retracted) $L/D_2 = (7854 R_2 / C_{DP_2})^{\frac{1}{2}}$
- Line 16 Lift Drag Ratio (gear extended) $L/D_1 = (7854 R_1 / C_{DP_1})^{\frac{1}{2}}$
- Traction Coefficient $\mu = 03$ (assumed) Line 17
- Line 18 Thrust Horsepower for take-off THP = 7 BHPT
- Line 19 Velocity for minimum power

$$\nabla_{\mathbf{MP}} = \left[16,300(\mathbf{W/S})^2 / R_2 C_{DP_2} \right]^{\frac{1}{4}}$$

- Line 20 Speed Factor $K_u = 90$ (Normal wings) $K_u = 85$ (Plain flaps) $K_u = .80$ (Fowler flaps)
- Whinimum Unstick Speed $V_{u} = K_{u} V_{MP}$ Line 21
- Initial Thrust T1 = 375 THP/AVy A = Thrust Constant A = 3 (Con-Line 22 trollable propellers) A = 5 (Fixed pitch propellers)

Line 23 Final Thrust $T_2 = 375 \text{ HP/AV}_M + \text{CV}_U \text{ C} = \text{Thrust Constant C} = 6 (Controllable propellers) C = 5 (Fixed pitch propellers)$

1

Line 24: Initial Net Force $F_1 = T_1 - \mu \pi$

Line 25: Final Net Force
$$F_2 = T_2 - \frac{\pi}{L/D_1}$$

Line 26 Distance to Unstick
$$I_1 = 0167 \text{ V}_u^2 \text{ (F}_1 + \text{F}_2)/\text{ F}_1 \text{ F}_2$$

Line 27: Distance to Unstick (t =
$$100^{\circ}$$
 F , $H_{\rm p}$ = 500°) $X_{\rm l}$ / $X_{\rm DP}$ $X_{\rm DP}$ (from nomogram figure 2)

Line 28: Thrust at Speed for Minimum Power
$$T_3 = 375 \text{THP/AV}_M + CV_{MP}$$

Line 29: Net Force at Speed for Minimum Power
$$F_3 = T_3 - \frac{1}{L/D_2}$$

Line 30 Distance to accelerate from
$$V_u$$
 to V_{HP} $\Delta X = 067 \text{ W}/(V_{HP}^2 - V_u^2)F_2 + F_3$

Line 31 Distance from
$$V_{MP}$$
 to 50' height $\Delta X_{50} = \frac{HW}{F_3} = \frac{50W}{F_3}$

Line 32: Distance from 50' height to 100' height
$$\Delta X_{(50 \text{ to } 100)} = \Delta X_{50} = \frac{50\text{W}}{F_3}$$

Line 33: Distance from Unstick to 50' height
$$\Delta X_{50} = \Delta X + \Delta X_{50}$$

Line 34 Distance from Unstick to 100' height
$$\Delta X_{100} = \Delta X + \Delta X_{50} + \Delta X_{(50 \text{ to } 100)}$$

Inne 37 Contact Speed Factor
$$K_C = 80$$
 (Normal wing) $K_C = 70$ (Plain flap) $K_C = 60$ (Fowler flap)

Line 38: Contact Speed
$$V_{C} = K_{C}^{V}MP$$

As previously discussed, the main objective in computing the optimum performance characteristics, as listed in table 7, is to provide a basis for determining the actual operating characteristics of airplanes on which no observed data have been obtained

In view of this, it will be seen that it is desirable to employ a uniform method for such computations and that this method should involve a large number of the physical characteristics of each airplane. The accuracy of these computed values as compared to the characteristics that can be realized in actual flight tests is desirable but is not essential to this study, since it is necessary to provide only an adequate basis for comparison

(c) Determination of Required Runway Lengths, Sea Level

The values computed in table 7 are combined with observed values (figures 3 to 19, inclusive) in table 8, so that the required runway lengths finally are determined for Airplanes A to H, inclusive These are such as to permit the airplanes to roll safely to a stop in the event of an engine failure at the point where the wheels are just leaving the ground, and involve sea level airports under conditions of high temperature and low barometer, as previously discussed

Referring to table 8, the observed values were obtained from the figures indicated at the points where the curves intersect the horizontal lines designated as "S L -High Temp and Low Barometer", as explained previously The assumed spread coefficients listed on line 4 for Airplanes A, C, and G were determined as follows:

Since these coefficients are largely representative of the degree of pilot conservatism,

COMPUTED PERFORMANCE DATA (SEA LEVEL)

TABLE 7
These data involve standard sea level conditions unless otherwise noted

LINE	TYPE		PRIN	VATE OW	YER			AURLINE	;	
MO F	AIRPLANE	SYMBOL	A	В	С	D	E	F	G	н
	TAKE-OFF									
1	Weight	¥	1040	2400	3800	15500	13650	18560	60000	24400
2	Span	В	36	36.3	38	65 5	74 0	85	138 25	95
3	Area	s	146 35	174	185 5	551	836	939	215/	987
4	Aspect Ratio	N	8 86	7 55	7 80	7.8	6 56	77	8 86	9 15
5	Normal Brake Horsepower per Engine	BHPN	40	145	320	800	550	690	1150	900
6	Normal Engine Speed	RPM	2540	2050	2200	2275	2200	2200	2200	2200
7	Brake Horsepower for Take-Off Total	BHPT	40	145	350	1700	1200	1510	5600	2200
8	Maximum Speed	Vm.	93	135	185	220	200	210	227	216
9	Propeller Coefficient	Ke	1 7	2 78	3 74	3 62	3 56	2 54	3,38	3 38
10	Propeller Efficiency	η	0.806	0.840	0 851	0 824	0 824	0 808	0 822	0 822
n	Parasite Drag Coefficient (Gear Retracted)	CDP2			'-	0 0299		0 0171	0 0199	
12	Parasite Drag Coefficient (Gear Extended)	CDP1	0 0364	0 0376	lo 0308	0 0449	0 027		0 0299	
13	Effective Aspect Ratio (Gear Retracted)	R2	, ,		1	5 31	5 30	6 10	6 55	6 73
14	Effective Aspect Ratio (Gear Extended)	R1	5 38	4 82	5 25	4 59	4 85	5 52	5 80	5 92
15	Lift Drag Ratio (Gear Retracted)	L/D2				11 80	15 20	16 80	16 10	16 40
16	Lift Drag Ratio (Gear Extended)	L/Dl	10 80	10 05	11 50	8 96	11 80	13 00	12 40	12 50
17	Traction Coefficient	μ	0 03	0 03	0 03	0 03	0 03	0 03	0 03	0 03
18	Thrust Horsepower	1992	32 2	122	298	1400	990	1220	7660	1810
19	Speed for Minimum Power	V _{mp}	45 5	65 0	81 0	95 0	82.5	88 5	99 5	93 5
2ó	Speed Factor	Кп	0 90	0.65	0 85	0 80	0 90	0 85	o´85	0 85
21	Minimum Unstick Speed	VΠ	41 0	55 3	68 9	76 0	74.5	75 5	84 5	79 5
22	Initial Thrust	'n	259	680	1210	7970	6200	7260	25200	10500
23	Final Thrust	T2	181	480	880	4710	3550	4225	14500	6040
24	Initial Force	Fi	228	608	1096	7505	5790	6704	23400	9770
25	Final Force	F2	85	241	550	2980	2400	2800	9650	4090
26	Distance to Unstick	Xî	473	710	820	700	745	935	1050	895
27	Distance to Unstick (Sea Level T = 100° Hp+500')*		545	817	945	785	833	1045	1173	1001
		TI/ TDP			742	1.07				1001
28	CLIMB Thrust at Speed for Minimum Power	The state of	175	458	840	4260	3390	2050	13500	5620
29	Net Force Speed for Minimum Power	T3 F3	79	219	510	2950	2490	3950 2850	9770	4130
30	Distance Required for Acceleration from VII to VMP	ΔX	165		436	2950 570		470		492
31	Distance from T to 501 Health		660	410 548		262	235		572	
32	Distance from VMp to 50' Height Distance from 50' Height to 100' Height	4 X ₅₀			373	262	274	325	307	296
99	Distance from Unstick to 50' Height	4 x100	660 825	548 958	373 809	832	274	325	307	296
34	Distance from Unstick to 100' Height	X50					509 783	795	879	778
24	Discrete them fuscice to too. Helkut	X ₁₀₀	1485	1506	1182	1094	783	1120	1186	1074
	APPROACH AND LANDING									
35	Approach Path Ratio	L/Dl	10 80	10 05	11 50	8 96	11 80	13 0	12 4	12 5
36	Speed for Minimum Power	ν	45 5	65 0	81 0	95 0	82.5	88 5	99 5	93 5
37	Contact Speed Factor	Kr.	0.80	0 70	0.70	0 60	0.80	0 70	0.70	0.70
38	Contact Speed	٧c	36 4	45 5	56 5	57.0	66 0	62 0	69 5	65 5

*Operating Conditions at Sea Level are Assumed to Include a Temperature of 100° F and a Pressure Altitude of 500 This Results in an Assumed Density Altitude of 3200° In this Case Kpp for Unsupercharged Engines ± 0.894

it was necessary to consider the general flying characteristics of the aircraft in estimating them. In other words, it was assumed that airplanes of like flying characteristics would have nearly the same spread coefficients

In the case of Airplane A, which is of the low-powered private owner type, the only comparable airplane was Airplane E, which is of the airline type, as these are the only models in the group which are not equipped with flaps. The coefficient for unstick speed for Airplane E is 1 15, which is quite low compared to the others. However, since pilot conservatism was assumed to increase with airplane size, an increase in this value for Airplane A did not appear to be justified. On the other hand, since Airplane E has the reputation of having reasonably safe flying characteristics at speeds near the stall, a decrease in this value for Airplane A did not appear to be justified either.

In the cases of Airplanes C and G, the values of spread coefficients listed average fairly closely with the observed values for Airplanes B, D, F, and H. Special consideration was given to the estimation of the coefficient for unstick distance for Airplane G. It was felt that since this airplane was equipped with a tricycle landing gear, the distance from start to unstick would be relatively shorter than for airline aircraft equipped with conventional gear A coefficient of 2 13 appears to be reasonable

In using figure 19 to determine the values listed on line 6, it is important to note that the upper curve determines ground roll distances for Airplanes D and G, while the lower curve is used to obtain these distances for Airplanes A, B, C, E, F, and H

The values listed on lines 2 and 8 were obtained from the indicated figures at the intersection of the ourses with the "effective sea level" line

The assumed spread coefficients listed on line 10 for Airplanes A and C were estimated on the assumption that the degree of pilot conservatism increases with the size of the airplane

(d) <u>Determination of Normal Take-Off and Climb Characteristics</u>, Sea Level

The values listed in tables 7 and 8 are combined with observed values (figures 3 to 19, inclusive) in table 9 to obtain normal operating distances from start to unstick to 50 feet height and to 100 feet height. The climb path ratio from 50 feet height to 100 feet height also is determined.

Referring to table 9, the values listed on lines 2 and 3 again are obtained from the indicated curves for operation at effective sea level

In estimating values of spread coefficients listed on lines 8 and 12 for Airplanes A, B, and G, it again is assumed that the piloting technique will become increasingly conservative as the size of the airplane increases

(e) Determination of Normal Approach and Ground Roll Characteristics - Sea Level

The values listed in table 7 are combined with observed values (figures 3 to 19, inclusive) in table 10 to obtain normal operating distances from 100 feet height to stop, 50 feet height to stop, and from contact to stop

Referring to table 10, the spread coefficients listed on line 4 for Airplanes A, C, D, F, and G were estimated. It is believed that these are reasonably consistent with the coefficients based upon observed values for Airplanes B, E, and H

The estimated spread coefficients listed on line 12, for Airplanes A, C, F, and G again are based on the assumption that the actual landing speeds will be closer to the stalling speeds where the smaller airplanes are concerned

A fair average value was assumed for the spread coefficients listed on line 17

(f) <u>Discussion of Method for Determining Normal Sea Level Characteristics</u>

The normal day-by-day performance characteristics finally determined and listed in tables 8, 9, and 10, involve runway lengths, take-off paths, and landing paths for Airplanes A to H, inclusive, as normally operated from airports geographically located at sea level, but involving the assumption of a temperature of 100°F together with a barometric pressure such that the pressure altitude is 500 feet above the geographical altitude

In reviewing the data listed in these tables it is important to consider the magnitudes of the various spread coefficients, as determined from observed performance characteristics. As noted in the tables, the apparent magnitudes of these coefficients are exaggerated in that the

RUNWAY LENGTHS (SEA LEVEL) (AIRCRAFT)

TABLE 8

	TYPE	PRI	VATE OW	NER		A	IRLINER	•	-
7 3315	AIRPLANE	A	В	С	ם	E	F	G	В
NO NO	UNSTICK SPEEDS		-						Н
1 2 3 4 5	Computed Optimum Unstick Speed (Table 7, Line 21) (v_{II}) Observed Normal Unstick Speed (From Curves — Figs 3, 6, 9, 12, 14)* Spread Coefficients Based on Observed Actuals Spread Coefficients — Assumed Normal Unstick Speed Computed & Observed (v_{UN}) *	1 15 47 2	55 3 69 8 1 26 1 26 69 8	68 9 1 25 86 1	76.0 96.5 1.27 1.27 96.5	74.5 85.5 1.15 1.15 85.5	75 5 92 5 1.23 1 23 92 5	1 25 105 6	79 5 99 5 1 25 1 25 99 5
	DISTANCES				_				
6 7 8 9 10 11	Distance to Stop from (V_{UA}) (From Curve Fig. 19 & Line 5) (S)* Computed Optimum Unstick Distance (Table 7 Line 26) (U) Observed Normal Unstick Distance (From Curves Figs. 5, 8, 11, 13, 17)* Spread Coefficients Based on Observed Actuals Spread Coefficients - Assumed Normal Unstick Distance - Computed and Observed $(U_N)*$	1090 473 1 50 710	1700 710 1140 1 61 1 61 1140	2200 820 1 73 1419	2220 700 1500 2 14 2 14 1500	2180 745 1620 2 17 2 17 1620	2400 935 2050 2 19 2,19 2050	2490 1050 2 13 2235	2630 895 2250 2 51 2 51 2250
12	Required Runway Length (Line 6+Line 11) (R)*	1800	2840	3619	3720	3800	4450	4725	4880

These data Involve Standard Sea Level Conditions Unless Otherwise Noted

*Operating Conditions at Sea Level are Assumed to Include a Temperature of 100° F and a Pressure Altitude of 500'
This results in an Assumed Density Altitude of 3200' In this Case KDP for Unsupercharged Engines =0.867 and for Supercharged Engines =0.894

The Magnitude of the Spread Coefficients is Exaggerated due to the fact that they Involve a Comparison of Observed data Obtained at a Density Altitude of 3200' with Computed Ultimate Performance Characteristics which Involve Standard Sea Level Conditions

NORMAL TAKE-OFF AND CLIMB CHARACTERISTICS (SEA LEVEL)

TABLE 9

LINE	TYPF	PRIV.	ATE OWN	ER	AIRLINE				
NO	AIRPLANE	A	В	С	D	E	F	G	н
1 2 3 4 5	Observed Normal Distance from Start to Unstick *(Table 8 Line 8) Observed Normal Distance from Start to 50' Height *(Figs 5, 8, 11, 13, 17) Observed Normal Distance from Start to 100' Height *(Figs 5, 8, 11, 13, 17) Observed Normal Distance from Unstick to 50' Height *(Line 2 - Line 1) Observed Normal Distance from 50' to 100' Height *(Line 3 - Line 2)		1140 2310 3080 1170 770		1500 4070 5200 2570 1130	1620 3800 5000 2180 1200	2050 4800 6200 2750 1400		2250 505 0 6 450 2800 1400
6 7 8 9	Computed Optimum Distance from Unstick to 50' Height (Table 7 Line 33) Spread Coefficient Based on Observed Values Spread Coefficient Assumed Normal Distance from Unstick to 50' (Computed & Observed)*	8 25 1 10 907	958 1 22 1 22 1170	809 2 5 2020	832 3 09 3 09 2570	509 4 28 4 28 2180		879 3 50 3075	778 3 60 3 60 2800
10 11 12 13	Computed Optimum Distance from 50' to 100' (Table 7 Line 32) Spread Coefficient Based on Observed Values Spread Coefficient Assumed Normal Distance from 50' to 100' (Computed & Observed)*	660 1 20 791	548 1 41 1 41 770	373 3 0 1120	262 4 31 4 31 1130	274 4 38 4 38 1200	325 4 32 4 32 1400	307 4 35 1335	296 4 75 4 75 1400
14 15 16	Normal Distance from Start to Unstick (Table 8 Line 11)* Normal Distance from Start to 50' Height (Line 9 + Line 14)* Normal Distance from Start to 100' Height (Line 13 + Line 15)*	710 1617 2408	1140 2310 3080	1419 3439 4559	1500 4070 5200	1620 3800 5000	2050 4800 6200	5310	2250 6450 50 50
17	Climb Path Ratio (50' to 100') (Line 13/50)*	15 80	15 40	22.40	22,60	24 00	28 00	26 70	28 00

These data involve standard sea level conditions unless otherwise noted

*Operating conditions at sea level are assumed to include a temperature of 100° F and a pressure altitude of 500°. This results in an assumed density altitude of 3200°. In this case KDP for unsupercharged engines = 0.867 and for unsupercharged engines = 0.894

The magnitude of the spread coefficients is exaggerated due to the fact that they involve a comparison of observed data, obtained at a density altitude of 3200', with computed ultimate performance characteristics which involve standard sea level conditions.

NORMAL APPROACH & GROUND ROLL CHARACTERISTICS (SEA LEVEL) AIRCRAFT

TABLE 10

	TYPE	PRI	VATE ON	NER	AIRLINE					
LINE NO	AIRPLANE	A	В	С	D **	E	F	** G	н	(ELIND) H
1	Minimum Computed Approach Path Ratio (L/D Max) (Table 7 Line 16)	10 8	10 05	11 50	8.96	11 8	13 0	12 4	12 5	12 5
2 3 4 5	Normal Approach Path Ratio (100' to Contact) Observed (Fig. 18) Spread Coefficient Based on Observed Values Spread Coefficient (Assumed) Normal Approach Path Ratio (Computed & Observed)	1 70 18 4	17 5 1 74 1 74 17 5	1 70 19 5	1.90 17 0	22 5 1 90 1 90 22 5	1 90 24 7	1 90 23 6	24 0 1.92 1 92 24 0	50 0 4 0 4 0 50 0
6	Normal Distance from 100' to Contact (Computed & Observed) (Line 5 x 100)	1840	1750	1950	1700	2250	2470	2360	2400	5000
7 8 9 10 11 12 13	Speed for Min Power (Table 7 Line 19) Vmp Speed Factor (For Contact) (Table 7 Line 37) Kc Minimum Computed Landing Speed (Line 7 x Line 8) Normal Landing Speed Observed (At Hp = 3200) *(Figs 4, 7, 10, 15, 16) Spread Coefficient (Based on Observed Values) Spread Coefficient (Assumed) Normal Landing Speed (Computed & Observed) Vcn*	45 5 0 80 36 4 1 25 45 5	65 0 0 70 45 5 62 3 1 37 1 37 62 3	81 0 0 70 56 7 1 40 79.4	0 60 57 0 83 5 1 47 1 47	82 5 0 80 66 0 82 5 1 25 1 25 82 5	1 45	99 5 0 70 69 6 1 45 101 0	93 5 0 70 65 5 94 5 1 44 1 44 94 5	93 5 0 70 65 5 110 0 1 68 1 68 110 0
14	Distance from (Vcn) to Stop (From Curve, Fig 19)*	1050	1490	1990	1850	2090	2320	2360	2460	2960
15 16 17 18	Observed Actual Approach Path Ratio 100' to 50' (Fig. 18) Spread Coefficient Based on Observed Values Spread Coefficient Assumed Normal Approach Path Ratio 100' to 50' (Computed & Observed)	1 22 13 2	12 0 1 20 1 20 1 20 12 0	1 22 14.0	1 22 10 9	15 0 1 27 1 27 15 0	1 22 15 9	1 22 15 1	15 0 1 20 1 20 15 0	43 00 3 44 3 44 4300
19	Normal Distance 100' to 50' (Computed & Observed) (Line 18 x 50)	660	600	700	545	750	795	755	750	2150
20 21 22	Normal Distance 100' to Stop (Line 6+Line 14)* Normal Distance 50' to Stop (Line 20 - Line 19)* Normal Distance Contact to Stop (From Line 14)*	2890 2230 1050	3240 2640 1490	3940 3240 1990	3550 3005 1850	4340 3590 2090	4790 3995 2320	4720 3965 2360	4860 4110 2460	7960 5810 2960

These data involve standard sea level conditions unless otherwise noted

*Operating conditions at sea level are assumed to include a temperature of 100° F and a pressure altitude of 500° This results in an assumed density altitude of 3200° In this case K_{DP} for unsupercharged engines ± 0.867 and for supercharged engines ± 0.867 and ± 0.867 and

** Line 14 Use upper curve of Fig 19

The magnitude of the spread coefficients is exaggerated due to the fact that they involve a comparison of observed data, obtained at a density altitude of 3200', with computed ultimate performance characteristics which involve standard sea level conditions

computed data involve values that would be realized under standard sea level conditions, whereas the observed values were realized at a density altitude of 3,200 feet which results at sea level when a temperature of 100°F together with a barometric altitude of 500 feet are assumed. Lines 7 and 11 of table 9 indicate that during the initial climb to 100 feet height and under adverse conditions, these aircraft actually travel more than four times the distance that would be required to attain this height if the airplanes were operated so as to realize their optimum performance at standard sea level. Lines 3, 11, and 16 of table 10 indicate that the landing characteristics are nearly as conservative as the take-off characteristics.

As discussed previously in this report, an appreciable divergence is to be expected between the optimum performance characteristics and the performance characteristics realized in regularly scheduled flying. The magnitude of this divergence, however, is rather startling and indicates a possibility of safely realizing more favorable performance characteristics under normal operating conditions. Thus, improved stalling characteristics and improved directional stability characteristics, with one engine inoperative, would undoubtedly result in better operating performance without any sacrifice in safety. It is possible also that, even for existing aircraft, better performance safely could be realized. It is believed, however, that the actual characteristics listed in tables 8, 9, and 10 constitute a fair indication of existing conditions, and that they should be used in the determination of airport dimensions until it can be established that improved performance is being realized safely in daily operation of these aircraft

(g) Normal Flight Paths - Sea Level

The determination of flight path characteristics for the eight airplanes included in this study, as realized in normal flying operations at sea level airports, is accomplished by the application of the data listed in the foregoing tables 9 and 10. These are presented in the following figure 21 which shows curves of distance against height including the distances from start to unstick to 100 feet height, and from 100 feet height to contact to stop. Thus, lines 14, 15, and 16 of table 9 include the data from which the take-off characteristics are plotted, while lines 20, 21, and 22 of table 10 list the values which were employed in the plotting of the landing characteristics.

As previously noted, the data involving take-offs include only the distances from start to unstick, to 50 feet height, and to 100 feet height. The landing data include only distances to stop from 100 feet height, from 50 feet height, and from contact. Curves plotted from such data can show only a general picture of the performance to be expected, and cannot show every variation in flight path. Such refinement, however, is not believed to be warranted in view of the many indeterminate variables which affect the day-by-day operating characteristics. In plotting these curves, it is assumed that the flare will be completed below 50 feet and that above this height the flight path will be straight.

The plotting of the take-off and landing flight paths for any airplane immediately provides a basis which may be used to determine its "full-power" runway length requirements and its obstacle zoning requirements. Thus, if the take-off is the more critical condition rather than the landing, a straight line may be drawn which has the same slope as the straight portion of the take-off flight path but which is located at a reasonable distance below the flight path Obstacles, of course, should not project above this line. It follows that the obstacle zoning ratio for this airplane is equal to the slope of this line, and that the "full-power" runway length for this airplane may be taken as the distance from the start of the take-off to the point where this line intersects the ground. The expression "full-power runway length" means that such lengths do not involve the consideration of a possible loss of power during the take-off. Paving considerations are discussed in part (e) of appendix #3

2 Determination of Dimensional Standards for Airports

(a) <u>Sea Level</u>: The solid lines in the foregoing figure 21 show the flight paths for each of the eight airplanes included in this study. Four obstacle boundary lines are presented to indicate the obstacle zoning requirements for each of the four classes of airports and are shown dotted. In locating these lines, it is assumed that airports may be grouped in four general classes according to the type of aircraft that safely can be accommodated.

Since Airplane A is one of the lowest powered private owner types of aircraft, its performance characteristics as listed in tables 8, 9, and 10, and as shown in figure 21, are used for determining the safe runway length and obstacle zoning requirements of Class I airports. On a similar basis, the characteristics of Airplanes C and H are employed to determine the dimensions for Class IV airports. Runway lengths and obstacle zoning ratios for Class II and III airports are determined arbitrarily in such a manner as to result in equal increments in the requirements for the four classes of airports.

In determining the dimensional requirements for Class I and Class IV airports, one pertinent fact is particularly outstanding:

For both of these classes, obstacle boundary lines which provide reasonable clearances below the flight paths of the critical airplanes, intersect the ground at a point such that the resulting "full-power" runway length requirements are exactly equal to the runway lengths as determined on line 12 of table 8, which in turn were determined through the application of the criterion that runways should be long enough to permit aircraft to roll safely to a stop in the event of an engine failure during the take-off at the point where the wheels are just leaving the ground

This is most important since it indicates that for any class of airport the application of either of the two independent and fundamental methods result in identical runway length requirements

With reference to line 12 of table 8, the runway length for Class I airports, as determined by the requirements for Airplane A, is 1,300 feet. The requirements for Airplanes 0 and E The requirements for Airplanes G and H indicate that Class IV airports should have runways 4,800 feet long Equal division of the difference between 4,800 feet and 1,800 feet results in a runway length for Class II airports of 2,800 feet and for Class III airports of 3,800 feet These distances are indicated on figure 21 by the positions of the Roman numerals and are the starting points for the obstacle zoning lines for each class of airport - As previously discussed, the slope of each of these lines is determined through consideration of the slopes of the climb and approach paths of Airplanes A to H, Again, the characteristics of Airplane A are critical for Class I airports and the characteristics of Airplanes G and H determine the requirements for Class IV airports appears also from figure 21 that, in general, the climbing characteristics are more critical than the approach characteristics The climbing path ratios for each airplane are listed on line 17 of table 9 Thus, Airplane A has a climbing ratio of 15 80 and Airplanes G and H have ratios of 26 70 and 28 00 respectively The dotted line which indicates the limits of obstacle heights for Class I airports has a slope of 13 00. The corresponding line for Class IV airports has a slope of 28 00. The intermediate lines have slopes of 18 00 for Class II airports and 23 00 for Where radio instrument landing systems are used, an obstacle zoning ratio Class III airports of 43 00 is indicated by the flight path

It will be noted that the obstacle zoning lines for Class IV airports will limit obstacle heights so as to provide adequate clearances for Airplanes F, G, and H, that the zoning line for Class III airports will provide for the safe operation of Airplanes C, E, and D, and that Class II airports are adequate for the safe operation of Airplane B. The zoning line for Class I airports, if extended, will intersect the climb bath of Airplane A at a height of 350 feet and at a distance of 6,300 feet from the start of the take-off. In terms of actual flying technique, the above indicates that a pilot taking off in an airplane having the characteristics of Airplane A would be obliged to change his direction within a distance of 1-1/5 miles from the start if obstacle heights were limited by the zoning line for Class I airports. This does not seem unreasonable in view of the fact that Class I airports should not be required to provide for "blind" weather conditions. Such reasoning has not been applied to airline aircraft, since "blind" take-offs and landings of these airplanes are not uncommon

The obstacle boundary lines for Class I and Class IV airports which intersect the ground at the 1,800 and 4,600 feet runway lengths are at a reasonable distance below the flight paths of the critical airplanes A, G, and H. In normal operation these airplanes will clear safely any obstacles, the heights of which are limited by those lines. It is believed that the indicated clearance is no more than adequate. In other words, runway lengths, as determined on line 12 of table 8, which involve the consideration of possible engine failure during the take-off, are no greater than runway lengths as determined through analysis of the normal flight paths of these airplanes which does not involve any consideration of possible engine failure or loss of power

Sea level runway lengths and obstacle zoning ratio requirements, as shown on figure 21, are summarized in the following table 11

RUNWAY LENGTHS AND OBSTACLE ZONING RATIOS FOR AIRPORTS GEOGRAPHICALLY LOCATED AT SEA LEVEL Class of Airport Runway Length Obstacle Zoning Ratio 1,800 13 Class I 2,800 Class II 18 Class III 3,800 23 Class IV 4,800 28

43

For Radio Instrument Landing Systems

TABLE 11

The determination of adequate widths of cleared areas on either side of the runways has been discussed in detail on page 12 of this report. As concluded in that discussion, there are very little data available from which an adequate determination of this important dimension can be realized, except that on large airports a minimum distance of 600 feet should be provided between the center lines of any two parallel runways, from the center line of any runway to the boundary of the airport, and from the center line of any runway to any obstacle that might aggravate the damage or injuries sustained in an accident resulting from an uncontrolled swerving from the take-off or landing path. It also would seem reasonable that this dimension should be reduced in the case of smaller airports. In a purely arbitrary manner, the following dimensions are suggested.

For Class I Airports - 150 feet For Class III Airports - 450 feet For Class II Airports - 600 feet

The maneuvers necessitating such dimensions are unaffected by altitude

The use of any class of airport by aircraft which normally would operate out of a higher class airport would seem to be necessary under emergency conditions. The flight paths shown in figure 21 involve both normal operating technique and unfavorable meteorological conditions

Since, in an emergency, any of the airplanes included in this study can be operated so as to realize performance characteristics that are better than are indicated by the curves shown in figure 21, it will be seen that a Class II airplane (Airplane B) could get in or out of a Class I airport, that Class III airplanes (Airplanes C, E, and D) could, in an emergency, use a Class II airport, and finally that Class IV airplanes could use a Class III airport

(b) <u>Effect of Altitude</u> Runway lengths and obstacle zoning ratios which are adequate for the safe operation of aircraft at airports geographically located at sea level are listed in the foregoing Table 11 for Class I, II, III, and IV airports. These have been determined from observed data. The effect of altitude on these dimensions is determined through the application of aerodynamic theory in the following manner.

(1) Runway Lengths

The effect of altitude on runway lengths will be considered first. It will be noted that runway lengths are determined as the sum of two distances: first, the distance (U) required for the airplane to attain unstick speed (V_U), and second, the distance (S) required for the airplane to roll to a stop after having attained this speed. Considering each of these distances separately then,

$$U_{H} = U_{o} \times \frac{1}{K_{DP}} \tag{1}$$

Where UH = Unstick Distance at Altitude (H)

UO = Unstick Distance at Sea Level

Knp is determined from Figure 2

Also since the ground roll varies as the square of the contact speed, the following expression for distance from (V_{ij}) to stop may be written:

$$S_{H} = S_{o} \times \left(\frac{V_{UH}}{V_{UO}}\right)^{2}$$
 (2)

Where $S_{H} \equiv Stopping$ Distance at Altitude (H)

S = Stopping Distance at Sea Level

VUH = Unstick Speed at Altitude (H)

VIIO = Unstick Speed at Sea Level

Note As indicated by the criterion for runway lengths, the unstick and contact speeds in this case are identical

But
$$V_{UH} - \frac{V_{U_0}}{\sqrt{\frac{\rho}{\rho_0}}}$$
 (3)

Where $\sqrt{\frac{\rho}{\rho_0}}$ is obtained from Figure 1

Therefore
$$S_H = \frac{S_0}{P_0}$$
 (4)
As noted above, the runway length = $R_H = U_H + S_H$ (5)

Substituting from equations (1) and (4) into equation (5)

$$R_{H} = \frac{U_{O}}{K_{DP}} + \frac{S_{O}}{\rho \rho_{O}} \qquad (6)$$

From inspection of table 8 (lines 6, 11, and 12) it will be noted that, as an average for all eight airplanes, the unstick distance is approximately 4 of the runway length, and that the stopping distance is 6 of the runway length,

or,
$$V_0 = 4 R_0$$
 and $S_0 = .6 R_0$

Substituting into equation (6),

$$R_{\rm H} = \frac{4R_{\rm o}}{R_{\rm DP}} + \frac{6R_{\rm o}}{\rho/\rho_{\rm o}}. \qquad (7)$$

or,
$$R_{\rm H} = R_{\rm o} \left(\frac{14}{R_{\rm DP}} + \frac{6}{\rho/\rho_{\rm o}} \right)$$

For convenience, the expression $\left(\frac{4}{R_{\rm DP}} + \frac{6}{\rho/\rho_{\rm o}} \right)$

Accordingly,
$$R_{H} = R_{o} F_{a}$$
 (10)

(2) Obstacle Zoning Ratios

The effect of altitude on obstacle zoning ratios is determined as follows:

or,
$$Z = \frac{X}{Y}$$
 (11)

$$now, X_{H} = X_{O}$$
 (12)

and,
$$Y_{H} = Y_{O}$$
 (13)

where Z = Obstacle zoning ratio

 $I_{ij} = Distance at altitude (H)$

X_o = Distance at sea level

YH = Corresponding height at altitude (H)

 $Y_0 = Corresponding height at sea level$

now,
$$Z_{H} = \frac{X_{H}}{Y_{H}}$$
 (14)

Substituting equations (12) and (13) into equation (14):

$$\mathbf{Z}_{\mathrm{H}} = \frac{\mathbf{X}_{\mathrm{O}}}{\mathbf{Y}_{\mathrm{O}}} \times \frac{1}{\mathbf{K}_{\mathrm{DP}}}$$

But,
$$\frac{X_0}{Y_0} = Z_0$$

Therefore, $Z_{\text{H}} = \frac{Z_{\text{O}}}{K_{\text{DP}}}$ (15)

Equations (9), (10), and (15) may be applied to determine the variation in runway lengths and obstacle zoning ratios due to changes in geographical altitude. This is accomplished in tables 12 and 13 as follows:

Table 12 includes computations for determining $F_{\rm g}$ (Corrected) and $1/K_{\rm DP}$ (Corrected) at

geographical altitudes from sea level to 10,000 feet. Two values of each of these multiplying factors are listed for each altitude. The first involves aircraft equipped with unsupercharged engines, while the second involves supercharging. It again is assumed that at each geographical altitude the temperature may be 100°F, and the barometric pressure may be such that the pressure altitude is 500 feet above the geographical altitude. Complete explanations are included on the same sheet with table 12.

The multiplying factors listed in columns 14 to 17, inclusive, of table 12 are applied in table 13 to sea level values of runway lengths and obstacle zoning ratios of Class I, II, III, and IV airports to determine the effect of changes in geographical altitude of these dimensions. Explanations also are included on the same sheet with table 13

The runway lengths listed in columns 6, 7, 8, and 9 of table 13 are plotted on figure 22. The obstacle zoning ratio data listed in columns 10, 11, 12, and 13, are plotted on figure 23. In examining figures 22 and 23, it will be noted that the curves involving the dimensions of Class IV airports are not continued above the altitudes where they intersect the curves for Class III airports. Above these altitudes, the dimensions of both Class III and Class IV airports are determined from the curves for Class III airports. This is because unsupercharged airplanes, having performance characteristics which permit them to operate out of Class III airports, may be expected to operate out of Class IV airports, regardless of altitude. It is necessary, therefore, to provide dimensions adequate for the safe operation of these airplanes at both Class III and Class IV airports. With particular reference to figure 23, it will be noted that the obstacle zoning ratios which safely will permit instrument landings are represented by a vertical line, since instrument landing approach path ratios are unaffected by altitude, as has been discussed previously in this report. Obstacle zoning ratios are determined entirely from the climb path characteristics, except in the case of instrument landings, as may be seen from inspection of figure 20.

3. Correlation of the Performance Characteristics of any Airplane with Any Airport

An analysis of the data previously discussed indicates that there are two possible methods for correlating the performance characteristics of any airplane with any airport. These are.

- Method (a) Through direct analysis of the observed data involving normal operating characteristics
- Method (b) Through application of spread coefficients to the ultimate performance characteristics to obtain normal operating characteristics The ultimate characteristics may be determined by a standard method of computation or obtained from carefully controlled flight tests

The above methods are discussed further and are illustrated as follows:

<u>Method (a)</u> The correlation of the performance characteristics of any airplane with the size of any airport preferably should be attained entirely through the use of factual data. Thus, observed performance data involving take-offs and landings at various altitudes should involve the "effective" altitude of the airport in question, and the meteorological data obtained at that airport should be adequate to establish this "effective" altitude, as previously discussed

Had it been possible to complete the original program for this project, the effect of altitude on runway lengths and obstacle zoning requirements for the eight airplanes included in this study would have been determined completely from factual data. To illustrate the application of Method (a), however, such data as are available are used to obtain correlations of observed performance characteristics with airport dimensions for three actual airports where meteorological data have been obtained for a period of two seasonal cycles

Table 41 (appendix #4) includes meteorological data involving the airports at Burbank, California, at Cheyenne, Wyoming, and at Salt Lake City, Utah These are plotted on figure 20. The horizontal lines indicate the maximum density altitudes and the corresponding maximum pressure altitudes which must be considered in correlating performance characteristics of aircraft with the dimensions of these airports.

