STALL RECOGNITION IN A LIGHT AIRPLANE

bу

P. J. RULON

A report on research conducted at the Educational Research Corporation, Cambridge, Massachusetts, under the auspices of the National Research Council Committee on Aviation Psychology, with funds provided by the Civil Aeronautics Administration.

Hay 1949

CIVIL AERONAUTICS ADMINISTRATION
Division of Research
Report No. 86
Washington, D. C.

Mational Research Council

Committee on Aviation Psychology

Executive Subcommittee

M. S. Viteles, Chairman

N. L.	Barr	,	P. M.	Fitts
J. K.	Bennett	·	Eric C	lardner
D. R.	Brinhall		F. A.	Geldard
D. W.	Chapman	•	A. I.	Hallowell
Glen 1	Finch		W. E.	Kellum

National Research Council
1949

LETTER OF TRANSMITTAL

NATIONAL RESEARCH COUNCIL

2101 Constitution Avenue, Washington, D. C. Division of Anthropology and Psychology

Committee on Aviation Psychology

May 18, 1949

Dr. Dean R. Brimhall Civil Aeronautics Administration Room 5217, Commerce Building Washington 25, D. C.

Dear Dr. Brimhall:

The attached report, entitled Stall Recognition in a Light Airplane, by P. J. Rulon, is submitted by the Committee on Aviation Psychology with the recommendation that it be included in the series of Technical Reports of the Division of Research, Civil Aeronautics Administration.

The present report, concerned with a study of the cues used by expert pilots in the recognition of the incipient stall, is the third in a series of reports on research in stall recognition and avoidance conducted by the Educational Research Corporation under the direction of Dr. P. J. Rulon. As a result of the first study, which revealed consistent failure on the part of student pilots, private pilots, and flight instructors in the detection of pre-stall conditions in light aircraft, the Committee on Aviation Psychology recommended that "regulations be formulated requiring the installation of approved stall warning devices in all private airplanes, providing field tests demonstrate that available instruments can be adequately maintained and function properly over an extended period."

The results of the present investigation support that recommendation and suggest additional steps which might be taken to render more adequate the indostrination of civilian pilots with respect to the problem of stall recognition and avoidance.

Cordially yours,

Morris S. Viteles, Chairman Committee on Aviation Psychology

National Research Council

MSV:maf

RDITORIAL FOREWORD

Research on stall recognition and stall avoidance has represented a major activity of the Committee on Aviation Psychology for the past two years. Interest in this problem developed, in large part, from a survey of CAA accident reports and from systematic studies, by D. R. Brimhall and R. Fransen, which indicated that many accidents in light aircraft follow an inadvertent stall, 1

The first study in the series revealed a marked inaccuracy among flight instructors, private pilots, and student pilots in recognizing the incipient stall.² Supplementary analysis of data showed that such accuracy in stall recognition as existed tended to be specific to the flight situation. In other words, pilots who can recognize the "edge of the stall" with relative accuracy in one maneuver or condition of flight fail to do so when flying under other conditions or when executing other maneuvers.³

The purpose of the present study was to determine the specific sensory cues employed by experienced pilots in recognising the approach to the stall. 4 One important finding was that variation in the uniform rate of turn was used to a great extent by experts in "calling" the incipient stall in this maneuver. It was noted that this cue has received little attention in literature generally read by the private pilot.

As a result of earlier studies referred to above, the Committee on Aviation Psychology recommended to the Civil Aeronautics Administration that "regulations be formulated requiring the installation of approved stall-warning devices in all private airplanes, providing that field tests demonstrate that available instruments can be adequately maintained and function properly over an extended period." The results of the present study further support this early recommendation, and it is again specifically recommended that regulations be issued requiring the installation of some form of lift, stall, or angle-of-attack indicator in every licensed private airplane.

¹Franzen, Raymond, & Brimhall, Deen R. <u>A study of serious and fatal accident records during 1939 and 1940</u>. Washington, D.C.: CAA Division of Research, Report No. 77, May 1948.

Rulon, P. J. A study of the accuracy of recognition of the incipient stall in femiliar and unfamiliar planes. Washington, D.C.: CAA Division of Research, Report No. 74, November 1947.

Rulon, P. J. The inconsistency of pilot performance in approaching the stell: relationship to flight conditions, experience, and age.
Washington, D.C.: CAA Division of Research, Report No. 79, September 1948.

Another experimental attack on this problem has been made through studies of flight performance under conditions in which the pilot is deprived of the use of certain sensory cues. The report on this investigation is in preparation.

Accompanying this primary recommendation is the suggestion that a regulation calling for the installation and maintenance of a ball-bank indicator, an airspeed indicator, a tachometer, and an altimeter may be considered as an alternative to the requirement that a stall-warning device be installed in all licensed private planes. However, this is definitely presented as a secondary recommendation, for consideration only if the situation makes it impossible to require the installation and maintenance of a stall-warning device. It is to be noted that, apart from the problems involved in maintaining four instruments, objections can be raised to the basic implication that the airspeed and ball-bank instruments be considered primary flying instruments to which major reference should be made as a source of stall cues.

The import of the recommendations outlined above is that the human organism is an inadequate stall detector and that dependence should be placed upon an instrument rather than upon the human organism for the recognition of the incipient stall. However, so long as such regulations are not in effect, and dependence is placed upon the human organism, steps should be taken to better prepare the individual to recognise the incipient stall. Specific recommendations to cover this situation are that:

- 1. CAA bulleting be revised to include a more definite statement of the cues which can be utilized by experienced pilots in recognizing the incipient stall;
- stress be placed during training upon the information that can be provided by instruments as a basis for understanding and appreciating the approach of stall conditions; and
- the same emphasis be placed upon uniform rate of turn as is already placed upon uniform angle of bank, uniform rate of climb and the like in the primary flight curriculum.

The present investigation was conducted under the auspices of the Committee on Aviation Psychology by the Educational Research Corporation, under the direction of Dr. P. J. Rulon. Acknowledgment should also be made

Certain objections have been raised to the suggestion "that the airspeed and ball-bank indicator be considered primary flying instruments and continually 'watched' by a student." In this connection it has been pointed out that "The airspeed indicator in personal aircraft, when newly installed, has an allowable error of five miles per hour at stalling speed. After a year or two of normal wear and tear, this error is probably ten miles per hour. Since in addition to this error, the stalling speed of an aircraft varies with the gross loading, the angle of bank, and the acceleration induced by the application of 'up elevator,' the airspeed indicator must be considered a most unreliable stall-warning indicator. Further, serious hazard to other aircraft would be created by this practice in areas of traffic congestion. In other words, we feel that the airspeed and ball-bank indicator as used in flight training should remain in the category of reference instruments for the purpose of detecting errors and establishing sound basic flight techniques." (Nemorandum to the Assistant to the Administrator for Research, GAA.)

to Mr. Leighton Collins and to Dr. David L. Webster who reviewed a preliminary draft of the report and made many helpful suggestions. A final study in the series, representing an evaluation of stall recovery procedures employed by expert pilots, is in progress.

May 18, 1949

Morris S. Viteles, Chairman Committee on Aviation Psychology

CONTENTS

		Page
EDI'	TORIAL FOREWORD	¥
SUM	MARY	xi
INT	RODUCTION	1
I.	PRELIMINARY PROCEDURES	1
	INSTRUMENTATION OF THE AIRPLANE	1
	SELECTING THE SUBJECTS TO HE EXAMINED	2
	CHARACTERISTICS OF SUBJECTS EXAMINED	8
	THE PRELIMINARY EXAMINATION	8
	Method	8
*	Results	12
	SELECTION OF SUBJECTS FOR INTERVIEW	17
	THE INTERVIEWS	24
	Selection of Maneuvers	24
	Interviews in the Air	25
	"Flight Testing" of Cues	26
	Interviews on the Ground	26
T T	RESULTS	27
77.	General Considerations	27
	The Straight Ahead Maneuvers	48
	The Turning Maneuvers	5 0
	Summary of Results by Sensory Clues	51
	the state of the s	
III.	IMPLICATIONS AND RECOMMENDATIONS	60
IV.	IMPLICATIONS FOR RELATED RESEARCH	69

SUMMARY

The purpose of this study was to determine how experienced pilots recognize the stall approach conditions of light airplanes in each of ten practical maneuvers. The questions investigated were: (1) what physical cues does a capable, experienced pilot utilize in recognizing the approach of stall conditions, beginning with the first departure from normal flight to the entry of the plane into the stall? and (2) what implications do these findings have for the instruction of student pilots?

Civilian flight instructors employed regularly as full-time teachers at airfields in eastern Massachusetts were used as the "experienced and competent pilots." Since previous studies have revealed that there is considerable variation in the performance of flight instructors with respect to the evaluation of stall conditions in light airplanes, it was deemed necessary to utilize a group of instructors whose performance in recognizing and avoiding stall conditions was definitely of a superior character. Consequently, 44 instructors were examined, and, of these, 22 with an above-average rating on the stall recognition test employed were selected for purposes of interview in flight and on the ground.

The first phase of the study involved testing the stall recognition performance of the 44 instructors. All instructors were asked to fly as close as possible to the stall, without actually stalling the airplane; and furthermore, they were told that they would be rated on the closeness with which they were able to approach the stall in each maneuver.² The performance of individual instructors was measured by an adaptation of a commercial stall-warning indicator, similar to that employed in previous stall studies conducted by the Educational Research Corporation and others. The results of this examination were taken as an indication of the abilities of the instructors to recognize the imminence of stall conditions, and performance on the test was used to select instructors who were particularly adept at recognizing these conditions.

The 22 instructors with above-average performance on the stall recognition test were interviewed under controlled flight conditions. The purpose of the interview was to secure the pilot's description of the physical cues which he used to recognize the approach of the stall in each of ten practical maneuvers. During the interview, the pilot was asked to describe

Rulon, P. J. A study of the accuracy of recognition of the incipient stall in familiar and unfamiliar planes. Washington, D.C.: CAA Division of Research, Report No. 74, November 1947.

²The names of the nine maneuvers utilized in the testing procedure are listed on the check sheet, Exhibit III, page 13.

³These were: (1) straight ahead -- climbing power, (2) straight ahead -- cruising power, (3) straight ahead -- power off, (4) straight ahead -- slow flight, (5) left climbing turn at constant bank, (6) right climbing turn at constant bank, (7) left gliding turn at constant bank, (8) right gliding turn at constant bank, (9) steep left turn at altitude, and (10) steep right turn at altitude.

the method whereby he detected the departure from normal flight conditions and the approach to the stall. Each pilot performed the ten maneuvers, in each case with coordinated controls.4

During the aerial interview each subject was asked to describe and demonstrate the cues he used in stall detection. If the cue proved to be definitely recognizable and capable of transmission in teaching and demonstration to the interviewer, it was accepted. If, however, the expert was unable to describe definitely the cue or cues he was using or if the interviewer could not learn to sense the cue, the interviewer did not accept the explanation.

All testing and interviewing were conducted in a Piper J-3 airplane. Since previous studies have revealed that pilots are more consistent and effective in recognizing stall conditions when flying a familiar airplane than when flying an unfamiliar plane, all instructors who were not acquainted with the Piper J-3 were instructed to familiarise themselves with it before being tested. Thus, the investigation used as subjects experienced pilots with above-average performance in recognizing stall conditions and who were flying a familiar plane.

F. . . d.

以下了是如此的方

一大

The second second

The descriptions and demonstrations by the 22 experts were classified according to the physical sense used in the identification of the cues — hearing, seeing, and touch. These are summarized in this report under the headings of <u>vision</u>, <u>sudition</u>, and <u>kinesthesis</u>. Provision was also made for the description of composite evidence of stall approach. Stages from normal flight to the stall are described as they occur in a steady approach; and, at each stage, the air speed and the tachometer readings are presented.

It was found that at each successive stage of departure from normal flight conditions in the direction of the stall, certain physical cues we visual, auditory, kinesthetic -- were utilized by the 22 subjects. In general, these cues are fairly definite in character and can be discerned by any capable student with some training and awareness. The cues listed in this report are definitely demonstrable. They can be described and demonstrated by a flight instructor to another pilot.

Perhaps the most striking finding of this study was the fact that the experts did not rely very much upon the information provided by the airspeed indicator and the tachometer, even in those maneuvers in which these instruments serve as accurate stall indicators. As visual cues, the pilots used instead the apparent attitude and behavior of the nose and wings as evidence of the departure of the plane from a normal flight attitude.

Another major finding was the distinction between straight-ahead stalls and stalls in turns. Apparently in straight-ahead maneuvers the most easily visible and the most easily teachable one to the stall approach is the air

⁴Otherwise an unreasonably large task would be involved in investigating all of the possible ways in which a stall could possibly occur.

⁵It is possible that the experts used cues they were not able to transmit to the interviewer, even with his assistance. Such cues would of course be of little value in training the private pilot.

speed and the engine speed, both easily determined by instruments available to the pilot. When the stall is approached in a turn, however, the air speed and techometer settings are not the same as in the straight-shead stall. However, another cue is available. The experts reported that the stall approach is signaled by "something going wrong with the turn." Sometimes this something was a faltering of the nose of the airplane in its swing around the horizon; sometimes the down wing would come up or go down. But the expected behavior of the airplane through the turn was disturbed, and this was used by the expert as a stall cue.

An examination of the published material on primary flight disclosed that neither of the available cues is emphasized in the instructional literature. As regards air speed, there are treatments of lift and drag with speed, and good expositions of stalling speeds under differing sets of conditions, but little or no suggestion that the airspeed indicator should be consulted when there is a question of pre-stall conditions in straight flight. As regards the turn, the "something going wrong" with it in the stall, there appears nothing in the standard instructional literature which even proposes that the nose of the airplane should progress uniformly around the horizon in still air. Nuch is said in this instructional literature about the desirability of uniform angle of bank, uniform rate of climb, uniform gliding speed, and so on, but nothing could be found by the investigators concerning, much less emphasizing, uniform rate of turn, or uniform sweep of the nose around the horizon.

It is believed that the findings of this study warrant the following recommendations:

 That consideration be given to regulations requiring, in all licensed training and "private" airplanes:

- a. the installation of some form of lift, stall, or angle of attack indicator and, (or possibly alternatively⁶);
- b. installation and maintenance of a ball-bank indicator and proper maintenance of the airspeed indicator, tachometer, and altimeter;
- That CAA bulletins be revised to include a more definite statement of the physical cues which can be utilized by experienced pilots in stall perception;
- 3. That in the training period, stress be placed upon the information that can be provided by instruments as a basis for understanding and appreciating the approach of stall conditions in straight-ahead flight and
- 4. That in the primary flight curriculum the same emphasis be placed upon uniform rate of turn (in still air) as is already placed upon uniform angle of bank, uniform rate of climb, and the like.

⁶Particularly if it cannot be demonstrated that available stall warning instruments can be maintained and function properly over a period of time.

STALL RECOGNITION IN A LIGHT AIRPLANE

IMPRODUCTION

This study was undertaken to answer the following questions: (1) What physical cues do capable, experienced pilots utilize in recognizing the approach of stall conditions? (2) What instruments of the light-plane panel are most effective and useful for assisting the pilot in recognizing these conditions? (3) What implications do these findings have for the instruction of student pilots?

Researches conducted under the auspices of the Civil Aeronautics Administration and under the auspices of the National Research Council Committee on Aviation Psychology have already shown that student pilots, private pilots, and flight instructors consistently fail to find the edge of the stall in light aircraft, in both familiar and unfamiliar planes. The present study sought, therefore, to inquire more deeply into the problem and to ascertain what recognisable cues experienced pilots used in recognizing the stall approach. It was believed that only the most capable and experienced pilots should be considered in this study, inasmuch as previous studies had revealed that performance in recognizing pre-stall conditions is highly variable and most unsatisfactory in the lower part of the range of performance. It was considered appropriate, also, to test and interview all subjects in a familiar plane, which had been equipped to provide instrument data to supplement information obtained in personal interview.

I. PRELIMINARY PROCEDURES

INSTRUMENTATION OF THE AIRPLANE

Before the present study could be undertaken, a preliminary investigation was carried out to determine whether an airplane could be instrumented in such a manner as to make possible a controlled study of the ability of pilots to recognize and avoid stalls. Experimental installations on a trainer airplane were tested in flight; and after refinements in the indicator mechanism were effected, a satisfactory stall-scoring system was developed.

