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Disclaimer

The contents of this report reflect the views of the author who is responsible for the facts and
the accuracy of the data presented. The contents do not necessarily reflect the official views of
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Executive Summary

Stroup et al. (2018) sought to review work zone-related crash reports to verify the reported
information, Fotios and Robbins (2024) identify factors that contribute to work zone-related
crashes in South Carolina, Shinar et al. 1983 identify countermeasures based on said factors,
Amoros et al. (2007) understand the impact of the presence of law enforcement at work zones,
and Hausman et al. (1998) develop a predictive work zone risk assessment tool to proactively
assess the risk at the beginning and during the lifespan of a project. Different statistical models
were developed to achieve each objective.

A total of 200 forms containing information about fatal crashes in work zones between 2014 and
2020 were analyzed to determine how many discrepancies exist between the written narrative
and other fields. To test the hypothesis that crash complexity and weather influence the
investigating officer’s level of processing (a theory developed by Craik and Lockhart in 1972), and
consequentially his/her ability to complete the traffic collision form accurately, a structural
equation model (SEM) was developed. SEM results show that increases in collision speed,
number of units, number of events, and temperature increased the number of words and
characters written in the narrative, whereas increases in precipitation, humidity, and poor
weather conditions resulted in a decrease in the number of words and characters written in the
narrative. Notably, the number of discrepancies was not statistically significant, suggesting crash
and weather-related factors do not affect an officer’s reporting accuracy. A multiple linear
regression model was also developed to identify factors that influence a form field’s frequency
of discrepancies. The form field’s level of difficulty and its number of inputs were found to be
statistically significant.

Utilizing crash data spanning from 2014 to 2020, two models were developed using mixed logit
models to find contributing factors affecting crash injury (versus no injury): one tailored for non-
interstate roads with speed limits below 60 miles per hour (mph), and another tailored for
interstates with speed limits of 60 mph or higher. The findings indicated the necessity for
separate models based on speed. Common factors contributing to injury across both models
encompass dark lighting conditions, female (at-fault) drivers, and driving too fast for conditions.
Furthermore, factors impacting injury on non-interstate roadways include SC or US primary
roadways, work zone activity area, at-fault drivers under 35, sideswipe collisions, presence of
workers, and collisions with fixed objects. Conversely, factors affecting injury on interstates
include the number of vehicles involved, rear-end collisions, proximity to the first work zone sign,
and crashes occurring on weekdays.

To determine factors influencing injury (versus no injury) in a work zone, rear-end crashes with
collision speeds over 35 mph, a mixed binary logit model with heterogeneity in both mean and



variance was developed. Significant factors contributing to injury included multi-vehicle
involvement, airbag deployment, dark conditions, and crashes involving trucks. Conversely, late-
night and dawn/dusk conditions, along with variables such as advanced warning areas, activity
zones, lane shifts/crossovers, and the presence of young and middle-aged at-fault drivers were
associated with no injury.

A split plot design with blocking was used to investigate the effectiveness of law enforcement on
speed reduction in South Carolina work zones. The analysis used speed as the response variable,
seasons as the main plots, the presence of law enforcement as subplots, and traffic volume as a
covariate. Using data from 2019, eight alternative models were explored to determine whether
the speed for the entire work zone should be considered or just the speed at the locations where
troopers were stationed. Additionally, the models examined whether the average speed of
traffic or the speed exceeding the temporary posted speed limit (excess speed) should be used.
These combinations were considered with and without traffic volume as a covariate. All eight
models showed a reduction in traffic speed when law enforcement was present. The model with
the best fit is the one that considers excess speed for the entire work zone without having traffic
volume as a covariate. However, the ANCOVA analysis found the covariate to be efficient. Thus,
it isrecommended that traffic volume be included in future analyses. Seasonal analysis indicated
that throughout the entire work zone, there is no difference in average traffic speed and excess
speed between seasons. However, for the transition area, the average traffic speeds and excess
speed were lower in the winter compared to fall and summer. In the absence of troopers, there
is no variation in speeds between seasons.

The work zone assessment tool was developed in Excel using Visual Basic for Applications (VBA)
to enable SCDOT engineers to determine crash risk and the benefit/cost of implementing
countermeasures at a work zone. Countermeasures and their associated Crash Modification
Factors (CMFs) developed specifically for work zones by researchers from the University of
Missouri were adopted. To determine the benefit-to-cost ratio, specifically, the estimated crash
cost savings divided by the cost of implementing the measures, a crash prediction model was
developed to estimate the expected number of crashes in work zones based on their length,
duration, and Annual Average Daily Traffic (AADT). This model used work zone data manually
extracted from ProjectWise for four types of work zones: widening, rehabilitation,
reconstruction, and preservation. Work zone length and duration were computed from project
descriptions, while AADT was determined by averaging traffic counts from count stations within
work zone boundaries. Due to the high number of work zones experiencing zero crashes, a zero-
inflated Negative Binomial model was developed instead of the traditional Negative Binomial
model. The models indicated that work zone length, duration, and log of AADT were significant
in predicting crash counts across different work zone types.

Vi
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1. Introduction

The 2020-2024 South Carolina Strategic Highway Safety Plan (SHSP) identified 12 emphasis areas
based on a detailed analysis of statewide crash data. Among these are work zones due to
highway workers being vulnerable users. Work zones alter the normal traffic flow requiring
motorists to change their speeds, process information from roadside signs, make merging
maneuvers, and travel next to cones or barricades. These activities can lead to vehicular crashes
and injury to motorists and workers in the work zone. Figure 1 shows the trend in the total
number of crashes and the number of fatalities in South Carolina work zones from 2014 to 2020.

B0 Gash 3379
. Fatality !
w [ 1
3 3000 - - ! 5
- 2802 v 8%
5 2802
=
& 200 -
2
E 2114
O 2000 -
]
] 7
h?] 1716
2 1500 - 1375 1447
S 777 [ '
=
© 1000 -
s
w0
L
=]
Z 500 -
. 12 ' | 10 2B 77 1S Vo) 2 9 S 14
2014 2015 2016 2017 2018 2019 2020
Years

Figure 1. Total number of work zone crashes and fatalities from 2014 to 2020 in South Carolina.

