# **GEORGIA DOT RESEARCH PROJECT 22-33**

**Final Report** 

# EXPERIMENTAL TESTS FOR AN EFFECTIVE BARRIER DESIGN TO EXCLUDE DIAMONDBACK TERRAPINS (MALACLEMYS TERRAPIN) FROM ROADS



Office of Performance-based Management and Research

600 West Peachtree Street NW | Atlanta, GA 30308

January 2025

#### TECHNICAL REPORT DOCUMENTATION PAGE

| 1. Report No.<br>FHWA-GA-25-2233                                                                                                                                         | 2. Government Accession No. N/A | 3. Recipient's Catalog No. N/A                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|
| 4. Title and Subtitle Experimental Tests for an Effective Barrier Design to Exclude Diamondback Terrapins (Malaclemys terrapin) from Roads                               |                                 | 5. Report Date<br>January 2025                                                        |
|                                                                                                                                                                          |                                 | 6. Performing Organization Code N/A                                                   |
| 7. Author(s) Kimberly M. Andrews (PI), Ph.D. Abbey C. Crossman                                                                                                           |                                 | 8. Performing Organization Report<br>No.<br>22-33                                     |
| 9. Performing Organization Name and Address University of Georgia Marine Extension and Georgia Sea Grant Brunswick, GA 31520 Phone: (912) 261-3975, Email: kma77@uga.edu |                                 | 10. Work Unit No.<br>N/A                                                              |
|                                                                                                                                                                          |                                 | 11. Contract or Grant No. PI # 0000277860                                             |
| 12. Sponsoring Agency Name and Address Georgia Department of Transportation Office of Transportation Data 600 West Peachtree Street NW                                   | ,                               | 13. Type of Report and Period<br>Covered<br>Final Report (March 2023–January<br>2025) |
| Atlanta, GA 30308                                                                                                                                                        |                                 | 14. Sponsoring Agency Code<br>N/A                                                     |

#### 15. Supplementary Notes

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

#### 16. Abstract

The objective of this project was to conduct experimental testing on fence designs that are effective in preventing diamondback terrapins (Malaclemys terrapin) from entering roadways to prevent the species from being impacted by road mortality. The diamondback terrapin is listed as a State Species of Concern in the State of Georgia. They are the only native brackish-water dwelling turtle species along the eastern seaboard of the United States and are facing population declines as a result of human encroachment and habitat modification. Specifically, this species experiences widespread road impacts throughout their range around coastal transportation infrastructure. This conflict between wildlife and transportation infrastructure occurs most frequently with nesting females, a critical demographic to the long-term viability of populations. Therefore, our goal was to devise an affordable structural option to prevent terrapins from entering US-80 (the Tybee Island Causeway) that aligns with the Georgia Department of Transportation construction, maintenance, and driver safety protocols. Specifically, we determined the height and angle specifications for the exclusion fencing implementation by testing three reverse curb designs: 90° flat surface, 90° with a 3" lip, and 70° reverse angle. Each curb had 2' sections of 4 different heights: 6", 8", 10", and 12". The most effective heights were 12", successfully excluding 100% of animals attempting to climb the barrier for the 90-degree, 98% of animals for the 70-degree reverse angle & 100% for 90 degree with 3" lip. Next, the 10" height successfully excluded 96% of animals for the 90-degree, 100% for the 70-degree reverse angle, and 100% for the 90-degree with 3" lip. At the 8" height, 70% of animals were excluded from the 90-degree, 97% from the 70-degree reverse angle, and 96% from the 90-degree with 3" lip. Lastly at the shortest 6" curb, only 64% of animals were excluded from the 90-degree, 96% were excluded from the 70-degree reverse angle, and 87% were excluded from the 90-degree with 3" lip. Overall, the 10" and 12" heights of the 70-degree reverse angle curb and the 90-degree with 3" lip curb were most successful at excluding terrapins. This research can guide GDOT towards adapting a concept into an effective barrier design that will be permanent, reduce maintenance costs, and increase safety on US-80 and future causeway or coastal projects where impacts to terrapins need to be mitigated. These results have broader application to diamondback terrapins throughout their range and to other hard-shelled chelonids on a global scale.

| 17. Key Words: Exclusion, Mitigation, Road                | 18. Distribution Statement  |                    |                            |                   |
|-----------------------------------------------------------|-----------------------------|--------------------|----------------------------|-------------------|
| Species Management, Wildlife Conservation,                | No Restrictions             |                    |                            |                   |
| 19. Security Classification (of this report) Unclassified | 20. Security Classification | ion (of this page) | <b>21. No. of Pages</b> 57 | 22. Price<br>Free |

#### GDOT Research Project 22-33/ T.O

#### Final Report

# EXPERIMENTAL TESTS FOR AN EFFECTIVE BARRIER DESIGN TO EXCLUDE DIAMONDBACK TERRAPINS (MALACLEMYS TERRAPIN) FROM ROADS

By

Kimberly M. Andrews, Ph.D., Associate Research Scientist

Abbey Crossman Coastal Ecology Lab Research Staff

<sup>1</sup>University of Georgia Marine Extension and Georgia Sea Grant

Contract with Georgia Department of Transportation

In cooperation with U.S. Department of Transportation, Federal Highway Administration

January 2025

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

#### DISCLAIMER STATEMENT

This document is disseminated under the sponsorship of the Georgia Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Georgia and the U.S. Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the Georgia Department of Transportation or the U.S. Department of Transportation.

The State of Georgia and the U.S. Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

| PPROXI                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Symbol                                                                                            | When You Know                                                                                                                                                                                                                                                                           | Multiply By                                                                                                                             | To Find                                                                                                                                                                                       | Symbol                                                      |
|                                                                                                   | LENGTH                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
|                                                                                                   | inches                                                                                                                                                                                                                                                                                  | 25.4                                                                                                                                    | millimeters                                                                                                                                                                                   | mm                                                          |
|                                                                                                   | feet                                                                                                                                                                                                                                                                                    | 0.305                                                                                                                                   | meters                                                                                                                                                                                        | m                                                           |
| d                                                                                                 | yards                                                                                                                                                                                                                                                                                   | 0.914                                                                                                                                   | meters                                                                                                                                                                                        | m                                                           |
| i                                                                                                 | miles                                                                                                                                                                                                                                                                                   | 1.61                                                                                                                                    | kilometers                                                                                                                                                                                    | km                                                          |
|                                                                                                   | AREA                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| 2                                                                                                 |                                                                                                                                                                                                                                                                                         | 645.0                                                                                                                                   | aguara millimatara                                                                                                                                                                            | mm²                                                         |
| 2                                                                                                 | square inches                                                                                                                                                                                                                                                                           | 645.2                                                                                                                                   | square millimeters                                                                                                                                                                            | m2                                                          |
|                                                                                                   | square feet                                                                                                                                                                                                                                                                             | 0.093                                                                                                                                   | square meters                                                                                                                                                                                 | m2                                                          |
| 12                                                                                                | square yard                                                                                                                                                                                                                                                                             | 0.836                                                                                                                                   | square meters                                                                                                                                                                                 |                                                             |
| 0_                                                                                                | acres                                                                                                                                                                                                                                                                                   | 0.405                                                                                                                                   | hectares                                                                                                                                                                                      | ha                                                          |
| i <sup>2</sup>                                                                                    | square miles                                                                                                                                                                                                                                                                            | 2.59                                                                                                                                    | square kilometers                                                                                                                                                                             | km²                                                         |
|                                                                                                   | VOLUME                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| oz                                                                                                | fluid ounces                                                                                                                                                                                                                                                                            | 29.57                                                                                                                                   | milliliters                                                                                                                                                                                   | ml                                                          |
| al                                                                                                | gallons                                                                                                                                                                                                                                                                                 | 3.785                                                                                                                                   | liters                                                                                                                                                                                        | I                                                           |
| 3                                                                                                 | cubic feet                                                                                                                                                                                                                                                                              | 0.028                                                                                                                                   | cubic meters                                                                                                                                                                                  | m3                                                          |
| 13                                                                                                |                                                                                                                                                                                                                                                                                         | 0.765                                                                                                                                   | cubic meters                                                                                                                                                                                  | m3                                                          |
|                                                                                                   | cubic yards                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                         | volumes greater than 1000 I sha                                                                                                         | II DE SHOWH III [II].                                                                                                                                                                         |                                                             |
|                                                                                                   | MASS                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| Z                                                                                                 | ounces                                                                                                                                                                                                                                                                                  | 28.35                                                                                                                                   | grams                                                                                                                                                                                         | g                                                           |
| ı                                                                                                 | pounds                                                                                                                                                                                                                                                                                  | 0.454                                                                                                                                   | kilograms                                                                                                                                                                                     | kg                                                          |
|                                                                                                   | short tons (2000 lb)                                                                                                                                                                                                                                                                    | 0.907                                                                                                                                   | megagrams (or "metric ton")                                                                                                                                                                   | Mg (or 't")                                                 |
|                                                                                                   | TEMPERATURE (exa                                                                                                                                                                                                                                                                        |                                                                                                                                         | 3 3 (,                                                                                                                                                                                        | J ( )                                                       |
| :                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                         | Coloivo                                                                                                                                                                                       | ос                                                          |
|                                                                                                   | Fahrenheit                                                                                                                                                                                                                                                                              | 5 (F-32)/9                                                                                                                              | Celsius                                                                                                                                                                                       |                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                         | or (F-32)/1.8                                                                                                                           |                                                                                                                                                                                               |                                                             |
|                                                                                                   | ILLUMINATION                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| :                                                                                                 | foot-candles                                                                                                                                                                                                                                                                            | 10.76                                                                                                                                   | lux                                                                                                                                                                                           | lx                                                          |
|                                                                                                   | foot-lamberts                                                                                                                                                                                                                                                                           | 3.426                                                                                                                                   | candela/m <sup>2</sup>                                                                                                                                                                        | cd/m <sup>2</sup>                                           |
|                                                                                                   | FORCE and PRESSU                                                                                                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| of                                                                                                | poundforce                                                                                                                                                                                                                                                                              | 4.45                                                                                                                                    | newtons                                                                                                                                                                                       | N                                                           |
| offln <sup>2</sup>                                                                                | poundforce per square inch                                                                                                                                                                                                                                                              | 6.89                                                                                                                                    | kilopascals                                                                                                                                                                                   | kPa                                                         |
| PPROXI                                                                                            | MATE CONVERSION                                                                                                                                                                                                                                                                         | S FROM SI UNITS                                                                                                                         |                                                                                                                                                                                               |                                                             |
|                                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                                                                                                                                               |                                                             |
| odmvol                                                                                            |                                                                                                                                                                                                                                                                                         |                                                                                                                                         | To Find                                                                                                                                                                                       | Symbol                                                      |
| symbol                                                                                            | When You Know                                                                                                                                                                                                                                                                           | Multiply By                                                                                                                             | To Find                                                                                                                                                                                       | Symbol                                                      |
| _                                                                                                 | When You Know<br>LENGTH                                                                                                                                                                                                                                                                 | Multiply By                                                                                                                             |                                                                                                                                                                                               | -                                                           |
| ım                                                                                                | When You Know LENGTH millimeters                                                                                                                                                                                                                                                        | Multiply By  0.039                                                                                                                      | inches                                                                                                                                                                                        | in                                                          |
| ım<br>ı                                                                                           | When You Know LENGTH millimeters meters                                                                                                                                                                                                                                                 | Multiply By  0.039 3.28                                                                                                                 | inches<br>feet                                                                                                                                                                                | in<br>11                                                    |
| ım<br>I                                                                                           | When You Know LENGTH millimeters meters meters                                                                                                                                                                                                                                          | 0.039<br>3.28<br>1.09                                                                                                                   | inches<br>feet<br>yards                                                                                                                                                                       | in<br>11<br>yd                                              |
| symbol                                                                                            | When You Know LENGTH millimeters meters meters kilometers                                                                                                                                                                                                                               | Multiply By  0.039 3.28                                                                                                                 | inches<br>feet                                                                                                                                                                                | in<br>11                                                    |
| m<br>I<br>I<br>m                                                                                  | When You Know LENGTH millimeters meters meters                                                                                                                                                                                                                                          | 0.039<br>3.28<br>1.09                                                                                                                   | inches<br>feet<br>yards                                                                                                                                                                       | in<br>11<br>yd                                              |
| ım<br>I                                                                                           | When You Know  LENGTH millimeters meters meters kilometers AREA                                                                                                                                                                                                                         | 0.039<br>3.28<br>1.09                                                                                                                   | inches<br>feet<br>yards<br>miles                                                                                                                                                              | in<br>11<br>yd                                              |
| m<br>I<br>I<br>m                                                                                  | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters                                                                                                                                                                                                      | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016                                                                                                | inches<br>feet<br>yards<br>miles<br>square inches                                                                                                                                             | in<br>II<br>yd<br>mi                                        |
| im<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters                                                                                                                                                                                        | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016<br>10.764                                                                                      | inches<br>feet<br>yards<br>miles<br>square inches<br>square feet                                                                                                                              | in<br>11<br>yd<br>mi<br>in <sup>2</sup><br>112              |
| m<br>n<br>m <sup>2</sup><br>2                                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters                                                                                                                                                                          | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016<br>10.764<br>1.195                                                                             | inches feet yards miles square inches square feet square yards                                                                                                                                | in 11 yd mi in² 112 yd2                                     |
| m<br>1<br>1<br>11<br>11<br>11<br>12<br>2<br>2                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares                                                                                                                                                                 | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016<br>10.764<br>1.195<br>2.47                                                                     | inches feet yards miles square inches square feet square yards acres                                                                                                                          | in 11 yd mi in² 112 yd2 ac                                  |
| m<br>1<br>1<br>11<br>11<br>11<br>12<br>2<br>2                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers                                                                                                                                               | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016<br>10.764<br>1.195                                                                             | inches feet yards miles square inches square feet square yards                                                                                                                                | in 11 yd mi in² 112 yd2                                     |
| om<br>n<br>n<br>2<br>2<br>2<br>2<br>a<br>m <sup>2</sup>                                           | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME                                                                                                                                        | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386                                                                                   | inches feet yards miles square inches square feet square yards acres square miles                                                                                                             | in 11 yd mi in² 112 yd2 ac mi2                              |
| m<br>1<br>1<br>11<br>11<br>11<br>12<br>2<br>2                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers                                                                                                                                               | 0.039<br>3.28<br>1.09<br>0.621<br>0.0016<br>10.764<br>1.195<br>2.47                                                                     | inches feet yards miles square inches square feet square yards acres                                                                                                                          | in 11 yd mi in² 112 yd2 ac                                  |
| nm<br>n<br>nm <sup>2</sup><br>2<br>2<br>2<br>a<br>m <sup>2</sup>                                  | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME                                                                                                                                        | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386                                                                                   | inches feet yards miles square inches square feet square yards acres square miles                                                                                                             | in 11 yd mi in² 112 yd2 ac mi2 fl oz                        |
| m<br>m<br>m <sup>2</sup><br>2<br>2<br>2<br>a<br>m <sup>2</sup><br>I                               | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters                                                                                                                            | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034                                                                            | inches feet yards miles square inches square feet square yards acres square miles fluid ounces                                                                                                | in 11 yd mi in² 112 yd2 ac mi2                              |
| m<br>m<br>m <sup>2</sup><br>2<br>2<br>2<br>a<br>m <sup>2</sup><br>I                               | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters hectares square kilometers VOLUME milliliters liters cubic meters                                                                                                                      | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314                                                               | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet                                                                           | in 11 yd mi in² 112 yd2 ac mi2 fl oz                        |
| m<br>m<br>m <sup>2</sup><br>2<br>2<br>2<br>a<br>m <sup>2</sup><br>I                               | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters liters cubic meters cubic meters                                                                                           | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264                                                                      | inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons                                                                                        | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3                |
| mm  mm² 2 2 2 2 a m² 1 1 3                                                                        | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS                                                                                                   | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307                                                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards                                                               | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3            |
| m<br>m<br>m <sup>2</sup><br>2<br>2<br>2<br>a<br>m <sup>2</sup><br>I<br>3<br>3                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters liters cubic meters cubic meters MASS grams                                                                                | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307                                                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards                                                               | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3            |
| mm  mm² 22 22 23 21 33 33                                                                         | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms                                                                                  | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307                                                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds                                                | in 11 yd mi in² 112 yd2 ac mi2 fl oz gal 113 yd3            |
| mm  mm² 22 22 23 21 33 33                                                                         | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters liters cubic meters cubic meters MASS grams                                                                                | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307                                                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards                                                               | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3            |
| om<br>n<br>n<br>2<br>2<br>2<br>2<br>a<br>m <sup>2</sup>                                           | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton"                                                       | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103                                      | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds                                                | in 11 yd mi in² 112 yd2 ac mi2 fl oz gal 113 yd3            |
| om  in  in  in  in  2  2  2  a  m²  il  3  3  dg (or"t")                                          | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exa                                      | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                           | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3 oz Ib T    |
| m  m  2  2  2  3  3  3  g (or"t")                                                                 | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exa                                      | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103                                      | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds                                                | in 11 yd mi in² 112 yd2 ac mi2 fl oz gal 113 yd3            |
| m  m² 2 2 2 3 m² 1 3 3 3 g (or"t")                                                                | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exacelesius ILLUMINATION                 | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                           | in 11 yd mi in² 112 yd2 ac mi² fl oz gal 113 yd3 oz lb T    |
| m  m² 2 2 2 3 3 3 3 g (or"t")                                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exacelesius ILLUMINATION lux | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                           | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3 oz Ib T    |
| m  m² 2 2 2 3 3 3 3 g (or"t")                                                                     | When You Know  LENGTH millimeters meters meters kilometers  AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exacelesius ILLUMINATION                 | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)                         | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)                           | in 11 yd mi in² 112 yd2 ac mi² fl oz gal 113 yd3 oz lb T    |
| m  m² 2 2 2 3 3 3 3 g (or"t")                                                                     | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters hectares square kilometers  VOLUME milliliters liters cubic meters cubic meters mASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exacelsius ILLUMINATION lux candela/m²    | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)  1.8C+32  0.0929 0.2919 | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  Fahrenheit  foot-candles | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3 oz lb T "F |
| mm  mm² 22 22 23 21 33 33                                                                         | When You Know  LENGTH millimeters meters meters kilometers AREA square millimeters square meters square meters hectares square kilometers VOLUME milliliters liters cubic meters cubic meters MASS grams kilograms megagrams (or "metric ton" TEMPERATURE (exacelesius ILLUMINATION lux | 0.039 3.28 1.09 0.621  0.0016 10.764 1.195 2.47 0.386  0.034 0.264 35.314 1.307  0.035 2.202 1.103 act degrees)  1.8C+32  0.0929 0.2919 | inches feet yards miles  square inches square feet square yards acres square miles  fluid ounces gallons cubic feet cubic yards  ounces pounds short tons (2000 lb)  Fahrenheit  foot-candles | in II yd mi in² II2 yd2 ac mi2 fl oz gal II3 yd3 oz lb T "F |

