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Abstract

The most damaging effects of rain-on-snow (ROS) events are often the result of excess water
flows disrupting downstream infrastructure. While rain on snow events have been well stud-
ied in previous literature, there exists little research that quantifies the impact of ROS events
on infrastructure. This report outlines efforts to explore the influence of ROS events on road-
way infrastructure in the state of Nevada. In so doing, we create a Snowpack Runoff Decision
Support System that is supported by rigorously cleaned measurements of hourly snowpack
in the state of Nevada, with a focus on the Upper Carson River Watershed. Further, we
quantify the excess stream surge associated with ROS events through the development of
a new stream surge database that links over 7,000 recorded stream surges to the snow and
weather conditions that preceded the surge at upstream SNOTEL stations. This database
results in a recommendation to adjust NDOT flow calculations by 10-20% in locations of
the state where ROS is expected to be an issue, and sample designs are provided to illus-
trate the implications for NDOT in implementing such an adjustment. Taken together the
deliverables described in this report provide NDOT with a suite of data and tools to help
improve infrastructure design to handle future extreme ROS events.



Background

Major winter floods and extreme runoff in Nevada often result from mid-winter rain-on-snow (ROS) events.
In the Sierra Nevada, ROS events can produce 50-80% higher peak flows than spring snowmelt since rainfall
and snowmelt together can produce greater floods than either just rainfall or snowmelt alone(Kattlemann,
1997). Furthermore, recent research suggests ROS-prone regions, such as the Sierra Nevada, are approaching
a period of “peak ROS” as snow-dominated regions are expected to experience more frequent ROS before a
warming-induced decline in snowpack volumes (Siirila-Woodburn et al., 2021).

Despite growing research on the hydrological impact of ROS events in the Sierra Nevada, there is little
research on the direct impact of ROS or other snowmelt flood events on Nevada’s road infrastructure else-
where in the state. Nevada’s most notable recent floods occurred in February 1986, January 1997, January
2006, and January and February 2017, however; snowmelt-induced slope failures, such as on Slide Mountain,
also pose hazards to downstream roads and communities (Figure 1). Whenever flooding or extreme runoff
damages highways or related infrastructure, the economic impacts can exceed millions of dollars for repairs
and travel delay costs. Many roads in Nevada are located in areas susceptible to winter and/or spring flood-
ing and require mitigation strategies such as the Carson Wash (Figure 1) to minimize impacts. The 1997
New Year’s flood resulted in around $1 billion worth of damage in the Reno-Sparks region (Rhoades et al.,
2023). In January 2017, areas between McCarran Boulevard and Hidden Valley were submerged from a rain-
on-snow flood event in the Reno-Sparks area. Industrial area and land south of Interstate 80 also flooded as
multiple inches of rainfall fell in the foothills and throughout the Sierra Nevada, west of Interstate 580 and
U.S. 395. Several years later, extreme rainfall in early December 2021 caused erosion and culvert failure on
NV-431 (Mt. Rose Highway; an average of 8,000 vehicles/day; Figure 1) and resulted in a multi-day closure
of the road and simultaneous closure of the Mt. Rose Ski Resort as customers could not access the resort.

Figure 1: Examples of cool season flood impacts on Nevada roads. Clockwise from left: Snowmelt
or extreme rainfall on Slide Mountain can produce debris flows that impact NV-580; Flood deposits on NV-
580 following the May 1983 flood; The Carson City Wash mitigates flood impacts; NDOT workers repair a
damaged culvert on NV-431; Erosion from extreme runoff damaged NV-431.

The ROS flooding problem presents an opportunity to identify high-risk weather and antecedent snowpack
conditions . This opportunity provides additional lead time when staffing or preparing mitigation effort
(e.g., staging equipment or cleaning culverts and drainage structures) for forecasted high-impact events. It
can also improve the understanding of ROS runoff potential that could be integrated into transportation
infrastructure design. While there is documented information about the meteorological factors that create
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ROS flooding, the role of the snowpack is less well-understood. Therefore, this project has four principle
objectives:

1. Identify regions in Nevada most susceptible to mid-winter ROS flooding.

2. Apply the Snowpack Runoff Decision Support System framework developed by Heggli et al. (2022)
to Nevada and California snow monitoring stations with an operational decision-making focus on the
Upper Carson watershed.

3. Quantify the expected surcharge in flow due to ROS using a ROS dataset from across the western
states.

4. Provide guidance to NDOT regarding how to account for excess flows due to ROS in culvert design.

It is well documented that the far western region of Nevada experiences high-impact ROS events; however,
there is little evidence of hydrologically-impactful ROS events in the far eastern regions. There is a greater
uncertainty about where across the state the impacts of ROS events are meaningful for transportation. The
first product aims to identify regions most susceptible to ROS runoff by looking at SNOTEL soil moisture
to identify snowpack runoff and USGS streamflow to validate the ROS runoff response. This provides a
first-level understanding of regions that have experienced impactful ROS events.

The Snowpack Runoff Decision Support System (SR-DSS) aims to improve forecast confidence of hy-
drometeorological outcomes to help protect life and property while also optimizing increasingly scarce water
resources (Hatchett et al., 2020; Uccellini and Ten Hoeve, 2019). There is an outstanding need to commu-
nicate real-time changes in the snowpack during ROS events to forecasters and water managers across the
Western U.S. (McCabe et al., 2007; Heggli et al., 2022). To address this need, we have developed a framework
for SR-DSS, which is currently designed to provide situational awareness to communicate real-time changes
in the snowpack at hourly timescales.

Further, our exploration of ROS events across the western states allows us to better quantify the potential
gap between the flows currently being estimated by NDOT’s implementation HEC-HMS using Atlas 14. We
then pair the results of this exploration with some real design examples to demonstrate the implications of
incorporating our results into culvert design in the state of Nevada.

The remainder of the report is organized into two super-sections, namely

• Nevada Decision Support,

• Western State Explorations,

Each super-section contains a Research Approach and Findings and Applications Section. The report
also includes a section illustrating the implications of adopting a ROS surcharge factor on several real culvert
design examples from historical NDOT projects. The report then concludes with a summary of findings across
super sections. Taken together, the deliverables described in this report provide the most comprehensive
exploration of the influence of ROS events on roadway infrastructure to date.

Research Approach - Nevada Decision Support

Study Area

The data collected are applied to the entire state of Nevada with a regional study that focuses on the Upper
Carson River watershed. The Upper Carson is a sub-basin within the Carson River watershed. The Carson
River watershed has two main forks feeding the Carson River and runs a total of 296 km (USGS, 2022). The
East Fork (119 km) begins on the northern slopes of Sonora Peak at an elevation of 3,200 m while the West
Fork (64 km) begins near Lost Lakes at 2,700 m. Both forks flow from California eastward and join near
Genoa, Nevada before flowing through Carson City, NV to the Carson Sink at an elevation of approximately
1,180 m. The Upper Carson is 2,482 km2 in area and has 12 NRCS SNOw TELemetry (SNOTEL) stations
(see description in ”Datasets” section) that are representative of the watershed. Six of those are within
the watershed boundaries. There are four USGS streamgages in the Upper Carson that serve as CNRFC
hydrologic forecast points (Figure 2). The Upper Carson reached flood stage at all streamgages during 1997,
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2005, and 2017 rain-on-snow events. The 1997 event was the record flood event for all three locations as well
as at many other locations in northcentral California and western Nevada (Rhoades et al., 2023), with $55
million in projected damages in Douglas County (Thomas and Williams, 1997) alone and over $450 million
(unadjusted) in damages across Nevada (USACE, 2013).

Esri, NASA, NGA, USGS
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Figure 2: (A) Map of the Upper Carson sub-basin (thin black line) within the Carson watershed (thick
black line) with SNOTEL stations (circle) color-coded by elevation and USGS gaging stations and CNRFC
forecast points are marked in a yellow upside-down triangle. (B) Photo of the Blue Lakes SNOTEL station.
(C) Photo of the Spratt Creek SNOTEL station.
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Datasets

NDOT’s Drainage Manual outlines design techniques to assess maximum flow through 100-year rainfall and
the 100-year flow. Yet this approach does not account for rainfall-derived runoff coupled with snowmelt
(NDOT, 2006). Since the Road Weather Information System (RWIS) stations were not designed to as-
sess snow melt, we address this challenge by using data from the SNOTEL stations that monitor hourly
precipitation, air temperature, snow water equivalent (SWE), snow depth, soil moisture, and temperature.

SNOTEL data was downloaded and processed using methods outlined in Heggli (2023) for WY2006–2023
at the Central Sierra Snow Laboratory (CSSL) and 9 stations in the Upper Carson watershed: Spratt Creek,
Hagans Meadow, Forestdale Creek, Horse Meadow, Burnside Lake, Blue Lakes, Carson Pass, and Ebbetts
Pass. Data at three stations (CSSL, Blue Lakes, and Spratt Creek) were hand-cleaned for the period of
study and the remaining stations were processed only with automated QC methods Heggli et al. (2022) that
were further developed using support from this grant.

Hourly streamflow data was also downloaded from the USGS Water Data Dashboard (dashboard.wa
terdata.usgs) for gaging stations 10311000 (Carson City, NV), 10309000 (Gardnerville, NV), 10308200
(Markleeville, NV), and 10310000 (Woodfords, NV) for WY2006–2023. Monitor and flood stage levels
were extracted from the CNRFC graphical river forecast page for each of the forecast points (https:
//www.cnrfc.noaa.gov/).

Assessing ROS across Nevada’s Mountains

To assess whether or not hydrologically-impactful ROS events occurred in several locations of Nevada, as
well as a first-order estimate of their magnitude, we performed baseflow separation of five streamgages using
long-term records of daily data. Baseflow separation is a mathematical deconstruction of the hydrograph into
two components, the baseflow and the storm runoff. We define hydrologically-impactful ROS as midwinter
responses in storm runoff.

Relevant streamflow data from the headwaters of the Spring Mountains is not available. Therefore, we
developed a TWI identification algorithm using the hourly soil moisture for the lowest elevation SNOTEL
at Rainbow Canyon (2396 m) at least 50 mm of SWE was present, and manually identified periods of ROS
TWI.

Snowpack Runoff Decision Support Thresholds

Identifying Rain-on-Snow Terrestrial Water Input Thresholds

First, we calibrated the previously developed SR-DSS thresholds for terrestrial water input (TWI; the in-
troduction of water to the land surface by rainfall and/or snowmelt) by incorporating data from water year
(WY) 2006–2022 at the Central Sierra Snow Laboratory (CSSL) and eight stations in the Upper Carson
River watershed (Figure 2). We then apply the SR-DSS to two case studies on data during WY2023. These
cases were not included in the learning process using only automated quality control procedures (Level 2;
Heggli (2023)) to assess the feasibility and reliability of the SR-DSS in an operational setting. By iden-
tifying TWI drivers and antecedent conditions leading to the greatest hydrometeorological impacts at the
sub-basin scale (8-digit Hydrologic Unit Code), this approach focuses on furthering the development of a
quasi-deterministic SR-DSS.