The South Carolina Department of Transportation (SCDOT) has made several concerted efforts
to improve work zone safety. On June 2, 2006, the agency entered into an agreement with the
South Carolina Department of Public Safety where Highway Patrol Troopers would devote their
time to selective, concentrated, and strict enforcement of the state’s traffic laws at work zones.
In 2016, the SCDOT created the Procedures and Guidelines for Work Zone Traffic Control Design
document aimed at reducing work zone collisions. Despite these efforts and the introduction of
the Workers’ Safety Act (House Bill 4033) in 2017 where penalties include fines, jail time, and
points assessed against an offender’s driving record, the number of work zone-related crashes
has remained high as shown in Figure 1, which suggest that more can be done to improve work
zone safety. This fact is recognized by the 2020-2024 SHSP and it outlined several strategies for
the SCDOT and South Carolina Department of Public Safety (SCDPS) to implement to get closer
toits “target zero” goal. These strategies include improving data collection for work zone-related
collisions, improving driver compliance with work zone traffic controls, and increasing public
knowledge and awareness of work zones.



This project sought to contribute to the mission and commitment of the SCDOT and SCDPS to
increase work zone safety through the following five research objectives:

Review work zone-related crash reports to verify the reported information.
Identify factors that contribute to work zone-related crashes in SC.

Identify countermeasures based on factors identified in objective 2.
Understand the impact of the presence of law enforcement at work zones.

vk

Develop a predictive work zone risk assessment tool to proactively assess the risk at
the beginning/during the lifespan of a project.

The aim of research objective 1 is to enhance the collection of crash data at work zones so that
the SCDOT can identify high-risk work zone locations and activity areas, and to improve the
accuracy of the South Carolina Traffic Collision Fact Books. While it is known from the 2020-
2024 SHSP that “the most frequently reported contributing factors in work zone-related fatal and
serious injury collisions are driving too fast for conditions and failure to yield right of way,”
research objective 2 sought to provide the SCDOT with a more comprehensive understanding of
the contributing factors by examining multiple data sources (i.e., crash, unit, and occupant).
Research objectives 3 and 4 aim to identify strategies that have a high likelihood of being
successful in South Carolina. Lastly, research objective 5 aims to provide the SCDOT with a
practical, useful, and impactful work zone risk assessment tool.

The next chapter (Chapter 2) presents a literature review of related work and results from a
survey of state DOTs on data collection for work zone crashes. Chapter 3 describes the
procedures used to synthesize the data for analysis and the methods used to model the acquired
data. Chapter 4 presents the findings from the statistical models. Chapter 5 includes a discussion
of the model findings and explains the project deliverables. Lastly, Chapter 6 presents this study’s
conclusions, recommendations, and implementation plan.



2. Literature Review

Many studies have investigated factors that contribute to work zone crashes. The majority can
be categorized as focusing on either injury severity (most often defined as the most severely
injured person involved in the crash) or crash frequency (the rate of occurrence). Some studies
considered both aspects, while others considered neither injury severity nor crash frequency.
The authors from prior studies employed a variety of parametric and non-parametric methods
to understand injury severity and crash frequency of work-zone-related crashes. Consequently,
the work zone literature was grouped as follows: injury severity, crash frequency, combined
severity and frequency, and additional contributing factors.

2.1. Injury Severity

The following includes studies that investigated contributing factors to injury severity in work
zone-related crashes. The sub-sections (2.1.1, 2.1.2, 2.1.3, and 2.1.4) group papers focused on
work zone injury severity as it relates to truck involvement, lighting conditions, work zone type,
and area within the work zone respectively.

Li and Bai (2008) developed a crash severity index (CSl) to evaluate the risk of an accident being
fatal within a work zone. Data were obtained from the Kansas Department of Transportation
(KDOT) database and included both fatal crashes from 1998 to 2004 and injury crashes from 2003
to 2004. The procedure to develop work zone CSI models began with identifying contributing
factors to work zone crashes, and then the models themselves were developed using logistic
regression. Last, prediction accuracy was tested using the most recent crash data. Four models
were developed: two models were first created depending on the identified contributing factors,
resulting in driver-independent and driver-dependent models. Simplified models for each of the
two types were created by dropping non-statistically significant variables from each of the
models. Model validation found that crash severity prediction was generally accurate for injury
work zone crashes, but less so for fatal crashes.

Weng and Meng (2011) developed a tree-based logistic regression model for work zone crashes
to assess the vehicle occupant’s casualty risk. Work zone crash injury data were collected from
a database maintained by the University of Michigan Transportation Institute. The decision tree
was built using sampled data. Based on the tree structure, the sample data was split into
separate groups. A logistic regression model was then built for each of the groups. It was found
that interacting variables were airbag, occupant identity, and gender. The tree-based logistic
regression model was found to give more accurate predictions for injury events when compared
to a pure logistic regression model.



Liu et al. (2016) investigated how pre-crash behavior affects injury severity in work zone crashes.
Data were acquired from the Virginia 2013 statewide crash database, which itself was derived
from Virginia police crash reports. A hierarchical modeling methodology was applied to focus on
pre-crash driver actions, which are nested within driver-vehicle characteristics. The study found
that improper actions, such as following too closely or speeding, had a high correlation with
injuries. Additionally, not using seat belts and driving under the influence of alcohol or drugs
were associated with severe injuries.

Zhang et al. (2018) developed a hybrid approach of combining factor analysis with ordered probit
model to determine the most significant factors affecting work zone crash severity in Egypt. Data
were pulled from a database maintained by Egypt’s General Authority for Roads, Bridges and
Land Transport (GARBLT) from 2010 to 2015. The factor analysis first determined both main and
common factors in determining crash severity. With these results, the ordered probit model was
calibrated using three levels of crash severity (no injury, injury, and fatal injury) to determine the
most influential factors. Four factors, the most influential being weather conditions, were found
to significantly affect work zone crash severity.

Ghasemzadeh and Ahmed (2019) utilized a probit-classification tree to identify factors
contributing to injury severity of work zone crashes in adverse weather conditions. Crash data
were extracted from the Strategic Highway Research Program 2 (SHRP2) Roadway Information
Dataset (RID) in Washington State from 2006 to 2013. This technique combined the conventional
parametric probit regression model with a nonparametric classification tree model to
compensate for the disadvantages of both individual models. Relevant factors usually in the
conventional probit model were included, such as vehicle type and age, lighting, and weather
conditions. It was found that the presence of a traffic control device and lighting conditions were
significant interacting variables, and the authors recommended installing countermeasures to
compensate for weather conditions.