# **TABLE OF CONTENTS**

| TECHNICAL REPORT DOCUMENTATION PAGE          | 2  |
|----------------------------------------------|----|
| DISCLAIMER STATEMENT                         | 2  |
| EXECUTIVE SUMMARY                            | 6  |
| CHAPTER 1. INTRODUCTION & RESEARCH NEED      | 9  |
| CHAPTER 2. LITERATURE REVIEW                 | 13 |
| CHAPTER 3. METHODOLOGY & EXPERIMENTAL TRIALS | 14 |
| Reverse Curb Designs                         | 14 |
| Field Sites                                  | 15 |
| Capture Methodology                          | 17 |
| Morphometrics Collection Methodology         | 27 |
| Data Processing & Analysis                   | 30 |
| CHAPTER 4. RESULTS                           | 31 |
| CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS     | 37 |
| ACKNOWLEDGEMENTS                             | 41 |
| REFERENCES                                   | 42 |
| APPENDICES                                   | 46 |

# LIST OF FIGURES

| Figure 1. Photo. Study focal species9                                                                      |
|------------------------------------------------------------------------------------------------------------|
| Figure 2: Table. Reverse curb cut section dimensions                                                       |
| Figure 3: Photo. Reverse curb cut sections                                                                 |
| Figure 4. Map. The two sampling sites on the Georgia coast where we collected wild terrapins for           |
| the experimental trials                                                                                    |
| Figure 5. Photo. Two-panel images of the reverse curb designs and D5 Maintenance crew in                   |
| Brunswick, GA16                                                                                            |
| Figure 6. Photo. Three-panel images of the visual setting of experimental test sites at Fort Pulaski       |
| and Brunswick17                                                                                            |
| Figure 7. Photo. Van used in road cruising surveys showing safety measures taken by patrol team            |
| (car magnets, strobe, hi vis branded vests)18                                                              |
| Figure 8. Map. US-80 map showing survey area for road cruising, pedestrian, and bike survey19              |
| Figure 9. Illustration. Seine net with "bag" used for in-water terrapin captures20                         |
| Figure 10. Map. Hawkins Creek showing survey area for seining, where all in-water captures                 |
| occurred20                                                                                                 |
| Figure 11. Photo. Two-panel images of storage containers used to contain animals between initial           |
| capture and release21                                                                                      |
| Figure 12. Photo. Front page of the data collection sheet showing information collected for both           |
| capture and animal morphometrics22                                                                         |
| Figure 13. Photo. Three-panel images of curb sections showing divider to guarantee exposure to             |
| all curb heights (i.e., 6/8" and 10/12"), silt-fence perimeter, and Polywall® lining25                     |
| Figure 14. Photo. Back page of the data collection sheet showing information collected during the          |
| experimental trials                                                                                        |
| Figure 15. Photo. Collage of photos showing sexual size dimorphism used to determine individual            |
| sex in terrapins27                                                                                         |
| Figure 16. Photo. Collage of photos showing the morphometric measurements collected on each                |
| terrapin                                                                                                   |
| Figure 17. Schematic of terrapin notch code system used to assign unique marks to each                     |
| individual29                                                                                               |
| <u>Figure 18</u> . Table. Summary of personnel effort hours31                                              |
| Figure 19. Graph. Percentage of individuals that attempted to climb curbs                                  |
| <u>Figure 20</u> . Graph. Percentage of individual terrapins that successfully trespassed the four heights |
| of the 90° curb                                                                                            |
| Figure 21. Graph. Percentage of individual terrapins that successfully trespassed the four heights         |
| of the 90° curb with the 3" lip34                                                                          |
| Figure 22. Graph. Percentage of individual terrapins that successfully trespassed the four heights         |
| of the 70° reverse angle curb                                                                              |
| Figure 23. Graph. Total assisted successful trespasses on all four heights of the 90° curb, the 90°        |
| curb with a 3" lip, and the 70° reverse angle curbs                                                        |
| Figure 24. Recommendations for curb heights and angles relative to the degree of trespass and              |
| maintenance burden                                                                                         |

#### **EXECUTIVE SUMMARY**

Diamondback terrapins are a unique turtle, being the only species exclusive to tidal saltmarshes along the eastern United States. They are particularly vulnerable to road mortality as reproductive females emerge from the marsh creeks during high tides in search of high, dry grounds to nest during late spring and summer in the southeastern United States (seasonality varies with region). Typically, their natural nesting habitat is the hard Spartina-vegetated "high" marshes, though causeways have introduced terrestrial ground of competitive elevation, thereby attracting nesting females to causeway shoulders to nest and increasing their likelihood wildlife-vehicle conflicts. This differential removal of reproductive, adult females is problematic as they are the least expendable demographic from a standpoint of long-term wildlife population viability.

United States (US)-80 is a two-way, two-lane, rural highway in coastal Georgia and serves as the only connection between Tybee Island and the Georgia mainland. This causeway, along with bridge approaches at either end, serve as critical nesting grounds for protected diamondback terrapins. With the causeway and bridges both in need of improvement and over a decade of monitoring data on vehicle strikes of terrapins, the Georgia Department of Transportation (GDOT) consulted with agency and community partners to determine the most feasible solution for reducing terrapin-vehicle collisions. After consulting with the University of Georgia (UGA) Marine Extension and Georgia Sea Grant, their research team conducted a literature review of scientific peer-reviewed publications, unpublished and published reports, media references, conference presentations, and expert input. A permanent, reverse curb solution was identified as the preferred method to exclude terrapins from the roadway, while reducing long-term maintenance costs, and taking safety design considerations into account.

The overarching goal of the UGA research team was to reduce terrapin mortality from

wildlife-vehicle collisions by devising an affordable structural barrier that will prevent terrapins from entering roads and that is line with Department of Transportation construction, maintenance, and driver safety protocols. The team conducted experimental testing on three reverse curbing designs to determine which heights and angles terrapins were ineffective at climbing over (trespass). The curbs presented three angles: 90° straight, vertical surface [hereafter, 90°], 90° with a 3" lip [lip], and 70° angle [angle]. Each curb had 2' sections of 4 different heights: 6", 8", 10", and 12". The team conducted runway experiments with wild-caught animals that were tested at the capture location and released immediately following the trial.

All curb experimental trials were conducted in May-July 2024 using wild terrapins caught by road cruising, pedestrian and bike surveys, and seining methods (n=121). The team had two experimental sites: Fort Pulaski National Monument (Chatham County) and UGA Marine Extension and Georgia Sea Grant facility in Brunswick (Glynn County). Each animal was tested on all three curb sections and were released within 4-48 hours of capture (most frequently released within 6 hours of capture). The most effective heights were 12", successfully excluding 100% of animals attempting to climb the barrier for the 90°, 98% of animals for the 70° reverse angle & 100% for 90° with 3" lip. Next, the 10" height successfully excluded 96% of animals for the 90°, 100% for the 70-degree reverse angle, and 100% for the 90-degree with 3" lip. At the 8" height, 70% of animals were excluded from the 90°, 97% from the 70° reverse angle, and 96% from the 90° with 3" lip. Lastly at the shortest 6" curb, only 64% of animals were excluded from the 90°, 96% were excluded from the 70° reverse angle, and 87% were excluded from the 90° with 3" lip. Based on these results, the 10" and 12" heights of the 70° reverse angle curb and the 90° with 3" lip curb were most successful at excluding terrapins overall.

These curbs will be most successful if they are combined with guide fencing at terminal points, which will aid in redirecting terrapins towards the marsh and prevent wrap-around effects and fence-end mortality. Additionally, curbs should be casted without a brush finish to allow a smooth surface on the concrete that discourages climbing. The team advises a regular curb maintenance schedule post-implementation to prevent the accrual of debris along the curbs (especially after stormy weather and high tides), which will quickly result in eased trespass for the terrapins and negated effectiveness of the barrier. The team strongly cautions against implementation of the 6" heights for any of the curb designs. The 90° with 3" lip curb presented an additional disadvantage as terrapins frequently became wedged and stuck under the overhang during experimental trials. This research will guide GDOT towards adapting a concept into an effective barrier design that will be permanent, reduce maintenance costs, and increase safety on US-80 and future causeway or coastal projects where impacts to terrapins need to be mitigated. These results have broader application to diamondback terrapins throughout their range and to other hard-shelled chelonids on a global scale.

#### CHAPTER 1. INTRODUCTION & RESEARCH NEED

Diamondback terrapins (*Malaclemys terrapin*) is listed as a state species of concern, and classified as Vulnerable on the IUCN Redlist (Fig. 1). Diamondback terrapins are a unique turtle, being the

only species exclusive to brackish-water, tidal saltmarshes along the eastern United States. They are known to have long life spans, are sensitive to impacts, and slow to recover from persistent removal from stable or increasing populations. They are a species of conservation concern as they are facing population declines range-wide as a result of human encroachment and habitat modification. Following, they are particularly vulnerable to road mortality as reproductive



Figure 1. Photo. Study focal species. The species of focus, diamondback terrapin (*Malaclemys terrapin*).

females emerge from the marsh creeks during high tides in search of high, dry grounds to nest during late spring and summer in the southeastern United States (seasonality varies with region). Typically, their natural nesting habitat is the hard Spartina-vegetated "high" marshes, though causeways have introduced terrestrial ground of competitive elevation, thereby attracting nesting females to causeway shoulders to nest and increasing their likelihood wildlife-vehicle conflicts. This differential removal of reproductive, adult females is problematic as they are the least expendable demographic from a standpoint of long-term wildlife population viability.

The east coast is the most populous area of the United States, hosting 36% of the nation's residents and over 50 million people visit annually (US Census Data 2020). Unfortunately, the peak emergence activity for nesting terrapins coincides with the peak of coastal tourism. Increased traffic from cars and turtles has created population-level impacts in multiple locations throughout this species' range. Further, these on-road losses are confounded by mortality from in-water threats

of bycatch in crab traps, pollution, development, and loss of habitat from climate change. As international tourism numbers and coastal resident populations continue to rise, development and human infrastructure will increase accordingly. Additionally, native saltmarsh habitats are being impacted and reduced by habitat degradation, and rising coastal water levels, thereby increasing the importance of roadside spaces for critical nesting habitat for terrapins and other species. Following, there is more pressure than ever on transportation and biological professionals to devise infrastructure designs that avoid and mitigate for conflicts with wildlife without incurring issues for driver safety, hindrances for roadside maintenance, or unbudgeted cost burdens.

Roadsides can be designed to accommodate or restrict nesting, depending on the local impacts in need of mitigation and whether the amount and quality of habitat extending from the right-of-way can accommodate nesting. Barrier designs have been developed to exclude diamondback terrapins from roads and to facilitate their use of appropriate nesting habitats on roadsides. In coastal Georgia in April 2022, Jekyll Island installed Animex fencing (Animex 2024) to exclude terrapins from entering the road at a nesting hotspot at the entrance of GA State Route 520 (Downing Musgrove Causeway). Additionally, they have conducted research and shown continued effectiveness of artificial "nest boxes" that are constructed to allow for nesting while excluding predators (Quinn et al. 2015). Another successful example is from New Jersey where researchers at The Wetlands Institute installed corrugated pipe along 11 miles on the causeway to Seven Mile Island to prevent the trespass of terrapins onto the road (Egger 2016) and have installed this design in other locations where locals have sought mitigation of mortality. Further, there are preliminary concepts that have been developed through previous discussions about the mitigation needs for terrapins on US-80 to Tybee Island, in addition to other designs that

have been developed for freshwater turtles and land tortoises and offer the potential for customization for this project (Andrews et al. 2015).

There are a number of considerations to incorporate when designing a barrier fence for a given location. Some of the important features to consider regardless of site-specific conditions are: a) effectiveness in preventing trespass of the terrapins onto roads; b) likelihood of being able to use different materials according to roadside design standards, installation costs, state transportation maintenance plans; and c) logistics of installation and repair. Other factors that should be customized to site due to a high degree of variation among projects, environmental conditions, socio-geography, and other local or regional conditions are: d) safety of animals encountering the fence (i.e., target mitigation species for exclusion, non-target species who need connectivity and reducing fragmentation concerns); e) durability from chronic or seasonal weather exposure; f) damage risk to materials from maintenance activities; and g) aesthetics and local perceptions of appearance. Some testing on fencing materials has occurred in New Jersey (The Wetlands Institute 2019) and Ontario (Ontario Canada 2012), both of which have online information through these links. However, Georgia has many site-specific conditions that prevent application of already-established techniques, including but not limited to: our high tidal amplitude; extremely warm summer temperatures; and high salinity that accelerates degradation of some materials.

United States (US) Route 80 is a two-way, two-lane, rural highway in coastal Georgia and serves as the only connection between Tybee Island and the Georgia mainland. This causeway, along with bridge approaches at either end, serve as critical nesting grounds for protected diamondback terrapins. With the causeway and bridges both in need of improvement and almost two decades of monitoring data on vehicle strikes of terrapins, the Georgia Department of

Transportation (GDOT) consulted with agency and community partners to determine the most feasible solution for reducing terrapin-vehicle collisions. US-80 also has a very narrow right-of-way, and these space constraints exclude application of many existing wildlife barrier designs. Therefore, GDOT decided to fund research conducted by the University of Georgia to specifically test various curb designs to find characteristics that lead to an effective barrier. Given that high-ground nesting is the principal biological need to accommodate (rather than connectivity across roads), the UGA team (hereby referred to as the team) focused on exclusion measures as their mitigation action. Specifically, a permanent, reverse curb solution was identified as the preferred method to exclude terrapins from the roadway, while reducing long-term maintenance costs, and taking safety design considerations into account. Additionally, the planned offset bridge replacements provide an opportunity to repurpose the existing bridge approaches for increasing terrapin nesting habitat in an area of marshland already impacted.

The team's overarching goal was to reduce terrapin mortality from wildlife-vehicle collisions by devising an affordable structural barrier that will prevent terrapins from entering roads and that is line with Department of Transportation construction, maintenance, and driver safety protocols. The team's short-term goal was to identify a feasible barrier design that can be installed on US-80 to Tybee Island. Their long-term goal is to be able to apply this design as needed elsewhere in Georgia and for it to serve as a model for other states applying mitigation options for terrapins or freshwater turtles. The research objective of this project was to conduct experimental testing on barrier fence designs that are effective in preventing diamondback terrapins from entering roadways to prevent the species from being impacted by road mortality. Specifically, the team determined the height and angle specifications for the exclusion fencing implementation.

#### **CHAPTER 2. LITERATURE REVIEW**

In 2023, the team conducted a global literature search of references that included information on fencing, exclusion, and barrier structure option for preventing chelonids from entering roadways. The team included peer-reviewed scientific literature, published and unpublished reports, websites, and news articles. The team further engaged expert-based opinions of transportation and wildlife ecologists who have experience with fencing designs and had relevant observations to offer. These experts were identified based on known colleagues by PI Andrews and presentations from relevant professional conferences (e.g., International Conference on Ecology and Transportation (international), The Wildlife Society (national), Southeastern Partners of Amphibian and Reptile Conservation (regional)). Citable references were compiled into an Excel spreadsheet (n = 41); 39 references were made into pdfs and files were linked to the corresponding row in the spreadsheet. The two references that are not linked and included with this report are a book (Andrews et al. 2015) and an ArcGIS Story Map website (Monkton Wildlife Crossing; contact: Chris Slesar, Vermont Department of Transportation). The excel file listing all references included in the Literature Review is provided as Appendix 1; additionally, citations for all references are included in the References section below.

#### **CHAPTER 3. METHODOLOGY & EXPERIMENTAL TRIALS**

#### **Reverse Curb Designs**

The dimensions of the three reverse curb designs from a cut section are show in Figure 2. The dimensions of the angled curb (70° reverse angle) for the 6", 8", 10", and 12" heights are shown in row 1, while the dimensions of all four heights for the 90° (90° straight vertical surface) curb and the lip (90° with a 3" lip) curb are shown in rows 2 and 3, respectively. Figure 3 also shows cut-section images for all three curb designs at the 6" height for reference.

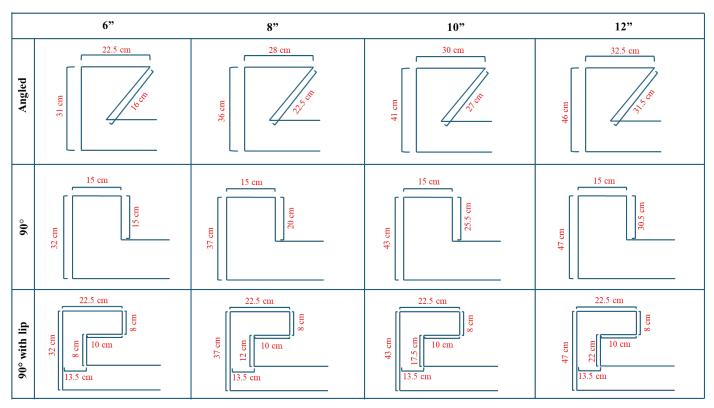



Figure 2. Table. Curb dimensions. Dimensions of all three reverse curb designs cut sections per each of the four heights.



Figure 3. Photo. Curb cut sections. Cut section images of all three curb designs at the 6" height for reference to table in Figure 2.