Thus, through the use of these values for (HD) and (HD) together with the nomegram on

FOR DETERMINING THE EFFECT OF OROGRAPHICAL LITERARY ON PUNCAY LANGTH AND CONSTACLE ZONING RATIOS

TABLE 12

1	2	3	4	5	6	7	۶,	9	1^	11	lz.	13	14	15	16	17
GEOG	PRESS	DFNel IA	9/9	_6_		7 ₁₎₁ 4/ n		$\Gamma_{\mathbf{a}}$		-/h _{DP}		Ea (Cor-)		1/FDP (Corr)		
ALTITUDI H	ALTITUDE Hp	ALTITUDE H _D	> ρ _ο	%,	qıcall	', p	lusาL	пb	Ou 15	up	Jusrb	ир	ปีกรบา	- D15	rsup	cup
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	500 1500 2570 3500 4500 5500 6500 7500 8500 9500	3.00 4400 5600 6800 8100 9250 10450 11650 12850 14600 15250	0 919 0 877 0 846 0 816 0 784 0 76 0 728 0 701 0 674 0 650 0 624	0 654 n 664 r 720 0 735 0 765 0 894 0 890 0 923 0 962	0 866 0 785 0 710 0 641 0 573 0 522 0 472 0 473 0 380 0 303	0 893 0 850 0 823 0 791 0 760 0 790 0 790 0 671 0 645 0 618 0 593	C 401 C 769 C 564 624 3 697 766 C 847 C 946 I 751 I 176 I 340	0 248 26c 0 486 0 706 0 526 0 548 0 571 0 596 c 620 c 647 7 675	1 121 1 193 1 274 1 359 1 457 1 560 1 671 1 902 1 943 2 999 2 282	107 1 150 1 176 1 291 1 42 1 395 2 452 1 510 1 570 2 637	1 254 1 274 1 4 8 1 560 1 730 1 915 2 119 364 2 631 2 941 3 300	1 120 1 164 1 215 1 265 1 316 1 371 1 429 1 490 1 550 1 618 1 686	1 000 1 004 1 134 1 212 1 300 1 392 1 491 1 607 2 733 1 872 2 036	_ 000 1 039 3 080 1 111 1 156 1 212 1 260 1 312 1 364 1 418 1 479	1 000 1 104 1 220 1 352 1 499 1 659 1 836 2 049 2 280 2 549 2 860	1 085 1 129 1 175 1 224 1 276 1 330 1 384 1 445 1 505

NOTE

Column 2 It is assumed that low barometric pressurer can exist at an airport such that the pressure altitude is 500 feet higher than the Geographical altitude

Column 3 Density altitude is obtained through the of the nonogram (Fig. 1) using values of (Hp) listed in Column 2 and ssuming that a temperature of 100° F can exist at an airport

Column 4 The density ratio is obtained from the values of (IF) listed in Column 'through use of tables of standard atmospheric characteristics or from Fig. 1

Column 6 | Kpp is obtained through use of the nomogram (Fig.), involving both unsupercharged and supercharged engines

Column

Column 10 & 11, $k_{\rm H} = 4/k_{\rm DP} + \frac{6}{\rho/\rho_{\rm o}}$

Column 14. The values listed in these columns are obtained from the corresponding value listed in Columns 10 to 13, inclusive, 15, 16, by dividing each of those values by the value listed for zero geographical altitude & 1/1

Runway length at altitude = (Sea level runway length) x Fa

Obstacle zoning ratio at altitude = (Sea level obstacle zoning ratio' x 1/Kpp

AIRPORT RUNWAY LENGTHS AND OBSTACLE ZONING RATIOS VS GEOGRAPHICAL ALTITUDE

TABLE 13

1	2	3	4	5	6	7	8	9	10	11	12	13
GEOG ALTITUDE	Fa (Corr)	1/KDP	(Corr)		Runway Ler	igths (R)		Ot	stacle Zomin	g Ratios (Z)	
ALII 10DE	Ousub	Sup	Unsup	Sup	Class I	Class II Unsup	Class III Unsup	Class IV Sup	Class I Unsup	Class II Unsup	Class III Unsup	Class IV Sup
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	1 000 1 064 1 136 1 212 1 300 1 392 1 491 1 607 1 733 1 872 2 036	1 000 1 039 1 030 1 121 1 166 1 212 1 260 1 312 1 364 1 418 1 479	1 000 1 104 1 220 1 352 1 499 1 659 1 836 2 049 2 860 2 549 2 860	1 000 1 039 1 085 1 129 1 175 1 224 1 276 1 330 1 384 1 445 1 505	1800 1915 2045 2182 2340 2506 2684 2893 3119 3370 3665	2800 2979 3181 3394 3640 3898 4175 4500 4852 5242 5701	3800 4043 4317 4606 4940 5290 5666 6107 6585 7114 7737	4800 4987 5184 5381 5597 5818 6048 6298 6547 * 6806 * 7099 *	13 00 14 35 15 86 17 58 19 49 21 57 23 87 26 64 29 64 33 14	18 00 19 87 21 96 24 34 27 00 29 87 33 05 36 88 41 04 45 88 51 48	23 00 25 39 28 06 31 10 34 48 38 16 42 23 47 13 52 44 58 63 65 78	28 00 29 09 30 38 31 61 32 90 * 34 27 * 35 73 * 37 24 38 75 * 40 46 * 42 14 *

NOTE

Columns 2, 3, 4, and 5 are duplicates of Columns 14, 15, 16, and 17 as listed in Table 12

The sea level values listed in Columns 6, 7, 8, and 9 were obtained from Table 11

The sea level values listed in Columns 10, 11, 12, and 13 were obtained from Table 11

The remaining values listed in Columns 6 to 13, inclusive, were obtained by multiplying the sea level values by the multiplying factors listed in Columns 2, 3, 4, and 5

Runway length at altitude \pm (Sea level runway length) x F_a

Obstacle Zoning Ratio at altitude = (Sea level obstacle zoning Ratio) $x = 1/K_{\rm DP}$

Since approach path characteristics are not affected by altitude, only obstacle zoning ratios which are governed by the climb path characteristics need be compensated for change in altitude as listed above

* Less than for Class III (See Page 30)

figure 2 and the curves shown on figures 3 to 19 inclusive, the performance characteristics of Airplanes B, D, E, F, and H are correlated with the dimensions of the airports at Burbank, California, Salt Lake City, Utah, and Cheyenne, Wyoming, insofar as the observed data permit This is accomplished on table 14

<u>Method (b)</u> The necessity for developing Method (b) arises from the fact that Method (a) cannot be employed until a large number of performance data involving day-by-day operations at various airports and at various altitudes have been obtained. This in turn limits the application of Method (a) to aircraft that have passed through the development stage, and which are in regular operation. To permit the determination of the airport size requirements of projected or newly developed aircraft, Method (b) is discussed and illustrated as follows:

(1) Runway Lengths

Rummay Length (R) = $(X_1^C + D_2)$ F

I the shortest distance required to travel from start to unstick under standard sea level conditions. This may be determined through computation as illustrated on line 26, table 7, for Method (b), or may be determined by actual flight tests.

 $C_1 = Spread coefficient applied to (X₁)$

This may be determined as shown on line 10, table 8, and as discussed on page 18

D₂ = Distance from unstick to stop as realized in normal day-by-day operation at sea level airports on hot summer days. This may be determined from figure 19, when the normal unstick speed ($V_{\rm un}$) has been determined

 $\nabla_{uv} = \nabla_u C_2$

 $V_{\rm u}$ = Minimum unstick speed under standard sea level conditions. This may be determined through computation as illustrated on line 21, table 7, or may be determined by actual flight test

 $^{\text{C}}_{2}$ = Spread coefficient applied to $(^{\text{V}}_{1})$ This may be determined as shown on line 4, table 8, and as discussed on page 18

F = Altitude Factor This may be determined from columns 14 and 15, table 12, when the geographical altitude of the airport is known

(2) Obstacle Zoning Ratios

Obstacle Zoning Ratio (2) = $\left(\frac{\Delta \times \times C_3}{50}\right)$ $\frac{1}{K_{DP}}$

△X = Shortest distance required to climb from 50 feet to 100 feet heights under standard sea level conditions. This may be determined as illustrated on line 32, table 7, or may be determined by actual flight tests.

 C_3 = Spread coefficient applied to (Δ I)

This may be determined as shown on line 12, table 9, and as discussed on page 18

 $1/K_{
m DP}$ = Altitude Factor This may be determined from columns 16 and 17, table 12, when the geographical altitude of the airport is known

The application of Method (b) to the determination of airport size requirements from computed performance characteristics of Airplane A when operated at Salt Lake City, Utah, is presented as follows:

Runway Length

CORRELATION OF NORMAL AIRCRAFT TERFORMANCE CHARACTERISTICS WITH SIZE OF EXISTING AIR TEPTS LOCATED AT VARIOUS ALTITUDES, AS DETERMINED ENTIRELY FROM OBSERVED DATA

TABLE 14

LINE	PERFORMANCE CHARACTERISTIC	_		HrQ:		NWA LE	NC Th			LIMP		
	ATRPLANE		PRIVATE B	D	IUI 4	INE F	н	PRIVATE	<u> </u>	AIRL E	1 E	H
	Burbank, California - Geographical Altabude - 695 Feet				<u> </u>							
12345678	Density Altitude (From Curves, Fig. 20) Pressure Altitude (From Curves, Fig. 20) Altitude Coefficient (From Nomogram, Fig. 2) Unstick Speed (Observed) (Figs. 3,6, 9, 12, 14) Distance from (V _{III} N) to Stop (From Line 4 & Fig. 19) Normal Unstick Distance (Observed) (Figs. 5, 8, 11, 13, 17) Required Runway Length (Line 5 + Line 6) Distance from 50' to 100'	HD Fp KDP Vur S Ur R	2900 900 0 857 60 3 1690 1460 2850	2000 900 0 904 0 2 2190* 1456 3640	2900 900 0 904 84 7 160 1560 3720	~900 300 0 904 9° 7 2400 2040 4440	,900 900 0 904 98 7 590 140 4730	2900 900 0 857	2900 500 0 904	2900 900 0 904	9900 900 0 904	2900 900 0 904
9	(Observed) (Figs 5, 8, 11, 13, 17) Climb Path Ratio (Line 8/50) = Obstacle Zoning Ratio							75 16 4	1050 21 0	1180 23-6	1290 25 8	1460 28 0
	Salt Lake City, Utah - Geographical Altitude - 4330 Feet							_				
10 11 12 13 14 15 16	Density Altitude (From Curves, Fig. 20) Pressure Altitude (From Curves, Fig. 20) Altitude Coefficient (From Nomogram, Fig. 2) Unstick Speed (Observed) (Figs. 3, 6, 9, 12, 14) Distance from (V _{UN}) to Stop (From Line 13 & Fig. 19) Normal Unstick Distance (Observed) (Figs. 5, 9, 11, 13, 17) Required Runway Length (Line 14+Line 15)	nv S anv kDb ab ab	/300 4400 0 597	730u 4460 C 778	7300 4400 78 93 2 740 20 30 4450	73C0 44CU 0 773	/300 4400 5 /78 107 3 28 % 28 % 244 571	7300 4400 0 597	7300 44(7) 0 7/113	7300 4400 u 778	7300 4400 G 778	7300 4400 0 778
17 18	Distance from 50' to 100' (Observed) (Figs 5, 8, 11, 13, 17) Climb Path Ratio (Line 17/50) = Obstacle Zoning Ratio							1100 22 0		1240 24 8		1650 33 C
	Cheyerne, Wyoming - Geographical Altitude - 6145 Feet											
19 20 21 22 23 24 25 26	Density Altitude (From Curves, Fig 20) Pressure Altitude (From Curves, Fig 20) Altitude Coefficient (From Nomovram, Fig 2) Unstick Speed (Observed) (Figs 3, 6, 9, 12, 14) Distance from (V _{III}) to Stop (From Line 22 & Fig 19) Normal Unstick Distance (Observed) (Figs 5, 8, 11, 13, 1/) Required Runway Length (Line 23+Line 24) Distance from 50' to 100'	H _D K _{DP} /[III S U _N R	9200 6200 0 502	9,00 6200 0 729	9100 6200 6 729	9200 6200 0 727	9200 6200 0 729 110 3 2990 2950 5940	9200 6200 0 502	9200 6200 0 729	9200 6200 0 129	9200 6200 G 729	9200 6200 0 729
27	(Observed) (Figs 5, 8, 11, 13, 17) Climb Path Ratio (Lime 26/50 = Obstacle Zoning Ratio											1760 35 2

*This airplane is equipped with Fowler Flaps Use upper curve in Fig 19
NOTE Landing characteristics are not included in this table, since they are not critical, either as regards runway lengths, or obstacle zoning ratios This will be seen from Fig 21 Moreover, altitude has no effect on approach path ratios

C2 (Airplane A) (Unsupercharged) 1 15 (line 4, table 8) Seographical altitude (Salt Lake City) 4,220 ft (table (41) 1 320 (col 14, table 12)
$$V_{\rm un} = V_{\rm u}$$
 C2 47 2 mph 1,080 ft (fig 19) $V_{\rm un} = V_{\rm u}$ C1 710 ft Runway Length (R) = $(\mathbf{I}_1 \mathbf{C}_1 + \mathbf{D}_2)$ $\mathbf{F}_{\mathbf{a}}$ 2,360 ft

Obstacle Zoning Ratio

$$\Delta X$$
 (Airplane A) (Unsupercharged) 660 ft (line 32, table 7) C_3 1 20 (line 12, table 9) Reographical altitude (Salt Lake City) 4,220 ft $1/K_{\rm DP}$ 0bstacle Zoning Ratio (Z) = $\left(\frac{\Delta X}{50}\right) \frac{1}{K_{\rm DP}} = 24$

Note The method outlined above may be applied to the ultimate performance characteristics as determined from controlled flight tests

4 Comparison of Airport Dimension Requirements as Obtained by Method (a) with those Indicated on figures 22 and 23

On page 18 of this report the assumption is made that, at any airport during the summer months, flying operations will be carried on during the heat of the day when the temperature is 100°F and when the sub-normal barometric pressures indicate a pressure altitude 500 feet above the elevation of the airport. It then is stated that the final effect of the above assumption, as reflected by the runway length and obstacle zoning requirements versus elevation (figs. 22 and 23) checks very closely with the dimensional requirements obtained through the direct use of the observed temperature and pressure data shown on figure 20. This now is substantiated in the following table 15 which compares airport dimension requirements for Airplane H as obtained by Method (a) with Class IV airport requirements indicated on figures 22 and 23. This comparison appears jistified because of the fact that the airport requirements of Airplane H at sea level closely approximate the requirements for a Class IV airport at sea level.

Table 15

AIPPORT DIMENSION REQUIREMENTS - AIRPLANE (H)								
Lane No	Alrport	Burbank	Salt Lake City	Cheyenne				
1	Geographical Altitude	695	4,220	6,145				
2.	Runway Length (Observed Data, table 14)	4,730	5,710	5,940				
3	Runway Length (fig 22)	4,930	5,680	6,100				
4	Percentage Difference	4 3%	-0 6%	2 9%				
5	Obstacle Zoning Ratio							
	(Observed Data, table 14)	28 O	33 0	35 2				
6	Obstacle Zoning Ratio							
_	(fig 23)	28 8	33 2	36 0				
7	Percentage Difference	2 9%	0 6%	2 3%				

Table 15 indicates that the effect of geographical altitude on airport size as determined through direct application of observed data, Method (a) is in reasonable agreement with data obtained through the application of aerodynamic theory, (figs 22 and 23), up to 6,145 feet elevation. This result indicates that the assumption involving unfavorable meteorological conditions

as discussed on page 17 is justified

It is important to state that, if a plotting of the data listed on lines 2 and 5 of the above table is superimposed on figures 22 and 23, it will be noted that the variation of airport dimensions with elevation as determined by Method (a) for Airplane H does not follow the theoretical trend which is reflected in the curves for the four classes of airports. This variation again results from the application of the fundamental principle involved in interpreting the observed data

CONCLUSIONS

As stated in the beginning, the purpose of this study is to establish a fundamental basis for the determination of airport dimensions that will accommodate safely the operation of aircraft. It is believed that this has been accomplished. Thus, certain pertinent factual data have been obtained. These include:

- 1 Take-off and landing characteristics of several types of aircraft as realized at various altitudes in normal day-by-day operation
- 2 A large volume of accident data involving both private owner and airline type aircraft
- 3 A large number of meteorological observations involving these airports at widely different altitudes and covering two seasonal cycles

These data in themselves are a record of facts. They involve no assumptions and no personal opinions. The performance data were obtained photographically and were corrected to zero wind and to specification gross weight only. Thus, as presented, they involve a minimum of theoretical manipulations. The accident data are a record of what actually happened, and the meteorological data are a listing of the original observations.

The interpretation of these data to obtain airport dimension requirements, however, is subject to considerable controversy because of the multiplicity of important, and in many cases, indeterminate elements which can influence the final results. In addition to the many variables that affect the performance characteristics, there are many economic and practical considerations which are difficult to evaluate. The degree of safety that can be obtained practically is a highly contentious subject.

In order that this study may be of maximum and in the final determination of reasonable requirements, an interpretation of the observed data has been made. This has resulted in the attainment of two major objectives which are

- (1) Two methods have been established for correlating the performance characteristics of any airplane with the dimensions of any airport at any altitude
- (2) Dimensional standards have been suggested for four classes of airports, involving any elevation up to 10,000 feet. The grouping of such standards into classifications is based upon the types of airplanes that can be accommodated safely. These are

Class I Lowest powered private owner type Class II Medium powered private owner type

Class III Higher powered private owner type and smaller

airline type
Class IV The largest of airline aircraft

The determination of numerical values involved in the attainment of the above objectives was made through the application of three general requirements or criteria, which are as follows

- (a) Runways should be long enough to permit aircraft to roll safely to a stop in the evert of an engine failure during the take-off at the point where the wheels are just leaving the ground
- (b) The cleared areas on either side of the runways should be wide enough to provide reasonably smooth surfaces on which the aircraft can come to rest should some unforeseen contingency cause them to swerve from their original take-off or landing directions
- (c) Obstacles should not project up into the flight paths

It would seem that criteria (b) and (c) above are fundamental. The acceptability of criterion (a) is somewhat controversial, in spite of the fact that it has resulted from a careful

analysis of a large amount of accident data. As discussed in detail on page 25 and as shown in figure 21, its application results in runway lengths that are identical with the lengths obtained through the practical application of criterion (c), which involves no consideration of possible engine failure during the take-off This is significant in that such agreement should add to the acceptability of the final results

Criteria (a), (b) and (c) have been applied in the interpretation of the factual data to obtain numerical values involved in the attainment of the two major objectives of this study results are:

- (a) Recommended runway lengths and obstacle zoning requirements as obtained through the correlation of observed performance data with the meteorological conditions actually existent at several airports are listed in table 14
- (b) Recommended dimensional standards for airports, Classes I to IV inclusive, and for elevations up to 10,000 feet, are presented in figures 22 and 23 Figure 22 shows curves of runway length versus altitude Figure 23 shows curves of obstacle zoning requirements against altitude
- (c) Data from which the widths of landing strip areas may be determined are far from adequate In a purely arbitrary manner, however, it is suggested that,

 - between the center lines of any two parallel landing strips,
 from the center line of any landing strip to the boundary of the airport,
 - (3) from the center line of any landing strip to any obstruction or to any area which may be occupied by aircraft, automobiles, etc., the following minimum distances well might be provided

Class I	150 ft	Class II	300 ft
Class III	450 ft	Class IV	600 ft

It is believed that no increases in the requirements suggested in this report will be necessary for many years to come. This statement is based upon the indicated advance in designing technique involving future aircraft This advance is being reflected in improved stalling characteristics, and improved climb and directional control characteristics of multiengine aircraft with one engine inoperative, which in turn promises to result in a reduction in spread coefficients In other words, it appears that future simplanes may be operated safely so as to realize performance characteristics that are closer to the ultimate than are realized by currently existing These factors should tend to compensate for any increase in landing speeds. airplanes

As previously explained, it has been impossible to determine airport dimension requirements entirely from observed data. The inclusion of a certain amount of computed performance data has been unavoidable Such data have been reduced to a minimum, however, and it is believed that the numerical values obtained will be supported, if and when more complete factual data have been obtained The following table 16 lists in detail the performance data that still are needed, so that the airport dimension requirements of all eight airplanes included in this study may be determined entirely from observed data

Table 16

ADDITIONAL DETERMINATION O	F PERFORM	ANCE VE	RSUS AL		RCM OBSER		
Geographical Altitude	SL	-1000	3000	-4000	6000	-700 0	
Type of Record*	Tr O	L	T'O	L	TO	L	Totals
Airplane A	30	30	30	30	30	30	160
Airplane B					30	30	60
Airplane C	30	30	30	30	30	30	180
Airplane D	30	30	30	30	30	30	180
Airplane E				30	30	30	90
Airplane F		30	30	30	30	30	150
Airplane G	30	30	30	30	30	30	180
Airplane H (Blind)		_			30		30
Totals	1.20	150	150	180	240	210	1050

* All records should involve actual day-in and day-out operations rather than controlled flight tests, except that a number of the landing ground rolls for each model should involve the use of maximum braking

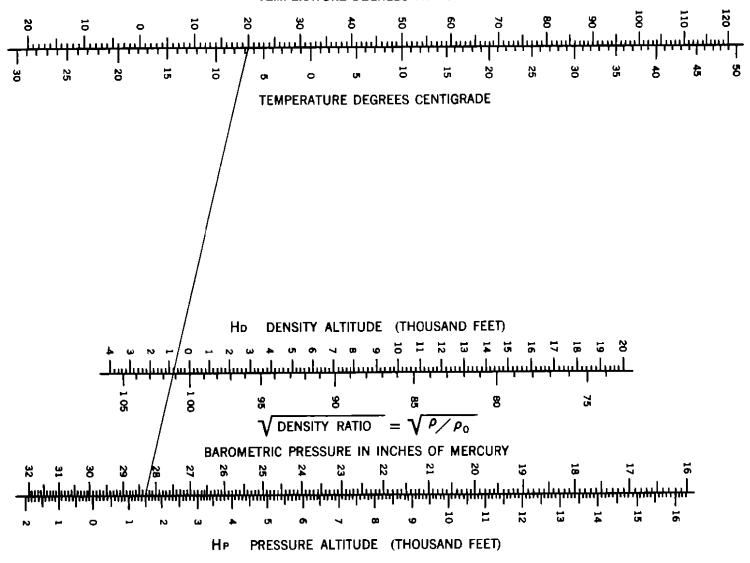


Figure 1 Nomogram for Determining Standard Atmospheric Conditions

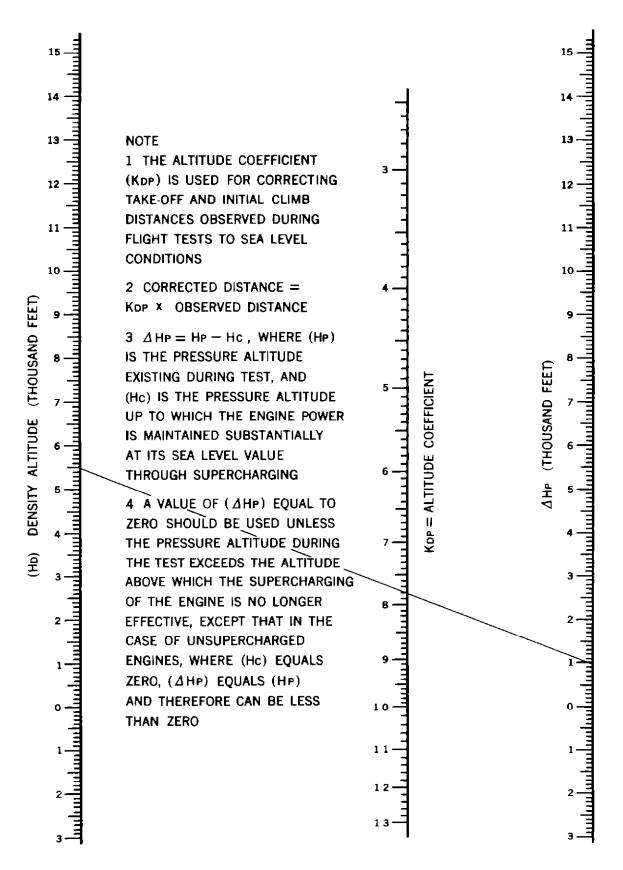


Figure 2 Nomogram for Determining Altitude Coefficient

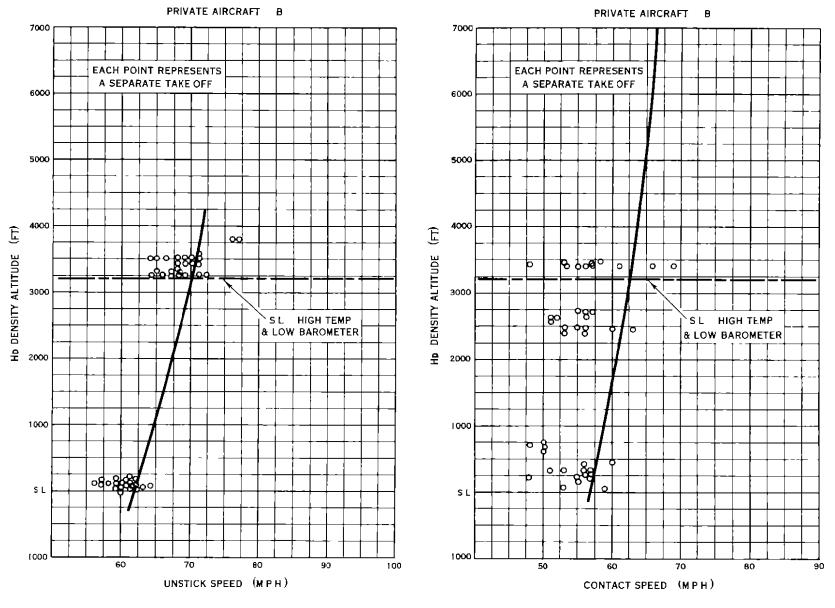


Figure 3 Unstick Speed Characteristics

Figure 4 Contact Speed Characteristics

-

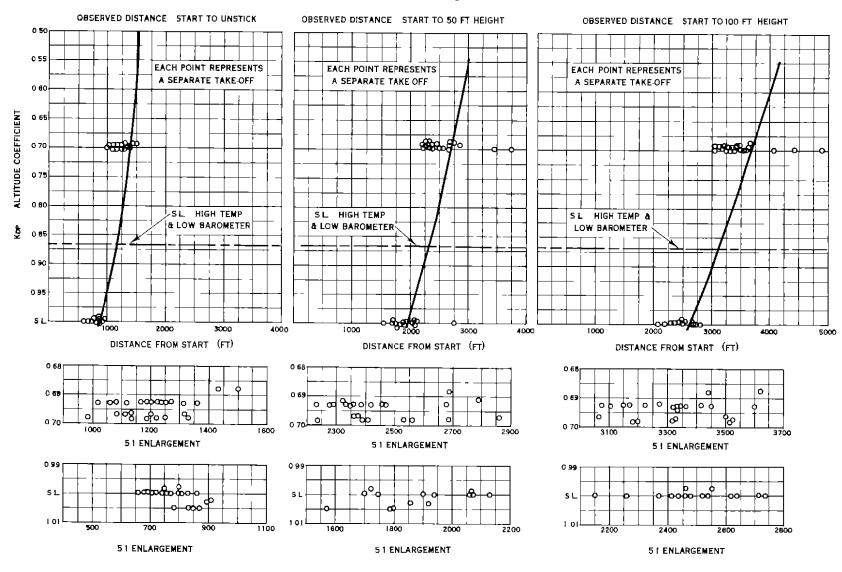


Figure 5 Take-Off Characteristics

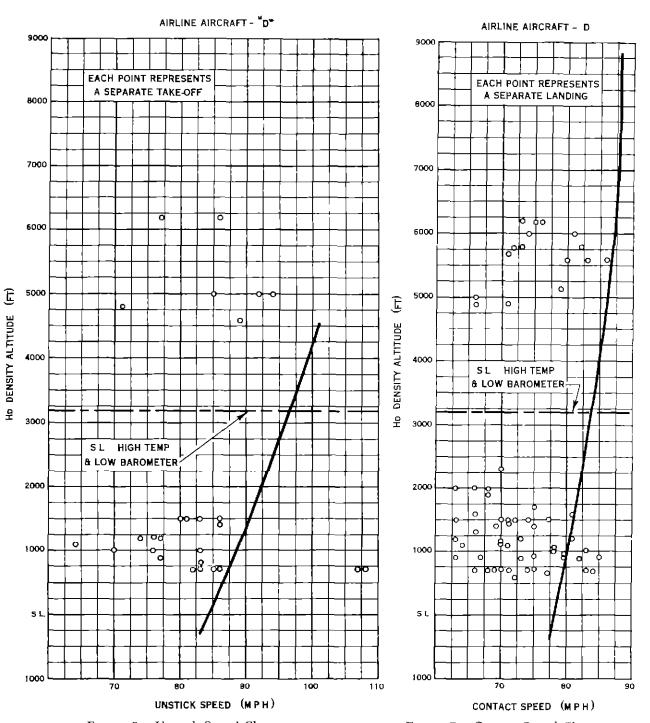


Figure 6 Unstick Speed Characteristics

Figure 7 Contact Speed Characteristics

AIRLINE AIRCRAFT - D

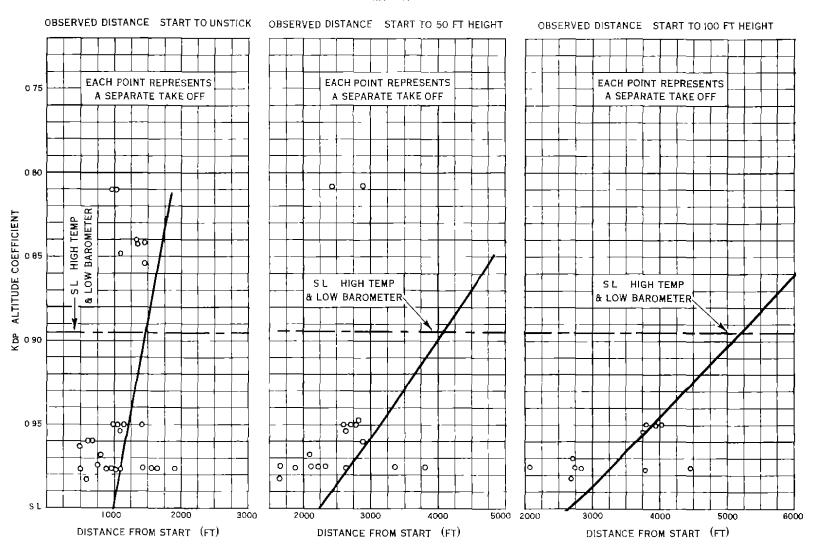


Figure 8 Take-Off Characteristics

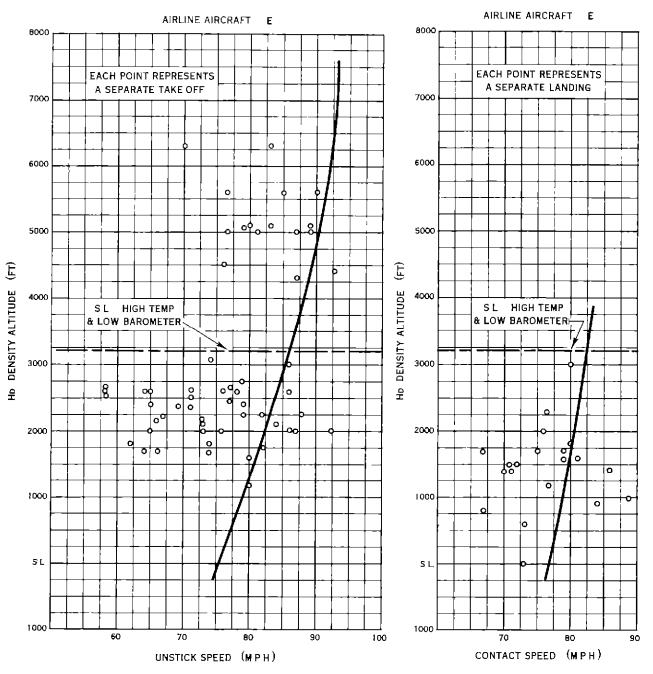


Figure 9 Unstick Speed Characteristics

Figure 10 Contact Speed Characteristics

AIRLINE AIRCRAFT E

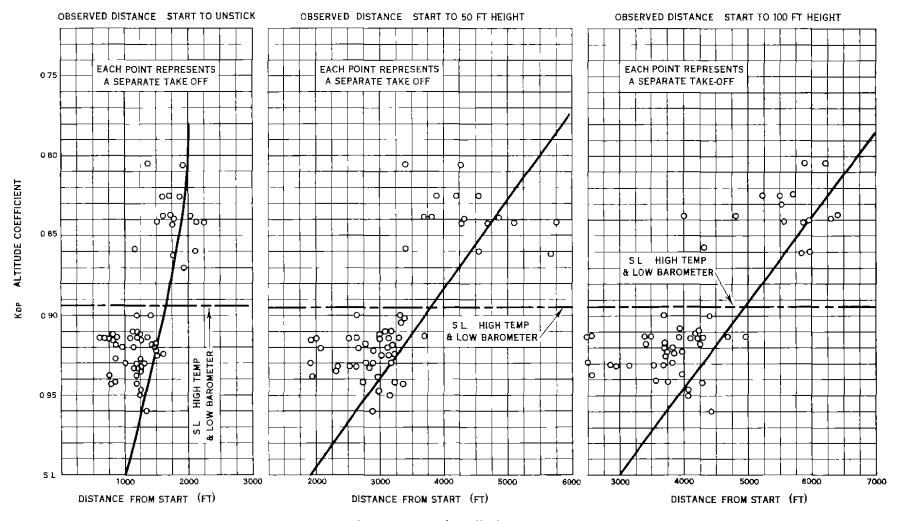


Figure 11 Take-Off Characteristics

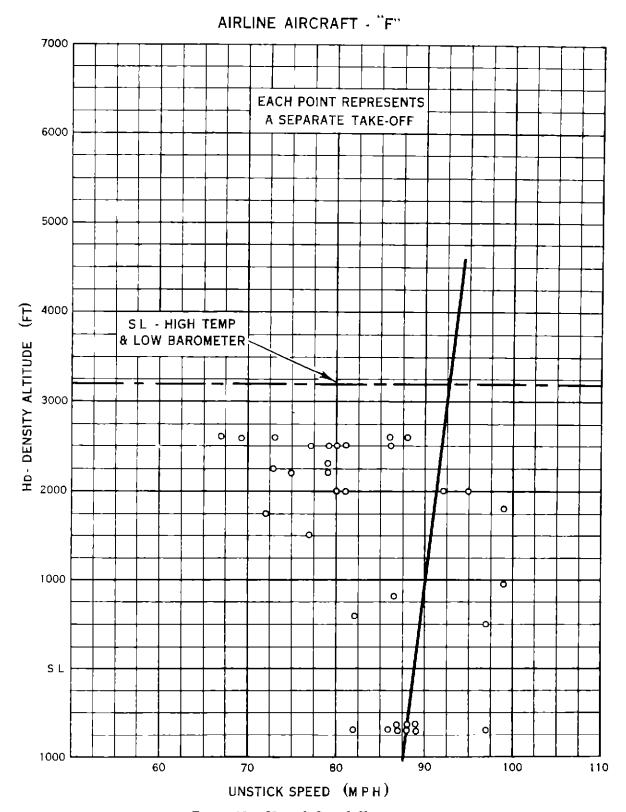


Figure 12 Unstick Speed Characteristics

AIRLINE AIRCRAFT 'F

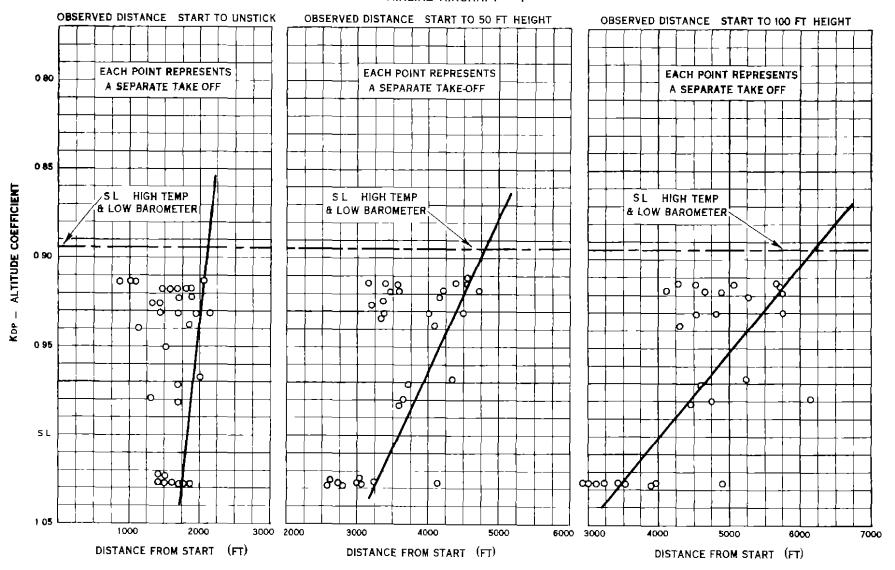


Figure 13 Take-Off Characteristics

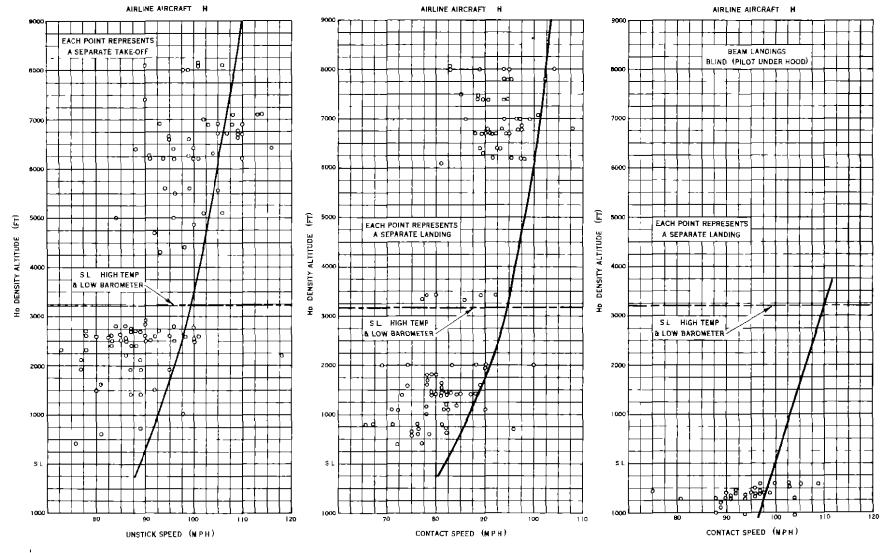


Figure 14 Unstick Speed Characteristics

Figure 15 Contact Speed Characteristics

Figure 16 Contact Speed Characteristics

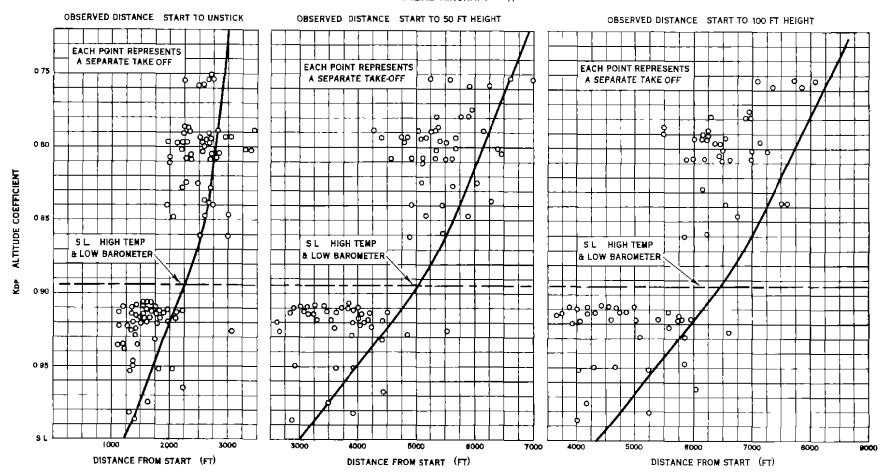
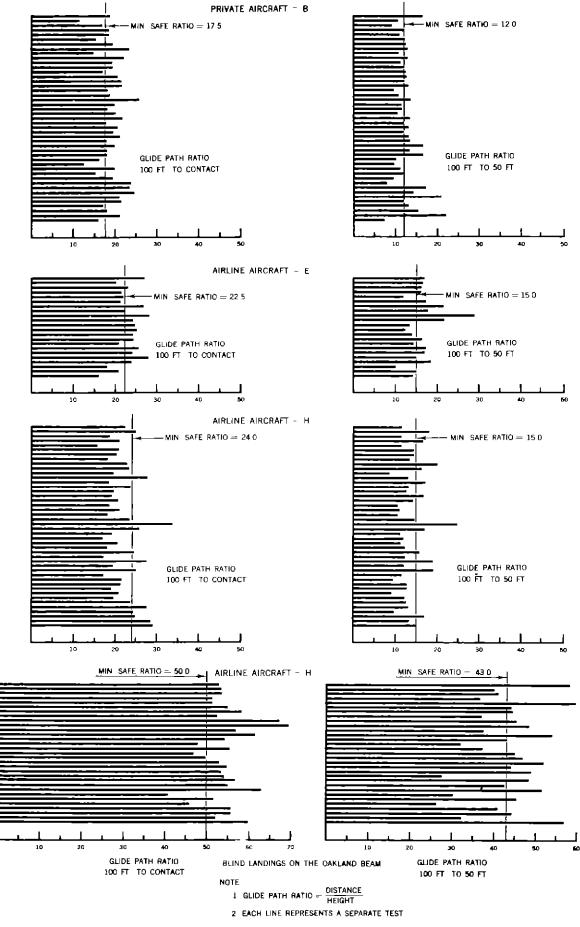