Sze and Song (2019) examined which risk factors contributed to work zone crashes involving
fatalities or severe injuries in New Zealand. Data were extracted from New Zealand’s Crash
Analysis System, where work zone crashes were selected from November 25, 2008, to November
25, 2013, for locations where the speed limit was temporarily reduced. Notably, data did not
include information on the type of road, road environment, or characteristics of the work zone
itself. A multinomial logistic regression model using a 20% level of significance was applied to
determine contributing factors, and injuries were grouped into fatal/serious, minor, and non-
injury. Day of week, time of day, and involvement of motorcycles/bicycles/pedestrians were
found to affect the likelihood of fatal/serious and minor injury.

Zhang and Hassan (2019a) investigated the contributing factors leading to work zone rear-end
crashes in Egypt. Data on crashes were acquired from Egypt’s Ministry of Transport for 12 long-



term (longer than one year) work zones in Egypt from 2010 to 2017. Six categories were acquired
from the data: driver information, vehicle information, crash time, road characteristics, work
zone information, and environmental conditions. A random parameter ordered probit model,
which allows for unobserved heterogeneity, was utilized, and injury severity was categorized as
no injury, injury, and fatal. Findings include that unexpected maneuvers and young male drivers
traveling at nighttime on weekends both increased the chances of fatality, and injury severity is
higher during asphalt surface construction than milling surface construction. The authors
recommended driver training programs and intelligent transportation systems (ITS) technologies
as countermeasures to reduce the number of rear-end crashes.

Zhang and Hassan (2019b) aimed to determine the difference in injury severity and contributing
factors in work zone crashes during daytime and nighttime. The data used were from ten long-
term (longer than one year) work zones in Egypt from 2010 to 2016. Separate mixed multinomial
logit models were used for day and night, with each separating injuries into three categories:
property damage only, injury, and fatality. Likelihood ratio tests statistically justified the usage
of separate models for daytime and nighttime. It was found that significant factors had
substantial differences between day and night models. Even in cases where variables were
significant in both, they displayed different directions or magnitudes of effect across models.

Mokhtarimousavi et al. (2019) compared the performance of two different approaches, one
parametric and one non-parametric, in predicting the injury severity of work zone crashes. Crash
records from 2013 to 2017 in Miami-Dade County were obtained from the Florida Signal Four
analytics tool. The parametric approach utilized a mixed logit modeling framework to predict
crashes. The non-parametric approach utilized support vector machine (SVM) modeling and
applied three unique optimization algorithms to determine which most improved results. The
base SVM model and all three applied algorithms outperformed the mixed logit model in
correctly predicting observed crashes. The SVM model including the harmony search algorithm
was found to perform best, with an accuracy of 83.5% compared to the mixed logit model’s
67.2%.

Yu et al. (2020) analyzed the injury severity of rear-end work zone crashes and their contributing
factors. Work zone crash data in North Carolina from 2010 to 2013 were acquired from the
Federal Highway Administration Highway Safety Information System (HSIS) and then split into
two-year periods (2010-11 and 2012-13). Likelihood ratio tests confirmed that the two time
periods should indeed be modeled separately, thus implying temporal instability. The random
parameters logit approach with heterogeneity in mean and variance was selected with three
injury severity levels (injury, possible injury, and property damage only). Akaike’s and Bayesian
information criteria (AIC and BIC) demonstrate that this method outperforms the random



parameters logit approach. Contributing factors were found to vary with time, although
involvement of alcohol or drugs and full access control have similar outcomes over both periods.

Islam et al. (2020) investigated the severity of work-zone related crashes over a six-year period,
fromJanuary 1, 2012, to December 31, 2017. Data were retrieved from the Florida Crash Analysis
Reporting (CAR) data system and combined with a vehicle dataset, resulting in a comprehensive
dataset of single-vehicle work zone crashes. To account for possible unobserved heterogeneity,
a random parameters logit model was used. Likelihood-ratio tests rejected the null hypothesis
that parameters are equal in all years, so differences in injury severity data by year were deemed
statistically significant. Only two variables were found to be statistically significant over all years.
The authors noted that variations in work zones, which by nature are temporary, are a source of
the temporal instability that has been observed.

Hosseini et al. (2021) developed a Multiple Correspondence Analysis approach to finding
significant contributing factors influencing crash severity in New Jersey. Work zone crash data
from 2016 to 2018 in New Jersey were utilized for the study. A total of 20 independent variables,
categorized into crash, road, temporal, driver, and environmental characteristics were selected,
with injury severity as the dependent variable. The results illustrated that the most significant
factors were lighting conditions, time, vehicles involved in crashes, and crash type. Subsequently,
the authors suggested installing lighting equipment, providing speed limits and enforcement,
implementing Variable Speed Limit technology, increasing fines for offending drivers, and
providing education as effective countermeasures to reduce the rate and severity of crashes.

Mokhtarimousavi et al. (2021) investigated factors affecting crash severity and its relation to time
of day. Crash data from the S4 crash database were obtained for Florida from 2015 to 2017.
Separate binary mixed logit models were utilized to determine contributing factors for daytime
and nighttime conditions. Furthermore, SVM models trained by the Cuckoo Search (CS) algorithm
were used to explore nonlinear relationships among crash severity levels. In both daytime and
nighttime models, driver alcohol involvement, rainy weather, wet surfaces, multiple vehicle
occupants, and distraction were found to be the most significant contributors to injury severity
in work zone crashes. Additionally, the CS-SVM models were found to more accurately predict
crashes in comparison to the SVM models, which themselves outperformed the logit models.

Ashgar et al. (2021) investigated the impact of different risk factors on work zone crash severity.
Data were pulled from work zone crashes along highway 1-94 in Michigan for the 2016 calendar
year. Frequency analyses, logistic regression statistics, and a machine learning Random Forest
(RF) algorithm were all used to identify and model risk factors. Driver, crash, road, and
environmental specifications were considered as independent variables, and crash severity was
used as the dependent variable. Based on the results, the authors suggested potential
countermeasures to reduce work zone crashes, including traffic calming before the work zone,



improving illumination during the work zone, as well as education and awareness measures for
high-risk driver groups. For small sample sizes, the RF algorithm was proposed as a more
effective approach to crash data analysis when compared to logistic regression.

Islam (2022) proposed a model to identify contributing factors to injury severity in work zone
motorcyclist crashes. Data contained Florida work zone crashes involving motorcycles from 2012
to 2016 and were obtained from the CAR system. The resulting dataset contained a variety of
potential factors, including motorcycle type, speed, helmet usage, roadway characteristics, crash
characteristics, and both spatial and temporal characteristics. The random parameter
multinomial logit model with heterogeneity in mean and variance was utilized for both single and
multi-vehicle motorcycle crashes. It was found that license endorsement and partial ejection
were the only variables statistically significant in both single- and multi-vehicle crashes. Based
on the results, the authors suggested lighting at night, shoulder widening, increasing signage on
surface conditions, improving helmet usage, and increasing motorcycle endorsement (education-
based) as potential countermeasures to decrease the number and severity of crashes of work
zone crashes involving motorcycles.