The stall-warning device utilized in this investigation was similar to that described in detail in CAA Research Report No. 74. However, important modifications were made. The original stall-warning device involved the use of five vanes, installed in one wing of the airplane. For purposes of this study, a sixth vane was adjusted to indicate the edge of the stall in a steep turn, and a set of six vanes was installed in each wing of the airplane. The corresponding vanes on each wing, for example vane #1 in each

Rulon, P. J. A study of the accuracy of recognition of the incipient stall in familiar and unfamiliar planes. Washington, D.C.: CAA Division of Research, Report No. 74, November 1947.

wing, were wired in series by pairs so that it was necessary for both of the corresponding vanes on the two wings to trigger before their lamp on the clip-board was lighted. This procedure was employed to reduce the possibility of a lamp coming on when one vane was triggered by purely local turbulence, as well as to render the instrumentation symmetrical with respect to behavior in turns.

The wiring diagram for the stall-warning device is presented in Figure 1.

The testing and interviewing reported in succeeding sections of this report were conducted in a Piper J-3 high wing, tandem monoplane, 65 H.P., CAA designation NC41302. This plane was equipped with a sensitive altimeter, reliable (but not accurately calibrated) airspeed indicator, tachometer, and the special stall-warning installation.

SELECTING THE SUBJECTS TO BE EXAMINED

No specific requirement was established for the flight experience of those who were to serve as subjects. However, it was believed for two reasons that all subjects should be instructors: (1) instructors as a group should be skillful in precision flying, and should also be in a position to explain accurately what they do in flight; and (2) the test performance would reveal the degree of skill² possessed by individual instructors and thus give some idea whether or not tuition and explanation were all they should be in such instructional personnel.

No attempt was made to select instructors for the purpose of the initial test on a random basis. A letter was sent to all civilian airfields in eastern Massachusetts inviting the management to cooperate in the investigation. A copy of this letter and the enclosed answer sheet are presented in Exhibit I. In Exhibit II is presented the reply made to those offering cooperation. Replies were received from the following locations:

Address

<u>Airport</u>

Manager

Ayer, Mass.
Bedford, Mass.
Beverly, Mass
Billerica, Mass.
Brockton, Mass.
Draout, Mass.
Fitchburg, Mass.
Hanover, Mass.
Lawrence, Mass.
Marlboro, Mass.
Millbury, Mass.
Newburyport, Mass.
No. Grafton, Mass.
Norwood, Mass.
Revere, Mass.

 Ayer Municipal Lawrence G. Hanscom Field Beverly Shawsheen Pines Brockton Richardson Pitchburg Clark Lawrence Marlboro Windle Plum Island Grafton Norwood Municipal Revers Worcester

Paul Buckingham Clinton H. Sperry Daniel Ginty Russell D. Totman Nat Treger Charles B. Reed, Jr. Joseph A. Lamothe George Tillinghast Joseph Mahoney Donald V. Lacoupure Robert Swenson Warren S. Frothingham Joseph A. Ruseckas John Phillips Julius Goldman Francis T. Fox

²And judgment, since each subject was trying to get close to whatever he meant by the stall.

EXHIBIT I

EDUCATIONAL RESEARCH CORPORATION 40 Quincy Street Cambridge, Massachusetta

5 April 1948

Dear	
for the purposes of research under Council Committee on Aviation Psycho	s of tests in the air and on the ground the auspices of the National Research clogy. We therefore need a number of , who would be hired at their normal
	t either at Bedford Airport or at your venient for the pilots at times to be
	ateful if you would kindly tell us the . An answer sheet is enclosed, as well
We shall look forward to hear! afterwards,	ng from you and contact you shortly
•	Yours sincerely,
	EDUCATIONAL RESEARCH CORPORATION
	Ву

EXHIBIT I (Enclosure)

EDUCATIONAL RESEARCH CORPORATION 40 Quincy Street Cambridge, Massachusetts

5 April 1948

ANSWER SHEET

An	answer	from	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•	•	•,	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•
			•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•,	•	•	٠
			•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Tbe	ere are				iı	nst	trı	uei	to	CB	W	or]	ki	ng	OI	n ·	th:	ls	ſ	le]	ld,	•					
	nave cho																						60	to) l	3 a 1	76

EXHIBIT II

EDUCATIONAL RESEARCH CORPORATION 40 Quincy Street Cambridge, Massachusetts

17 April 1948

Dear Sir:

Thank you very much for your reply to our inquiry.

Our investigation seeks to determine how and why pilots are able to recognize the approach of a stall. Earlier studies show that there are appreciable differences between pilots' abilities to do this (ref. P. J. Rulon, A study of the accuracy of recognition of the incipient stall in familiar and unfamiliar planes, C. A. A.., Report No. 74, November 1947). We therefore wish to discover why, and to find out how some pilots are able to do it.

Our plan is to test a number of instructors and determine their abilities to recognize stall characteristics and to fly as near to the stall as possible without actually stalling in a number of maneuvers. From these instructors, some will be selected for further employment, and will be interviewed to determine exactly how they accomplish this recognition.

We feel you realize the significance of our investigation and the contribution that it could make to the safety of flying in the future. We hope that we can bring this research to a successful conclusion and make suitable recommendations that will improve training programs and result in the eventual elimination of one of the dangers of private flying.

Thank you for your interest and cooperation.

Yours sincerely,

EDUCATIONAL RESEARCH CORPORATION

By Okanico G. H. Sherman

CHARACTERISTICS OF SUBJECTS EXAMINED

- - 5 -

The personal data pertaining to the age and flight experience of the instructors who volunteered for the investigation indicated definitely that the group as a whole was well qualified in terms of experience. All instructors were asked to state their age, the year in which their first solo flight occurred, the total number of flight hours, and the total number of flight hours logged in the 90-day period just previous to the examination. These data are summarized in the following paragraphs and in Tables 1, 2, and 3 following.

Age. With respect to age, the 44 instructors ranged from 21 to 46 years. The average age was 28 years; the median age, 28.5 years. Complete data on the age of the 44 instructors examined are presented in Table 1.

Flight Experience. With respect to flight experience in terms of total number of solo hours, there was considerable variation among the members of the group. At the lower extreme, three pilots had logged approximately 250 hours, while at the upper end of the range one pilot had logged a total of 8,200 solo hours. For the group as a whole, the average number of hours of flight experience was 2,967.5 hours; the median number, 2,750 hours. One pilot first soloed in 1928, and at the other extreme, another pilot soloed as recently as 1946.

Hours in Last 90 Days. The number of flying hours logged during the 90 days just preceding the examination was also determined. In each case, the instructor was asked to supply first, the total number of flying hours during this period in all types of planes, and secondly, the total number of flying hours in a plane of the same or similar model as that used during the examination. As shown in Table 3, the total number of flying hours during the past 90 days ranged from 1 to 350 in all types of aircraft and from 0 to 350 in a Piper J-3 trainer.

THE PRELIMINARY EXAMINATION

All subjects were told of the general purpose of the experiment and were asked to familiarize themselves with the Piper J-3 to be used during the examination. In certain instances this was done by the instructors actually flying the Piper trainer used in the experiment; in others, the subjects obtained a similar model plane from their own or nearby airport and practiced in advance of the examination. All of the subjects who had not had extensive flying experience during the last 90 days in a Piper trainer were anxious to practice before the examination and were encouraged to do so. The purpose of this procedure was to make as nearly comparable as possible the results for all subjects in the examination.

Method

The general purpose of the examination was to provide a basis for selecting a group of the most capable instructors with respect to the recognition of the stall conditions in the test plane.

Bere & marke

TABLE 1
DISTRIBUTION OF AGES OF THE FORTY-FOUR
INSTRUCTORS INITIALLY EXAMINED

Age	No.	Cumulative No.
46	· 1	44
39	3	43
38		40
37	1 1 2	39
36		38
35	0	36
34	0	. 3 6
33	2	36
32 31 30	2 2	34 32
31	2	32
30	5	30
29	3	25
28	4 2	22
27	2	18
26	7	16
25	1.	9 8
24	1	
23	3	7
23 22	1 3 3 1	4 1 ·
21	1	1 ·

Average age - 28.0 years Median age - 28.5 years

TABLE 2
TOTAL FLIGHT HOURS OF THE FORTY-FOUR
INSTRUCTORS INITIALLY EXAMINED

Hours	<u>No.</u>	Cumulative No.
8,200	1	44
8,000	. 1	۷3
7,000	1	44 43 42 41
6.800	1	Á1
5,800	1	40
5,400	1	39
5,000	2	38
4.400	1 1 1 1 2 1	3 6
4,000	`4	35
3,900	ĺ	31
3,800	. 1	30
3,500	1 1 2 1	30 29
3,300	1	27
3,000	4	26
2,500	2	22
2,100	1	20
2,000	1	19
1,900	1	18
1,800	1	17
1,500	. 6	16
1,400	1	10
1,300	,1	· 9
1,100	1	8
1,000	` 2	7
800	4 2 1 1 1 6 1 1 2 2	5
250	3	. 5 3
	Total 44	

TABLE 3

HUMBER OF HOURS FLOWN DURING PAST HINETY DAYS BY
THE FORTY-FOUR INSTRUCTORS INITIALLY EXAMINED

Houre		Ту	l Plane		In Same or Simila Model Planes					
		H Ma	Cum. "N"		a Nu	Cum. "N"				
350		1	44 43		1	44				
300	•	2	43		0	43				
250	•	2 2	41		0	43				
200		5	39		0	43				
180		5 1 1	34		2	43				
175		1	33		0	41				
160			32		0	41				
150		11	31		1	41				
140		1	20		0	43 41 41 40 40 39 38 37 36 32 31 30				
135			19		1	40				
130		0 0 1	19		1	39				
120		1	19		1	38				
110		1	18		1	37				
100			17		4	36				
90		1	13		0	32				
80		0	12		1	32				
75			12		1	31				
70		Ŏ			1	30				
50		ì	9		2	29 27				
40		2	ė		2	27				
30		3 0 1 2 3	9 9 8 6 3 2 2		2	25				
20		í	3		1	23				
15		ō	2		ī	22				
12		ŏ	2		ī	21				
10		ī	. 2		1	20				
1		ī	. 1		2	19				
0		ō	0		17	17				
	Total	44		Total	44	,				

A uniform procedure was utilized during each preliminary examination. The examiner in each case discussed the nature of the experiment which was to be conducted, showed each subject the score sheet, and gave general directions. Each subject was told that he would be scored on his nearest approach to the stall, in each of the nine maneuvers listed on the score sheet. (See Exhibit III.) He was warned by the examiner that he should not stall the plane, since the purpose of the test was to indicate his ability to fly as close to the edge of the stall as possible and to recover without actually stalling the plane.

During the first phase of the examination, the examiner obtained the personal information on the age and flight experience of the subject, and assembled his score sheet, clip-board, and other equipment.

The examinee was seated in the front seat of the airplane. This insured that his vision outside the aircraft was unobstructed. The examiner was seated in the rear seat and equipped with clip-board on which the indicator lamps and check lists were fastened. This method of seating also insured that the subject did not see how many lamps were lit during the maneuvers.

During the flight the examiner was entirely noncommittal. In no case did he inform the subject of his performance. He did not indicate how many vanes had been tripped, even when the subject stalled the aircraft. During the flight, the examiner recorded opposite the appropriate maneuver the number of the lamp which indicated the closest approach to the stall. A further note was made as to whether the subject made a safe recovery or whether the aircraft subsequently stalled. A further note of the turbulence which was experienced during the flight was also made.

Following the examination the subject was told that of the group being examined initially, a number would be selected for interviews. The subject was not informed of his score, and no further explanations were made at this juncture.

The preliminary examinations of the 44 instructors were carried out during the period 26 April through 24 May 1948. Examinations were conducted at each of the airfields listed on page 2.

Results

The examiner's record sheets were collected at the research center at Cambridge, Massachusetts, and here they were inspected and scored, and the results of the examinations were compiled and analysed.

Scoring Procedures. The observation sheets were scored in the following manner: (1) a value of 1 was assigned to each vane tripped, up to a maximum

³Mr. John Lindstrom served as examiner in this phase of the investigation, His job as examiner did not require expert skill in flying, but he was nevertheless selected for the work on the basis of his experience as a commercial pilot and flight instructor.

The subject was not told what was meant by the expression, "actually stalling the plane." He was left to suppose that he was to get as close as possible to what he meant by the stall.

of 4 in all maneuvers except for the right and left steep turns at altitude; (2) a maximum of 5 was assigned to the right and left steep turns at altitude; (3) when the pilot actually stalled the plane, he was assigned a score of 1 less than the maximum allowable for that maneuver. The maximum score value of 4 in the case of all maneuvers except the right and left steep turns at altitude corresponds to the maximum number of lamps which can be lighted in each maneuver before the airplane actually stalls. In the case of the two steep turns at altitude, 5 vanes could be tripped without actually stalling the plane. In all other maneuvers, however, the fifth light came on just as the airplane stalled.

Scoring when Subject Stalled. The procedure of scoring the performance when the subject actually stalled the airplane can be illustrated simply. In the left climbing turn, if the pilot lit 4 lamps and did not stall the airplane, he was assigned a score of 4 on that maneuver. If he lit 5 lamps, which indicated a stall, he was assigned a score of 4 minus 1, or 3; that is, 1 less than the maximum allowable. The maximum attainable score on the nine assigned maneuvers was therefore 38: 4 for each of 7 maneuvers, and 5 each for the remaining 2 maneuvers.

Scored on this basis, the performance of the 44 instructors ranged from 25 to 37, as shown in Table 4. The average score for the group was approximately 32; the median score, approximately 33. Twenty-five of the 44 instructors received scores of 33 or above out of a possible 38, whereas only 3 received a score of less than 30.

TABLE 4

Distribution of Examination Scores

Score	No. of Instructors	No. of Instructors at and Below Fach Score
38	0	44
37	i	74 .
36	2	43
35	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
34	ıó	41 36
33	7	. 26
37 36 35 34 33 32 31 30 29 28	ģ	26
31	7	19
30	<i>3</i>	10
20	4	7
25 25	1	3
	0 ,	2
27	1	2
26	0	1
25	1	ī
	Total 44	

Mean - 32 Median - 32.9

The state of the s

These scores were then analyzed with respect to number of maneuvers performed perfectly as defined by the maximum number of points allowed in the scoring system. The distribution of total scores by maneuvers performed perfectly is shown in Table 5.