#### **Field Sites**

The team selected two field sites to conduct the terrapin trials on the experimental reverse curb

designs (Fig. 4). The team based site selection on locations where terrapins are locally abundant and for their relevance to the objectives and outcomes of this research. The team's first site was Fort Pulaski National Monument managed by the National Park Service (Chatham County), who has been heavily engaged and concerned about the levels of mortality on US-80. Additionally, this location is near the Tybee Island Marine Science Center (TIMSC) whose director, Chantal Audran, has been involved in the long-term terrapin monitoring and mortality counts on the US-80 causeway



Figure 4. Map. Sampling sites. The two sampling sites on the Georgia coast where wild terrapins were collected for the experimental trials. The northernmost star shows Tybee Island Causeway, while the southern star shows Hawkins Island by Saint Simons Island.

since it's initiation in 2005. The team's second site was at the UGA Marine Extension facility in Brunswick, Georgia (Glynn County) where PI Andrews and her Coastal Ecology Lab (in the Marine Extension and Georgia Sea Grant department) are located. The UGA team coordinated with the GDOT District 5 Maintenance team to cast the experimental reverse curb sections. They were delivered and put in place at both sites on April 15, 2024 (Fig. 5).



Figure 5. Photo. Curb installation. Left: The three types of reverse curb designs used in the experiment. Right: D5 Maintenance Crew with PI Andrews at the Brunswick test site when the curbs were being delivered.

All experimental testing took place in the field at two testing sites constructed at Fort Pulaski and Brunswick. At both sites, the tests were conducted with the curbs facing the water so that the site of the water would motivate the terrapins to crawl toward and attempt to climb over the curbs. The test site at Fort Pulaski was located on Cockspur Island along Tybee Coast Guard Station Drive (Fig. 6, Left), while the test site in Brunswick was located behind the University of Georgia Marine Extension and Georgia Sea Grant building along East River (an offshoot of Turtle River, Fig. 5, Right, and Fig. 6, Middle and Right). Both locations had identical testing curbs that included the three curb types and the four heights for each type. All terrapins were tested against the curbs typically within 4 hours of capture but no more than within 24 hours of capture. The Fort Pulaski test site was located under a pine tree canopy that provided shade during the trials, and shade tents

were placed over the test sites in Brunswick to prevent heat stress in the terrapins during the trials since it was open and had no tree canopy.



Figure 6. Photo. Testing sites. Visual setting of experimental test sites. Left: Fort Pulaski, Middle and Right: Brunswick

#### **Capture Methodology**

The use of live diamondback terrapins was necessary to this experiment because the purpose of this research is to test and examine how diamondback terrapins will respond to the various types of fencing; therefore, the team needed to be able to observe their behavior while interacting with the different curb designs (IACUC Animal Use Proposal A2023 03-004-Y1-A0). Including captive animals in the study was considered; however, there were insufficient numbers of adult terrapins in captivity in coastal Georgia education centers for a minimum acceptable sample size for the testing treatments. Also, diamondback terrapins in captivity behave differently than terrapins from the wild; this was confirmed during initial tests with two captive animals from TIMSC. Hence, the team used various methods of sampling and capture to find wild diamondback terrapins to test against the curb designs. This sample demographic also allowed the team to confidently report behavioral results of how wild terrapins will react to these curbs in their natural habitat.

The first method of capturing diamondback terrapins was by road cruising, or driving a car back and forth along US-80 (the Tybee Island causeway) to survey for live terrapins along the road, especially focusing on "hotspots" where terrapin road mortality has been monitored to be the highest. The research team's vehicle was outfitted with magnets labeled "frequent stops" and "terrapin research," along with a strobe light for safety for the patrol team and additional awareness for passing drivers (Fig. 7). Crew members wore high visibility safety vests for additional protection while getting terrapins off the road while pulled over and to show official UGA branding as the team did not want their actions to inspire observing drivers to take



Figure 7. Photo. Research vehicle. Road cruising vehicle outfitted with strobe light and magnet next to field researcher in high visibility safety vest holding a terrapin that was found alive on the road (AOR) on US-80.

intervention in removing terrapins from the road (Fig. 7). The vehicle was maintained at a speed of 40 mph and if a terrapin was spotted on the road or on the shoulder, the vehicle was safely pulled over off the side of the road and the terrapin was collected. These individuals found on roads were recorded as "AOR" or "Alive-on-Road" under their capture information. Road cruising took place on a 4.3-mile stretch of US-80 from the East end of the causeway after the bridge over Bull River on a pull-off by a tidal creek off the main river (Bull Creek) to the Lazaretto Creek Fishing Pier at the end of the road by the Lazaretto Creek Boat Ramp Road (Fig. 8, red lines).

The second and third methods of diamondback terrapin capture were through pedestrian sampling by either walking or biking (Fig. 8, blue lines). During each capture, researchers surveyed a 9-km (5.6 miles) gravel biking and walking trail positioned parallel to the South Channel Savannah River directly north of US-80 named McQueen's Island Historic Trail (also

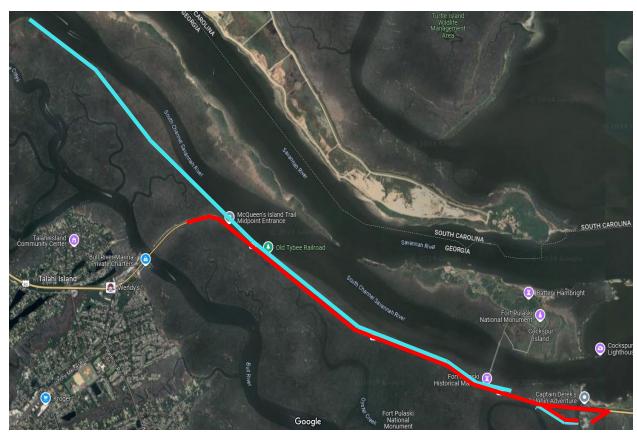
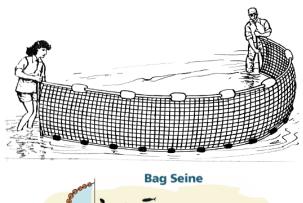




Figure 8. Map. US-80. Map showing US 80 going towards Tybee Island. Blue lines show foot paths for pedestrian and biking surveys, while red lines show the path for road cruising surveys.

known as "Rails to Trails"). This trail stretches from Fort Pulaski National Monument Entrance Station at Fort Pulaski Road and US-80 on its Eastern end to McQueen's Island at Bull River on its western end. Sampling was focused on spots along the river that diamondback terrapins were observed to come on to land in high densities, mainly a 4.83-km (3 miles) stretch of the trail between McQueen's Island Trail Midpoint Entrance and the Fort Pulaski National Monument Entrance Station. An additional 1.61-km (1 mile) stretch of McQueen's Trail that is no longer maintained was also surveyed to the east of the Fort Pulaski National Monument Entrance Station (Fig. 8, blue lines). A 0.61 km (0.38 mile) section of road on the east end of US-80 stretching from the Lazaretto Creek Boat Ramp to the Lazaretto Creek Fishing Pier was surveyed by road cruising, pedestrian, and biking sampling (Fig. 8, red and blue lines). This road runs along the Lazaretto Creek, allowing terrapins to also be sampled from the south side of US-80.

The fourth and last method of capturing diamondback terrapins was by seine net, which is a long fishing net that hangs vertically in the water with floats at the top and weights at the bottom edge where the ends are drawn together to encircle the terrapins and funnel them into a "basket" at the center of the net (Fig. 9). Seining took place in a tidal creek in Brunswick, Georgia that started off the Frederica River (an extension of the Mackay River off Manhead Sound) and

stretched along the west side of Hawkins Island (Fig. 10). A 16-foot Carolina skiff was launched from the Lanier Island boat ramp 2-3 hours before low tide and taken about 2.41 km (1.5 miles) to the tidal creek entrance. Prior to seining specifically, drone surveys using an unmanned aerial vehicle (UAV Drone) were conducted prior to sampling creeks (seining)






Figure 9. Seine net. Seine net with "bag" used for inwater terrapin captures. Photo Credits: Top, <a href="https://www.netsandmore.com/products/fishing-nets/seines">https://www.netsandmore.com/products/fishing-nets/seines</a>; Bottom: <a href="https://duluthfishnets.com/store/seines/small-mesh-6-deep-seines/">https://duluthfishnets.com/store/seines/small-mesh-6-deep-seines/</a>



Figure 10. Map. Hawkins Creek. Map of Hawkins Creek, where all in-water captures occurred.

for diamondback terrapins at a height of 15-20 m above the water surface. The purpose of this was to collect aerial photographs and video of the sampling area and to determine if the level of terrapin presence and activity warranted in-water seining.

In the tidal creek, the 50-foot long seine net was deployed and stretched from bank to bank across the creek and then pulled by hand by four researchers at a time. Every 91-374 m (100-300 yards), the seine net was gathered and pulled on to the bank, where the basket was then dumped and any terrapins inside were collected while other bycatch (which included various fish, stingrays, and crabs) were returned to the water. Seining at low tide allowed the researchers to stand in the tidal creek and pull the net through the water without allowing for any gaps for terrapins to escape, and the lower water level also concentrated the terrapins in a smaller volume of water, allowing for more efficient captures.

After a terrapin was captured, they were placed in storage containers (Fig. 11, Left). Three types of storage containers were used: 5-gallon circular buckets with handles and lids, repurposed square cat litter buckets with handles and lids that varied in size but were all approximately 5-gallons and measured 12"x10"x14", and tote bins with lids measuring 22"x17"x10." The buckets were primarily used during road cruising, pedestrian captures, and biking due to the carrying convenience of the handle, while the tote bins were primarily used during seining so that multiple smaller individuals could be stored in the same container (Fig. 11, Right) and so that containers could be stacked with lids for safe transportation on the boat. Each terrapin storage container



Figure 11. Photo. Terrapin containment. Terrapins in litter buckets and blue totes that were used to contain animals between initial capture and release. Wet towels and lids were included to keep terrapins

received a lid and was filled with either 1" of water (collected at the capture site) or a wet towel to prevent dehydration. Storage containers were kept in air conditioning whenever possible between capture and testing to prevent overheating or dehydration of the animals.

Immediately after capture, terrapins were given a preliminary field identification number (starting with 1 on each sampling day), which was marked on their carapace with an animal-safe paint pen. This allowed the team to identify individuals before they received their notch code post-

testing. Capture data collected (Fig. 12) included the date of capture (DD/MM/YY), the time of capture (on a 24-hour clock), the initials of the researcher that conducted the capture, the initials of the researcher that recorded the capture data, the capture area (Fort Pulaski or Brunswick), the latitude and longitude of the capture location (recorded on either a Garmin GPS device or a smart phone [iPhone or Android] using Google Maps), the name of the waypoint device and the waypoint itself, the capture method (either "by hand", which

|                           | Captur                                | e Information                   |                  |  |
|---------------------------|---------------------------------------|---------------------------------|------------------|--|
| Date (mm/dd/yy):/         |                                       | Collected by:                   |                  |  |
| Time of Capture (24-hr):  |                                       | Recorded by:                    |                  |  |
| Capture Site              |                                       |                                 | Direction Headed |  |
| ☐ Fort Pulaski:           |                                       |                                 |                  |  |
| ☐ Brunswick: _            |                                       |                                 |                  |  |
| Waypoint Device           | :                                     | Lat:,                           | 1                |  |
| Waypoint Name:            |                                       | Lon:                            |                  |  |
| Recapture?                | Capture Method                        | Capture Note                    | s                |  |
| ☐ Yes                     | ☐ Seined                              |                                 |                  |  |
|                           | ☐ Hand (on land / AOR)                |                                 |                  |  |
| □ No                      | ☐ Captive                             |                                 |                  |  |
|                           |                                       | asurements                      | -                |  |
| Sex: □ Juvenile           | 200000                                | Max Height:mm                   |                  |  |
|                           |                                       | Head width:mm                   |                  |  |
| Eggs? □ Yes □ No □ Unsure |                                       | Anal widthmm                    |                  |  |
| Carapace Length (         | Notch):mm                             | Anal notchmm                    |                  |  |
| Max Carapace Wi           | dth:mm                                | Weight:g                        |                  |  |
| Plastron Length (N        | Notch):mm                             | Notch Code:Cloaca               | to tip:mm        |  |
|                           | a/drill marks on each scute & shell d | Description/Con                 |                  |  |
| Take Filotos (DOFSA)      | l, Ventral, Anterior, & Injuries)     |                                 | <del>-</del> 0   |  |
| Data (mm/dd/)             |                                       | Time of Pologge (24 hr)         |                  |  |
|                           | ://<br>:                              | Time of Release (24-hr):  Lat:, |                  |  |
| Waypoint Device:          |                                       | Lat:, Lon:                      |                  |  |
| Waypoint Name:            |                                       |                                 |                  |  |

Figure 12. Photo. Data sheet. Front page of the data collection sheet showing information collected for both capture and animal morphometrics.

included road cruising, pedestrian, and biking, or "by seining"), and whether the terrapin was a recapture or not (only 1 individual throughout the entire study was a recapture and was tested twice, but only one of the tests was used in the analysis to avoid repeated measures). The direction that the terrapin was headed towards when it was captured was also recorded so it could be oriented in its intended direction upon release.

All terrapins were returned to their site of capture within a minimum of 4 hours after testing and not exceeding 48 hours. Terrapins that were captured by seining were returned to the tidal creek midpoint of the starting and stopping points of the original seine capture area. Terrapins that were caught by hand were returned to the coordinates of their capture location and were placed in the direction they were originally heading. Individuals found on US-80 were placed either in the marsh on the road shoulder in the direction they were headed or, in cases where there was not a safe shoulder to pull off on to return the terrapins, they were placed on the footpath directly adjacent to where they were found in the road.

Due to behavioral differences between terrapin sexes relative to the variation in method and time of capture throughout the season, there was a difference in the ratio of terrapin sexes collected between sites. At Fort Pulaski, capture methods consisted strictly of hand captures on dry land (road cruising, pedestrian, and biking). Sampling at this location occurred three hours before and after the daily peak high tide on the Savannah River. During this time, gravid or nesting females leave the water in search of more elevated, drier ground to nest on (this behavior is one of the main reasons why terrapins occur on roads and are suffering from increased road mortality as infrastructure and habitat fragmentation increase). This means that the terrapins captured by the team on Tybee Island up until around mid-July largely consisted of gravid females. Alternatively, seine netting occurred in Brunswick during the second half of terrapin season starting two hours

before peak low tide. Because researchers were capturing terrapins directly from the water at the Brunswick site, the majority of individuals from this test site were males (who rarely leave the water). No juveniles were captured at all throughout this study and the youngest age group tested consisted of a few sub-adult females.

#### **Trial Methodology**

Since captures at Fort Pulaski were land-based, animals were typically released within 4-6 hours of capture. However, at the Brunswick test site, terrapins were captured by boat and transported back to the UGA Marine Extension and housed (separately from the captive teaching collection). They were tested and released back to their capture location within 48 hours of capture. During captivity, they were provided with a water source that was replaced every 12 hours and they were health checked throughout the experimental trials.

One to three terrapins were tested at a time, with only one terrapin present on a single curb design at once. Each researcher present for trials was assigned to observe one terrapin at a time. Each trial site included the three sections of reverse curbing, with each curb section including different heights (6",8", 10", and 12", Figs. 2,3,5). Within each curb section, the curb was separated in the middle with the 6" and 8" heights on one side, and the 10" and 12" heights on the other side (Fig. 13, Middle) to prevent terrapins from following the perimeter of the runway and only encountering the 6" and 12" heights. The perimeter of the experimental site was lined with silt fencing designed to contain the terrapins to one curb at a time, allow the terrapin a visual over the curb they are attempting to trespass, and also block the terrapin's view from the observing researchers to eliminate behavioral changes around humans (Fig. 13, Left). The inside perimeter of the silt fencing was lined with Polywall® (a brand of smooth flexible waterproof reinforced

plastic wall panels) to prevent terrapins from climbing the silt fence, with the corners rounded to redirect them towards the curbs (Fig. 13, Left and Right).



Figure 13. Photo. Runway trial. Left: Polywall<sup>®</sup> placed around entire inside perimeter of runway trial. Middle: Divider separating 6" and 8" height curbs from 10" and 12" curbs. Right: Polywall<sup>®</sup> curved at corners to replicate directional fencing.

The order of curb design that each terrapin was tested on was selected at random per individual, and the starting curb side (i.e., heights [either 6"/8" or 10"/12"]) were also selected at random. One trial determinate was considered, which was terrapin size by plastron length. Plastron length (PL) is the total length of the bony underside of a terrapin's shell from the anterior end to the posterior end (Fig. 16). If the PL of a terrapin was over 125mm, they were tested for 5 minutes on both halves of the curb (5 minutes against the 6"/8" side and 5 minutes against the 10"/12" side), for a total trial length of 10 minutes per curb. If the PL of a terrapin was less than or equal to 125mm (primarily included small males and sub-adult females), they were tested for 7 minutes on the 6" and 8" heights first. If a terrapin under 125mm trespassed either of these two heights unassisted, they were then moved to the other half of the curb and tested against the 10" and 12" heights for 7 more minutes for a total trial length of 14 minutes. If a terrapin with a PL under 125mm did not trespass the 6" or 8" heights, their trial ended after 7 minutes.

"Trespass" refers to when the terrapin successfully climbed over a curb, while "no trespass" means the curb design succeeded at preventing the terrapin from climbing over. An

"unassisted trespass" indicates that the terrapin trespassed on clear curbing with no aid from wrack or the side wall, while "assisted trespass" indicates that the terrapin trespassed on the curb using aid from 1" of marsh wrack (added to trial after three attempted, but unsuccessful trespasses on the same height) or used the interface of the side wall and curb to trespass the curb.