2.1.1. Truck Involvement

Khattak and Targa (2004) investigated how work zone characteristics affect total harm and the
most seriously injured occupant in crashes with a distinction between truck-involved and non-
truck-involved collisions. Data were obtained from HSIS and combined with police crash reports
from the State of North Carolina in 2000. An ordered probit model was used with consideration
of the ordinal and categorical nature of injury severity. A new total harm variable was created
by assigning an economic value to injury severity and summing all injuries. The ordinary least-
square log-transformed model was used for total harm. It was found that truck-involved,
multivehicle crashes were most harmful and injurious under a variety of conditions.

Osman et al. (2016) analyzed which causal factors contributed to injury severity of large truck
crashes in work zones. Data were collected from 2003 to 2012 in Minnesota from HSIS. A variety
of unordered and ordered modeling methods were utilized and compared, with the generalized
ordered response logit (GORL) model outperforming the rest based on the Bayesian Information
Criterion (BIC) test statistic. The most significant variables increasing the risk of severe outcomes
in work zone crashes involving large trucks were found to be daytime crashes, no control of
access, higher speed limit, and rural principal arterial road classification. The authors suggested
that lowering speed limits and using warning signs to inform motorists or large trucks of work
zones can lower occurrences of crashes.



2.1.2. Lighting Condition

Dias and Dissanayake (2016) identified which factors contributed to higher injury severity in
work-zone crashes and compared nighttime and daytime crashes in work zones. Data were
obtained from KDOT for all work zone crashes within the state from 2010 to 2013. Crash severity
was considered as the dependent variable with five categories: fatal, incapacitating injury, non-
incapacitating injury, possible injury, and not injured. Ordered probit models, one for daytime
and one for nighttime, were produced. Some factors increased or decreased crash severity
consistently over both day and night, but other variables, such as work zone area of crash
occurrence and driver age, had differing effects at day and night.

Wei et al. (2017) analyzed injury severity in work zone crashes under different lighting conditions.
Data from 2003 to 2015 were pulled from the Enhanced Tennessee Roadway Information
Management System. Although five unique light conditions were described in this data, they
were grouped into three categories: daylight, dark-lighted, and dark-not-lighted. Using the
Classification and Regression Trees (CART) algorithm, decision trees for each of the three light
conditions were generated to determine contributing factors to work zone crashes and severity.
The study found that traffic control devices had differing effects depending on lighting conditions,
implying they should be designed differently according to light conditions. Additionally, an
increase in the number of lanes may increase crash severity in daylight conditions but have the
opposite effect in dark-not-lighted conditions.

Al-Bdairi (2020) investigated the significance of time of day in highway work zone crashes. The
time of day is separated into four groups: (1) Morning from 6:00 to 11:00 a.m., (2) Midday from
12:00 to 5:00 p.m., (3) Night from 6:00 to 11:00 p.m., and (4) Late night from 12:00 to 5:00 a.m.
using data obtained from the Washington State Department of Transportation (WSDOT). A
mixed logit model was used to account for unobserved heterogeneity and predict injury severity.
Likelihood ratio tests reject the null hypothesis that estimated parameters are the same across
holistic and separated models, so the different periods must be separately modeled. Some
factors, such as lack of airbag deployment and rear-end collision, affect injury severity regardless
of time of day (albeit their impact varies with time of day). Other factors are common in multiple
periods, such as female drivers decreased the probability of no injury during morning and night.
Some factors are significant in only one period, such as sober drivers increasing the probability
of no injury during the morning.

2.1.3. Work Zone Type

Weng and Meng (2011) analyzed casualty risk for drivers in work zone crashes for different work
zone types. The Fatality Analysis Reporting System (FARS) was used to obtain data on work zones
within the United States between 2001 and 2006. The binary logistic regression model was used
to predict either injury or non-injury; fatalities were not considered separately due to their



relatively small contribution to the total number of crashes and thus grouped within the injury
category. Models were created for each of the three work zone types: construction,
maintenance, and utility. It was found that construction zones have the largest casualty risk and
that several factors influence risk in all three types. The authors noted that the relatively small
sample sizes for maintenance and utility work zones may affect these results.

Osman et al. (2018) investigated which factors contributed to injury severity in passenger-car
crashes with specific attention to work zone configuration. The dataset used was collected from
HSIS for work zone crashes in Minnesota from 2003 to 2012. Work zones were categorized into
five types: lane closure, lane shift, crossover, shoulder or median, and intermittent/mobile. A
mixed generalized ordered response probit model was utilized, which allows additional flexibility
over the standard ORP model. Some variables were found to be significant across all work zone
types, while others were type-specific. The author recommended collecting work zone-specific
data such as duration, lane widths, and speed limits to improve findings.

Yu et al. (2020) investigated the factors affecting work zone crashes involving trucks in rural and
urban areas. Data on truck-involved work zone crashes were obtained from HSIS from 2005 to
2014 in North Carolina. To account for unobserved heterogeneity, the mixed logit and partial
proportional odds models are utilized and compared. Three injury severity levels
(fatal/incapacitating/non-incapacitating injury, possible injury, and property damage only) were
considered for the dependent variable. Conclusions include that usage of restraint and
involvement of alcohol are contributing factors regardless of area. Visibility improvement and
speed reductions would be effective in rural areas, while appropriate placement and design of
indicator signs would be effective in urban areas.

2.1.4. Work Zone Area

Osman et al. (2019) investigated the different risk factors affecting driver injury severity in work
zone crashes within different work zone areas. Work zone crash data from 2002 to 2013 in
Minnesota were acquired from HSIS. Work zones are broken into four distinct areas: advance
warning area, transition area, activity area, and termination area. Injury severity is classified into
three categories: severe injury, injury, and no injury. A mixed generalized ordered response
probit model is adopted, which accounts for unobserved heterogeneity and ordering of injury
severity. Airbag deployment, alcohol involvement, ejection, seatbelt use, and partial control of
access are all found to contribute to severe outcomes, and many covariates had varying effects
across different work zone areas.