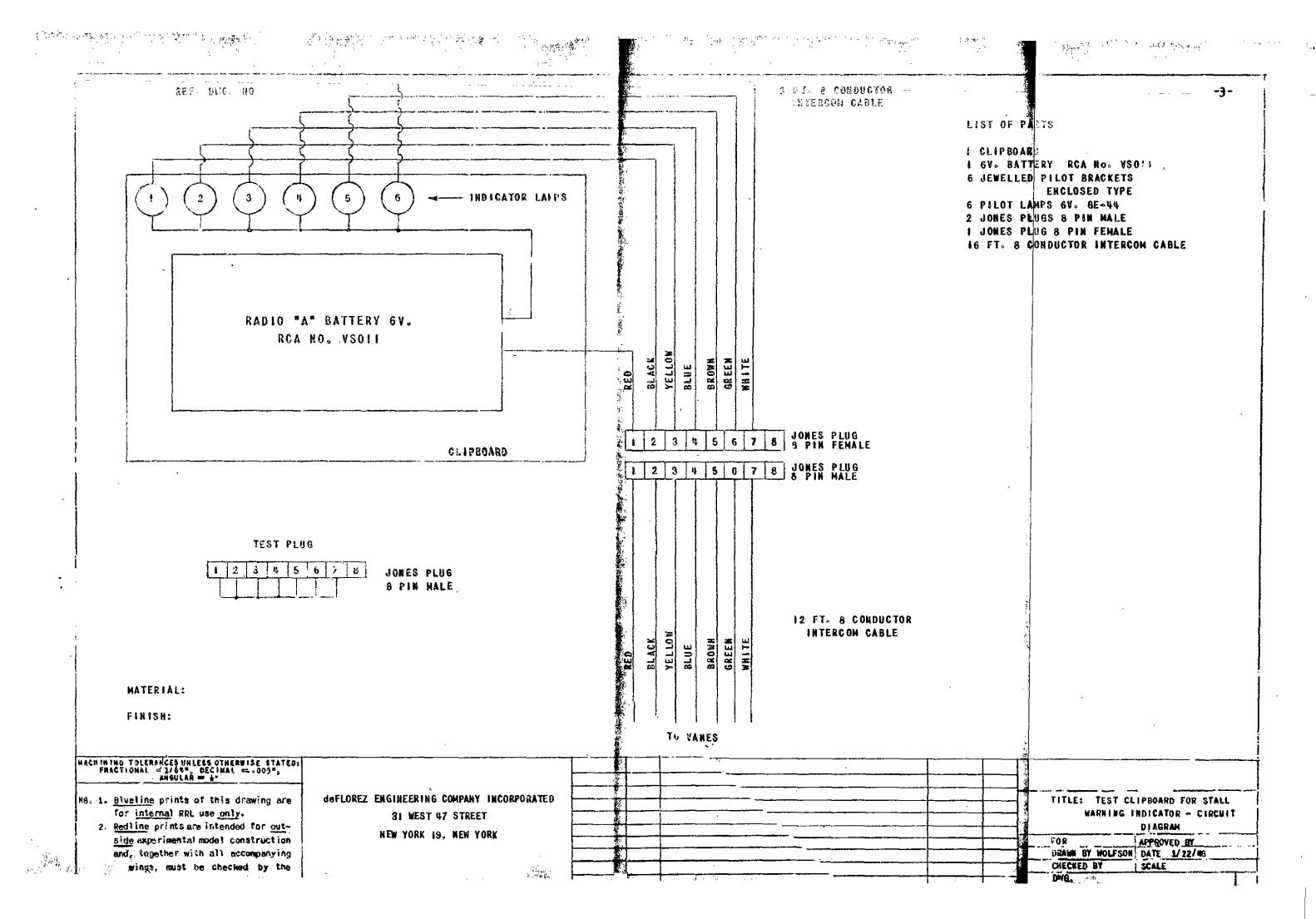
Distribution of Scores. From this table it will be noted that 25 instructors received maximum scores on 5 or more maneuvers. The average number of maneuvers performed perfectly, as here defined, was approximately 4.8, as was the median. Two subjects received the maximum score on 8 maneuvers, one of these subjects received the highest score assigned to any member of the group. This individual had logged approximately 8,000 hours of solo flying time. A total of 7 instructors received maximum scores on 3 or less maneuvers, while only 1 subject failed to receive a maximum score on any maneuver.

The score data were further analyzed with respect to age and flight experience of the subjects. These data are summarized in Tables 6 through 11, and are discussed briefly in the following paragraphs.

Distribution by Age. There was no discernible relationship between the age of instructors and the scores received on the stall recognition test. Of the 25 subjects who received a total score of 33 or above, the range in age was almost the maximum range in age for the entire group -- 22 to 39. It may be of interest to note that one of the youngest members of the group, a subject, age 22, received the second highest score, whereas the oldest subject, age 46, received the third lowest score. The data shown in Table 6, however, are so inconclusive that it would have been a highly questionable procedure to select instructors for interview on the basis of age alone.

TABLE 5

NUMBER OF MANEUVERS RECEIVING MAXIMUM SCORE VALUE.
IN THE FLIGHT EXAMINATION


No. of Manauvers	No. C	of Instructors	Instructors at and Below Each No.
9		0	44
8		2	44.
7		6	, 42
6	•	6	42 36
5		. 11	30
4		12	19
3		5	Ž
2		Ö	. 2
1		1	2
.0		1	. 1
	Total	44	

Mean - 4.8 Median - 4.8

TABLE 6
DISTRIBUTION OF SCORES BY AGES OF EXAMINEES

Age in Years

Scores	21	22	23	24	25	26	27	28	29	30	<u>31</u>	32	33/	<u> 36</u>	37	38	39/	46	Total
38		,											-					,	•
37		-						-									1		1
36		1			1														2
35			1					1		1	1		1						5 .
34						4	1	1		•		1	1		1	1			10
33			1.	1		1				1	1			2					7
32	1		1	-		1	1	1	2	1							1		9
31									1	1		1.							3
30		1						1		1							1		4
29															-			1	1
28																			
27		1						_											1
26																			
25						1										····-			1
Total	1	3	3	1	1	7	2	4	3	5	2	2	2	2	1	1	3	ı	44

Distribution by Flight Experience. Distributed according to total number of solo flying hours, the performance of the 44 instructors showed an equally striking variation. These data are presented in Table 7. Despite the fact that the lowest single score assigned was obtained by an instructor who had only 250-300 hours total flying time, and the highest score was obtained by a 39-year-old instructor who had more than 8,000 flight hours, the general pattern of performance on the test was definitely not highly related to the amount of solo flight hours logged.

Tables 8 and 9 present a distribution of scores by number of flyinghours in all types of aircraft and similar aircraft during the 90 days just preceding the examination. Although there is some degree of relationship between the performance on the test and number of hours spent in all types of aircraft during the last 90 days, this relationship is not at all pronounced.

Tables 10 and 11 present analyses of the examination scores based on the number of maneuvers receiving maximum scores. The method of scoring dictated that the total score assigned each individual was highly related to the number of maneuvers on which the individual received the maximum number of score points. This is shown in Table 10. A further analysis of relationship between number of maneuvers of maximum score value and number of solo hours of flight experience is shown in Table 11.

Distribution by Turbulance Conditions. Since it was impossible to test all subjects under the same weather conditions, an effort was made to estimate the amount of turbulance which applied during each examination. The examiner established four categories of turbulance based on his estimate of the flying conditions. The categories established were: (1) none, (2) slight, (3) moderate, (4) heavy. As indicated in Table 12, only two examinations were conducted under heavy turbulance conditions. Twelve of the 48 examinations were degree of turbulance. The highest score was made under conditions of slight turbulance, while the lowest score was made under similar conditions. The other scores are distributed in such a manner as to indicate that turbulance did not markedly influence performance on the stall perception test.

General Considerations. The data presented in the preceding twelve tables indicate generally that examination methods were necessary to determine those instructors who were most capable with respect to the recognition of stall conditions. There was no reason to assume that a particular chronological age range could be defined as most indicative of capability in this respect, but there is some logical support for the assumption that extensive flight experience should result in some increase in the individual's performance in recognizing stall conditions. These data, then, indicate very clearly that a preliminary examination of performance in recognizing stall conditions was a necessary step in the investigation.

SKIRCTION OF SUBJECTS FOR INTERVIEW

The above analyses of performance on the stall-recognition test provided the basis for selection of the subjects to be interviewed. Following the com-

TABLE 7

DISTRIBUTION OF SCORES BY NUMBER OF TOTAL SOLO HOURS OF EXAMINEES

Mumber of Hours

	Score	250-300	800	1000	1100	1300	00 4 1	1500	1800	1900	2000	2100	838	3000	3300	3200	3800	3900	0001	00 1	2000	87.	5800	6800	7000	8000	8200	rota1	•
	38																									·			
•	37									-													-	-		1		1	
-	3 6	1												1			-							•				2	
	35			1				1	1				1					~	1									5	
	34				,			2		1	1	1				1			1			1	1			,	1	10	
	33		1											1.					1	1	1			1	1			7	
-	32		1	1		1		2			,	•	1	2			1											9	
-	31				1											1			1		1							3	
,-	30	1						1										1	1									4	
:	29														ı													1	
	28										•		`													-			
`	27						1																					1	
	26																								,				
<u>.</u>	25	1									-					 -								 .		·		1	

TABLE 8

DISTRIBUTION OF SCORES BY NUMBER OF FLIGHT HOURS IN ALL TYPES
OF AIRCRAFT DURING LAST NINETY DAYS

Mumber of Hours

38 37 36																			
36																	1		1
50			1										•				-	1	·2
3 5		1			1						1		1		1				5
34		5		1					1	1	5			1	1	1			10
33					1		2				2				1		1		7
32 1			1				1	1			3	1			1				9
31	1								,		1				1				3
30					ı	1	ı				1								4
29		•									1								1
28																			
27																ı			1
26																			
25	1.		~~·						-										1

TABLE 9

DISTRIBUTION OF SCORES BY NUMBER OF FLIGHT HOURS IN SIMILAR AIRCRAFT DURING THE PAST NINETY DAYS

Rusber of Hours

Score	<u>0</u>	_1	10	12	<u> 15</u>	20	30	40	50	70	73	80	100	110	120	130	135	150	180	<u>350</u>	Total
38																					
37													1,		1					-	ı
3 6								1												1	2
35	2			1	1																4
34	3					'1	2								1		1		2		10
33	3								2		.1			ı		1					8
. 32	3	2						1				1	1					1			9
31	2		1																		3
30	3									1											4
29													1								1
28					,																
27 .													1								1
26		•														1					
25	1																		على الجماعة		1
Mode 1	17	2	,	,	,	1	2	2	2	,	,	,	١.	,	•			•	2		b b

TABLE 10
DISTRIBUTION OF SCORES BY MANEUVERS
RECEIVING MAXIMUM SCORE VALUE

Number of Maneuvers

Score	_0	1	2 3	4	_5_	6	_7_	8_		Total
38										ı
37								٠ ٦		1
36	,						1	i		, 2
3 5					{	2	3			5
34					6	2	2			10
33				3	2	2				7
32			3	3	3					9
31	•			3						3
30			2	. 5						14
29		•		. 1						l
28					`					
27		1								1
. 26	•			٠					•	
25	1	,	·	,		,		·		1
Total	1	1	5	12	11	6	6	2		lέlέ
4										

(See text for explanation of the ___)

TABLE 11

DISTRIBUTION OF MANEUVERS RECEIVING MAXIMUM SCORE VALUE
BY NUMBER OF FLIGHT HOURS

817 8	Q									M	m be	r	of A	lour	' 8												
Manouvers	250-300	8	1000	1100	1300	1400	1500	1800	1900	2000	2100	&	3000	3300	3500	3800	3900	\$000	0071	5000	5 4 00	5800	999	7000	8000	8200	Total
9				,			,							•									_				
8								3					1							•					1		2
. 7	1							1				1			٠			2	•	1						•	6
6		1	1				1		1			•	,										1			1	6 -
5		1	-		1		3			1	1				1			1		1	1						11
4	1		1	1			1						3	1	1				1	1.				1			12
3							1					1				1	1	1.									5
2																	•										
1						1																					1
0	1											,															1
Total	3	2	9	,	,	1	6	3	٠,	,	•	2	l.	1	3	1	,	L.	,	3	7		•	•		,). 1.

までいていていい、これものでいいかできるとは、それものできるというないでは、これがないが、これではないないでは、これがないできないできないできないできないできない。これはいいからいいできないが、これが

Total 3 2 2 1 1 1 6 1 1 1 1 2 4 1 2 1 1 4 1 3 1 1 1 1 1 1 4 4

_

TABLE 12
DISTRIBUTION OF SCORES BY ESTIMATED TURBULENCE
DURING EXAMINATION

Amount of Turbulence

Score	lione	Slight	Moderate	Heavy	Total
38	•				•
37-		ı			1
36		1 .	1	•	5
35	5	•	3	•	5
34	2	2	6		10
33	2	2	2	1	7
32	2	1	5	1	. 9
31	1	1.	1		3
30	2		2		4
29	1				-1
28					
27			1	,	ı
÷ 26					
25		· 1			1
Total	12	9	21	2	<u>l</u> tļ

pletion of the preliminary examination, it was tentatively decided to interview those subjects whose performance was above the average or typical performance of the group of 44 instructors examined. It was assumed that a group of 22 subjects would be sufficient for purposes of interview, and that those subjects who were most proficient in the recognition of stall conditions, as determined by the test employed, would provide the most adequate descriptions of physical cues employed in stall perception.

The group of 22 subjects utilized in the interview procedures was selected by a two-fold process, each related to the other, but varying by the penalties assigned to those subjects who went so far as to stall the airplane. Those subjects whose scores were above average were first tentatively selected. In order to eliminate any subject who made a high score by frequently stalling the airplane, a secondary screening was employed. The purpose of this screening was to select those who consistently came as close to the stall as possible without actually entering into the stall. These individuals were selected by identifying the subjects who performed more than the average number of maneuvers at maximum score value. The 22 subjects finally selected were those who had not only scored highest in the examination flight, but who also most consistently lighted the maximum number of lamps in performing a stall approach in each maneuver. All subjects accepted for interview received a total score on the stall-recognition test of 33 or more and also performed 5 or more of the 9 maneuvers with maximum score value. These are the 22 above and to the right of the ___ in Table 10.

THE INTERVIEWS

これをあかってはから、そうこうのではです。 ちょうない ないないかん あがってい ハミントの家 しっちっぱい 事かっからない かかってんせ ちゃんいっぱい いっぱい

The interviews employed in this investigation involved two stages:

(1) a flight interview, during which the subject performed a series of ten maneuvers and described while in flight the physical stimuli he utilized in recognizing the stall, and (2) confirming interviews held on the ground after the flight performance. The general methodology employed in these interviews is described in succeeding paragraphs. A team of Educational Research Corporation interviewers flew with the selected "experts" and, on occasion, served as a team in interviewing subjects on the ground.

Selection of Maneuvers

The ten maneuvers employed were selected because of their application in flight instruction and learning. All of these maneuvers are discussed specifically in CAA bulletins and are taught in training programs. The maneuvers were: (1) straight shead with climbing power, (2) straight shead with cruising power, (3) straight shead with power off, (4) straight shead slow flight, (5) left climbing turn at constant bank, (6) right climbing turn at constant bank, (7) left gliding turn at constant bank, (8) right gliding turn at constant bank, (9) steep left turn at altitude, and (10) steep right turn at altitude.

⁵Mr. Francis G. H. Sherman, Mr. Donald H. Hunt, and Mr. Philip H. Wye. Each of these workers had had many hundreds of hours of flight experience and in addition had specialised in personnel work in his university studies.

This study did not consider "high-speed stalls." This maneuver is not required by the CAA for private pilots, and furthermore, there seems to be no reason why any pilot should get into a high-speed stall unless he is doing maneuvers not included in the CAA manual for private pilots. The crossed control stall was also excluded from this study. This study was therefore concerned with standard, practical maneuvers which all private pilots are required to perform and in which stall conditions may be approached inadvertently in departures from normal flight conditions.

Interviews in the Air

Before the flight, each "expert" was informed of the general purpose of the flight, and what was expected of him. He was told to report to the interviewer what he saw, heard, or felt in the approach to the stall in each maneuver, and to answer any question which might be put to him by the interviewer. He was requested to describe both his impressions and reactions as accurately as possible.

During the flight interviews the expert was seated in the front seat, in full view of all of the instruments with which the plane was equipped. These instruments were: a sensitive altimeter, tachometer, airspeed indicator, ball-bank indicator, compass, oil pressure and temperature gauges, and an accelerometer. The subject was given no advanced instructions concerning the possible use of instruments. He was told merely to proceed in each maneuver with a constant throttle setting from normal flight to the very edge of the stall, as directed by the interviewer. No restriction or suggestion was made concerning the possible use of instruments.

During the departure from normal flight, the interviewer observed the subject's performance and checked it against the lamp indicators and the other instruments installed in the plane. The subject described the sensory stimuli employed in recognizing the approach of stall conditions, and these were checked by the interviewer, both with and without the lamp indicators. All stimuli which could be communicated by demonstration to the interviewer were accepted as valid. That is, when the subject could describe a characteristic of the plane in the approach to the stall and when this could be confirmed by the interviewer, then the explanation was accepted and recorded.

The interview conditions were specifically designed to prevent the subject from having access to the information provided by the stall-warning indicator. It was deemed especially important that the subject could describe and demonstrate the warning signals he experienced without the use of this device, for one purpose of the investigation was to determine what information is available to a pilot when such a special instrument is not.

⁶An advance of throttle setting was required immediately before all climbing maneuvers. This was standard practice at the sirports where the interviews were conducted.

⁷Cues not transmissible to our interviewers would not be readily transmissible to a student pilot and therefore would not have such value in the curriquelum for the private pilot.

"Flight Testing" of Cues

Following the completion of the first eight interviews, charts or check lists of cues which the eight experts used were prepared on the basis of the flight demonstrations and discussions of the aerial interviews. These preliminary charts were then flight tested by the staff of interviewers. Several corrections were made in the case of cues which were not quite definite, and the observations of the airspeed indicator and tachemeter were confirmed and added. (The data given by these two instruments were not obtained from the expert pilots. They were determined by the interviewing staff, and were observed and checked during succeeding interviews.)