The methods applied to this paper build off of those developed by Heggli et al. (2022). We continue the
focus on ROS TWI, though several modifications were made. After TWI was identified for the period of
study, we filtered the data for periods when there was more than 50 mm of SWE during any point in the
season, versus the 100 mm threshold before peak SWE. This modification expands the dataset to include
ROS events in shallower snowpacks and spring ROS events. The expansion of this framework specifically
focuses on antecedent snowpack and present weather for ROS TWI since ROS events are a concern to NDOT.

To identify the patterns of present weather and antecedent snowpack conditions with the potential to
produce TWI mid-winter, we analyzed violin plots for snowpack density 1 hr before ROS TWI, 6 hour
maximum air temperature, and 6 hour precipitation totals. Following the methods in Heggli et al. (2022),
we use the first quartile values as a more conservative threshold for TWI potential. First, the updated
thresholds were analyzed for each of the three stations with hand-cleaned data (Figure 3) and aggregated to
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identify regional thresholds that integrate the observations at all three stations (Figire 4.a). This analysis
intends to review the variation of thresholds across elevations on both windward, the peak, and the lee side
of the mountain. Next, we assessed the performance of the thresholds with just the automated QC routines
for the remaining stations in the Upper Carson watershed to assess the feasibility of rapidly expanding
these methods across all SNOTEL stations in Nevada. Figure 4.b illustrates the identified thresholds for all
stations, which agrees with the thresholds identified by the hand-cleaned data.

Figure 3: Violin plots of snowpack density 1 hour prior to TWI, 6 hour maximum air temperature, and 6
precipitation totals during ROS TWI for Central Sierra Snow Laboratory (CSSL), Spratt Creek (SPC). and
Blue Lakes (BLL).

Updated Thresholds for the SR-DSS

The snowpack density violin plot provides evidence for the formation of preferential flow paths as a uniform
wetting front would require the snowpack to evenly absorb all of the rainwater before releasing TWI. At
least 75% of ROS TWI at each station occurs before the snowpack is considered “ripe” with a bulk snowpack
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a. b.

Figure 4: (a) Violin plots of snowpack density 1 hour prior to TWI, 6 hour maximum air temperature, and 6
precipitation totals during ROS TWI for Central Sierra Snow Laboratory (CSSL), Spratt Creek (SPC), and
Blue Lakes (BLL). (b) The same as A but for all stations in the Upper Carson study including the CSSL
with automated QC routines only.

density greater than 40% (Figure 3.b). The snowpack density thresholds agree between CSSL and Spratt
Creek (26.5% and 26.9%) but are substantially higher at Blue Lakes (31.5%). While one might initially
think that the higher elevation station has deeper snow, and therefore will need to have a greater snowpack
density for the water to make its way through the snowpack, Blue Lakes does not typically have a deeper
snowpack than CSSL. The biggest snow years in the period of study (WY2011, WY2017, and WY2019)
CSSL had a larger snowpack throughout the entire winter than Blue Lakes. A more plausible explanation
of the increased snowpack density could be because precipitation more often falls close to 0 °C at the higher
elevation Blue Lakes, and therefore the preferential flow path formation will progress more slowly than in
a warmer snowpack, thereby increasing the bulk density of the snowpack (McGurk et al., 1988). While
further analysis is needed, this data signals that the snowpack does not need to become fully “ripe” and
reach a high density of 40-50 % bulk densities to transmit water from the snowpack to the land surface and
thus contribute to flooding. Therefore the lowest station threshold value of 26.5% should be included in the
SR-DSS threshold list.

The 6 hour maximum temperature thresholds for ROS TWI potential for each station follow a moist
adiabatic lapse rate of 3.7 °C/km with a 2.3 °C difference for the 611 m of elevation difference between Blue
Lakes and Spratt Creek (Figure 3.b). Whenever it is raining at Blue Lakes, the rainfall occurring at the
lower elevation stations of CSSL and Spratt Creek will always be higher due to the moist adiabatic lapse
rate. However, the observations at Blue Lakes show that even when the air temperature is 0.4 °C, there is
the potential for ROS TWI. Similar to the snowpack density threshold, this lowest station threshold should
be included in the SR-DSS threshold list as it is designed to signal any potential for ROS TWI.

The 6 hour precipitation thresholds for ROS TWI are consistent across all stations at 5.0 mm, 4.9 mm,
and 5.0 mm for CSSL, Spratt Creek, and Blue Lakes accordingly (Figure 3.c). The consistency of the values
across all stations and the high density of ROS TWI observations at this threshold increase the confidence
that 5.0 mm of rain in six hours is sufficient to produce a soil moisture response. The median and third-
quartile values also show reasonable agreement between hand-cleaned and automated QC data.

This tool is designed to provide situational awareness, which should include a measure of the likelihood
of ROS TWI. The first quartile values have provided insight into a low threshold for ROS TWI. However,
crossing the minimum threshold does not necessarily mean that there will be high-impact runoff. To com-
municate a higher likelihood of ROS TWI we integrate the median and third-quartile values to identify the
intersection of the increasing likelihood of ROS TWI response in streamflow. First, we assess the likeli-
hood of ROS TWI based on present weather (Figure 5). The minimum observed air temperature threshold
(0.4°C) with the minimum precipitation threshold (5 mm) indicates the lowest potential for TWI on the
TWI Potential Scale. Increasing thresholds increase the potential for ROS TWI. The ROS TWI potential
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also depends on antecedent snowpack conditions, so we then assess the increase or decrease in TWI potential
based on antecedent snowpack conditions. The ROS TWI threshold for density is 28.3%, therefore the ROS
TWI potential for the given present weather this snowpack density threshold remains the same. Increasing
snowpack density thresholds increase the TWI potential with the warmest and highest intensity rainfall
indicating a high potential for ROS TWI regardless of antecedent snowpack conditions. The lowest station
snowpack density threshold was 26.5% and higher rainfall totals at higher air temperatures can produce
TWI based on the station observations. However, the lower-density snowpack can be slower to respond and
therefore the ROS TWI potential decreases for the given present weather potential.

Figure 5: Caption.

Visual Communication

Decision support tools benefit from, if not require, effective visual communication that capitalizes on the
efficiency of the visual system to extract information and ensures accessibility to individuals with color vision
deficiencies and neurodivergent characteristics (Heggli et al., 2023). For the SR-DSS we integrate color-blind
safe color pallets that do not conflict with existing color scales that communicate hazard or impact (Gordon
et al., 2022; National Weather Service Western Regional Headquarters, 2022). Following the work of Crameri
et al. (2020) regarding the use (and misuse) of colors in science communication, we select a perceptually
uniform pallet that varies in lightness to communicate confidence in the potential for TWI (Wilms and
Oberfeld, 2017).

Findings and Applications - Nevada Decision Support

ROS Climatology Across Nevada’s Mountains

Baseflow separation provides a first-order assessment of ROS climatology and magnitude by identifying the
seasons when storm-driven runoff occurs. The baseflow and storm runoff (hereafter runoff) for four different
watersheds are shown in Figure 6. The streamflow response in the Carson River (Figure 6.a & c) indicates
the presence of perennial baseflow (year-round). There are two peaks in runoff. The largest increases in
runoff, which are orders of magnitude larger than baseflows at this time, occur intermittently during mid-
winter months with a secondary peak from the spring into summer months. This illustrates (at face value)
the Carson River includes all three snowpack runoff types: ROS, midwinter melt, and spring snowmelt. The
increases in baseflow during the cool season are transient and follow peaks in runoff; these increases result
from ROS or melt events contributing to baseflow after the weather event has occurred.

Baseflow separation at Lamoille Creek in the Ruby Mountains (Figure 6.b & d) shows the dominance of
spring snowmelt-derived runoff in driving both runoff and baseflow. Little to no midwinter runoff and with
one exception, low midwinter baseflows are observed. While the Carson watershed consistently experiences
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ROS and mid-winter runoff, the Ruby Mountains do not yet show evidence of hydrologically-impactful
ROS or other mid-winter runoff. This is consistent with the cold, interior, high elevation climate of the
northeastern Great Basin. However, as the climate warms and more precipitation falls as rain, it is possible
that mid-winter increases in streamflow from ROS and/or midwinter melt will eventually occur here. The
lessons learned about ROS hydrology in the highly variable and maritime climate region of the Sierra Nevada
can be applied to the spring snowmelt-dominated watersheds as the ROS climatology of Nevada changes.

The small, relatively wet, steep, volcanic, middle-to-high elevation watershed of Third Creek (located
on the northeast shore of Lake Tahoe above Incline Village and Highway 431) shows a similar pattern to
the Carson River (Figure 6.e & g): occasional peaks in runoff during the cool season before a consistent
melt-season signal with a seasonally-dominated baseflow signal during the spring into the summer. In
contrast to the Carson River, the magnitudes of baseflow and runoff in Third Creek are much closer in
magnitude with typically higher baseflows. This is a product of watershed contributing area, the elevation
distribution of the watershed’s contributing area, its groundwater hydrology, and water use patterns (little
to no pumping compared to the Carson). The largest total flows (baseflow plus runoff) occur during the
spring in Third Creek, whereas in the Carson, these flows occur during the midwinter ROS events. But in
both cases, midwinter ROS and melt events produce elevated runoff and potentially overland flow impacting
infrastructure.

The low-to-middle elevation (between 50 to 8,500 ft) and much warmer and wetter Cosumnes River
watershed, located on the western slope of the Sierra Nevada (due east of the Carson River watershed) is
shown to provide a comparison with a rain-dominated system (Figure 6.f & h). In the midwinter, ROS
is frequent, and much of the watershed can be snow-free. The watershed is sensitive to cold and warm
storms with extreme multiday precipitation, but disentangling the roles of hydrometeorology on surface and
groundwater behaviors is difficult due to the hydrogeological complexity of the watershed Siirila-Woodburn
et al. (2023). In the Cosumnes, runoff occurs throughout the cool season–flow responds to the majority of
precipitation events–and baseflow follows a similar cycle throughout the cool season. Baseflows are much
more evident in the middle of winter due to the responsiveness of this watershed to precipitation, a stark
difference from high-elevation, colder locations such as Lamoille Canyon.