Data collected during the trials (Fig. 14) included the site, date of trial, starting and ending

times of each trial, total trial UGA Coastal Ecology Lab: Diamondback Terrapin Capture Datasheet Terrapin Field ID#: Terrapin Notch Code: length, trial observer, Date: Start Time: End Time: Observers: starting curb design, Curb Type: ☐ Lip Site: □ FOPU □ 90-degree □ Angled □ MAREX Height 10 Inch 12 Inch 6 Inch 8 Inch Approach (Pl) starting heights, whether the Approach (Pp) Wr Wa Wa Un Wr Un Attempt # Successfully approached terrapin Climbed Video: □ Photos: 

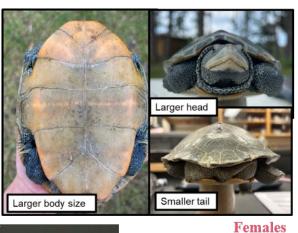
Ye curb parallel or Date: Start Time: End Time: Observers: Curb Type: □ 90-degree □ Angled ☐ Lip | Site:  $\ \square \ MAREX$ □ FOPU Height 10 Inch 12 Inch 6 Inch 8 Inch perpendicular, the number Approach (Pl) Approach (Pp) Un Wr Un Wr Wa Un of attempts by the terrapin Attempt # Successfully Climbed Video: □ Yes □ No Device: Photos: 

Yes 

No Device: to trespass on the curb and Date: Start Time: End Time: Observers: □ MAREX Curb Type: □ 90-degree □ Angled □ Lip Site □ FOPU whether those attempts Height 6 Inch 8 Inch 10 Inch 12 Inch Approach (Pl) Approach (Pp) Wr Wa Un  $W_{\Gamma}$ Wa Wr Wa Un Wr were unassisted, with Attempt Successfully Climbed wrack, or with the wall, if Photos: □ Yes □ No Device: Video: □ Yes □ No Device: Temperature (°C) the terrapin succeeded in Humidity (%) Wind speed (mph) Trial Notes trespassing the curb (and whether it has assistance or er to upload all cell phone photos & video daily! Marine Extension and Georgia Sea Grant UNIVERSITY OF GEORGIA not), and whether photos or

Figure 14. Photo. Data sheet. Back page of the data collection sheet showing information collected during the experimental trials.

the trial and by who. Immediately after trials concluded, the terrapins were processed for


videos were taken during

morphometric measurements. A Kestrel® weather meter was used to record the average wind speed, the temperature, and the humidity prior to each trial.

## **Morphometrics Collection Methodology**

Immediately after trials were completed, terrapins first were visually assessed to determine sex. Female terrapins were generally larger in body size, had more domed carapaces, wider heads, and shorter tails relative to their body size, while male terrapins were generally smaller in body size, had smaller heads, and larger tails relative to body size (Fig. 15). Females were hand-palpated to detect if they were gravid (if they contained eggs). In addition to determining sex, terrapins were placed in an age category (either juvenile, sub adult, or adult). The majority of terrapins caught were adults, although a couple of subadult females were captured. No juveniles or hatchlings were collected.





Males

Female

Figure 15. Photo. Sexual Dimorphism. Collage of photos showing sexual size dimorphism used to determine individual sex of terrapins. Left, top collage: Males. Right, top collage: Females. Bottom picture: Side-by-side

comparison of sexes.

A variety of morphometric measurements were collected and recorded from each individual terrapin post-experimental test (Figs. 12, 16). The following measurements were collected: carapace length (the total length of the terrapin's carapace from the edge of the nuchal scute on the anterior end to the edges of the two pygal scutes on the posterior end), carapace width (total width of the carapace from the edges of the bridge scutes at the widest point between the right and left ventral sides), plastron length (total length of the plastron from the center edge of the gular scutes to the center edge of both anal scutes), height (the total height of the terrapin from the dorsal/plastron to ventral/ carapace surface at the tallest point), head width (width of the terrapin's head at the widest point), anal width (the width between the longest points of both ventral anal scutes), anal notch (the distance between the center edge of the anal scutes on the plastron to the center edge of the pygal scutes on the carapace), cloaca to tail tip length (total length of the tail from the cloacal vent to the tip of the tail), and weight (g, Fig. 16).

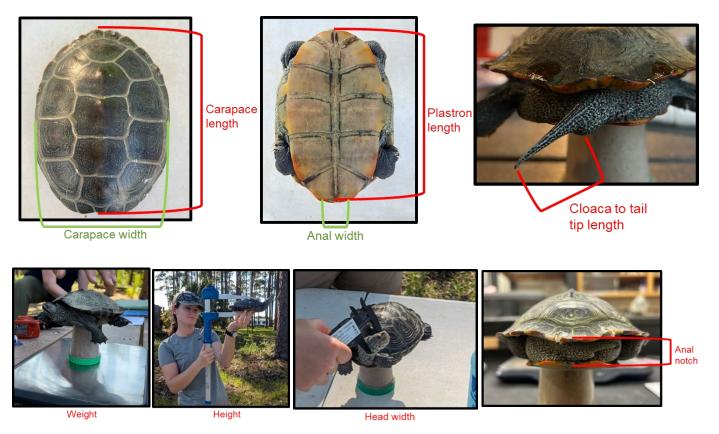



Figure 16. Photo. Morphometrics. Collage of photos showing the morphometric measurements collected on each terrapin.

Terrapins were assigned a notch code, which is a unique five- or six-letter identification code that allows individual visual shell identification. Each individual terrapin received identification markings; the technique included placing identifying marks correlating the notch code with specific marginal scutes (the scales on the exterior edge of a turtle's upper shell) using a metal file or handheld power drill using a 1/8" drill bit (Fig. 17). The marginal areas of the carapace (top shell) were cleaned with betadine-soaked gauze followed by removal with isopropyl

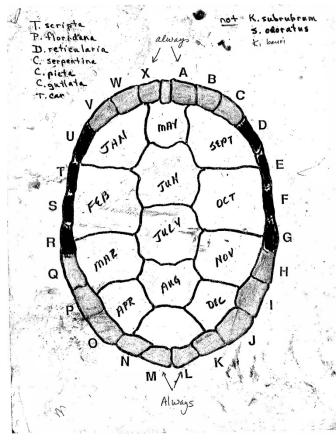



Figure 17. Photo. Notch codes. Schematic of terrapin notch code system used to assign unique marks to each individual.

alcohol-soaked gauze. Marking was not done on bridge scutes and these marks did not cause discomfort. Any equipment used to notch or drill tortoises was sterilized in between individuals to reduce and risk of contamination disease cross or transmission (the drill bit or file used for marking was cleaned via immersion in chlorhexidine solution). The shell cleaning and marking process took under two minutes per animal. In addition to receiving a notch code, terrapins were visually assessed and descriptive comments were recorded over unique characteristics or

physical appearance, including any abnormalities, deformities, or injuries. Dorsal, ventral, lateral, anterior, and posterior pictures of all terrapins were taken.

#### **Data Processing & Analysis**

All data were entered and proofed in two separate Excel databases; one for capture and morphometric data, and one for trial data. Raw data were converted into summary statistics and then condensed. A terrapin's trial was excluded if there were not at least two approaches on two different curb heights (e.g., one approach on the 6", one approach on the 8").

For the summary statistics, individual trials were first grouped by curb type. For each curb type and height, the number of individuals that had a parallel or perpendicular approach to the curb, and the number of individuals that had at least one attempt on the curb either unassisted, with wrack, or with the wall were calculated. Next, the team calculated the number of individuals that successfully trespassed the curb either assisted (with the help of wrack or the sidewall) or unassisted was calculated. After that, the total number of attempts (including multiple attempts per some individuals) on a curb, either unassisted or assisted (i.e., with the help of wrack or the wall), was calculated. Lastly, the number of unassisted successes were calculated. After the data were condensed, three tables were made to summarize the information for each curb type to include: % of individuals that attempted to climb all three curbs out of total individuals tested, % of individuals successfully trespassing each height for each curb (including assisted and unassisted trespasses), and % animals with assisted trespass broken down by wrack-assist and wall-assist. All of these results were graphed to show percentages of occurrence out of total number tested.

#### **CHAPTER 4. RESULTS**

121 wild terrapins were captured for the experimental trials. The team's catch per unit effort was 2.42 hours per terrapin (293 person-hours for surveys: 82 road cruising, 52 pedestrian, 30 biking, 129 seining). An additional 224 person-hours were spent running the trials, processing, and releasing the terrapins. The team's total field person-hours, that included commute time and other non-office tasks were 660.25 person-hours. The first four columns of the personnel effort table (Fig. 18) show the total hours required for surveying (pedestrian, road cruising, biking, and seining), while the fifth column shows the total of all surveying hours. The sixth column shows time required for all terrapin testing, processing, and release, while the last column on the right (517) shows the total overall person hours required for this project, excluding additional commute time and other non-office tasks. There were four people primarily conducting the research, but the total team assisting in May-July 2024 included eight individuals. Office time in data management, analysis, writing, meetings, and other administrative tasks are available upon request.

|              |              |              |              |           | Total Person Hours |            |     |
|--------------|--------------|--------------|--------------|-----------|--------------------|------------|-----|
| Total Person | Total Person | Total Person | Total Person | Total     | Testing,           | Total Pers | son |
| Hours        | Hours Road   | Hours        | Hours        | Time      | Processing,        | Hours      |     |
| Pedestrian   | Cruising     | Biking       | Seining      | Surveying | Releasing          | Overall    |     |
| 52           | 82           | 30           | 129          | 293       | 224                |            | 517 |

Figure 18. Table. Personnel effort. Effort table showing total personnel hours for this project.

Of the 121 trials, three terrapin trials were excluded under the criteria to be included in the analysis. Two animals were eliminated since they did not have at least two approaches on two different curb heights. There was only one recaptured terrapin throughout the experiment who was tested twice against the curb designs, and only one of these tests were included in the analysis as to avoid repeated measures. This left 118 terrapin trials to be used in the analysis and included in the summary statistics.

The results of the percentage of individual terrapins that attempted to climb curbs (includes all attempts, whether they successfully trespassed or not) are shown in a series of bar graphs in Figure 19. For the 90° curb (Fig.19, Left), 68% of the 118 terrapins tested attempted to climb the 6" height, 75% of the 118 tested attempted to climb the 8" height, 51% of the 75 terrapins tested attempted to climb the 10" height, and 40% of the 75 terrapins tested attempted to climb the 12" height. For the 90° curb with a 3" lip (Fig. 19, Middle), 45% of the 118 terrapins tested attempted to climb the 6" height, 36% of the 118 tested attempted to climb the 8" height, 14% of the 63 tested attempted to climb the 10" height, and 16% of the 63 tested attempted to climb the 12" height. For the 70° reverse angle curb (Fig. 19, Right), 61% of the 118 terrapins tested against the curb attempted to climb the 6" height, 19% of the 118 terrapins tested attempted to climb the 8" curb,

### % of Individuals that Attempted to Climb Curbs out of Total Individuals Tested

N = total # of individuals tested on curb 100% 100% 100% 90% 90% 80% 80% N=118 % of Individuals that attempted % of individuals that attempted % of Individuals that attempted N=118 70% N=118 60% 60% 60% 61% 50% 50% 50% N=118 51% N=75 40% 40% N=118 40% 36% 30% 30% 30% 20% 20% 20% N=63 N = 6316% 10% 10% 10% 12" 8" 10" 8" 10" 12"

Heights for 90° curb

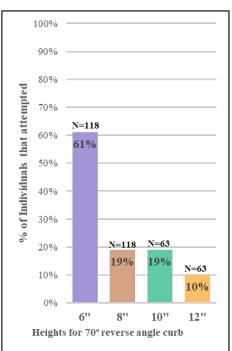



Figure 19. Graph. % of attempted trespasses. Bar graphs showing the percentage of individuals that attempted to climb the 90° curb (Left), the 90° curb with a 3" lip (Middle), and the 70° reverse angle curb (Right).

Heights for 90° curb with 3" lip

19% of the 63 terrapins tested attempted to climb the 10" height, and 10% of the 63 terrapins tested attempted to climb the 12" height.

The total percentage of individual terrapins that successfully trespassed (climbed over) the curbs, including both types of trespasses (unassisted and assisted) and are shown in Figures 20 (90°), 21 (90° curb with a 3" lip), and 22 (70° reverse angle). Of the 118 terrapins that were tested against the 6" height of the 90° curb, 36% of them successfully trespassed, with 28% of the trespasses being unassisted and 8% of them being assisted. Of the 118 terrapins that were tested against the 8" height of the 90° curb, a total of 30% trespassed, with 17% being unassisted and 13% being assisted. Of the 75 terrapins that were tested against the 10" height of the 90° curb, a total of 4% trespassed, with 3% of those trespasses being unassisted and 1% of them being assisted. Of the 75 terrapins that were tested against the 12" height of the 90° curb, no terrapins trespassed at all (Fig. 20).

90°
% of Individuals that Trespassed - Unassisted and Assisted

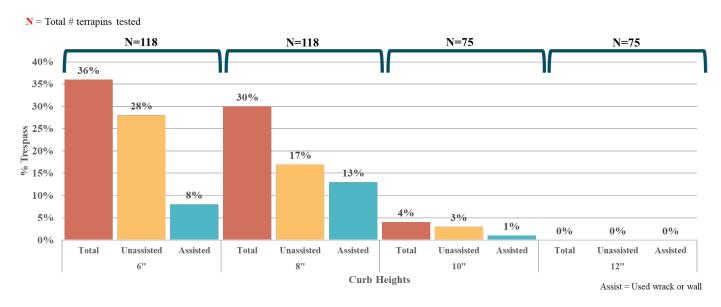



Figure 20. Graph. % of 90° trespass. Percentage of the total (unassisted and assisted) trespasses on all four heights of the 90° curb out of all individuals tested on a given height.

Of the 118 terrapins that were tested against the 6" height of the 90° curb with a 3" lip, a total of 13% of them successfully trespassed, with 8% of the trespasses being unassisted and 5% of them being assisted. Of the 118 terrapins that were tested against the 8" height of the 90° curb with a 3" lip, a total of 4% of them trespassed, with 1% of those trespasses being unassisted and 3% of them being assisted. Of the 63 terrapins that were tested against both the 10" and 12" heights of the 90° curb with a 3" lip, no terrapins trespassed either height (Fig. 21).

# 90°with 3" lip% of Individuals that Trespassed - Unassisted and Assisted

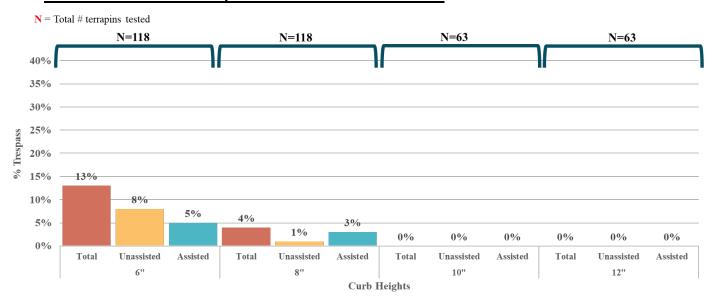



Figure 21. Graph. % of 90° with 3" lip trespasses. Percentage of the total (unassisted and assisted) trespasses on all four heights of the 90° curb with a 3" lip out of all individuals tested on a given height.

Of the 118 terrapins that were tested against the 6" and 8" heights of the angled (70° reverse) curb, a total of 4% and 3% (respectively) of the individuals successfully trespassed, with all of those trespasses being assisted. Of the 63 terrapins that were tested against both the 10" and 12" heights of the angled curb, no terrapins successfully trespassed the 10" height of the angled curb, and only 2% of terrapins successfully had an assisted trespass on the 12" height (Fig. 22).

## 70° Reverse Angle

## % of Individuals that Trespassed - Unassisted and Assisted

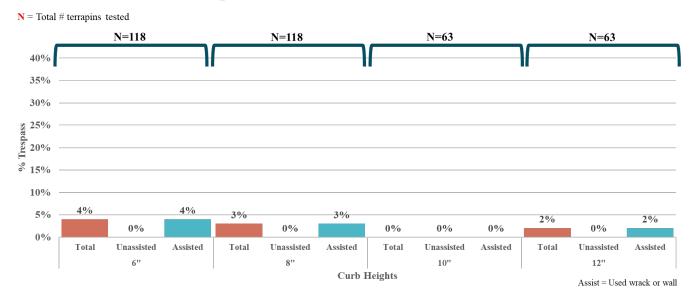



Figure 22. Graph. % of 70° trespasses. Percentage of the total (unassisted and assisted) trespasses on all four heights of the 70° reverse angle curb with a 3" lip out of all individuals tested on a given height.

Figure 23 shows a series of three bar graphs for each curb design that visualize the total percentage of assisted trespasses and whether they were done using the wrack or the sidewall of the runway trial. N represents the total trespasses, while gray bars represent wall trespasses and brown bars represent wrack trespasses. For the 90° curb, a total of 9 assisted trespasses occurred for the 6" height; 33% of those trespasses were done using the wall, while 67% of the trespasses were done using the wrack. For the 8" height of the 90° curb, a total of 15 assisted trespasses occurred, with 67% of those being done using the wall and 33% of them using the wrack. One assisted trespass occurred on the 10" height of the 90° curb using the wall. No assisted trespasses occurred on the 12" height of the 90° curb. Six assisted trespasses occurred on the 6" height of the 90° curb with a 3" lip; 67% of those were done using the wall, while 33% of them were done using the wrack. Four total assisted trespasses occurred on the 8" height of the 90° curb with a 3" lip, with all of them using the wall. No assisted trespasses occurred on either the 10" or 12" heights of the 90° curb with a 3" lip. Five total assisted trespasses occurred on the 6" height of the 70° reverse

angle curb, with all five trespasses being done using wrack. Four total assisted trespasses occurred on the 8" height of the angled curb, with 75% of those using the wall and 25% using wrack. No assisted trespasses occurred on the 10" height of the angled curb, and only two assisted trespasses occurred on the 12" height with one using the wall and one using wrack.

# **Total Assisted Trespasses Using Wrack and Wall**

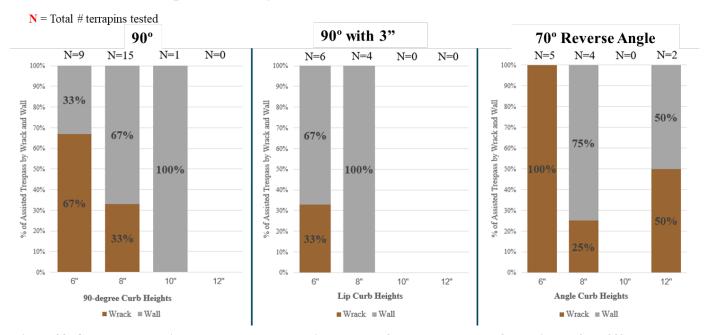



Figure 23. Graph. Total assisted trespasses. Total assisted successful trespasses on all four heights of the 90° curb, the 90° curb with a 3" lip, and the 70° reverse angle curbs. Grey bars represent wall assists, while brown bars represent wrack assists.

### CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS

In summary, the most effective heights for all three curb designs were 12", successfully excluding 100% of animals attempting to climb the barrier for the 90°, 98% of animals for the 70° reverse angle & 100% for 90° with 3" lip. Next, the 10" height successfully excluded 96% of animals for the 90°, 100% for the 70° reverse angle, and 100% for the 90° with 3" lip. At the 8" height, 70% of animals were excluded from the 90°, 97% from the 70° reverse angle, and 96% from the 90° with 3" lip. Lastly at the shortest 6" curb, only 64% of animals were excluded from the 90°, 96% were excluded from the 70° reverse angle, and 87% were excluded from the 90° with 3" lip. Based on these results, the 10" and 12" heights of the 70° reverse angle curb and the 90° with 3" lip curb were most successful at excluding terrapins overall.

Based on these research results, the most strategic curbs and heights to implement (i.e., least likely to be trespassed and will require the least maintenance) are the 10" and 12" heights of the 70° reverse angle curb, the 12" height of the 90° curb, and the 10" or 12" heights of the 90° curb with a 3" lip. The 8" height of the 70° reverse angle curb and the 10" height of the 90° curb would be effective only with frequent maintenance (trespass is much more likely and the maintenance burden would be higher). The least effective curbs at excluding terrapins are the 6" and 8" heights of the 90° curb, the 6" height of the 70° reverse angle curb, and the 6" and 8" heights of the 90° curb with a 3" lip. These curbs likely would allow trespass and the maintenance burden would be very high. Recommendations are summarized below (Fig. 24).

### RECOMMENDATIONS

Trespass unlikely and maintenance burden minimal







Trespass unlikely and maintenance burden high





Trespass likely and maintenance burden high







Figure 24. Photo. Recommendations. Recommendations for curb heights and angles relative to the degree of likelihood of trespass and maintenance burden based on the research results.

These curbs will be most successful if they are combined with guide fencing at terminal points, which will aid in redirecting terrapins towards the marsh and prevent wrap-around effects and fence-end mortality. Fencing can be seasonal, using a shorter-term material, such as Animex® products, or longer-term and permanent, such as an extended concrete barrier. While the UGA team recommends guide fencing terminal points to be curved (without sharp angles) and have a smooth surface to deter climbing, they are not issuing recommendations of guide fencing length, radius, or offset due to the fact that those parameters were not tested in this research, are conditional upon those allowable by GDOT Design, and are dependent on the right-of-way constraints of where the curb sections are ultimately installed. Additionally, GDOT's District 5 Maintenance Crew cast these trial curbs without a brush finish to allow a smooth surface on the concrete that discourages climbing, and the research team recommends replicating this finish on any implemented curbs. The team strongly cautions against implementation of the 6" heights for any of the curb designs. The 90° with 3" lip curb presented an additional disadvantage as terrapins frequently became wedged and stuck under the overhang during experimental trials. One variable

that may decrease long-term durability of these curbs but may also increase project timelines and cost to mitigate are the accrual of wrack and substrate against the base of the barrier, which would require frequent maintenance to clear. The team advises a regular curb maintenance schedule post-implementation to prevent the accrual of debris along the curbs (especially after stormy weather and high tides), which will quickly result in eased trespass for the terrapins and negated effectiveness of the barrier. Exact specifications for a maximum acceptable height of wrack accrued against the curb that would still prevent trespass were not tested in this research. However, given the amount of wrack that can accrue during high tides on US 80, which exceeds 6", the team does not recommend any of the 6" heights of the curb designs, regardless of the trespass levels observed in this research. If GDOT is interested in field-testing wrack accrual levels, the UGA team still has the reverse curb sections used in the experimental trails and additional research could be supported for some brief, seasonally constrained trials. Intermittent exposure to brackish water due to salt spray and flooding may also be a concern as it may degrade the concrete over the long-term.

This research will guide GDOT towards adapting a concept into an effective barrier design that will be permanent, reduce maintenance costs, and increase safety on US-80 and future causeway or coastal projects where impacts to terrapins need to be mitigated. These results have broader application to diamondback terrapins throughout their range and to other hard-shelled chelonids on a global scale and will contribute a beneficial and timely model for wildlife exclusion and road mortality mitigation solutions.

Additional research is needed to determine the post-installation effectiveness of these curbs for excluding diamondback terrapins from entering the road. In particular, the team is interested in assessing the performance of the reverse curbing in combination with the seasonal or

permanently installed directional (also known as guide or lead) fencing to guide terrapins back to the marsh and to avoid wrap-around and fence-end mortality effects. The greatest standing research need is to monitor the nesting behaviors adjacent to the fences. There are opportunities to develop best management practices for artificial or subsidized nesting habitat on the marsh side of the fences (opposite of the road). Compensating critical nesting habitat will be timely for maintaining the necessary reproductive activities currently occurring in these rights-of-way – the ultimate goal is to manage terrapin use of roadsides in a manner that reduces mortality and sustains critical life history functions for population persistence. Transportation and biology professionals certainly can figure out practices for terrapins and roads coinciding without detriment or expense to the operations of our ecological assets or transportation infrastructure. The team hopes to continue these conversations with GDOT and to have an opportunity to support the development of strategic roadside management practices.

#### **ACKNOWLEDGEMENTS**

The UGA research team would like to acknowledge the additional members of our terrapin field crew for their dedication and many hours of field assistance throughout this project. Mark Hoog observed and recorded almost all curb trials alongside PI Andrews and Madison Barnard helped co-author Crossman in measuring and marking the majority of terrapins processed in this research. Oscar Thompson spent many hours and miles surveying for terrapins used in the study, and contributed meaningfully to the design and installation of the curbs. He additionally performed the literature review and participated in initial stakeholder meetings. McKayla Susen, Josh Billings, and Tanner Barwick additionally helped with fieldwork at both sampling locations. Next, we thank Tom Bliss and John Pelli (UGA Marine Extension and Georgia Sea Grant – Skidaway) for speedily fixing up a skiff for us so that we could seine in Brunswick and increase our sample size when the season got hot fast and terrapin movement started drying up in Savannah. We would like to thank GDOT for their funding and support through the design approval process, as well as GDOT District 5 Maintenance for casting and delivering curbs to two field sites. Thank you to the National Park Service at Fort Pulaski for access and much logistical support at FOPU test site, and thanks to the Tybee Island Marine Science Center for their partnership and data-based guidance on US-80 terrapins.

#### REFERENCES

The below references include both in-text citations in this report and citations for the references included in the Literature Review (Appendix 1). The citations are listed in the order they appear in that database.

- Andrews, K.M., Nanjappa, P., Riley, S.P.D. (2015). Roads and Ecological Infrastructure: Concepts and Applications for Small Animals. Johns Hopkins University Press, Baltimore, MD.
- Andrews, K.M., Langen, T.A., Struijk, R.P.J.H. (2015). Reptiles: Overlooked but Often at Risk from Roads, Chapter 32. Handbook of Road Ecology, First Edition. John Wiley & Sons, Hoboken, NJ. Pp. 271-280.
- Andrews, K.M., Gibbons, J.W., Jochimsen, D.M. (2006). Literature Synthesis of the Effects of Roads and Vehicles on Amphibians and Reptiles. Federal Highway Administration (FHWA), U.S. Department of Transportation, Report No. FHWA-HEP-08-005. Washington, D.C. 151 pp.
- Andrews, K.M., Gibbons. J.W, Jochimsen, D.M. (2008). Ecological Effects of Roads on Amphibians and Reptiles: A Literature Review, Chapter 9. Society for the Study of Amphibians and Reptiles, Urban Herpetology, Herpetological Conservation 3:121-143.
- Animex. (2021). AMX40 Temporary and Permanent Wildlife Fencing. Specification & Installation Guides. Animex. Pp. 1-17.
- Animex. (2021). AMX48 Temporary and Permanent Wildlife Fencing. Specification & Installation Guides. Animex. Pp. 1-17.
- Animex. (2024). Animex: Wildlife Fencing and Mitigation Solutions. <a href="https://animexfencing.com/">https://animexfencing.com/</a>. Accessed 9 December 2024.
- Aresco, M.J. (2003). Highway Mortality of Turtles and Other Herpetofauna at Lake Jackson, Florida, USA, and the Efficacy of a Temporary Fence/Culvert System to Reduce Roadkills. ICOET 2003 Proceedings. pp. 433-449.
- Aresco, M.J. (2005). Mitigation Measures to Reduce Highway Mortality of Turtles and Other Herpetofauna at a North Florida Lake. Journal of Wildlife Management. 69(2):549-560.
- Baxter-Gilbert, J.H., Lesbarrères, D., Litzgus, J.D., Riley, J.L. (2015). Mitigating Reptile Road Mortality: Fence Failures Compromise Ecopassage Effectiveness. PLOS ONE. 10(3):1-15.
- Boarman, W.I., Sazaki, M., Jennings, W.B. (1997). The Effect of Roads, Barrier Fences, and Culverts on Desert Tortoise Populations in California, USA. The New York Turtle and Tortoise Society. Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles—An International Conference, pp. 54–58.

- Boyle, S.P., Keevil, M.G., Litzgus, J.D., Tyerman, D., Lesbarrrès, D. (2021). Road-effect mitigation promotes connectivity and reduces mortality at the population-level. Biological Conservation. 261(109230):1-10.
- Brehme, C.S., Fisher, R.N., Langton, T.E.S., Clevenger, A.P. (2014). Research to Inform Caltrans Best Management Practices for Reptile and Amphibian Road Crossings. USGS Cooperator Report to California Department of Transportation (Caltrans), Division of Research, Innovation and System Information (DRISI), 65A0553. 152 pp.
- Clevenger, A.P., Huijser, M.P. (2011). Wildlife Crossing Structure Handbook: Design and Evaluation in North America. Technical Report for U.S. Department of Transportation Federal Highway Administration. Publication No. FHWA-CFL/TD-11-003.
- Clevenger, A.P., Chruszcz, B., Gunson, K. (2001). Highway mitigation fencing reduces wildlifevehicle collisions. Wildlife Society Bulletin. 29(2):646–653.
- Crawford, B. (2016). Roads, Reptiles, and Recovery: Applying a Collaborative Decision-Making Approach for Diamondback Terrapin (Malaclemys terrapin) Conservation in Georgia. University of Georgia. PhD Dissertation, University of Georgia, Athens, GA. 299 pp.
- Crawford, B.A., Maerz, J.C., Moore, C.T., Norton, T.M. (2017). Mitigating Road Mortality of Diamond-Backed Terrapins (Malaclemys terrapin) with Hybrid Barriers at Crossing Hot Spots. Herpetological Conservation and Biology 12(1):202–211.
- Egger, S. 2016. The northern diamondback terrapin (Malaclemys terrapin terrapin) in the northeast United States: A regional conservation strategy. Unpublished report to Northeast Association of Fish & Wildlife Agencies. 205 pp.
- Glista, D.J., DeVault, T.L., DeWoody, J.A. (2008). A review of mitigation measures for reducing wildlife mortality on roadways. Landscape and Urban Planning. 91(1):1–7.
- Grosse, A., Maerz, J., Hepinstall-Cymerman, J., Dorcas, M. (20-11). Effects of roads and crabbing pressures on diamondback terrapin populations in coastal Georgia. The Journal of Wildlife Management. 75(4):762-770.
- Gunson, K., Crowley, J., Seburn, D. (2016). Best Management Practices for Mitigating the Effects of Roads on Amphibian and Reptile Species at Risk in Ontario. Ontario Ministry of Natural Resources and Forestry. Queen's Printer for Ontario. 112 pp.
- Huijser, M.P., Begley, J.S. (2019). Exploration of Wildlife Mitigation Measures for the Roads Through and Around Fisherman Island and Chincoteague National Wildlife Refuges, Virginia. Western Transportation Institute. Report to U.S. Fish & Wildlife Service, 4W5712-06. 68 pp.
- Huijser, M.P., Gunson, K.E., Fairbank, E.R. (2017). Effectiveness of Chain Link Turtle Fence and Culverts in Reducing Turtle Mortality and Providing Connectivity along U.S. Hwy 83, Valentine National Wildlife Refuge, Nebraska, USA. Nebraska Department of Transportation Research Reports. 201. 41 pp.
- Hunt, H.G. (2014). Improved Exclusion Barriers for Desert Tortoises. Unpublished report by Caltrans Division of Research, Innovation, and System Information. 17 pp.

- Ives-Dewey, D., Lewandowski, J. P. (2012). Spatial Patterns of Road Mortality: Assessing Turtle Barrier Conservation Strategies. Middle States Geographer. 45:40-47.
- Jochimsen, D.M., Charles R. Peterson, C.R., Andrews K.M., J. Whitfield Gibbons, J.W. (2004). A Literature Review of the Effects of Roads on Amphibians and Reptiles and the Measures Used to Minimize Those Effects. Idaho Fish and Game Department, USDA Forest Service. 79 pp.
- Dodd, C.K., Barichivich, W.J., Smith, L.L. (2004). Effectiveness of a Barrier Wall and Culverts in Reducing Wildlife Mortality on a Heavily Traveled Highway in Florida. Biological Conservation. 118(5):619-631.
- Langen, T.A. (2012). Monitoring Functionality and Durability of the New York State Highway 30 Turtle Barrier and Adjacent Nesting Substrate. Report to New York State Department of Transportation, C-10-06. 40 pp.
- Markle, C.T., Chow-Fraser, P., Gillingwater, S.D., Levick, R. (2017). The True Cost of Partial Fencing: Evaluating Strategies to Reduce Reptile Road Mortality. Wildlife Society Bulletin. 41(2):342-350.
- Markle, T., Stapleton, T. (2022). Reduce Vehicle-Animal Collisions with Installation of Small Animal Exclusion Fencing. Report to Minnesota Department of Transportation, MN 2022-19. 45 pp.
- McElhenny, T., Brookens, A. (2003). The Preservation of Bog Turtle Metapopulation Dynamics by a Transportation Improvement Project in Southeastern Pennsylvania. ICOET 2003 Proceedings, Pp. 467-471.
- Ontario, Canada. (2012). Reptile and Amphibian Exclusion Fencing: Overview of Proven Design and Installation Techniques for Reptile and Amphibian Exclusion Fencing. Unpublished government report. 188 pp. Available online: <a href="https://www.ontario.ca/page/reptile-and-amphibian-exclusion-fencing">https://www.ontario.ca/page/reptile-and-amphibian-exclusion-fencing</a>. Accessed 9 December 2024.
- Quinn, D.P., Kaylor, S.M., Norton, T.M., Buhlmann, K.A. (2015). Nesting Mounds with Protective Boxes and an Electric Wire as Tools to Mitigate Diamond-backed Terrapin (Malaclemys terrapin) Nest Predation. Herpetological Conservation and Biology. 10(3):969–977.
- Reses, R., Rabosky, A.D., Wood, R. (2015). Nesting Success and Barrier Breaching: Assessing the Effectiveness of Roadway Fencing in Diamondback Terrapins (Malaclemys terrapin). Herpetological Conservation and Biology 10(1):161-179.
- Ruby, D.E., Jennings, W.B., Goodlett, G., Spotila, J.R., Mushinsky, H.R. (2023). Design of Roadway Barriers to Reduce Desert Tortoise Mortality on Paved Road Infrastructure. Chelonian Conservation and Biology. 22(1):103-115.
- Ruby, D.E., Spotila, J.R., Martin, S.K., Kemp, S.J. (1994). Behavioral Responses to Barriers by Desert Tortoises: Implications for Wildlife Management. Herpetological Monographs. 8(1994):144-160.

- Sievert, P.R., Yorks, D.T. (2015). Tunnel and Fencing Options for Reducing Road Mortalities of Freshwater Turtles. Report to Massachusetts Department of Transportation, SPRII.06.22, 87 pp.
- Slesar, C. (2020). Movin' Lizards. Orianne Society Featured Article, Winter 2016. <a href="https://www.oriannesociety.org/uncategorized/movin-lizards-indigo-magazine-preview/?v=f69b47f43ce4">https://www.oriannesociety.org/uncategorized/movin-lizards-indigo-magazine-preview/?v=f69b47f43ce4</a>
- US Census Data. 2020. 2020 Decennial Census of Island Areas. www.datacensus.gov. Accessed 16 December 2024.
- VT Agency of Transportation, Vermont Fish & Wildlife. Monkton Wildlife Crossing. Vermont Agency of Transportation & Vermont Fish & Wildlife. https://storymaps.arcgis.com/stories/84e9c986d22e4864b4c3b78660ca442e
- van der Ree, R., Gagnon, J.W., Daniel J. Smith, D.J. (2015). Fencing: A Valuable Tool for Reducing Wildlife-Vehicle Collisions and Funneling Fauna to Crossing Structures. Handbook of Road Ecology. John Wiley & Sons. First Edition. John Wiley & Sons, Hoboken, NJ. Pp. 159-171.
- The Wetlands Institute. 2019. A Guide to Building Terrapin Barriers and Fencing. <a href="https://wetlandsinstitute.org/conservation/terrapin-conservation/a-guide-for-building-terrapin-barriers-and-fences/">https://wetlandsinstitute.org/conservation/terrapin-conservation/a-guide-for-building-terrapin-barriers-and-fences/</a>
- Wittkowski, D. (2019). Sea Isle Road Gets "Turtle Exclusion Fencing". Sea Isle News. <a href="https://seaislenews.com/news/2019/feb/23/sea-isle-road-gets-turtle-exclusion-fencing/">https://seaislenews.com/news/2019/feb/23/sea-isle-road-gets-turtle-exclusion-fencing/</a>
- Hara W. Woltz, H.J., Gibbs, J.P., Ducey, P.K. (2008). Road Crossing Structures for Amphibians and Reptiles: Informing Design through Behavioral Analysis. Biological Conservation. 141(11): 2745 2750.