Figure 17 Take-Off Characteristics

o 10 Ci Jo Pr Ci co

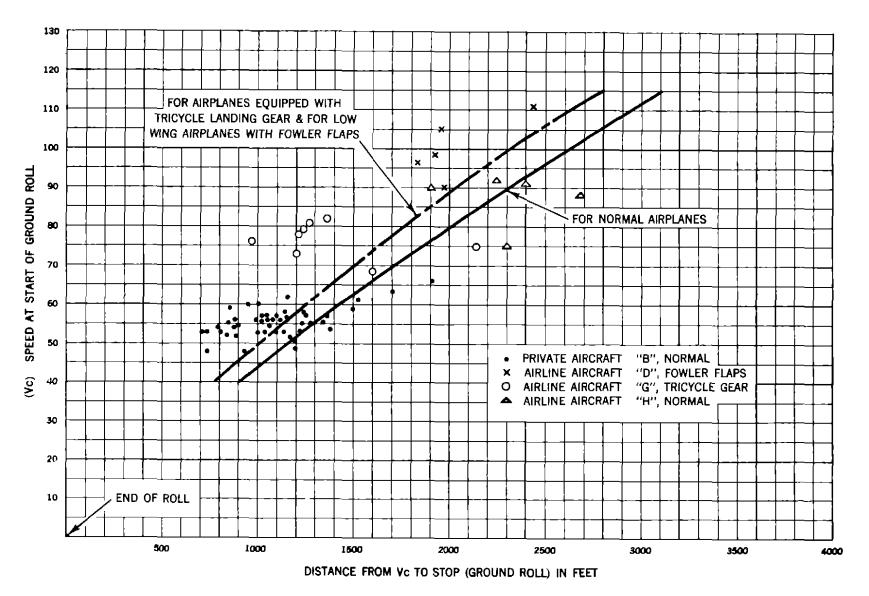


Figure 19 Ground Roll Characteristics - All Altitudes

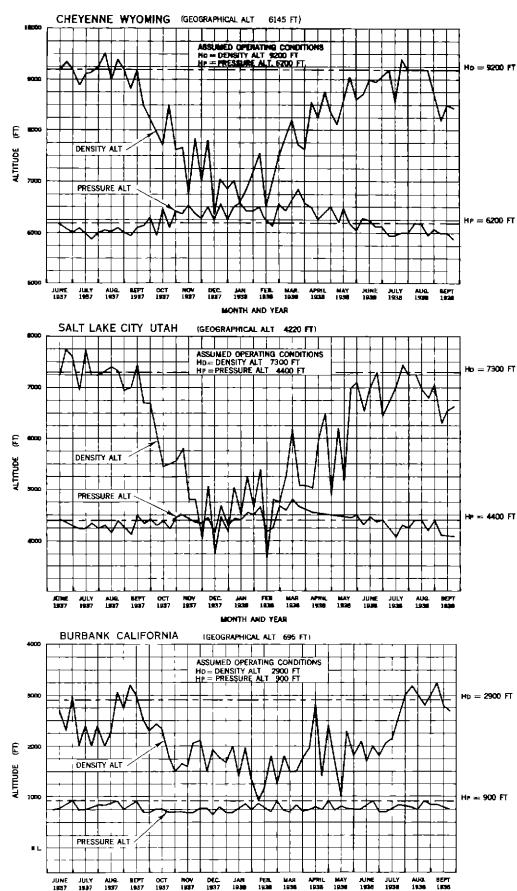


Figure 20 Seasonal Variations in Pressure and Density Altitudes

MONTH AND YEAR

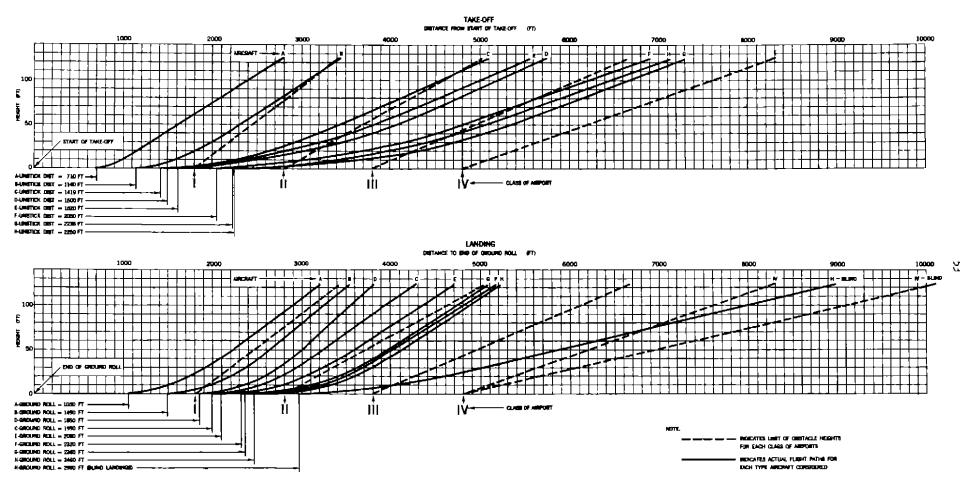


Figure 21 Take-Off and Landing - Airplane Characteristics and Airport Maximum Allowable Obstacle Heights - (Sea Level)

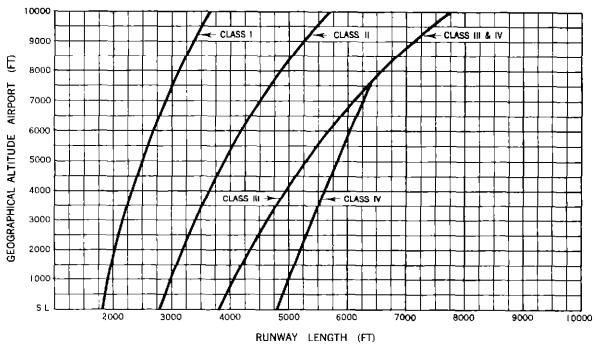


Figure 22 Runway Lengths Versus Altitude of Airport.

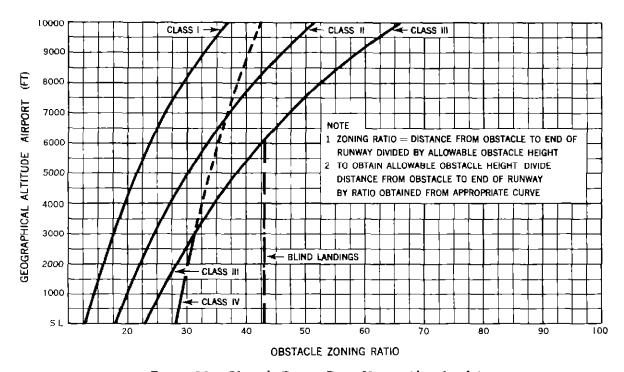


Figure 23 Obstacle Zoning Ratio Versus Altitude of Airport.

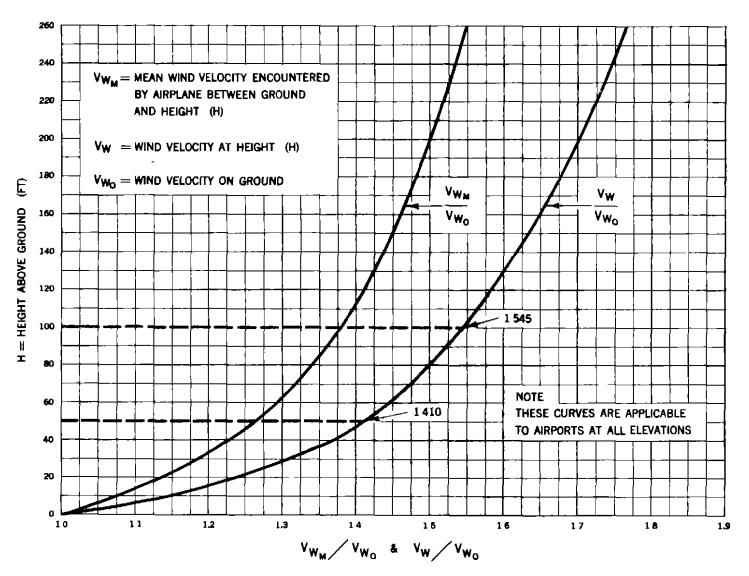


Figure 24 Wind Velocity Characteristics Versus Height Above Surface of Airport

$$R_W = R_O \times K_R$$

 $R_{W} = RUNWAY LENGTH FOR ANY WIND VELOCITY$

 $R_0 = \text{Runway length for zero wind velocity}$

 $K_R = RUNWAY LENGTH REDUCTION COEFFICIENT AS$

OBTAINED FROM CURVE

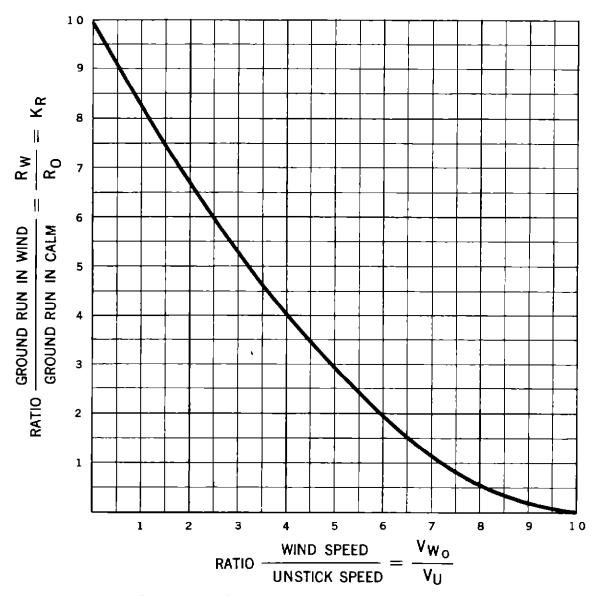
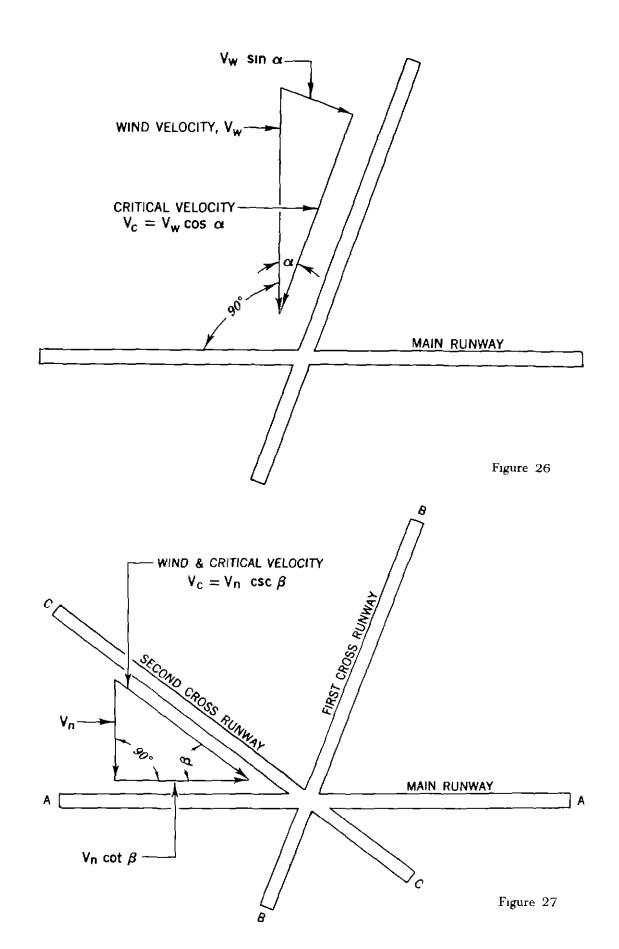



Figure 25 Effect of Wind on Take-Off Run and Runway Length

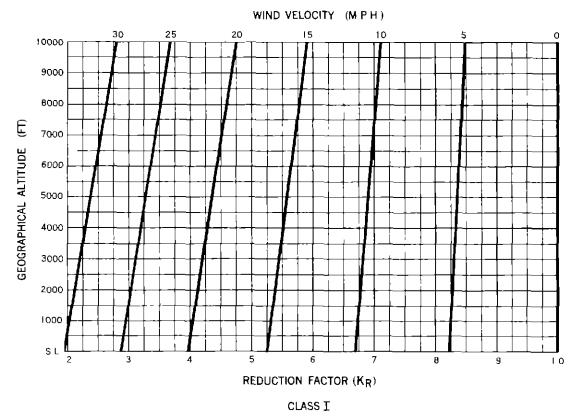


Figure 28 Runwav Length Reduction Factor Versus Altitude for Various Wind Velocities

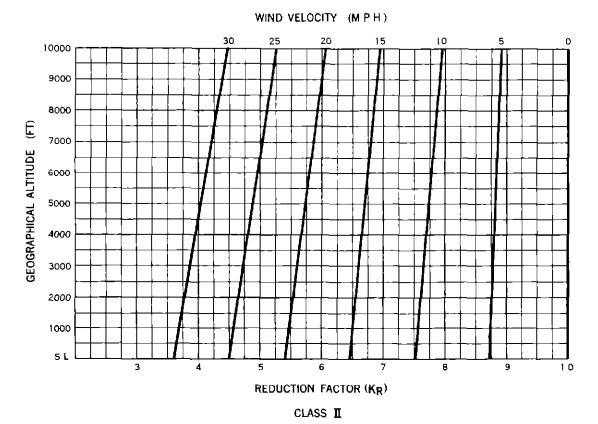


Figure 29 Runway Length Reduction Factor Versus Altitude for Various Wind Velocities

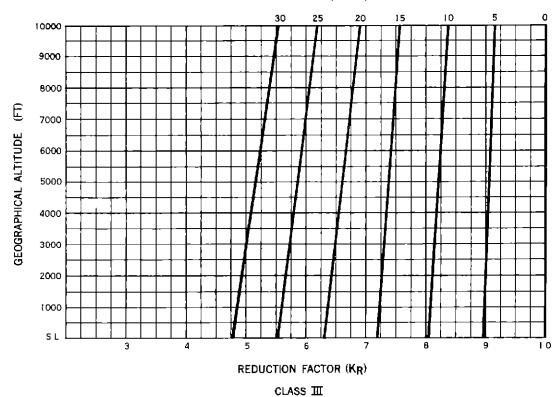


Figure 30 Runway Length Reduction Factor Versus Altitude for Various Wind Velocities

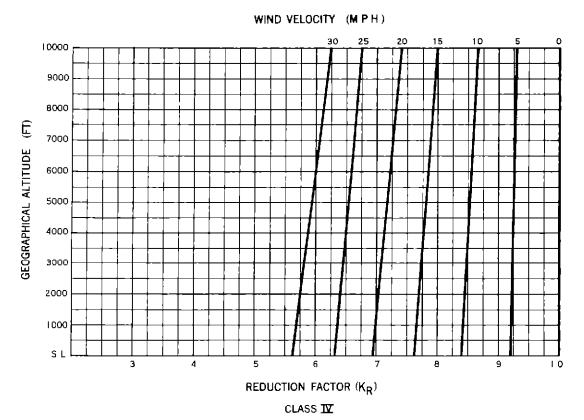


Figure 31 Runway Length Reduction Factor Versus Altitude for Various Wind Velocities

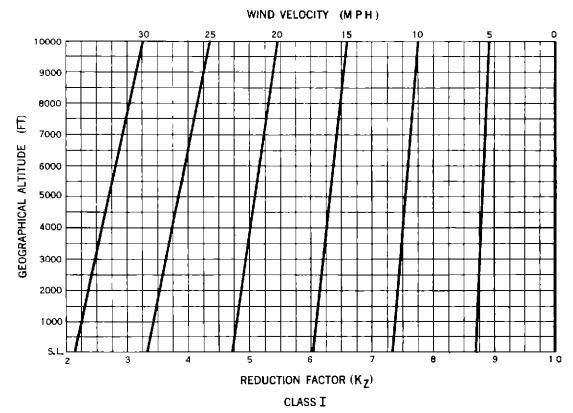


Figure 32 Obstacle Zoning Ratio Reduction Factor Versus Altitude for Various Wind Velocities

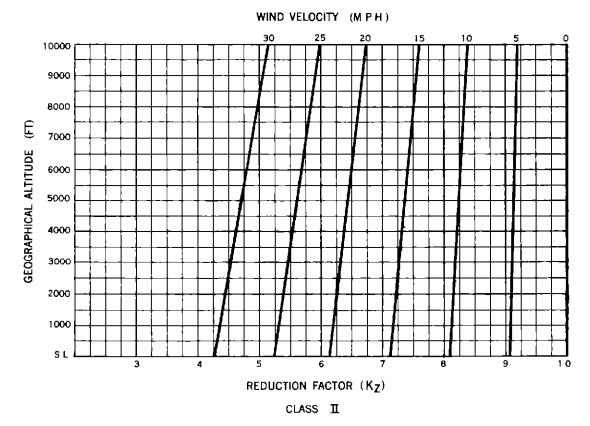


Figure 33 Obstacle Zoning Ratio Reduction Factor Versus Altitude for Various Wind Velocities

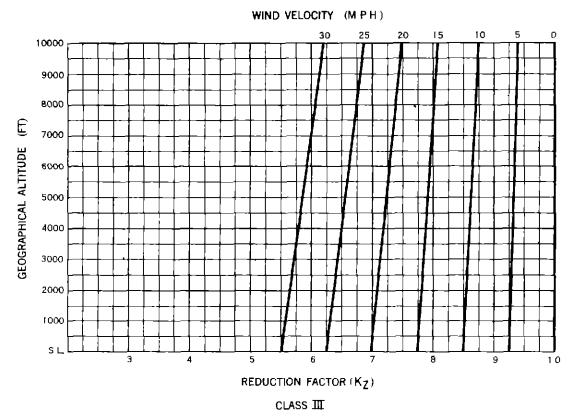


Figure 34 Obstacle Zoning Ratio Reduction Factor Versus Altitude for Various Wind Velocities

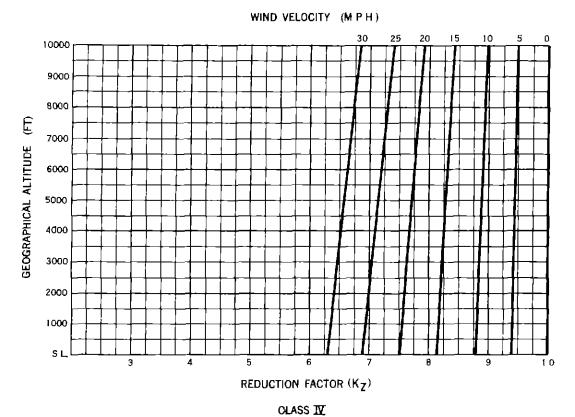


Figure 35 Obstacle Zoning Ratio Reduction Factor Versus Altitude for Various Wind Velocities

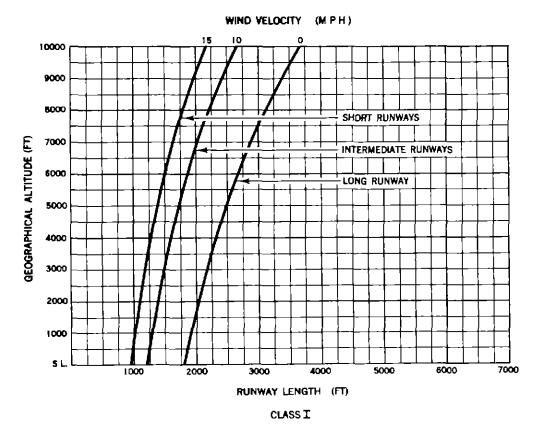


Figure 36 Runway Lengths Versus Altitude
WIND VELOCITY (MPH)

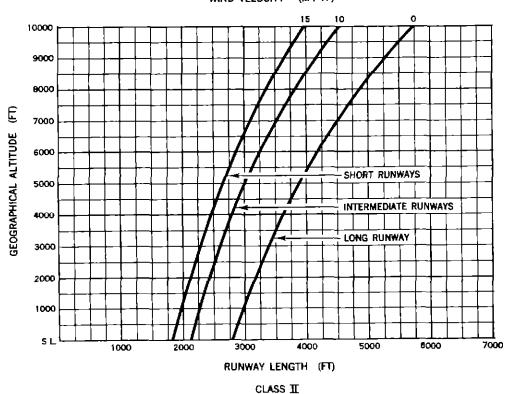


Figure 37 Runway Lengths Versus Altitude

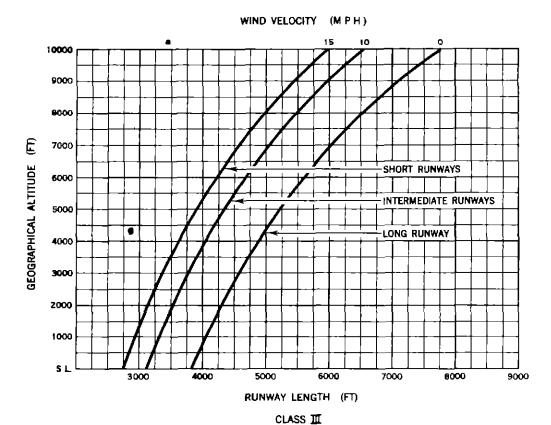


Figure 38 Runway Lengths Versus Altitude

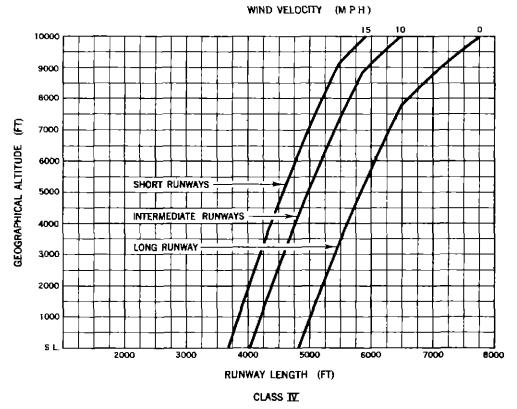
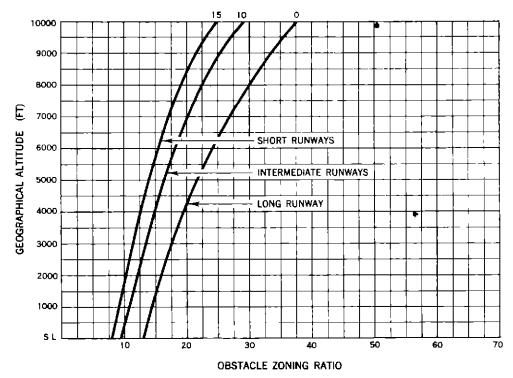



Figure 39 Runway Lengths Versus Altitude

Į

CLASS I
Figure 40 Obstacle Zoning Ratios Versus Altitude

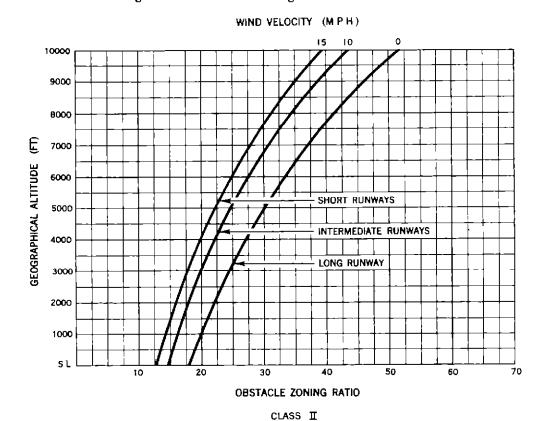


Figure 41 Obstacle Zoning Ratios Versus Altitude

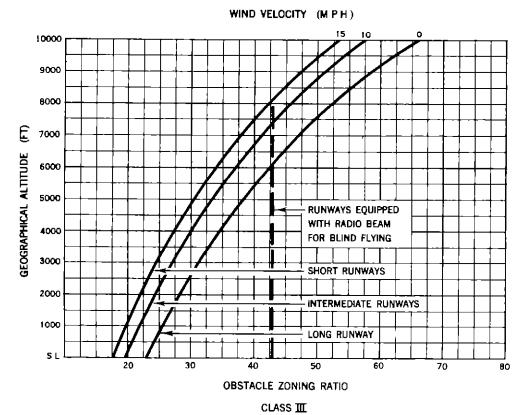


Figure 42 Obstacle Zoning Ratios Versus Altitude

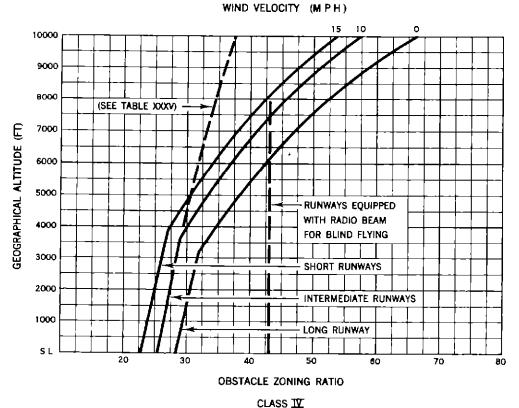


Figure 43 Obstacle Zoning Ratios Versus Altitude

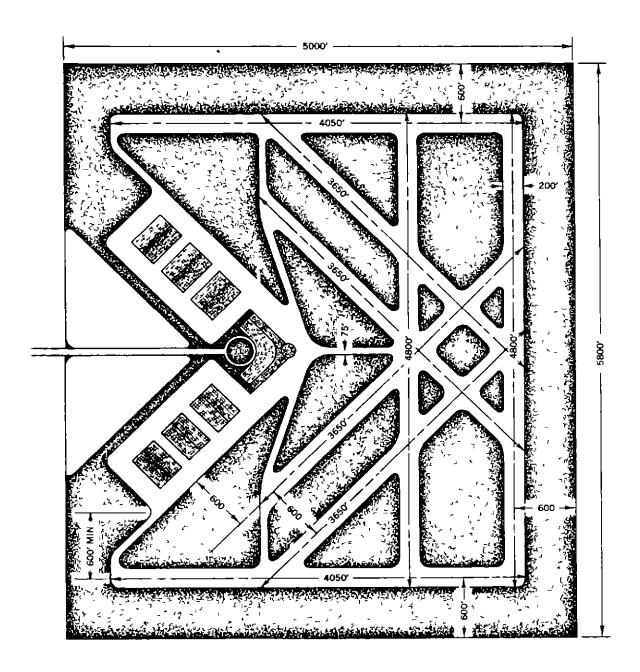


Figure 44 Illustration of Possible Arrangement of a Class IV Airport at Sea Level,
With Runway Lengths Modified by Considerations of Wind Speeds

APPENDIX NO 1

DISCUSSION OF CORRECTIONS TO THE OBSERVED PERFORMANCE DATA

Discussion of Corrections Applied to the Observed Performance Data

The photographic records of each take-off and landing have been corrected to zero wind velocity and to specification gross weight. These corrections have been applied to speeds and distances traveled both on the ground and in the air

An accurate determination of the wind velocity actually encountered by the airplanes while taking off or landing is practically impossible because of gusty and shifting wind conditions. The wind velocity data included in this study were obtained through the use of an anemometer set at one side of the runway near the take-off and landing points

Since there was no reasonable method for obtaining actual data concerning increases in velocity with height, it was necessary to refer to N A C A Report No 626, "The Transition Phase in the Take-Off of an Airplane" This report includes experimental data obtained at Langley Field, Virginia, which indicate that the variation of wind velocity with the height above the ground may be determined from the following expressions

 $\frac{\nabla_{\mathbf{W}}}{\nabla_{\mathbf{W}\mathbf{O}}} = \left(\frac{\mathbf{H}}{\mathbf{H}_{\mathbf{O}}}\right)^{\frac{1}{7}}$

where

 $V_{\mathbf{w}} = Wind \text{ speed at any height (H)}$

 $V_{wo} = Wind speed close to the ground or at a height <math>(H_o)$

 $H = \text{Height at which } (V_w) \text{ is realized}$

Ho = Height of anemometer

From the above it was possible to plot a curve of (V_W / V_{WO}) against height (H) This is shown on figure 24, and gives the wind velocity at any height up to 260 feet when the wind velocity at the ground is known. The use of this curve in conjunction with the anemometer readings described above results in only rough approximations of the actual conditions. It is reasonably adequate, however, and is applicable to all airports at all elevations. Using the curve of (V_W / V_{WO}) as a basis, it was possible to obtain a second curve which is designated in figure 24 as (V_{WM} / V_{WO}) . For any height (H) this curve may be used to obtain the mean wind velocity that was encountered by the airplane in climbing to that height or in gliding down from that height

The two curves shown in figure 24, together with the anemometer readings, are used to correct observed air-borne distances to zero wind velocity. The following observed characteristics may be corrected through application of the anemometer readings:

Distance from start to unstick Unstick speed Contact speed Landing ground roll distance

The effect of wind on unstick and landing ground roll distances is determined through the use of the curve shown on page 440 of the revised edition of "Engineering Aerodynamics" by Commander Walter S Diehl This curve has been redrawn in figure 25, and shows the variations of $(R_W \ / R_O)$ with $(V_{WO} \ / V_U)$, where $(R_W \ / R_O)$ is the ratio of the ground run in wind velocity (V_{WO}) to the ground run in a calm, and $(V_{WO} \ / V_U)$ is the ratio of the wind velocity (as determined from the anemometer reading) to the air speed of the airplane at unstick For landings, the contact speed is used instead of the unstick speed

The corrections of the pertinent take-off and landing characteristics to zero wind velocity finally are accomplished as follows:

(a) Air speed at unstick (Vu)

The air speed at unstick is the sum of the airplane speed obtained through analysis of the camera records plus the component of the wind speed parallel to the flight direction

(b) Air speed at contact (V_a)

Determined same as unstick speed

- (c) Distance from start to unstick
- Obtained through use of figure 25, as previously explained
- (d) Distance from contact to stop
- Obtained through use of figure 25, as previously explained.

(e) Air-borne distances

The observed air-borne distances, both in take-offs and landings are corrected to zero wind velocity by the addition of a distance (AD), which is obtained by multiplying the mean wind velocity encountered by the sirplane (V un) by the sir-borne time (t) as determined from the photographic space-time records

Thus, There.

Dw a mir-borne distance in wind

Vwm - mean wind speed encountered by the airplans

= air-borne time

Correction to specification gross weight will be considered next. In the take-off, both the unstick distance and the air-borne distance are corrected to specification gross weight in accordance with equation No 328 (p 439) of Commander Diehl's "Engineering Aerodynamics" equation is as follows:

$$\frac{S_1}{S_2} = \mathbb{F}\left(\frac{\overline{\pi}_1}{\overline{\pi}_2}\right)^2$$

where,

S1 = Distance at Gross Weight No 1

S2 - Distance at Gross Weight No 2

W1 = Gross Weight No 1 W2 = Gross Weight No 2 = Multiplying Factor = 1

As suggested on page 440 of Commander Diehl's book, (F) is assumed equal to unity when the difference between (W_1) and (W_2) is not too great.

In the approach for a landing no correction is made to the air-borne distance for weight This is because the flight path depends only upon the flying attitude or angle of attack of the airplane

In correcting landing ground roll distances to specification gross weight, the assumption is made that the ground roll varies as the square of the contact speed. Since the square of the contact speed varies directly with the gross weight of the airplane, the ratios of observed to specification gross weight were applied directly as multiplying factors in the observed ground roll distances to correct them to specification gross weight. Speeds will vary as the square root of the weight ratio.

The specification gross weight for each airplane included in this study is listed on line l of table 7

APPENDIK NO 2

DISCUSSION OF COMPUTED PERFORMANCE DATA

Discussion of Computed Performance Data

This section is devoted to the derivation and justification of the methods employed in the computation of the values listed in table 7 of this report

Distance from Start to Unstick

A method for the precise determination of the distance required to attain any velocity on the ground may be derived from the fundamental relationship:

where,
$$\frac{v^2}{2a} = v^2 \left(\frac{1}{2a}\right)$$

mhere,

s = Distance in feet

Velocity in feet per second

Acceleration in feet per second per second

The computation may be facilitated considerably by the assumption that the acceleration is inversely proportional to the square of the velocity. The validity of this assumption has been established by flight test data. Such substantiation permits an average value of the reciprocal

of the acceleration to be expressed by,
$$\frac{1}{\frac{1}{8}} = \frac{\frac{W}{Fg}}{\frac{1}{Fg}} = \frac{\frac{W}{2g}}{\frac{1}{2g}} \qquad \left(\frac{F_1 + F_2}{\frac{1}{F_1} F_2}\right)$$

where,

$$\frac{\mathbf{W}}{\mathbf{g}} = \mathbf{Mass} = \frac{\mathbf{Gross}}{32,2} \frac{\mathbf{Weight}}{32,2}$$
 $\mathbf{F}_1 = \mathbf{Initial}$ accelerating force $\mathbf{F}_2 = \mathbf{Final}$ accelerating force

Substitution of this average value in the basic expression obtains:

$$S = \frac{v^2}{2a} = \frac{v^2 \pi}{4g} \left(\frac{F_1 + F_2}{F_1 F_2} \right)$$

which may be more conveniently expressed in engineering units by,

$$\mathbf{X}_{1} = .0167 \, \nabla_{\mathbf{u}}^{2} \, \mathbf{V} \left(\frac{\mathbf{F}_{1} + \mathbf{F}_{2}}{\mathbf{F}_{1} \cdot \mathbf{F}_{2}} \right)$$

where,

Instick distance in feet
Vu = Unstick speed in m.p h.
V = Gross weight in pounds
F1 = Initial net force
F2 = Final net force

The accelerating forces (F_1) and (F_2) are obtained on the following assumptions: When the airplane is at rest it may be assumed that the only resistance to forward motion is due to the weight of the airplane and the texture of the surface on which it rests. Hence, the accelerating force at the instantaneous origin of motion must equal the difference between the initial or static thrust and the rolling traction This is mathematically expressed as follows:

$$\mathbf{F}_1 = \mathbf{T}_1 - \boldsymbol{\mu} \mathbf{V}$$

where.

F₁ = Initial net force
T₁ = Initial or static thrust
μ = Traction coefficient = .03 assumed

By comparative reasoning it is clear that the rolling traction becomes zero and the aerodynamic drag furnishes the entire resistance to forward motion at the instant of unstick. This being the case, the net accelerating force at unstick must equal the difference between thrust and This is analytically defined as

$$\mathbb{F}_2 = \mathbb{T}_2 - \frac{\Psi}{1/D}$$

where

F₂ = Final net force T₂ = Final thrust L/D = Ratio of lift to drag

The thrust is computed as follows:

Computation of Thrust

The variation of thrust with velocity throughout the normal range of velocities for takeoff and climb is expressed by an empirical equation which is in good agreement with figure 2-II of the Aircraft Engineering Report No 103, and figure 154 of Diehl's "Engineering Aerodynamics" (revised edition) The expression is as follows:

$$T = \frac{375 \text{ THP}}{\text{AV}_{\text{m}} + \text{CV}} = \text{Thrust in 1bs}$$

The application of this formula requires a knowledge of the following data

- Maximum Thrust Horsepower available for take-off $\mathtt{BHP}_{\mathsf{t}}$. Maximum Brake Horsepower available for take-off.

- Propeller efficiency

V_m = Maximum velocity V = Any velocity Any velocity

.3 for controllable propellers
 .5 for fixed pitch propellers

.6 for controllable propellers

5 for fixed pitch propellers

Since (V) is zero for the initial or static condition and equal to unstick speed at the instant of unstick it follows that,

$$T_1 = \frac{375 \text{ THP}}{\text{A V}_m}$$

and

$$T_2 = \frac{375 \text{ THP}}{\text{AV}_m + \text{CV}_m}$$

The evaluation of thrust involves the propeller efficiency which may be obtained as follows:

Propeller Efficiency

An analysis of the existing N.A.C. A propeller data yields the following general formulas for the computation of maximum propeller efficiency:

$$\eta = K_S / (.197 + 1 124 K_S)$$

for propellers with two blades, and

$$\eta = K_S / (20 + 116 K_S)$$

for three-bladed propellers.

In these equations the propeller constant,

$$K_{S} = \frac{325 \text{ V}_{m}}{\text{RPM}} \qquad \left(\frac{\text{V}_{m}^{3}}{\text{EHP}}\right)^{\frac{1}{2}}$$

Efficiencies thus obtained are in general agreement with those recommended by Commander Walter S Diehl in figures 148 and 151 of his "Engineering Aerodynamics" (revised).

In the application of the above expression for propeller efficiency, a knowledge of the maximum speed of the airplane is required In general, this must be obtained by reference to standard compilations of performance data While it is generally conceded that such data are unreliable, they nevertheless are sufficiently accurate for the purpose of computations relative to take-off and climb characteristics. In the subsequent calculation of parasite drag, for example, it can be demonstrated that a positive error of ten percent in the estimation of maximum speed. while resulting in a considerably optimistic value of parasite drag coefficient, also will produce a reduction in the horsepower available at velocities in the proximity of take-off and climb The net error in the computation of these two latter quantities, other things being equal, will not exceed five percent It should be noted that this represents an extreme case In general, it is believed that the computed values are within three percent of accuracy.

The computation of parasite drag coefficient proceeds as follows:

Parasite Drag Coefficient

In the computation of the minimum parasite (including profile) drag coefficient, the simplifying assumption that induced drag is a constant percentage of parasite drag at maximum velocity is resorted to This permits the following process of derivation:

Drag = D = 00256
$$(C_{D_4} + C_{D_D})$$
 SV^2

CD, = Induced drag coefficient where

 $^{\mathrm{C}}\mathrm{D}_{\mathrm{p}}$ = Parasite drag coefficient

$$CD_1 = KCD^2$$
 at V_{max}

 $c_{D_{\underline{1}}} = \kappa c_{D_{\underline{p}}} \text{ at } v_{\max}$ $D = .00256(\kappa c_{D_{\underline{p}}} + c_{D_{\underline{p}}}) \text{sv}^2$ hence,

Empirical evaluation of the constant (K) by application of known performance indicates good accuracy when the above formula is expressed as,

$$^{\text{C}}_{\text{D}_{\text{P}}} = \frac{133000 \text{ BHP}}{\text{SV}_{\text{m}}^{3}} \text{ }^{\text{T}}$$

This is in substantial agreement with equation 312 of N A.C A Report No 408 and equation (28) of N A.C A Technical Memorandum No. 456

It is believed to be sufficiently accurate for the purpose of this discussion to assume that the parasite drag coefficient with chassis extended is of the following order:

$$c_{D_{P_1}}$$
 = 1.5 c_{D_P} = c_{D_P} with gear extended.
 $c_{D_{P_2}}$ = $\frac{133000 \text{ BHP}}{3}$ $\frac{7}{3}$ = c_{D_P} with gear retracted.