In addition to serving as a comparison location to show a rain-dominated system, the Cosumnes can be
interpreted to show the hydrologic characteristics of a much warmer climate in currently snow-dominated
with occasional ROS (Carson River and Third Creek) systems. With enough warming–which is possible by
end-of-century Rhoades et al. (2023)–even the Ruby Mountains could behave more like the Cosumnes. In
all three Nevada watersheds studied, it is recommended to consider the current hazards posed by midwinter
runoff but also the potential changes in flood hazard as the climate warms and ROS becomes more frequent.
Last, the hydrologic effects of large, moderate-to-high severity wildfire should also be considered. Wildland
fire is expected to increasing alter the hydrology and ecologic function of montane watersheds and potentially
increase hazards of midwinter runoff via increasing snowpack susceptibility to melt via decreases in snow
albedo (more radiation absorbed) and canopy cover (loss of snowpack shading) Hatchett et al. (2023). These
effects may elevate baseflows during winter due to more frequent snowmelt as well as increase the potential
for ROS-driven melt or preferential routing of rainfall through dense snowpacks.

The assessment of ROS TWI at the lowest elevation SNOTEL station in the Spring Mountains, Rainbow
Canyon, identified 13 ROS events that produced TWI when at least 50 mm of SWE was present. Consistent
with the findings of (Heggli et al., 2022), the majority of these events did not result in snowmelt. Similarly
to the ROS climatology of the Sierra Nevada the ROS events occurred during midwinter months: five in
December, four in January, three in February, and one event in early March. The lack of ROS events in
March is in part due to the shorter snow-covered season at the station. The snowpack at Rainbow Canyon
typically peaks February 28 and is depleted by April 1. Despite the high elevation of the SNOTEL stations
in the Spring Mountains, the snowpack is more similar to the lowest elevation SNOTEL in the Sierra Nevada,
Spratt Creek, in the Upper Carson where the snowpack typically peaks February 22 and is depleted by March
28. The two other SNOTEL stations in The Spring Mountains, Lee Canyon (2629 m) and Bristlecone Trail
(2710 m) also behave more similarly to Spratt Creek than SNOTEL stations at comparable elevations in
the Sierra Nevada. The relatively smaller snowpack provides less opportunity for ROS or midwinter runoff,
thereby limiting the hydrologic impact of snowmelt-augmented ROS runoff.

To further the assessment of ROS climatology across Nevada, we leveraged the work of Hatchett (2021) to
compare seasonal and ephemeral snowpack climatology. Figure 7 highlights the snow-dominated mountain
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Figure 6: Caption.

ranges across Nevada including the Sierra Nevada, Ruby, and Spring mountains, and emphasizes that these
mountain ranges are more ephemeral at lower elevations but the peaks of the mountains have persistent
snowpack. The spatial extent of the snow-covered area directly impacts the opportunity for snowmelt-
enhanced ROS runoff. The Sierra Nevada and North Eastern Nevada including the Ruby Mountains have a
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larger seasonal snow-covered area when compared to the Spring Mountains. Despite evidence of ROS events
in the Spring Mountains, there is not as great of a potential for snowmelt-enhanced ROS runoff as there
is in the Sierra Nevada Mountains. The Ruby Mountains also have the potential for snowmelt-enhanced
ROS runoff, but the atmospheric conditions are not conducive for ROS. However, anticipated changes in
precipitation transitioning from snow to rain mean that ROS runoff impacts including localized or even
widespread flooding could be expected in coming decades Musselman et al. (2018); Siirila-Woodburn et al.
(2021).

Figure 7: Seasonal and ephemeral snowpacks are widespread in Nevada. Left: Seasonal snowpacks
are most common in high elevation terrain and eastern Nevada. Right: Ephemeral snowpacks occur most
frequently in the lower elevations of western and southern Nevada. Snow seasonality maps are based on 36
years of gridded snowpack data (Hatchett et al., 2021).

SR-DSS

Test Case Assessment of SR-DSS

The objective of SR-DSS is to run operationally in real-time. To assess the reliability of the tool in an
operational environment, we apply only the automated QC methods (Level 2; Heggli (2023)) and assess data
from WY2023 that was not included in the development of the SR-DSS thresholds. In addition to the test
case assessments, we applied the SR-DSS to seven events from WY2006–2022 in Appendix A. Four events
reached flood stage at any of the four CNRFC forecast points: 29 December 2005–1 January 2006; 7–10
January 2017; 6–11 February 2017; and 6–9 April 2018. We included three ROS events that did not cause
flooding: 13–15 February 2019; 9–12 December 2022, and 26–28 December 2022. We focus on one ROS test
case in WY2023: 29 December 2022–1 January 2023. To aid in the regional assessment of the SR-DSS, we
developed a regional map that includes all of the SNOTEL stations in the Central Sierra Nevada and color
code the TWI potential at each station using the updated SR-DSS thresholds with the Level 2 data. Blue
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Lakes and Spratt Creek are noted on the map and active TWI is indicated with a thick black outline of the
SNOTEL station. The regional map also includes the four CNRFC forecast points that are color-coded for
monitor and flood stage. Each event will be discussed in detail in the following sections with figures that
include three regional maps of TWI potential and streamflow response in the top panel (1A, B, and C) for
selected times indicated with a pink vertical line in the lower panel (2A and B). The lower panel (2) shows
the time series data from the Blue Lakes (2A) and Spratt Creek (2B) leading up to the streamflow response.
The time series plots include 1 hour and 6 hour precipitation totals and 1 hour and 6 hour maximum air
temperature in the top panel. The second panel shows bulk snowpack density and SWE overlayed with the
SR-DSS TWI potential is below that. The next panel shows soil moisture at 5 cm, 20 cm, and 50 cm depths
with periods of active TWI highlighted in pink, and finally the maximum hourly stream flow at the four
CNRFC forecast points in the Upper Carson River. This figure is provided for each test case and the events
included in Appendix B.

29 December 2022–1 January 2023

From December 2022 and January 2023, the Sierra Nevada experienced nine back-to-back storms that
predominately produced snowfall at the SNOTEL station elevations. Two of these events (29 December
2022 and 10 January 2023) were ROS events, but only the 29 December 2022 event resulted in flooding on
the Carson River and will be the focus of the first test case (Figure A.7). The snowpack at Blue Lakes (396
mm of SWE) and Spratt Creek (122 mm of SWE) was well above normal for the time of year. Ahead of this
event, the depth-averaged soil moisture at Blue Lakes was below the period of record median and was about
average at Spratt Creek. Prior to the ROS event, the region experienced anomalously high temperatures
24–26 December 2025 with maximum air temperatures at Blue Lakes ranging from 8.2–10.1 °C. A system
moved into the region around midnight on December 26th that brought snowfall to Blue Lakes keeping the
snowpack density relatively low at 29% and rain to Spratt Creek that increased the density to 33% (Figure
A.7.2A and B).

The air temperature at Blue Lakes was below freezing when the precipitation first started on 29 December
2023 but by 11:00 PST the following day the temperature threshold was met for Low ROS potential and at
17:00 PST the air temperature was 0.5 °C for the second consecutive hour and TWI had initiated at 20 cm
and 50 cm depths (Figure A.7.1B). The ROS TWI air temperature threshold was not met for another three
hours. This is evidence that the air temperature threshold should be adjusted for elevation and the 0.4 °C 6
hour maximum threshold for Blue Lakes may be more effective at predicting ROS TWI (Figure ??). As the
air temperature increased to meet the ROS TWI potential threshold, Blue Lakes continued to produce TWI
until ROS TWI potential thresholds were no longer met and downgraded to low ROS TWI potential. At
10:00 PST on 31 December 2023 the air temperature at Blue Lakes had dropped to 0 °C and TWI potential
transitioned from low ROS to none after multiple hours of the air temperature being below the ROS TWI
threshold (Figure A.7.1C). TWI occurred for a total of 12 continuous hours at Blue Lakes though there is
no evidence of snowmelt since SWE continuously increased throughout the storm.

On 30 December 2023 at 05:00 PST the ROS TWI thresholds were met at Spratt Creek and TWI
initiated two hours later as SWE began to decline (Figure A.7.1A). SWE continued to decline as soil moisture
continued to register TWI until 10:00 on 31 December 2023 when air temperature dropped to 0.2 °C and
SWE began to increase as density started to decrease indicating precipitation had transitioned from rain to
snow. However, the 6 hour maximum air temperature threshold was still above 1.3 °C for another two hours
before downgrading to Low ROS and then to no potential. TWI was active for a total of 20 hours at Spratt
Creek and there is strong evidence of snow melt since the already dense snowpack lost SWE as soon as rain
started. There is evidence that the rain was warm enough to melt the snowpack since the air temperature
during precipitation on 30 December 2023 ranged from 3.6-6.8 °C.

Lower in the watershed, streamflow on the East Carson at Markleeville and Gardnerville began to slowly
increase at the same time precipitation started at Spratt Creek. By the afternoon on 31 December 2022
the Garnerville station reached monitor stage and continued to steadily rise until hitting flood stage 5 hours
later. The peak coincided with the drop in air temperature and the transition from rain to snow at both Blue
Lakes and Spratt Creek around 10:00 on 31 December 2022 (Figure A.7.1C). Despite Gardnerville reaching
flood stage, Markleeville and Carson City were just shy of monitor stage.
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SR-DSS Assessment

To assess the reliability of the SR-DSS for real-time communication, this case study demonstrates that the
automated Level 2 data can perform sufficiently for this event. However, neither event caused a snow plug
in the precipitation gauge. 2023 January 4th the Blue Lakes precipitation gauge did plug and inhibited the
gauge to record new precipitation for 16 days. One advantage of using the Level 2 data for ROS events is
that most major sensor issues occur during snowfall. Snow depth sensors struggle to measure during heavy
snowfall (Anderson and Wirt, 2008), snow plugs only occur with snow or mixed-phase precipitation that
sticks and accumulates to the side of the precipitation gauge, and bridging of the snow pillow will not register
new snowfall. If a snow plug has not released before a ROS event, sufficient rain can release the snow plug
and regain accurate and timely precipitation observations (Heggli et al., 2022). Complex structures like
melt-freeze crusts that cause bridging over a snow pillow can also be released by rainfall (Heggli et al., 2023).
Because the Level 2 QC process integrates automated flagging of suspect data, the formation of snow plugs
and bridges could be tracked to notify potential data users that the data may not be reliable.