## **APPENDICES**

Appendix 1. Exported table from literature review database.

| Thompson.   | Oscar P. & Kimberly                                                                                         | M. Andrews. University of Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rgia. Marine Ext                         | tension and Geor                                         | gia Sea Grant                                                                                                                                               |                                   |                                                                                                                                                                                                                                                                                |                    |                                                           |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------|--|--|--|
|             | Prepared for Georgia Department of Transportation for RP 22-33                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                          |                                                                                                                                                             |                                   |                                                                                                                                                                                                                                                                                |                    |                                                           |  |  |  |
| Reference # | Title                                                                                                       | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location                                 | Focal Species                                            | Design Space                                                                                                                                                | Design/<br>Installation<br>Photos | Affiliation                                                                                                                                                                                                                                                                    | Publication Type   | Publisher                                                 |  |  |  |
| π           | 11110                                                                                                       | Book containing design                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location                                 | Focal Species                                            | Design Spees                                                                                                                                                | 1 Hotos                           | Aimation                                                                                                                                                                                                                                                                       | 1 ubilication Type | 1 ublisher                                                |  |  |  |
| 1           | Roads and Ecological<br>Infrastructure:<br>Concepts and<br>Applications for<br>Small Animals                | considerations and case studies of ecological infrastructure and the associated challenges. Specifically has sections on designing and retrofitting wildlife crossings as well as barrier fences and walls. Pdf not available, but the book can be acquired on the Johns Hopkins University Press publication site.                                                                                                                                                             | Various -<br>global                      | Amphibians;<br>Reptiles;<br>Small<br>Mammals             | Discusses various applications and design considerations for exclusion fences & barrier walls, under-& over-passes, and the accompanying maintenance needs. | Yes                               | Kimberly M. Andrews -<br>University of Georgia,<br>Priya Nanjappa -<br>AFWA, Seth P.D. Riley<br>- NPS                                                                                                                                                                          | Book               | Johns Hopkins<br>University<br>Press                      |  |  |  |
| 2           | Reptiles: Overlooked<br>but Often Risk from<br>Roads                                                        | Discusses need for reptile fencing and the challenges associated with it. Discusses short-term and permanent fencing types and considerations for materials.                                                                                                                                                                                                                                                                                                                    | Various<br>(North<br>America,<br>Europe) | Various,<br>turtles, lizards,<br>Diamondback<br>terrapin | Didn't go into any detail but mentioned considerations & photos.                                                                                            | Yes                               | Kimberly M. Andrews –<br>UGA; Tom A. Langen -<br>Clarkson University;<br>Richard P. J. H. Struijk<br>– RAVON Foundation                                                                                                                                                        | Book Chapter       | John Wiley &<br>Sons                                      |  |  |  |
| 3           | Literature Synthesis of the Effects of Roads and Vehicles on Amphibians and Reptiles  Ecological Effects of | Detailed review for FHWA on the impacts of roads on assorted herpetofauna, specifically the effect of roads on the surrounding environments and factors of herpetofauna life history that increase their risk to roadcaused impacts. Discusses pre-& post-construction solutions, and monitoring needs of crossing structures & barriers to confirm effectiveness.  Book chapter discussing the effects of roads on herpetofauna, including direct (ex. mortality) and indirect | Various -<br>global                      | Reptiles and<br>Amphibians                               | No                                                                                                                                                          | No                                | Kimberly M. Andrews, J. Whitfield Gibbons - University of Georgia, Savannah River Ecology Laboratory; Denim M. Jochimsen - Idaho State University, Department of Biological Sciences Kimberly M. Andrews, J. Whitfield Gibbons - University of Georgia, Savannah River Ecology | Technical Report   | FHWA                                                      |  |  |  |
| 4           | Roads on<br>Amphibians and<br>Reptiles: A Literature<br>Review                                              | (ex. ecological/ behavioral) changes. Discuses solutions including crossing structures and wildlife barriers.                                                                                                                                                                                                                                                                                                                                                                   | Various -<br>global                      | Reptiles and<br>Amphibians                               | No                                                                                                                                                          | No                                | Laboratory; Denim M. Jochimsen - Idaho State University, Department of Biological Sciences                                                                                                                                                                                     | Book Chapter       | Society for the<br>Study of<br>Amphibians<br>and Reptiles |  |  |  |

|    |                      |                                 | T            |                 |                            |     |                          |                          |                |
|----|----------------------|---------------------------------|--------------|-----------------|----------------------------|-----|--------------------------|--------------------------|----------------|
|    |                      |                                 |              | Lizards;        |                            |     |                          |                          |                |
|    |                      |                                 |              | Newts;          |                            |     |                          |                          |                |
|    |                      |                                 |              | Salamanders;    |                            |     |                          |                          |                |
|    |                      |                                 |              | Small           |                            |     |                          |                          |                |
|    |                      |                                 |              | Mammals;        |                            |     |                          |                          |                |
|    |                      |                                 |              | Snakes;         |                            |     |                          |                          |                |
|    | AMX40 Temporary      | Specification and installation  |              | Toads,          |                            |     |                          |                          |                |
|    | and Permanent        | guide for AMX40 temporary       |              | Tortoises;      |                            |     |                          |                          |                |
| 5  | Wildlife Fencing     | and permanent fencing           | Various      | Turtles         | Yes                        | Yes | Animex                   | Manufacturer's Brochure  | Animex         |
| -  | 8                    |                                 |              | Frogs; Large    |                            |     |                          |                          |                |
|    | AMX48 Temporary      | Specification and installation  |              | Lizards; Small  |                            |     |                          |                          |                |
|    | and Permanent        | guide for AMX48 temporary       |              | Mammals;        |                            |     |                          |                          |                |
| 6  | Wildlife Fencing     | and permanent fencing           | Various      | Large Turtles   | Yes                        | Yes | Animex                   | Manufacturer's Brochure  | Animex         |
| 0  | Highway Mortality    | and permanent tenenig           | various      | Large Turties   | 103                        | 105 | Aimiex                   | Wandacturer's Brochure   | Allillicx      |
|    | of Turtles and Other |                                 |              |                 |                            |     |                          |                          |                |
|    |                      |                                 |              |                 |                            |     |                          |                          |                |
|    | Herpetofauna at Lake |                                 |              |                 | T S:14 f                   |     |                          |                          |                |
|    | Jackson, Florida,    | T . 11 .: C                     |              |                 | Temporary, Silt fencing.   |     |                          |                          |                |
|    | USA, and the         | Installation of temporary silt  |              |                 | (20cm buried, 40cm         |     |                          |                          |                |
|    | Efficacy of a        | fence barriers along roadway    |              |                 | above ground), returns     |     |                          |                          |                |
|    | Temporary            | bisecting a lake, examined all  |              |                 | towards end to prevent     |     |                          |                          |                |
|    | Fence/Culvert        | species crossing. Temp fences   |              |                 | pacing along fence and     |     | Matthew J. Aresco,       |                          |                |
|    | System to Reduce     | successfully reduced turtle     | Lake Jackson |                 | bypassing at ends, daily   |     | Florida State University |                          | ICOET 2003     |
| 7  | Roadkill             | trespass (99%)                  | Florida, USA | Aquatic turtles | research monitoring.       | No  | 2003                     | Peer-reviewed article    | Proceedings    |
|    | Mitigation Measures  |                                 |              |                 | Temporary, Silt fencing.   |     |                          |                          |                |
|    | to Reduce Highway    | Installation of temporary silt  |              |                 | (20cm buried, 40cm         |     |                          |                          |                |
|    | Mortality of Turtles | fence barriers along roadway    |              |                 | above ground), returns     |     |                          |                          |                |
|    | and Other            | bisecting a lake, examined all  |              |                 | towards end to prevent     |     |                          |                          |                |
|    | Herpetofauna at a    | species crossing. Temp fences   |              |                 | pacing along fence and     |     | Matthew J. Aresco,       |                          | Journal of     |
|    | Northern Florida     | successfully reduced turtle     | Lake Jackson |                 | bypassing at ends, daily   |     | Florida State University |                          | Wildlife       |
| 8  | Lake                 | trespass (99%)                  | Florida, USA | Aquatic turtles | research monitoring.       | Yes | 2005                     | Peer-reviewed article    | Management     |
|    |                      | Conducted pre- & post-          | ,            | •               | Temporary; reptile         |     |                          |                          |                |
|    |                      | mitigation monitoring; Paired   |              |                 | fencing consisting of a    |     |                          |                          |                |
|    |                      | exclusion fencing with          |              |                 | heavy gauge plastic        |     |                          |                          |                |
|    |                      | culverts. 20% increase of       |              |                 | geotextile extending 0.8   |     |                          |                          |                |
|    |                      | DOR snake & turtles post        |              |                 | m above- and 0.2 m         |     | James H. Baxter-Gilbert, |                          |                |
|    |                      | mitigation, not seen at control |              |                 | below-ground with a 0.1    |     | David Lesbarrères,       |                          |                |
|    | Mitigating Reptile   | site. Hypothesized that         |              |                 | m wide lip running         |     | Jacqueline D. Litzgus -  |                          |                |
|    | Road Mortality:      | animals that breached the       |              |                 | perpendicular              |     | Laurentian University,   |                          |                |
|    | Fence Failures       | fence were trapped and spent    |              |                 | underground (A). The       |     | Sudbury, Ontario; Julia  |                          |                |
|    | Compromise           | more time on the road and       | Burwash      |                 | fence was affixed to a 2.3 |     | L. Riley - Magnetawan    |                          |                |
|    | _                    |                                 |              | Snakes &        |                            |     |                          |                          |                |
| 0  | Ecopassage           | increases from 2 lanes (pre) to | Ontario,     |                 | m tall, large mammal,      | Vac | First Nation, Britt,     | Doon marriagrand anti-1- | DI OS O        |
| 9  | Effectiveness        | 4 lanes (post).                 | Canada       | Turtles         | wire fence.                | Yes | Ontario                  | Peer-reviewed article    | PLOS One       |
|    |                      | Equipped desert tortoises with  |              |                 |                            |     | Main, T.B.               |                          | Proceedings of |
|    |                      | transmitters to study their     |              |                 |                            |     | William I. Boarman –     |                          | the            |
|    | TI DC (CD 1          | movement around a highway       |              |                 | 60 111                     |     | USGS; Marc Sazaki –      |                          | Conservation,  |
|    | The Effect of Roads, | lined with a 24km tortoise      | San          |                 | 60cm wide 1cm mesh         |     | California Energy        |                          | Restoration,   |
|    | Barrier Fences, and  | proof fence with culvert        | Bernardino   |                 | hardware cloth buried 15   |     | Commission; W. Bryan     |                          | and            |
|    | Culverts on Desert   | underpasses. Discussed design   | County       |                 | cm into the ground.        |     | Jennings – Department    |                          | Management     |
|    | Tortoise Populations | consideration on opaque vs.     | California,  | Desert          | Backed by a 1.5m six       |     | of Zoology, University   |                          | of Tortoises   |
| 10 | in California, USA   | mesh fences and how opaque      | USA          | tortoises       | strand wire fence.         | Yes | of Texas, Austin         | Peer-reviewed article    | and Turtles    |

|    | 1                     |                                 | _              | 1              |                             | 1   |                         |                        |              |
|----|-----------------------|---------------------------------|----------------|----------------|-----------------------------|-----|-------------------------|------------------------|--------------|
|    |                       | can stop tortoises but mesh     |                |                |                             |     |                         |                        |              |
|    |                       | will cause the tortoise to walk |                |                |                             |     |                         |                        |              |
|    |                       | along the fence to a crossing   |                |                |                             |     |                         |                        |              |
|    |                       | point.                          |                |                |                             |     |                         |                        |              |
|    |                       |                                 |                |                |                             |     | Sean P. Boyle, M.G.     |                        |              |
|    |                       | Examined and reduced road       |                |                |                             |     | Keevil, Jacqueline D.   |                        |              |
|    | Road-effect           | mortality of turtles, snakes,   |                |                |                             |     | Litzgus - Laurentian    |                        |              |
|    |                       |                                 | Desagnilla     | Multi angoina  | Animex fencing and          |     |                         |                        |              |
|    | Mitigation Promotes   | and amphibians. Fencing &       | Presqu'ile     | Multi-species, |                             |     | University; Don         |                        |              |
|    | Connectivity and      | crossing structures reduced     | Provincial     | Turtles,       | installation of             |     | Tyerman, David          |                        | 5.1.1        |
|    | Reduces Mortality at  | mortality of turtles and        | Park Ontario,  | Snakes, Frogs, | underground crossing        |     | Lesbarrrès - Ontario    |                        | Biological   |
| 11 | the Population-Level  | amphibians but not snakes.      | Canada         | Salamanders    | structures.                 | No  | Parks                   | Peer-reviewed article  | Conservation |
|    |                       | Technical report for Caltrans   |                |                | Compared solid vs. mesh     |     |                         |                        |              |
|    |                       | by the USGS, sections           |                |                | fencing, found some         |     |                         |                        |              |
|    |                       | includes state assessment for   |                |                | animals (e.g.,              |     |                         |                        |              |
|    |                       | road risks, spatial mapping,    |                |                | salamanders) traveled       |     |                         |                        |              |
|    |                       | movements of species along      |                |                | much faster along solid     |     |                         |                        |              |
|    |                       | barrier fencing & underpasses,  |                |                | fencing and were less       |     |                         |                        |              |
|    |                       | and the effectiveness of fence  |                |                | likely to turn around,      |     | Cheryl S. Brehme and    |                        |              |
|    |                       | turnarounds. While most         |                |                | while others (e.g., toads)  |     | Robert N. Fisher –      |                        |              |
|    |                       |                                 |                |                |                             |     |                         |                        |              |
|    |                       | sections are tailored to        |                |                | were not affected by        |     | USGS; Tom E.S.          |                        |              |
|    |                       | California, fencing design and  |                | ***            | fencing type.               |     | Langton – Transport     |                        |              |
|    |                       | testing sections are applicable |                | Various        | Compared high vs low        |     | Ecology Services (HCI   |                        |              |
|    | Research to Inform    | to our needs. Found that        |                | species, focus | jump outs – similar         |     | LTD); Anthony P.        |                        |              |
|    | Caltrans Best         | herpetofauna is likely to       |                | on California  | results.                    |     | Clevenger – Montana     |                        |              |
|    | Management            | interact with fencing by        |                | Tiger          | Compared turnarounds,       |     | State University; in    |                        |              |
|    | Practices for Reptile | poking with noses, pacing       |                | Salamanders    | solid was less effective at |     | addition to multiple    |                        |              |
|    | and Amphibian Road    | back and forth, and attempting  | California,    | & Yosemite     | changing an animal's        |     | other contributing      |                        | USGS for     |
| 12 | Crossings             | to climb.                       | USA            | Toads          | direction vs mesh.          | Yes | authors.                | Technical Report       | Caltrans     |
|    |                       |                                 |                |                | Varies:                     |     |                         |                        |              |
|    |                       | Discusses considerations for    |                |                | Recommend burying           |     |                         |                        |              |
|    |                       | fencing and crossings.          |                |                | fencing 6-10" below         |     |                         |                        |              |
|    |                       | Provides general design &       |                |                | ground.                     |     |                         |                        |              |
|    |                       | application recommendations.    |                |                | Primarily focuses on the    |     |                         |                        |              |
|    |                       | Widely applicable and not       |                |                | use of hardware cloth or    |     |                         |                        |              |
|    |                       | focused on turtles, much more   |                |                | wire mesh.                  |     |                         |                        |              |
|    | Wildlife Crossing     | focused on large mammals.       |                |                | Recommends bending the      |     |                         |                        |              |
|    | Structure Handbook:   | Several appendix sections       |                |                | top 2-3 inches of wire      |     | Anthony P. Clevenger    |                        |              |
|    | Design and            | (Hot sheets 13 & 14)            |                |                | mesh over at 45 degrees     |     | and Marcel P. Huijser - |                        |              |
|    | Evaluation in North   | applicable for small vertebrate |                |                | to create a lip or          |     | Western Transportation  |                        |              |
| 13 | America               | fencing & escape gates/ramps.   | North America  | General        | overhang.                   | Yes | Institute               | Technical Report       | FHWA         |
|    |                       | Discusses the effectiveness of  |                |                | <u> </u>                    |     |                         |                        |              |
|    |                       | wildlife exclusion fencing &    |                |                |                             |     |                         |                        |              |
|    |                       | crossings in reducing wildlife- |                |                |                             |     | Anthony P. Clevenger -  |                        |              |
|    |                       | vehicle collisions in Banff     |                |                |                             |     | Montana State           |                        |              |
|    | Highway Mitigation    | national park. Shows higher     |                |                |                             |     | University; Bryan       |                        |              |
|    | Fencing Reduces       | rates of collisions near fence  |                |                |                             |     | Chruszcz - Parks        |                        | Wildlife     |
|    | Wildlife-Vehicle      | ends where animals were able    | Banff National | Primarily      |                             |     | Canada; Kari Gunson -   |                        | Society      |
| 14 | Collisions            | to bypass the fence.            | Park, Canada   | Ungulates      | No                          | Yes | Eco-Kare International  | Peer-reviewed article  | Bulletin     |
| 14 | Compions              | to bypass the tence.            | 1 air, Callaud | Oligulates     | 110                         | 103 | Leo-Kare international  | 1 cor-reviewed article | Dulletill    |