Koilada et al. (2020) examined how the odds of crash occurrence and its contributing factors
change with work zone area. Work zones were split into four area types per the Manual on
Uniform Traffic Control Devices (MUTCD): advance warning, transition, activity, and termination.
Five years (2010-2014) of crash data from North Carolina were acquired from the Highway Safety



Information Systems. Four models were developed: proportional odds for injury severity in the
transition area, and partial proportional odds models for work zone area types, injury severity in
the advance warning area, and injury severity in the transition area. The results indicated specific
variables affected the odds of crashes depending on the work zone area. Another notable result
is that the odds of a crash increased in transition and activity areas when flexible post barriers
were used as a median.

2.2. Crash Frequency

The following includes studies that investigated contributing factors to crash frequency in work
zones. The sub-sections (2.2.1 and 2.2.2) group papers focused on work zone crash frequency as
it relates to rear-end crashes and traffic control devices respectively.

Daniel et al. (2000) studied fatal work-zone crashes and compared them to fatal crashes at non-
work-zone locations. Data were obtained from FARS and from the Georgia Department of
Transportation for work zones in Georgia from 1995 to 1997. Different factors, such as manner
of collision, light conditions, truck involvement, and roadway classification were examined and
summarized. Statistical tests for independence were performed for each of the above factors,
and the null hypothesis of independence between work-zone and non-work-zone crashes was
rejected. Several findings were identified: crashes more often occurred in construction work
zones rather than maintenance work zones, vehicles were more likely to be involved in fatal work
zone crashes than fatal non-work-zone crashes, and rear-end crashes were a high proportion of
work zone crashes.

Garber and Zhao (2002) studied the characteristics of crashes within different work zone areas.
Data were acquired using Virginia police crash reports from 1996 through 1999. Crashes in work
zones were classified as occurring in one of five areas: advance warning, transition, buffer,
activity, and termination. Proportionality tests were performed to determine whether crash
frequency, severity level, crashes by severity, and collision type had statistically significant
differences in each work zone area. It was found that the activity area was the most prevalent
accident location, property damage only was the common severity, and rear-end crashes were
the most predominant collision type.

Arditi et al. (2007) investigated fatal work zone crashes to find a potential safety difference
between daytime and nighttime safety. Data were collected from FARS and filtered into crashes
occurring at work zones in lllinois from 1996 to 2000. The data were sorted into daytime based
on the “Day” classification, and all other classifications were considered nighttime, which
included dawn and dusk and was irrespective of light conditions. Calibration factors for traffic
volume, number of work zones, and hours of daylight vs nighttime were combined to
compensate for the difference between day and night, thus making the dataset more directly
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comparable. Using the Kruskal-Wallis test, the null hypothesis of no differences between
daytime and nighttime fatal crash occurrences was rejected. As such, statistical evidence pointed
to nighttime construction being five times more hazardous than daytime in regard to fatal work
zone crashes.

Yang et al. (2013) investigated the relationship between explanatory variables and work zone
crash frequency. Data for work zone crashes in New Jersey were assembled from independent
sources within the New Jersey Department of Transportation. The negative binomial model was
extended to incorporate effects arising from errors in the measurement of work zone length.
This error is due to variability in work zone length as the project progresses. A new model coined
MENB, accounted for this to better fit the data. It was found that work zone length and traffic
volume were positively correlated with work zone crash occurrence.

Weng et al. (2015) investigated drivers’ merging behavior as well as rear-end crash risk in work
zone merging areas. The period considered begins with the start of the merging maneuver and
ends with the vehicle fully entering the adjacent through lane. For calibration and validation, a
case study with merging trajectory data from a work zone in Singapore was used. A mixed probit-
based merging behavior model was developed to determine the probability a merging vehicle
completes the merging maneuver. Two surrogate safety measures were selected to compute
the rear-end crash risk between the merging vehicle and its neighboring vehicles. It was found
that rear-end crashes were more likely to occur when the merging vehicle moves very slowly or
quickly, and the probability of completing the merging maneuver increases over the time
elapsed.

Weng et al. (2016) investigated casualty patterns in work zone crashes using association rules .
The association rule approach is a data mining technique that can interpret relationships
between a large number of variables; these relationships can then be easily described. By
changing the support and confidence, different lift values, determining association strength,
were found. A case study was performed with data including environmental characteristics,
control information, crash information, and occupant information. Data were acquired from the
University of Michigan Transportation Institute. This case study concluded that crashes were
more likely on roads with more than four lanes where the speed limit was more than 40 miles
per hour.

Weng et al. (2018) developed a time-varying mixed logit model for modeling vehicle merging
behavior within work zones . The period considered begins with the start of the merging
maneuver and ends with the vehicle fully entering the adjacent through lane. For calibration and
validation, a case study with merging trajectory data from a work zone in Singapore was used.
This new method was found to have a higher prediction accuracy than models utilizing vehicle
speeds and gap sizes. Several factors were found to affect merging behavior, and specific
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scenarios in which vehicles were more likely to successfully complete the merging maneuver
were defined.

Hou and Chen (2020) presented an integrated framework for work zone safety under adverse
driving conditions . The framework is broken into four parts. In the first, work zone traffic is
simulated using a cellular automaton model considering a variety of factors. In the second and
third, multiple-vehicle and single-vehicle crash simulations respectively are used to determine
the probability of each. In the fourth, overall safety is assessed using both single-vehicle and
multiple-vehicle crashes. A case study was used to investigate safety under different weather
conditions. The results of their study indicated rain and snow conditions lower work zone
capacity and increase the probability of crashes, and the most prevalent type of crash varies with
weather conditions. Limitations of their study include a lack of validation with actual crash data
and not considering the possibility of multi-vehicle crashes caused by single-vehicle crashes.

Gupta et al. (2021) investigated work zone crashes resulting in fatalities and involving trucks .
Crash data was pulled from the S4 database developed by the Florida Department of Highway
Safety and Motor Vehicles over seven years. Data resampling was accomplished using the
SMOTE-NC algorithm and random over-sampling, and then significant variables were extracted
from decision trees to create tuned RF models. For truck crashes, pedestrian involvement,
lighting conditions, safety equipment, driver condition, driver age, and work zone location were
all identified as primary contributors. Some environmental and roadway-specific conditions
notably did not show significant contribution to the model. Fatality patterns for pedestrian
crashes showed different factors contributed when compared to non-pedestrian fatal crashes.

Santos et al. (2021) identified risk factors affecting work zone crashes and compared binary
logistic (logit) to probit regression modeling methods . Data were collected from police crash
reports in mainland Portugal from 2013 to 2015. Due to limitations related to the filling of data
into crash report forms, the authors decided that performing modeling by road environment
would compensate for missing information. Analysis was performed to determine risk factors
for crash type, primary contributing factor, and driver age group. Logit and probit models were
found to produce very similar results. The authors suggested that their differences may be due
to the small sample size.