Revision of the preliminary lists of cues proceeded through the first 14 interviews. The preliminary lists were revised, corrected, and additions were made until, at the end of 14 interviews, a point was reached where no significant corrections or additions were made to the list. All of the cues provided by the remaining 8 subjects were classified in the revised list. Thus the test of whether more interviews were needed was whether additional interviews added any information or types of cues. That the last 8 interviews fitted into the pattern derived from the first 14 showed that the point of diminishing returns was reached and safely exceeded.

Interviews on the Ground

The aerial interviews were supplemented by interviews on the ground, with all available personnel taking part. The individual flight was discussed thoroughly, and confirmation of questionable points was secured or, failing confirmation, was deleted from the tables of acceptable clues. In this way, aerial observations were substantiated under unburried circumstances. Usually, the subjects were quite willing to enlarge upon their feelings and to describe them more adequately. These interviews were not all recorded, but sufficient notes were made in all cases to enable the interviewers to make adequate corrections and additions to the list of cues.

On six occasions, discussion of observations was invited from other instructors who had taken the preliminary examination but had not been selected for interview purposes. These instructors happened to be present when subjects were being interviewed and showed considerable interest in being asked to give corroboration from their own experience.

⁸The interviews in the air and on the ground took place at the following airports:

	Air	Ground
Beverly	2	
Shawsheen Pines (Billerica)	. 2	
Bolton	1	2
Brockton	ı	1
Richardson (Dracut)	1	
Fitchburg	2	1
Norwood Municipal	1	
Plum Island (Newburyport)	1	2
Revere	2 '	
Worcester	7	

II. RESULTS

The information obtained in the interviews is presented in this report in the form of summary charts. The ten charts, one for each of the ten maneuvers employed in the investigation, are designed to permit a pilot to familiarise himself fully with the sensory cues that may be encountered when he departs from normal flight in the direction of the stall. Instrument readings are included for each successive stage of departure from normal flight, as the stage is indicated by the number of lamps lighted on the stall-warning indicator. The instrument data pertain only to the Piper J-3 airplane used in the investigation, but the indications are clear enough to enable pilots to recognize dangers in similar light aircraft.

In these charts, the physical cues are grouped according to the headings <u>Vision</u>, <u>Audition</u>, <u>Kinesthesia</u>, and <u>Composite</u>. The <u>Composite</u> category represents performance which involves more than one of the primary senses and pertains particularly to conditions which are descriptive of the airplane rather than of experiences of the pilot.

These charts may be read as follows: the first column labeled <u>Lights</u> ranging from 0 through 5 indicates successive stages of departure from normal flight toward stall conditions in terms of the vans installation. The corresponding values for the airspeed and tachometer readings are presented opposite. In the columns devoted to the physical cues, certain cues are followed by a number in parentheses. This number corresponds to an explanatory note following the chart.

General Considerations

It will be seen from these charts that in all maneuvers there is the expected decrease in r.p.m. and airspeed readings, as the airplane departs from normal flight and approaches the stall.

In power-on maneuvers, the r.p.m. decreases in an approach to the stall with a given throttle setting. Consequently, there is an increased laboring of the engine which, in turn, partly causes an increased vibration of the aircraft. Amount of vibration varies with each aircraft, and it appears that the amount that is characteristic of an individual aircraft at the point of stalling can be determined only from experience with it.

For the testing aircraft, it was found that for all maneuvers the indicated stalling speed varied between 28 miles per hour for straight-ahead maneuvers and 37 miles per hour in the steep left turn. The rated stalling speed (at standard temperature of 59° F.) is 38 miles per hour. The discrepancy between these indicated stalling speeds and the speeds called for by the manufacturer is partly due to differences among maneuvers, and partly due to faulty calibration of the airspeed indicator employed in this study. The indicator used repeated its readings very well, always giving the same reading under the

Spiper Aircraft Corporation, Piper J-3 Owner's Manual, p. 47. Our air-speed meter was reliable, but was not accurately calibrated.

CHART I

STRAIGHT AHEAD, CLIMBING POMER

Composite		Back pressure required to keep the nose and incilnation of wings above normal climb; need for right rudder to maintain direction (4).		Need for appreciable snownt of right rudder to maintain heading.	Controls musby (11); allerons slightly effective (15).		
	Kinesthesis	Resistance to back presente on stick (11); wibration felt in stick and body.	Considerable vibration felt in etick and body (12).	Rudders offer little resistance.	Slight sinking feeling (13).		
STRAIGHT AHEAD, CLASS	Audition	Engine labors (9).	Noticeable labor- ing of the engine.			guiet down immed- fately before the stall (10).	
	Vision	Nose and inclination of wings above normal climbing position (3); nose tends to turn left (4).	Climb slows down (5).	Aircraft slows down relative to the ground (6); noticerable tendency for nose to move to the	left. Climb stope; alti- meter remains con- stant (1); nose may drop slightly (7).	Loss of altitude (8); nose drope and air- oraft picks up speed after the stall.	
	Tacho-	2300	2150	2150	2150	(2)	
	Cated Air- speed	% %	45	07	8	80 CS	
	Lights	o H	8	m	7(1)	ī	

Straight Absed, Climbing Power - Notes

.\

We could fly continuously at light number 4.

This might Plene and instrument wibrating so violently that it was difficult to get a reliable reading. This is due to the effect of torque. With power on, the nose tends to move to the left. The nose and inclination of wings remain above normal and increase toward the stall. R

 $\widehat{\mathbb{C}}$

But there not be noticed by a good pilot, as he might "autometically" correct this tendency, through uncon-This may not be noticed without a rate-of-climb indicator, but the tendency can be noticed on a

(2)

Here there is a tendency, if using uncoordinated controls, for the plane to oscillate errationily. This state continues through light 4, until one appears to be "elmost stopped" at light 5. is doubt that this would be noticed at altitude unless pilot expecting it. 9

Altitude cannot be maintained with the 5th lemp lit.

With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur, which may be so small that it will not be noticed by all pilots. 8

9

With every decrease in the airspeed, a corresponding decrease will occur in the effectiveness of the controls. This has been described by most pilots as "mushy," "sloppy," "sluggish," etc., A few seconds before the stall the engine seems to quiet down. 2

the controls to change the attitude of the airplane: a decrease in the responsiveness of the plane what is meant is a decrease in the pressure required to move the controls or a greater movement of With the engine laboring (note 9), there is a corresponding vibration felt in the stick and body which increases as the laboring of the engine increases. E

<u>a</u>

In fact, it is possible This is a feeling that the alreraft wasy drop emays from the pilot.

Just before this point very little resistance is offered by the elevators. to stall the sircreft (our Piper J-3) with just a slight finger pressure. (13) E

Any uncoordinated movement will precipitate the stall in direct ratio to the degree of the uncoordination of the controls. The use of allerons at this point will predipitate the stall. (31)

CHART II

THE COLUMN THE PERSON AND THE PERSON AND A SECURITY OF THE PERSON AND THE PERSON

			Composite	Back pressure is required to keep the nose and inclination of wings above normal cruising position; need for	fain direction (4),	More back pressure required to keep nose and incline- tion of wings up; need for greater amount of right	direction direction Controls mushy (10);	effective (14),
II .	PRUISING POWER	•	Kinesthesia	Resistance to back pressure on stick (10); vibration of aircraft felt in stick and body (11)	Slight feeling of deceleration.	Resistance to back pressure on stick decreases; rudder offers little resistance; increased vibration.	Sinking feeling (12).	Resistance to back pressure on stick rapidly decreases at edge of stell (13); vibration seems to lessen right at edge of stall (9).
CHART! II	STRAIGHT AHEAD, CRUISING POHER	Andition		Engine laboring (7),	Increased labor- ing of the en- gine (8)			Engine seems to quiet down in. mediately before the stall (9).
		Vision		Nose and inclination of wings above normal cruising position (2); slight rise in altimeter reading (3); nose tends to turn left (4)	Aircraft slows down relative to the ground (5),	No further gain in altimeter; wings Wobble; noticeable tendency for nose to move to the left.	Slight loss of altirinde (6).	pressed loss of titude; at edge stall nose starts drop.
	8 ਸ ਰ	Tacho-	22.50	2075	2050	2000	1950 S	1945 In (1) all (1) of to
7	osted Air-		20	72	07	35	Ω	28(1)
		Lights	0	H	ત્ય	m	•	ر ب

Straight Ahead, Cruising Power - Notes

1

- Plane instruments wibrated so violently that it was difficult to get a reliable reading.
- (2) This departure continues and increases toward the stall.
- (3) Not noticed readily unless the plane has a sensitive altimeter.
- through might not be noticed by a good pilot, as he might "automatically" correct this tendency, This is due to the effect of torque. With power on, the nose tends to move to the laft. unconscious habit. 3
- 'n This continues through lights 3 and 4 and the plane seems to be almost "hovering" at light Doubtful whether this would be noticed at altitude unless pilot expecting it. **€**
- Since this could be the result of a down draft, it is not a reliable stall one. 9
- With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur which may be so small that it will not be noticed by all pilots. 3
- (8) This is a continum.
- It has been suggested that this may be an indication that the propeller is stalled.
- controls. This has been described by most pilots as "mushy," "sloppy," "sluggish," etc., but what is With every decrease in the airspeed, a corresponding decrease will occur in the effectiveness of the meant is a decrease in the pressure required to move the controls or a greater movement of the controls to change the attitude of the aircraft. 3
- With the engine laboring (note 7), there is a corresponding vibration felt in the stick and body, which increases as the laboring of the engine increases. ਰ
- This is the feeling that the aircraft "may drop sway" from the pilot. 3
- Just before this point very little resistance is offered by the elevators; in fact, it is possible to stall the aircraft (our Piper J-3) with just a slight finger pressure. (3)
- Any unccordinated movement will precipitate the stall in direct ratio to the degree of the uncoordination of the controls. The use of silerons at this point will precipitate the stall. E

中国的人员的 人名英格兰人姓氏格兰的变体 医克里氏病 医克里氏病 医克里氏病 医克里氏病 医阿里氏病 医阿里氏病

The second secon

THE STATE OF THE S				Composite	Strong back pressure required to keep nose and in-	for left rudder to maintain direction (3).	Greater movement of rudder required to maintain direction (8).	Ailerons alightly	effective but use will precipitate the stall (10), rtall as long as
The second of th	LI	D, FORIER OFF		Kinestheele	Strong resistance to back pressure on stick (8).	Slight decrease in stick resistance.	Sinking and dropping feeling (9); longitudinal rocking felt as nose rises and falls.	Elevator and rudder resistance less than	Slow approach to the stall). No clean break in stall as long as
	CHART ILL	STRAIGHT AREAD, FORIER OPP	And: + 4		Noise of slip- stresm decreases (7); whistling sound made by	3) (at a minimum.		approach to the at
,			Techo- Beter Vieton		Nose and inclina- tion of wings above normal glid- ing Poeition (2); nose tends to swing to right (3);	Loss of altitude decreases temporarily. Nose tends to drop	aircraft pioks up a slight emount of extra speed (4); con- stant decrease of altitude 600 feet per minute.	Wings may wobble (5); no definite dropping of nose	conditions of the
Action to the second se	Ind1-	Osted Air-	_	50(1) 50	3	3 38 700		35 700	5 (Not observed under allerone not used.

Straught Absed, Power Off - Notes

1

- Owner's Manual, Piper Cub Special 130-65 (Piper Aircraft Corp., Lock Haven, Pennsylvania, May 15, 1946, p. 41) recommends, "Glide between 50-60 mph depending upon loading of airplane and gust conditions." We have used 55 mph indicated for gliding, but our air-speed meter peamed to read low. 3
 - The nose and inclination of the wings remain above normal gliding position and this departure ingreases toward the stall. 3
- This is due to absence of torque; i.e., without power the nose will move to right. This might not be noticed by a good pilot as he might "automatically" correct this tendency, through unconscious habit. Furthermore, the tendency is much weaker than is the left-nose tendency in the climb. B
- This state continues with constant back pressure. B
- Not in all aircraft. 3
- Some pilots look for a definite dropping of the nose for all stalls; did not occur in our J3 in the It has been suggested that our airplane didn't stall. Absence of fifth lamp's lighting suggests this. alow approach to stall. 9
- Noise of alipstream decreases through lights 1 and 2 and reaches a minimum at lights 3 and 4, except there may be a slight variation in the sound as the airplane oscillates slightly. E
- trols. Inte has been described by most pilots as "sushy," "sloppy," "sluggish," etc., but what is meant With every decrease in alrapsed, a corresponding decrease will occur in the effectiveness of the conis a degreese in the pressure required to move the controls or a greater movement of the controls to change the attitude of the airplane. 9
 - This is the feeling that the aircraft is "dropping from beneath" the pilot. <u>E</u>
- We found the ailerons could be used, but the use caused the stall to occur at 3 lights instead of See also note on uncoordinated controls. 4, which is a difference of 3 mph. 9

Resistance to back

pressure decreases at point of stall (9).

CHART JV

		Back pressure is required to keep the nose and inclination of wings above normal (10); need for right rudder to maintain direction	· ·	Considerable amount of rudder needed to maintain attitude and	boading (6).
Flight	Kinesthesia	Resistance to back pressure on stick (6); wibration of whole airplane (7).	•	Feeling of sinking and settling (8).	Rudders offer little resistance; con- siderable vibration; definite sinking feeling.
STRAIGHT AHEAD, SLOW FLIGHT	Audition	Engine begins to labor (5).		Engine labors more.	,
	Viston	Wings wobble (1); nose tends to turn left (2); nose and inclination of wings above normal (3); slight increase in altitude (4).	Inclination of nose and wings seem high in relation to ground, horizon, etc.	Aircraft begins to lose altitude.	Hose tends to swing to left appreciably and may drop (2); wings continue to wobble; continued loss of altitude at increasing rate.
	Tacho- meter	1700	1700	1675	1650
Indi-	speed nph	57	07	×	35
	Lights	H	~ ,.	m -	4

Straight Abead, Slow Flight - Notes

Pilots report this not true for all types of aircraft, 3

121-15

**

- This is due to the effect of torque. With power on, the nose tends to move to the laft. This might not be noticed by a good pilot because he sight "automatically" correct this tendency through uncon-<u>ন</u>
- The sensitive altimeter shows a slight increase through lighte 1 and 2, and at light 3 begins to de-The nose and inclination of wings remain above normal and increase toward the stall: 3
- crease and continues to decrease at an increasing rate at light 4. These observations valid only in still air, free from thermals and down drafts. E
 - With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur which may be so small that it may not be noticed by all pilots. Œ
- With every decrease in airspeed, a corresponding decrease will occur in the effectiveness of the con-This has been described by most pilots as "mushy," "sloppy," "sluggish," etc., but what is 9
 - meant is a decrease in the pressure required to move the controls, or a greater movement of the con-With the engine laboring (note 5), there is a corresponding wibration in the stick which increases trols to change the attitude of the airplane.
 - \mathfrak{E}
- as the laboring of the engine increases.
- Here the elevators lose practically all effectiveness, and the stick comes back rapidly under little This is the feeling that the airplane is "dropping amay" from the pilot. 8
 - pressure. **E**
- At a normal attitude for this airspeed and tachometer setting the airplane will not stall, but back pressure must be used to maintain "slow flight," when trim tab set for cruise. 9

CHART V

BANK
CONSTANT
AŢ
TURN
CLIMBING
LEFT

٠.	Comp.	ATTENNED.	More back pres- sure required to maintain bank and climb; right rudder correction needed	16)	More right rudder needed (3).	Controls mushy. (6).	
NSTANT BANK	Kinesthesia		Resistance to back pressure on stick (6); wibration felt. in stick and body (7).		Resistance to rudder decreases; increased vibration felt in stick and body (7).	Feeling of aircraft settling (8); re- sistance to con- trols decreases noticeably (9).	
LEFT CLIMBING TURN AT CONSTANT BANK	Audition		Engine labor- ing (5).	Increased labor- ing.	·		
TEM	Vieton		Nose and inclina- tion of wings above normal (1).	Rate of increase in altitude decreases (2); rate of turn tends to increase,	Turn slows down (4); no increase in slti- tude.	furn stops; left wing starts to come up or go down (10); slight loss of altitude.	Hose drops away from pilot.
	Tacho-	2250	5500	2150	2150	2150	요 호
Indi-	epeed HDP	55	3	57	38	£ .	30 2150 (atrplame is stalled)
-	Lights	0	н	Q	n	∢	w