|    |                       |                                   | 1             | _           |                            | 1   |                         | T                     |                |
|----|-----------------------|-----------------------------------|---------------|-------------|----------------------------|-----|-------------------------|-----------------------|----------------|
|    |                       | PhD dissertation examining        |               |             |                            |     |                         |                       |                |
|    |                       | nesting behaviors & survival,     |               |             |                            |     |                         |                       |                |
|    | Roads, Reptiles, and  | road management and the           |               |             |                            |     |                         |                       |                |
|    | Recovery: Applying    | behaviors of drivers, and         |               |             |                            |     |                         |                       |                |
|    | a Collaborative       | analysis of how to evaluate       |               |             |                            |     |                         |                       |                |
|    | Decision-Making       | management decisions.             |               |             |                            |     |                         |                       |                |
|    | approach for          | Discussed results of surveys      |               |             |                            |     |                         |                       |                |
|    | Diamondback           | on potential management           |               |             |                            |     |                         |                       |                |
|    |                       |                                   |               |             |                            |     |                         |                       |                |
|    | Terrapin              | options. While some were          |               |             |                            |     |                         |                       |                |
|    | (Malaclemys           | widely supported, such as nest    |               |             |                            |     |                         |                       |                |
|    | terrapin)             | boxes, others were such as        |               |             |                            |     |                         |                       |                |
|    | Conservation in       | fencing & signs were less         | Jekyll Island | Diamondback |                            |     |                         |                       | University of  |
| 15 | Georgia               | supported.                        | Georgia, USA  | terrapin    | No                         | No  | Brian Crawford - UGA    | PhD dissertation      | Georgia        |
|    |                       | Use of nest boxes as barriers     |               |             |                            |     | Brian A. Crawford, John |                       |                |
|    |                       | to allow nesting females to       |               |             |                            |     | C. Maerz– UGA,          |                       |                |
|    |                       | leave the marsh and enter a       |               |             |                            |     | Warnell School of       |                       |                |
|    | Mitigating Road       | protected nesting area to lay     |               |             |                            |     | Forestry & Natural      |                       |                |
|    | Mortality of          | eggs. The road side of nest       |               |             |                            |     | Resources; Clinton T.   |                       |                |
|    | Diamond-Backed        | boxes was closed to prevent       |               |             |                            |     | Moore – USGS, GA        |                       |                |
|    | Terrapins             | terrapins from continuing         |               |             |                            |     | Cooperative Fish and    |                       |                |
|    |                       |                                   |               |             |                            |     | Wildlife Research Unit; |                       |                |
|    | (Malaclemys           | through the nest box and into     |               |             |                            |     |                         |                       | II 4 . 1 1     |
|    | terrapin) with Hybrid | the road. Modification of the     | T 1 11 T 1 1  | D: 11 1     | N C 1 1:00                 |     | Terry M. Norton –       |                       | Herpetological |
|    | Barriers at Crossing  | prior deployments of              | Jekyll Island | Diamondback | No, referenced a different |     | Georgia Sea Turtle      |                       | Conservation   |
| 16 | Hot Spots             | individuals nest boxes.           | Georgia, USA  | terrapin    | paper for design specs.    | Yes | Center                  | Peer-reviewed article | and Biology    |
|    |                       | Review of multiple studies        |               |             |                            |     |                         |                       |                |
|    |                       | discussing the effectiveness of   |               |             |                            |     | David Glista - Indiana  |                       |                |
|    | A Review of           | crossing structures &             |               |             |                            |     | DOT, Travis DeVault –   |                       |                |
|    | Mitigation Measures   | exclusion fencing. Includes       |               |             |                            |     | USDA Wildlife           |                       |                |
|    | for Reducing          | table of previous paper and       |               | Amphibians; |                            |     | Services, Andrew        |                       | Landscape and  |
|    | Wildlife Mortality on | type of structure and focal       | Various -     | Mammals;    |                            |     | DeWoody – Purdue        |                       | Urban          |
| 17 | Roadways              | species.                          | global        | Reptiles    | No                         | No  | University              | Peer-reviewed article | Planning       |
|    | ĺ                     | Article discussing the            |               | •           |                            |     |                         |                       |                |
|    |                       | relationship of roads and         |               |             |                            |     |                         |                       |                |
|    |                       | crabbing on the population        |               |             |                            |     |                         |                       |                |
|    |                       |                                   |               |             |                            |     |                         |                       |                |
|    |                       | demographics and estimated        |               |             |                            |     |                         |                       |                |
|    |                       | populations of terrapins.         |               |             |                            |     |                         |                       |                |
|    |                       | While they found a                |               |             |                            |     |                         |                       |                |
|    |                       | relationship between crab pots    |               |             |                            |     |                         |                       |                |
|    |                       | and reduced terrapin              |               |             |                            |     |                         |                       |                |
|    |                       | populations, they did not see     |               |             |                            |     |                         |                       |                |
|    |                       | an effect of roads on the         |               |             |                            |     |                         |                       |                |
|    |                       | populations. They hypothesize     |               |             |                            |     |                         |                       |                |
|    |                       | this is due to the large areas of |               |             |                            |     |                         |                       |                |
|    |                       | saltmarsh that are isolated       |               |             |                            |     |                         |                       |                |
|    |                       | from roads on our barrier         |               |             |                            |     |                         |                       |                |
|    | Effects of Roads and  | islands, and caution that roads   |               |             |                            |     | Andrew Grosse, John     |                       |                |
|    | Crabbing Pressures    | may play a large impact on        |               |             |                            |     | Maerz, Jeffery          |                       |                |
|    | on Diamondback        | localized populations, which      |               |             |                            |     | Hepinstall-Cymerman –   |                       | Journal of     |
|    |                       | was observed along the Tybee      | Coastal       | Diamondback |                            |     | UGA; Michael Dorcas –   |                       | Wildlife       |
| 10 | Terrapin Populations  |                                   |               |             | No.                        | No  |                         | Door reviewed article |                |
| 18 | in Coastal Georgia    | & Jekyll causeways.               | Georgia, USA  | terrapin    | No                         | No  | Davidson College        | Peer-reviewed article | Management     |

|    |                       | I                                     |               |              |                             |      |                            | T                           |                |
|----|-----------------------|---------------------------------------|---------------|--------------|-----------------------------|------|----------------------------|-----------------------------|----------------|
|    | Post Mongagnet        | Design considerations and             |               |              |                             |      | Von Gungon Foo Von         |                             |                |
|    | Best Management       | best practices for multi-             |               |              |                             |      | Kari Gunson - Eco-Kare     |                             |                |
|    | Practices for         | species fencing. Includes flow        |               |              |                             |      | International; Joe         |                             |                |
|    | Mitigating the        | charts for timeline and               |               |              |                             |      | Crowley - Government       |                             | Ontario        |
|    | Effects of Roads on   | mitigation plan development           |               |              |                             |      | of Ontario, Canada;        |                             | Ministry of    |
|    | Amphibian and         | and info sheets on different          |               |              |                             |      | David Seburn -             |                             | Natural        |
|    | Reptile Species at    | types of crossing structures as       | Ontario,      | Amphibians;  | Yes, many for fencing &     |      | Canadian Wildlife          |                             | Resources and  |
| 19 | Risk in Ontario       | well as fencing designs.              | Canada        | Reptiles     | crossing.                   | Yes  | Federation                 | Technical report            | Forestry       |
|    |                       | Examination of existing               |               |              |                             |      |                            |                             |                |
|    |                       | diamondback terrapin barriers         |               |              |                             |      |                            |                             |                |
|    |                       | and proposed barriers that            |               |              |                             |      |                            |                             |                |
|    |                       | have been permitted. Has a            |               |              |                             |      |                            |                             |                |
|    | Exploration of        | number of photos and                  |               |              |                             |      |                            |                             |                |
|    | Wildlife Mitigation   | diagrams. Original "more              |               |              |                             |      |                            |                             |                |
|    | Measures for the      | temporary" designs had little         |               |              | Various:                    |      |                            |                             |                |
|    | Roads through and     | effect; therefore, proposed           |               |              | Plastic netting & tubing –  |      |                            |                             |                |
|    | Around Fisherman      | concrete barrier walls made of        |               |              | no effect on reducing       |      | Marcel Huijser, James      |                             |                |
|    | Island and            | precast 20' segments that were        |               |              | mortality                   |      | Begley – Western           |                             |                |
|    |                       | 1ft tall, which had been              | Chaganastra   |              | Concrete barrier            |      |                            |                             |                |
|    | Chincoteague          | · · · · · · · · · · · · · · · · · · · | Chesapeake    | D: 11 1-     |                             |      | Transportation Initiative, |                             |                |
| 20 | National Wildlife     | permitted but not installed at        | Bay Virginia, | Diamondback  | (planned) – includes        | 3.7  | Montana State              | T. 1 : 1D                   | Harma          |
| 20 | Refuge                | time of publication.                  | USA           | terrapin     | technical drawings.         | Yes  | University                 | Technical Report            | USFWS          |
|    |                       | Added chain-link turtle               |               |              |                             |      |                            |                             |                |
|    | Effectiveness of      | exclusion fencing along               |               |              |                             |      |                            |                             |                |
|    | Chain Link Turtle     | roadways in areas with                |               |              |                             |      |                            |                             |                |
|    | Fence and Culverts in | culverts to keep turtles off the      |               |              |                             |      |                            |                             |                |
|    | Reducing Turtle       | road and direct them to               |               |              |                             |      | Marcel P. Huijser -        |                             |                |
|    | Mortality and         | culverts for crossing. While          |               |              |                             |      | Montana State              |                             |                |
|    | Providing             | fencing reduced turtle                | Valentine     |              |                             |      | University-Bozeman;        |                             |                |
|    | Connectivity along    | observations, it did not              | National      | Blanding's   |                             |      | Kari E. Gunson - Eco-      |                             |                |
|    | U.S. Hwy 83,          | produce a statistically               | Wildlife      | turtle, and  |                             |      | Kare International;        |                             | Nevada         |
|    | Valentine National    | significant change. Made              | Refuge        | other native |                             |      | Elizabeth R. Fairbank -    |                             | Department of  |
|    | Wildlife Refuge,      | recommendations for                   | Nebraska,     | turtles      |                             |      | Montana State              |                             | Transportation |
| 21 | Nebraska, USA         | improvements.                         | USA           | observed     | Yes                         | Yes  | University-Bozeman         | Technical Report            | Research       |
| 21 | 1100rusku, OSI1       | improvements.                         | CBH           | OOSCI V CC   | Yes, Temporary or           | 1 05 | Chrysisty Bozeman          | Teelimeat teepett           | Research       |
|    |                       |                                       |               |              | permanent drive-over        |      |                            |                             |                |
|    |                       |                                       |               |              | tortoise barrier consisting |      |                            |                             | Caltrans       |
|    |                       |                                       |               |              | of 2 I-Beams that are held  |      |                            |                             | Division of    |
|    |                       |                                       |               |              |                             |      | H11C H4                    |                             |                |
|    | 15 1 .                | E.C                                   |               |              | apart and buried to create  |      | Harold G. Hunt -           |                             | Research,      |
|    | Improved Exclusion    | Effectiveness of tortoise             | G 1:6 :       |              | a gap that tortoises cannot |      | Caltrans Division of       |                             | Innovation,    |
|    | Barriers for Desert   | guards for use in areas where         | California,   | Desert       | cross but a vehicle can     |      | Research, Innovation,      |                             | and System     |
| 22 | Tortoises             | gates are not feasible.               | USA           | tortoises    | drive over.                 | Yes  | and System Information     | Technical Report            | Information    |
|    |                       | Examined the effectiveness of         |               |              |                             |      |                            |                             |                |
|    |                       | barriers and the effect of road       |               |              |                             |      |                            |                             |                |
|    |                       | mortality on diamondback              |               |              |                             |      |                            |                             |                |
|    |                       | terrapin populations in New           |               |              |                             |      |                            |                             |                |
|    | Spatial Patterns of   | Jersey. Compared the                  |               |              |                             |      | Dorothy Ives-Dewey,        |                             |                |
|    | Road Mortality:       | effectiveness of different types      |               |              | 2 types: purposely          |      | James P. Lewandowski       |                             |                |
|    | Assessing Turtle      | of barriers. Found that               | Cape May      |              | installed barriers (pipes)  |      | - West Chester             |                             |                |
|    | Barrier Conservation  | installed pipe barriers lowered       | County New    | Diamondback  | & bulkheads installed for   |      | University of              |                             | Middle States  |
| 23 | Strategies            | mortality by around 13%               | Jersey, USA   | terrapin     | erosion control.            | Yes  | Pennsylvania               | Peer-reviewed article       | Geographer     |
|    | 201005100             | inormity by around 1570               | Joiney, Obli  | i corrupiii  | Crosson Connon.             | 1 00 | 1 211110 / 1 1 411114      | 1 001 10 110 11 00 01111010 | Geographer     |

|    | 1                                                                    | 1                                                                                                                                                                                                                                             | T                                    | _                         | I                                                                                                                                                                                                          | 1   |                                                            |                       |              |
|----|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------|-----------------------|--------------|
|    |                                                                      | while bulkheads lowered                                                                                                                                                                                                                       |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | mortality ~48%.                                                                                                                                                                                                                               |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    | <u> </u>                                                             | Detailed review for USFS                                                                                                                                                                                                                      |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | over the impacts of roads on                                                                                                                                                                                                                  |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | assorted herpetofauna,                                                                                                                                                                                                                        |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | specifically the effect of roads                                                                                                                                                                                                              |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | on the surrounding                                                                                                                                                                                                                            |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | environments. Has a section                                                                                                                                                                                                                   |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | devoted to methods that can                                                                                                                                                                                                                   |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | be used to minimize the                                                                                                                                                                                                                       |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | ecological effects of roads                                                                                                                                                                                                                   |                                      |                           |                                                                                                                                                                                                            |     | Denim M. Jochimsen -                                       |                       |              |
|    | A Literature Review                                                  | including avoidance, seasonal                                                                                                                                                                                                                 |                                      |                           |                                                                                                                                                                                                            |     | Idaho State University,                                    |                       |              |
|    | of the Effects of                                                    | road closures, and various                                                                                                                                                                                                                    |                                      |                           |                                                                                                                                                                                                            |     | Department of                                              |                       |              |
|    | Roads on                                                             | types of crossing structures.                                                                                                                                                                                                                 |                                      |                           |                                                                                                                                                                                                            |     | Biological Sciences;                                       |                       |              |
|    | Amphibians and                                                       | Includes case studies. Goes on                                                                                                                                                                                                                |                                      |                           |                                                                                                                                                                                                            |     | Kimberly M. Andrews,                                       |                       |              |
|    | Reptiles and the                                                     | to discuss the challenges                                                                                                                                                                                                                     |                                      |                           |                                                                                                                                                                                                            |     | J. Whitfield Gibbons -                                     |                       |              |
|    | Measures Used to                                                     | associated with crossing                                                                                                                                                                                                                      |                                      |                           |                                                                                                                                                                                                            |     | University of Georgia,                                     |                       |              |
|    | Minimize Those                                                       | structures regarding design                                                                                                                                                                                                                   | Various -                            | Reptiles and              |                                                                                                                                                                                                            |     | Savannah River Ecology                                     |                       |              |
| 24 | Effects                                                              | and maintenance.                                                                                                                                                                                                                              | global                               | Amphibians                | No                                                                                                                                                                                                         | No  | Laboratory                                                 | Technical Report      | USFS         |
|    |                                                                      | Examined the effectiveness of                                                                                                                                                                                                                 |                                      |                           |                                                                                                                                                                                                            |     |                                                            |                       |              |
|    |                                                                      | a culvert/barrier wall system                                                                                                                                                                                                                 |                                      |                           | Permanent, 2 types:                                                                                                                                                                                        |     |                                                            |                       |              |
|    | Effectiveness of a                                                   | via pre- & post- construction                                                                                                                                                                                                                 |                                      |                           | Concrete barrier wall                                                                                                                                                                                      |     | C. Kenneth Dodd Jr.,                                       |                       |              |
|    | Barrier Wall and                                                     | mortality detections; found                                                                                                                                                                                                                   |                                      |                           | with culverts - 1.1m high                                                                                                                                                                                  |     | William J. Barichivich,                                    |                       |              |
|    | Culverts in Reducing                                                 | 90%+ reduction. Use of                                                                                                                                                                                                                        |                                      |                           | with 15.2cm overhang,                                                                                                                                                                                      |     | Lora L. Smith - Florida                                    |                       |              |
|    | Wildlife Mortality on                                                | culverts increased for                                                                                                                                                                                                                        | Payne's River                        | All vertebrates           | Type A fencing - 2                                                                                                                                                                                         |     | Integrated Science                                         |                       |              |
|    | a Heavily Traveled                                                   | crossings. Type A fence was                                                                                                                                                                                                                   | Basin (US441)                        | (excluded tree            | stacked guard rails with                                                                                                                                                                                   |     | Centers, US Geological                                     |                       | Biological   |
| 25 | Highway in Florida                                                   | found to not be effective.                                                                                                                                                                                                                    | Florida, USA                         | frogs)                    | buried hardware cloth                                                                                                                                                                                      | Yes | Survey                                                     | Peer-reviewed article | Conservation |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | 2 types of barrier:                                                                                                                                                                                        |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | Wooden fencing: 3                                                                                                                                                                                          |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | boards (1x10") affixed to                                                                                                                                                                                  |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | pressure treated 4x4 posts                                                                                                                                                                                 |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | with 1" gaps. Concerns                                                                                                                                                                                     |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | about wooden fencing                                                                                                                                                                                       |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | being a potentially                                                                                                                                                                                        |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | dangerous "fixed object"                                                                                                                                                                                   |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      |                           | only installed behind                                                                                                                                                                                      |     |                                                            |                       |              |
|    |                                                                      | Monitored exclusion fencing                                                                                                                                                                                                                   |                                      |                           | guardrails. Maintenance                                                                                                                                                                                    |     |                                                            |                       |              |
|    |                                                                      | installed by NYSDOT as part                                                                                                                                                                                                                   |                                      |                           | issues with wooden                                                                                                                                                                                         |     |                                                            |                       |              |
|    |                                                                      |                                                                                                                                                                                                                                               |                                      | •                         | I la a a mala a a a al seus al a massakki na a                                                                                                                                                             | I   | İ                                                          |                       |              |
|    |                                                                      | of a reconstruction project.                                                                                                                                                                                                                  |                                      |                           | boards and undercutting                                                                                                                                                                                    |     |                                                            |                       |              |
|    |                                                                      | The road had existing culverts                                                                                                                                                                                                                |                                      |                           | via erosion.                                                                                                                                                                                               |     |                                                            |                       |              |
|    |                                                                      | The road had existing culverts & bridge span to allow for                                                                                                                                                                                     |                                      |                           | via erosion. Metal Fencing Barrier:                                                                                                                                                                        |     |                                                            |                       |              |
|    |                                                                      | The road had existing culverts & bridge span to allow for wildlife passage. Installed                                                                                                                                                         |                                      |                           | via erosion. Metal Fencing Barrier: 0.6m high, 5x10cm vinyl                                                                                                                                                |     |                                                            |                       |              |
|    | W. in the                                                            | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing                                                                                                                                |                                      |                           | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing                                                                                                                            |     |                                                            |                       |              |
|    | Monitoring                                                           | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh).                                                                                                        |                                      |                           | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or                                                                                                  |     |                                                            |                       |              |
|    | Functionality and                                                    | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh).  Monitored and modified                                                                                |                                      |                           | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or existing guard rail with                                                                         |     |                                                            |                       |              |
|    | Functionality and Durability of the                                  | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh). Monitored and modified fencing over several years.                                                     |                                      |                           | via erosion. Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or existing guard rail with cable ties. When attached                                                |     |                                                            |                       |              |
|    | Functionality and Durability of the New York State                   | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh). Monitored and modified fencing over several years. Appeared to cut down on                             |                                      |                           | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or existing guard rail with cable ties. When attached to guard rail the base is                     |     | Town A. Lore                                               |                       | New York     |
|    | Functionality and Durability of the New York State Highway 30 Turtle | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh). Monitored and modified fencing over several years. Appeared to cut down on mortality; however, no pre- | Franklin                             |                           | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or existing guard rail with cable ties. When attached to guard rail the base is flush with the road |     | Tom A. Langen –                                            |                       | State        |
| 26 | Functionality and Durability of the New York State                   | The road had existing culverts & bridge span to allow for wildlife passage. Installed various forms of fencing (wooden boards & mesh). Monitored and modified fencing over several years. Appeared to cut down on                             | Franklin<br>County, New<br>York, USA | Various Turtle<br>Species | via erosion.  Metal Fencing Barrier: 0.6m high, 5x10cm vinyl gauge mesh fencing affixed to metal posts or existing guard rail with cable ties. When attached to guard rail the base is                     | Yes | Tom A. Langen –<br>Clarkson University,<br>Dept of Biology | Technical Report      |              |