The foregoing assumption may be substantiated by reference to Manual 04, Civil Aeronautics Administration, February 1, 1941, figure 6 The variation of parasite drag with angle of attack is expressed as a function of the square of the lift coefficient by application of Diehl's conception of an effective aspect ratio defined as:

where

R = Effective aspect ratio

N = Geometric aspect ratio = H² / S

B = Span

S = Ting area

CDp = Parasite drag coefficient

The effective aspect ratio is used in the following computation of lift drag ratio:

Maximum Ratio of Lift to Drag

The proximity of the ground during take-off generally is conceded to result in a marked reduction in induced drag The magnitude of such reduction is incapable of exact analytical expression, but may be closely approximated by the assumption that the maximum ratio of lift to drag obtains at unstick

Obviously this ratio will be a maximum when its reciprocal is a minimum and expressed as follows

$$\frac{c_{D}}{c_{L}} = \frac{c_{D_{P}}}{c_{L}} \quad \bullet \quad \frac{c_{L}}{\pi R}$$

 C_D = Total drag coefficient.

If the derivative of C_{D} / C_{L} with respect to C_{L} is equated to zero as follows:

$$\frac{d \left(c_{D} / c_{L}\right)}{d c_{L}} = \frac{1}{\pi R} - \frac{c_{D_{P}}}{c_{L}} = 0$$

it then is obvious that the ratio C_{D} / C_{L} will be a minimum when:

$$c_L = \sqrt{\pi Rc_{D_P}}$$

and when
$$C_{D_P} = \frac{C^2}{\pi R}$$

Hence the maximum ratio of lift to drag is realized when:

$$\frac{L}{D} = \frac{C_{L}}{C_{D}} = \sqrt{\frac{\pi R C_{D_{P}}}{4 C_{D_{P}}}} = \sqrt{\frac{7854R}{C_{D_{P}}}}$$

After unstick and during initial climb, the proximity of the ground becomes increasingly less effective in the reduction of induced drag as height is attained. On the other hand, for a rigorous analysis, the increase in velocity after unstick should be accompanied by an increase in effective aspect ratio, and a consequent reduction in induced drag. Hence, it would appear that this combination of factors contributes toward an approximately constant value of lift-drag ratio throughout the extremely limited range of velocities here involved. It is believed that further refinement would but complicate the solution and render the method less applicable to comparative performance studies.

The maximum ratio of lift to drag is the controlling factor in the establishment of approach path ratios since it is conservatively assumed that flaps and similar lift increasing devices might be rendered inoperative. In addition to the possibility of flap failure the possibility of landings under power due to ice formations or other factors must be considered.

Unstick and Contact Speed

The apparent discrepancy between computed and actual landing speeds, in general, is attributed to a combination of ground effect, wing fuselage interference, and so forth. In our effort to derive a method whereby substantial agreement with observed landing speeds might be obtained, recourse was had to the fact that airplanes do land consistently at a reasonably constant percentage of their theoretical velocity for minimum power requirement, (V_{MP}) (V_{MP}) may be derived from the following fundamental expression for drag at any velocity:

$$D = \frac{C_{D_{P}} SV^{2}}{301} + \frac{125T^{2}}{RSV^{2}}$$

from which it follows that the power required at any velocity will be:

$$\frac{c_{D_p}^{SV3}}{371} = \frac{\frac{c_{D_p}}{391 \times 375} + \frac{125 \text{ W}^2}{375 \text{ RSV}}}{375 \text{ RSV}}$$

Differentiating this quantity with respect to velocity and equating it to zero gives:

$$\frac{d \text{ HP}}{d \text{ V}} = \frac{30_{\text{Dp}} \text{ SV}^2}{391 \times 375} - \frac{125 \text{ W}^2}{375 \text{ RSV}^2} = 0$$

which may be reduced to:

$$V_{MP} = \left(\frac{16300 \text{ (T/S)}^2}{RC_{D_P}}\right)^{\frac{1}{4}}$$

This permits the expression of contact and unstick speeds as functions of VMP as follows:

$$\nabla_{c} = K_{c}V_{MP} = Contact speed$$
 $\nabla_{u} = K_{u}V_{MP} = Unstick speed$

Empirically derived constants based on the known landing speeds of some fifty airplanes indicate an average conservative relationship between (V_c) and (V_{MP}) expressed as follows:

$$\begin{array}{rcl} V_c &=& K_c V_{MP} \\ \\ \text{where} & K_c &=& .80 \text{ for normal wings} \\ K_c &=& 70 \text{ for plain flaps} \\ K_c &=& 60 \text{ for Fowler flaps} \\ \end{array}$$

In the application of this method to the computation of minimum unstick speed, it was believed advisable to increase the constants by an appropriate safety factor approximating ten per cent in the case of the normal wing and twenty and thirty percent respectively when ordinary and Fowler flaps are employed The employment of the greater correction in the latter instance is in agreement with observed unstick speeds and indicates that full flap deflections are of limited utility in normal take-off technique. The average conservative relationship between (V_{1}) and (V_{MP}) is then i

$$\nabla_{\mathbf{u}} = \mathbf{K}_{\mathbf{u}} \nabla_{\mathbf{MP}}$$

 $K_{11} = 90$ for normal wings $K_{11} = 85$ for plain or split flaps $K_{11} = 80$ for Fowler flaps

Climb Path Characteristics

The complete take-off of an airplane is assumed to include the following three phases distance to unstick, distance for acceleration from unstick speed to climbing speed, and distance from climbing speed to any specified height

The distance required for an airplane to accelerate from unstick speed to a safe climbing speed may be computed with reasonable accuracy by the fundamental formula

$$s = \frac{\sqrt{2} + \sqrt{2}}{2a}$$

s = Distance in feet

a = Acceleration in feet per second per second V_1 = Initial Velocity V_2 = Final Velocity

Since height attainment with a minimum of required horizontal distance is the controlling factor in take-off technique, it is desirable that climb be initiated at the velocity for minimum power requirement This justifies the following substitutions in the original expression,

$$s = \frac{{\nabla_2}^2 - {\nabla_1}^2}{2a} = \frac{{\nabla_{MP}}^2 - {\nabla_u}^2}{2a}$$

where $2a = \frac{32 \cdot 2}{4} (F_2 + F_3)$

and $\mathbf{F}_3 = \mathbf{T}_3 - \frac{\mathbf{W}}{\mathbf{L}/\mathbf{D}}$

The formula may be expressed in engineering units as follows:

$$\Delta X = \frac{067 \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ MP & -u \end{pmatrix}_{\mathbf{V}}}{F_2 + F_3}$$

△ X = Distance from Vu to Vup

The procedure involved in the evaluation of the net accelerating force (F_3) is analogous to that employed in the determination of (F_2) . It is accomplished as follows:

$$F_3 = T_3 - \frac{\pi}{L/D}$$

$$T_3 = \frac{375 \text{ THP}}{\text{AV}_{\text{M}} + \text{CV}_{\text{MP}}}$$

Distance from Vwp to Height

The ratio of distance to height is obviously proportional to the corresponding ratio of horizontal velocity to vertical velocity It follows then that,

Then, since

$$X_2 = \frac{88VH}{RC} = Distance from V_{MP} to H

 $RC = \frac{86VF_3}{V}$
 $X_2 = \frac{HW}{F_3}$ as noted$$

APPENDIX NO 3

RUNWAY LENGTH AND OBSTACLE ZONING REQUIREMENTS AS AFFECTED BY WITDS

Runway Length and Obstacle Zoning Requirements as Affected by Winds

Rumway length and obstacle zoning requirements, as listed in the conclusions of this report, involve no consideration of the effect of winds. They are based upon dead calm conditions Doctor Edward P Warner has suggested trat, in the case of airports having runways in more than one direction, it appears unnecessar, to provide for zero wind conditions on all runways. In fact, zero wind dimensions need involve but one runway direction, while the dimensional requirements of the remaining cross runways may be reduced to allow for the effect of winds

The following investigation has as its objectives:

- (a) The determination of wind velocities to be used in reducing the dimensional requirements of the cross runways
- (b) Determination of multiplying factors, which may be applied to the main runway dimensions to obtain the reduced values of runway lengths and obstacle zoning ratios for the cross runways
- (c) Application of the foregoing data to actual airport dimensions
- (d) Correlation of observed characteristics with airport dimensions in relation to wind effect
- (e) Consideration of runways having only part of their lengths paved
- (a) The Determination of Wind Velocities to be Used in Reducing the Dimensional Requirements of the Cross Runways as Compared with the Zero Wind Runway

The criteria for the safe use of a cross rumway, the dimensions of which have been reduced to allow for general wind conditions, involve both the magnitude and direction of the wind velocity as translated into components along and across that cross runway. Thus, a given runway should not be used if the longitudinal component is less than the critical wind velocity that was employed in determining its dimensions, nor if the cross component is great enough to seriously affect takeoff and landing maneuvers

The first step in establishing these criteria is to decide upon a safe maximum value for the cross wind component The critical velocities then may be determined solely through consideration of the number of runways and the angles that they make with one another

It is felt generally that flight operations tend to become hazardous when the cross wind component exceeds 10 miles per hour. If a value of approximately this magnitude is established as maximum, critical wind velocities may be determined as follows:

Regardless of the total number of runways provided, the critical velocity for the cross runway, which is roughly at right engles to the main runway, is determined on the basis that operations will be transferred from the main runway to that cross runway whenever a wind, the direction of which is at 90 to the main runway, attains a velocity in excess of 10 miles per hour The critical velocity for that cross runway, then, may be obtained from the expression,

 $\frac{V_c}{v} = V_w \times \cos \alpha$

where

 $V_{\rm c}$ = The critical velocity (component) $V_{\rm m}$ = The velocity of the wind across the main runway

The angle between the cross runway and the wind direction

This method of analysis is illustrated in figure 26

If $V_c = 10$ mph and (α) varies between +30° and -30°, (∇) will vary between 11.6 mph and 10 mph. Since a cross wind of 11.6 mph is not excessive, it is believed to be both safe and practical to so dimension the cross runway in question that it may be used whenever its longitudinal

wind velocity component is equal to or greater than 10 mph, except that the component across that runway should not greatly exceed 10 miles per hour. This assumes that the angle between that cross runway and the main runway is not less than 60°

The method outlined above may be applied to the dimensioning of a two-runway airport. It also applies to the dimensioning of a three-runway airport, with respect to one of the cross runways, again providing that the angle between that cross runway and the main runway is not less than 60°. The critical velocity for the second cross runway is determined on a slightly different basis. In this case, the critical velocity for the second cross runway is determined on the basis that operations will be transferred from the second cross runway to the nearer of the other two runways whenever a wind, the direction of which is in line with the second cross runway, fails to attain a velocity equal to the critical velocity for the second cross runway. (See fig 27) However, the longitudinal and cross components of the wind, with respect to the runway to which operations are to be transferred, must be such that the use of that runway is not hazardous. Thus, the longitudinal component at least should be equal to the critical velocity and the cross component should not greatly exceed 10 mph. The critical velocity for the second cross runway may be obtained from the expression,

$$\nabla_c = \nabla_n \times \csc \boldsymbol{\beta}$$
 and $\nabla_n = \nabla_c \sin \boldsymbol{\beta}$

where

 V_C = The critical velocity (actual wind velocity)

Vn = Component of (Vc) across runway to which operations are to be transferred (approximately 10 mph)

β = Angle between second cross runway and runway to which operations are to be transferred.

In the case of a three-runway airport a minimum angle between any two runways of 50° could result in a maximum angle of 80° between any two runways. Consequently a 20 mile per hour wind which bisected the 80° angle would result in a cross component of 12 9 mph. If the bisecting wind never greatly exceeds 20 miles per hour, a minimum angle of 50° would not result in serious cross wind components. On the bases outlined above the angle between the second cross runway and the nearest adjacent runway may vary between 50° and 60°. An assumed critical velocity of 10 mph for the second cross runway can result in a cross component (\mathbb{V}_n) which will vary between 7.7 mph and 8.7 mph. Since these values approach 10 mph, it is believed practical to dimension the second cross runway for a critical velocity of 10 mph. Thus, for a three-runway airport, both cross runways are dimensioned for a 10 mph critical velocity. The angle between the main runway and the first cross runway should not be less than 60° , and the angle between any two runways should not be less than 50°

A four-runway airport can be said to comprise the main runway, the first cross runway (roughly at 90° to the main runway) and a second and third cross runway. In this case the method for obtaining the critical velocity for the first cross runway is the same as for a two-runway airport, and the basis for obtaining the critical velocity for either the second or third cross runway is the same as for a three-runway airport. In a four-runway airport, a minimum angle between any two runways of 35° could result in a maximum angle of 75°, and a bisecting wind of 20 mph could result in a cross component of 12 2 mph. A minimum angle of 35°, therefore is recommended. Such an arrangement limits the angle between the main runway and the first cross runway to a 70° minimum. The latter therefore can be dimensioned for a 10 mph critical velocity as previously discussed. Using figure 27 as a reference, the critical velocities for the second and third cross runways may be obtained from the expression:

also from figure 27
$$\frac{V_{c} = V_{n} \times \csc \beta}{V_{n} = V_{c} \sin \beta}$$

The angle (β) can vary between 35° and 55° so that an assumed critical velocity (V_C) of 15 mph for the second and third cross runways can result in a cross component (V_D) which will vary between 8 6 mph and 12 3 mph. Since these values approximate 10 mph, it is believed practical to dimension the second and third cross runways for a critical velocity (V_C) of 15 mph.

Summarizing, the suggested critical velocities for cross runways for all classes of airports are as follows:

For a two-runway airport: one cross runway; critical velocity = 10 mph, minimum angle between cross runway and main runway = 60°

For a three-runway airport: critical velocity for both cross runways = 10 mph, minimum angle between main runway and one of the cross runways $= 60^{\circ}$; minimum angle between any two runways $= 50^{\circ}$

For a four-runway airport, critical velocity for one cross runway = 10 mph; minimum angle between that runway and the main runway = 70°; critical velocity for remaining two cross runways = 15 mph; minimum angle between any two runways = 35°

It will be noted that in the preceding discussion the meteorological data involving prevailing wind velocities are not considered in determining critical velocities. In the case of a four-runway sirport it is believed that the prevailing wind direction may be ignored and that the directional orientation of the runways may be arranged best to suit the topography of the airport and surrounding areas, provided of course, that the mutual angularity between runways is in accordance with the suggested minimums. Where less than four runways are provided it would seem advisable to arrange the runways so that at least one cross runway lines up with the prevailing wind direction

It is believed that the foregoing constitutes a practical and safe establishment of critical wind velocities to be used in reducing the dimensional requirements of cross runways so as to realize a maximum saving in total paving length

From consideration of these critical wind velocities multiplying or reduction factors may be determined which can be applied to the dimensions of the main runway to obtain reduced values for the dimensions of the cross runways. This is accomplished as follows:

(b) Determination of Reduction Factors

In considering the effect of critical wind velocities upon airport dimensions, it appears desirable to present numerical data in the form of coefficients which may be applied to the requirements for dead calm conditions to obtain the reduced requirements

Two factors are involved; (1) runway lengths, and (2) obstacle zoning ratios

Reduction factors involving these factors are determined as follows

(1) Runway Lengths As discussed previously in this report, the runway length is the sum of the take-off distance plus the distance required for the airplane to roll to a stop should an engine failure occur at the point of take-off

Both the take-off distance and the landing ground roll distance are corrected for wind in accordance with the curve shown in figure 25. To use this curve for determining the effect of wind upon unstick distances, it first is necessary to determine the ratio of the wind speed to unstick speed, (V_{WO} / V_{U}) When this value has been obtained, figure 25 may be used to obtain a correction factor which may be applied to the distance required to take off in a dead calm

When using this curve to determine the effect of wind on landing ground roll distance, the ratio of wind speed to contact air speed is the determining factor According to the basic criterion for runway lengths the airplane is brought to rest after having attained unstick speed. In effect, this involves a take-off followed by a landing in which the unstick and contact speeds are one and the same. Therefore, figure 25 may be used to obtain runway length reduction factors (K_r) when the ratios of wind speeds to unstick speeds have been determined

(2) Obstacle Zoning Ratios As previously discussed in this report, obstacle zoning requirements are expressed as the ratio of horizontal distance from the end of the runway to the obstacle divided by the height of the obstacle above the elevation of the runway Specifically, they are determined from the flight path ratios involving the climb after take-off from 50 to 100 feet height, as expressed by the horizontal distance traveled by the airplane while climbing from 50 to 100 feet divided by 50 Therefore, any reduction in this horizontal distance will result in a proportional reduction in climb path ratio. If this is expressed as a reduction coefficient, it may be applied directly to zero wind obstacle zoning requirements for determining the effect of wind This is accomplished as follows

Obstacle zoning reduction coefficients (K_Z) may be determined by evaluating the ratio $(D_{\overline{w}} \ / \ D_O)$ where $(D_{\overline{w}})$ is the distance traveled while heading into a wind, and (D_O) is the distance traveled in a dead calm. Now,

 $D_{\mathbf{w}} = D_{0} - \mathbf{\Delta}D$. (1) There ($\mathbf{\Delta}D$) is the distance that the airplane in effect was blown back

by the wind $D = V_{WR} \times t \qquad (2)$

There (∇_{wa}) = the average wind velocity encountered by the airplane in climbing from 50 to 100 feet and (t) is the time required to climb that distance

(Note The use of an average rather than a mean value in this case is believed to be sufficiently accurate)

$$\nabla_{\mathbf{W}\mathbf{a}} = \nabla_{\mathbf{W}\mathbf{0}} \times \frac{\nabla_{\mathbf{W}\mathbf{a}}}{\nabla_{\mathbf{W}\mathbf{0}}} \qquad (3)$$

Where (V_{wo}) is the wind speed on the ground, such as might be measured with an anemometer Now.

$$\frac{\nabla_{\text{WG}}}{\nabla_{\text{WG}}} = \frac{\frac{\nabla_{\text{W}50}}{\nabla_{\text{WG}}} + \frac{\nabla_{\text{W}100}}{\nabla_{\text{WG}}}}{2} \qquad (4)$$

where $\frac{V_{w50}}{V_{wm}}$ is the ratio of the wind speed at 50 feet height to the wind speed on the ground,

And $\frac{V_{w100}}{V_{wn}}$ is the ratio of the wind speed at 100 feet height to the wind speed on the ground

As obtained from the curve in figure 24

$$\frac{V_{m}50}{V_{m0}} = 1410 \text{ and } \frac{V_{m}100}{V_{m0}} = 1545$$

From equation #4 then,

$$\frac{V_{\text{WB}}}{V_{\text{WO}}} = \frac{1,410}{2} + \frac{1545}{2} = 1478$$

And $V_{WA} = V_{WO} \times 1478$ (at the airport elevation) . (5)

The climbing time (t) is not affected by wind and

$$t = \frac{D_0}{V_0 \times 1 \cdot 10} \tag{6}$$

 $(V_{\rm u})$ is the air speed at the unstick point. It is assumed that the average speed between 50 and 100 feet height is 10 percent greater than the unstick speed. This assumption is supported by actual records

Numerical Determination of Reduction Factors

In applying the foregoing principles, unstick air speed data are necessary for the numerical determination of runway length and obstacle zoning reduction factors. For the purpose of this investigation, these speeds will involve the four classes of airports as defined in the summary of this report, and may be considered as the characteristics of four airplanes, each of which is marginal as concerns the size of the airport in question. From line 5 of table 8, it will be seen that for the eight airplanes considered in this study $(V_{\rm u})$, at sea level, varies from 47 2 mph to 105 8 mph. For each class of airport, the following values of $(V_{\rm u})$ will be used to determine the reduction factors:

Class of Airport	v _u *
I	50
II	70
III	90
IV	110

★ Sea Level Values

In the above table a high value of $(\nabla_{\bf u})$ was assumed in each case so that the resulting values of reduction factors will be slightly on the conservative side

The effect of altitude on (∇_u) is determined in the following table 17. In this table the values of (ρ/ρ_0) are obtained from table 12, and a multiplying factor (K_v) is determined. Sea level values of (∇_u) may be multiplied by (K_v) to obtain (∇_u) at various altitudes

By combining the assumed values of (V_u) with the values of (K_v) listed in table 17, and through the use of figure 25, it is possible to determine values for runway length reduction coefficients (K_r) for each class of airport at various altitudes and at various wind velocities. This is accomplished in the following table 18, the results of which are plotted in figures 28, 29, 30 and 31

TABLE 17

	AIR SPEED vs ALT	ITUDE FACTOR	
Geog. Altitude H	θ/ρ,	Ve/p	κ _ν *
0	0 910	1.058	1,000
1,000	0 877	1 061	1.003
2,000	0 846	1 088	1.027
3,0 00	0.816	1 107	1.056
4,000	0.784	1 129	1.065
5,000	0 756	1 150	1.086
6,000	0 728	1 173	1,109
7,000	0.701	1 195	1,129
9,000	0 674	1 218	1 151
9 ,000	0.650	1 240	1 172
10,000	0.624	1 .26 5	1 195

* ($\mathbb{I}_{\mathbf{v}}$) is determined as the ratio of $\sqrt{\rho_{\rho/\rho}}$ at any geographical altitude to its value at sea level

In the following determination of reduction factors, values are presented for a wide range of wind velocities, rather than for only the 10 mph and 15 mph velocities previously discussed. It is felt that this will improve the general utility of the report

By interpolating between curves, figures 28 to 31 inclusive may be used to obtain runway length reduction factors for each class of airport for any altitude up to 10,000 feet and for any wind up to 30 mph.

The determination of obstacle zoning ratio reduction factors (K_2) first involves the determination of the time required (t) to climb from 50 to 100 feet height. This has been accomplished in table 19 in accordance with the principles previously discussed. In this table, (V_u) , column 2, was obtained from table 18. (Z_0) , column 5, was obtained from table 13

Having determined (t) in table 19, (K_Z) is determined in table 20 in accordance with the principles previously discussed

The values of (K_z) as listed in table 20 are plotted on figures 32, 33, 34, and 35

The precise plotting of the data listed in the above tables will result in lines having a slight curvature. It was considered adequate, however, to plot these as straight lines. It will be noted that the airport dimensions resulting from the straight line plots, in general, are slightly conservative as compared to values which would have resulted from a precise plotting

These curves may be used to obtain obstacle zoning ratio reduction factors (K_Z) for each class of airport, for any altitude up to 10,000 feet, and for any wind up to 30 miles per hour As previously noted, the values of (K_T) and (K_Z) shown in figures 28 to 35 inclusive may be applied to such zero wind requirements as eventually may be determined, even though these may differ from the values recommended in this report

(c) Application of Foregoing Data to Actual Airport Dimensions

In applying the foregoing data involving critical wind velocities and reduction factors to the obtainment of actual airport dimensions, the four classes of airports again will be considered. Thus, in the following table 21, critical wind velocities of 0 mph, 10 mph, and 15 mph are included, and for various elevations up to 10,000 feet, the following items are determined

Runway length reduction factor K_r Obstacle zoning ratio reduction factor K_z Actual runway lengths R Actual obstacle zoning ratios Z

The values of (R) listed in table 21 are plotted in figures 36 to 39 inclusive, and the values of (Z) are plotted in figures 40 to 43 inclusive. The use of these curves will give the length of any runway and its obstacle zoning ratio for all four classes of airports and for any elevation up to 10,000 feet.

As in figures 22 and 23, the curves of runway lengths versus altitude and of obstacle zoning ratios versus altitude are drawn so that the curves for Class III airports become critical above altitudes where the dimensional requirements for Class III airports become more restrictive than those for Class IV airports. As in figure 23, the flight paths involving an instrument landing system are unaffected either by wind velocity or altitude and a ratio of 43 is indicated

VARIATION OF RUNWAY WIND REDUCTION FACTOR ($\kappa_{\rm T}$) WITH GEOGRAPHICAL ALTITUDE, WITH WIND VELOCITY AND FOR AIRPORTS CLASS I TO IV INCLUSIVE

TABLE 18

				FO	R CLASS	I AIRPOR	TS	-			FO	R CLASS	II ATRPO	RTS	
GEOG	K _v				∀ ₩0/ ∀ u €	and Kr				y _{wo} /V _u and K _r					
ALT FT		Δπ	V ₌₁₀ = 5	= 10	= 15	= 20	= 2 5	= 30	Vu_	V _{wo} = 5	= 10	= 15	= 20	= 25	= 30
S L	1 000	50 0	0 100 0 8 2 5	0 2 0 0 0 667	0 300 0 524	0 400 0 39 5	0,500 0,284	0 60 0 0 1 94	700	0 071 0 872	0.143 0 751	0 214 0 644	0 286 0 540	0 357 0 448	0.4 2 9 0.361
3000	1 056	52 B	0 095 0 834	0 189 0 68 1	0 284 0 5 4 4	0 378 0 42 0	0 474 0 311	0 568 0 222	73 9	0 068 0 8 8 0	0 135 0 765	0 203 0 660	0 271 0 562	0 338 0 470	0.406 0.388
5000	1 086	54 3	0 092 0 838	0 184 0 691	0 276 0 555	0.368 0 435	0 460 0 325	0 552 0 23 5	7 6 0	0 0 66 0 883	0 1 3 2 0 770	0 198 0 672	0 263 0 5 71	0.329 0.487	0 395 0 400
7000	1 129	56 4	0 089 0 942	0 177 0 701	0 266 0 568	0 354 0 452	0 443 0 347	0 532 0 255	78 9	0,063 0.887	0 127 0 780	0 19 0 0 68 0	0 253 0 587	0.317 0 498	0 380 0 417
10,000	1 195	59 7	0 084 0 851	0 168 0 715	0 251 0.5 9 0	0 335 0 475	0 419 0 372	0 503 0 282	8 3 6	0 060 0 .692	0 ,12 0 0 79 5	0 180 0 696	0 239 0 609	0 299 0 525	0.359 0 445
			FOR CLASS III AIRPORTS								PO	R CLASS	IV AIRPO	RTS	
SL	1 000	90.0	0.056 0.900	0.111 0.805	0 167 0 7 20	0 222 0 634	0.278 0.552	0.334 0.476	110 0	0 045 0 919	0.0 91 0.839	0 136 0 763	0 182 0 69 3	0,227 0 628	0 273 0 561
3000	1 056	95 0	0 053 0 902	0 105 0 6 15	0.158 0.731	0 211 0 650	0 263 0 572	0 316 0 500	116 2	0.043 0.920	0 0 86 0 850	0 129 0 775	0 172 0 708	0 215 0 642	0.258 0.581
5000	1 086	97 6	0 051 0 907	0 103 0 820	0 154 0 739	0 205 0 6 58	0.256 0.583	0 308 0 515	119 4	0 042 0 921	0 084 0 854	0 127 0 780	0 168 0 71 7	0 209 0 652	0 251 0.591
7000	1 129	101,4	0 049 0 910	0 099 0 829	0 148 0 746	0 197 0 671	0 247 0 599	0 296 0.530	124.1	0 04 0 0 9 23	0 081 0.858	0 121 0 790	0 161 0 72 5	0 201 0 665	0 242 0 604
10,000	1 195	107 5	0 046 0.914	0 093 0 837	0 140 0 756	0 186 0 69 0	0 233 0 .61 9	0.279 0.553	13 1 5	0.038 0.928	0 076 0.866	0 114 0 800	0.152 0.7 40	0 190 0.680	0 288 0 6 25

 (K_T) was obtained from Table 17 (Page 78) $(V_{\rm U})$ at sea level was obtained from page 77 $(K_{\rm T})$ was obtained from Fig. 25 (Page 56)

TABLE 19

				————							
		DETERMINATION	OF TIME (t)	TO CLIMB FR	100 סיי 100 mo						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Class of Airport	Vu MPH	V _u F P S (2) x 1 467	V _u between 50' x 100' (3) x 1 10	Z _o (Zoning Ratio at Zero Wind)	D _o (Zero Wind 50' to 100') (5) x 50	t (6)/(4)	t Assumed				
	ALTITUDE - SEA LEVEL										
III	50 70 90 110	73 3 102 6 132 0 161 2	80 6 112 9 145 0 177 3	13 0 18 0 23 0 28 0	650 900 1150 1400	8 0 8 0 7 9 7 9	8 0				
		<u> </u>	ALTITUDE	- 3000 Feet							
IV III II	52 B 73 9 95 0 116 2	77 4 108 3 139 2 170 6	85 0 119 2 159 0 18 7 5	17 6 24 3 31 1 31 6 *	880 1215 1555 1580 *	10 3 10 2 10 2 8 4 *	10 0 8 5 *				
			ALTITUDE	- 5000 Feet	,						
IV III I	54 3 76 0 97 6 119.4	79 6 111 5 143 3 175 0	87 7 122 5 157 8 192 2	21 6 29 9 38 2 34 3 *	1080 1495 1910 1715 *	12 3 12 2 12 1 8 9 *	12 0 8 5 *				
			ALTITUDE	- 7000 Feet	,						
IA III II	56 4 78 9 101 4 124 1	82.7 115 5 149 0 182 0	90 9 127 0 163 9 200 0	26 6 36 9 47 1 37 2 *	1330 1845 2355 1860 *	14 5 14 5 14 4 9 3 *	14 5 9 0 *				
			ALTI TUDE	- 10,000 Fe	et						
IA III II	59 7 83 6 107 5 131 5	87 5 122 5 157 8 192 9	96 3 135 0 173 5 212 0 *	37 2 51 5 65 8 42 1 *	1860 2575 3290 2105 *	19 3 19 1 18 9 10 0 *	19 0 10 0 *				

^{*} Involves assumption that airplanes using Class IV airports are supercharged

Values of Vu were obtained from Table 18 (Page 79)
Values of Zo were obtained from Table 13 (Page 32)
At 10,000 feet elevation - 1/Kpp = (Unsupercharged 2 860
(Supercharged 1.505)

DETERMINATION OF OBSTACLE ZONING RATIO REDUCTION FACTORS

									TABLE :	20											
V _{mo} (M P H)	0	5	10	15	20	25	30	0	5	10	15	20	25	30	0	5	10	15	20	25	30
$\nabla_{\text{PQL}} = \nabla_{\text{WO}} \times 1467 \times 1478 \times 1478 \times 1488 \times 148$	0	10 9	21 8	32 7	43 7	54.5	65.5	0	10 9	21 8	32 7	43 7	54.5	65 5	0	10 9	1	32 7			65 5
Alt & Timena	_		Alt =	SL t(I-IV) =	8 0		A1	t = 50	00 Ft	t(I-III	1) = 12	C t(IV)	= 9 0	Alt	= 10,	000 Ft	t(I-II	(I) = 19) 0 t(IV) = 10 0
$\begin{array}{c} V_{\text{MB}} \times \mathbf{t} = \Delta \ D \ (\text{I-III}) \\ V_{\text{MB}} \times \mathbf{t} = \Delta \ D \ (\text{IV}) \end{array}$	0	67 67	174 174	262 262	350 350	436 436	523 523	0	131 98	262 196	392 294	525 393	655 490	787 5 9 0	0	207 109	415 218	62 <u>1</u> 327	831 437	1035	1245 655
Dm (Class I) Dm (Class II) Dm (Class III) Dm (Class IV)	650 900 1150 1400	813 1063	476 726 976 1226	388 638 888 1138	300 550 800 1050	214 464 714 964	127 377 627 877	1080 1495 1910 1725	949 1364 1779 1627	818 1233 1648 1529	688 1103 1518 1431	555 970 1385 1332	425 840 1255 1235	293 708 1123 1135	1860 2575 3290 2105	1653 2368 3083 1996	1445 2160 2875 1887	1239 1954 2669 1778	1029 1744 2459 1668	825 1540 2255	615 1330 2045 1450
K ₂ (Class I) K ₂ (Class III) K ₃ (Class III) K ₄ (Class IV)	1 000 1 000	0 925	0 733 0 807 0 848 0 877	0 708	0 462 0 611 0 695 0 750	0 516 0 620	0.545	1 000	0 913 0 931	0 825 0 861	0 739 0 793	0 514 0 649 0 725 0 772	0 561 0 656	0 474 0 588	1 000 1 000	0 921 0 937	0 839 0 873	0 664 0 760	0 551 0 678 0 748	0 442 0 598 0 685	0 330 0 516 0 622 0 688
ilt & Time	Alt	= 3000	Ft t(1-111)	= 10 0	t(IV) =	8 5	Alt	± 7000	Ft t(I-III)	= 14 5	t(IV) =	9 5				<u> </u>			
V _{req} x t ± \(\D \) (I-III) V _{req} x t = \(\D \) D (IV)	0	109 93	218 185	327 278	437 371	545 462	655 555	0	158 104	316 207	474 311	634 415	790 517	950 6 2 2		ee Page					
Dm (Class I) Dm (Class II) Dm (Class II) Dm (Class III) Dm (Class IV)	880 1215 1555 1580	771 1106 1446 1487	662 997 1337 1395	553 888 1228 1302	443 778 1118 1209	335 670 1010 1116	225 560 900 1025	1330 1845 2355 1860	1172 1687 2197 1756	1014 1529 2039 1653	856 1371 1881 1549	696 1211 1721 1445	540 1055 1565	380 895 1405	** See Table 19 (D _W) at wind speeds is determined by subtracting (AD) from (D _W) at zero wand speed						

K_z (Class I) K_z (Class III) K_z (Class III)

1 000 0 876 0 751 0 627 0 502 0 380 0 255 1 000 0 910 0 819 0 729 0 639 0 550 0 460 1 000 0 929 0 860 0 789 0 718 0 650 0 578 1 000 0 940 0 882 0 825 0 764 0 707 0 649

wand speed 1 000 0 881 0 761 0 643 0 523 0 405 0 287 1 000 0 915 0 827 0 774 0 657 0 571 0 485 1 000 0 934 0 866 0 799 0 730 0 664 0 596 1 000 0 944 0 889 0 831 0 776 0 723 0 665

 $⁽K_{\rm Z})$ is determined by dividing (D_{M}) at each wind speed by (D_{M}) at zero wind speed

wherever radio instrument landing systems are involved, except that the ratio indicated by the curves should be provided if it exceeds the ratio of 43 mentioned above

To illustrate further the application of the foregoing data, figure 44 is a sketch of a hypothetical Class IV airport located at sea level and having four pairs of dual runways at 45° to one another. The dimensions noted on this sketch are obtained from figure 39. Thus, the zero wind runway is 4,800 feet long. The boundaries of the airport are moved out so that the fence is 600 feet away from the center lines of the runways and a distance of 600 feet between the center lines of the runways is shown. This is in accordance with the suggestions set forth urder conclusions. Obstacle zoning ratios, which start from the ends of the runways, should be obtained from figure 43. These would be 28.0, 25.5, and 23.0 respectively.

The total paving length as indicated by figure 44 is as follows

$$4.800 \times 2 + 3.650 \times 4 + 4.050 \times 2 = 32.300 \text{ feet}$$

If no account were taken of the possible reduction of runway lengths due to winds, the total paving length would be

$$4,800 \times 8 = 38,400 \text{ feet}$$

Assuming no change in the length of the taxi strips and assuming a runway paving width of 200 feet and a paving cost of \$1 50 per square yard, the consideration of the effect of wind on runway lengths would result in a saving of

$$(38,400 - 32,300) \times \frac{200}{9} \times \$1.50 = \$203,300$$

(d) <u>Correlation of Observed Characteristics with Airport Dimensions in relation</u> to Wind Effect

It is possible to correlate the observed performance characteristics of any airplane with any airport relative to the effect of wind upon runway length and obstacle zoning ratio requirements, provided adequate data are available

An example of such correlation is presented in table 22 involving Airplane (H), the airports at Burbank, California, Salt Lake City, Utah, and Cheyenne, Wyoming, and involving a critical wind speed $(V_{WO}) = 10$ mph. Table 22 also shows a comparison of the values of runway lengths (R) and obstacle zoning ratios (Z) as obtained for Airplane (H) through correlation of observed characteristics with actual airports, as against values obtained for Class IV airports in figure 39 and figure 42. Airplane (H) has characteristics that are nearly marginal as concerns Class IV airports. The percentage differences (lines 15 and 18) indicate that the method used to determine requirements for all four classes of airports, considering the effect of wind, is reasonable and that the results so obtained are in fair agreement with results obtained by a correlation of observed performance data with actual airports

(e) Consideration of Runways Having Only Part of Their Lengths Paved

As previously discussed, the general standard or criterion for the length of any runway involves the distance from start to unstick plus a reserve length to permit the airplane to roll safely to a stop in the event of an engine failure during the take-off at the point where the wheels are just leaving the ground

In view of this, it would appear unnecessary to provide more than enough paved runway to accommodate the airplane while it is rolling on the ground, so long as the surface of the reserve portion is not so rough as to cause the airplane to nose over before it comes to a stop.

With such an arrangement, the take-off would be started from one end of the paved portion and the airplane would normally leave the ground before running off of the pavement. The unpaved portion would not be used except in an emergency due to engine failure.