Loft Climbing Turn at Constant Bank - Rotes

- The nose and inclination of wings remain above normal and this departure increases toward the stall. 3
 - a sensi-This will not be noticed unless the airplane is equipped with a rate-of-climb indicator or tive altimeter.
- **8** This is due to the effect of torque. With climbing power, the nose tends to move to the left. S
- With constant bank and a decrease in airspeed, using coordinated controls, the rate of turn should ingresse in normal flight. 3
 - With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur, which may be so small that it will not be noticed by all pilots. This is a continuum. $\overline{\mathcal{L}}$
- This has been described by most pilots as "mushy," "sloppy," "sluggish," etc., but what is meant is a decrease in the pressure required to move the controls or a greater movement of the With every decrease in airspeed, a corresponding decrease will occur in the effectiveness of the controls to change the attitude of the airplane. controls. 9
 - With the engine laboring (note 5), there is a corresponding vibration of the airmaft felt in the atick and body which increases as the laboring of the engine increases. This is a continues. In advanced stages, vibration may be due to buffeting. 3
- This is a feeling that the aircraft may "drop away" from the pilot. 9
- Just before the stall the resistance of the stick decreases noticeably so that very little pressure is required to stall the aircraft. 6
 - More often up. For explanation see Wolfgange Langewiesche, "The Spin over the Top and the Overbanking Tendency, " Air Facts, Vol. 7, No. 4; pp. 54-82, April, 1944. 9

CHART VI

The second of th

RIGHT CLIMBING TURN AT CONSTANT BANK

	Composite	Attendance viscol contra	to meintain bank and climb; rudder pressure required (3).		More rudder pressure required (3).	Controls mushy (6).	
noiani dana	Kinesthesia	•	Resistance to back pressure on stick (6); vibration felt in stick and body (7).	-	Resistance to rudder decreases; increased wibration felt in stick and body.	Feeling of aircraft settling (8); air- craft shudders (9); resistance to con- trols decreases noticeably (10).	
RICHT CLIBBING TURN AF CONSIANI DAMA	Audition		Engine labor- ing.	Increased labor- ing (5).		,	
RICH	Vielon	•	Nose and inclination of wings above normal (1).	Rate of increase in altitude de- creases (2); rate of turn tends to decrease (11),	Turn slows down (4); no increase in altitude.	Turn stops; right wing starts to come up or go down (3); slight loss of altitude.	Hose drops away from pilot.
	Tacho- meter	2250	2200	2150	2150	2150	33 2150 airplane is stalled)
Indi- cated	Air- speed mph	55	ድ	57	07	£.	33 215 (airplane is stalle
	hts	_	-1	03	6	4	5

Right Climbing Turn at Constant Bank - Notes

The nose and inclination of wings remain above normal and this departure increases toward the stall, Ξ

*

- or a sensi-This will not be noticed unless the airplane is equipped with a rate-of-climb indicator tive altimeter. 3
- For a discussion of this, and of the tendency for the down wing to come up at the stall, see refer-The effect of torque in the right elimbing turn is less noticeable than in the left elimbing turn. ence in Note 10, preceding maneuver. 3
- With constant bank and a decrease in airspeed, using coordinated controls, the rate of turn should increase in normal flight. 3
- With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur, which may be so small that it will not be noticed by all pilots. This is a continum. 3
- With every decrease in airspeed, a corresponding decrease will cocur in the effectiveness of the controls. This has been described by most pilots as "mushy," "sloppy," "sluggish," etc., but what is the conmeant is a decrease in the pressure required to move the controls or a greater movement of trols to change the attitude of the airplane. 9
- With the engine laboring (note 5), there is a corresponding wibration of the aircraft felt in the stick and body which increases as the laboring of the engine increases. This is a continuum, \mathfrak{S}
- This is the feeling that the sircraft "may drop away" from the pilot. 8
- (9) Refers to wibration of entire aircraft.
- Just before the stall the resistance of the stick decreases noticeably so that very little pressure is required to stall the aircraft, 9

1.74 1.4

> See note (4). At 2 lamps the airplane should be flying almost normally. Perhaps this decrease in turn rate is due to improper torque correction. Note that in the left climbing turn (preceding maneuver) the turning rate increases at 2 lights. 3

_	₩

	・ 関の大きの大変を表する。 できない 大変なない こうしゃ こうないれん かんかん かんかん かんかん かんかん かんかん かんかん かんかん か			Composite	Back pressure re-	tion of wings above sition	Alleron and rudder pressure needed to saintain constant	ment of allerons and runders needed for desired responses	
The second secon	The state of the s	STAMT BANK	į	Ainesthesis	Resistance to back pressure on stick.		Increased resistance to back preserve on stick	Sometimes feeling that aircraft settles and sinks (8); longitudinal rocking felt	stick; definite re- sistance to back
A STATE OF THE STA	CHART VIL	LEFT GLIDING TURN AT CONSTANT BANK	Audition		decreasing (6); whistling sound made			Noise of slipstream at a minimus.	olling
		Taeho-	750	700 Nome and incling-	normal gliding po- sition (2)	Rate of descent decreases.		Loss of altitude increases to approxi- turn slows down (3); down; propeller geens to slow down.	Turn stops; left R
Sing in the second seco	Ind1.			76 76		2 46 700	,	39 700	34 700 I

sistance to back pressure,

Steady resistance to back pressure (9).

Rolling sound of buffeting (7).

ite drop of the nose wing may tend to rime (4); no defin-

(Not frequently observed because aircraft sank without definite stall.) (5); constant loss of altitude 600 ft/min.

£ ...

Omer's Monnal Plots Cub Special 130-65 (Piper Aircraft Corp., Lock Baven, Pennsylvania, May 15, 1946, recommends, "Glide between 50-60 mph depending upon loading of airplane and gust conditions." Left Gliding Turn at Constant Bank - Notes

The nose and inclination of the wings remain above normal gliding position and this departure increases 3

Possibly due to un-banking tendency not properly corrected by pilot. See reference in Chart V, note 10. Or fall. This is not as noticeable as the right wing in a right gliding turn at the same light. $\widehat{\mathbb{C}}$

At this point the aircraft is oscillating, and the sound has been described as "like that of breakers Most students look for a definite drop of the nose for all stalls. Let this absence be a warning. Noise of alipstream decreases through lights 1 and 2 and reaches a minimum at lights 3 and 4.

With every decrease in airspeed, a corresponding decrease will occur in the effectiveness of the This settling and sinking is a feeling that the aircraft is "dropping eway from" the pilot. 9

etc., but what is meant is a decrease in the pressure required to move the controls or a greater movement of the controls to change the attitude of the airplane. 6

		Back pressure re-	clination of wings above normal glid- ing position (8). Alleron and rud- der pressure needed to maintain	Greater movement of allerons and rudders needed for destred re- sponse (B).		
ONSTANT BANK	Kinestlessie	Resist Pressu	Increasing resistance to back pressure on stick.	Sometimes feeling that aircraft settles and sinks (7); longitudithrough seat and stick:	Still "hard" and electors Vators effective. Steady resistance on the stall,	e stall.)
CHART VIII RIGHT GLIDING TURN AT CONSTANT BANK	Audition	Noise of allpstream decreasing (5); whistling sound made by wind.		Noise of alipstresm at a minimum.	Rolling sound of S. buffeting (6), el	Afreraft sank without definite stall.)
Techo	Beter Vieton 750	700 Nose and inclina- tion of wings above normal gliding po- sition (2).	700 Rate of descent de- creases.	Loss of altitude increases to approxiturn slows down (3); down; propeller seems to slow down.	:5%	because
Indi- cated Air- speed	2012 mph 55(1)	87	5 46	39 700	% %	(Not frequent)

Right Gliding Turn at Constant Bank - Notes

j j

- Orner's Mermal, Piper Cub Special 13C-65 (Piper Aircraft Corp., Lock Haven, Pennsylvania, May 15, 1946, p. 41) recommends, "Glide between 50-60 mph depending upon loading of airplane and gust conditions." He have used 55 mph for normal gliding. $\widehat{\Xi}$
 - The nose and inclination of the wings remain above normal gliding position and this departure increases toward the stall <u>R</u>
- Possibly due to un-banking tendency not properly corrected by pilot. See reference in Chart V, note 10. \mathfrak{S}
 - Most studenta look for a definite drop of the nose for all stalls. Let this absence be a warning. E
- At this point the aircraft is oscillating, and the sound has been described as "like that of breakers on the seashore a long way off." Hoise of slipstream degresses through lights 1 and 2 and reaches a minimum at lights 3 and 4. 3
 - 9
- This settling and sinking feeling is a feeling that the aircraft is "dropping away from" the pilot. E
 - etc., but what is meant is a decrease in the pressure required to move the controls, or a greater With every decrease in airspeed, a corresponding decrease will occur in the effectiveness of the This has been described by most pilots as "mushy," "sluggish," "sloppy," movement of the controls to change the attitude of the airplane. Œ

明 本語では 多州田の花をはいるという

Ħ
CHART

	Gomposite	More back pressure required on con- trols to maintain steep turn,	Pressure on stack required to main-	tein benk (2).	-	More back pressure required.
ETCDE.	Lineatheale	Strong resistance to back pressure on stick; vibration (6).	Strong resistance to back pressure on stirk. meet	keeping pilot in seat.	beok pressure on stick; increased vi- bration.	back pressure on stick.
STEEP LEFT TURK AT ALTITUDE	<u>Audition</u>	Engine labors (5).		Engine labors	(5).	,
	Woles that then	horison and moves	Turn is established.	Turn alows down (9).	Turn continues to	Nose high; turn stops (3); left wing starts
	Tescho-		2160	2000	5000	5000
Indi- octed	1 2 3		55	R	97	2 4
,	Lighte		ત્ય	, m	4	w

Strong resistance to More stick.

Strong resistance to back pressure on stick; afroraft shudders (3); resistance to back pressure decreases (7).

to come up or go down (4).

Aircraft stails. Nose fails away from pilot.

800

E

Resistance to back pressure relaxes; sudden relaxation of "G" forces (8).

Steep Left furn at Altitude - Hotes

The same of

The pilots may mean the turn has sped up to the rate expected from their experience. airspeed the turn rate should increase. 3

With decreased

With increased power the torque effect causes the nose to turn to the left and pressures are required to correct this. 3

Here the turn seems to hesitate, but with a slight release of back pressure will continue at slower rate. $\widehat{\mathbb{C}}$

Possible start of an "over the top" or "out the bottom" spin.

With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur, which may be so small that it will not be noticed by all pilots. 3

With the engine laboring (note 5), there is a corresponding wibration felt in the stick and body which increases as the laboring of the engine increases. This is a continual. 9

At the point where the aircraft shudders, the resistance to back pressure issediately decreases and a slight amount of pressure will cause the stall. \mathfrak{S}

Possible disorientation may occur, either affecting recovery or pilot behavior after recovery. 8

Possibly to be interpreted as "the turn doesn't speed up any more." É STEEP RIGHT TURN AT ALTITUDE

Ind1-Cated

Composite	More back pressure required on con- trols to main- tain turn.	Pressure on stick required to main- tain bank and pre- vent underbanking tendency.		More back pressure required.	۳., ۵	
Kingsthesta	Strong resistance to back pressure on stick; vibration (6).	Strong resistance to back pressure on stick; great force keeping pilot in seat.	Strong resistance to back pressure on stick; increased vi- bration,	Strong resistance to back pressure on stick.	Strong resistance to back pressure on stick; aircraft shudders (3); resistance to back pressure decresses (7).	Resistance to back pressure relaxation of "G" forces (8).
Audition	Engine labors (5).		Engine labors considerably.			
Vision	Nose just about hori- son and moves	Turn is constant (9).	Turn slows down (1).	Turn continues to alow down.	Nose high (2); turn stops (3); right wing starts to come up or go down (4).	Aircreft stalls.
Tacho-	000	2150	2000	5000	2000	2000
Air-	% .	12	ß	5 7	9	Ж
Lights	, H	∾ .	<i>€</i>	4	ĸ	,

Steep Right Turn at Altitude - Notes

- Possibly to be interpreted as "the turn doesn't speed up further."
- This is higher than in a steep left turn at altitude for the same point.
- Here the turn seems to hesitate, but with a slight release of back pressure will continue at a slower rate. 3
- Possible start of an "over the top" or "out the bottom" spin.
- With every decrease in engine r.p.m.'s a corresponding increase of the engine laboring will occur, which may be so small that it will not be noticed by all pilots. This is a continuum. 2
- With the engine laboring (note 5), there is a corresponding vibration felt in the stick and body This is a continuum. which increases as the laboring of the engine increases. 9
- At the point where the aircraft shudders, the resistance to back pressure immediately decreases and pressure will cause the stall. a slight amount of \mathfrak{E}
- Possible disorientation may occur, either affecting recovery or pilot behavior after recovery.
- Possibly to be interpreted as "turn speeds up to where experience dictates." 3

same conditions, so that it could be depended upon, once the pilot learned what a given indicated air speed meant in terms of the plane's behavior.

All of the cues reported in Charts I through X refer to steady stall approaches with coordinated controls and with the trim tab in cruise position. It was found by experiment that uncoordination of controls caused the lamps to be brought on earlier that in coordinated maneuvers at the same airspeed readings. Therefore, on all occasions, pilots were requested to fly with coordinated controls in an attempt to obtain results under comparable conditions.

The results of these interviews demonstrate clearly that recognition of stall conditions is an exceedingly complex behavior. Not only are visual, auditory, and kinesthetic clues utilized at various stages of departure from normal flight, but also certain complex behaviors -- here described as composite because they cannot be readily described as being predominately dependent on one of these senses -- are also important. There was in this study no attempt to determine the relative importance of these clues in any maneuver or at any stage of departure from normal flight conditions. A clue is important when a pilot detects it and uses it, and different pilots may detect different clues, even though all are available. The present study provides a comprehensive list of the physical clues which do occur for use in detecting and avoiding stall conditions. No one pilot will use more than a few of these clues -- it seems logical to assume that a pilot begins to depend upon those cues which he has been taught or which through experience he learns will aid in avoiding stall conditions. The present summary, therefore, does not deal with the frequency with which each clue was utilized by the 22 subjects; it does deal with the over-all set of clues from which expert pilots choose the ones they use.

While the preceding charts are essentially summaries in themselves, it may be useful here to consider the several maneuvers again, and in the present summary to discuss briefly the physical clues which might be used by pilots in detecting the approach of stall conditions.

The Straight Ahead Maneuvers

Straight Ahead -- Climbing Power. Deviations from the straight ahead normal climb first manifest themselves in inclination of the nose and wings of the plane above normal climbing position, in a laboring engine, and in resistance to back pressure on the stick. This is accompanied by vibration in the stick and body of the plane and in the need for application of right rudder to maintain direction. As the plane increases its deviation from normal flying attitude, there is a more pronounced laboring of the engine and considerable vibration in the stick and body of the plane. The rate of climb decreases, but this may be imperceptible unless the plane is equipped with a rate-of-climb indicator, or unless the pilot glances repeatedly at the altimeter. In the advanced stages of the stall, the climb stops, the altimeter remains constant, and the nose may drop slightly. At this stage, the pilot feels a slight "sinking feeling."

The uniformity with which the expert pilots reported this "sinking feeling" points up one of the difficulties in investigating the use of clues. The man on the street may never have experienced anything which he describes as a "sinking feeling" unless he has ridden on a high-speed elevator in a tall building. His idea of a "sinking feeling" may be his sensation when discharged from a job or served a summons. To the reader who hasn't ridden through a stall and hasn't ridden a high-speed elevator, it can only be said that when he does, he will soon or late come to agree with others that he feels something at the time of downward acceleration which others have called a "sinking feeling." The interviewers learned to report the feeling whenever the expert reported it, and this seemed an adequate test of the feeling as a clue.

At stage 4, where the climb stops, the altimeter remains constant, and the under-surface of the wing is presented to the air in an exaggerated angle of attack. Apparently, flight will continue indefinitely in this position, as long as the airplane can maintain an air speed at least as great as the meter indicated as 30 miles per hour. However, when the airplane slows down to about 2 miles per hour less, there is loss of altitude, the nose drops, and the engine begins to quiet down immediately. This is accompanied by a pronounced "sinking feeling" by the pilot, and a decreased resistance to back pressure on the stick.