To test the reliability of automated quality control processed data to establish SR-DSS thresholds, we
performed the pattern recognition on those data for CSSL, Blue Lakes, and Spratt Creek (Figure 9). The
automated processed (Level 2) derived SR-DSS thresholds only have slight changes from the Level 3 hand-
cleaned derived thresholds. Although more stations should be developed manually to confirm the reliability
of the Level 2 data for automated threshold analysis, this first assessment demonstrates the utility of the
Level 2 data in providing situational awareness for mid-winter snowpack runoff.
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Figure 8: 29 December 2022–1 January 2023: Regional maps of TWI potential and streamflow response
(1A, B, and C) for selected times indicated with a pink vertical line (2A and B). Time series data from
the Blue Lakes (2A) and Spratt Creek (2B) leading up to the streamflow response. There are four panels:
1 hour (dark grey) and 6 hour (light grey) precipitation totals and 1 hour (dark grey) and 6 hour (light
grey) maximum air temperature in the top panel; shows bulk snowpack density color coded to communicate
increases (pink), decreases (grey), and no change (white) in density values each hour; SWE (black) overlayed
with the SR-DSS TWI potential (low ROS in light blue, ROS in dark blue, low W/SDM in light orange,
and W/SDM in orange); soil moisture ranging from light to dark grey at 5 cm, 20 cm, and 50 cm depths
accordingly with periods of active TWI highlighted in pink; maximum hourly stream flow in green ranging
from dark to light green in the following order: Carson City, Gardnerville, Markleeville, and Woodfords.
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Figure 9: Violin plots of snowpack density 1 and 6 hours prior to TWI, 6 and 12 hour maximum air
temperature, and 6 and 12 hour precipitation totals during ROS TWI (blue) and W/SDM TWI (orange) for
Blue Lakes (BL), Central Sierra Snow Laboratory (CSSL), and Spratt Creek (SC) using Level 2 automated
QA/QC process from Chapter 3.
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Research Approach - Western State Explorations

This section describes the creation of a new dataset relating observed surges in streamflow to the weather
conditions that preceded the surge. We then classify those weather conditions as ROS-induced or non-ROS
induced based on variable thresholds described later in this section. To create this dataset, we aggregate
streamflow measurements and weather data through regional associations. The dataset is then used to
compare surge size in ROS and non-ROS induced floods. Table 1 describes the data sources used to obtain
the relevant variables.

Table 1: Data sources used in the creation of the stream surge dataset.
Source Abbr. Description Reference

United States Geological Survey USGS Streamflow data for 2,586 streamgages
at a sub-hourly level and gage flood
stages, when available.

USGS (2023)

Snowpack Telemetry Stations SNOTELDaily weather data from 808 stations,
used to identify conditions for ROS
events.

NOAA (2016)

Watershed Boundary Dataset WBD Hydrologic unit code (HUC) shapefiles
at the HUC 8 level.

USGS (2024a)

Parameter-elevation Regressions on
Independent Slopes Model

PRISM Modeled weather data for comparison
with and verification of SNOTEL mea-
surements.

NACSE (2024)

Streamflow, SNOTEL, and PRISM data are accessed through functionality available in the rsnodas package
(Schneider, 2023). Data collection is limited to the area encompassed by the 11 Western states shown in
Figure 10.

Streamflow Peak Detection

Our primary interest in the streamflow measurements is identifying peaks, or surges, in the streamflow.
These peaks are identified using a peak detection algorithm available in the the cardidates (Rolinski
et al., 2007). We feed hourly maximum measurements of streamflow into the algorithm, and use linear
interpolation to impute any missing values in the time series for each streamgage. We note that missing
streamflow measurements are sometimes the results of flow rising to unusually high levels, causing gage
sensors to malfunction (USGS, 2018, 2024b). Future research should consider alternative missing value
imputation approaches to account for potentially missed stream surges due to gage malfunction.

The peak detection algorithm requires the user to provide a user-defined flow threshold for each gage.
Whenever they are available, we use predefined flood stages for this threshold. The National Weather Service
defines flood stage as “the stage at which overflow of the natural banks of a stream begins to cause damage
in the local area from inundation (flooding)” (USGS, 2023). Predetermined flood stages are published online
by the USGS for 737 of the 2,586 streamgages originally involved in our study (28.5%). Flood stages for the
remaining 1,849 gages are estimated by identifying the streamflow measurement marking the 75th percentile
of the annual maximum reported measurements for each unique location. The selection of the 75th percentile
is somewhat arbitrary, and is meant to target an extreme surge event for which there is a reasonable number
of observations exceeding the threshold. Future work should consider alternative methods for imputing flood
stage thresholds when that information is not available.

After defining existing/estimated flood stages for each streamgage, we implement the peak detection
algorithm and identify peaks at 2,199 of the 2,348 available streamgages using each streamgage’s full period
of record (i.e., the time span over which data is recorded). We detect a total of 60,811 peaks between all the
streamgages. Of these 60,811 peaks, 55,207 are reported at streamgages with estimated floodstages (90.8%).

15



Figure 10: Map of the states in our region of interest, including Washington, Oregon, California, Nevada,
Idaho, Utah, Arizona, Montana, Wyoming, Colorado, and New Mexico.

Baseflow Calculation

In order to examine differences in streamflow surges between ROS and non-ROS peaks, we obtain a baseflow
(bf ) measurement preceding each peakflow (pf ) measurement and define stream surge (g) as

g =
pf
bf

. (1)

Peakflow measurements for each streamgage are reported by the peak detection algorithm along with the
timestamp. We calculate baseflow by finding the median of hourly streamflow measurements at the relevant
streamgage in the two week period prior to the flood peak. For instances where two peaks occur in a time
period shorter than two weeks, we adjust the algorithm to use the median of the streamflow measurements
in the time between the two neighboring peaks to describe the baseflow of the latter peak.

Weather Data

Weather data measurements are obtained at a daily level for 808 SNOTEL stations across the 11 states of
interest. The specific variables we use to inform ROS flood classification and surge representation include
the following:

• temperature (temp in ◦C)

• precipitation (precip in mm)

• snow depth (SD in cm)

• SWE (SWE in mm)

• soil moisture (SM as percentage)
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• elevation (m)

• snow melt (melt in mm)

SNOTEL stations use devices called snow pillows to measure SWE, which describes the water content
available in the snowpack (USDA, 2024). Snow melt (sm) is not a variable reported directly by SNOTEL
stations, so we calculate it using measured precipitation and SWE. This calculation is performed as follows:

sm = (p+ swd
)− swd−1

, (2)

where sw represents SWE, p represents precipitation, and d represents day. swt
. This calculation assumes

that measured precipitation is equivalent to the increase in the water content of the snowpack on days with
no snow melt. Any bias in measurements of precipitation or SWE would thus be reflected in this calculation.
Future research should compare this calculation to modeled estimates of snow melt such as those available
in SNODAS (NSIDC, 2024). This snow melt measurement is used in the Musselman et al. (2018) ROS
classification framework described later.

Data Associations

The USGS’s HUC system divides the United States into a set of drainage basins at six different spatial scales,
ranging from continental (HUC 2) to local (HUC 12). A drainage basin, or watershed, is an area of land
that captures precipitation and channels it into a creek, river, or stream, eventually leading to the ocean
(Seaber et al., 1987). In order to associate the streamgages and SNOTEL stations in our dataset, we group
them together by HUC 8 watershed boundaries. We only retain measurements contained in watersheds that
have at least one SNOTEL station and at least one streamgage. Connecting streamgages and SNOTEL
stations in this way assumes that measured water at SNOTEL stations will flow to the streamgages located
in the same HUC 8 basin. After associating streamgages and SNOTEL stations by HUC region, only 7,807
of the 60,811 (13%) peaks remain for analysis at 1,279 unique streamgages. Of these remaining peaks, 4,977
(64%) are reported by streamgages with estimated flood stages. This considerable post-association decrease
as well as intermediary decreases in usable SNOTEL station and streamgage counts are shown by Table 2
and illustrated spatially in Figure 11.

Table 2: SNOTEL station and streamgage counts at each step in the data refinement process.
Processing Step SNOTEL Count Streamgage Count

Initial 808 2,586
Post-Download 808 2,384

Post-Peak Detection 808 2,199
Post-Association 726 1,279

We see from both Table 2 and Figure 11 that we retain just over half of the available streamgages post-
association. Future work will consider alternative approaches, including the use of gridded climate products
such as SNODAS (NSIDC, 2024), to expand the analysis to include streamgages beyond those considered
in this study. Despite the data loss, exploration at the HUC 8 spatial scale allows us to target streamgages
in mostly mountainous areas prior to flood control measures (i.e., dams), which are likely the streamgages
most sensitive to fluctuations from ROS events.

Daily ROS Event Classification

Musselman et al. (2018) defines a ROS classification scheme that focuses on ROS events with the potential
to produce flooding. We implement this method using historical precipitation values reported by SNOTEL
stations. This method requires that the following three conditions be met in order to positively classify a
ROS event:

1. sw ≥ 10mm

2. p ≥ 10mm
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Figure 11: Streamgage locations and SNOTEL stations before (left) and after (right) being associated by
HUC region. Those remaining after association are the only ones considered in the final analysis. Numeric
decreases describing this visual are given in the last two rows of Table 2.

3. sm/(p+ sm) ≥ 0.2

where p is precipitation, sw is SWE, and sm is snowmelt. After identifying days when ROS event conditions
have been met at individual SNOTEL stations, we determine whether a day qualifies as a ROS event at
the HUC 8 level by requiring that at least half of the SNOTEL stations within the HUC region fulfill the
requirements for a ROS event to occur. We then classify peaks as ROS-induced if they occur within seven
days of a ROS event day in their respective HUC region. Of our remaining peaks, 2,725 are classified as ROS-
induced (34.9%) and the remaining 5,082 (65.1%) as non-ROS induced. Figure 12 shows the distributions
of surge magnitude in ROS and non-ROS induced floods classified using this method. We see that non-ROS
induced surges tend to be considerably smaller than those that are ROS-induced, and that the overall surge
distribution most closely resembles the distribution of non-ROS induced surges.

We also explore the different distributions of the weather conditions preceding a stream surge for both
ROS and non-ROS events in Figure 12. The distributions of temperature, precipitation, and SWE are shown
to highlight differences between ROS and non-ROS behaviors. We see that temperatures for ROS-induced
peaks tend to be around 2.8 degrees lower than those that are non-ROS induced, possibly due to the time
periods throughout the year in which both peak types are more likely to occur. The left skew in ROS
compared to the right skew of the non-ROS precipitation measurements indicates that for surges classified
as ROS-induced, precipitation measurements tend to be substantially larger. ROS and non-ROS follow
similar distributions for SWE.