This arrangement would result in an appreciable saving in paving costs, but would necessitate the provision of an emergency strip at both ends of the pavement, since take-offs would be made in both directions; and this in turn would result in a total length greater than that indicated by the basic length criterion and would be practical only when plenty of suitable land was available

Where runway lengths cannot be extended beyond the minimum criterion values because of geographical or other limitations, full length paving must be provided to accommodate take-offs in both directions

The partial pavement arrangement may offer distinct advantages in some localities

DETERMINATION OF RUNWAY LENGTHS (R) AND OBSTACLE ZONING RATIOS (Z), AS AFFECTED BY WIND AND ALTITUDE, AIRPORTS-CLASSES I TO IV INCLUSIVE

TABLE 21

			KR	= Runway I	Reduction (Coefficient	$K_Z = Ob$	stacle Zon	ing Ratio	Reduction (Coefficient		
GEOG ALTITUDE	ITEM	С	IASS	I	С	LASS I	I	С	I ASS I	II	C	LASS I	V
FEET	ĸ _R	V _{™O} = O	$V_{WO} = 10$	V _{wo} = 15	Δ ^{MO} = 0	V _{wo} = 10	V _{wo} = 15	V _{w0} = 0	$V_{WO} = 10$	∇ _{wo} = 15	V _{WO} = 0	V _{wo} = 10	V _{WO} = 15
S L	K _R	1 000	0 667	0 524	1 000	0 751	0 644	1 000	0 805	0 720	1 000	0 839	0 763
	K Z	1 000	0 733	0 597	1 000	0 807	0 708	1 000	0 848	0 771	1 000	0 877	0 813
	R	1800	1200	943	2800	2104	1800	3800	3060	2735	4800	4020	3660
	Z	13 0	9 5	7 8	18 0	14 5	12 7	23 0	19 5	17 7	28 0	25 6	22 7
3000	K _R K _Z R	1 000 1 000 2182 17 6	0 681 0 751. 1486 13 2	0 544 0 627 1186 11 2	1.000 1 000 3394 24 3	0 765 0 819 2600 19 9	0 660 0 729 2240 17 7	1 000 1 000 4606 31 1	0 815 0 860 3755 26 8	0 731 0 789 3370 24 5	1 000 1 000 5381 31 6	0 850 0 882 4570 27 9	0 775 0 825 4170 26 0
5000	K _R	1 000	0 691	0 555	1 000	0 770	0 672	1 000	0 820	0 739	1 000	0 854	0 780
	K _Z	1 000	0 758	0 636	1 000	0 825	0 739	1 000	0 861	0 793	1 000	0 885	0 830
	R	2506	1733	1391	3898	3000	2620	5290	4330	3910	5818	4970	4535
	2	21 6	16 4	13 8	29 9	24 6	22 0	38 2	33 8	31 0	34 3*	30.4*	28 5*
7000	K _R	1 000	0 701	0 568	1 000	0 780	0 680	1 000	0 829	0 746	1 000	0 858	0 790
	K _Z	1 000	0 761	0 643	1 000	0 827	0 744	1 000	0 866	0 799	1 000	0 899	0 831
	R	2893	2028	1643	4500	3510	3060	6107	5065	4560	6298	5400	4975
	Z	26 6	20 2	17 1	36 9	30 5	27 4	47 1	40 8	37 6	37 2*	33 0*	31 0*
10,000	K _R	1 000	0 715	0 590	1 000	0 795	0 696	1 000	0 837	0 756	1 000	0 866	0 800
	K _Z	1 000	0 775	0 664	1 000	0 839	0 760	1 000	0 873	0 811	1 000	0 895	0 842
	R	3665	2625	2165	5701	4530	3970	7737	6470	5850	7099*	6150*	5675*
	Z	37 2	28 8	24 7	51 5	43 1	39 2	65 8	57 5	53 4	42 1*	37.7*	35 4*

NOTE

Values for ($K_{\rm R}$) are obtained from Figs 28 to 31 inclusive

Values for (K_Z) are obtained from Figs 32 to 35 inclusive

Values of (R) and (Z) for zero wind velocity were obtained from Table 13

*Runway length and obstacle zoning requirements for Classes I, II, & III airports are based upon the use of unsupercharged engines while for Class IV airports the use of supercharged engines is assumed

CORRELATION OF OBSERVED NORMAL PERFORMANCE CHARACTERISTICS WITH AIPPORT SIZE INVOLVING AIRPLANE (H) AND A 10 M P H WIND VELOCITY

TABLE 22

V _{WO} =	10 M P H 10 x 1 467 x 1 478 = 21 7 F P S (See Page 77)			
LINE NO	GEOGRAPHICAL ALTITUDE (Fig 20)	69 5	4220	6145
1 2 3 4	(Vu) Unstick Speed (M P H) (Ro) = Required Runwa; Length (Zero-Wind) (Zo) = Obst Zoning Ratio (Zero-Wind) (Do) Dist While Climbing From 50' to 100'	98 7 4730 28 0 1400	107 3 5710 33 0 1650	110 3 5940 35 2 1760
5	ν _{wo} / _{V_u} = 10/ λημε #1	0 102	0 093	0 090
6 7	K_R (From Fig 25) Runway Length, (R_{10}) = (Line #2) x (Line #6)	0 82 3880	0 8 3 4750	0 84 4980
8	Vu x 1 10 x 1 467 (F P S)	159	173	178
9	(t) = (line #4)/(line #8)	8.8	9 5	99
10 11	$(\Delta D) = 21.7 \times t$ $D_{10} = D_0 - \Delta D$	191 1209	206 1444	215 1545
12	z ₁₀ = ^D 10/ /50	24 2	28 9	30 9
	COMPARING VALUES FOR AIRPLANE (H) WITH VALUES F (See Figs 38 and 42)	FOR CLASS	IV AIRPORT	s
13 14	R ₁₀ (Glass IV) (Fig 39) Difference = (Line #13) - (Line #7)	4150 270	4810 60	5200 220
15	Percentage Diff = (Line #14/) (Line #7)	70	1 3%	4 4%
16	Z ₁₀ (Class IV) (Fig 43)	26 0	29 6*	32 O*
17	Difference = (Line #16)-(Line #12)	18	07	11
18	Percentage Diff _ (Line #17)/ (Line #12)	7 5%	2 3%	3 6%

NOTE

*From dotted extension of 10 M P H wind curve (Fig 43) (Airplane (H) is supercharged)

The values listed in lines #1 to #4 inclusive were obtained from Table 14.

The airports and elevations involved in this correlation are Burbank, California, at 695 ft , Salt Lake City, Utah, at 4220 ft ; and Cheyenne, Wyoming, at 6145 ft

Quantitative values of such length requirements, therefore, are determined as follows

It is believed that the pavement should accommodate landing ground rolls as well as takeoff runs. From inspection of figure 21, it will be seen that for blind landings the ground roll
requires approximately 60 percent of the basic runway length. Take-off distances are less critical. If it is assumed that only 60 percent of the basic criterion runway length need be paved,
it will be necessary to provide emergency strips at both ends of the pavement, the lengths of
which are 40 percent of the criterion length. Thus, the total of the pavement length plus the
lengths of the two emergency strips becomes 140 percent of the criterion length.

Obstacle zoning would start at the ends of the emergency strips

APPENDIX NO 4

Tabulations of:

ACCIDENT DATA PERFORMANCE DATA METEOROLOGICAL DATA

SUMMARY OF TAKE-OFF ACCIDENTS INVOLVING AIRLINE AIRPLANES

TABLE 23

No.	Place and Year	Aircraft Type	No Eng & Total HP (Take Off)	Tamage to Airplane	Remarks	Injuries * A B C D
1	Milwaukee, Wisconsin 1934	12 PCIM	2 - 900	Washout	This night take off accident was caused by the misfunctioning of the fuel gage which indicated that the L H tank was one-half full. The pilot took off with the selector valve on the L H tank. After attaining a height of about 30 ft and after having switched off the landing lights the L H engine stopped. Just after the selector valve had been turned to "BOTH ON" the airplane contacted the ground. At this time the L H engine started again and the airplane took off. At a height of 60 feet the R H engine stopped. The airplane swerved to the right, dropped the right wing, and became uncontrollable. Inspection after the crash indicated that the L H tank had been practically empty.	7 2
2	Columbus, Ohio 1935	16-18PCLM	2–17 50	Major	This day take off accident was due to carburetor ice which caused the RH engine to revdown just off the ground. The airplane swerved to the right, dropped the right wing and became uncontrollable. The right wing struck the ground. Distance from start to stop was 2300 ft. Runway length 3500 feet.	6

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 23 (Cont'd 2)

No	Place and Year	Aircraft Type	No. Kng & Total H P (Take-Off)	Damage to	Remarke	Injuries * A B C D
3	Detroit, Mich (City Airport) 1935	16-18PCLM	2 – 1750	Overhaul	This night take-off accident was due to carburetor ice which caused the L H engine to rev-down at a height of 18 ft The sirplane swerved to the left, dropped the left wing and became uncontrollable. The airplane crashed to the left, 600 ft out of the runway area and off the airport. Weather conditions included a freezing mist. Distance from start to stop was 3900 ft. Runway length 5400 ft.	3 5
4	Buffalo, N Y 1935	16-18PCIM	2 – 1750	Major	The cause of this day take-off accident was not determined. When just off the ground and at an airspeed of about 80 m p h the L H engine reved down. The airplane swerved to the left and the left wing dropped. It was impossible to maintain control until the R H engine was throttled. The airplane then landed off the runway with the landing gear partially retracted. Distance from start to stop was 2000 ft. Runway length 2800 ft. Rain and haze. Vis 3 mi.	16
5	East St Louis, Illinois 1935	II bCTB	3 - 780	Major	This day take-off accident was caused by care- lessness and negligence in that a take-off was attempted with the allerons locked. The pilot cut the throttle but was too late to avoid a ground loop	1
6	Pittsburgh, Pa. 1935	10 PCLM	3 - 780	Overhaul	This night take off accident was caused by water in the fuel. All engines stopped at a height of 50 ft. The pilot landed straight ahead with wheels retracted but slid off the end of the airport. Distance from start to stop was 4000 ft. 3500 ft. available.	2
7	San Francisco, California 1935	13 PCLM	2 - 1100	Major	This day take off accident was caused by fog on the airport about 30 ft deep The airplane took off blind and after traveling about 3000 ft from the start, hit a dike about 5 ft high This damaged the landing gear so that the airplane sustained additional damage on landing	13

TABLE 23 (Cont'd 3)

No.	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries *
8	St Paul, Minn 1936	12 PCLM	2 – 900	Overhaul	This day take off accident was caused by careless- ness and negligence in that the snow, which had ac- cumulated on the wings was not cleaned off before attempting to take off. The airplane struck a snow bank and settled off the airport There was a light fog and medium snow was falling Gross weight (actual) 7308 lbs	?
9	Albany, N Y 1936	11 PCLB	3 - 700	Washout	The cause of this day take-off accident is believed to have been 75% due to the shifting of the wind and 25% due to slow response to controls. The airplane struck a snow drift on the side of the runway and ground looped Visibility clear and unlimited	1
10	Louisville, Ky 1936	16-18PCLM	2–1750	()verhaul	This night take off accident is believed to have been caused 50% by carelessness and negligence and 50% by ice on the wings. Ice accumulated on the wings while the airplane was being refueled and loaded. A take off was attempted with this ice on the wings. At a height of 25 ft, the left wing dropped, the airplane settled to the ground and ground looped. The distance from start to stop was 4000 ft. A five mile per hour wand was blowing and there was a light freezing rain.	16
11	Washington, D C 1936	16-18PCLM	2–1750	Major	This day take off accident is believed to have been caused 70% by carelessness and negligence and 30% by icing conditions. In spite of these conditions combined with slush and snow on the field, a take off was attempted. Although the airplane bounced off the ground several times, it never was able to maintain flight. After using 3000 out of an available 4500 ft the throttles were cut. The airplane continued through the fence. A 7 m p h tail wind was blowing.	13

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 23 (Cont'd 4)

No	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Danage to	Remarks	Injuries * A B C D
12	Lansing, Mich 1936	17 PCLM	3 - 1290	Minor	This day take off accident is believed to have been caused 50% by carelessness and negligence and 50% by poor design of the fuel system. It was decided after the accident that the copilot had accidentally partially closed the fuel valve to the R H engine while entering his seat. The engine stopped after the airplane had run 500 feet but while it was still on the ground. The airplane immediately went out of control and swerved to the right of the runway. This type of airplane is no longer used. Modern designs locate fuel valves in safe visible position.	1
13	Miami, Fla 1936	12 PCLM	2 - 900	Overhaul	Thus day take off accident was caused by carelessness and negligence in that a take off was attempted with the rudder locked. The airplane swerved from its course, went up on its nose and dropped back	1
14	Cheyenne, Wyo 1936	13 PCLM	2 - 1100	Overhaul	The cause of this night take off accident was not determined. The R H engine stopped at a height of 30 ft after the airplane had traveled about 3000 ft. The airplane swerved to the right, dropped the right wing and became uncontrollable. The airplane struck the ground with the landing gear partially retracted. Distance from start to stop was 5100 ft. Runway length 4370 ft.	1
15	Burlington, Vt 1936	ll PCLM	3 - 645	Washout	This day take off accident was caused by poor judgment on the part of the pilot who attempted a take off with only two of the three engines operating, namely, the center and L H engine. As the airplane took off it turned to the right and the right wing was low. The nose was pulled up to clear some trees about 250 ft to the side of the runway and about 30 ft high. This resulted in a complete stall. The airplane swung sharply 180 to the right and crashed.	

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 23 (Contid 5)

No	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Damage to	Remarks	Injumes *
16	Columbus, Ohio 1936	16-18PCLM	2 – 1750	O v erhaul	The cause of this night take off accident was not determined At an air speed of about 65 m p h , but while the airplane still was on the ground, the L H engine reved down. The airplane swerved to the left off the runway and ground looped in soft mud	14
17	Fairbanks, Alaska 1937	12 PCLM	2 - 900	Overhaul	This day take off accident was caused by some soft snow on the R H side of the runway. The airplane was equipped with wheels instead of skis when the R H wheel ran into the soft snow, the airplane turned to the right. When both wheels ran into deep snow, the airplane nosed over	7
18	Cheyenne, Wyo 1937	24 PCLM	2 – 2000	Overhaul	This night take off accident was due to lack of appreciation of the effect of snow on the wings. A moderate wet snow was falling when the take off was attempted. The start was normal but the airplane would not leave the ground. The propeller pitch was reduced still further which permitted the engines to speed up. Since the pilot expected the airplane to get off, he continued outside of the airport coundary before cutting his engines. The airplane finally came to rest 1500 ft beyond the boundary of the airport Runway length 4000 ft	12
19	Daytona, Fla 1937	16-18PCLM	2 - 1750	Washout	It is believed that this night take off accident was due to carelessness and negligence in that a row of electric power line poles had been installed the day before the accident happened and as yet were unlighted. The airplane arrived at 4.30 A M and left at 4.35 A M. The pilot had not left the cockpit and evidently knew nothing of the poles. The engines functioned perfectly and the airplane was about 20 ft high when it struck the pole after having traveled about 2509 ft. The runway was 2371 ft long	4 5

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 23 (Cont'd 6)

No	Place and Year	Alrcraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injurnes * A B C D
20	Newark, N J 1938	25 PCLM	2 - 2000	Minor	This night take off accident was caused by lack of complete understanding as to the seriousness of ice and snow on the wings. Although an effort was made to clean off the snow that had accumulated on the wings, a coating of rough ice with some snow remained, and a take off was attempted. The engines functioned properly and a take off speed of 82 m p h was attained. The airplane would not climb after getting off but mushed back into the ground and continued beyond the boundaries of the airport. Runway length 2200 ft there was $1\frac{1}{2}$ to 2° of snow on the ground and snow was falling	14
21	Akdak, Alaska 1938	10 PCLM	1 - 575	Minor	This day take off accident was caused by the mechanical failure of the ski stand which evidently broke on the take off, but which was not discovered until the airplane was about 50 ft in the air The pilot then cut the switches and landed on the R H ski and L H axle	2
22	Concord, N H 1938	12 PCLM	2 - 900	Major	It is believed that this day take off accident was caused primarily by carburetor ice which caused the RH engine to lose power shortly after starting. Gusty cross winds may have contributed to this accident. After traveling about 400 ft the airplane swerved to the right and struck a 6 ft snow bank. These snow banks were piled along the entire length of both runways when they were cleared of snow. Distance from start to stop was 400 ft. Cleared runway area length was about 3500 ft. The turning tendency could not be controlled.	9
22	Totals		<u> </u>	l		5 13 6 133
- -					Total number of persons involved in these accidents	157

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

SUMMARY OF LANDING ACCIDENTS INVOLVING AIRLINE AIRPLANES

TABLE 24

No	Place and Year	Aircraft Type	No Fing & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries * A B C D
1	Boston, Mass 1934	10-12PCLB	3 - 780	Overhaul	This night landing accident appears to have been caused 50% by carelessness and negligence and 50% by bad weather. Icing conditions caused the windshield to become frosted. This combined with darkness was a contributing factor. The right wheel struck a 5 ft pile of rocks about 30 ft outside of the boundary lights.	7
2	Cleveland, Ohio 1934	17-18PCLB	2 - 1440	Minor	This day landing accident was caused by the mis- functioning of the tail wheel which started to shimmy after stricking a knoll It finally broke loose	?
3	Kensas City, Missour: 1934	13 PCLM	2 - 1100	Minor	This day landing accident was believed to have been caused 80% by carelessness and negligence and 20% by mechanical failure. The pilot failed to lower the landing gear and the warning signals failed to function	1
4	Cheyenne, Wyo 1934	13 PCLM	2 - 1100	Minor	This day landing accident appears to have been caused entirely by poor judgment. The pilot came in high and fast, overshot the field and clipped a fence with the wheels and stabilizers. He then circled the field and landed (3900 ft runway)	?
5	St Paul, Minnesota 1934	12 PCLM	2 – 900	Minor	This night landing accident was due to the mechanical failure of the drive shaft of the landing gear retracting mechanism. The pilot was unable to extend the left wheel and was forced to land with gear retracted.	6
6	Agawam, Mass 1934	17-19PCLB	2 - 1440	Minor	This day landing accident was caused by the mechanical failure of the tail wheel which broke after a normal landing and a 300 ft ground roll	14

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Cont'd 2)

No	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Damage to Aurplane	Remarks	Injurtes * A B C D
7	Arkadelphia, Arkansas 1934	17–19PCLB	2 - 1440	Minor	This day landing accident was caused by the landing gear The co-pilot lowered the gear as the approach was made Signal light showed green, but after a short roll the gear retracted and airplane nosed up	11
8	Little Rock, Arkansas 1934	17-18PCLB	2 - 1440	Major	This night landing accident was believed to have been caused 50% by poor judgment and 50% by weather. The pilot overshot the field which was wet so that the wheels skidded when the brakes were applied and the airplane crashed into a fence. A four mile wind was blowing at 45° to the runway and the visibility was 6 mi. The runway was 4000 ft long	6
9	Camden, N J 1934	17-18PCLB	2 - 1440	Major	This night landing accident appears to have been caused 60% by poor piloting technique and 40% by a mechanical failure of the landing gear. A hard landing was made causing the airplane to bounce. After a short roll the gear collapsed	6
10	Columbia, S C 1934	16-18PCIM	2 - 1750	Major	Fog condition, were largely the cause of this night accident. The pilot saw two green lights and thought that they marked the beginning of the runway. The airplane struck an embankment, which folded up the landing gear, and skidded to a stop. The ceiling was 700 ft and there was mist and rain.	10
11	Charlotte, N C 1934	17-18PCLB	2 - 1440	Major	The mechanical failure of the landing gear was the cause of this night landing accident. A normal landing was made, but after a short roll the landing gear collapsed	12
12	Scranton, Pa 1935	10-12PCT B	3 - 780	Overhaul	This day landing accident is believed to have been caused 20% by carelessness and negligence and 80% by mechanical misfunctioning. The left brake became packed with snow during a previous take off so that it failed to hold. The airplane struck a hangar	4

^{*} A - Fatal, B - Serious, C - Minor, D - Uminjured

TABLE 24 (Cont'd 3)

No	Place and Year	Aircraft Type	No Eng & Total HP (Take-Off)	Damage to Airplane	Remarks	Injuries *
13	Pittsburgh, Pa 1935	16-18PCLM	2 - 1750	Minor	This night landing accident was caused mainly by a gusty 12 m.p h wind blowing about 20° to the runway. This lifted the left wing causing the right wing to scrape the ground	5
14	Washington, D C 1935	17-18PCLB	2 - 1440	Major	This might landing accident was caused by the mech- anical failure of the left landing gear which folded up after rolling a short distance in a normal landing	16
15	Fort Worth, Texas 1935	17-18PCLB	2 - 1440	Minor	This day landing accident was caused by the mechanical misfunctioning of the landing gear which locked 2/3 of the way down Landing was made with gear in this position	2
16	Newark, N J 1935	16-18PcLM	2 - 1750	Minor	This night landing accident was caused largely by weather and to a small extent by lack of supervision After a normal landing the airplane rolled through a deep puddle of water, the force of the water damaged the right flap	15
17	Buffalo, N Y	16-18PCLM	2 - 1750	Overhaul	This night landing accident was caused by fog conditions with poor piloting technique as a contributing factor. Landing was made in thick fog scraping left wing on ground	11
18	Buffalo, N Y 1935	16-18PcIM	2 – 1750	Overhaul	This day landing accident was caused mainly by lack of supervision on the part of the airport management Pilot came in low with power Right landing gear struck an unmarked pile of cinders which broke the wheel (3000 ft runway)	6
19	Ogden, Utah 1935	13 PCLM	2 - 1100	Minor	It appears that this day landing accident was caused 60% by poor piloting technique and 40% by the mechanical misfunctioning of the brakes. After using about 1980 ft of a 3130 ft runway there were only about 1150 ft in which to stop after contact. The brakes failed to hold when applied, a right turn was made and the left wheel dropped into a 3 ft ditch outside of the boundary of the airport. (Altitude of Airport 4725 ft.)	8

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Cont'd 4)

No	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries *
20	Washington, D C 1935	16-18PCLM	2 - 1750	Mnor	This day landing accident was caused by the mechanical failure of the tail wheel which collapsed when it struck a rough spot after a normal landing	6
21	Newark, N J 1935	16-18PCLM	2 - 1750	Minor	This day landing accident was caused by the mechanical failure of the tail post frame which broke after landing and while rolling on the ground	10
22	Murfreesboro, Tennessee 1935	17-18PCLS	2 - 1440	Washout	This night landing accident is believed to have been caused 20% by fog and 80% by an error of the copilot. The ground fog was about 75 ft. thick. Three approaches were made, overshooting the field. In climbing out after the third approach co-pilot pulled the wheel back. The airplane stalled and crashed outside of airport.	
23	Santa Monica, California 1935	16PCLM	1260 – ز	Overhaul	This day landing accident was caused by the mechanical misfunctioning of the brakes after a normal landing. This caused the tires to skid and the airplane nosed up	2
24	Pittsburgh, Pa 1935	16-18PCLM	2 - 1750	Minor	This day landing accident was caused by the mechanical failure of the tail wheel which collapsed after a normal landing	11
25	Columbus, Ohio 1935	16—18рсім	2 - 1750	Minor	This day landing accident was caused by the mechanical failure of the tail wheel which collapsed after rolling 300 ft on a smooth landing	10
26	Phoenix, Arız 1935	17-18PCLB	2 - 1440	Major	This night landing accident was caused by the mechan- ical failure of the left landing gear which buckled after rolling 1500 ft following a normal landing	8
27	Oakland, Calif 1935	13 PCLM	2 - 1100	Minor	This night landing accident is believed to have been caused 70% by combined fog and darkness and 30% by poor piloting technique. After landing through fog and rolling about 200 ft, the pilot made a gradual turn to the left and then continued straight ahead. This resulted in the airplanes crashing through a fence.	5

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TAPLE 24 (Cont'd 5)

No	Place and Year	Alrcraft Type	No Eng & Total H P (Take-Off)	Damage to	Remarks	Injuries *
28	Detroit, Mich 1935	16-18PCIM	2 - 1750	Minor	The cause of this day landing accident was attributed to turbulent wind conditions, which caused the left wing to drop and scrape the ground while the airplane was still 8 ft above the ground during a normal approach. The pilot circled the field and made a normal landing. The presence of a gas tank on the field is believed to have been responsible for the turbulence.	7
29	Murfreesboro, Tennessee 1935	16–18PCLM	2 - 1750	Manor	This night landing accident was due to mechanical misfunctioning. In preparing to land the pilot could not get green signal light, although the landing gear seemed to be extended. Made landing and came to practically a dead stop. Gear gave way when pilot started to taxi to ramp	10
30	Chattanooga, Tennessee 1935	12 PCLM	2 - 900	Cverhaul	This night landing accident was caused 50% by bad weather, 30% by poor judgment, and 20% by poor pilot technique. Pilot overshot the field, with about 1250 ft left, he applied the brakes and skidded into an embankment. (Wet paved runway 4000 ft.)	8
31	El Paso, Texas 1936	17 -1 8palb	2 - 1440	Overhaul	This night landing accident was caused 20% by bad weather and 80% by mechanical damage to the landing gear. The pilot made a rough landing, due to gusty wind, and damaged the gear. When the warning bell commenced to ring, the pilot took off again and landed on the nacelle and nose.	7
32	Louisville, Ky 1936	17-18PCLB	2 - 1440	Minor	This night landing accident was caused by co-pilot overshooting the field in making a fast landing Pilot tried to gun the motors but they were cold He ground-looped, hit a ridge and collapsed the gear (4000 ft runway)	6

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Cont'd 6)

Ŋο	Place and Year	Alrcraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries * A B C D
33	Chicago, Ill 1936	16-18PCLM	2 – 1750	Minor	This night landing accident was due to mechanical failure Filot taxled over rough part of field at Pittsburgh and in landing at Chicago found the tail wheel retaining structure had failed	13
34	Detroit, Mich 1936	16-13pcim	2 - 1750	Minor	This night landing accident was due to weather conditions After landing a gust of wind lifted the left wing which caused the right wing to scrape the ground	8
35	Newark, N J 1936	16-18pcim	2 - 1750	Overhaul	This night landing accident was due to poor judgment on the part of the pilot. In attempting to land the pilot overshot the field and was unable to stop plane with brakes. Plane ran off the field into soft ground and right gear pushed strut through nacelle. (3000 ft runway)	9
36	Winslow, Ariz 1936	16-18PCIM	2 – 1750	Minor	This night landing accident was due mainly to weather conditions Pilot made a normal landing but after a short roll a gust of wind lifted the left wing causing the right wing to drag along the ground	13
37	Cleveland, Ohio 1936	17-18PCLB	2 - 1440	Minor	This day landing accident was caused by mechanical failure. After making a normal landing, the tire blew out and caused a mild ground loop	15
38	Chicago, Ill. 1936	16-18PCLM	2 - 1750	Overhæul	This day landing accident was caused by the mechanical misfunctioning of the brakes After landing cross wind, the pilot applied brakes which caused the plane to ground loop and damaged the tail	6
39	Atlanta, Ga. 1936	12 PCLM	2 – 900	Minor	This night landing accident was due to error on the part of the pilot After landing the landing gear started to retract, which caused the aircraft to nose up Apparently the pilot became confused and mistook the landing gear switch for the flap switch	

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Contid 7)

No.	Place and Year	Aircraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries * A B C D
40	Boston, Mass 1936	17-18PCLB	2 – 1440	Minor	This day landing accident was due to error on the part of the pilot, who came in for a landing with the gear up	2
41	Mobile, Ala 1936	12 PCLM	2 - 900	Minor	This day landing accident was due to mechanical misfunctioning. Because no warning lights or horn sounded the pilot landed with a partially extended gear. A fuse was blown in the landing gear circuit	
42	Elkins, W Va 1936	10 PCLM	3 – 645	Minor	This day landing accident was caused by shifting wind in which pilot landed and ground looped to avoid ditch All means of straightening out ship failed	g
43	Washington, D C 1936	16-18PCLM	2 - 1750	Minor	This night landing accident was due to pilot error In turning ship in order to taxt to loading ramp, the empennage hit a field boundary light	15
44	Minneapolis, Minnesota 1936	12 PCLM	2 - 900	Minor	This day landing accident was caused by an error on the part of the co-pilot Ship nosed up when co-pilot pulled landing gear switch instead of wing flap switch	2
45	Detroit, Mich 1936	13 PCLM	2 - 1100	Overhaul	This night landing accident appears to have been caused by mechanical failure and poor maintenance Upon landing the airplane bounced slightly, causing the left oleo strut to separate, and allowing the left wheel to fold back into the wheel well, letting the airplane down on the ground on the left wing tip.	2
46	Atlanta, Ga 1936	10 PCLM	3 - 645	Washout	This unexplained day landing accident occurred after the take off at 100 ft altitude when the right wing dropped and the airplane went out of control In at- tempting to land, the ship tore through three small trees and landed on a barbed wire fence (4000 ft runway)	2
47	Idaho Falls, Idaho 1936	13 PCLM	2 - 1100	Minor	This day landing accident was mainly caused by careless- ness and negligence. In taxying down the apron, the right wheel dropped into a pit approximately 4 ft deep	8

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Cont'd 8)

No	Place and Year	Aircraft Type	No Eng & Total HP (Take-Off)	Damage to	Remarks	Injuries * A B C D
48	Miramar, Calif 1936	13 PCLM	2 - 1100	Minor	This day landing accident was due to bad weather In attempting to land through fog, the pilot overshot the field slightly, rolling through a fence	6
49	Kansas City, Mo 1936	12 PCLM	2 - 900	Overhaul	This night landing accident was due to mechanical mis- functioning Landing was made with the wheels up due to the fact landing gear mechanism would not function	2
50	Robertson, (St Louis,) Mo 1936	17-18PCLB	2 - 1440	Minor	This day landing accident was caused by the mechanical failure of the landing gear, which gave way as contact was made with the ground	3
51	Washington, D C 1936	10 PCLM	3 - 645	Minor	This night landing accident was caused by fog After landing the pilot ran into a boundary light with a high standard	4
52	Newark, N J 1936	13 PCLM	2 - 1100	Washout	This night landing accident was due 25% to bad weather and 75% pilot error. In executing a precision instrument approach for a landing, pilot drifted slightly to right of NE leg of the range and due to poor visibility landed short of field in a swamp	6
53	Charleston, S C 1937	16-18PCLM	2 - 1750	Minor	This day landing accident was mainly due to mechanical misfunctioning of the brakes, but was partly due to poor judgment on the part of the pilot Pilot landed approximately in center of field and even though the brakes were applied, the plane would not lose speed and ran 1440 ft into a ditch. Brakes apparently were defective. Wind N-9 N S runway 3000 ft long	13
54	Jackson, Miss 1937	12 PCLM	2 – 900	Minor	This day landing accident was caused by bad weather and poor piloting technique. Due to the fact that the field was very slick, the plane rolled through west side of runway and into a fence. Wind N-5 N S runway 3000 ft long	3

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Contid 9)

No	Place and Year	Alreraft Type	No Eng & Total H P (Take-Off)	Damage to Airplane	Remarks	Injuries *
55	Portland, Ore 1937	12 PCLM	2 – 800	Major	This day landing accident was due to mechanical mis- functioning of the brakes. Left brake would not hold causing the plane to turn steadily to the right, striking a pile of frozen dirt	7
56	Atlanta, Ga 1937	16-18PCIM	2 - 1750	Washout	The cause of this night landing accident was not determined. While cruising at 3000 ft, ship suddenly started to climb at the rate of 2000 ft per minute at which time the pilot decided to land. Flying fast, pilot overshot field and ground looped to avoid a building. Wind S-5 N S rinway 3000 ft long.	7
5 7	Camden, N J 1937	16-18PCLM	2 - 1750	Minor	This night landing accident was caused by poor piloting technique Pilot came in high and used too much runway before the wheels actually touched the ground, leaving about 750 ft on which to stop plane Pilot ground looped to avoid hitting fence 2500 ft runway	2
58	Columbus, Ohio 1937	16-18PCLM	2 - 1750	Minor	This night landing accident was due to bad weather After landing on the S W runway and rolling a short distance, a strong gust of wind lifted the right wing causing the left wing tip to drag on the ground	2
59	Springfield, Illinois 1937	16-18PCLM	2 - 1750	Minor	This day landing accident was due to the mechanical failure of the Decier boot on the right wing, which fore loose during flight. Upon landing the right wing suddenly lost lift and scraped the ground	5
60	Denver, Colo 1937	24 PCLM	2 - 2200	Miror	This day landing accident was due to weather condi- tions. A sudden dust squall covered the field with a layer of blowing dust about 10 ft thick as the plane was about to land, causing the pilot to level off too high, losing flying speed and dropping right wing tip	14
61	Pittsburgh, Pa 1937	13 PCLY	2 - 1100	Major	This day landing accident was caused by mechanical failure. The tail wheel assembly collapsed as plane landed and ship ground looped into an automobile.	12

A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Contid 10)

No.	Place and Year	Aircraft Type	No Eng & Total HP (Take-Off)	Damage to Airplane	Remarks	Injuries * A B C D
62	Kylertown, Pa 1937	13 PCLM	2 - 1100	Minor	This day landing accident was caused by poor weather and poor piloting technique Pilot landed with 1500 ft of runway still available, applied brakes, skidded and then nosed up (Wet grass surface) Runway length 3000 ft	8
63	Cleveland, Ohio 1937	24 PCLM	2 – 2200	Minor	This day landing accident was due to mechanical mis- functioning. The brakes grabbed after the ship rol- led 350 ft and caused ship to nose up	21
64	Chicago, Ill 1937	24 PCLM	2 2200	Minor	This day landing accident was caused by poor judgment on the part of the pilot, who came in high and fast Realizing he would overshoot the field, the pilot gunned the motors but they would not take Plane continued down and landed on a golf course a short distance away	16
65	Chicago, Ill 1937	24 PCLM	2 - 2200	Minor	This day landing accident was caused by mechanical misfunctioning of the brakes. The pilot landed to the SE (cross wind) and after rolling a short distance, plane turned to the left and crashed into a concrete junction box	13
66	Louisville, Ky 1937	16-18PCLM	2 - 1750	Minor	This day landing accident was due to weather conditions Pilot landed into a W S W -25 wind After the plane rolled for about 300 ft the wind shifted to N W -40 and tapped it up on the left wing Pilot opened throttle and took off again	10
67	Flat, Alaska 1937	12 PCLM	2 - 900	Minor	This day landing accident was due to poor field maintenance. A sharp rock frozen in the runway cut a 2-1/2 inch hole in the right tire causing the tail to raise high enough to allow both propellers to hit the ground.	7

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 24 (Cont'd 11)

No	Place and Year	Alrcraft Type	No Eng & Total HP (Take-Off)	Damage to Airplane	Remarks	Injuries * A B C D
68	Detroit, Mich 1937	24 PCLM	2 - 2200	Minor	This might landing accident was due to weather conditions Pilot landed into S W with a S S W -15 gist wind After completing over half of landing roll, a gust of wind raised the left wing - causing the right wing to drag	7
69	Tanana, Ala 1937	10 PCLM	1 - 575	Overhaul	This day landing accident was caused by mechanical failure of the tail ski post which broke due to rough ice	1
70	Buffalo, N Y 1937	25 PCLM	2 - 2000	Minor	This night landing accident was caused by the mechanical misfunctioning of the lateral control system On a normal approach, lateral instability was noted at about 60 ft height Full throttle was used to straighten the airplane out but left wing tip and aileron scraped ground upon landing	17
71	Undeveloped Field near Richlands, N C 1938	31 PCLM	2 - 2200	Major	This night landing accident was caused 30% by poor visibility and 70% by the misfunctioning of the radio facilities. The pilot was forced to land in a small undeveloped field with the wheels raised	10
72	Camden, N J 1938	16-18pclm	2 - 1750	Major	This day landing accident was caused 30% by low ceiling and 70% by poor piloting technique. After breaking through the overcast at 400 ft height the pilot landed towards the N NE but not on the NE runway. With 2400 ft of airport available three contacts were made. After the final contact only 630 ft of airport remained. Braking proved ineffective due to the gravel surface of the field, and the aircraft ran through the fence and across a highway.	6
72	Totals					0 3 0 537
					Total Persons Involved in These Accidents	540

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

SUMMARY OF TAKE-OFF ACCIDENTS INVOLVING PRIVATE OWNER TYPF AIRPLANES

TABLE 25

Ref No	Place	Alrcraft Type	No Eng & Total H P	Damage to Ship	Remarks	Inju A B	ries * C D
1	Fairbanks, Alaska	4PCLM	1 - 260	Overhaul	Axle broke just as ship left ground	0 0	0 2
2	Fairbanks, Alaska	10PCLM	1 - 525	Major	Hit ditch in snow while taking off	0 0	0 7
3	Fairbanks, Alaska	5PCLB	1 - 285	Major	Ship overran field About 1400 ft was usable	100	0 1
4	Nome, Alaska	4PCLM	1 - 245	Overhaul	Emergency flight, ship ran over a bare gravel spot	0 0	0 3
5	Texarkana, Ark	3POLB	1 - 220	Washout	Engine quit at 75 ft altitude, fell into a spin	0 0	o จ์
6	Stockton, Cal	2PCLM	1 - 37	Overhaul	Prospective student stepped on right rudder when		
				1	ship was 10 ft up	00	0 2
7	Daytona Beach, Fla.	3POLB	1 - 330	Washout	Motor quit at approximately 400 ft altitude	0 0	0 1
8	Fayettıvılle, Ga	3POLB	1 - 220	Major	Pilot hit small girl with wang tip while taking off	0 0	0 1
9	Harvey, Ill	3POLB	1 - 90	Major	Left bank on engine cut out at 50 ft altatude	0 0	0 3
10	Lexington, Ky	2PCLM	1 - 70	Overhaul	High grass prevented ship gaining ground enough to		-
		i			fly, when throttle was closed, ship nosed over	0 0	0 2
11	1	3POLB	1 - 220	Overhaul	Motor failure at approximately 200 ft altitude	0 0	0 1
12	Illfeld, N Mex	2PCLM	1 - 40	Overhaul	Motor quit when 40 or 50 ft high Water in gas	0 0	0 2
13	Waverly, N Y	5POLB	1 - 220	Overhaul	Plane ground looped when oleo block failed due to flaws	0 0	0 3
14	Rochester, N Y	2PCLM	1 - 145	Major	Engine quit when 50 ft up	0 0	0 2
15	Bellaire, Ohio	2PCLM	1 - 90	Overhaul	Motor failed at about 700 ft	0 0	0 2
16	Cleveland, Ohio	2PCLM	1 - 40	Overhaul	Took off in dead air - brushed trees with wing tip	0 0	0 2
17	West Union, Ohio	3POLB	1 - 90	Major	Tail skid caught in telephone wire 20 ft high and		
	}		}		located 100 ft from end of runway	0 0	0 3
18 19	Lawton, Okla Oklahoma City,	3P0LB	1 - 175	Major	Ran out of gas when approximately 50 ft up	0 0	0 3
	Okla	3PCLM	1 - 145	Washout	Plane towing a banner stalled when banner trained		
	,		!		through grass exerting a drag	0 0	0 1
20	Hugo, Okla	2PCLM	1 - 70	Overhaul	Wheels hit ditch covered by grass	0 0	0 2
21	Silver Lake, Ore	2PCLM	1 - 145	Overhaul	Wheels hit sandy wave, bounced and nosed over	0 0	0 1
22	Newport, R I	5PCLB	1 - 225	Overhaul	Plane took off up hill and into a 10 mile wind, unable		_
					to get off and ran into a low stone wall Rough surface	0 0	0 4
23	Shell Creek, Tenn	3POLB	1 - 220	Overhaul	Engine stopped when plane was 100 ft off the ground		0 3
	Paducah, Texas	7PCLM	1 - 420	Washout	Ran out of gas when 25 ft up		0 4
25	San Antonio, Texas	3POLB	1 - 90	Washout	When at about 20 ft altitude, a down draft caused		0 3
,			ļ		plane to hit a bush and nose over		-
26	Austin, Texas	4PCLM	1 - 225	Overhaul	Ship fell in from a stalled condition of flight im-		
		{			mediately after a stalled take-off	0 0	1 0
	Albany, Texas	2PCLM	1 - 40	Overhaul	Motor lost power when 50 ft in the air		ō i
28	Houston, Texas	7PCLM	2 - 800	Major	Thre went flat on take-off, damage done on landing		0 6

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 25 (Cont'd 2)