Straight Ahead -- Gruising Power. The sensory cues which appeared when flying straight ahead climbing power (see above) begin to manifest themselves in much the same manner in this maneuver. The airplane gradually assumes the same flying attitude as that which pertains in the straight ahead climbing power maneuver. At the point of stall, the position of the airplane in both maneuvers is almost identical, and the sensory clues in the later stages of departure from the normal flight attitude are quite similar. At the stall, the airspeed indicator reads "28" as in the preceding maneuver.

Straight Ahead -- Power Off. When the stall was approached slowly in the experimental airplane, a "clean break" into the stall was not evident. The nose began to sag at 3 lights, 38 m.p.h. indicated airspeed, but when speed increased with nose down, the nose came back up. Possibly the limits of elevator travel were such as to prevent the stall in this situation. At 4 lights, use of ailgrons would sometimes precipitate the stall. And all controls were "sloppy" at this point. Note that a red mark on the "30" of the airspeed indicator would have kept the pilot out of the stall in the first two -- (i.e., power-on) maneuvers, but with power off the nose would drop before the airspeed hand got down to 30. This difference may signal a defect in the airspeed indicator, but in any case it signals the old warning not to expect the nose to drop at a predetermined airspeed reading.

Straight Abead -- Slow Flight. The sensory indications that something is wrong in this maneuver are almost identical with those described above under straight ahead cruising power, except that the maneuver started right out at an abnormal attitude, which wasn't part of the stall approach proper. The nose of the plane tends to turn left, the engine labors, and there is resistance to back pressure on the stick, 10 which is accompanied also by vibration of the whole airplane and webbling of the wings. The plane itself begins

衛中の大小は大小衛をあっ

1 42 COLOR FER 55 F

^{. 10}The airplane was trimmed for oruise.

to settle and assumes a position similar to that indicative of the stall in straight ahead climbing power and cruising power maneuvers. The airspeed meter repeats its readings at successive approaches, and could be used as a stall warning indicator. Il

Straight Ahead -- Summary. In the straight shead stall approaches, the cues which were used throughout were the "sinking feeling," and the sloppiness of the controls when the edge of the stall was reached. A slight dropping of the mose or a webble of the wings or a less of altitude were noted by some experts, but these were not regarded as dependable. The one instrument on the airplane which would have labeled the edge of the stall dependably was not used by the expert pilots; i.e., the airspeed indicator. Possibly these experienced pilots were aware of the many serious limitations of the airspeed indicator as a stall-warning device. But one would think they should have learned its limitations and how to interpret it in these maneuvers. Instead, they had become expert at getting along without the airspeed indicator.

The Turning Maneuvers

Left Climbing Turn at Constant Bank. In this maneuver and in its twin -the right climbing turn, the experts use the faltering or stopping of the turn as the indication of stall imminence. At the edge of the stall the turn stops, the down wing starts to come up, and the pilot reports a "sinking feeling" and a "sloppiness" of the controls. Before the edge of the stall, however, the experts have difficulty in divorcing their expert management from the airplane behavior they are watching. At 2 lights (45 m.p.h.) they call attention to the tendency of the airplane to increase its rate of turn and in the interview they say this is due to torque effect. With climbing power, they correctly point out, the nose of the airplane tends to turn left. They fail to remark that allowing it to do so would result in an uncoordinated turn, albeit a faster one, and these experts are supposed to make mostly well-coordinated turns. It is known that in a coordinated turn (torque effect nil) the turn speeds up when the airspeed decreases, other things being equal. Apparently our experts are more conscious of torque effect in a climb than they are of the turn-rate at varying airspeeds, even though they correctly employ the faltering of the turn as the indication of stall imminence.

Right Climbing Turn at Constant Bank. The behavior of the airplane in the right climbing turn at constant bank is quite similar to that in the left climbing turn at constant bank. There is, however, a difference with respect to the airspeed reading at successive stages in approaching the stall. This may be accounted for by the effect of torque, which may not have been properly corrected, as well as by the asymmetry in pitot mounting, in the vane installation, and in the natural tendencies of the airplane itself. In the left climbing turn, the rate of turn tended to increase before it decreased, whereas in the right climbing turn there was a steady decrease of turn rate until the turn stopped at the edge of the stall. Apparently the climbing turn is a complicated business, aerodynamically. But in either direction, the faltering of the turn is a signal that the stall comes next.

Left Gliding Turn at Constant Bank. Here again the stall is signalled by a stopping of the turn. Two of the clues which the unskilled pilot may rely on are missing: the drop of the nose at the stall, and the sloppiness

¹¹ That is, under the conditions of this experiment.

of the elevator control. The stick continues to resist back pressure right up to the stall, and the nose did not drop, in the usual sense of the word. Of course, by comparison with what the nose is supposed to do in a turn -- namely continue to sweep around the horizon -- the stopping of the turn is a "dropping" of the nose. But the pilot reports this as a stopping of the turn. And perhaps the student pilot should be taught in these terms -- the stopping of the turn, rather than the relative dropping of the nose, unless the "dropping" is taught to include the "drop" which is the faltering of the turn.

Right Gliding Turn at Constant Bank. Flight characteristics and sensory cues in this maneuver are quite similar to those in the left gliding turn at constant bank. Here, however, as in previous turns, the airspeed indications at the advanced stages are somewhat lower for the left turn than for the right turn. In the left gliding turn, 4 lamps are lit at 34 miles per hour (indicated), whereas in the right gliding turn, the 4 lamps are lit at 36 miles per hour. Since the airspeed indicator was read from a single pitot tube on one wing, and since perfect symmetry in the twowing vane system could not be assured, these differences may be due to the instrumentation, rather than to actual differences in the behavior of the airplane. As in the case of the left gliding turn, the turn stope at the stall in the right gliding turn. The turn may be continued by the use of uncoordinated controls, but of course this is the method of choice for precipitating the stall. Again the stick still resists back pressure and the nose does not drop (in the usual sense) at the edge of the stall, and a pilot waiting for these cues will stall while waiting. When something goes wrong with the gliding turn -- the turn falters or a wing starts up -- the expert pilot doesn't wait for back pressure to decrease on the stick or for the nose to "drop."

Steen Left Turn at Altitude. Here again the signal for the stell is the stopping of the turn. The nose does not "drop" in the usual sense, and resistance to back pressure on the stick does not decrease until right at the edge of the stall.

Steep Right Turn at Altitude. Similar behavior characteristics are exhibited during the stall approach in the steep right turn at altitude. There is some question about the rate of turn in the early stages of the stall approach, but no question of the stopping of the turn at the stall. What is a drop of the nose in a straight ahead stall with power on is here a stopping of the turn; relative to what the nose does in continued normal flight, it drops away from the pilot.

Turning Maneuvers -- Summary. In all turning maneuvers the stall is resignabled by requesting going wrong with the turn." The turn falters or stops completely or a wing comes up and the expected relation between angle of bank and rate of turn is destroyed. Other cues depend upon the maneuver.

Summary of Results by Sensory Clues

Tables 13, 14, and 15 following give some idea of what the student pilot faces if he essays to learn the many clues used by expert pilots in

detecting departure from normal flight in the direction of a stall approach. These tables summarise the sensory cues for each successive level of departure from normal flight conditions in each of the ten maneuvers. Each table is discussed briefly in the following paragraphs.

Visual Ques. The scatter of X's in Table 13 shows how the Visual ques indicative of departure from normal flight attitudes differ with different maneuvers. Lighting one or two lamps does not indicate a serious departure from normal flight, but referring only to the part of the table which deals with 3, 4, and 5 lamps lit, it will be noted that a given visual clue is used in one maneuver and not in another, and the amount of learning which would be required to master the connections between visual cues and maneuvers must be tremendous. The experts must be expert indeed. And it must appear questionable whether the airplane will ever be an every-day vehicle if a mastery of the linkages in Table 13 is a prerequisite to its safe operation. And yet these are the visual clues to assign for the student pilot to learn and for the private pilot to use. The one uniform clue in all straight ahead maneuvers -- namely airspeed -- is withheld from the student by most instructors12 and the use of the airspeed meter in teaching stalls is not emphasized in the standard instructional literature. The one uniform clue for turning maneuvers -- namely the stopping of the turn -- is not emphasized in the standard instructional literature, and most instructors do not emphasize with their students that the turn rate is supposed to be uniform, even though these instructors fully realize this and employ it in their own flying.

Auditory Cues. Table 14, for auditory cues, shows the same scatter of X's as was seen in the preceding table. The table is smaller, showing that auditory cues are not much used by our expert pilots. And the student pilot might learn Table 14 easier than the preceding table, but its contents would not be much protection to him in stall recognition, because of the paucity of clues at the 3-, 4-, or 5-lamp stages.

Apparently the student or private pilot listening for sounds of stall warning will do well to watch while listening: watch the airspeed indicator in straight maneuvers, and watch the turn in turns. Or still better, have an instrument without the limitations of the air speed indicator.

Kinssthetic Gues. Table 15, for kinesthetic cues, shows the same widely scattering I's as in Table 13 for visual cues. The expert pilots report many visual and kinesthetic cues compared to the number of auditory cues employed. But in Table 15 the part concerning 3, 4, and 5 lamps shows very wide scatter of numerous I's, and there appears not one kinesthetic cue which is a dependable indicator of stall imminence at the 4- or 5-lamp stage. Indeed, the cues seem highly specialized: each useful in some situations and not in others. Surely learning to recognize the stall approach "by the seat of the pants" is an onerous undertaking.

¹²It is of considerable significance that the 22 subjects interviewed in this investigation did not rely on airspeed indicator and tachometer readings. These instruments provide information which can be obtained by seeing and interpreting the readings that would prove to be most helpful in detecting the approach of the stall. None of the subjects indicated at any time that they relied upon either the airspeed indicator or the tachometer for additional information as to what was happening to the simplane.

TABLE 13
SUMMARY OF VISUAL CUES

			•		_'						
	Applicable to these Kaneuvers										
,		Cl. Per.	Cr. Pur.	Per. Off	Slow Fit.	furn.	Turn	Turn	Tarn	Turn	, Turn
		Abd. 61.	Ahd.	¥FFF	Ad.	Clis.	Clis.	61.1d°	Rht. 011d.	i,	PP Rht
		Str.	Str.	Str	Str.	Let.	Rbt.	ift.	‡ 4	Steep	Steep
Lance	Lit Cne	٠,				•			-		10.
1 Lan	1	ä	C)	ų	*	~	•	7°	80	6	A
1.	Nose and inclination of	_	_	_			_	<i>-</i> 		_	_
2. 3.	Wings above normal Nose tends to turn left Slight rise in altimeter	X	X	0	X	0	0	0	0	0 0	0
_	reading	0	1	0	I	0	0	0	0	0	0
4.	Hose tends to turn right	0	0	X	0	0	0	0	0	0	0
5.	Wings wobble	0	0	0	X	0	0	0	0	0	0
6.	Nose above horizon	0	0	0	Ο,	0	0	0	0	X	X
2 Lan	1										•
1. 2.	Rate of climb slows down Aircraft slows down rela-	X	0	0	0	0	0	0	0	0	0
. ~•	tive to the ground	0	I	0	0	0	0	0	0	0	0
3. 4.	Loss of altitude decreases Inclination of nose and wings seem high in relation	Ō	0	X	ŏ	Ö	Ö	Ŏ	ŏ	Õ	ŏ
5.	to ground, horison, etc. Rate of increase in alti-	0	0	0	X	0	0	0	0	0	0
7.	tude decreases	D	0	0	0	X	X	0	0	0	0
6.	Rate of descent decreases	Õ	ō	Ö	ŏ	Ō	ō	X	Ň	ŏ	ŏ
7.	Turn is established	۵	0	0	0	0	0	0	0	X	0
8.	Turn is constant	0	0	0	0	0	0	O.	Ο,	0	X
3 Lan	•		,								
1.	Aircraft slows down rela- tive to the ground	x	0	0	. 0	0	0	٥.	0	0	0
2.	Noticeable tendency for						_				_
•	bose to move to the left	ĭ	X	Ŏ	0	0	0	0	0	0	0
. 3.		0	X	0	0	X	X	0	0	0	0
4. 5.		U	•	U	U	U	U	Ų	U	U	Q
7.	Nose tends to drop but rises again when aircraft picks up a slight amount of extra speed	0	0	X.	0	0	0	0	0	0.	0
		_	~	_	_	_	_	-	_	-	_

TABLE 13 (Continued)

SUMMARY OF VISUAL CUES

		Applicable to these Maneuvers									
Lame :	Lit Cue	Str. Ahd. Cl. Pwr.	Str. And. Cr. Pwr.	Str. Ahd. Pwr. Off	Str. Abd. Slow Flt.	Lft. Clim. Turn	Rht, Clis, Turn	Lft. Glid. Turn	Rht. Glid. Turn	Steep Lft. Turn	Steep Rht. Turn
3 Laur	es (Continued)	ri ri	ะ	ě		5.	. 9	°,	. T	6.	ို့
4.40	<u> </u>		-	•	•			-	-	•	
6. 7.	Constant decrease of alti- tude 600 feet per minute Aircraft begins to lose	0	0	x	0	0	0	x	.x	0	0
8.	altitude Turn slows down Nose rocks up and down	0	0	0	X 0 0	0 X 0	0 X 0	0 0 X	0 X	0 X 0	0 X 0
10.	Propeller seems to slow 'down	. 0	0	Ö	.0	0	0	x	x	.0	0
A Laur	· ·										
1.	Rate of climb stops; alti-				•						
	meter remains constant	X	0	0	0	0	•	0	o	'n	0
2.	Nose may drop slightly	X	Õ	, o	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
3.	Slight loss of altitude	ō	X	Ō	ō	X	X	ō	ŏ	ō	ŏ
4.	Wings may wobble	ō	õ	Ĭ	ō	õ	õ	ŏ	õ	ã	ŏ
5.	No definite dropping of	•	•	-	•	•	•	•	~	•	•
	nose	0	0	X	0	0	0	X.	X	0	0
. 6.	Nose may swing to left										
	appreciably and drop	O.	. 0	0	X	0	O	0	0	0	0
7.	Wings continue to wobble	0 `	0	0	X	0	0	0	0	0	0
8.	Continued loss of altitude			,							
	at increasing rate	0	0	0	X	0	0	0	0	0	0
.9.	Turn stops	0	0	0	0	X	X	X	X	0	0
10.	One wing starts to come up	0	0	0	0	X	, X	X	I	0	0
n.	Constant loss of altitude	_	_	_	_		_				, K
• •	600 feet per minute	. 0	0	0	0	0	0	X	X	0	Ő
12.	Turn continues to slow down	0	0	0	0	0	O	0	0	X	X
5 Lear	18						,				
1.	Loss of altitude	X	0	0	0	O	0	0	0	ö	0
2.	Increased loss of altitude	ō	X.	ō	0	ō	ŏ	ō	ō	ŏ	ŏ
3.	Nose drops	·X	Ō.	Ō	Ō	O.	ō	ŏ	0	ŏ	ō
4.	Aircraft picks up speed	X	٥	0	0	0	0	ō	ō	ō	0

TABLE 13 (Continued)

SUMMARY OF VISUAL CUES

Applicable to these Maneuvers

Laura.	Lit Que	Str. Abd. Cl. Pur.	Str. Abd. Cr. Pwr.	Str. Abd. Pur. Off	Str. Abd. Slow Flt.	Lft. Clim. Turn	Rht. Clis. Turn	Lft. Glid. Turn	Rht. Glid. Turn	Steep Lft. Turn	. Steep Rht. Turn
5 Lan	s (Continued)	.	ૡ૾	3	4.	5.	6.	7.	æ	9.	2
5. 6. 7. 8.	Right at edge of stall, nose starts to drep Nose high Turn stops One wing starts to come up	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	X X	X X
6 Laur	4										
1.	Aircraft stalls	0	0	0	0	0	0	Q	0	X	X