2.2.1. Rear-End Crashes

Meng and Weng (2011) evaluated the rear-end crash risk at work zones and investigated driver
merging behavior . Data were obtained from two work zones in Singapore using a video camera
to record vehicle trajectory. The primary measure to determine crash probability was the
deceleration rate to avoid the crash (DRAC). Using the stepwise regression method, four models
were produced: one for each of the two work zones data were collected by considering
macroscopic contributing factors, one which combined the two work zones, and one which
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additionally considered twelve microscopic variables. Findings included the lane closest to the
work zone, the expressway work zone, and trucks having the highest crash risk out of their
respective categories.

Weng et al. (2015) evaluated the effect of vehicle-following patterns on rear-end crash risk in
work zones . Four front vehicle-following vehicle patterns were used: car-car, car-truck, truck-
car, and truck-truck. Data were collected using video cameras at two expressway work zone sites
in Singapore. DRAC was the primary measure to determine rear-end crash risk, and tests for
statistical significance proved each of the four patterns should be separately modeled. The
highest risk for rear-end crashes in work zones was found to be the car-truck pattern.

2.2.2. Traffic Control Devices

Li and Bai (2009) investigated the effectiveness of different temporary traffic control devices in
reducing severe work zone crashes . Data represented work zone crashes resulting in fatality or
injury in Kansas occurring in 2003 or 2004. The binary logistic regression technique was used for
evaluating effectiveness, which was measured by severity reduction and odds of crash
occurrence. This was compared against the following human errors: inattentive driving,
disregarding traffic control, following too closely, and exceeding speed limit/driving too fast for
conditions. The most effective devices were found to be the presence of a flagger or officer,
followed by having flashers or center/edge lines. Stop signs/signals and no passing zones were
not found to be effective.

Rista et al. (2017) examined the impact of various temporary traffic control measures on work
zone safety . Data included lane closure reports, AADT estimates, as well as traffic crash
information and was provided by the Michigan Department of Transportation and state police
crash database. Safety performance functions including site-specific information were
developed and reinforced by count data models to account for unobserved heterogeneity. Sites
were primarily compared to their respective locations before the implementation of work zones.
Results found that there was no difference in crash rates in shoulder closure work zones when
compared to pre-work-zone conditions, while other work zone types (single and multilane
closures, lane shifts) showed higher crash rates.

Department of Transportation & Infrastructure Studies, Morgan State University, Baltimore, MD,
USA et al. (2018) studied the impact of mobile barriers on driver behavior on arterial roads A
driving simulator was utilized to replicate a one-mile stretch of Hillen Road, located in Baltimore,
Maryland. Test drivers’ throttle/brake control (speeding) behavior and steering handling (lateral
movement) behavior were recorded along with pre- and post-simulation surveys to collect
demographics and preferences on barrier type, respectively. Three types of work zone barriers
were investigated: cone pylons, concrete jersey barriers, and metal barriers. Results found that
participants drove faster next to concrete barriers than cone pylons but tended to move away
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from concrete barriers. The authors suggested that concrete jersey barriers may be more
effective in improving safety on arterial roads.

2.3. Combined Injury Severity and Crash Frequency

Dias (2015) analyzed work zone crash characteristics and identified factors associated with crash
severity and frequency data were acquired for the entire state of Kansas from 2010 to 2013 using
a variety of databases, including the Kansas CAR and KANPLAN, a GIS portal for KDOT. A common
crash severity model was developed alongside individual models for crash severity for daytime,
nighttime, single-vehicle, and multi-vehicle work zone crashes. All injury severity models utilized
ordered probit. Crash frequency negative binomial models were also developed to find crash
characteristics related to crash frequencies. The author recommended that appropriate
countermeasures be implemented based on the contributing factors leading to increased crash
severity. He noted that the unavailability of a full work zone database to find proper information
was a major difficulty in the study.

Khattak et al. (2002) analyzed the effect of work zone duration on the frequency and severity of
crashes in California. Their analysis used data obtained from HSIS and project-level information
obtained from CALTRANS. Using calculated crash rates before the work zone and during the work
zone, the authors developed five negative binomial models. Crash frequency, non-injury crashes
pre-work zone, non-injury crashes during work zone, injury crashes pre-work zone, and injury
crashes during work zone were used as dependent variables for each of the models. The factors
considered include average daily traffic (ADT), work zone duration, work zone length, traffic
exposure, and urban setting of the work zone. The first model predicted that the total crash rate
would increase by 21.5% during the work zone period compared to the pre-work zone period and
that the non-injury crash rate has a larger increase than the injury crash rate. The other four
models indicated that increased work zone length, work zone duration, and traffic exposure raise
the frequency of non-injury and injury crashes in the work zone.

2.4. Analysis of Factors that Contribute to Work Zone Crashes

This section summarizes studies that investigated contributing factors in work zone crashes but
do not specifically focus on injury severity or crash frequency. The subsection (2.4.1) focuses on
papers that focused specifically on the misclassification of data in work zone crashes.

Debnath et al. (2015) performed a qualitative study of worker perceptions of common work zone
hazards and countermeasures . Participants for the study were recruited from private and
government organizations involved in road construction, maintenance, and traffic control in
Queensland, Australia, and averaged over nine years of roadwork-related experience. Responses
were split into three groups based on exposure to traffic: fully exposed, semi-exposed (usually
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behind some barrier or protection), and non-exposed (those working primarily from officers with
only occasional visits to sites). The most frequent hazard mentioned was drivers exceeding work
zone speed limits. Other significant factors included driver inattention and adverse
environmental conditions. Respondents additionally mentioned driver aggression as a hazard,
which is rarely investigated in studies. Police reinforcement and education measures were the
most common suggested means of improving safety in work zones.

Yang et al. (2015) reviewed work zone modeling and safety-related analysis. Generally consistent
results confirmed that work zones increase crash rates, crashes are not uniformly distributed
across work zones, and rear-end crashes are the most common type of crash. The majority of
studies utilized negative binomial and logistic regression models based on police crash report
data, but the authors argue that these models cannot accurately incorporate work zone-specific
factors, such as their inherent short-term nature and common lack of sufficient crash data at any
given work zone. The authors recommended more advanced statistical modeling methods once
more comprehensive data can be collected about work zone crashes.