Ref No	Place	Alrcraft Type	No Eng & Total H P	Damage to Ship	Remarks				es *
29	Wisconsin Rapids,					+			
30	Wisc. Three Lakes, Wisc	2PCLM 2POLB	1 - 70 1 - 85	Overhaul Major	Motor failed when 100 ft up When 10 ft up hard knock developed in engine causing severe vibration and engine started to loose revolutions				2 1
31	Brown Deer, Wisc	2PCLM	1 - 40	Overhaul	Plane pancaked in Motor lost revolutions immediately after take-off Hit fence				
32	Cheyenne, Wyo	4PCLM	1 - 250	Washout		0			2
33	Gadsden, Ala	5PCLM	1 - 245	Major	At approximately 100 ft motor quit Pilot caught his stabilizer in a coiled cable which was on a hedge 2 ft high and 100 ft from the end of the run-				0
34	Phoenix, Ariz	3POLB	1 - 100	Overhaul	way Private field 1200 ft long with ditch across center Motor quit, pilot tried to turn plane but stalled about 10	0	0		1
35	Inglewood, Cal	2POLB	1 - 100	Major	ft above the ground Mud from wheels struck and broke propeller, vibration		0		-
36	Los Angeles, Cal	3POLB	1 - 115	Overhaul	broke engine mounting ring Control stick came out when 15 ft above the ground, plane	0	0	0	2
	Garnet, Cal Pomona, Cal	2PCLM 2PCLM	1 - 40 1 - 40	Overhaul Overhaul	stalled and then fell in on the wing, then over on its back Filot drifted from a clearing on the desert into sagebrush Filot took off from alfalfa field 1200 ft long, had to kick plane sideways to avoid trees 50 ft high at end of	0	0	0	1
39	Lincoln, Cal	3РОЦВ	1 - 90	Washout	field, plane stalled and fell Powerplant failure when 100 ft off ground, plane landed	0	0	_	2
40	San Carlo, Cal	2PCLM	1 - 70	Major	in orchard	0		_	1
	Pueblo, Colo	2PCLM	1 - 36	Overhaul	Tail skid hit hole while plane was turning Student attempted take off cross wind on closed portion of	0		_	1
42	Boulder, Colo	ЭРСІМ	1 - 145	Overhaul	field, struck bank of oil sand and went on his back Pilot took off from a golf course and stalled ship in try- ing to avoid high tension wires 25 ft high, plane struck	0	0	0	2
43	Pueblo, Colo	3POLB	1 - 220	Overhaul	a tree 1200 ft available Power plant failure at about 300 ft Pilot turned to land on airport and gusty wind came from behind and caused ship	0	0	0	3
44	Danbury, Conn	2POLB	1 - 100	Washout	to settle in fast With about 150 ft altitude engine quit, pilot attempted a		1		
45	St Petersburg, Fla	2PCLM	1 - 70	Overhaul	left turn in a stalled position, fell off and spun in Attempted to take-off down wind, could not clear field, throttled down, ran off runway into rough part of field,		1		
		Ļ			applied brakes, nosed over	0	0	0	2

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 25 (Cont'd 3)

						Inj			
Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks		B		
46	Ft Meyers, Fla	2PCLM	1 - 125	Overhaul	Obstruction in wheel fairing locked wheel, plane ground looped	_	0	0	٦
	_		7 700	37. 1	and nosed over Landing gear fitting failed on take-off		0		
	Orlando, Fla	2POLB	1 - 100 1 - 37	Major Overhaul	In taking off from private field into a very little wind plane		•	_	_
48	Chicago, Ill	2PCLM	1 - 31	Overmant	ran off runway into water 6 or 8 inches deep and turned over	0	0	0	2
70	Gillespie, Ill	2PCLM	1 - 40	Major	Whind changed before plane got off the ground, hit a four	1			
47	diffespre, in	~10221		1.000	strand barbed wire fence	0	0	0	1
50	Oak Lawn, Ill	2PGLM	1 - 37	Major	Pilot did not use all of field available and pulled the ship				_
,	, o			Ū	off the ground before sufficient flying speed was reached		0		
51	Alton, Ill	2PCLM	1 - 65	Major	Plane hit ditch on take-off	10	0	Ü	1
52	West Chicago, Ill	2POLM	1 - 65	Major	Engine lost revolutions on take-off, necessitating landing in	١٨	0	٥	n
			1		soft ground Plane skidded into a fence due to icy condition of field	-	0	_	
	Washington, Ind	2PCLM	1 - 70	Major	Struck ditch collapsing landing gear	-	ō		
	Leon, Iowa	4PCLM	1 - 125	Major Overhaul	Ship broke through crust of snow and wheel fairing caught on	-	-		=
55	Paducah, Ky	4PCLM	1 - 245	Cvernaui	lice causing nose-over	0	0	0	2
56	Centertown, Ky	3POLB	1 - 90	Washout	While taking off from a pasture, wheels caught on bushes about 20 ft high	0	0	1	0
57	Louisville, Ky	4PCLM	1 - 225	Major	When about 75 ft high, pilot cut throttle for theoretical forced landing, ship slipped into ground	0	0	0	2
58	Monroe, La	3POLB	1 - 90	Major	In taking off on slippery field, Pilot skidded plane into sign board	0	0	0	3
5 9	Scarboro, Me	2POLB	1 - 35	Washout	Plane stalled on take-off at about 200 ft and spun in just	_	2	0	Δ
	1	Į			outside of field	10	Õ	ก	2
	Ellsworth, Me	3POLB	1 - 128	Mashout	Plane wouldn't climb, pilot mushed into trees Pilot used a 2000 ft runway but stalled plane because of a	"	•	Ü	~
61	Caribou, Me	2PCLM	1 - 40	Overhaul	steep climb in attempting to clear a fence Plane fell to ground from about 100 ft	0	1	0	0
62	Rockville, Md	3PCLM	1 - 175	Washout	In order to avoid incoming plane, pilot made a vertical turn right off the ground to the left with no speed and plane went				
ľ		1			in nose first		2	0	O
63	East Taunton, Mass	3POLB	1 - 90	Overhaul	Plane unable to gain altitude due to dead air and struck trees 3650 ft available	0	0	0	3
64	Norton, Mass	3POLB	1 - 175	Overhaul	Priot being unfamiliar with the ship, landed in a field too small to take-off in, plane unable to clear trees, struck				
	1				tree with wing, fell, out of control	0	0	1	1

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 25 (Cont'd 4)

Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks				98 * D
65	Hingham, Mass	2POLB	1 - 85	Overhaul	Broke axle on take-off, caused damage on subsequent landing	,	0	Ω	2
66	West Branch, Mich	3POLB	1 - 90	Overhaul	While taking off from a private field in calm air, plane was unable to gain altitude and hit fence Runway 1800			_	
67	Detroit, Mich	2POLM	1 - 37	Overhaul	ft Plane took off about 580 ft from the fence and lifted after a 75 ft run It appeared to hit an "air pocket"	0	0		
,,			3 000		and crashed into the fence Farm pasture	0	0	Q	_
68	Detroit, Mich	5PCLM	1 - 220	Washout Overhaul	Landing gear struck a truck directly in path of ship Stalled on take-off and cartwheeled	0		2	1
69 70	Roseville, Mich	2POLM 2POLM	1 - 145 1 - 100	Overhaul	After gaining 200 ft altitude, motor lost revolutions	١٥	0		2
71	Little Falls, Minn Robertson, Mo	2PCLM	1 - 100	Major	Gusty wand (26 to 35 m p h) put plane on back while	ľ	U	٠	-
'-	Robertaer, no	Z.F.C.III	1 - 30	IMIJOI	waiting to take off	lo	0	٥	2
72	St Louis, Mo	2PCLM	1 - 70	Major	Motor lost revolutions just after take-off	lŏ		_	2
73	Boulder City, Nev	4PCLM	1 - 145	Overhaul	Took off cross wind, drifted, ground looped in attemp-	-	_	_	-
'	boarder or by, net	410141	1 -45	o roringa.	ting to straighten out	lο	O	0	3
74	Reno, Nev	5 PCLB	1 - 285	Overhaul	Struck a boundary Light approximately 5 ft off the				•
'	,	<i>7.</i> 0 <u>-</u>	_ ~~,		ground	0	0	0	4
75	North Walpole, N H	2POLM	1 - 65	Washout	Plane made an emergency landing on a snow covered field,	i			
1	, ,				ship unable to clear trees and crashed in taking off	1	0	0	0
76	Jackson Heights, N Y	3POLB	1 - 125	Overhaul	Plane struck concrete boundary light when just off the				
					ground	0			2
77	Jackson Heights, N Y	2PCLM	1 - 37	Overhaul	Motor lost revolutions when about 25 ft off the ground	0			2
	Mt Pleasant, N Y	2PCLH	1 - 36	Washout	When at an altitude of 300 ft, motor quit	0			0
79	Johnstown, N.Y	1POLM	1 - 25	Overhaul	Plane hit rut and nosed over	0	0	0	1
80	Long Lake, N Y	4PCLB	1 - 210	Overpaul	Ship ran into soft sand, wouldn't lift off the field,	i _	_	_	_
					ran into lake	0	0	0	2
81	Elmira, N Y	4PCLM	1 - 145	Washout	Pilot lost horizon, because of darkness, when approxi-	l _o	o	2	
	l., ,				mately 100 ft up, ship spun in	ľ	U	2	U
82	Munda, N.Y	2POLM	1 - 37	Major	Ship ran into swamp 500 ft from edge of field Wheat field	0	0	0	2
83	Greensboro, N Car	2POLB	1 - 85	Overhaul	Plane drifted, due to shifting wind, ground looped as bank was approached	۵	0	0	2
84	Fostoria, Ohio	2POLH	1 - 36	Major	Landing gear struck fence post in taking off from small	"	U	J	~
	_		1 -		private field 1300 ft	0	0	0	2
85	Hillsboro, Ore	2POLM	1 - 90	Overhaul	Motor sputtered when 300 ft up, pilot turned back, ground looped	0	0	0	2
86	Murraysville, Pa	2PCLM	1 - 9 0	Overhaul	When 6 ft up a cross wind caught plane and threw it on	0	0		2
87	Brookville, Pa	2PCLM	1 - 37	Overhaul	its back Motor lost revolutions forcing a landing outside of	"	U	U	~
"	DIOUNTILE, FR	₹£614	1 - 51	OAGLIMAT	airport	0	0	0	1

^{*}A - Fatal, B - Serious, C - Minor - D, Uninjured.

TABLE 25 (Cont'd 5)

Ref.	Place	Alromaft	No Eng &	Damage to	Remarks	Γ,	n to) 	98 ¥
No		Туре	Total H P	Ship					D
88	Someraet, Pa.	3POLB	1 - 220	Overhaul	Ran out of gas just after take-off	0	0	0	3
89	Madville, Pa	4PCLM	1 - 215	Overhaul	Motor slowed down when plane was 30 ft up	0	Ō	ō	4
90	Harrisburg, Pa	2PCLM	1 – 37	Overhaul	Plane attempting to take-off on 1900 ft runway	ł			
91	Westfield, Pa	OT OT M	3 00		was unable to avoid fence at end of field	0	0	0	2
71	Meacriferd, 18	2PCLM	1 - 37	Overbaul	Plane hit stump while attempting to take-off of a	J			
92	Smithfield, R I	эроцв	1 - 90	One who are I	750 ft runway on a private field	0	0	0	1
,~	Caramirad, R 1	ן פעטיול	1 - 90	Overhaul	Propeller hit ground loosening motor mount and	l _	_		
93	Brookings, S Dak	3POLM	1 - 115	Overhaul	forcing ship down		0		
94	Spearfish, S Dak	3POLB	1 - 90	Overhau1	While taking off from a small field, tail hit fence While taking off, motor stopped and ship fell in	0	0	0	1
	1	,	_ / /	OTOTAMI	from 50 ft	١,	0	^	_
95	Knozville, Tenn	4PCLM	1 – 125	Major	Shock cord broke when long run over rough field was		U	v	2
				•	made due to heavily loaded ship and dead air	٦	0	۸	2
96	Ft Worth, Tex	3POLB	1 - 175	Overhaul	Motor lost revolutions when about 30 ft off the	"		Ü	,
0.0	<u>.</u>]	J		ground	0	0	۵	2
97	Waxahachie, Tex	2PCLM	1 - 37	Overhaul	While taking off from a golf course, the engine		_	-	_
98	Coops Crosls Man				quit and the plane hit the trees	0	0	0	2
70	Goose Creek, Tex	3PCLM	1 - 90	Overhanl	Landing gear bolt sheared off on take-off, damage				
99	Belfair, Wash	2PCLM	7 40		done in landing	0	0	0	1
"	Dellali, Wash	ZPUM /	1 - 40	Overhaul	While attempting to take-off on a 700 ft. runway,				
					plane wouldn't gain altitude and rolled into the				
100	Chapmansville, W Va	3POLB	1 - 175	Washout	brush Powerplant failure, ship nosed over		0		
	Kenosha, Wisc	2PCLM	1 - 70	Major	Pilot attempted to take-off from a soft field,	U	0	0	1
	·		- '-)	122,01	plane left ground on crest of small rise, fell to				
		ľ			ground from 15 ft altitude due to lack of flying				
					speed	٥	0	^	٦
102	Medford, Wisc	3POLB	1 - 220	Major	Plane hit pole on take-off Pilot did not realize	0	0	U	7
•				_	that he had used up so much of the runway because				
102	W-34 1*	}	1		of impaired vision	0	0	0	2
103	Madison, Wisc	2PCLM	1 - 90	Overhaul	In taking off from tall grass, wheel became locked			•	_
104	Ib towfood 14 -				and swung ship around	0	0	0	2
104	Waterford, Wisc	3POLB	1 - 175	Overhaul	Motor cut out at 50 ft , plane stalled and fell in				
					on landing gear	0	Q	0	2
104	Totals					2	9 :	L2 1	188
					Total Persons Involved in These Accidents		21		

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

SUMMARY OF LANDING ACCIDENTS INVOLVING PRIVATE OWNER TIPE AIRPLANES

TABLE 26

Ref. No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remark s			ies C	
1	Prescott, Ariz	3PCLM	1 - 150	Overhaul	Wheels broke through snow crust nosing plane over	n	0	0	3
2	Winkleman, Ariz	2PCLM	1 - 70	Overhaul	Brakes applied too quickly causing nose-over	Ö	Ō	Õ	á
3 [Newark, Ark	3PCLM	1 - 145	Washout	Lost flying speed, fell in on a down-wind turn	l š	ŏ	_	õ
4	Scott, Ark	2PCLB	1 - 170	Minor	Cross wind landing, ground struck while drifting sideways	ĺ	Ō	ō	2
5	San Mateo, Cal	2PCLM	1 - 145	Overhaul	Brakes applied too quickly causing nose-up	Ιŏ	Õ	_	ī
6	Inglewood, Cal	5PCLB	1 - 285	Overhaul	Struck ditch one wheel at a time causing ground loop	ō	ō	ō	_
7	Santa Barbara, Cal.		1 - 285	Washout	Overshot field and landed on rocks 15 ft below the field	ő	Õ	ō	
8	Burbank, Cal	3POLB	1 - 2 50	Overhaul	Slow ground loop, causing wing to scrape ground		ō	Õ	
9	Visalia, Cal	3PCLM	1 - 90	Washout	Landed into the sun, struck 30 ft unmarked pole at end of run-	_			-
					way, plane pan-caked in	0	O	1	3
10	San Diego, Cal	5PCLB	1 - 285	Overhaul	In order to avoid another plane, pilot ran into a ridge and mid-	-	_	_	_
					hole 300 ft wide, causing plane to nose-over	O	0	0	5
11	Palms, Cal	4PCLM	1 – 145	Major	Landed into sun, struck a plow on side of runway	a	ō	Ö	
12	Glendale, Cal.	5PCLB	1 - 225	Overhaul	Plane ground looped during landing	ō	ō		4
13	N Muroe, Cal	2PCLM	1 - 65	Overhaul	Plane nosed over after hitting 18 inch ridge	o	ō	ō	
14	Alhambra, Cal	2POLB	1 - 100	Major	Ground looped due to cross-wind	o	ō	ō	
15	Hollywood, Cal	2POLB	1 - 100	Major	Nosed over when wheels rolled into ditch	o.		ō	
16	Dorris, Cal	5 PCLB	1 - 225	Overhaul	Stalled and fell off to the left, struck on left wing tap and wheel			0	-
17	Palo Alto, Cal	3POLB	1 - 450	Major	Ran off runway, wheels struck drainage ditch damaging landing	}			-
18	Monrovia, Cal	2PCLM	1 - 37	Overhaul	gear	0	0	0	1
~	nom ovia, car	21 (141)	1 - 5/	Overnaul	Motor cut-out on glide to the field, attempted turn too close				1
19	Sacramento, Cal	3POLB	1 - 125	Overhaul	to the ground causing wing to strike the ground	0	0	2	
žó l	Pomona, Cal	3POLB	1 - 125	Overhaul	Plane nosed over when wheels hit a hole	0	O	0	2
~ 1	i chiciar, oar	JF0146	7 ~ 100	Overment	Undershot field and struck ditch tearing off landing gear, pulled	_		_	_ '
21	Orville, Cal	2POLM	1 - 125	Wadas	up and attempted stall landing, turned ship over	0	0	1	1
٦ ١	orvine, oar	ZFOLI1	1 - 125	Major	Right wing struck automobile perked on field, dust cloud obscur-				
22	San Francisco, Cal	2POLB	1 - 100	Overhaul	red vision	ſ		0	_
23	Sacramento, Cal	3POLB	1 - 105		Ground looped due to cross-wind landing	0	0	0	2
~	Sacramento, car	Эгоць	1 ~ 113	Overhaul	Rolled into wind sock and tree due to fast landing 100% pilot error	0	0	0	2
24	Sacramento, Cal.	2POLB	1 - 125	Overhaul	Grown looped, unable to use brakes because of speed 3500 ft	0	U	U	ا ر
					runway	0	0	0	2
25	Glendale, Cal	2PCLM	1 - 40	Major	Right landing gear gave way on account of hard landing	ő	ō	ō	
26	Danbury, Cal	2POLB	1 - 100	Major	Ground looped as cross wind hit plane after striking rut	ō	_	Ö	
27	Tanington, Conn	3FCLM	1 - 145	Overheul	Nosed over when wheels hit soft ground	ŏ	Ö	Ö	
28	fild env ille, Fla	3POLB	1 - 100	Overhaul	Nosed up on striking ditch	_		1	

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TARLE 26 (Cont'd 2)

Ref No	Place	Alreraft Type	No Eng & Total H P.	Damage to Ship	Remarks			es C	
29	Orlando, Fla	2PCLM	1 - 145	Major	Ground loop caused by cross-wind landing breaking landing gear	1	0		_
30	Jessup, Ga	4PCLB	1 - 285	Overhaul	wire Nosed over on account of soft field	0	0	0	2 3
31		2PCLM	1 - 145	Major	Ground looped due to flat tire	lŏ		0	
32		2PCLM	1 - 14)	Overhaul	Nosed over due to soft field	0	0	0	_
33		4PCLM	1 - 225	Overhaul	Left landing gear sheared off as it rolled into a hole	١٥	Ö	0	_
34	Lavonia, Ga	3POLB	1 - 165	Overhaul	Ground looped due to improper functioning of brakes	10	Ö	0	_
35	Atlanta, Ga	5PCLB	1 - 225	Major	Ground looped due to improper functioning of brakes	lo	0	Õ	2
36		2PCLM	1 - 70	Major	Landing gear gave way on account of soft ground	lő	ñ	ì	
37		3PCLM	1 - 185	Overhaul	Landing gear damaged due to hard landing	lő	Ö	ō	
38		2PCLM	1 - 100	Major	Landing strut buckled due to hitting hole	lo	Ö	ō	
<u>39</u>		2PCLM	1 - 65	Major	Ground looped due to cross-wind	lo	ō	ō	
40	, –	4PCLM	1 - 225	Overhaul	Brakes were applied too quickly causing nose over	lŏ		0	
41		2PCLM	1 - 70	Overhaul	Nosed over due to overshooting runway and rolling into soft		_	Ŭ	-
-4-	directes, iii	~ 0.11	- ,•	O.OIMaa.	mid	lo.	0	O	٦
42	St Charles, Ill	2POLM	1 - 90	Major	Landing off runway, struck soft mud, causing plane to nose	-	-	-	_
4	00 0	~1011	- /	182301	over	10	0	0	2
43	St Charles, Ill	3PCLH	1 - 145	Overhaul	Struck mud hole causing nose over	lŏ		ō	
44		3POLB	1 - 90	Washout	Plane suddenly dropped "nose-in" due to down draft	1 -		1	
45	. ,	4PCLB	1 - 225	Overhaul	Overshot field and ran into fence and trees Runway lengths		-	_	_
.,,,	/, 2	7. 022			-N/S 2700 ft E/W 1990 ft NE/SW 2390 ft	lo	0	2	0
46	N Judson, Ind	4PCLM	1 - 215	Overhaul	Soft field caused nose over	lo	0	0	2
47		2PCLM	1 - 90	Major	Ground loop caused by wind	О	0	0	2
48		2PCLM	1 - 40	Overhaul	While practicing forced landings, pilot cut throttle, on				
					approach to field, throttle was opened to go up again, but				
					motor cut out Left wing, then nose hit ground, plane set-				
					tled on right wing				
49	New Orleans, La	2PCLM	1 - 65	Overhaul	Hit sea wall at boundary of airport tearing off landing gear				
	, -				Undershot field	Ю	0	0	2
50	Shreveport, La	2PCLM	1 - 37	Minor	Stelled at 15 ft altitude, dropped to ground	0	0	0	1
51	S Leesville, La	5PCLM	1 - 245	Overhaul	Nosed over after striking soft spot caused by sand drift	0	0	0	
52	Portland, Me	2PCLB	1 - 210	Overhaul	Wind blew plane over	0	0	0	
53	Wilton, Me	4PCLB	1 - 210	Overhaul	Snow and slush on runway caused nose over	0	0	0	2
54	Auburn, Me	2PCLM	1 - 40	Overhaul	Struck ditch at beginning of runway and nosed up because of				
					down draft	0	0	_	1
5 5		2PCLM	1 - 125	Overhaul	Struck soft ground, nosed over	0	0	0	_
56	Brockton, Mass	3PCLM	1 - 185	Major	Rolled off runway struking soft spot and nosing over	0		0	
57	Northampton, Mass	2PCLM	1 - 65	Major	Landing gear bent due to structural failure	0	0	0	2
58	Northampton, Mass	4PCLB	1 - 210	Overhaul	Rolled off of airport into road two feet below, tearing off				
					landing gear and nosing ship up Landed off airport	0	0	0	4

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 26 (Cont'd 3)

Ref No	Place	Alrcraft Type	No Eng & Total H P	Damage to Ship	Remarks			ies C	
59	Fraser, Mich	2PCLM	1 - 37	Overhaul	Stall landing			0	
60	Detroit, Mich	4PCLB	1 - 225	Overhaul	Brakes were applied too quickly causing nose up	0	U	0	2
61	Fraser, Mich	2POLM	1 - 37	Overhaul	Undershot field striking frozen ridge and ice at edge of runway and nosing up	0	0	0	1
62	Escanaba, Mich	2POLB	1 - 85	Overhaul	Landing gear bolt broke due to structural failure	o	Ö	ō	1
63	Detroit, Mich	5POLB	1 - 285	Major	Ground loop caused by cross-wind	О	0	0	1
64	Detroit, Mich	3POLB	1 - 90	Major	Ground looped into hangar door	0	0	0	1
65	Mayville, Mich	3POLB	1 - 90	Overhaul	Wheel dropped into hidden hole, causing nose-up	lo	Ō	ō	ī
66	Carsonville, Mich	3POLB	1 - 90	Overhaul	Landing gear strut buckled due to structural failure	o		ō	_
67	Wayne County, Mich	3POLB	1 - 90	Washout	Struck extension on top of telephone pole at edge of			ı	
					field	Į.	_		_
68	Hastings, Minn	2PCLM	1 - 40	Overhaul	Ski broke due to structural failure	0	0	٥	1
69	Minneapolis, Minn	3POLB	1 - 220	Major	Broke left landing gear and ground looped due to landing				
			ļ	_	too hard on left side	Ω	0	0	1
70	Ashland, Mo	4PCLM	1 - 215	Overhaul	While landing in field, ran into fence that was not				
					noticed	0	0	0	1
71	Robertson, Mo	5PCLB	1 - 225	Overhaul	Landing gear retracted, due to not being locked in down	1			
					position	0		0	
72	Kansas City, Mo	2PCLM	1 - 40	Major	Landed in tall wheat nosing ship over	0	0	0	_
73	Helena, Mont	3PCLM	1 - 145	Overhaul	Brakes applied too quickly causing nose-over	0		0	
74	Reno, Nev	2PCLM	1 - 90	Major	Soft sand and gravel caused nose-over	0	O	0	
75	Keene, N H	4PCLM	1 - 215	Overhaul	Ran off runway into soft dirt causing nose-over	0	0	0	4
76	Peterboro, N H	4PCLM	1 - 215	Overhaul	Struck grass covered mudhole causing nose-over	0	0	O	1
77	Trenton, N J	3POLB	1 - 220	Overhaul	Landing gear collapsed due to striking pile of frozen				
			1		dirt		0	_	2
78	Summate, N J	2PCLM	1 - 37	Washout	Stalled at about 200 ft, and wind blew ship into trees	0	0		0
79	Newark, N J	3PCLM	1 - 90	Overhaul	Landing gear gave way when it struck a hidden stump	0		0	
හ	Carlsbad, N Mex	3PCLM	1 - 145	Overhaul	Oleo strut collapsed due to structural failure			0	
81	Livingston Manor, N Y	4PCLM	1 - 245	Overh a ul	Soft ground caused ground loop into wire fence	0		0	
82	Roosevelt Field, N Y	3POLB	1 - 220	Major	Ground looped	0	_	0	_
83	Utica, NY	2PCLM	1 - 125	Overhaul	Plane stalled in due to lack of speed	0	0	0	2
84	Roosevelt Field, N Y	5PCLM	1 - 220	Washout	Struck tree and bunkers on golf course next to surport	i			
	_				due to strong winds	0	0	0	4
8 5	Rochester, N Y	3POLB	1 - 100	Overhaul	Engine cut-out causing hard landing and damaging land-	1			
					ing gear	0	0	1	0
86	Sloatsburg, N Y	2PCLM	1 - 40	Overhaul	Struck a 10 ft post in landing intentionally on play-				
		_		1	ground	0		0	
87	Elmira, N Y	2POLM	1 - 37	Overhaul	Landing gear broke due to hard landing	0	0	٥	1
88	Elizabeth City, N Car	2PCLM	1 - 36	Overhaul	Nosed up when landing gear broke due to structural	1			
			1		failure	0	0	0	2

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 26 (Cont'd 4)

Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks		Jur B		
89	Pine Bench, N Car	2PCLM	1 - 37	Major	Landing gear washed out when plane hit ditch due to	o		0	,
		15	2 075	W	undershooting field Wind under right wing caused nose-over	1 -		0	_
90	Sandusky, Ohio	4PCLM	1 - 215	Major Overhaul	Soft field caused nose-over	۱ă		0	
91	Lexington, Ohio	4PCLM	1 - 215	- · · · - ·	Soft field caused nose-over	lŏ		Õ	
92	Chesapeake, Ohlo	2PCLM	1 - 36 1 - 90	Major	Ground looped	_	-	ō	
93	Cleveland, Ohio	3POLB		Major Overhaul	Brakes applied on wet middy field, struck gravel while	[]	•	٠	_
94	Mansfield, Ohio	4PCLM	1 - 245	OAGLINETT	skidding, nosed over	٥١	0	٥	1
0.5		ODOLD	1 - 210	Overhaul	Tail wheel caught in plank on runway causing ground loop	_	0		_
95	Warren, Ohio	3POLB	1 - 210	Overhaul	Ground looped and struck tree		ō		
96	Hunting Vallen Village,	3PCLM	1 - 520	Overnaul	Ground rooped and surrex oree	ľ	Ĭ	•	-
97	Warren, Ohio	4PCLB	1 - 285	Overhaul	Tail wheel deflected by rail causing ground loop	0	0	0	1
98	Willoughby, Ohio	5PCLM	1 - 245	Overhaul	Levelled off too high, landing hard on right wheel in				
, ,	niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	" " " " " " " " " " " " " " " " " " "			cross wind, landing gear collapsed	0	0	0	4
99	Bellevue, Ohio	2PCLM	1 - 37	Major	Landing gear spread out due to hard landing causing nose-				
)		}		over	0	0	1	0
100	Youngstown, Ohio	3POLB	1 - 125	Overhaul	Turn attempted without enough altitude or flying speed,				
	,, ,	•			wing hit ground		0		_
101	Ponca City, Okla	4PCLM	1 - 245	Overhaul	Wand nosed plane over	0	0	0	1
102	Sweetwater, Okla	3POLB	1 - 150	Washout	Landing gear spread out and plane nosed over due to				
	,				shock cord breaking	0		0	-
103	Hodges, Okla	3PCLM	1 - 145	Major	Landing gear broke off due to hitting hidden tree stump	0	0	_	2
104	Oklahoma City, Okla	5PCLB	1 - 285	Major	Landing gear collapsed due to structural failure	0	0	0	
105	Eastside, Oregon	2PCLM	1 - 40	Overhaul	Plane blown into ground by strong down draft	0		1	
106	Beyerstown, Pa	3PCLM	1 - 145	Overhaul	Soft field caused nose-over	0		0	
107	Philadelphia, Pa	3POLB	1 - 175	Overhaul	Ground looped due to ruts in field	10	0	0	1
108	York, Pa	4PCLB	1 - 225	Major	Stalled in over wires at edge of field, struck soft	} _	_	_	_
	1				ground, nosed up	10	0	1	2
109	Warren, Pa	4PCLM	1 - 215	Overhaul	Stalled in to prevent hitting row of buildings Engine	i _	_	_	_
	_				failure, Landed short of airport	0	0	_	1
110	Greeville, Pa	2PCLM	1 - 37	Overhaul	Caught landing gear in top of tree, nosed into ground	0	0		2
נננ	Harrisburg, Pa	2POLM	1 - 50	Overhaul	Pancaked	0	0	0	
112	Philadelphia, Pa	2PCLM	1 - 40	Major	Levelled off too high, fell in on one wheel	0	_	0	_
113	Vandergrift, Pa	3POLB	1 - 220	Major	Brakes applied too quickly causing nose over	0		0	
114	Reading, Pa	2PCLM	1 - 36	Major	Struck by down draft and fell in	0	0	0	2
115	Charleston, S C	4PCLB	1 - 285	Major	Retractable landing gear mechanism failed, landed on	1	_	_	_
					fuselage	1 -	0	-	
116	Ripley, Tenn	3POLB	1 - 220	Major	Ship nosed over when axle broke due to structural failure	10	0	0	2

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 26 (Cont'd 5)

Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks		jur B		
117	Galveston, Tex	5PCLB	1 – 225	Overhaul	Brakes applied too quickly causing nose over	o	0		
118	Corpus Christi, Tex	3POLM	1 - 80	Washout	Attempted bank too low to ground, fell in	3		0	
119	San Antonio, Tex	4PCLB	1 - 250	Overhaul	Brakes applied too quickly causing nose over	0	0		
120	Grand Prairie, Tex	2PCLM	1 - 37	Washout	Wing hit ground when pilot lost control	0	1		
121	Carrollton, Tex	2POLB	1 - 100	Overhaul	Struck stump and nosed over	0	٥		
122	Macoma, Tex	4PCLM	1 - 285	Overhaul	Landing gear dropped into hole		0		
123	Richmond, Va	2P0 LM	1 - 90	Major	Landed hard, plane rolled into hole damaging landing gear	0	0	0	1
124	Shelton, Wash	4PCLB	1 - 210	Overhaul	Wheel fairings filled with ice and snow locking wheels	_	_	_	_
7.05	a- 117 1	ADOLD	3 300		and causing nose over		0		1
125	Seattle, Wash	2POLB	1 - 100	Major	Undershot field and struck border light causing nose over		0		
126	Tacoma, Wash	3POLB	1 - 90	Major	Landed too close to edge of field, struck boundary light		0		
127	Logan, W Va	4PCLB	1 - 170	Major	Ground looped		0		
128	Whitewater, Wisc	4PCLM	1 - 215	Major	Landing gear hit rocks causing nose over	U	0	O	2
129	Oshkosh, Wisc	2POLM	1 - 30	Major	Overshot field and ran into fence E W runway 1666				
					ft NS runway 2640 ft Landed SE to NW Contac-	l			
					ted after using up 80% of available distance due to fog		_	_	_
7.00		05.57.15	, , ,		Ceiling 100 ft to 200 ft	U	0	U	T
130	Tarrington, Wyo	2PCLM	1 - 37	Washout	Misunders tanding as to who was handling the controls,	_	_		^
7.71	D-3 B788 6-3	ODOT W	3 00	0 1 1	ran into telephone pole and wire at edge of field	Ŏ		1	
131	Red Bluff, Cal	2PCLM	1 - 37	Overhaul	Wind blew ship over after landing was made	0		0	
132	Van Nuys, Cal	2POLB	1 - 330	Overhaul	Ground looped	0	0		
133	Santa Cruse Island, Cal.	1 '	1 - 215	Overhaul	Sheared off undercarriage on striking soft spot		0		
134	National City, Cal	2POLM	1 - 100	Major	Stalled	0	0	_	-
135	Shafter, Cal	4PCLM	1 - 330	Major	Ground loop caused by soft spot on field		0	0	
136	Fresno, Cal	2POCLAg	1 - 160	Major	Ground loop caused by gust of wind	0			
137	Inglewood, Cal	2POLM	1 - 125	Overhaul	Brakes applied too quickly causing nose over	0		0	
138	Alhambra, Cal	7PCLM	1 - 330	Overhaul	Ran into ditch to avoid another plane, nosed up		0		
139	Woodland, Cal	1POLB	1 - 220	Overhaul	Strong cross wind turned ship over	0		0	
140	Bakersfield, Cal	1POLB	1 - 250	Overhaul	Ground looped due to cross wind	0	0	0	
141 142	Sanford, Colo	3POLB	1 - 220	Major	Ground looped to avoid fence				
	Challis, Idaho	2PCLM	1 - 85	Overhaul	Ground looped		0		
143	Oaklawn, Ill	2PCLM	1 ~ 70	Overhaul	Wheels went through thin ice on field, nosed over		0		
144	Marion, Ill	5PCLM	1 - 550	Overhaul	Thick snow on field caused plane to nose over	U	U	U	T
145	Rodesha Caldo Parish, La	5PCLB	1 – 225	Overhaul	Undercarriage fitting gave way, due to structural failure, and plane nosed over	١	0	Λ	2
146	Pecan Island Vermilion	3POLB	1 - 100	Overhaul	and place noted over Stalled at 60 ft altitude		0		
140	Parish, La	משטאל	1 - 100	OAGLUWIT	Seatter at oo it storonge	١ ٠	U	U	~
147	Bossier, La	3POLB	1 - 330	Overhaul	Overshot field, brakes applied too quickly, plane nosed				
'	•			-	up	o	0	0	1
		<u></u>	L			_ ً ا			

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 26 (Cont'd 6)

Ref	Place	Aircraft	No Eng &	Damage to	Remarks	Ir	ijω	He.	s *
No 		Type	Total H P	Ship		A	В	C	D
148	West Hanover, Mass	2POLB	1 - 100	Overhaul	Tail skid struck roof of car parked at edge of airport	0	0	0	2
149	Jackson, Miss	5PCLB	1 - 225	Overhaul	Wind tipped ship up and broke skd	10	0	0	4
150	West Plains, Mo	2PCLM	1 - 40	Overhaul	Landing gear demolished by hard landing	0	0	0	2
151	Omaha, Neb	1POLB	1 - 330	Overhaul	Landing gear damaged from striking ground too hard due	1			
_		ł			to darkness, fog and snow-covered ground	0	0	1	0
152	Red Bank, N J	4PCLB	1 - 320	Overhaul	Soft spot caused nose-up and wind blew ship over	10	0	0	2
153	Camden, N J	5PCLB	1 - 225	Overhaul	Wind got under one wing forcing other into the ground				
					and nosing ship up	10	0	1	1
154	Ripley, NY.	2PCLM	1 - 40	Overhaul	Wind blew ship over on its back after it had stopped				
					rolling	Ιo	0	1	1
155	Syracuse, N Y.	2POLB	1 - 100	Overhaul	Plane ground looped due to cross-wind	0	0	ō	1
156	Ithaca, N Y	4PCLM	1 - 260	Overhaul	Landing gear gave way due to structural failure	lο	0	ı	ī
157	Marcy, N Y	2PCLM	1 - 125	Major	Wheel locked account ice and snow in wheel fairing	O	0	0	1
158	Binghamton, N Y.	5PCLM	1 - 285	Overhaul	Soft field, nosed over	lο	0	0	3
159	Corning, N Y	5POLB	1 - 220	Overhaul	Failure of landing gear strut	Ιo	0	ō	2
160	Blue Ash, Ohio	4PCLM	1 - 245	Overhaul	Overshot field and ran into hedge fence	lο	0	Ó	4
161	Cleveland, Ohio	4PCLM	1 - 215	Major	Hit radio antenna at edge of airport	lο	0	o	3
162	Burns, Oregon	2PCLM	1 - 145	Major	Ran off snow-cleared runway causing nose-over	ĺo	0	0	í
163	Wyoming, Pa.	2PCLM	1 - 36	Major	Landing gear damaged by hard landing due to gusty winds	lo	Ō	ō	ī
164	Pittsburgh, Pa	4PCLM	1 - 250	Overhaul	Wheel fairing came off locking wheel causing nose-over	l٥	О	Ó	4
165	Dallas, Texas	4PCLB	1 - 210	Overhaul	Left landing gear strut buckled due to structural failure	0	0	ō	4
166	Ft Worth, Texas	5PCLB	1 - 225	Overhaul	Landed on soft spot and nosed up due to structural failure	0	0	0	
167	Driscoll, Texas	3POLB	1 - 125	Overhaul	Landing gear damaged due to hitting hidden ditch	١ŏ	ŏ	ŏ	_
168	Dallas, Texas	5PCLM	1 - 220	Major	Ground loop caused by left brake locking	Ιŏ	ŏ		4
16 9	Farmville, Va	2POCLAg	1 - 210	Major	Ground looped	١ŏ	ŏ	ñ	2
170	Yelm, Wash	3POLB	1 - 220	Overhaul	Plane ground looped, one wheel rolled into hole and ship	J	_	_	-
					nosed over	la-	0	О	3
171	Lake Minchuminca,					~	•	•	
	Alaska	2PCLM	1 - 125	Major	Ski broke due to going through snow crust	l٥	n	0	2
172	Platimum, Alaska	5PCLB	1 - 525	Overhaul	Landing gear strut broke due to structural failure	- 1	ŏ		
173	Wassila, Alaska	4PCLM	1 - 330	Major	Landing gear damaged due to bouncing caused by hard snow	١	Ŭ	٠	-
	•		~~		drift	ĺ٨	0	Λ	2
174	Gold King Creek,	5POLB	1 - 220	Major	900 ft available down hill Ran into trees at edge of	~	•	0	æ
	Alaska	'		- 0	short field	0	0	0	7
175	Napaimute, Alaska	6PCLSF	1 - 330	Major	Hit water hole in ice and broke ski and axle	lŏ	Ö	ŏ	
176	Chevak, Alaska	4PCLM	1 - 245	Overhaul	Tail ski broken off in rough ice	lő	_	õ	_
17 7	Kantishna, Alaska	4PCLB	1 - 225	Overhaul	Wheels dropped through hole in ice damaging landing gear	lö	0	ŏ	
178	Cardova, Alaska	10PCLH	1 - 575	Major	Wind blew ship over a bank	_	Ö	ŏ	_
	<u>,</u>					٦	-	0	_

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

TABLE 26 (Cont'd 7)

Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks		•		s * D
179 180 181	Harding Lake, Alaska Esther Island, Alaska Woodchopper Creek	6PCLM 5PCLB	1 - 450 1 - 225	Overhaul Overhaul	Ski broke due to hitting frozen drift Wheels went through soft spot in ice causing nose-up				3 3
	Terr , Alaska	2PCLM	1 - 90	Major	Wing hit brush in landing causing nose-over	0	Q		1
182	Moore Creek, Alaska	6PCLM	1 - 450	Major	Stones on runway damaged stabilizer	0	0	0	1
183	Sunnyvale, Cal	2PCLM	1 - 37	Overhaul	Powerplant failure, tail struck tree on edge of road	1			
			,		when landing was attempted off airport] 0	0	2	0
184	Alameda, Cal.	2PCLM	1 65	Overhaul	Engine failure, landing gear sheared off on striking	1 _			
				_	railroad tracks	10	0	0	2
185	Bakersfield, Cal	5PCLB	1 - 285	Overhaul	Engine failure, landed in grazing land damaging landing	_	_	_	_
/					gear and nosing ship up	10	0	0	1
186	Palmdale, Cal	3PCLM	1 - 145	Overhaul	Engine missing, landing gear damaged in landing cross	1_	_	_	_
- 4					mind	10	0	0	1
187	Upland, Cal	ZPOLM	1 - 125	Overhaul	While landing in fog, landing gear hit stump on field	_	О	_	1
188		2007.0	1 220		and nosed over	10	U	U	1
Tgg	Capon Pass, Cal	3POLB	1 - 220	Overhaul	Down draft in canyon, could not get out, damaged	٦	0	^	3
189	N 2 2	2POLB	1 - 95	Overhaul	landing gear Engine functioned improperly due to suto gas, could	10	U	U	3
199	New Canoan, Com	2701.6	1 - 95	Overmant	i not clear trees at edge of field when hit by down draft	0	7	Λ	0
190	N Haven, Conn	3POLB	1 - 90	Overhaul	Engine failure, landed with wing low	16	0		3
191	Dover, Del	2POLB	1 - 100	Major	Engine failure, wings hit fence posts	10	ő		2
192	Belle Glade, Fla	2POLM	1 - 160	Washout	Propeller flew off through fuselage cutting control	ľ	·	·	~
172	Belle diade, Fia	21011	1 - 4)	Maishout	wires	0	0	0	2
193	Turkey Key, Fla	2PCLH	1 - 70	Overhaul	Engine failure, landed in brush, little damage	Ιŏ			1
194	Clewiston, Fla	3PCLM	1 - 145	Overhaul	Plane attempted landing on sugar cane field during] _	_	Ī	-
-/-	025/125/00/1, 122	J. O.E.	1	0.01,001	heavy rain storm, wheels became locked and plane nosed				
					over	lο	0	0	2
195	Near Coco, Fla	2PCLM	1 - 70	Washout	Engine failure, flying 15 ft over water when engine	1	-		_
	5, 1		_ ,-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cut out, landed in water	lο	0	2	0
196	Midway, Ga	3PCLM	1 - 145	Overhaul	Fog. landed in soft field and nosed over	lo	0	0	2
197	Savannah, Ga	2POLM	1 - 45	Major	Gas exhausted, ground looped to avoid hitting mule in	1			
	1				comfield	0	0	0	2
198	Cave Springs, Ga	2PCLM	1 - 70	Major	Gas exhausted, high grass caused nose-over	0	0	0	2
199	Alton, Ill	2PCLM	1 - 70	Major	Propeller assembly failure, landed on rough sand bar,	1			
					damaged landing gear	0	_		2
200	Monon, Ind	3POLB	1 - 175	Overhaul	Engine failure, soft rolling field caused nose-over	0	0	0	3
201	New Orleans, La	2POLM	1 - 95	Overhaul	Throttle fitting broke, broke landing gear in landing				
					on road	0	0		2
202	Portage Lake, Me	3POLB	1 - 220	Washout	Throttle jammed, landed on ice and went through	2	0	0	1

^{*}A - Fatal, B - Serious, C - Minor, D - Uninjured

Ref	Place	Aircraft	No Eng &	Damage to	Remarks		jur		
No		Type	Total H P	Ship		A	В	С	D
203	Gardiner, Me	6PCLM	1 - 220	Major	While attempting to land during fog and on a rough plowed field, ship nosed up	0	0	0	1
204	Ashland, Mass	3POLB	1 - 225	Overh a ul	Engine failure, stalled in and sheared off landing gear	0	0	1	2
205	Brainerd, Minn.	2POLB	1 - 100	Major	Low ceiling, attempted to ground loop to avoid fence,	ĺ			
					field soft causing nose-over	0	0	-	1
206	Saginew, Minn.	3POLB	1 - 185	Overhaul	Engine failure, soft field caused nose-over	0	0		
207	Eldon, Mo	2PCLM	1 - 85	Overhaul	Engine failure, soft field caused nose-over	0			2
208	Burwell, Neb	2PCLM	1 - 36	Overhaul	Engine failure, rough field caused nose-up	0	0	0	2
209	Stelton, ₩, J	2PCLM	1 - 145	O v erh a ul	Engine failure, hit ditch, sheared off landing gear and	١.	_		_
1					nosed up	0	0	0	
210	Albany, N Y.	lpolm	1 - 45	Major	Engine failure, rough frozen ground, damaged landing gear	0	_	0	_
211	Otselic, N Y	3POLB	1 - 125	Overhaul	Engine failure, high grass locked wheels causing nose-over		0		
212	Wade, N Car	2PCLM	1 - 70	Overhaul	Weather, soft field caused nose-over	10	0	Ü	Τ
213	Apple Creek, Ohio	3POLB	1 - 90	Overhaul	Darkness, unable to see ground, rolled over bank causing	١,	0	0	_
214	V34 Ob	ODAT W	1 - 36	O1	nose-over	١٠	U	U	2
214	Hamilton, Ohio	2PCLM	1 - 30	Overhaul	Propeller blade, landing without damage to the plane pro- per but considerable damage to the motor mount	٥	0	0	^
215	Columbus Obse	3POLB	1 - 155	Overhaul	Engine failure, ground looped to avoid ditch	_	0	-	2
216	Columbus, Chio Dell egg, Ch io	3POLB	1 - 102	Weshout	Engine failure, stalled in to avoid trees and nosed over	0	0	0	
217	Cottage Quove, Ore	3POLB	1 - 220	Overhaul	Engine failure soft field caused nose-over	0	Ö	0	
218	Portland, Ore	5PCLB	1 - 285	Overhaul	Gas exhausted, ground looped to prevent going over em-	ľ	•	•	~
	101019005010	71000	1 - 20)	CVGIIMAT	bankment	0	0	0	5
219	Red Lion, Pa.	2PCLM	1 - 37	Overhaul	Ice on wings necessitated fast landing, nosed up	lŏ	Ö	ĭ	
220	Wilkes Barre, Pa	2PCLM	1 - 36	Overhaul	Gas exhausted, landed in trees	١ŏ		ō	
221	Austin, Texas	3PCLM	ī - 90	Major	Heavy rain, landed in small field and ran into fence	-		•	_
1	.,			0	Engine failure	0	0	0	1
222	Milford, Texas	3POLB	1 - 420	Overhaul	Powerplant failure, wheel broke due to structural failure,	1			
ľ	, • - ,		,		causing nose-up	0	0	0	2
223	Рамра, при	2PCLM	1 - 40	Overhaul	Engine reved down, down draft hit ship in turn, hit	Į.			
1	- 11				ground at 45 degree angle	0	0	1	0
224	Ft Market Tomas	2PCLM	1 - 90	Major	Heavy wind and rain, hard landing damaged landing gear	0		0	
125	Emporte va	4PCLB	1 - 330	Overhaul	Weather, muddy plowed field causing nose-over	0		0	
226	Shelten, Jack	2PCLM	1 – 37	Major	Engine failure, stalled in, damaged landing gear	0	0	1	1
#2 7	Glendain fal.	7PCLM	1 - 420	Washout	Powerplant failure, hard landing, wheel hit alab of con-				
1 .	سد م]		crete and broke off, ground looped	0	1	2	-
1,28	Red Riving Cal.	2PCLM	1 - 145	Major	Gas exhausted, hit middy spot in field and nosed over	0	0	0	1
229	Lakeland Fla.	2POLM	1 - 90	Overhaul	Powerplant failure, attempted a turn without sufficient	1			
1					altitude or speed, wing struck ground and nosed in	0	0	2	0
2030	Pahokee, Tla	5PCLM	1 – 220	Washout	Powerplant failure, engine cut out in turn at 100 ft	l_	_		_
}					altitude during crop dusting, crashed and burned	0	0	O	1

^{*}A - Fatal, 👢 - Serious, C - Minor, D - Uninjured

Ref No	Place	Aircraft Type	No Eng & Total H P	Damage to Ship	Remarks				s * D
231	Jackson, Ga	4PCLM	1 - 260	Overhaul	Powerplant failure, stalled in and nosed up	0	0	0	2
232	Belleville, Ill	14PCLM	3 – 660	Overhaul	Powerplant failure, right wheel struck hole and ground looped	1			2
233	Claypool, Ind	7PCLM	2 – 400	Overhaul	Mechanic accidently pulled master engine switch,	1		-	-
234	Evansville, Ind	/ not n	7 005		landed with wheels up, slid into fence	0			5
235	Groton, Mass	4PCLB	1 - 225	Overhaul	Powerplant failure, soft field caused nose-over	0			4
236		2POLB	1 - 115	Overhaul	Icing conditions, overshot field	0	0	0	1
250	Spring Arbor, Mich	3POLB	1 - 90	Overhaul	Powerplant failure, ran into rocks and stump, col-				
2213	Dan of his are a	021.67	7 70-		lapsed landing gear and nosed over	0	0	0	1
237	Bay City, Mich	3POLB	1 - 102	Overhaml	Powerplant failure, tried to stretch glide to clear				
238	Cooket Dieder W. Y.	CD41.	7 7/0		fence, stalled	0	_	0	_
	Scotch Plains, N J	2PCLAg	1 - 160	Overhaul	Powerplant failure, stalled into trees	0	_	-	1
239	Preakness, N J	2PCLM	1 - 40	Major	Powerplant failure, rough field damaged landing gear			0	_
240	Albany, N Y	4PCLM	1 - 245	Major	Powerplant failure, nosed up	0	0	0	2
241	Penfield, N Y	4PCLM	1 - 245	Overhaul	Powerplant failure, rough field sheared off landing				
212	 Warranger Wa				gear	0	0	0	4
242	Mineola, LI, NY	3POLB	1 - 133	Major	Powerplant failure, crankshaft broke and propeller				
					flew off lodging between lower wang and outboard				
243	Delos de N. Con		7 00-		strut, landed without further damage	0	0	0	2
245	Raleigh, N Car	5PCLB	1 - 285	Overhaul	Powerplant failure, mud in wheel streamlines causing				
277	A)==== Obd =	05-15	2 -0-	_	nose-over			0	
244	Akron, Ohio	3PCLB	1 - 285	Washout	Powerplant failure, struck soft spot and nosed over				1
245	Cincinnati, Ohio	3POLB	l - 115	Overhaul	Gas exhausted, soft ground caused plane to nose over	0	0	0	1
246	Cambridge, Ohio	2POLB	1 - 40	Major	Powerplant failure, crankshaft broke and propeller	1			
					flew off damaging right upper wing, landed without				
ou m		_			further damage	0	0	0	2
247	Ashland City, Tenn	3POLB	1 - 90	Major	Powerplant Farlure, soft field, nosed over	0	0	0	2
248	S Garrison, Texas	4PCLB	1 - 210	Washout	Plane caught fire due to short circuit, landed and				
					burned up	0	0	0	3
249	Lynchburg, Va	4PCLM	1 - 245	Overhaul	Visibility poor, soft field caused plane to nose-over	0	0	0	ĺ
250	Randle, Wash	2PCLM	1 - 90	Major	Darkness, became lost, deep snow caused nose-up	0	0	0	1
250	Totals	<u> </u>			······································	+ /			_
-,0	10 0010				Motel Demons Tourismed do Marie As (1)	6		38	
					Total Persons Involved in These Accidents			472	

^{*} A - Fatal, B - Serious, C - Minor, D - Uninjured

<u> </u>				The code
Ref No	Place	Aircraft Type	Source of Interruption	Remarks
1	Tampa, Fla	10PCLM	Wheel	Right wheel began to split inside All wheels being sent to factory for reconditioning as fast as possible
2	Miami, Fla	24PCLM	Tire - 10 ply	Tires removed due to buldge developing in sidewall about three inches from the head around the entire periphery of tire. Tire had made 210 landings
3	Unknown	12PCLM	Wheel	Outer flange casting cracked in lock ring groove of tail wheel Defective casting
4	Cheyenne, Wyo.	13PCLM	Tube	Tire blew out while taking off Tire blew out from a defective bead wire
5	Salt Lake City, Utah	13PCLM	Tire - 6 ply	While in the air, tire blew out near the bead. Trouble probably caused by strain due to cross wind take-off from a rough field. Extra heavy and ten ply tires are being placed on the airplanes in regular service.
6	Buffalo, N Y	24PCLM	Outside Brake Drum	Ship arrived with brake drum broken out and brake shoe badly scored Considerable difficulty has been experienced with these brake drums and the manufacturer is furnishing new type brake drums and has given information for reworking all of these wheels
7	Washington, D C	10PCLM	Brake Discs	Left brake would not hold This type of brake has very poor heat dissipation
8	Pittsburgh, Pa	10PCLM	Brake Discs	Plane arrived with right brake not functioning properly Caused by warped brake discs Not sufficient cooling area
9	Sacramento, Cal	13PCLM	Tire	Landing gear tire blew out while plane was in flight Failure oc- curred in the region of the bead. Since this series of tires were manufactured, a number of changes have been made to strengthen the bead.
10	Cleveland, Ohio	10PCLM	Hydraulic Brake	Right brake inoperative Inspection disclosed brake was overheated
וח	Pittsburgh, Pa	10PCLM	Tail Wheel Tire	Tail wheel tire flat Bigger wheel and tire on this type equipment suggested
12	Tampa, Fla	12PCLB	Tail Wheel Tire	Tail wheel tire blew out due to excessive wear from Chimmying Heavier shock cord installed
13	Cleveland, Ohio	10PCLM	Tire	Tire went flat after landing Brakes too hot to immediately change tire
14	Pittsburgh, Pa	10PCLM	Brake Discs	Right brake would not hold After examination it was found that the brakes were extremely hot
15	Rochester, N Y	12PC LM	Hydraulic Brake Discs	The steel discs warped and the Laminated discs heated until fusion took place. The air temperature was 105 degrees at Rochester and the brakes were used too strenuously in landing in a short field
16	Unknown	12PCLB	Brake Discs	Trouble was caused by the brake discs on the right wheel becoming seized due to warping of plates. This condition was caused by heat from riding the brakes

TABLE 27 (Cont'd 2)

Ref No	Place	Alreraft Type	Source of Interruption	Remarks
17	Unknown	24PCLM	Wheel	Brake drums cracking where bolted to wheel flanges Cracks originate at bolt holes and progress until failure is complete where failure is complete it can be detected without removing wheel; otherwise it may be necessary to do so Eleven drums have failed so far Perhaps too light a drum and/or due to expansion on account of heat from brakes
18	Unknown	12PCLM	Wheel Flange	Outer flange casting cracked in lock ring groove of tail wheel Defective casting
			Summary of Mechanical Inte	erruptions Involving Engine Failures
19	Kansas City, Mo	24PCLM	Master Rod	Left propeller went into high pitch on take-off due to fine particles of steel and brass found in Cuno oil filter and screen re-
20	Pittsburgh, Pa	24PCLM	Pluge	sulting from master rod failure On the take-off, just as the landing gear had been retracted, the right engine manifold pressure dropped to 30° After sufficient altitude was reached to make the approach for a landing, the right engine was throttled down and the gear was lowered
21	Washington, D C	24PCLM	Plugs	Engine cut cut on take-off due to bad plugs.
22	Newark, N J	24PCLM	Carburetor	Motor quit on take-off
23	Washington, D C	24PCLM	Detonation	Ship took off from Hoover Field and just crossed road when left engine cut out Plane landed in Washington Airport Engine cut out due to detonation brought about by high cylinder temperature caused by long run-up
24	Ft Worth, Tex	19PCLB	Overheating	Left motor overheated on take-off (Motor newly overhauled)
25	Los Angeles, Cal	13PCLM	Farlure of crank case breather relief valve	R H Engine threw oil badly just as airplane left the ground and pilot landed
26	Pendleton, Ore	13PCLM	Misfunctioning of carburetor	R H Engine would not rev-up properly on take off
27	Rochester, N Y	10PCLM	Water in fuel	Center engine stopped at 75 ft height Filot landed off the airport
28	Detroit, Mich	16-18PCLM	Mechanical failure	Cylinder head on one of the two engines blew off on the takeoff Pilot landed on airport

PRIVATE AIRCRAFT - B

TAKE OFF CHARACTERISTICS

TABLE 28

MINES FIELD, INGLEMOD, CALIFORNIA - GEOGRAPHICAL ALTIFUDE 97 FT Test Pressure Density The The The pressure Density The				TABLE :	28			
Test Altitude No Peet Peet Deet Deet	MINES			IA - GEOGRAP	HICAL ALTI	TUDE 97 FT		
No Feet Feet Unstack 50 Ft 100 Ft Speed	m +				D+-	nnes Stant	+-	Houts ok
1201	-			DP				_
1203			1000		0112 01 011	70 10		DF-1-
1206			· ·	ı			-	
1222								
1223						2067	2548	
1224				_			-	
1225				l .				
1226			-			_		
1227							_	
1228						_		
1229				_				
1210				_				
1231								
1232								
1233								
1242	_							
1244 -140 50 1 005 850 1785 2363 62 1246 -140 50 1 005 780 1780 2410 60 1248 -140 100 1 005 838 1566 2144 62 1250 -140 250 1 00 750 1740 2430 57 1252 -140 300 998 800 1720 2455 59 1267 4100 3300 697						1916	2521	
1246 -140 50 1 005 780 1780 2410 60 1248 -140 100 1 005 838 1566 2124 62 1250 -140 250 1 00 750 1740 2430 57 1252 -140 300 998 800 1720 2455 59 1267 4100 3300 697								
1248								
1250 -140 250 1 00 750 1740 2430 57 1252 -140 300 998 800 1720 2455 59 1267 4100 3300 697								60 40
1252 -140 300 998 800 1720 2455 59 1267 4100 3300 697 64 1268 4100 3300 697 1110 2856 4091 67 1269 4100 3300 697 1320 3746 4878 65 1270 4100 3300 697 1200 3442 4413 68 1271 4100 3300 697 1136 2358 3497 66 1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1326 2682 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1200</td><td></td><td></td></t<>						1200		
1267 4100 3300 697 — — — 64 1268 4100 3300 697 1110 2856 4091 67 1269 4100 3300 697 1320 3746 4878 65 1270 4100 3300 697 1200 3442 4413 68 1271 4100 3300 697 1078 2358 3497 66 1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 1325 2682 3526 69 1277 4100 3500 693 1018 233			-	_				
1268 4100 3300 697 1110 2856 4091 67 1269 4100 3300 697 1320 3746 4878 65 1270 4100 3300 697 1200 3442 4413 68 1271 4100 3300 697 1136 2358 3497 66 1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1136 2384 3188 68 1277 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018			-		1	1720	2455	19 67
1269					1	 adr 4	/003	
1270 4100 3300 697 1200 3442 4413 68 1271 4100 3300 697 1136 2358 3497 66 1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 1325 2682 3526 69 1278 4100 3250 698 1980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1238		,						65
1271 4100 3300 697 1136 2358 3497 66 1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1136 2384 3188 68 1277 4100 3250 698 1136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238				· · · · ·		- ,		
1272 4100 3300 697 1078 2368 3066 67 1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 1136 2384 3188 68 1278 4100 3250 698 1980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253		•						
1273 4100 3250 698 1215 2405 3322 72 1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1253								
1274 4100 3250 698 1246 2236 3199 68 1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1268 2460 3330 70 1284 4100 3500 693 1075								
1275 4100 3250 698 1185 2528 3322 71 1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 1136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075		•						
1276 4100 3250 698 1325 2682 3526 69 1277 4100 3250 698 1136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1288 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1061							_	71
1277 4100 3250 698 1136 2384 3188 68 1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1288 2329 30777 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1253 2382 3345 69 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1212								
1278 4100 3250 698 980 2556 3525 64 1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1289 4100 3500 693 1212		,						68
1279 4100 3500 693 1018 2332 3340 65 1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1212 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3500 693 1252		,		698		2556		
1280 4100 3500 693 1170 2415 3456 70 1281 4100 3500 693 1238 2329 3077 68 1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3500 693 1252 2349 3226 71 1290 4100 3500 693 1208				693		2332	3340	
1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3500 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430		•			1170		3456	70
1282 4100 3500 693 1253 2382 3345 69 1283 4100 3500 693 1315 2674 3601 71 1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3500 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77	1281	4100	3 5 00	693	1238		3077	
1284 4100 3500 693 1268 2460 3330 70 1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77		4100			1253			
1285 4100 3500 693 1075 2345 3418 66 1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77	1283	4100	3500					
1286 4100 3500 693 1117 2233 3152 65 1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77	1284	4100	3500		1268			
1287 4100 3500 693 1061 2281 3172 64 1288 4100 3500 693 1212 2284 3106 68 1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77		4100						
1288 4100 3500 693 1212 2284 3106 68 1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77								
1289 4100 3550 693 1252 2349 3226 71 1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77								64
1290 4100 3500 693 1208 2453 3365 69 1291 4100 3500 693 1358 2330 3343 71 1292 4100 3800 688 1430 2684 3626 77		,						
1291								
1292 4100 3800 688 1430 2684 3626 77	-	·			1			
1 22/2 7200 7001								
1227 4100 3000 1300 2122 3444 70								
	לפשנ	4100	3500	1 000	1500	2122),,,,,,,,	[,5

PRIVATE AIRCRAFT - B

LANDING CHARACTERISTICS

TABLE 29

	Density	UTAH - GEOGE D	istance Fro			Glide I	Path Rati
rest No	Altitude Feet	100' to Contact	50' to Contact	100' to 50'	Contact Speed	100' to Contact	100' to 50'
L 2 95	3450	1852	1020	832	53	18 5	16 6
2 96	3450	1158	627	531	58	11 6	10 6
297		1682	1221	461	57	16 8	9 2
	3450				2/		
29 9	3400	1846	1261	585	57	18 5	11 7
300	_	1819	1286	533	61	18 2	10 6
301	3400	1519	910	609	66	15 2	12 2
302	3400	2537	1868	669	61	25 4	13 4
303	3400	1910	1 2 86	624	55	19 1	12 5
304	3400	2297	1651	646	53	23 0	12 9
305	3400	1467	934	533	59	14 7	10 7
	2,00			(22	1 73	14 7	
.306	3400	2198	1565	633	48	22 0	12 7
307	3400	1921	1369	552	50	19 2	11 0
308	2450	1952	1376	576	60	19 5	11 5
.309	2450	1692	1111	581	63	16 9	11 6
310	2450	2035	1405	630	56	20 4	12 6
311	2450	2110	1522	5B8	53	21 1	11 6
312	2450	2140	1488	652	56	21 4	13 0
313	2450	1831	1359	472	53	18 3	9 4
					53 55	10 3	
314	2450	1859	1338	517	22	18 6	10 3
.315	2600	1980	1420	560	52	19 8	11 2
.316	2600	1790	1215	575	51	17 9	11 5
.317	2600	1980	1455	52 5	51	19 8	10 5
J318	2700	2170	1500	670	56	21 7	13 4
1319	2700	1755	1155	600	56	17 6	12 0
1320	2700	2050	1400	650	5 5	20 5	13 0
321	2700	1925	1340	585	57	19 3	11 7
MIN	ES FIELD, CA	LIFORNIA - C	EOGRAPHICA	L ALTITUDE	93 FT		
.202	200				48	_	
205	200	2056	1408	648	55	20 6	13 0
-	200	1779	1115	664	57		
207	200 200	1779 1966	1115 1143	664 823	57 55	17 8	13 3
207 208	200	1966	1143	823	55	17 8 19 7	13 3 16 5
207 208 209	200 200	1966 1792	1143 1147	823 645	55 53	17 8 19 7 17 9	13 3 16 5 12 9
207 208 209 210	200 200 300	1966	1143	823	55 53 56	17 8 19 7	13 3 16 5
207 208 209 210 211	200 300 300 300	1966 1792 1783	1143 1147 944 —	823 645 839	55 53 56 52	17 8 19 7 17 9 17 8	13 3 16 5 12 9 16 8
207 208 209 210 211 212	200 200 300 300 300	1966 1792 1783 — 1627	1143 1147 944 — 1131	823 645 839 496	55 53 56 52 57	17 8 19 7 17 9 17 8 16 3	13 3 16 5 12 9 16 8
207 208 209 210 211 212 213	200 300 300 300 300 300	1966 1792 1783 — 1627 1228	1143 1147 944 — 1131 748	823 645 839 496 480	55 53 56 52 57 57	17 8 19 7 17 9 17 8 16 3 12 3	13 3 16 5 12 9 16 8
207 208 209 210 211 212 213	200 200 300 300 300	1966 1792 1783 — 1627	1143 1147 944 — 1131	823 645 839 496	55 53 56 52 57 57 56	17 8 19 7 17 9 17 8 16 3 12 3 19 7	13 3 16 5 12 9 16 8 - 9 9
207 208 209 210 211 212 213 214	200 300 300 300 300 300	1966 1792 1783 — 1627 1228 1968	1143 1147 944 — 1131 748 1423	823 645 839 496 480 545	55 53 56 52 57 57 56	17 8 19 7 17 9 17 8 16 3 12 3 19 7	13 3 16 5 12 9 16 8 9 9 9 6 10 9
207 208 209 210 211 212 213 214 215	200 200 300 300 300 300 300 300 400	1966 1792 1783 — 1627 1228 1968 1513	1143 1147 944 — 1131 748 1423 948	823 645 839 496 480 545 565	55 53 56 52 57 57 56 56	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1	13 3 5 5 12 9 16 8 9 9 6 10 9 11 3
207 208 209 210 211 212 213 214 215 216	200 300 300 300 300 300 300 400	1966 1792 1783 — 1627 1228 1968 1513 1925	1143 1147 944 — 1131 748 1423 948 1455	823 645 839 496 480 545 565 470	55 53 56 52 57 57 56 56 60	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1	13 3 16 5 12 9 16 8 9 9 6 10 9 11 3 9 4
207 208 209 210 211 212 213 214 215 216 217	200 200 300 300 300 300 300 400 400 700	1966 1792 1783 — 1627 1228 1968 1513 1925 2360	1143 1147 944 — 1131 748 1429 948 1455 1980	823 645 839 496 480 545 565 470 380	55 53 56 52 57 57 56 56 60 48	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6	13 3 16 5 12 9 16 8 9 9 6 10 9 11 3 7 6
207 208 209 210 211 212 213 214 215 216 217 218	200 300 300 300 300 300 300 400 4	1966 1792 1783 — 1627 1228 1968 1513 1925	1143 1147 944 — 1131 748 1423 948 1455	823 645 839 496 480 545 565 470	55 53 56 52 57 57 56 60 48 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1	13 3 16 5 12 9 16 8 9 9 6 10 9 11 3 9 4
207 208 209 210 211 212 213 214 215 216 217 218 219	200 200 300 300 300 300 300 400 400 4	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310	1143 1147 944 1131 748 1423 948 1455 1980 1550	823 645 839 496 480 545 565 470 380 860	55 53 56 52 57 57 56 56 60 48 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1	13 3 3 16 5 12 9 16 8 9 9 6 10 9 9 11 9 7 6 2
207 208 209 210 211 212 213 214 215 216 217 218 219 220	200 200 300 300 300 300 300 400 400 4	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 —	1143 1147 944 1131 748 1423 948 1455 1980 1550 —	823 645 839 496 480 545 565 470 380 860 708	55 53 56 52 57 57 56 56 60 48 53 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8	13 3 5 12 9 16 8 9 9 6 9 11 9 7 6 2 17 2 14 2
207 208 209 210 211 212 213 214 215 216 217 218 219 220 243	200 200 300 300 300 300 300 400 400 700 700 700 700 50	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 — 2376 2100	1143 1147 944 — 1131 748 1429 948 1455 1980 1550 — 1668 1070	823 645 839 496 480 545 565 470 380 860 708 1030	55 53 56 52 57 57 56 56 60 48 53 53 59	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8 21 0	13 3 3 16 5 12 9 8 16 8 9 9 6 9 11 9 7 6 2 14 6 6
207 208 209 210 211 212 213 214 215 216 217 218 219 220 243 245	200 200 300 300 300 300 300 400 400 700 700 700 700 50	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 — 2376 2100 2120	1143 1147 944 1131 748 1423 948 1455 1980 1550 —	823 645 839 496 480 545 565 470 380 860 708 1030 592	55 53 56 52 57 57 56 60 48 53 53 53 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8 21 0 21 2	13 3 5 12 9 16 8 9 9 6 9 11 9 7 6 2 17 2 14 2
207 208 209 210 211 212 213 214 215 216 217 218 219 220 243 245	200 200 300 300 300 300 300 400 400 700 700 700 700 50	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 — 2376 2100	1143 1147 944 — 1131 748 1429 948 1455 1980 1550 — 1668 1070	823 645 839 496 480 545 565 470 380 860 708 1030	55 53 56 52 57 57 56 60 48 53 53 53 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8 21 0 21 2	13 3 3 16 5 12 9 16 8 9 9 6 10 9 11 3 9 7 6 2 20 6 11 8
207 208 209 210 211 212 213 214 215 216 217 218 219 220 243 245 247	200 200 300 300 300 300 300 400 400 700 700 700 700 50 50	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 — 2376 2100 2120 1690	1143 1147 944 — 1131 748 1423 948 1455 1980 1550 — 1668 1070 1528 1050	823 645 839 496 480 545 565 470 380 860 708 1030 592 640	55 53 56 52 57 57 56 60 48 53 53 53 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8 21 0 21 2 16 9	13 3 5 12 9 9 16 8 9 9 6 9 9 11 9 7 6 2 12 6 8 12 8
207 208 209 210 211 212 213 214 215 216 217 218 219 220 243 245	200 200 300 300 300 300 300 400 400 700 700 700 700 50	1966 1792 1783 — 1627 1228 1968 1513 1925 2360 2310 — 2376 2100 2120	1143 1147 944 — 1131 748 1423 948 1455 1980 1550 — 1668 1070 1528	823 645 839 496 480 545 565 470 380 860 708 1030 592	55 53 56 52 57 57 56 60 48 53 53 53 53	17 8 19 7 17 9 17 8 16 3 12 3 19 7 15 1 19 3 23 6 23 1 23 8 21 0 21 2	13 3 16 5 12 9 16 8 9 9 6 10 9 11 3 7 6 2 20 6 11 8

AIRLINE AIRCRAFT - D

TAKE-OFF CHARACTERISTICS

CORRECTED TO ZERO WIND AND SPECIFICATION GROSS WEIGHT

TABLE 30

	TNES FIELD. CA	ALIFORNIA - GEO	GRAPHICAL AL	TITUDE 93 FT			
Test	Pressure	Density Altitude	K DP	[ce Start t	·	Unstick
No	Feet	Feet		Unstick	50 Ft.	100 Ft.	Speed
366	100	700	0-975	736	1651	2084	86
368	100	800	0 982	625	1626	2682	83
370	100	900	0 968	789	21.10	2725	77
376	80	700	0 975	1675	_	\ —	112
378	80	700	0 975	1438	3360	4450	107
380	80	700	0 975	1915	3821	l —	108
384	80	700	0 975	913	2229	2763	1 82
390	50	700	0 975	1101	2340		83
392	50	700	0 975	963	2110	2840	85
394	50	1100	0 962	500	_	i —	59
396	<i>5</i> 0	1200	0 960	690	_	l —	74
398	50	1200	0 960	715	2850	l —	777
400	80	1000	0 976	510	1860	1 —	70
402	80	1000	0 976	1021		1 —	76
413	100	1000	0 976	1 1 10	2615	3788	83
415	100	1500	0 950	1050	2750	4020	83
417	100	1500	0 950	1025	2755	3910	80
419	100	1400	0 953	1109	2626	3746	86
421	100	1500	0 950	1440	2736	3787	81.
425	100	1500	0 950	11110	2 <i>5</i> 93	l <u>-</u>	86
s	ALT LAKE CITY,	, UTAH - GEOGRA	PHICAL ALTIT	VDE 4220 FT.			
452	4300	6200	0.809	1005	2880	_	86
453	4300	620 0	0.809	966	2430		77
460	4000	5000	0.842	1380		<u> </u>	92
461	4000	5000	0 842	1380		1 —	94
475	3900	4800	0 848	11176	_ _		71
476	3900	4600	0 853	1450	_	l –	89
477	3900	5000	0.842	1469	-	1 —	85
<u> </u>		L <u>-</u>	<u> </u>	L	L	L	

AIRLINE AIRCRAFT - D

LANDING CHARACTERISTICS

TABLE 31

Test No	Density Altitude Feet	Contact Speed (M.P.H.		
367	700	84		
369	900	82		
371	1000	76		
37 7	6 0 0	72		
379	700			
381	700	83		
383	7 0 0	68		
385	790	74		
387	700	71		
389	700	69		
391	700	75		
393	700	70		

TABLE 31 (Cont'd 2)

Test No.	Density Altitude Feet	Contact Speed (M P H
3 9 5	1100	64
397	1200	70
399	1200	63
401	1200	81
403	1200	73
405	1100	71
406	650	$\dot{ar{r}}$
407	900	7 9
408	900	73
409	900	79
410	900	85
411	1000	83
412	1000	78
		76 77
414 436	1500	
416	1500	74 60
418	1400	69
420	1500	71
422	1400	75
424	1500	71
42 6	1500	72
427	700	66
428	900	63
429	900	75
430	900	67
431	1200	70
433	1300	66
435	1500	63
437	1500	70
438	1700	75
439	1600	66
440	1600	81
441	2000	66
442	2000	63
443	1900	68
444	2000	68
	2300	70
445 462	5600	80 80
463	5600	86
	5600	83
464		82
465 166	5800 5800	
466	5800 5700	72 71
467	5700	71
468	6000	81
469	6000	74
470	5800	73
471	6200	76
472	6200	75 73
473	6200	73
481	5150	79
482	5100	93
483	4900	71
484	5000	66
485	4900	66

1

AIRLINE AIRCRAFT - E

TAKE-OFF CHARACTERISTICS

TABLE 32

			TABL	E 32			
С	HICAGO, ILLIN		HICAL ALTITU	DE 614 FT			
Test	Pressure Altitude	Density Altitude	v	Diete	nce Start	+-	TT
No	Feet	Feet	X DP	Unstick	50 Ft	100 Ft	Unstick Speed
ш	850	2600	0 914	674	2640	3450	58
59	450	2200	0 927	850	2040	7470	67
83	450	2600	0 914	846	3682	4969	64
105	450	2600	0 914	638	1980	2470	58
107	450	2600	0.914	760	19 2 0	2520	58 58
122	500	2000	0 932	1270	2315	2850	95
123	500	2000	0 932	1212	2587	3147	86
127	500	2000	0 932	1149	2300	2885	87
133	500	2500	0 918	1430	3189	4253	71
160	600	2600	0 914	1242	2989	3926	78
177	550	2600	0 914	1200	2517	3499	71
195	400	1600	0 947	1242	2 954	4061	80
200	400	1700	0 942	790	2694	3566	64
201	400	1700	0 942	825	3206	3747	66
236	550	2300	0 922	820	2875	3740	69
284	700	2 750	0 910	1200	3100	3920	82
286	700	2600	0 914	1073	3010	4100	71
287	750	2500	0 918	850	2507	3416	65
292	700	1800	0 938	1170	2980	3969	74
302	650	1800	0 938	751	1910	2560	62
305	700	2400	0 920	935	2660	3710	65
307	700	2400	0 920	1475	3100	3820	79
В	URBANK, CALIF	ORNIA – GEOGR	APHICAL ALTI	TUDE 695 FT			
309	700	2100	0 930	1250	3170	3820	78
310	650	2000	0 932	1200	2800	3680	76
313	750	2600	0.914	820	3270	4690	65
314	700	2 750	0 910	1148	3180	4220	79
317	750	2600	0 914	1480	3120	4260	86
320	650	2000	0 932	12 50	2611	3521	73
324	700	3050	0 900	1170	2640	3710	74
326	7 <i>5</i> 0	3000	0 900	1410	3310	4360	86
329	650	1650	0 943	1170	3316	4268	74
331	650	2250	0 924	1490	3010	3570	88
339	750	2100 2100	0 930 0 930	1300	2770	3790	73
340 344	750 850	2650	0 911	1 2 40 1 24 9	2826 3337	3761	84
345	850	2600	0 914	1360	3310	4189 4219	77 76
347	850	2450	0 920	1135	2054	3196	777
349	750	1175	0,960	1344	2849	4428	80
351	750	1500	0 950	1250	3135	4066	75
354	800	22 50	0 924	1585	3166	3855	82
355	800	2250	0 924	1486	3111	3956	79
357	800	2100	0 930	994	1896	2457	66
s	ALT LAKE CITY	, UTAH - GEOG	RAPHICAL ALT	ITUDE 4220 FT	<u> </u>	l .	l
488	3750	5000	0 842	2014	4266	CEE7	r yez
489	750	5000	0 842	2222	4665	5551 5880	77 89
490	3900	5600	0 825	1614	4546	5695	777
490 (2)		5600	0 825	1845	3885	5180	85
491	4100	5600	0 825	1705	4186	5480	90
493	4100	6300	0 805	1900	3372	5896	83
496	4120	6300	0 805	1359	4274	5202	70
499	4150	5000	0 842	1526	5738	/==	87
504	3800	4300	0.861	1738	5658	5824	87
505	3800	4400	0 860	2104	4539	5970	93

TABLE 32 (Cont'd 2)

Test	Pressure Altitude	Density Altitude	K_	Distar	nce Start	to	Unstick
No	Feet	Feet	DP	Unstick	50 Ft	100 Ft	Speed
508	3840	4500	0 858	1160	3374	4297	76
509	3950	5000	0 842	1753	5107	5970	81
511	3950	5050	0 840	1759	4298	6309	79
512	3900	5100	0.838	1710	3211	3998	89
513	3900	5100	0 838	2027	4850	6365	83
515 (B)	3900	5100	0 838	1628	3805	4800	86

AIRLINE AIRCRAFT - E

LANDING CHARACTERISTICS

TABLE 33

	Density		stance Fro		1		th Ratio
Test No	Altitude Feet	100' to Contact	50' to Contact	100' to 50'	Contact Speed	100° to Contact	100' to
727 (2) 741 743 770 779 797 855 682 686 890 (2)	900 1600 1600 600 SL 1000 1200 1500 1700 1400	2682 1979 2271 2137 2174 2122 2659 2253 2797	1838 11.56 1454 1329 1590 1270 1588 1373 1348	 844 823 817 808 584 852 1071 880 1499	84 81 79 73 73 89 77 72 79 86	26 8 19 8 22 7 21 4 21 7 21 2 26 6 22 5 28 0	16 9 16 4 16 3 16 2 11 7 17 0 21 4 17 6 29 0
897 903 906 910 911 914 920 (2) 923 924 926	800 1400 1700 1400 1500 2000 2000 1400 1700 1800	2395 2445 2457 2400 2417 2055 2547 2396 2760 2345 1756	1329 1785 1850 1710 1595 1345 1686 1550 2020 1432 1255	1066 660 607 690 822 710 861 846 740 913	67 71 67 — 71 76 — 70 75 —	24 0 24 5 24 6 24 0 24 2 20 6 25 5 24 0 27 6 23 5	21 3 13 2 13 8 16 4 14 2 17 2 16 9 14 8 18 3 10 0