TABLE 14
SUMMARY OF AUDITORY CUES

-		Applicable to these Maneuvers									
		Str. Abd. Cl. Per.	Str. Abd. Cr. Pwr.	Str. Abd: Pwr. Off	Str. Abd. Slow Flt.	Lft. Clim. Turn	Rht. Clim. Turn	Lft. Glid. furn	Rbt. Glid. Turn	Steep Lft. Turn	Steep Rht, Turn
Lamps	Lit Cue	٠ .	ผ่	ಗೆ	4.	3	9	7,	w	σ.	10.
1 Lan	<u>.</u>							•			
1.		X	X	0	X	X	X	0	0	X	X
2.	Noise of slipstream decreases	0	٥	X	0	0	0	I	x	0	0
3.	Whistling sound made by wind on struts	0	0	x	0	0	0	I	x	٥	0
2 Lamp	8										
1.	Increased laboring of engine	X	X	0	0	X	X	0	0	0	0
3 Lam	28						•		•		
1.	Slipstream noise at a minimum	0	0	x	0	0	0	X	x	0	0
2,	Increased laboring of					_	-			•	
	engine	Q	0	0	X	0	0	0	0	X	X
4 Laur	1										
1.	Rolling sound of buffeting	0	0	0	o	0	0	X	x	0	0
5 Laur	24										
1.	Engine seems to quiet down immediately before the stall	X	X	0	0	0	0	0	0	0	0

TABLE 15 SUMMARY OF KINESTHETIC CUES

		Applicable to these Maneuvers									
	,	Str. Abd, Cl. Pur.	Str. Abd. Cr. Per.	Str. Abd. Per. Off	Str. Abd. Slow Flt.	Lft. Clis. Turn	Rht, Clis. Turn	Lft. Glid. furn	Rht. Glid. Turn	Stoop Lft. Turn	Steep Rht. Turn
Lamba	Lit Cue	St.	8	, 83 - 43	S	Ħ	꾟	Ħ	R	첪	
1 Len	•	بڑ	ૡ૾	ะ	4.	ş	9	7.	₩.	6	្ត់
1. 2.	Resistance to back pres- sure on stick Vibration felt in stick	x	x	X	x	x	x	x	x	x	x
. 3.	and body Vibration of whole airplane	0	O	0	X	0	0	0	0	. X	0
2 Iani	29	ı									
1. 2.	Considerable vibration felt in stick and body Slight feeling of de-	x	0	0	0	0	0	0	0	0	0
3.	celeration Slight decrease in stick	0	I	0	0	0	0	0	0	O	þ
4.	resistance Increased resistance to	0	0	I	0	0	0	0	0	0	0
. 5.	back pressure on stick Great force keeping pilot in his seat	0	0	0	0	0	0	X O	X 0	x	x
3 Lant									•		
1. 2.	Rudders offer little resistance Resistance to back pres-	I	x	0	0	0	0	0	0	0	0
3.	sure on stick decreases Increased vibration	0	X	0	0	0 X	0 X	0	0	0 X	O X
4.	Sinking and dropping feeling Longitudinal rocking felt	õ	ō	ĭ	X.	Ö	. 0	ŏ	ŏ.	Õ	Ö.
6.	as nose rises and falls Resistance to rudder de-	0	0	X	0	0	0	x	X	0	0
	creases	0	O	0	0	X	X	0	. O	0	0

TABLE 15 (Continued)

SUMMARY OF KINESTHETIC CUES

	•										
	• •		Applicable to these Haneuvers								
-		Par.	F.	OFF	nt.						
			E .			Turn	Turn	Turn	forn	Turn	fara
		ц.	ż	į.	810			£			
		Abd.	Abd.	Abd.	Abd.	C11m.	clin.	3	G11d.	Steep Lft.	Steep Rht.
,						5	ថ	G118	ਤ	크. •	Ę.
•		Str.	Str.	Str.	Str.	Į.	Rht.	į	Rht.	9	\$
	744 6	୍ୟ	જ	क	क	E	꿆	3	盆	60	U 3
LANDS	Lit Cue		6	e,	*				**		9
3 Len	es (Continued)	• •	•		•		•		•	ۍ.	
7.	Sometimes feeling that air-										
7.	craft settles and sinks	0	0	0	. 0	0	0	X .	x	0	0
` 8 .	Definite resistance to									_	_
	back pressure on stick	D	0	0	0	0	0	X	X	X	X
A Lant	59	-								_	
22. 1. 1. 1. 1.	•							•			
· 1.	Slight sinking feeling	X	0	0	0	0	0	0	0	0	0
2.		0	I	0	. X	X	X	0	0	0	0
3.	Elevator and runder resist- ance less than in cruise										
	position	0	٥	X	ø	Ó	O	0	0	0	0
4.	Controls sloppy	0	Ó	X	0	0	Õ	0	Õ	Ŏ	Ō
5.	Rudders offer little			,							
	resistance	0	0	0	X	0	0	0	0.	0	0
6. 7.	Considerable vibration Resistance to controls	Ω	0	0	X	O	0	0	0	0	٥
7.	decreases noticeably	0	0	0	0	x	x	0	0	Ò	0
8.	Aircraft shudders	ŏ	Ö,	õ	ō	ō	X	ŏ	ŏ	ŏ	ŏ
9.	Steady resistance to										•
	back pressure on stick	0	0	٥	0	0	Q	X	X	X	X
5 Len	1		,								
1.	Sinking feeling more pro-										
_,	nounced	X	0	0	0	0	٥	0	Đ	0	0
2.	Resistance to back pressure										
	on stick decreases rapidly	_		_	_	_	_		_	-	_
3.	at edge of the stall Vibration seems to lessen	X	X	0	0	0	0	. 0	0	X	I
	right at edge of stall	X	X	0	ο.	0	0	. 0	0	0	0
4.	Strong resistance to back	-		•	-	•	•	~	-	•	-
·	pressure on stick	0	0	0	0	0	0	0	0	x	I
5.	Aircraft shudders	0	O	0	0	0	0	0	0	X	X

TABLE 15 (Continued)

SUMMARY OF KINESTHETIC CUES

Applicable to these Maneuvers

Lende 6 Lanc	Lit Que	1. Str. Abd. 67, Per.	2. Str. Abd. Cr. Per.	3. Star, Abd. Pur, Off	4. Str. And. Slow Fit.	5. Lft. Clim. furn	6. Rbt. Clim. Turn	7. Lft. 611d. Turn	8. Rht. Glid. Turn	9. Steep Lft. Turn	10. Steep Rht. Turn
1.	Resistance to back pressure relaxes	0	0	0	0	٥	. 0	0	0	x	x
2,	Sudden relaxation of "G" forces	0	0	0	0	0	0	0	0	x	X

Composite Cues. Some of the experts used the experimental approach to determine the imminence of the stall. That is, they applied elevator (or some other) control and watched to see whether the airplane responded. Or they pressed on the rudder to see how easily it yielded. Or they gave particular attention to what corrections were necessary to keep the airplane flying as desirable; e.g., the amount of torque correction necessary. All these complex actions have been grouped together under "Composite Cues." Table 16 shows how they scatter among the maneuvers. At the 4- and 5-lamp stages the two cues which apply throughout are (a) one or more controls (aileron, elevator, or rudder) become "mushy" or "sloppy," yielding with considerable motion to relatively light pressure exerted by the pilot; (b) the airplane fails to respond in the usual manner to control application. Which control is to be watched varies with the maneuver. Furthermore, it cannot be regarded as safe to propose that unskilled pilots experiment with the controls in a situation where the stall is thought imminent, for any one of the three controls may precipitate the stall in one or another situation. The only single recommendation for the Sunday pilot from the set of cues as a whole is: when any control fails to offer resistance to movement (gets mushy"), or the airplane fails to respond normally to any control, don't experiment; start a recovery immediately.

III. IMPLICATIONS AND RECOMMENDATIONS

Cues from Instruments. It was noted in Charts I through IV that the conditions which give rise to most of the visual, auditory, and kinesthetic cues reported by the expert pilots can be predicted fairly accurately, in the cases of straight ahead maneuvers, from the airspeed indicator and, in the case of power on, the tachometer readings 13 None of the subjects reported that they used airspeed readings and tachometer readings as clues as to what was happening to the airplane. Instead, certain of the subjects glanced at only the altimeter and relied primarily on auditory and kinesthetic cues. It is natural to suppose that private pilots trained by these experts will fail to utilize the instruments in front of them, and will rely instead upon sensory cues derived from other stimuli.

The expert pilot can perhaps dispense with instruments and successfully employ the welter of relationships portrayed in Tables 13 to 16, using one cue here and another there. Whether or not the typical private pilot can be expected to is another question. Surely a tremendous amount of learning will be a prerequisite. Any sober consideration of Tables 13 through 16 must raise the question whether it wouldn't be safer to teach the private pilot to use the instruments in his airplane.

Disturbance of the Turn. In Charts V through I, it appeared that the turn was disturbed before or at the stall in all turning maneuvers. Yet the standard instructional literature places little or no emphasis upon rate of turn. Uniform angle of bank is stressed, and uniform rate of climb, and uniform gliding speed; but several man-days of search failed to find any quotable treatment of uniform rate of turn. The books in aerodynamic theory contain adequate treatments of rate of turn, but the implications of the theory have not been provided for in the curriculum for the private pilot.

¹³A fixed-pitch propeller was used.

TABLE 16
SUMMARY OF COMPOSITE CUES

			App.	lical	ole 1	to t	1020	Kab	117.4	CE.	
	,	r. Abd. Cl. Per.	r. Abd. Cr. Per.	r. Abd. Per. Off	r. Abd. Slow Flt.	t. Clib. Turn	t. Clis. Turn	t. 011d. Turn	Rht. Glid. Turn	Steep Lft. Turn	Steep Rht. Turn
Lenns]	ilt Cua	Str.	Str.	4	Str	ij	Rht.	Ä	껿	8	٠ د
1 Lamp	·	ij	%	κ.	4	ĸ,	•	7.	₩.	6	Ą
1.	Back pressure is required to keep nose and inclination of wings above normal	X	x	x	x	0	0	x	X	0	٥
2.	Need for rudder to maintain direction	x	x	X	X	X	x	0	0	X	x
3. 4.	to maintain bank and climb More back pressure required	0	0	0	٥	X	X	0	0	0	. 0
	on controls to maintain steep turn	0	0	0	0.	.0	0	0	0	X	x
2 Lamp	g.									,	•
1.	Aileron and rudder pressure needed to maintain constant bank	0	0	0	0	0	0	x	x	x	x
2.	Greater movement of ailerons and rudders needed for desired response	0	0	0	0	0	0	X	, X	0	0
3 Lenr	MA.								1		
1.	Need for appreciable amount of right rudder to maintain heading	X	X	0		0	0	Ō	0	O	0
2.	More back pressure required to keep nose and inslination of wings up	0	x	0	0	O	0	D	0	0	0
3.	Greater movement of rudder required	o	0	x	I	x	×	0	0	٥	O

TABLE 16 (Continued)

SUMMARY OF COMPOSITE CUES

Applicable to these Manauvers

Laups 4 Laur		1. Str. Abd. Gl. Fwr.	2. Str. Abd. Cr. Pur.	3. Str. Abd. Pur. Off	4. Str. Abd. Slow Flt.	5. Let. Clim. Turn	6. Rht. Clim. Turn	7. Lft. Glid. Turn	8, Rht. Glid. Turn	9. Steep Lft. Turn	10. Steep Rht. Turn
1. 2. 3.	Controls mushy Ailsrons slightly effective More back pressure required	0	X X O	0 1 0	0 0 0	0	0	0 0	0	0 0 X	0 0 1
2 Len 1. 2.	Controls mushy	I	0	o'	0	0	0	0	0	0	0

In a turn with a constant bank and constant throttle setting, the turn slows down and finally stops at the stall or close to it. In a turn with constant throttle setting and a constant rate of turn, a bank becomes steeper as the stall is approached and eventually goes into either a diving spiral or a spin under. Therefore, the first indication of an incipient stall in an airplane turning at a constant degree of bank and with a constant throttle setting is a slowing down or apparent stopping of the turn. If the pilot attempts to maintain a fairly constant rate of turn by banking more steeply or using down rudder, the plane goes into either a diving spiral or a "spin under."

It is worthy of note that as the air speed decreases in normal flight, the rate of turn (and, accordingly, the rate at which the nose appears to sweep around the horizon) increases. In a turn with constant bank, the nose of the airplane should sweep faster around the horizon as the air speed decreases.

The formula relating rate of turn, angle of bank, and air speed is

$$w = \frac{\tan \phi}{0.000795v}$$

where w is number of degrees of turn per second,

ø is the angle of bank, and

v is speed in miles per hour, 14

If a constant 30-degree bank is maintained, then $tan \neq tan 30^{\circ} = .577$ and the rate of turn becomes

$$v = \frac{.577}{p.000795v}$$

from which it can be seen that as speed v decreases, the rate of turn w increases. In fact, if v is halved, w is doubled.

$$\tan \phi = .000795 \text{mV}$$

where the symbols are as defined above. It is more commonly encountered in the form

$$tan \phi = W$$

where W is rate of turn in radians per second,

V is speed in feet per second, and

g is the gravitational constant.

See, for example, Bairstow, Leonard, <u>Applied Aerodynamics</u>, Longmans, Green and Co., New York, etc., Second Edition, 1939 p. 236, formula V.2.38. The two forms are interchangeable with appropriate adjustments of the constants.

¹⁴This formula was first supplied to the author by Messrs. Leonard Gillman and Harry Goode of Tufts College in 1944 in the form

-

Substituting successive speeds from 40 to 80 miles per hour for v in this expression gives turning rates in radians per second as indicated in the following tabulation:

Turning Pates, 300 Bank, for Various Speeds

Speed	Turning Rate
80	9.1
· 7 5	9.7
70	10.4
65	11.2
60	12.1
55 \	13.2
` 50	14.5
45	16.1
40	18.2

It will be seen from this tabulation that when a pilot makes a coordinated turn in level flight at 80 miles per hour, holding an angle of bank of 30°, the nose of the airplane will start around the horizon at 9.1 degrees per second. If the bank is held constant, as is recommended in the standard instructional literature, and the air speed decreases, then the rate of turn must increase if normal flight is maintained. Our expert pilots were correct in theory as well as experience when they interpreted a slowing down of the turn with decrease in speed as the sign of an abnormal condition. If, during the advanced stages of the turn, the sweep of the nose of the plane around the horizon decreases and the turn falters and stops, a stall is imminent.

Use of Instruments. The majority of all light planes are equipped with an airspeed indicator, altimeter, tachometer, and compass; but their use in instruction is commonly frowned upon. The examiners and interviewers participating in this study inquired at each airport concerning the use of the airspeed indicator and the tachometer in the instructional process. The comments received were of the character of the following:

"No two of these airspeed indicators will read the same."
"The airspeed indicator readings in these airplanes (all of the same type) will vary as much as ten miles per hour."

"Not reliable."

"Poor equipment."

"A bug may get in the pitot tube."

"You can't trust them."

"Somebody is always using the pitot tube to push the airplane."

"Ice forms in the pitot tube," etc.

A reliable airspeed indicator (not necessarily calibrated correctly) appears to be as good an indicator of stall conditions in straight ahead flight as the elaborate, twelve-vane stall-warning device used in this investigation. Nevertheless, the present investigators did not find a single airport or one instructor of the 22 serving as subjects in this investigation

who taught the proper use of the airspeed indicator or the tachometer. In fact, the tendency on the part of instructors is to forbid students to use the airspeed indicator in most maneuvers. It was reported also that inspectors covered up the airspeed indicator during check flights, and prohibited applicants from having and using this important information.

Instructors readily admitted that, if instruments such as the oil-pressure gauge or oil-temperature gauge were registering improperly, they would order the airplane to return to the ground. This same type of logic was not applied in the case of the airspeed indicator, which was not only permitted to remain inactive in many airplanes but was covered up or otherwise denied to the student pilots when it did operate.

The various air speeds and their correlates of physical cues as presented in this report apply only to the Piper J-3 airplane HCl43C2. This, however, does not exclude the applicability of the principle to all light airplanes. There is no particular reason why any student cannot simulate a landing at about 2,000 feet altitude and record the airspeed readings of the particular airplane he is flying. In other words, each student and instructor could determine for himself by experiment at a safe altitude the same general type of readings as presented in the preceding section of this report.