However, Figure 12 ignores the spatial structure inherent in the data, as ROS events do not occur at
the same rate across the Western states. Figure 13 visualizes the spatial distribution of surge counts and
relative surges attributed to ROS events in the region of interest. We see that there is a higher proportion
of ROS surges in the Northwest, suggesting that ROS events tend to occur more frequently in mountainous
regions near the coastline. It also shows that the overall surge count per year by HUC region doesn’t follow
a clearly identifiable pattern across the region of interest.

We investigate the months in which ROS and non-ROS induced surges are most likely to occur in
Figure 14. We see that the majority of non-ROS induced flooding occurs during spring and summer months,
specifically in May and June, likely in the form of spring runoff. In contrast, ROS-induced floods seem to
occur in roughly equal proportions from November to January as well as May.
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Figure 12: Densities of ROS vs non-ROS classified streamflow surge, temperature, precipitation, and SWE
measurements in comparison with the overall distribution of these variables.
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Figure 13: Choropleth maps comparing overall surge count per year in each HUC region (left) to the
proportion of the surge count that is ROS-induced (right). Surge count per year is found by counting the
total number of surges at a given streamgage and dividing it by the number of years in its period of record.
If there are multiple streamgages in a given HUC region, the median surge count per year is retained.

Figure 14: Proportions of total peaks occurring in each month by ROS classification.
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We next examine the distribution of the ratios of ROS vs non-ROS induced surges. This ratio is calculated
for an individual streamgage as follows:

rr =
g
(m)
r

g
(m)
n

, (3)

where rr is the “ratio of ratios”, g
(m)
r is the median (i.e. middle value) of all ROS-induced surges, and g

(m)
n

is the median of all non-ROS induced surges. Only the 245 streamgages with at least two non-ROS and ROS
peaks are considered in the final distribution, shown in Figure 15. Due to our relatively small sample size
of peaks and the inherently sensitive nature of ratio calculations, r̄r tends to be overly influenced by outlier
observations. In the following section, we model these ratios and their resulting distribution in an effort to
smooth out inconsistencies between locations and provide a more stable quantification of the relationship
between ROS and non-ROS induced surges.

Figure 15: Distribution of empirical ratios of ROS induced surge to non-ROS induced surge measurements
at streamgages with qualifying peaks, with the x-axis truncated at 2 to exclude outlier measurements.

Figure 16 shows the full range of these empirical ratios, with the largest outlier indicating that there was
one streamgage whose ROS surges were 30 times as large as its non-ROS surges.

Figure 16: Boxplot illustrating the full range (on a log scale) of the distribution of empirical ratios from
Figure 15.

We also consider the ratio of peakflow measurements between ROS and non-ROS induced floods, shown
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in Figure 17. As indicated by the medians of both distributions in Figure 15 (1.01 and 1.00 respectively),
there does not seem to be a notable difference in extremes between ROS and non-ROS induced surges. We
investigate this difference further in the following section.

Figure 17: Distribution of empirical peakflow ratios of ROS induced surge to non-ROS induced surge mea-
surements at streamgages with qualifying peaks.

Database Description

For each of the 7,807 remaining flood peaks in our analysis, we link weather variables to the streamgage of
a peak’s occurrence by calculating summaries of measurements from SNOTEL stations located in the same
HUC region for the five days prior to the datetime reported by the peak. We assume the dependence of
streamflow response upon the accumulation of precipitation, snow depth, etc. during the five days leading
up to the peak. For each weather variable, values for all SNOTEL stations within the relevant HUC region
over the given time period are collected and the median of the following summary statistics is calculated
separately for each station: mean, median, minimum, and maximum. The sum of precipitation over this
time period is also calculated. The overall median value for the entire HUC region for each summary statistic
is then added to the data frame containing peak information. We include an example of this aggregation
for a single ROS-induced streamflow peak near Reno, Nevada on February 10, 2017. The map in Figure 18
shows the spatial distribution of the SNOTEL stations and streamgage within their HUC 8 boundary.

We describe the aggregation of data required to connect SNOTEL weather data with the streamgage in
Table 3. This example only shows the aggregation for the means of each weather variable to demonstrate
the workflow—median, minimum, and maximum measurements are also computed in a similar manner and
stored within the database.
The ‘HUC’ column in Table 3 represents the specific values appended to this peak observation in the peak
data frame. This aggregation is performed for each of the 7,807 peaks. Additional relevant variables in the
final data frame used for analysis include peakflow, baseflow, surge, ROS classification, randomly assigned
cross-validation (CV) group, and the geographic location (i.e., longitude and latitude) of the streamgage at
which peak occurrence is observed. Overall, there are 49 variables associated with each peak observation. A
list of all variables and the summaries applied to the weather variables is available in Table 4.

The final dataset connects weather measurements to streamflow surges through HUC association to
establish spatial dependencies, allowing us to meaningfully investigate streamflow response to weather be-
havior. It also contains information about ROS classification for each peak, which provides us with not only

22



Figure 18: Map of HUC 16050102 with its SNOTEL stations (IDs: 340, 1242, 652, 539, 540, 541, 784, 809)
and the streamgage (ID: 10349300).

Table 3: Example of data aggregation by HUC region for a singular peak. Mean measurements are found
at each station (for the 5 days prior to peak occurrence). The ‘HUC’ column contains the watershed-level
medians of the station-level mean measurements for each variable, which include Temperature (Temp),
Precipitation (Precip), Snow Water Equivalent (SWE), Snow Depth (SD), Soil Moisture (SM), Snow Melt
(Melt), and Elevation.

SNOTEL Station Mean Measurements by ID
Variable 340 1242 652 539 540 541 784 809 HUC
Temp (◦C) 0.4 4.4 -0.8 2.1 2.7 -0.3 0.5 2.8 1.3
Precip (mm) 22.4 40.1 55.4 33.5 31.5 40.6 57.4 37.6 38.9
SD (mm) 2520 1176 4328 1492 1128 3846 2886 1514 201.7
SWE (mm) 845 439 1408 448 374 1273 1386 470 658
SM (8-in %) 25.0 39.6 8.3 21.2 30.7 19.4 39.7 36.7 27.8
SM (20-in %) 17.7 39.3 9.5 25.0 28.2 19.6 27.4 38.7 26.2
Melt (mm) 0 39.1 7.6 26.9 29.4 0 1.0 36.1 17.3

Elevation (m) 2510 1979 2683 2128 1962 2541 2442 2072 2285
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Table 4: List of variables and their associated statistical summaries included in final dataset.
Variable Minimum Maximum Median Mean Sum
State
ID

HUC
Datetime
Peakflow
Baseflow
ROS Class

Surge
Temp X X X X
Precip X X X X X
SD X X X X
SWE X X X X

8-inch SM % X X X X
20-inch SM % X X X X

Melt X X X X
Elevation X X X X
CV Group
Coordinates

a better understanding of the characteristics of ROS-induced floods, but also a better understanding of the
relationship between ROS and non-ROS floods and what distinguishes their behavior. The following section
demonstrates an application of this dataset to model the ratio of ROS to non-ROS induced surges, in order
to better quantify the differences between ROS and non ROS-induced stream surges.

Findings and Applications - Western State Explorations

In this section, we use the finalized database to quantify the relative difference in stream surges associated
with ROS and non-ROS events. Recall in Figure 15 the highly skewed distribution of the empirical ratios
between ROS and non-ROS induced surges at individual streamgages. We create a generalized additive
model (GAM) for representing stream surge with the intent to provide a more accurate and stable indicator
of stream surge differences while controlling for location-specific dependencies.

Model Selection

GAMs are an adaptation of a linear model that permits nonlinearity in the prediction of the response variable
through the use of data-driven smoothing functions (Hastie et al., 2009). In our case, GAMs are able to
characterize the non-linear relationships that weather and location share with stream surge. Due to the
highly skewed distribution of surge measurements, likely resulting from the drastically differing stream sizes
included in our analysis, we elect to use the log of surge as our response variable and convert back to original
units after generating modeled results.

As an initial step in the modeling process, we determine which of the 38 eligible explanatory variables
from the peak dataset are the most important in predicting the log of surge through a combination of
tests for statistical significance and practical viability. For example, we remove soil moisture percentage
measurements from consideration for practical purposes, since over 80% of peak observations report it as
missing. This is unfortunate, since soil saturation is a direct contributor to increased runoff from ROS events
and promises high levels of significance within our model, but we eliminate it because it will allow us to
retain a considerably larger amount of peak observations in our analysis.

The remaining variables are selected based on a combination of statistical significance and predictive
power. The initially retained variables for modeling log-surge are: temperature (mean and median), precipi-
tation (maximum, mean, median, and summed), mean snow depth, mean SWE, log of baseflow, latitude, and
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longitude. To validate the accuracy of our GAM, we implement 10-fold cross-validation at the streamgage,
rather than observation, level. We track GAM results from both including and excluding snow depth so see
if a simplified model will yield similar results. The results from this initial GAM are given in Table 5, with
mean squared error (MSE) and mean absolute error (MAE) resulting from 10-fold cross-validation. These
results show that the model containing snow depth performs slightly better, but the amount of observations
the model is able to utilize is more limited due to large amounts of missing snow depth values.

Table 5: Initial GAM accuracies, both including and excluding snow depth.
GAM Formula Exp. Deviance R2 MSE MAE Obs. Utilization

Without Snow Depth 75% 0.75 0.83 0.48 6,675
With Snow Depth 76% 0.76 0.94 0.49 5,143

To assess the effectiveness of the GAMs in surge representation, we observe the performance of a null
model to compare with the accuracy of the GAM predictions. This model does not contain explanatory or
response variables—it simply uses the global median of the log of surge multiplier we are predicting with the
GAMs. After 10-fold cross-validation, this basic model produces a MSE of 3.28 and a MAE of 0.8. Since the
fitted GAM excluding snow depth reduces the MSE by 75% and the MAE by 40% and the GAM containing
snow depth reduces MSE by 71% and MAE by 38% relative to the null model, we have evidence to the
support that both GAMs produce meaningful predictions and we proceed to further tune them to improve
their accuracy.

GAM models with less variables are easier to deploy and less sensitive to small changes in the input
data. This motivates us to narrow the model formula down to include just one temperature and one
precipitation measurement type. We then fit GAMs with each formula from this list to determine which has
the smallest MSE after cross-validation. Lists of MSEs resulting from each precipitation and temperature
variable combination for the model with snow depth and the model without are given in Table 6 and Table 7,
with the most accurate temperature/precipitation combination highlighted in red in the top row. The best
variable combination turns out to be the same for the GAMs both including and excluding snow depth, the
exception being that the GAM containing snow depth uses mean snow depth in addition to the following
variables: median temperature, maximum precipitation, mean SWE, log of baseflow, and geographic location.