|     |                       |                                 | 1             | T              | 1                                            | 1   | 1                       |                       |                |
|-----|-----------------------|---------------------------------|---------------|----------------|----------------------------------------------|-----|-------------------------|-----------------------|----------------|
|     |                       |                                 |               |                | metal posts, the base was                    |     |                         |                       |                |
|     |                       |                                 |               |                | buried a few inches; later                   |     |                         |                       |                |
|     |                       |                                 |               |                | added a fine mesh to                         |     |                         |                       |                |
|     |                       |                                 |               |                | prevent hatchlings from                      |     |                         |                       |                |
|     |                       |                                 |               |                | passing through and                          |     |                         |                       |                |
|     |                       |                                 |               |                | raised the fence from 2 to                   |     |                         |                       |                |
|     |                       |                                 |               |                | 3ft high including an                        |     |                         |                       |                |
|     |                       |                                 |               |                | overhang. Included wings                     |     |                         |                       |                |
|     |                       |                                 |               |                | at the end to divert turtles                 |     |                         |                       |                |
|     |                       |                                 |               |                |                                              |     |                         |                       |                |
|     |                       |                                 |               |                | away from the road.  Maintenance issues with |     |                         |                       |                |
|     |                       |                                 |               |                |                                              |     |                         |                       |                |
|     |                       |                                 |               |                | undercutting via erosion.                    |     |                         |                       |                |
|     |                       |                                 |               |                | Silt fence, then replaced                    |     |                         |                       |                |
|     |                       |                                 |               |                | with woven geotextile                        |     | Chantel E. Markle,      |                       |                |
|     |                       | Examined the effectiveness of   |               |                | fencing (48" fencing                         |     | Patricia Chow-Fraser –  |                       |                |
|     |                       | turtle exclusion fencing and    |               |                | mounted pressure treated                     |     | Department of Biology,  |                       |                |
|     |                       | culvert crossing along          |               |                | 2x4s), replaced with PVC                     |     | McMaster University;    |                       |                |
|     |                       | roadways. Found that while      |               |                | or galvanized hardware                       |     | Scott D. Gillingwater – |                       |                |
|     | The True Cost of      | complete fencing reduced        |               |                | cloth in certain areas due                   |     | Upper Thames River      |                       |                |
|     |                       |                                 |               |                | to soil conditions. Still                    |     |                         |                       |                |
|     | Partial Fencing:      | turtle numbers on roadways,     | G 41 4        |                |                                              |     | Conservation Authority; |                       | XX':1 11: C    |
|     | Evaluating Strategies | incomplete areas in fencing     | Southwestern  |                | maintenance heavy and                        |     | Rick Levick – Long      |                       | Wildlife       |
| 0.7 | to Reduce Reptile     | actually lead to an increase of | Ontario,      |                | not long term, switching                     |     | Point World Biosphere   |                       | Society        |
| 27  | Road Mortality        | turtles in the road.            | Canada        | Turtles        | to Animex.                                   | No  | Foundation              | Peer-reviewed article | Bulletin       |
|     |                       |                                 |               |                | Permanent: 6ft chain-link                    |     |                         |                       |                |
|     |                       |                                 |               |                | trenched 10-12" into the                     |     |                         |                       |                |
|     |                       |                                 |               |                | ground; posts set 4ft into                   |     |                         |                       |                |
|     |                       |                                 |               |                | ground. Wrap around "j-                      |     |                         |                       |                |
|     |                       |                                 |               |                | hook" end treatments                         |     |                         |                       |                |
|     |                       |                                 |               |                | were used. Minimum of                        |     |                         |                       |                |
|     |                       |                                 |               |                | 10ft long, curved to                         |     |                         |                       |                |
|     |                       |                                 |               |                | create a 24-30" gap at the                   |     |                         |                       |                |
|     |                       | Chain-link fencing along        |               |                | end of the J. Later                          |     |                         |                       |                |
|     | Reduce Vehicle-       | major roads to exclude turtles; |               |                | retrofitted with the                         |     | Tricia Markle and Seth  |                       |                |
|     | Animal Collisions     | not effective for hatchlings    |               |                | addition of 1/2" hardware                    |     | Stapleton - Minnesota   |                       |                |
|     | with Installation of  | that fit though. Reduced adult  |               | Blanding's     | cloth to the chain link,                     |     | Zoo Department of       |                       | Minnesota      |
|     | Small Animal          | mortality and retrofitted areas | Minnesota,    | turtles, Wood  | buried 6" and leaving 2ft                    |     | Conservation and        |                       | Department of  |
| 20  | Exclusion Fencing     | reduced juvenile mortality.     | USA           | · ·            | C                                            | Vac | Research                | Tashnical Danart      | 1 1            |
| 28  | )                     | ·                               | USA           | turtles        | above ground.                                | Yes | Kescalen                | Technical Report      | Transportation |
|     | The Preservation of   | Effects of a road/bridge        |               |                |                                              |     |                         |                       |                |
|     | Bog Turtle            | construction project in         |               |                | X7                                           |     |                         |                       |                |
|     | Metapopulation        | Pennsylvania. Discussed         |               |                | Yes, silt fence attached to                  |     |                         |                       |                |
|     | Dynamics by a         | mitigation measures used        |               |                | chain link. Buried 12"                       |     |                         |                       |                |
|     | Transportation        | during construction to keep     |               |                | deep. Also attached                          |     |                         |                       |                |
|     | Improvement Project   | turtles off roads and design    | Southeastern  |                | orange construction fence                    |     | Teresa McElhenny,       |                       |                |
|     | in Southeastern       | considerations used in the      | Pennsylvania, |                | to improve visibility to                     |     | Andy Brookens - Skelly  |                       | ICOET 2003     |
| 29  | Pennsylvania          | project.                        | USA           | Bog Turtles    | workers.                                     | No  | and Loy, Inc.           | Peer-reviewed article | Proceedings    |
|     | Reptile and           | Overview of design and          |               | Multi Species: | Yes; Silt fence, wire                        |     |                         |                       |                |
|     | Amphibian Exclusion   | installation techniques for     |               | Turtles,       | backed silt fence,                           |     |                         |                       |                |
|     | Fencing: Overview     | reptile & amphibian fencing in  |               | snakes, toads, | hardware cloth, snow                         |     |                         |                       | Government     |
|     | of Proven Design and  | Ontario. Discussed effective    | Ontario,      | skinks,        | fence, concrete, sheet                       |     | Government of Ontario,  |                       | of Ontario,    |
| 30  | Installation          | depths to bury fences for       | Canada        | salamanders    | metal/vinyl walls.                           | Yes | Canada                  | Technical Report      | Canada         |
| L   | •                     |                                 | •             | •              |                                              | •   |                         |                       |                |

|    | Techniques for<br>Reptile and<br>Amphibian Exclusion<br>Fencing                                                                                              | various species, along with pros of each material and lists applicable uses.                                                                                                                                                                                                                                                                                                                                             |                               |                         |                                                                                                                                                                                                                                                                                            |     |                                                                                                                                                                                                                                                   |                                                 |                                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| 31 | Nesting Mounds with Protective Boxes and an Electric Wire as Tools to Mitigate Diamond-backed Terrapin (Malaclemys terrapin) Nest Predation                  | Description of the initial design and placement of terrapin nesting mounds and nest boxes, prior to a group being aggregated into a continuous barrier.                                                                                                                                                                                                                                                                  | Jekyll Island<br>Georgia, USA | Diamondback<br>terrapin | Constructed 24' long x 12' wide x 4' tall nesting areas using dredge spoils along the edge of the causeway. Placed 12' long x 4' wide x 2' tall nest boxes over the mounds to protect them from predation. Added an electric fence wire to help keep racoons from entering the nest boxes. | Yes | Daniel P. Quinn, S. Michelle Kaylor, Terry M. Norton – Georgia Sea Turtle Center; Kurt A. Buhlmann – University of Georgia Savannah River Ecology Lab                                                                                             | Peer-reviewed article                           | Herpetological<br>Conservation<br>and Biology |
| 32 | Nesting Success and<br>Barrier Breaching:<br>Assessing the<br>Effectiveness of<br>Roadway Fencing in<br>Diamondback<br>Terrapins<br>(Malaclemys<br>terrapin) | Ongoing efforts where multiple types of "temporary" fencing have been used over the years. Involved examining nesting sites to help determine effectiveness of barriers. Also built an "arena" to test the ability of terrapins to penetrate the barrier by finding gaps under it. Did observe results in preventing terrapins from accessing roadways; however, local ground conditions had an impact on effectiveness. | Southern New<br>Jersey, USA   | Diamondback<br>terrapin | 3 types, temporary, adjusted over the years following observations: Silt fence, Plastic mesh, and Plastic tubing.                                                                                                                                                                          | Yes | Hannah Reses, Alison<br>Davis Rabosky - The<br>University of Michigan;<br>Hannah Reses, Roger<br>Wood - The Wetlands<br>Institute                                                                                                                 | Peer-reviewed article                           | Herpetological<br>Conservation<br>and Biology |
| 33 | Design of Roadway<br>Barriers to Reduce<br>Desert Tortoise<br>Mortality on Paved<br>Road Infrastructure                                                      | New publication conducting lab testing barriers made from 8 different materials to observe behaviors and escape methods.                                                                                                                                                                                                                                                                                                 | Nevada, USA                   | Desert<br>tortoises     | Limited, wire mesh & solid barriers.                                                                                                                                                                                                                                                       | TBD | Douglas E. Ruby - University of Maryland Eastern Shore; W. Bryan Jennings - University of California, Riverside; Gilbert Goodlett - EnviroPlus Consulting; James R. Spotila - Drexel University; Henry R. Mushinsky - University of South Florida | Abstract - Publication not yet available online | Chelonian<br>Conservation<br>and Biology      |
| 34 | Behavioral<br>Responses to Barriers<br>by Desert Tortoises:<br>Implications for<br>Wildlife<br>Management                                                    | Experimental testing of the effectiveness of various types of barriers to assess how well they would keep desert tortoises off of roadways using captive tortoises. Examined response to tortoises in the                                                                                                                                                                                                                | Nevada, USA                   | Desert<br>Tortoises     | Numerous types; chain-<br>link fence, hardware<br>cloth, chicken wire,<br>concrete block, wooden<br>timbers/logs, ½ PVC pipe<br>in trench, etc.                                                                                                                                            | Yes | Douglas E. Ruby, James<br>R. Spotila, Stacia K.<br>Martin and Stanley J.<br>Kemp                                                                                                                                                                  | Peer-reviewed article                           | Herpetological<br>Monographs                  |

|    |                                                                                                              | T                                                                                                                                                                                                                                                                                                                        |                                           | T                                                                 |                                                                                                                                               | ı   |                                                                                                                                                                                                                               | T                       |                                                            |
|----|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|
|    |                                                                                                              | different pens and how well the materials held up.                                                                                                                                                                                                                                                                       |                                           |                                                                   |                                                                                                                                               |     |                                                                                                                                                                                                                               |                         |                                                            |
| 35 | Sea Isle Road Gets<br>"Turtle Exclusion<br>Fencing"                                                          | News report about the installation of fencing along the Sea Isle Boulevard. Discussed type of fencing used, chain link, and seen as an improvement over plastic pipe barriers. Installation of barrier required by NJ DEP as part of a roadway reconstruction project (19,417 linear ft of fencing)                      | Cape May<br>County, New<br>Jersey, USA    | Diamondback<br>terrapin                                           | Black poly-coated chain link fence installed along the backside of a guardrail.                                                               | Yes | Donald Wittkowski –<br>Sea Isle News                                                                                                                                                                                          | Newspaper Article       | Sea Isle News                                              |
|    | Tunnel and Fencing<br>Options for Reducing<br>Road Mortalities of                                            | Conducted behavioral trials of how turtles transected passage systems with variations in lighting, openness, and barriers. Tested how quickly turtles would move along an opaque barrier vs translucent barriers and ability to direct turtles with different types. Also included testing exclusion gates to allow one- | Massachusetts,<br>USA;<br>primarily field | Painted Turtles, Spotted Turtles, Blanding's                      | Various fencing, chain link, chicken wire, plastic sheeting. Easily set up for                                                                | V   | Paul R. Sievert and<br>Derek T. Yorks -<br>University of<br>Massachusetts,<br>Department of<br>Environmental                                                                                                                  |                         | FINVA                                                      |
| 36 | Freshwater Turtles                                                                                           | way passage by turtles.                                                                                                                                                                                                                                                                                                  | lab trials                                | Turtles                                                           | lab trials.                                                                                                                                   | Yes | Conservation                                                                                                                                                                                                                  | Technical Report        | FHWA                                                       |
| 37 | Movin' Lizards                                                                                               | Summary of project efforts with design, construction, and public outreach information                                                                                                                                                                                                                                    | Addison<br>County<br>Vermont,<br>USA      | Salamanders                                                       | Yes                                                                                                                                           | Yes | Chris Slesar - VTRANS                                                                                                                                                                                                         | Public Interest Article | Orianne<br>Society                                         |
| 38 | Monkton Wildlife<br>Crossing                                                                                 | Underpass crossing constructed to allow for passage of amphibians across a busy road. Used concrete blocks for exclusion fences to funnel salamanders into the crossing structure.                                                                                                                                       | Addison<br>County<br>Vermont,<br>USA      | Amphibians;<br>Salamanders                                        | Specs: concrete<br>underpass structure. Used<br>concrete blocks as a<br>retaining/barrier wall to<br>funnel salamanders into<br>the crossing. | Yes | VT Agency of<br>Transportation/Vermont<br>Fish & Wildlife                                                                                                                                                                     | ArcGIS StoryMap         | Vermont Agency of Transportation & Vermont Fish & Wildlife |
| 39 | Fencing: A Valuable Tool for Reducing Wildlife-Vehicle Collisions and Funneling Fauna to Crossing Structures | Book chapter discussing applications and considerations for different fencing types. Shows multiple examples of small vertebrate and reptile fences. Also addresses designs that allow animals to escape from the roadway if they do manage to breach the fencing.                                                       | Various -<br>global                       | Small and large vertebrates, including endo- and ectothermic taxa | Yes, various for multiple species.                                                                                                            | Yes | Rodney van der Ree - Australian Research Centre for Urban Ecology & The University of Melbourne; Jeffrey W. Gagnon - Arizona Game and Fish Department; Daniel J. Smith - Department of Biology, University of Central Florida | Book                    | John Wiley &<br>Sons                                       |

|    |                       |                               |             |              | Temporary: Silt fence,    |     |                          |                                                      |              |
|----|-----------------------|-------------------------------|-------------|--------------|---------------------------|-----|--------------------------|------------------------------------------------------|--------------|
|    |                       |                               |             |              | Plastic mesh, Corrugated  |     |                          |                                                      |              |
|    |                       | Discussed multiple different  |             |              | pipe. All presented       |     |                          |                                                      |              |
|    |                       | fencing and barrier types for |             |              | maintenance challenges    |     |                          |                                                      |              |
|    |                       | diamondback terrapins,        |             |              | from short-term, seasonal |     |                          |                                                      |              |
|    | A Guide to Building   | including pros & cons of each |             |              | installations (e.g., UV   |     |                          | https://wetlandsinstitute.org/conservation/terrapin- |              |
|    | Terrapin Barriers and | type, as well as testing and  | Coastal New | Diamondback  | damage, wind/snow         |     |                          | conservation/a-guide-for-building-terrapin-          | The Wetlands |
| 40 | Fencing               | observed success.             | Jersey, USA | terrapin     | damage).                  | Yes | The Wetlands Institute   | barriers-and-fences/                                 | Institute    |
|    |                       | Conducted experiments on      |             |              |                           |     |                          |                                                      |              |
|    |                       | frogs and turtles to examine  |             |              |                           |     | Hara W. Woltz -          |                                                      |              |
|    |                       | behavioral choices of various |             |              |                           |     | Columbia University;     |                                                      |              |
|    | Road Crossing         | frog and turtle species to    |             |              |                           |     | James P. Gibbs - SUNY    |                                                      |              |
|    | Structures for        | crossing structures and fence |             | Frogs (Green |                           |     | College of               |                                                      |              |
|    | Amphibians and        | designs. Found that most      |             | & Leopard) & |                           |     | Environmental Science    |                                                      |              |
|    | Reptiles: Informing   | species preferred mid-        |             | Turtles      |                           |     | and Forestry; Peter K.   |                                                      |              |
|    | Design through        | diameter crossings and were   | New York,   | (Snapping &  | Yes; Experimental design  |     | Ducey - State University |                                                      | Biological   |
| 41 | Behavioral Analysis   | stopped by 0.6-0.9m barriers. | USA         | Painted)     | & layout.                 | Yes | of New York at Cortland  | Peer-reviewed article                                | Conservation |