Theofilatos et al. (2017) attempted to summarize the effect of work zones on road safety and
crash frequency from other studies. Studies related to work zone crashes focusing on either
length and/or duration which applied fixed effects negative binomial models were selected for
this study. Meta-analysis and meta-regression techniques were utilized to provide a general
estimate of coefficients for work zone duration and work zone length. After correction, duration
was found to have a positive non-significant effect on work zone crash frequency, while length
had a positive significant effect. The author noted the rather small selection of studies matching
the criteria and the fundamental heterogeneity across different studies as limitations when
applying the results.

Mannering (2018) explored the temporal instability of highway accident data and discussed its
possible implications. The author drew from several fields, including cognitive science,
economics, neuroscience, and psychology to conclude that decision-making, which applies to all
drivers, is temporally unstable. He suggested that temporal instability is potentially a significant
portion of unobserved heterogeneity in models and that many of the existing accident prediction
methods are unable to account for this factor. Some potential methods of compensating for said
instability are presented, such as developing a function that predicts how variables will change
over time. Although appropriately modeling temporal instability remains a significant challenge,
the author recommended further investigation and increasing awareness of this factor in current
safety assessment practices.

Thapa and Mishra (2021) investigated the influence of external variables on the performance of
Work Zone Intrusion Alert Systems (WZIAS) . Three different types of WZIAS were used over 525
trials to determine factors resulting in work zone crashes. The subsequent data were analyzed
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using survival analysis, including the non-parametric Kaplan Meir estimator and the semi-
parametric Cox proportional hazard model. Intrusion speed, sensor-to-worker spacing, and
system accuracy were all found to significantly influence crash occurrence. In addition to
suggesting standardized deployment strategies for different WZIAS types, the authors
recommended reducing speed limits and standardizing the length of the buffer space as work
zone crash countermeasures.

Azimi et al. (2021) created a guideline to assist decision-makers in analyzing whether and what
type of ITS technologies should be used in work zone projects through a four-step system . Based
on interviews with practicing engineers and contractors involved in work zone projects, a scoring
system and flowchart were developed to assess the feasibility of ITSs given work zone conditions.
ITS candidates for the work zone were identified based on the intent of the ITS device and project
characteristics. The ITS to be used was selected based on its potential benefits and associated
costs. Last, the ITSs were deployed and evaluated for performance. A Texas Department of
Transportation (TxDOT) highway improvement project was used as a case study for
recommending potential ITSs to deploy.

2.4.1. Misclassification of Data in Work Zone Crashes

Ullman and Scriba (2004) presented how differences in state crash report forms can influence
work zone crash data in FARS. Researchers reviewed and categorized crash report forms for each
of the states based on whether work zone fields were included explicitly, indirectly, or not at all.
These forms were then compared to their respective 1992 counterparts to determine which had
added fields for work zones. Based on three years of crash data for each state (1998-2000), it
was found that there is a statistically significant, linear relationship between the percentage of
fatalities recorded in work zones and the way work zone data is included on crash report forms.
Based on this analysis, the authors suggested that existing data may underreport work zone
fatalities by up to 10%.

Yahaya et al. (2020) studied the effects of mislabeling in crash datasets using machine learning
algorithms to identify misclassified information . A work zone crash injury severity dataset from
Cairo, Egypt from 2010 to 2015 was acquired from Egypt’s GARBLT and the Police Reports
Accident Database. A new M-IPF algorithm, based on the Iterative Partitioning Filter (IPF), was
proposed, which included additional sampling techniques. The additions were intended to
minimize the incorrect deletion of minority class samples. M-IPF filter was compared to other
state-of-the-art filtering algorithms for effectiveness and efficiency and was found to have
superior performance; albeit the authors noted that the method is too likely to eliminate samples
that are not mislabeled.

Sayed et al. (2021) developed a classifier to find unidentified work zone crashes in crash reports
through text mining . Wisconsin crash reports from January 2017 to January 2018 were used as
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training data, and January to October 2019 data were used for testing. The classifier utilized the
noisy-OR method to determine unigram and bigram work-zone-indicative “keywords” in the
crash report narrative. In the top 450 cases identified, 201 were identified as missed work zone
crashes, proving the unigram + bigram noisy-OR method classifier was effective at classifying
missing work zone crashes. The authors utilized ad-hoc analysis of misclassified work zone
crashes to find the reason for work zone missing crashes. It was found that work zone crashes
were most often missed during the daytime (specifically during the 4-5 p.m. period), during
summer months, and on urban city streets.
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3. Methodology

3.1. Data Acquisition

Crash data were provided by the SCDOT and came in three separate CSV files: crash, unit, and
occupant. These tables were joined using the field “ANO,” the primary key/unique identifier for
each collision as illustrated in Figure 2.

Crash

PK | Collision Number

Route Category

Road Characteristics

1 1o many 1 1o many

Unit = Occupant
PK | Collision Unit Number |3 many ke € PK | Collision Unit Number
FK | Collision Number N—J L" FK | Collision Number
Driver Gender Oeccupant Gender
Unit type Seating Position

Figure 2. Merge procedure of SCDOT crash data tables using unique keys.

The available crash data contains information on time and day (such as day of the week and time
of day), roadway and environmental conditions (such as functional classification, curve, and
grade), crash attributes (such as number of vehicles involved, collision speed), work zones (such
as configuration type), vehicles (such as airbag deployment), and drivers characteristics (such as
age, gender). Note that these data pertain to the conditions observed by the reporting officer.
For example, collision speed is not the actual or measured speed, but rather, an estimated speed.
It is obtained based on answers provided by the drivers involved and based on the evidence at
the crash scene (e.g., length of skid marks, deployment of airbags, extent of damages to vehicles).

Several data sets were developed for the different tasks associated with this project. The
development processes for these sets are described below according to the tasks each set was
used for. In this study, the injury severity used for a crash is the most severe one; there could be
more than one injury in a crash.

3.1.1. Data for Identifying Contributing Factors

As previously noted, two separate analyses were conducted to identify the contributing factors,
each utilizing a different dataset. The first analysis sought to identify contributing factors to
injury for work zone-related crashes on roadways with 60 mph or higher speed limits (assumed
to be predominantly interstates) and on roadways with less than 60 mph (assumed to be
predominantly non-interstate). Mixed logit models were developed using South Carolina
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statewide work zone crash data from 2014 to 2020. This analysis focused on truck-involved
crashes. The reason is that truck-involved crashes at work zones pose a greater risk for injuries
and fatalities, and they are more serious in nature than crashes that occur in non-work zones
Khattak and Targa (2004). Additionally, truck-involved crashes pose a greater economic impact
as trucks carry high-value goods and require a longer incident clearance time. Despite initiatives
implemented by SCDOT to improve work zone safety (e.g., National Work Zone Awareness
Week), the number of truck-involved crashes at work zones increased from 189 in 2014 to 666 in
2019 (a 252.4% increase) with the peak occurring in 2018. The increasing trend from 2014 to
2019 is a concern, given that the number of work zones is expected to increase significantly due
to the increase in funding for construction projects. It should be noted that due to the COVID-19
pandemic, the total number of crashes and truck-involved crashes at work zones in South
Carolina decreased in 2020.