Table 6: Without snow depth: MSEs of all combinations of temperature and precipitation summary statistics
when included as variables in the GAM. Additional explanatory variables in each GAM model that are not
varied are mean SWE (unique to each peak), log of baseflow, latitude, and longitude. The red text identifies
the most accurate variable combination.

Temperature Precipitation MSE R2

Median Max 0.83 0.75

Mean Max 0.83 0.75

Median Sum 0.84 0.74

Median Mean 0.85 0.74

Mean Sum 0.85 0.74

Mean Mean 0.85 0.74

Median Median 0.92 0.72

Mean Median 0.92 0.72

In order to introduce the mathematical formulation of the simplified GAMs, let u and v be vectors
representing a collection of one or more geographic coordinates, in (longitude, latitude) format. Further,
let u correspond to the geographic location of the streamgage measuring the ith surge and vj correspond
to the unique geographic locations of the j SNOTEL stations located in the same HUC region as the
related streamgage. Recall from the previous section that temperature, snow depth, precipitation, and SWE
measurements are calculated by taking the median of the means over the five days prior to peak occurrence
of the daily measurements reported at each SNOTEL station contained in the same HUC region as the
streamgage where the peak occurred.

Let t̄ be the vector of length j containing mean temperature measurements at multiple SNOTEL stations
(with locations vj) for the 5 days prior to peak occurrence in the relevant HUC region (kα). Since there
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Table 7: With snow depth: MSEs of all combinations of temperature and precipitation summary statistics
when included as variables in the GAM. Additional explanatory variables in each GAM model that are not
varied are mean SWE (unique to each peak), log of baseflow, latitude, and longitude. The red text identifies
the most accurate variable combination.

Temperature Precipitation MSE R2

Median Max 0.93 0.76

Mean Max 0.94 0.76

Median Sum 0.94 0.75

Median Mean 0.94 0.75

Mean Sum 0.95 0.75

Mean Mean 0.95 0.75

Median Median 1.02 0.74

Mean Median 1.03 0.74

are often multiple SNOTEL stations within a HUC region, we summarize over kα by finding the median,
represented by the superscript (m), of the mean temperature measurements from all j SNOTEL stations.
Finally, let i indicate the index of the surge in our data frame of flood peaks that this value is calculated
for. Thus, we have

t̄(m)(vj ∈ kα)i,

which represents the calculation made to determine the measurement for mean temperature at each surge.
We use similar notation for mean SWE (s̄w), mean snow depth (s̄d), and maximum precipitation (pmax).
The remaining explanatory variables, baseflow (bf ) and the geographic location of the gage (u), are derived
from streamgage rather than SNOTEL stations, and require no statistical summary prior to inclusion in the
model.

Let f1 . . . f5 denote the default smoothing functions used in our model that employ penalized thin plate
regression splines, as described by Wood (2003). These penalized splines allow us to control both the
smoothness of the fitted splines while maximizing their accuracy through leave one out cross-validation.
Additionally, let h represent the smoothing function applied to the geographic coordinates composing the
model’s spatial element. h employs isotropic second order splines on the sphere, which are analogous to thin
plate regression splines but for a spherical environment (Wendelberger, 1982). The finalized GAM formula
containing snow depth and including the smoothing functions applied to the combination of explanatory
variables to predict the log of surge (g) is given in Equation 4.

log [g(u ∈ kα)i] = f1

[
t
(m)
med(vj ∈ kα)i

]
+ f2

[
p(m)
max(vj ∈ kα)i

]
+ f3

[
s̄(m)
w (vj ∈ kα)i

]
+ f4

[
s̄
(m)
d (vj ∈ kα)i

]
+

+ f5 [log bf (u ∈ kα)i] + h [(u ∈ kα)i] + ϵ.

(4)

The formula for the GAM excluding snow depth is equivalent to Equation 4 but with the snow depth term
removed.

Station Profiles

The primary purpose of the GAM models is to quantify changes in predicted stream surge for different
combinations of variables representing ROS and non-ROS events. Using the final two GAM models, we
formulate characteristic profiles for ROS and non-ROS conditions specific to each streamgage. We do this
by using the summary statistics shown in Table 8 for each explanatory variable utilized in our GAM. The
median annual maximum is chosen in several cases to represent what would be considered an “extreme” ROS
event, as it is likely that the snowpack will not be at its peak when a ROS event occurs. In this way, the
profile is intended to provide a conservative estimate of the relative difference between ROS and non-ROS
induced stream surge. A more detailed description of why we choose each specific summary statistic to
represent the profiles is given below Table 8.
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Table 8: Values used to describe characteristic profiles for ROS and non-ROS events.
Variable ROS Non-ROS

Temperature overall ROS median overall non-ROS median
Snow depth median annual maximum 0
Precipitation median annual maximum median annual maximum

SWE median annual maximum 0
Baseflow overall median overall median
Location station-specific station-specific

• Temperature: We use the global medians of non-ROS and ROS classified peaks, since measurements
for both scenarios remain somewhat consistent across locations. Unlike other variables, these values
are set globally, rather than separately for each station.

• Precipitation: We use the median annual maximum precipitation measurement for both non-ROS
and ROS induced peaks because current engineering design practice relies on projections of extreme
precipitation that does not discriminate between ROS and non-ROS events.

• Snow Depth: We use a measurement of zero for non-ROS induced peaks because a ROS event cannot
occur if there is no snow. We then use the median annual maximum snow depth measurement for ROS
induced peaks because it is representative of a large, though not uncommon, snow accumulation event.

• SWE: We use a measurement of zero for non-ROS induced peaks and the median annual maximum
SWE for ROS induced peaks, using the same justification that we use for snow depth.

• Baseflow: We use the median overall baseflow measurement for each streamgage, as it gives of a sense
of the typical flow at the gage.

To reiterate, we hold precipitation and baseflow constant for both ROS and non-ROS conditions, while
allowing SWE and temperature to vary between surge type.

Training the GAMs

With the profiles compiled for each streamgage, we train the GAMs on the original data containing informa-
tion about each peak before predicting onto the dataset containing only the characteristic profiles for each
streamgage. After generating predictions for both the non-ROS and ROS profiles at each streamgage, we
calculate the ratio between ROS and non-ROS exponentiated surge multipliers, furthermore referred to as
the ROS Stream Surge Ratio (ROSSR). The ROSSR is calculated by streamgage similarly to the empiri-
cal surge ratios in Equation , but without the aggregation by median, resulting in the following simplified
formula:

r =
ĝr
ĝn

,

where r is once again the ratio, ĝr is the predicted surge for the ROS profile, and ĝn is the predicted surge for
the non-ROS profile. The distributions of these ratios from the GAMs both including and excluding snow
depth are used to investigate the general behavior of surges in ROS vs non-ROS flood peaks, as shown in
Figure 19. We see that the GAM excluding snow depth generates surge predictions for ROS and non-ROS
that are more similar to each other than those produced by the GAM containing snow depth.

To better understand the role each term in Equation 4 plays in the predicted surge values, we examine
plots of the marginal effects for both GAMs. Starting with the GAM including snow depth, we see from
Figure 20 that the variable with the largest effect on predicted surge is baseflow. This is likely because
baseflow is the denominator of surge (see Equation 1), so higher values produce lower predictions. Pre-
cipitation is positively associated with predicted surge, though the effect size is small in comparison with
baseflow. Temperature produces its highest effect size between zero and ten degrees, trending up again as it
approaches 40◦C. Snow depth and SWE do not appear to contribute as much to the predictions relative the
other variables. They also appear to have counteractive effects, with snow depth being positively associated
with surge and SWE being negatively associated.
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Figure 19: Distribution of ratios of surge predictions for ROS and non-ROS behavior at streamgages with
qualifying peaks for both the GAM with snow depth and the GAM without.

Figure 21 uses local scales for the y-axis of each marginal effect, which highlights trends that are not
clearly visible in Figure 20. Here we see slight positive and negative trends in snow depth and SWE,
respectively.

Figure 22 shows the marginal effect of the spatial term included in the GAM. It shows that, after
accounting for the effects contributed by all other variables, the gages located in the southern and eastern
parts of the region of interest tend to have slightly larger stream surges. We postulate that the purpose of
this trend is to smooth out differences between areas with high and low water flows, but future work should
investigate the reasons for these spatial patterns.

Figures 23-25 show marginal numeric and spatial effects for the GAM excluding snow depth, with most
variables producing similar contributions to those previously discussed for the GAM including snow depth.
Note that the relationship between SWE and predicted surge is non-linear, though the association does not
appear to be significant based on the standard errors of the marginal effect. The model calculates a p-value
of 0.015, indicating that the SWE effect is marginally significant.

We use bootstrapping techniques to investigate the sensitivity of the median ROSSRs shown in Figure 19.
To do this, we generate predictions for 200 bootstrap samples and use them to approximate the distribution
of the median r from each sample. The distributions of these medians are shown in Figure 26 for both
GAMs. We observe that the model containing snow depth has notably more sensitivity/variability than the
model excluding it. There is little visual evidence to suggest that the medians of either of these distributions
are much different from 1.0, though the empirical results suggest that the values do tend to be higher (by
3-9%) when including large SWE values in the prediction, but the results are highly variable and likely not
statistically significant.

To illustrate the sensitivity of the GAM projections to changes in ROS, Figure 27 also includes curves
showing the ROSSR if the quantity for snow depth and SWE in the characteristic profiles were cut in
half (for both the models including and excluding snow depth). Medians for both distributions increase
substantially and variability decreases. There is strong visual evidence that the medians of both distributions
are significantly above 1.0 after halving the snow accumulation profile. With these smaller SWE values, the
models predict that surges will be 9-20% larger for a ROS event as opposed to a non-ROS event.
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Figure 20: Marginal effects of numeric variables included in the GAM with snow depth with fixed vertical
axes. Effect size is shown in addition to margin of error and rug plots along the horizontal axes.
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Figure 21: Marginal effects of numeric variables included in the GAM with snow depth with varying vertical
axes. Effect size is shown in addition to margin of error and rug plots along the horizontal axes.
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Figure 22: Marginal effect of spatial term in the GAM containing snow depth.

Figure 23: Marginal effects of numeric variables included in the GAM without snow depth with fixed vertical
axes. Effect size is shown in addition to margin of error and rug plots along the horizontal axes.
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Figure 24: Marginal effects of numeric variables included in the GAM without snow depth with varying
vertical axes. Effect size is shown in addition to margin of error and rug plots along the horizontal axes.

Figure 25: Marginal effect of spatial term on the GAM excluding snow depth.
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Figure 26: Distribution of bootstrapped median ROSSR for both the GAM with snow depth and the GAM
without.