AIRLINE AIRCRAFT - F

TAKE-OFF CHARACTERISTICS

CORRECTED TO ZERO WIND AND SPECIFICATION GROSS WEIGHT

TABLE 34

Pressure Test Altitude		S - GEOGRAPH Density Altitude	_		ance Start	+.	Unstick
No	Feet	Feet	K _{DP}	Unstick	50 Ft	100 Ft	Speed
108	+ 480	+ 2600	0 914	1060	4571	5665	73
110	+ 480	+ 2600	0 914	853	3161	4288	67
112	+ 500	+ 2600	0 914	1050	4555	5702	69
121	+ 540	+ 2000	0 931	1462	4000	4830	81
129	+ 540	+ 2300	0 922	1870	4160	5290	79
135	+ 560	+ 2500	0 918	1480	3450	4120	79
143	+ 560	+ 2500	0 918	1870	4720	5750	8í
144	+ 580	+ 2500	0 918	1827	4200	4910	77
156	+ 590	+ 2500	0 918	1675	3580	4650	gó
166	+ 550	+ 2000	0 931	2140	3340	4370	95
169	+ 550	+ 2000	0 931	1710	4490	5770	80
176	+ 550	+ 2600	0 914	1917	4400	5080	88
178	+ 410	+ 2600	0 914	2040	3370	4550	86
		+ 2000	0 931	1940	3350		
191	+ 430				3181	4550	92 79
207	+ 450	+ 2200	0.926	1455		_	
208	+ 580	+ 1800	0 938	1845	4100		99
F1	<u> </u>	S - OEOGRAPH			26.46	1000	00
627	+ 550	+ 600	0 979	1322	3646	4757	82
632	+ 510	+ 500	0 982	1703	35 8 0	4460	97
647	+ 600	+ 950	0.968	2000	4330	5255	98
653	+ 600	+ 600	0.971	1700	3717	4605	87
665	+ 250	- 700	1 0 27 1 .02 7	1770 1576	4100 3040	4900	89
	l + 250	- 700	1 1.1527	1 15/75		3900	88
666							I
667	+ 240	- 700	1 027	1715	3042	3528	87
667 668	+ 240 + 240	- 700 - 7 0 0	1 027 1.027	1715 1618	3042 299 0	35 28 34 3 0	86
667 668 669	+ 240 + 240 + 240	- 700 - 700 - 700	1 027 1.027 1 027	1715 1618 1500	3042 2990 2700	3528 3430 3240	86 87
667 668 669 670	+ 240 + 240 + 240 + 230	- 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027	1715 1618 1500 1790	3042 2990 2700 3260	3528 3430 3240 3950	86 87 97
667 668 669 670 671	+ 240 + 240 + 240 + 230 + 220	- 700 - 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027 1.027	1715 1618 1500 1790 1455	3042 2990 2700 3260 2750	3528 3430 3240 3950 3142	86 87 97 8 2
667 668 669 670 671 672	+ 240 + 240 + 240 + 230 + 220 + 220	- 700 - 700 - 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027 1 027 1 027	1715 1618 1500 1790 1455 1445	3042 2990 2700 3260 2750 2570	3528 3430 3240 3950 3142 3030	86 87 97 6 2 88
667 668 669 670 671	+ 240 + 240 + 240 + 230 + 220	- 700 - 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027 1.027	1715 1618 1500 1790 1455	3042 2990 2700 3260 2750	3528 3430 3240 3950 3142	86 87 97 8 2
667 668 669 670 671 672 674	+ 240 + 240 + 240 + 230 + 220 + 220	- 700 - 700 - 700 - 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027 1 027 1 027 1 027	1715 1618 1500 1790 1455 1445 1520	3042 2990 2700 3260 2750 2570	3528 3430 3240 3950 3142 3030	86 87 97 8 2 88
667 668 669 670 671 672 674	+ 240 + 240 + 240 + 230 + 220 + 220 + 240	- 700 - 700 - 700 - 700 - 700 - 700 - 700	1 027 1.027 1 027 1 027 1 027 1 027 1 027 APHICAL ALTI	1715 1618 1500 1790 1455 1445 1520	3042 2990 2700 3260 2750 2570	3528 3430 3240 3950 3142 3030	86 87 97 8 2 88
667 668 669 670 671 672 674	+ 240 + 240 + 240 + 230 + 220 + 220 + 240 JRBANK, CALIFO + 710	- 700 - 700 - 700 - 700 - 700 - 700 - 700 - 700 - 700 - 7150	1 027 1.027 1 027 1 027 1 027 1 027 1 027 APHICAL ALTI	1715 1618 1500 1790 1455 1445 1520 ITUDE 695 FT	3042 2990 2700 3260 2750 2570 2590	3528 3430 3240 3950 3142 3030	86 87 97 82 88 89
667 668 669 670 671 672 674 91 278 306	+ 240 + 240 + 240 + 230 + 220 + 220 + 240 JRBANK, CALIFO + 710 + 720	- 700 - 700 + 1750 + 2500	1 027 1.027 1 027 1 027 1 027 1 027 1 027 APHICAL ALTI	1715 1618 1500 1790 1455 1445 1520 ITUDE 695 FT	3042 2990 2700 3260 2750 2570	3528 3430 3240 3950 3142 3030	86 87 97 82 88 89
667 668 669 670 671 672 674	+ 240 + 240 + 240 + 230 + 220 + 220 + 240 JRBANK, CALIFO + 710	- 700 - 700 - 700 - 700 - 700 - 700 - 700 - 700 - 700 - 7150	1 027 1.027 1 027 1 027 1 027 1 027 1 027 APHICAL ALTI	1715 1618 1500 1790 1455 1445 1520 ITUDE 695 FT	3042 2990 2700 3260 2750 2570 2590	3528 3430 3240 3950 3142 3030	86 87 97 82 88 89

AIRLINE AIRCRAFT - G

TAKE OFF CHARACTERISTICS

CORRECTED TO ZERO WIND AND SPECIFICATION CROSS WEIGHT

TABLE 35

Test No	Pressure Altitude Feet	Denaity Altitude Feet	T _{DP}	Distance Unatick	Start to	Unstick Speed
1235	150	0	1 000	1070	1770	87
1236 (A)	150	200	0 993	1010	1650	83
1238	150	150	0 995	1020	1890	82
1240	150	1,50	0 995	930	1860	79
126 0	120	300	0 990	1555	_	94
1262	120	300	0 990	1400	 	92

*NOTE; No take-off data to 100 foot height available for this airplane

AIRLINE AIRCRAFT - Q

LANDING CHARACTERISTICS

CORRECTED TO ZERO WIND AND SPECIFICATION GROSS WEIGHT

TABLE 36

	Density	Dis	tance From			Glide Path Ratio	
Test No	Altitude Feet	100' to Contact	50' to Contact	100' to 50'	Contact Speed	100' to Contact	100' to
1188	500			_	84		
1236 (1)	0 1	910	600	310	6 8 1	91	62
1237	200	1270	980	290	73	12 7	58
1239	150	1080	690	390	76	10 8	78
1241	150	1560	1220	340	80	15 6	6 B
1255	300	1820	1034	786	81	18 2	15 7
1257	200	1686	987	699	84	16 9	14 0
1259	300	1700	892	808	79	17 0	16 2
1261	350	1639	792	847	82	16 4	16 9
1 2 63	300	2572	1526	1046	76	25 7	20 9

AIRLINE AIRCRAFT - H

TAKE-OFF CHARACTERISTICS

TABLE 37

Test	Pressure Der est Altitude Alt		K _{DP} Distance Start to	Unstick			
No	Feet	Feet	D)	Unstick	50 Ft	100 Ft	Speed
4	+ 850	+ 2800	0 909	1620	3800	4400	84
6	+ 850	+ 2700	0 910	1660	3880	4693	88
8	+ 850	+ 2600	0 913	1820	3244	3770	90
10	+ 850	+ 2700	0 910	1670	3730	4980	89
13	+ 850	+ 2700	0 910	1775	3840	4460	87

СНП	CAGO, ILLINO Pressure	IS - <u>GEOGRAPE</u> Density	IICAL ALTIT	 	stance Start	to	Unstick
Test No	Altitude Feet	Altitude Feet	K ^{D₽}	Unstick	50 Ft	100 Ft	Speed
14 15 79	+ 850 + 850 + 450	+ 2500 + 2500 + 2300	0 918 0 918 0 9 2 3	1660 1430 1260	3550 3295 4220	4580 4063 5570	88 85 78
89 98 118	+ 450 + 450 + 500	+ 2300 + 2600 + 2000	0 9 23 0 913 0 93 2	1150 1340 1750	3570 44 2 0	_	73 78 96
124 130	+ 500 + 500	+ 2200 + 2400	0 9 26 0 9 2 0	1365 1630	_	=	93 87
131 13 2 134 136	+ 500 + 500 + 500 + 500	+ 2400 + 1900 + 1900 + 1900	0 9 2 0 0 936 0 936 0 936	1800 1478 1195 1200	3900 — —	=	88 89 77 95
137 148 155	+ 500 + 550 + 550	+ 1900 + 1900 + 2600 + 2600	0 936 0 913 0 913	1150 1130 1895	2840 3635	3720 4295	87 80 92
157 158 159	+ 600 + 600 + 600	+ 2500 + 2500 + 2500 + 2500	0 918 0 918 0,918	1600 2040 1810	4030 4080 4380	5010 5400 5670	90 100 86
162 163 164	+ 600 + 600 + 600	+ 2500 + 2500 + 2500	0 918 0 918 0 918	1530 1570 1534	4020 4430 4170	5740 5940 4760	100 92 86
172 174 175	+ 550 + 550 + 550	+ 2200 + 2600 + 2600	0 926 0 913 0 91 3	3020 1935 2100	5540 4500 4200	6660 5560	113 95 101
182 185 189	+ 550 + 400 + 400	+ 2600 + 1400 + 1400	0 913 0 952 0 952	1710 1321 2020	3780 3940 	 5250 4012	85 87 89
193 196 203	+ 400 + 400 + 450	+ 1500 + 1600 + 1500	0 950 0 947 0 950	1814 1380 1368	3615 2928	4660 58 27 4300	80 81 92
EUP	BANK, CALIFO	RNIA – GEOGRA	PHICAL ALT	ITUDE 695 F	Γ		
281 282 289 290 294 295 298 299 318 328 337 342 343	+700 +700 +800 +800 +750 +750 +750 +750 +750 +750 +800 +850	+ 2800 + 2750 + 2600 + 2800 + 2100 + 2400 + 2100 + 2200 + 2600 + 2800 + 2800 + 2600 + 2700	0 909 0 910 0 913 0 909 0 929 0 929 0 926 0 913 0 909 0 909 0 913	1400 1385 1574 1660 1984 1390 1416 1412 2200 1630 1585 1775 1192	3390 3080 3160 3050 4840 2610 3871 2660 3440 3120 3279 4055 2940	4510 — 4725 3870 5830 3915 5091 3353 4165 3420 4165 4830 4000	86 87 96 100 94 83 77 86 98 90 90 83 78
	·	, UTAH - GEOG				4000	
487 490-A 492 495 497 503 506 507 510 (1) 510 (3)	39 25	6300 5500 6250 6400 4850 4300 4400 4700 5000 5000 5100	0 805 0 828 0 805 0 802 0 847 0 861 0 859 0 848 0 840 0 838 0 838	2690 2225 2820 3380 2580 2960 2545 2040 1940 2710 2645 2600	— 5350 6450 — 5185 4900 5450 5870 5450 4930 6275 7100	6130 6730 5830 6230 6530 7510	104 96 99 100 100 93 98 92 84 96 102
515 (1) 517 519 524	39 2 5 4000 4000 4000	5600 5550 5600	0 825 0 827 0 827 0 825	2295 2710 2470	5090 5625 6050	7570 — — —	106 99 105 94

TABLE 37 (Cont'd 3)

CHEYE	ENNE, WYDMING - G	EOGRAPHICAL ALT	ITUDE 6145 F	T		_	
Test	Pressure Altitude	Density Altitude	₩.	T1	-t Ct	-1 1-	Unstick
No No	Feet	Feet	K _{DP}	Unstick	stance Star 50 Ft	100 Ft	Speed
NO —	reet	reet		unstick	50 Ft	100 Ft	Speed
536	+6050	+8100	0 754	2660	7020	9100	90
558	+6050	+8100	0 754	50	52 <i>5</i> 0	7085	106
540	+6050	+8100	0 754	2230	5650	8060	101
544	+6050	+8100	0 754	2730	6620	7740	101
	+6050	+ 8100	0 758	2545	5930	7350	98
546		+ 8000			6 2 80		
548	+6050		0 758	2510		7880	99
550	+6000	+ 6400	0 802	2205	6400	7250	88
552	+6000	+ 6400	0 802	2560	5350	6500	96
554	+6000	+6400	0 802	3270	5710	6980	116
556	+6000	+ 6700	0 794	2500	4400	6000	109
558	+6000	+ 6700	0 794	2940	5070	6180	109
560	+5960	+ 6700	0 794	2650	4850	6160	107
562	+ 5950	+ 6700	0 794	2640	5160	6 2 00	105
564	+5950	+ 6700	0 794	2620	4730	6230	109
566	+5950	+6700	0 794	3030	5670	6510	170
568	+5950	+ 6900	0 789	3480	6140	_	105
570	+5950	+6900	0 789	2230	5050	6 2 50	93
572	+5950	+ 6900	0 789	2340	5320	9130	103
574	+5950	+6900	0 789	2320	5250	5480	108
576	+5950	+ 6900	0.789	2795	4270	5480	110
580	+5950	+7000	0 787	2270	5 3 75	6750	102
582	+5900	+6200	0 808	1976	5130	5876	91
584	+5900	+6200	0 808	1985	4560		94
			0 808	2350		5960	, ,
586	+5900	+6200			5120	6450	91
588	+5900	+6200		2790	4930	6170	110
590	+5900	+6200	0 808	2664	5580	6965	101
592	+5900	+ 6200	0 808	2345	5340	6440	100
594	+5900	+6200	0 808	2300	5510	6600	96
596	+5900	+6600	0 797	2270	5510	6350	99
600	+5900	+6600	o 797	2110	5390	7120	95
602	+5900	+6600	0 797	1967	4700	644O	95
604	+5900	+7100	0 779	2620	5725	6930	108
606	+5900	+7100	0 77 9	2535	5340	6280	11.3
60B	+5900	+7100	0 779	2560	5800	6960	114
618	+5930	+7400	0 775	1950	5960	6950	90
FOR	T WORTH, TEXAS -	GEOGRAPHICAL A	LTITUDE 680	FT	 _	 	l
625	600	600	0 982	1320	3912	5256	81
630	500	700	0 975	1640	3490	4150	89
649	600	1000	0 967	2245	4435	6030	98
661	400	400	0 987	1400	2884	3988	76
	<u> </u>	400	U 701	1400		J766	

AIRLINE AIRCRAFT - H

LANDING CHARACTERISTICS

CORRECTED TO ZERO WIND AND SPECIFICATION GROSS WEIGHT

TABLE 38

CHICAGO	CHICAGO, ILLINOIS - GEOGRAPHICAL ALTITUDE 614 FT										
m	Density		tance From		Glide Path Ratio						
Test	Altitude	100' to	50' to	100' to	Contact	1001 to	100' to				
No	Feet	Contact	Contact	50'	Speed	Contact	50'				
22 (2)	1100	1780	757	1023	72 3	17 8	20 46				
23	1100	1073	484	589	81 5	10 7	11 78				
24	1100	1545	931	614	82 5	15 5	12 28				

TABLE 38 (Cont'd 2)

BURBANK, CALIFORNIA - GEOGRAPHICAL ALTITUDE 695 FT											
	Density		tance From		Contact	Glide	Path Ratio				
Test	Altitude	100' to	501 to	100' to	Speed	100' to	100' to				
No	Feet	Contact	Contact	יס5	-	Contact	501				
											
732	1000	2237	1673	564	78	22.4	11.3				
778	400	2492	1591	901	72	24.9	180				
785	700	1376	795	581	77	13.8	11.6				
805	700	_	904	. –	<u>96</u>	<u> </u>	_				
806	400		920	4000	77						
813	700	2071	1244	827	84	20.7	16 5				
814	700	1552	972	580	84	15.5	11.6				
817	800	2058	1353	705	82	20.6	14 1				
836 838	1400 1400	2007 1833	1293 1160	714 653	81 82	20 1 18.3	14.3				
839	1400	2217	1229	988	87	22.2	19 8				
840	1200	2294	1502	792	64,	22.9	15 8				
847	1400	1925	1505	420	73	19 3	8.4				
852	2000	2748	2097	651	96	27 5	13 0				
854	2000	1796	951	845	100	18 ó	16 š				
857	1200	2352	1704	648	82	23.5	12 9				
858	1600	1939	1317	622	81	19.4	12,4				
859	1600	1890	1055	835	89	18.9	16 7				
860	1400	2059	1351	708	8í	20 6	14, 2				
667	1600	1829	1308	521	78	18 3	10 4				
881	1700	20 99	1553	546	76	21.0	10 9				
883	1400	1797	1273	524	82	18 0	10.4				
884	1400	2353	1634	719	79	23.5	14 4				
885	2000	3339	2103	1236	69	33 4	24 7				
8 8 7	1400	2568	722	846	78	25.7	16 9				
888	1400	1936	1398	538	85	19 4	10 8				
891 (1)	1200	1697	1119	578	77	17 0	11 6				
902	1800	2060	1521	539	78	20 6	10.8				
904	1600	1795	1245	5 50	82	18.0	11 0				
907	1800	2454	1666	788	79	24 5	15 8				
908	1800	1684 2683	1067	617 938	80 80	16.8	12.3				
909 912 (2)	1400 1600	1923	1745 13 2 5	598		26 B	18 8 12 0				
912 (2)	2000	2491	1538	953	74 B3	19.2 24.9	19.1				
918	2000	1878	1314	564	90	18.8	19.1				
919	1100	2151	1693	458	90	21.5	92				
925	2000	2134	1514	620	87	21.3	12.4				
926 (2)	2000	1868	1247	621	74	18 7	12 4				
927	1400	2084	1638	446	88	20 B	8 9				
928	1400	1953	1340	613	83	19 5	12.2				
	l		_	ł	_						
FORT 1	FORTH, TEXAS	- OEOGRAPHIO	AL ALTITUDE	680 FT.	1		- -				
634	600		_		75 0		_				
636	600				75 0	<u> </u>					
638	600	l <u> </u>		_	760	_					
640	700			l —	76 0		_				
642	600	- -			790		l –				
646	800	-	_	_	67 0		l —				
650	800	l —	_	-	76.0		-				
652	800	_	—		66 0						
655	800	<u> </u>	_	-	72 0	-	_				
659	1700			L	72.0		_				
SALT 1	LAKE CITY, UI	AH - GEOGRAI	HICAL ALTIT	VDE 4220 FT							
1325	3300	2353	1728	625	86	23 5	12.5				
1327	3400	2729	2080	649	80	27 3	13 0				
1329	3400	2407	1935	472	78	24 1	9 4				
1331	3400	2462	1607	855	92	24 6	17.1				
1333	3400	2869	2208	661	89	28.7	13.2				
1336	3300	2890	2160	730	77	28 9	14 6				
L					L						

TABLE 38 (Cont'd 3)

СНКУ	ENNE, TYOMING -	- GEOGRAPHICA	AL ALTITUD	3 6145 FT			
	Density		Lstance Fro			Glide Pa	th Ratio
Test	Altitude	100 to	501 to	100' to	Contact	100' to	100' to
No.	Feet	Contact	Contact	501	Speed	Contact	50'
527	7800	_	_		95 3		
529	7800	_	_	l <u></u>	94 2		_
531	7800	_	—	-	94 7		l —
533	7800	_	_		102 2	i	
535	8000	_	l —	_	89 1	<u> </u>	_
537	8000		_	_	104 0	 —	_
539	8000	_	_	_	83 2	_	
541	8000		l —	_	83 2	_	_
543	8000		l —		95 0	_	l —
545	8000	_			94 0	_	
551	6400	l _	_		92 6	_	
553	6400	_	l <u> </u>	<u> </u>	92 7	-	
555	6400			l -	B9 0	l –	
557	6700		l <u> </u>		92 0		<u> </u>
559	6700	_		l <u></u>	94 5	_	
561	6700		_	_	91 4	_	_
563	6700			_	94 6		_
565	6700		_	i	91 0	_	
567	6700	_	_		89 4	_	
569	6800	_	l —	_	93 5		
571	6800	1 -	_		97 0		_
573	6800		_		97 2		
575	6800	1 –	_	_	97 5	_	_
	7000	_	_	_	97 2		_
5777 5780		-	_		94.2		_
57 9	7000		-	_	94.2		_
58 <u>1</u> 583	7000 6100		-		81 0	_	_
			_	_	89 7	_	_
585 587	6300 6200	_		_	97 5	_	_
589	6200		_		91 5	_	_
	6200		_	_	95 6	_	_
591 593	6200	_	-		95 5		_
50.5 50.5	6700	_			88 0	_	_
595	7000	-	_		97 0	_	_
597		_	_	_		_	_
599	6700	_	_		90 0	_	
601	6700	_	_	_	90 5	. –	_
603	6800	_	_	_	107 8	_	-
605	7000	-	-		86 0	-	_
ь 0 7	7100	_	_	_	101 0	_	
609	7400	_		_	94.7	_	_
611	7400	-	-	_	94 0	-	
613	7400	_	-	_	89 5		-
615	7400		-	_	90 5	_	
617	7400	-		-	88 5	_	_
619	7400	-			88 5	_	_
621	7500	_	_	_	85 0	_	

AIRLINE AIRCRAFT - H

BLIND LANDING CHARACTERISTICS

THESE RECORDS WERE OBTAINED BY LANDING ON THE CAKLAND BEAM WITH THE PILOT UNDER

THE HOOD EXCEPT AS NOTED

TABLE 39

OAKLA		ORNIA - GEOG	RAPHICAL AL	TITUDE	93 FT					
	Density						Contact		Path Rat	
Test	Altitude		ntact from	Dist		op from	Speed	100' to	50 to	100' to
No	Feet	100' Ht	50' Ht	100	50'	Contact	(MPH)	Cont	Cont	50
3000	(00	5005	0205				99	5 2 9 1 1	47.8:1	58 0 1
1339	- 600	5285	2385	_	_	_	96	53 3	66.6	400
1340	- 500	5325	33 2 5	_	_	_	96	53 5	66 0	40 0
1341	- 600	5350	3300		— 5190	1900	90	51 3	65 8	36 B
1342	- 600	5130	3 2 90	7030				51.2	43 0	59 4
1343	- 550	5120	2150	8385	5415	3265	97			
1344	- 550	5470	3 2 70	7880	56B0	2410	92	54 7	65 4 72 6	44 0
1345	- 550	5860	3630	8160	5930	2300	75 89	58 6 52 5	68 0	44 6 37 0
1347	- 800	5250	3400	_			· · ·			
1348*		6740	4480	_		_	104	67 4	89 6	45 2
1349*	-1050	6990	4560	_	_	_	94	69 9	91 2 76 2	48 6 37 4
1350×	- 900	5680	3810	-	/150	-	89	56 8		
1351*		6170	3490	8850	6170	2680	88	61.7	69 8	53 6
1353	- 7 00	5420	2370	_	_	i —	104	54 2	47 4	43 0
1354	- 700	4780	3180		_	_	81	47 8	63 6	32 0
1355	- 700	5535	3660	/ 			90	55 4	73 2	37.5
1356	- 550	4660	2420	6900	4660	2240	92	46 6	48 4	44 8
1357	- 700	4970	2620	_		-	94	49 7	52 4	47 0
1358	- 700	5280	3090	_	_		91	5 2 8	61 B	51 8
1359	- 700	5490	3 2 90	-		—	88	54-9	65 B	44.0
1360	- 700	5320	2890	_	_		94	53 2:1	57 B 1	4861
1361	- 700	5 365	3990	_		—	91	53 7	79 8	27 5
1362	- 650	5645	2990	l — !	_		96	56 5	59 8	59 2
1363*	- 600	5500	33 9 0		_		97	55-0	67 8	42 3
1364*		6280	3710		_	—	95	6 2 8	74.3	51 4
1367	- 600	4050	2540	-		l —	98	40 5	50-8	30 2
1368	- 400	5140	2870	i — .	_	—	103	51 4	57 4	45 4
1369	- 400	4505	3190		l —		109	45 1	63 8	263
1370	- 400	5565	3530	l —	_		106	55 7	70 6	40 7
1371	- 400	5580	3370		<u> </u>	l —	100	55 B	67 4	44 2
1372	- 400	5200	3590		_		103	52 0	71.8	32 2
1375	- 400	5985	3155	9550	6720	3565	97	59 9	63 1	56 6

^{*} Visual Tests But Flying on Beam

NOTE. Distance and glide path data listed in this table are not corrected to zero wind velocity nor to specification gross weight, since these landings were made by following a radio beam, the locus of which is unaffected by either wind or weight Contact speed data, however, are corrected for both wind and weight

GROUND ROLL CHARACTERISTICS

TABLE 40

Test	Airplane	Туре	Speed at	Ground
No	Designation		Contact	Roll
1202 1205 1207 1208 1209 1210	B B B B	Private Private Private Private Private Private Private	48 55 57 55 53 56	928 1068 1025 894 812 1058

TABLE 40 (Cont'd 2)

		TABLE 40	(Cont'd 2)	
Test	Airplane		Speed at	Ground
No	Designation	Type	Contact	Roll
		-9,5-		
1211	В	Private	52	886
1212	В	Private	57	1053
1213	В	Private	57	1148
1214	В	Private	56	689
1215	В	Private	55	1108
1216	В	Private	60	948
1217	В	Private	48	740
1218	В	Private	53	740
1243	В	Private	59	860
1245	В	Private	53	1380
1247	В	Private	53	710
1249	В	Private	54	795
1251	В	Private	55	1280
1253	В	Private	53	1220
1295	В	Private	53	1095
1296	В	Private	58	1240
1297	В	Private	57	1152
1299	В	Private	57	1250
1300	В	Private	62	1150
1301	В	Private	66	1912
1302	В	Private	61	1532
1303	В	Private	65	1340
1304	В	Private	53	1036
1305	В	Private	5 9	1485
1306 1307	B B	Private	48	1188
1307	В	Private Private	56 60	1242
1309	В	Private	63	1005 1700
1310	В	Private	56	1090
1311	B	Private	53	1090
1312	В	Private	56	1032
1313	В	Private	53	1115
1314	В	Private	55	879
1315	B	Private	52	830
1316	В	Private	51	1180
1317	В	Private	51	1170
1316	B	Private	56	990
1319	B	Private	56	1120
1320	В	Private	55	870
1321	В	Private	57	1360
450	D	Airline	96	1835
451	D	Airline	90	1465
458	D	Airline	105	1955
459	D	Airline	111	2435
486	D	Aurline	99	1922
1196	G	Alrline	75	2145
1236 (1)	G	Airline	68	1600
1237	G	Airline	73	1200
1239	G	Airline	78	1210
1255	G	Airline	81	1268
1259	G	Airline	79	1230
1261	G	Airline	82	1361
1263	G	Airline	76	972
1342	Н	Airline	90	1900
1344	H	Airline	92	2410
1345	H 	Airline	75	2300
1351	Н	Airline	88	2680
1356	Н	Airline	92	2240

SEASONAL FLUCTUATIONS IN PRESSURE & DENSITY ALTITUDES

TABLE 41

	TABLE 41								
AIRPOR		lifornia , California							
	od of vation	Min Airport Barometer Inches Hg (For Determining	Valu Press	taneous les of & Temp Dens Ait }	Max. Density	Max Pressure			
of Period	of Period	Max Pressure Altitude)	Airport Barometer	Temp *	Altitude (Feet)	Altitude (Feet)			
6-15-37 6-22-37 7-18-37 7-18-37 7-15-37 7-22-37 8-18-37 8-22-37 9-15-37 9-15-37 10-18-37 10-15-37 10-22-37 11-15-37 11-22-37 11-15-37 11-237 11-15-37 11-237 11-15-37 11-237 11-15-37 12-18-37 12-18-37 12-18-38 1-15-38	6-21-37 6-30-37 7-7-37 7-14-37 7-21-37 7-21-37 8-7-37 8-14-37 8-21-37 9-7-37 9-14-37 9-7-37 10-14-37 10-21-37 11-30-37 11-30-37 11-30-37 11-30-37 11-30-37 11-31-38 1-21-38 1-21-38 1-31-38 2-7-38 3-14-38 3-21-38 3-31-38 4-7-38 5-14-38 5-31-38 6-7-38 7-38 7-38 7-38 7-38 7-38 7-398	29 07 29 01 29 12 29 10 29 02 29 02 29 02 29 02 29 02 29 02 29 02 29 16 29 16 29 16 29 16 29 17 29 10 29 06 29 10 29 00 29 10 29 02 29 10 29 02 29 12 29 14 29 12 29 12 29 13 29 14 29 04 29 08 29 12 29 02 29 13 29 14 29 04 29 08 29 14 29 08 29 14 29 08 29 15 29 16 29 10 29 08 29 08 29 10 29 10 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20 2	29 10 29 10 29 18 29 18 29 18 29 10 29 10 2	87° 82° 878° 878° 878° 877° 888° 878° 888	2700 2300 2900 2400 2000 2400 2000 2400 2300 3100 2750 3200 3000 2500 2350 1800 +1500 1650 1650 1650 1650 1600 2050 2100 1500 1500 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1800 1750 1950 1800 1750 1950 1800 1750 1950 1800 1750 1950 1200 1800 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1950 1200 1750 1200 1750 1200 1750 1200 1750 1200 1750 1200 1200 1200 1200 1200 1200 1200 12	+ 780 + 840 + 890 + 750 + 770 + 830 + 830 + 830 + 850 + 890 + 730 + 760 + 770 + 760 + 770 + 730 + 760 + 730 + 760 + 770 + 780 + 790 + 780 + 790 + 780 + 790 + 850 + 790 + 850 + 770 + 750 + 850 + 770 + 750 + 810 + 810 + 750 + 810 + 810			

AIRPORT:	Burbank, Californ		<u> </u>			
_	Los Angeles, Cali eriod of ervation	Min Airport Barometer Inches Eg.	Simulta Value: Press &		Max Density	Max. Pressure
Beginning of Period	End of Period	(For Determining Max Pressure Altitude)		Dens Alt Temp * Degrees F		Altitude (Feet)
8-8-38 8-15-38 8-22-38 9-1-38 9-8-38 9-15-38 9-22-38	8-14-38 8-21-38 8-31-38 9-7-38 9-14-38 9-21-38 9-30-38	29 06 29.10 28 98 29 01 29.01 29 06 29 10	29 11 29 22 29 02 29 04 29 10 29 16 29 16	95° 88° 88° 81° 94° 92° 89°	3200 3000 2800 2250 3250 2800 2700	+790 +750 +890 +840 +840 +790 +750
AIRPORT	Cheyenne, Wyomin	3			T	
6-15-37 6-22-37 7-1-37 7-8-37 7-15-37 8-1-37 8-15-37 8-15-37 9-15-37 9-15-37 10-1-37 10-1-37 10-15-37 11-15-37 11-15-37 11-15-37 11-22-37 11-15-37 11-22-37 11-15-37 12-138 1-15-38 1-	6-21-37 6-30-37 7-8-37 7-14-37 7-21-37 8-7-37 8-14-37 8-21-37 8-31-37 9-14-37 9-21-37 10-7-37 10-14-37 10-21-37 11-30-37 11-7-37 11-30-37 12-7-37 12-14-37 12-14-37 12-14-38 1-31-38 1-31-38 1-31-38 2-7-38 3-14-38 3-21-38 3-14-38 3-21-38 3-14-38 3-21-38 3-14-38 3-21-38 3-14-38 3-21-38 3-14-38 3-21-38 3-14-38 3-21-38 3-13-38 4-7-38 5-14-38 5-7-38 5-14-38 5-7-38 5-14-38 6-7-38 5-14-38 6-7-38 5-14-38 6-7-38 5-14-38 6-7-38	23.92 24.00 23.90 24.00 23.90 24.00 23.90 24.00 23.90 24.00 23.90 24.00 23.90 24.00 23.90 24.00 25.50 26.60 27.55 28.60	555600610301031044900650500909078803282259205675647898858688778 48444444428824883488888888888888888888	9915°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	+9150 +9350 +9200 +9350 +9200 +9150 +9250 +9500 +9600 +9400 +9400 +8550 +8600 +7650	6150 6080 6080 6080 6080 6080 6080 6080 60

TABLE 41 (Cont'd 3)

		TABLE 41 (Cont'd 3)			
Airpo	ort: Cheyer	ne, Wording		_		
		Min. Airport	Simultaneous		15	
Period of Observation		Barometer Inches Hg.	Press.	Les of & Temp	Max Density	Max. Pressure
Beginning	End	(For Determining	(For Max I			Altitude
of	of	Max. Pressure	Alrport	Тещо	Feet	Feet
Period	Period	Altitude)	Barometer (In. Hg)	Degrees F	ļ	
			(In Hg)			
6-22-38	6-30- 38	23 88	23.91	84 ° 87°	+8950	+6120
7-1-38	7-7-38	23.89	23 98	87 °	+9100	+6110
7-8-38 7-15-38	7-14-38 7-21-38	24.04 24.05	24.07 24.18	91° 83°	+9200 +8550	+5960 +5950
7-22-38	7-31-38	23 98	24.05	94 •	+9400	+6020
8-1-38	8-7-38	23 96	24.04	92°	+9200	+6040
8-8-38	8-14-38	29 51	23 82	87	+9200	+6190
8-15-38	8-21-38	23-83	23 84	86°	+9200	+6170
8-22-38 9-1 - 38	8-31-38 9-7-38	24.04 23 9 2	24.14 23 95	93 ° 82°	+9200 +8750	+5960 +6080
9-8-38	9-14-38	24 00	24,00	73 *	+8200	+6000
9-15-38	9-21-38	24.00	24 21	83•	+8500	+6000
9-22-38	9-30-38	24.10	24 14	80°	+ 8450	+5900
AIRPO	RT: Salt I	ake City, Utah				
6-15-37	6-21-37	25 45	25 45	90°	7250	+4430
6-22-37	6-30-37	25.48	25 51	100°	7750	+4370
7-1-37 7-8-37	7-7-37 7-14-37	25.58 25.80	25,67 25 66	101° 88°	7600 6950	+4300
7-15-37	7-21-37	25.63	25 74	104	7750	+4250 +4230
7-22-37	7-31-37	25.54	25 76	96♥	7250	+4330
8-1-37	8-7-37	25.64	25.76	96°	7250	+4220
8-8-37	8-14-37	25.56 25.40	25.68	104 ° 98 °	7800	+4280
8-15-37 8-22-37	8 - 21-37 8 - 31-37	25 69 25.48	25. 74 25 50	98 92*	7400 7350	+4160 +4400
9-1-37	9-7-37	25.60	25.60	87	6950	+4270
9-8-37	9~14–37	25 72	25 75	92	7000	+4130
9-15-37	9-21-37	25,40	25 55	94	7450	+4480
9-22-37 10-1-37	9-30-37 10-7-37	25 53 25.45	25.54 25.52	83° 82°	6700 6700	+4340 +4430
10-1-37	10-14-37	25 58	25 73	75	6000	+4300
19-15-37	10-21-37	25.50	25.50	75° 61°	5450	+4380
	10-31-37	25 64	25.65	75	5500	+4220
11-1-37 11-8-37	11-7-37	25 46 25 39	25 55	64° 66°	5550	+4420
	11-14-37 11-21-37	25 47	25.42 25.47	1 505	5800 4800	+4490 +4400
	11-30-37	25 54	25 54	52 °	4800	+4330
	12-7-37	25 56	25 82	46°	4050	+4310
	12-14-37 12-21-37	25 42 25 8 2	25 44 25.88	53°	5050	+4460
	12-31-37	25 20	25 20	44° 40°	3750 4450	+4000 +4680
1-1-3B	1-7-38	25 65	25 86	l ab	4200	+4210
1-8-38	1-14-38	25 45	25 70	l 59°	5050	+4430
1-15-38	1–21–38 1–31–38	25 48	25 51 25 76	46	4500	+4400
1-22-38 2-1-38	1-31-38 2-7-38	25 32 25 40	25 46 25 50	57° 48°	5250 4650	+4550 +4480
2-8-38	2-14-38	25 20	25 36	58° 37°	5400	+4660
2-15-38	2-21-38	25 67	2 5 68	37	3650	+4180
2-22-38	2-28-38	25 58	2 5 80	57° 47° 62°	4800	+4290
3-1-38 3-8-38	3-7-38 3-14-38	25 18 25 29	25 30 25.64	620	4750 5300	+4700 +4580
3-15-38	3-21-38	25 08	25 08	1 64°	6200	+4830
3-22-38	3-31-3B	25 20	25 20	50 °	5100	+4680
4-1-38	4-7-38	25 25	25 52 25 52	56°	5100	+4620
4 -8- 38 4-15-38	4-14-38 4-21-38	2 5 35 2 5 60	25 52 25 70	56° 75°	5050 6000	+4525 +4270
4-22-38	4-21-38 4-30-38	25 36	25 42	1 770	6500	+4510
5-1-38	5-7-38	25 37	25 62	77° 55° 78°	+ 4900	+4510
5-8-38	5–14–38	2 5 38	25 71	78	6200	+4500

TABLE 41 (Cont'd 4)

AIRPOR	T Salt Lake	City, Utah Min Airport	Sim	ıltaneous	1	
Period of		Barometer	Values of		Wax.	Max
Observation		Inches Hg	Press & Temp		Density	Pressure
Beginning End		(For Determining	(For Max Dens Alt		Altitude	Altitude
of	of	Max Pressure	Airport	Temp	Feet	Feet
Period	Period	Altitude)	Barometer	Degrees F	1000	
			(In Hg)			
5-15-38	5-21-38	25 42	25 70	61 °	5150	+4460
5 –22–38	5-31 -3 6	25 46	25 54	86	6950	+4440
6–1–38	6-7-38	25 38	25 70	93	7100	+4500
6-8-38	6-14-38	2 5 58	25 67	93 ° 84 87 ° 92 °	6550	+4290
6-15-38	6-21-38	25 41	25 46	87 <u>°</u>	7000	+4470
6-22-38	6-30-38	25 52	25 56	92	7300	+4360
7-1 - 38	7-7-38	25 50	25 80	84 ° 86 °	6450	+4380
7-8-38	7-14 - 38	25 65	25 66	86	6750	+4210
7-15-38	7-21-38	25 74	25 77	94 °	7000	+4080
7-22 - 38	7–31–38	25 58	25 60	96 °	7450	+4300
8-1-36	8-7-38	25 61	25 62	93 ° 90°	7250	+4260
6–8–38	8-14-38	25 50	25 50	900	7250	+4380
8-15-38	8-21-36	25 52	25 55	έτ ે	6950	+4360
8-22-38	8-31-38	25 65	25 82	92°	6800	+4210
9-1-38	9-7-38	25 51	25 56	900	7050	+4370
9-8-38	9-14-38	25 70	25 70	78°	6300	+4150
9-15-38	9-21-38	25 72	25 74	87°	6600	+4110
9-22-38	9 – 30–38	25 72	25 72	86	6650	+4110

^{*}Temperature Data Obtained at City of Los Angeles