Our expert pilots performed well as to coordination, and for them the fact that uncoordination precipitates the stall may not be serious. But what of the private cross-country pilot -- or the student pilot who wants to know whether his coordination is correct at some point? A ball-bank indicator is an inexpensive and very reliable device; more reliable even than the artificial horizon. It reports more accurately, and at a far smaller hourly fee, than the most expert instructor. Surely the complexity of Tables 13 through 16 argues for providing this easy guide to learning about coordination.

An important observation during the flight interviews was that instructors themselves, even though they could competently recognize the approach of the stall, were at a loss to describe what was happening to the plane and what they were experiencing. Frequently, the subjects would remark that they had never analyzed their feelings, and, in fact, found it difficult to express what they felt and to attribute what they felt to a specific physical sense. This undoubtedly indicates that current instruction of student pilots with respect to recognition of stall conditions leaves much to be desired. It even hints that if instruction is to be depended upon to reduce stall accidents, then instructors must be put through some regime comparable to their experiences in this investigation, so that they can tell students what they do see, hear, feel, and try in stall approach situations. For how can the instructor communicate to the student what he is supposed to see and feel if the instructor himself cannot identify it?

¹⁵This principle was used by all Naval carrier pilots before attempting field cerrier landing practice, and it was also mandatory for all Maval pilots to return to base if the airspeed indicators were proved unreliable.

Discussion. It must be remembered that this study was conducted in order to find out what cues the experts use which can be demonstrated to the student, so they could be used in instruction. These cues may or may not be dependable and the private pilot may or may not be well advised to depend upon them. The fact that the cues are many and various, and specific to certain conditions of flight, makes it appear that the cues may not be very useful to the private pilot unless he does a lot of learning to prepare himself to use them, and does a great deal of frequent and systematic reviewing to keep himself in practice. Typically, private pilots do not spend their flying time in such study or review, and the suggestion that they do so does not seem very practical or promising.

Furthermore, the private pilot must learn that the ones are not dependable. The experts use these undependable cues, but that does not mean that they are dependable. Loss of altitude may be due to a down draft instead of to a semi-stall condition: gain in altitude may be due to a thermal. Rate of climb is similarly a function of air conditions. Back pressures on the stick are affected by the trim. Wobbling of the wings and dropping of the nose may be caused by turbulance. Rudder correction needed in a climb is uneven in turbulent air. Even in straight-ahead maneuvers the airspeed indicator is unreliable as a stall-warning device in turbulent air or in pull-outs or pull-ups of even mild extent. And in turns, the nose may falter in its uniform sweep because of turbulence, and because of turbulence at a particular moment, the hose may continue around the horizon after the stall is dangerously near. The down wing doesn't always come up when expected in the turning stall -- it depends on many things, including the pilot's coordination. Furthermore, the down wing's going farther down may be a far more hazardous development in the turn at low altitude, since the "spin under" may look to the private pilot as though he has merely got to turning too fast. An attempted turn recovery here where a stall recovery is called for could be fatal.

What is needed is (a) for the private pilot to know what flight situations involve the hazard of a stall; (b) a way of telling him whether the hazard is developing in his case when he is in that flight situation; and (c) for him to know what to do if it is. The second of the above clearly refers to a stall-warning indicator -- not the manifold and complicated one system the experts have taken so many flight hours to master -- and which are not dependable without expert interpretation anyway!

Recommendations: The results of this investigation, combined with those of previous studies and with the considerations discussed above, appear to warrant two sets of recommendations:

1. The first set of recommendations applies to the existing situations in private flying. The fact is that under existing conditions many private pilots are flying planes which are not adequately equipped in so far as basic flying instruments are concerned. Even when present, such instruments are frequently inoperative. When operating, they are usually undependable because of faulty calibration and generally inadequate maintenance. So long as such conditions are allowed to exist in the operation of licensed private planes, the following recommendations are indicated by the results of the study:

- a. To the student or private pilot, the results seem to say:

 "If in straight shead flight the air speed gets low, don't
 wait for the controls to get mushy or the nose to drop; if
 in a turn something goes wrong -- the turn falters or the
 down wing comes up or goes down -- don't wait for the turn
 to stop or the controls to get mushy or the air speed to
 recover; if in any maneuver close to the ground any control
 fails to resist pressure or the airplane fails to respond
 to the control, don't wait for the nose to drop or a wing
 to go down or up; commence a recovery from the situation
 at once."
- b. The findings of the study also lead directly to two other recommendations designed to help the private pilot avoid stalls without the aid of adequate instruments. These are:
 - (1) that instructional literature be revised to place a more definite emphasis upon the uniform rate of turn, as emphasis is already placed upon uniform rate of climb, uniform angle of bank, uniform gliding speed, etc.
 - (2) that in the training period stress be placed upon the information that can be provided by properly maintained instruments as a basis for understanding and appreciating the approach of stall conditions.
- 2. One of the major findings of the current series of stall studies is that the human organism is a very inadequate detector of the incipient stall. Moreover, skill in the detection of the incipient stall in one maneuver or in one airplane does not transfer to the recognition of the stall in another maneuver or in another airplane. This general finding necessarily leads to a second set of recommendations, calling for regulations requiring the installation and maintenance of instruments necessary for the accurate recognition of the incipient stall regardless of the maneuver performed by the pilot or the airplane in which he performs this maneuver.
 - a. In the Letter of Transmittal to the report, A Study of the Accuracy of Recognition of the Incipient Stall in Familiar and Unfamiliar Planes, 16 the Committee on Aviation Psychology made the following recommendation:

"The study reveals consistent failure on the part of student pilots, private pilots and flight instructors to detect the pre-stall

¹⁶Rulon, P. J. Op. eit.

conditions in light aircraft. On the basis of these findings the Committee on Aviation Psychology recommends that regulations be formulated requiring the installation of approved stall-warning devices in all private airplanes, providing that field tests demonstrate that available instruments can be adequately maintained and function properly over an extended period."

The results of the present study lend further support to this recommendation since an adequate stall warning instrument provides warning under nearly all flight conditions.

The results of the present study suggest an alternative to the above recommendation which may merit special consideration if data are not yet at hand to demonstrate that available stall warning instruments can be adequately maintained and function properly over an extended period. This is that regulations be formulated requiring the installation and proper maintenance of four basic instruments on all licensed training and "private" airplanes, vis. (1) airspeed indicator, (2) tachometer, (3) altimeter and (4) ball-bank indicator, and that instructional material be revised to include training in the use of pertinent instruments in the detection of the inoipient stall under varying flight conditions. 17 One advantage of this alternative recommendation is that it will require that airplanes be equipped with properly maintained instruments which can be used for purposes other than the detection of the incipient stall. There are three major disadvantages in so feras the primary purpose of detecting the incipient stall is concerned, vis.

However, in this experimental course, exphasis was not given to these instruments during stall instruction. Thus there is no direct evidence on the effectiveness of reference to these instruments during stall instruction. Furthermore, this study had no bearing on the use of instruments in detecting the incipient stall.

¹⁷ These recommendations are not out of line with results of earlier work conducted under the auspices of the Committee on Aviation Psychology on the effectiveness of instruments as a training aid. (Walker, R. Y., et al. The effectiveness of directed attention to instruments as a training aid. Washington, D.C.: CAA Division of Research, Report No. 69, October 1946.) This research indicated that, under the conditions of the experiment, subjects given special training in which reference to the ball bank, airspeed indicator and altimeter was emphasized performed no better in terms of various criterion measures than did subjects trained without special reference to these instruments. In fact such differences as were evident, although not statistically significant, favored the control group.

- (1) The regulations would require the proper maintenance of four instruments. But, of course, they ought to be properly maintained anyway.
- (2) The use of these instruments, instead of the single stall-warning device would still call for the interpretation by the pilot of rather complex interrelationships between the air-speed indicator and the tachometer readings for the detection of the incipient stall in different maneuvers, and for readjustment of instrument readings in transfer from one type of airplane to another.
- (3) Research by Dr. Dean R. Brimhall and Dr. Raymond Franzen¹⁸ and examination of accident reports suggest that many accidents resulting from an inadvertent stall may occur while the pilot's attention is directed outside the plane, or while he is otherwise preoccupied. It is doubtful whether, under such conditions, he would be giving sufficiently close attention to the flight instruments to render them of value or a source of cues to the incipient stall. Under these conditions, however, he would more likely be aware of a specific stall-warning signal, such as a horn.

Disadvantages characterizing the alternative recommendations suggest that regulations should call for the installation of stall-warning devices providing available stall-warning devices can be adequately maintained and function properly.

IV. IMPLICATIONS FOR RELATED RESEARCH

This study sought to identify and describe the physical cues -- visual, auditory, kinesthetic, and experimental -- which experienced pilots utilize in stall perception. The findings reported supplement the findings of Melton and Bakan in their study of the effect of sensory deprivation on stall perception.

¹⁸ Franzen, Raymond, & Brimhall, Dean R. A study of serious and fatal accident records during 1939 and 1940 Teshington, D.C.: CAA Division of Research, Report No. 77, May 1948.

¹⁹Melton, A. W., & Bakan, D. An investigation of the effect of sensory deprivation on stall perception. Progress report to the National Research Council Committee on Aviation Psychology, June 21, 1948. (Copy in Committee files. Final report in preparation.)

The present study and that by Welton and Bakan parallel each other in important respects. Melton-and Bakan studied the deprivation of vision and audition, but did not consider the effect of deprivation of kinesthetic ques. The different maneuvers considered were:

Rulon and Vaughn

Melton and Bakan

- Straight shead -- climbing power
- 2. Straight shead -- cruising power
- Straight shead -- power off 3.
- Straight ahead -- slow flight
- Left climbing turn 5.
- 6. Right climbing turn
- 7. Left gliding turn
- 8. Right gliding turn
- Steep left turn 9.
- 10. Steep right turn

- Straight and level
- Straight glide
- 180° left climbing turn
- 180° right climbing turn 360° left gliding turn 360° right gliding turn
- 6。
- 360° left turn **7**。
- 360° right turn

The data of the Melton and Bakan report permitted the drawing of inferendes concerning the relative importance of vision and audition, but necessarily did not permit the drawing of inferences concerning the relative importance of kinesthetic cues in relation to vision and audition. The present report discusses the cues which experienced pilots utilize in stall perception. No attempt was made to determine their relative effectiveness. Furthermore, the results present cues which impinge upon the pilot who is in full possession of his faculties. Nevertheless, there are certain contrasts and confirmations in the findings of the two studies, and inferences and assumptions may be drawn upon the basis of the findings of the two studies. These may be best considered maneuver by maneuver, examining in the Melton-Baken report only the results for stall recognition and omitting the results for normal flight.

1. Straight shead -- power on.

Stall Flight Conditions (Nelton and Bakan, page 52):

"There is no evidence of any harmful effect of removal of vision or audition singly. However, removal of both produce a marked decrement in performance. This evidence supplies a basis for believing that pilots can shift from one to another modality with no deleterious effects."

The experts utilized visual, auditory, kinesthetic, and experimental cues in this maneuver, and several visual ones were reported. However, many non-visual cues were also reported. The pilots reported enough nonvisual oues to make the Melton-Bakan finding look plausible. The experts might have switched ensity to utilization of other cues, had vision been denied them. The pilots didn't consult the airspeed indicator. Presumably, the Melton-Bakan pilots, when seeing, similarly ignored the airspeed meter. It would be interesting to see whether a user of the airspeed indicator was handicapped by deprivation of vision. Surely the result would depend upon the expertness of the pilot.

2. Straight ahead -- power off.

Stall Flight Condition (Melton and Bakan, page 52):

"No evidence that either vision or audition or both play a role. The importance of other cues is indicated. There is a suggestion that the presence of audition may be a handicap to the use of other cues."

Again our pilets reported enough non-visual cues to make the above finding plausible. Also enough non-auditory cues. The column for audition in Chart III is missing any cue: for distinction between Lamps 3, 4, and 5. Perhaps noises are actually misleading to the non-seeing pilot. As regards vision, it is to be remembered that the "blind" pilots in the Ohio State research were being deprived of an indication (airspeed meter) which they probably didn't use when seeing anyway.

3. Left climbing turn.

Stall Flight Condition (Nelton and Bakan, page 52):

There is evidence that both vision and audition, when both are available, play a role. There is some evidence that when vision is not available, audition by itself is fairly efficient. There is also some evidence that when audition is not available, vision is fairly efficient.

Chart IV for this maneuver bears out the first sentence but not the rest. Kinesthetic and composite cues appear numerous in this chart. Indeed, unless Melton and Bakan masked out kinesthetic cues and prevented the employment of such cues as composite cues, their statements above that "audition by itself is fairly efficient" and "vision is fairly efficient" may be stronger than their data warrant.

4. Right climbing turn.

Stall Flight Condition (Melton and Bakan, page 52):

"Vision plays a role, Audition seems to be a hindrance."

The ERC pilots reported visual cues which would seem to bear out the first statement. They also reported a continual increase in the laboring of the engine, this being an auditory cue. Taking it away seemed to improve the approaches of some of the Melton-Bakan pilots. It would be interesting to see whether the improved performances were those of pilots who when hearing fell short in the approach. Perhaps removing a warning allowed the timid performers to earn a higher approach score.

5. Left gliding turn.

Stall Flight Condition (Melton and Bakan, page 52):

"The evidence seems to indicate that, if anything, vision and audition are hindrances. The importance of non-auditory and non-visual cues is indicated."

This is the finding most at odds with the results of the Educational Research Corporation research. There are definite and seeningly very useful ones in the vision column (Chart VII) and several in the hearing column. In the advanced stages of the near-stall conditions, the rate of turn decreases and the nose rocks up and down. Finally, a wing starts to rise, the nose stops turning, and the loss of altitude reaches a maximum (600 ft./min.). When the plane is gliding at normal speed (55 miles per hour) there is a noticeable noise of the slipstream and the whistling of the wind. As the airplane approaches the stall, these sounds are reduced in intensity, and just before the stall the airplane becomes "dangerously" quiet.

Despite the fact that there are definite visual and auditory cues available in this maneuver, the finding of Melton and Bakan may be genuine, of course. Even experienced pilots apparently do not use the airspeed indicator and tachometer in the glide. They rely, it may be assumed, upon the feel of the controls more than they do on either visual or auditory cues. But suppose pilots were taught to use the turn-falter, and then deprived of vision? Perhaps Melton and Bakan have found what ERC did: that standard instruction places little emphasis on uniform rate of turn!

6. Right gliding turn.

Stall Flight Condition (Melton and Bakan, page 52):

"The evidence does not indicate any assignable role to vision and audition. The importance of non-auditory and non-visual cues is indicated."

The physical cues available in this maneuver are similar to those in the left gliding turn. At the advanced stages the turn slows down and a wing tends to rise. Did the Melton-Bakan pilots, when seeing, ignore the slowing turn? Or did they not get close enough to the stall for a wing to rise or fall?

7. Left turn.

Stall Flight Condition (Melton and Bakan, page 52):

"Vision plays an important role. There is no demonstrable role of audition."

Chart IX bears out this finding. The auditory oue is engine laboring. It is a continuously increasing thing and hard to interpret. Furthermore, the same laboring might be <u>felt</u> by a deaf pilot.

²⁰The tachometer is much less valuable in this maneuver than in certain of the others.

8. Right Turn.

Stell Flight Condition (Melton and Bakan, page 53):

"Both audition and vision alone play a role in each other's absence. Performance when both are absent is significantly worse than when both are present."

The physical cues available for stall perception in this maneuver are quite similar to those pertaining to the left turn, including the tendency of a wing to rise just at the point of stall. It would be judged from Chart I for the steep right turn at altitude that deprivation of vision and audition both would leave only the last-minute cues available. A pilot who feared to push to where he felt them might score low by reason of failure to approach the stall, and the pilot bold enough to go to where he did sense them might fail through actually stalling the airplane.

From the foregoing observations, it appears that the results of the present study are in general not inconsistent with the results of the study reported by Melton and Bakan. Since the two studies had different origins and purposes, employed different procedures, and did not record the same kind of observations, they cannot be expected to corroborate one another except in a general way. This they do. For example, the Ohio State study shows vision to be very important in normal flight, even though stall recognition was not fully impaired by deprivation of vision. Recommendations from observations made in the course of the ERC study concern the preservation of normal flight -- or its restoration -- and they involve vision quite intimately. They also involve the cues found important by Melton and Bakan when vision is absent.

None of the recommendations is rendered in any way suspect by any of the Ohio State results. This is not surprising, since both studies report what happens when people fly airplanes under various conditions.