Figure 27: Distribution of ratios of surge predictions for ROS and non-ROS behavior at streamgages with
qualifying peaks for both the model with snow depth and the model without with halved SWE and snow
depth profile values.
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Overall Figures 26-27 show that the relative difference between a median ROS and median
non-ROS stream surge prediction is about 3-20% larger depending upon the selected model.
This result is in line with the 1.16 ratio obtained in the GAM model that included snow depth measurements
and subsequently used in the culvert design examples provided as part of this report. The sensitivity of the
predicted relative different warrants additional explorations beyond the timeline allocated for this study.
That in mind, in the spirit of engineering conservatism, we recommend that NDOT consider a
10-15% bump in their HEC-HMS flow values in regions of Nevada where ROS has historically
been an issue.

Design Implications

The previous section describes a recommended 1.15 multiplier on design flows to account for the flow sur-
charge due to a ROS event. In this section, we consider the implications of incorporating such a surcharge
into culvert design. Note that the results in this section explore the implications of using multipliers of 1.16,
1.33 and 2.15. These candidate multipliers came from a preliminary version of Figure 19 and represented the
median, 75th percentile, and maximum ROSSR from that preliminary model (which included snow depth).
The final model, which included more data points, had slightly reduced values for each of these multipliers.
Nevertheless, the design examples shown in this section are still representative of the implications of a mod-
erate (1.16 and 1.33) and extreme (2.15) change in design flows to respond to the potential threat of ROS.
All this in mind, we note that the median multiplier (then 1.16, now 1.10 to 1.15) is a more robust estimate
of ROSSR than the higher multipliers which are sensitive to changes in the input data.

Per communications with NDOT, the research team performed culvert designs using the HY-8 culvert
design software (FHWA, 2022) and the NDOT Drainage Manual (NDOT, 2006) to analyze over five hundred
culvert design scenarios, exploring the use of the surge factors applied to the flows (Q) of two sites. The team
generated the “.hy8” files using an MS Excel macro spreadsheet to speed up the process, which included
generating different culvert lengths and crest heights while maintaining the other parameters constant.
Table 9 shows the variables explored in this study, which included the two sites shown in Figure 28 with
their respective flows, two surge factors, two culvert materials, two culvert sections for concrete and one for
metal, three culvert lengths, crest heights, and slopes, and two inlet treatments. The selected inlet treatments
correspond to extreme values for the available options in HY-8 that produce inlet entrance coefficients, Ke,
of 0.70 and 0.20. For example, for circular shapes, this selection corresponded to the “Mitered to Conform
to Slope (Ke = 0.7)” and “Beveled Edge (1:1) (Ke = 0.20)” options, while for the concrete box, the designs
used “Square Edge (0° flare) Wingwall (Ke = 0.7)” and “1:1 Bevel Headwall (Ke = 0.2)” options in the
software.

Table 9: Parameters used in the study to examine the effects of surge factors on the dimensions of round
and square culverts.
Name Type Cases Value #1 Value #2 Value #3
Location Site 2 Carson City US6 East of

Tonopah*
-

Flow Q 2 11 cfs 610 cfs -
Surge Factor Multiplier 2 1.00 1.16 1.33 (excluded)
Culvert Material 2 Concrete Metal -
Form Shape 2 Circular Box -
Culvert Length, L Length 3 20 200 -
Crest Elevation Site 1 Length 3 10 ft 15 ft 20 ft
Crest Elevation Site 2 Length 3 4 ft 8 ft 10 ft
Trail Water Height, TW Length 2 1 ft (Carson

City)
6.3 ft (US6 East
of Tonopah)

-

Slope Percent 3 1% 10% 15%
Inlet treatment Entrance 2 None 45 deg -

*- The selection of the US6 East of Tonopah site was a hypothetical case study and does not imply that all
factors would be appropriate for the location.
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Figure 28: Screenshots showing the locations of the study sites #1 (top) and #2 (bottom). Site #1 is East
of Tonopah, while site #2 is in Carson City, between milepost CC-0 and CC-3 of US50.

Figure 29: Illustration showing the variables used in the parametric study. The sum of the diameter of the
culvert is added to the fill above it to result in the “Crest height” variable.

It is important to note that the study only accounted for the overtopping failure case, disregarding the
excessive velocity in the culvert because that is a remediable problem. In addition, the freeboard limit is just
below the crest of the road, or 0 ft, which implies no freeboard between the water flow and the crest of the
road. This is the most severe culvert design case and was determined in agreement with NDOT. Moreover,
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the study did not account for the effect of debris or sedimentation in the culverts, both of which can increase
the likelihood of overtopping obstructing the flow.

Design Results

This section provides the results of the parametric study introduced above in terms of culvert dimensions,
total headwater, and overtopping flow. The research team selected culvert sizes following ASTM Standards
pertaining to the fabrication of metal and concrete culverts (ASTM, 2020, 2021, 2022) to account for com-
mercially available culverts only, making the results more applicable to real designs.. Initial analysis showed
a correlation between culvert length and flow velocity in the culvert but no correlation between the headwa-
ter and the length, as expected. For example, when designing a circular concrete culvert with a 2% culvert
slope, the flow velocity increased from 12 ft/s to 19 ft/s when comparing a 20 ft culvert to a 200 ft one.
However, internal treatment can remediate the flow velocity to avoid culvert erosion, and for that reason,
this research does not consider the excessive flow velocity as a failure criterion. The authors observed a
similar effect when combining the slope with the surge factors, indicating that a culvert size increase is only
necessary when internal culvert treatment is impractical. Table 10 shows the results of the culvert design
for Site 1 with and without surge factors while implementing a mitered to conform to slope inlet treatment
(Ke = 0.70). The first two rows of the table display the results for a combination of a short span and a
low elevation of the crest, which yielded a 6-ft diameter concrete pipe without a surge factor and a 6.5-ft
diameter concrete pipe with a surge factor of 1.16. Other analyses resulted in similar results, indicating that
culvert diameters may increase by 0.5 ft if a surge factor of 1.16 was implemented. Nonetheless, when the fill
above the culvert is large enough (10-15 ft), the surge factor does not always drive up the culvert size when
considering commercial sizes only. Moreover, these cases where the surge factor drove the pipe diameter up
may be remediated if the inlet treatment changed from a mitered to conform slope to a beveled edge (1:1), as
shown in Table 11. However, if the inlet treatment already had a beveled edge, the retrofit would not be as
straightforward as the previous one. It would involve modifying the hydraulic structure’s features to avoid
overtopping. Appendix A presents the rest of the design scenarios for a slope of 2%. The tables presented
herein also exclude two culvert crest elevations in each row due to having identical results when compared
to other lengths with similar properties.

Table 10: Results of six culvert designs for site #1 using a circular concrete section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations. Variables (units)
include L (ft), Slope (%), Q (cfs), TW (ft), Crest (ft), D (ft), and HW (ft).

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 610 6.3 10 Mitered to Con-

form to Slope
(Ke=0.7)

2 6.0 9.63 628.73

20 2% 708 6.3 10 Mitered to Con-
form to Slope
(Ke=0.7)

2 6.5 9.79 720.01

50 2% 610 6.3 15 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.0 15.02 608.37

50 2% 708 6.3 15 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.5 14.55 722.67

200 2% 610 6.3 20 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.0 15.06 720.06

200 2% 708 6.3 20 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.0 19.4 720.06
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Table 11: Results of six culvert designs for site #1 using a circular concrete section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.20, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 610 6.3 10 Beveled Edge (1:1)

(Ke=0.20)
2 5.5 9.48 636.36

20 2% 708 6.3 10 Beveled Edge (1:1)
(Ke=0.20)

2 6.0 9.52 737.41

50 2% 610 6.3 15 Beveled Edge (1:1)
(Ke=0.20)

2 5.0 11.81 721.3

50 2% 708 6.3 15 Beveled Edge (1:1)
(Ke=0.20)

2 5.0 14.59 721.29

200 2% 610 6.3 20 Beveled Edge (1:1)
(Ke=0.20)

2 4.5 15.88 696.23

200 2% 708 6.3 20 Beveled Edge (1:1)
(Ke=0.20)

2 5.0 14.59 853.47

Table 12 shows the results of designing culverts for site #2, where the flow is small compared to the
one in site #1. The first two rows of the table show the design for the smallest crest elevation in the set
of culvert designs, considering a non-interstate case with a minimum internal pipe diameter of 18 inches.
For that case and the following cases, the resulting diameter satisfies both designs with and without a surge
factor, indicating that for low flows, the surge factor of 1.16 may not increase the culvert size because the
culvert overtopping flow is nearly 100% larger than the magnified flow. Moreover, using an inlet treatment
other than the mitered to conform slope would also decrease the likelihood of overtopping for the low flow
due to decreasing the required culvert diameter to the minimum stipulated by the NDOT drainage manual.
Similar results are obtained when using circular metal pipes and are presented in Appendix B along with
other design scenarios.

Table 12: Results of six culvert designs for site #2 using concrete circular pipes, with and without a surge
factor of 1.16, inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2 11.0 1 4 Mitered to Con-

form to Slope
(Ke=0.7)

1 1.75 2.96 18.24

20 2 12.8 1 4 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

50 2 11.0 1 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 2.9 20.86

50 2 12.8 1 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

200 2 11.0 1 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 2.9 22.45

200 2 12.8 1 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –
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Design Conclusions

This section presented the results of culvert design using a surge factor of 1.16 and 1.00 (current status).
All culvert designs were performed in HY-8 using commercially available culvert sizes and data provided by
NDOT. Based on the results presented above and in Appendix B, the following conclusions can be made:

• The 1.16 surge factor increases the culvert size by 6”-12” in most cases.

• The surge factor also increases the minimum culvert size from 18” to 21” for sites with low crest
heights, measured from the bottom of the inlet to the top of the road.

• For sites with small flows and large crest heights, only the 2.15 surge factor drives up the size of the
culvert.

• For sites with large flows and any crest height, factors greater than or equal to 1.16 drive up the size
of the culvert in almost all cases.

• Length and slope parameters do not affect the results in terms of overtopping, but they increase the
flow velocity. Therefore, culverts with slopes larger than 2% or lengths longer than 100 ft would likely
need energy dissipation devices to counteract the effect of the surge factors on the flow.

Utah Climate Center Website

This report has illustrated that the difference between ROS and non-ROS induced snow surge is highly
variable, with the typical stream surge from ROS and non-ROS events being nearly identical after controlling
for other weather conditions. That in mind, there is still evidence, as highlighted in the examples set forth
in the Nevada Decision Support sections, that the most extreme flood events in western Nevada tend to be
ROS-induced. In this subsection, we describe efforts by USU’s Utah Climate Center to embed an adaptation
of the decision support framework described in this report into a forecasting application run daily and hosted
by the Utah Climate Center. This website can be found at https://climate.usu.edu/nvros, though the
launch of this website will not occur until October 2024 to coincide with the start of the first snow season
after the completion of this project.

The website uses gridded snow data from SNODAS (NSIDC, 2024) and gridded temperature and precip-
itation forecasts from the NAM CONUS Hires forecast model (NOAA, 2024). The tool works by inferring
the daily amount and density of the snowpack using SNODAS’s SWE and snow depth estimates. The model
then assumes that the snowpack remains fixed and explores the TWI and runoff potential in 3 hour incre-
ments up to 60 hours in the future at a 3km resolution. The colors on the map represent the same colors
and thresholds described in the decision support sections of this report. We recognize that the snowpack will
continue to evolve as a function of the temperature and precipitation during the forecast period. However,
forecasting changes in the snowpack falls beyond the scope of this current effort. In spite of this shortcoming,
the website provides a reasonable forecast of ROS potential a few days into the future, which can be used a
way to identify areas of Nevada with the potential for runoff-inducing ROS.

Conclusions and Suggested Research

We expanded on the work of Heggli et al. (2022) and integrate the data methods for the Upper Carson to
asses and further calibrate the present weather and antecedent snowpack conditions that produce TWI and
connect the data to CNRFC hydrologic forecast points in the Upper Carson River Watershed. We assessed an
operational approach for the SR-DSS by applying data subjected only to automated quality control routines
and applied the SR-DSS to an event that was not included in the development of thresholds. The case study
highlights how complicated the snowpack runoff process is as each elevation brings a different combination
of antecedent conditions and present weather impacts. However, our research found that precipitation at 0.4
°C can produce TWI within two hours and further proves that the snowpack does not need to reach a certain
density to be able to produce TWI. This paper not only advances the development of SR-DSS to serve an
unmet need but also improves the understanding of ROS runoff process. Integrating hourly SNOTEL data
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provides insight into lag-rates on rainwater moving through the snowpack, snowmelt during ROS, and the
total duration of TWI during ROS. Observing patterns of ROS events and connecting those patterns to
streamflow provides valuable insights for flood forecasting and management in the Upper Carson watershed.

We have also created a database of stream surge measurements and their antecedent climate conditions.
We classified these stream surges as ROS and non ROS-induced and compared differences in relative surge
amounts between both groups. These ratios were plagued by a few outlier values, but the results consistently
showed that ROS tended to be 3-20% larger than non-ROS events after controlling for station location and
stream baseflow. The result is a recommendation of a 1.15 multiplier to provide a conservative adjustment
to design flows obtained from HEC-HMS in areas where ROS is expected to be a concern. The implications
of such a ratio were further explored in design examples provided as part of this report.

Taken together, the three main components of this report (i.e., Nevada Decision Support, Western State
Explorations, and Design Examples), provides important insight into the influence of ROS on Nevada highway
design at widely varying spatial and temporal scales. The software, data, and design examples associated
with this report provide a solid framework for exploring the engineering design implications related to ROS,
which the authors hope will be further explored in future studies by NDOT and other agencies.
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Appendix A

SNOTEL Visuals
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Figure A.1: SR-DSS event assessment: 30 December 2005 – 1 January 2006
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Figure A.2: SR-DSS event assessment: 7 – 10 January 2017
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Figure A.3: SR-DSS event assessment: 7 – 11 February 2017
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Figure A.4: SR-DSS event assessment: 6 – 8 April 2018
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Figure A.5: SR-DSS event assessment: 13 – 15 February 2019
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Figure A.6: SR-DSS event assessment: 9 – 12 December 2022
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Figure A.7: SR-DSS event assessment: 26 – 28 December 2022
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Appendix B

Design Tables

Table B.1: Results of six culvert designs for site #1 using a rectangular concrete section, with and without
a surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels Span Rise HW Overtopping
20 2% 610 6.3 10 Square Edge (0°

flare) Wingwall
(Ke=0.7)

2 6.0 5.0 8.75 699.72

20 2% 708 6.3 10 Square Edge (0°
flare) Wingwall
(Ke=0.7)

2 6.0 6.0 8.66 790.78

50 2% 610 6.3 15 Square Edge (0°
flare) Wingwall
(Ke=0.7)

2 5.0 4.0 14.05 633.63

50 2% 708 6.3 15 Square Edge (0°
flare) Wingwall
(Ke=0.7)

2 5.0 5.0 13.04 776.67

200 2% 610 6.3 20 Square Edge (0°
flare) Wingwall
(Ke=0.7)

2 5.0 4.0 14.05 745.59

200 2% 708 6.3 20 Square Edge (0°
flare) Wingwall
(Ke=0.7)

2 5.0 4.0 18.21 745.59
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Table B.2: Results of six culvert designs for site #1 using a rectangular concrete section, with and without
a surge factor of 1.16, an inlet treatment with Ke=0.20, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels Span Rise HW Overtopping
20 2% 610 6.3 10 1:1 Bevel (45° flare)

Wingwall (Ke=0.2)
2 5.0 5.0 8.82 687.86

20 2% 708 6.3 10 1:1 Bevel (45° flare)
Wingwall (Ke=0.2)

2 6.0 5.0 8.61 825.44

50 2% 610 6.3 15 1:1 Bevel (45° flare)
Wingwall (Ke=0.2)

2 4.0 4.0 15.06 609.05

50 2% 708 6.3 15 1:1 Bevel (45° flare)
Wingwall (Ke=0.2)

2 5.0 4.0 13.23 761.31

200 2% 610 6.3 20 1:1 Bevel (45° flare)
Wingwall (Ke=0.2)

2 4.0 4.0 15.24 711.25

200 2% 708 6.3 20 1:1 Bevel (45° flare)
Wingwall (Ke=0.2)

2 4.0 4.0 19.55 716.66

Table B.3: Results of six culvert designs for site #1 using a circular metal pipe section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 610 6.3 10 Mitered to Con-

form to Slope
(Ke=0.7)

2 6 9.63 628.73

20 2% 708 6.3 10 Mitered to Con-
form to Slope
(Ke=0.7)

2 6.5 9.79 720.01

50 2% 610 6.3 15 Mitered to Con-
form to Slope
(Ke=0.7)

2 5 15.02 608.37

50 2% 708 6.3 15 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.5 14.55 722.67

200 2% 610 6.3 20 Mitered to Con-
form to Slope
(Ke=0.7)

2 5 17.97 648.38

200 2% 708 6.3 20 Mitered to Con-
form to Slope
(Ke=0.7)

2 5.5 14.55 813.87
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Table B.4: Results of six culvert designs for site #1 using a circular metal pipe section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.20, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 610 6.3 10 Beveled Edge (1:1)

(Ke=0.20)
2 5.5 9.53 636.36

20 2% 708 6.3 10 Beveled Edge (1:1)
(Ke=0.20)

2 6 9.52 737.41

50 2% 610 6.3 15 Beveled Edge (1:1)
(Ke=0.20)

2 5 11.81 721.3

50 2% 708 6.3 15 Beveled Edge (1:1)
(Ke=0.20)

2 5 14.59 721.29

200 2% 610 6.3 20 Beveled Edge (1:1)
(Ke=0.20)

2 5 16.09 691.01

200 2% 708 6.3 20 Beveled Edge (1:1)
(Ke=0.20)

2 5.5 11.49 871.92

Table B.5: Results of six culvert designs for site #2 using a rectangular concrete section, with and without
a surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels Span Rise HW Overtopping
20 2% 11.0 2 4 Square Edge (0°

flare) Wingwall
(Ke=0.7)

1 3.0 2.0 1.72 44.25

20 2% 12.8 2 4 Square Edge (0°
flare) Wingwall
(Ke=0.7)

1 – – – –

50 2% 11.0 2 8 Square Edge (0°
flare) Wingwall
(Ke=0.7)

1 3.0 2.0 1.72 69.74

50 2% 12.8 2 8 Square Edge (0°
flare) Wingwall
(Ke=0.7)

1 – – – –

200 2% 11.0 2 10 Square Edge (0°
flare) Wingwall
(Ke=0.7)

1 3.0 2.0 1.72 79.08

200 2% 12.8 2 10 Square Edge (0°
flare) Wingwall
(Ke=0.7)

1 – – – –
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Table B.6: Results of six culvert designs for site #2 using a circular concrete section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 11.0 2 4 Mitered to Con-

form to Slope
(Ke=0.7)

1 1.75 2.96 18.24

20 2% 12.8 2 4 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

50 2% 11.0 2 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 2.9 20.86

50 2% 12.8 2 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

200 2% 11.0 2 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 2.9 22.45

200 2% 12.8 2 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

Table B.7: Results of six culvert designs for site #2 using a circular metal pipe section, with and without a
surge factor of 1.16, an inlet treatment with Ke=0.70, and three different crest elevations.

L Slope Q TW Crest Inlet Treatment Barrels D HW Overtopping
20 2% 11.0 2 4 Mitered to Con-

form to Slope
(Ke=0.7)

1 2.0 1.85 23.14

20 2% 12.8 2 4 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

50 2% 11.0 2 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 3.88 17.15

50 2% 12.8 2 8 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –

200 2% 11.0 2 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 1.5 6.46 13.1

200 2% 12.8 2 10 Mitered to Con-
form to Slope
(Ke=0.7)

1 – – –
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Appendix C

Design Example

Design the culvert contained in design guideline 1 of the FHWA Hydraulic Design Manual (Schall et al.,
2012) using surge factors 1, 1.05, 1.16, 1.33, and 2.15. Table B.1 shows the design results for the distinct
surge factors. As indicated in rows 2-4, the culvert diameter increases for surge factors greater than 1.16 in
all cases. This indicates that existing culvert designs of similar proportions in the State of Nevada may fail
the overtopping criterion provided the factors outlined below were applied.

Table C.1: Results of the design provided in the FHWA hydraulic design manual (2011).
L Slope Surge Factor Q TW Crest Inlet Treatment Barrels D HW
200 1 1.00 200 3.5 10 Beveled Edge (1:1) (Ke=0.20) 1 4.5 7.9
200 1 1.16 232 3.5 10 Beveled Edge (1:1) (Ke=0.20) 1 4.5 9.51
200 1 1.33 266 4.0 10 Beveled Edge (1:1) (Ke=0.20) 1 5.0 9.01
200 1 2.15 430 4.5 10 Beveled Edge (1:1) (Ke=0.20) 1 6.5 9.61
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