In total, there were 15,727 crashes: 93 were fatal crashes, 176 were serious injury crashes, 674
were minor injury crashes, 2,451 were possible injuries, and 12,333 were property damage only
(PDO) crashes. To prepare the dataset for modeling, it was filtered to include only those crashes
that involved at least one truck whether at fault or not. In the truck-involved work zone crash
dataset, there were a total of 3064 crashes: 29 (0.95%) were fatal crashes, 36 (1.75%) were
serious injury crashes, 121 (3.95%) were minor injury crashes, 381 (12.43%) were possible injury
crashes, and 2,496 (81.46%) were PDO crashes. Due to the small number of observations per
injury severity level, the five levels are combined into two, injury and PDO, where injury includes
fatal, serious injury, minor injury, and possible injury. The final dataset contains 565 injury
crashes and 2,488 PDO crashes. It should be noted that the final dataset has 11 fewer
observations [3064 - (565 + 2488)] than the initial dataset because these crash records did not
have posted speed limits. To evaluate the effect of the posted speed limit on the roadway where
the work zone is located, the final dataset was first divided into three different speed limit
categories: less than 40 mph, between 40 and 60 mph, and 60 mph or greater. The number of
observations for the less than 40 mph category was only 312. For this reason, two speed limit
categories were used, less than 60 mph and greater than or equal to 60 mph. The former
category has 305 injury crashes and 1,443 PDO crashes, whereas the latter category has 260
injury crashes and 1,045 PDO crashes. The reason for choosing 60 mph as the demarcation speed
is that interstates in South Carolina typically have a posted limit of 60 mph or higher and
guidelines for setting up work zones on interstates are more stringent. Table 1 presents the injury
severity level frequency and percentage distribution by speed limit categories.

Table 1. Injury severity level frequency and percentage distribution by posted speed limit levels.

Speed category Total observation Injury (%) PDO (%)
Less than 60 mph 1,748 305 (17.45) 1,443 (82.55)
Greater than or equal to 60 mph 1,305 260 (19.92) 1,045 (80.08)
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Descriptive statistics of explanatory variables used in this analysis are shown in Table 2. They

include characteristics related to vehicles, crashes, roadways, work zones, day and time,

environment, and drivers.

Table 2. Descriptive statistics of variables by two posted speed limit levels.

otherwise)

. Speed < 60 mph Speed > 60 mph
Variabl
ariables Percent (%) Percent (%)

Driver Characteristics
Gender.(l if female driver are at fault in a crash, 0 50.41 14.60
otherwise)
Younger drivers (1 .|f age of at-fault driver are group below 30.82 3127
35 years, 0 otherwise)
Middle-aged drivers (1 if age of at-fault driver are
between 35 and 50 years, 0 otherwise) 27.06 30.26
Older drivers (1 if age of at-fault driver are group above 50 41.97
years, 0 otherwise) ’ 38.47
Dr.lv.mg too fast (1 if the cqntrlbutlng factor of crash is 24.75 43.31
driving too fast, 0 otherwise)
Dllstracted (1if the csnntnbutmg factor of crash is 383 0.80
distracted, 0 otherwise)
F.alled (1ifthe contrlbytlng factor of crash is failed to yield 12.45 491
right of way, 0 otherwise)
!mproper usage (1 if the contrll?utlng factor of crash is 12 88 37.99
improper lane usage, 0 otherwise)
Under influence (1 if the contributing factor of crash is

. . 2.32 2.02
under the influence, 0 otherwise)
Crash Characteristics
1 vehicle (1 if the nu.mber of vehicles involved in a crash is 6.80 6.13
1 or more, 0 otherwise)
?-vehlcles (1 |f the number of vehicles involved in a crash 84.66 78,48
is 2, 0 otherwise)
?+ vehicles (1 if the nu_mber of vehicles involved in a crash 339 15.34
is 3 or more, 0 otherwise)
Rear End (1 if manner of collision is rear end, 0 otherwise) 32.13 39.80
SldeSWI.pe (1 if manner of collision is sideswipe, 0 24,02 35 59
otherwise)
Crash Characteristics
Angle (1 if manner of collision is Angle, 0 otherwise) 21.85 10.18
Fixed oF)Ject (1 if 1st harmful event is fixed object, 0 593 .10
otherwise)
Not fIXEd.ObjeCt (1 if 1st harmful event is Not fixed object, 9219 90.09
0 otherwise)
No collision (1 if 1st harmful event is no collision, 0 174 176

Roadway Characteristics

20



Variables

Speed < 60 mph

Speed > 60 mph

Percent (%) Percent (%)

SC, US I?rlmary (1 if crash occurred in SC or US Primary, 0 58.60 061
otherwise)
Interstate (1 if crash occurred in interstate, 0 otherwise) 3.01 98.01
County/Secondary/Ramp (1 |f.crash occurred in County, 38.49 145
Secondary or Ramp, 0 otherwise)
Straight on grad.e (1 if crash occurred in a straight on 796 12.79
grade, 0 otherwise)
Stralgh'? level (1 if crash occurred in a straight level, 0 84.66 8327
otherwise)
Roadw§y (1 if first harmful event occurred on roadway, 0 90.88 8924
otherwise)
Two—wa?y divided (1 if traffic-way is two-way undivided, O 33.00 98.08
otherwise)
Environmental Characteristics
Dark (1.|f crash occurred in a dark lighting condition, 0 11.87 3143
otherwise)
Dawn or Dusk (1 if crash occurred in a dawn or dusk
s o . 1.30 3.68
lighting condition, 0 otherwise)
Dayllght (1 if crash o.ccurred in a daylight lighting 86.69 64.84
condition, 0 otherwise)
Clear (1. if crash occurred in a clear weather condition, O 90.45 84.50
otherwise)
Dry (1 |f crash occurred in a dry surface condition, 0 93.63 88.07
otherwise)
Work Zone Characteristics
Shou.Ider/Medlan.(l if work zone type is Shoulder or 30.97 5104
Median, 0 otherwise)
Lane cI(?sure (1 if work zone type is Lane Closure, 0 36.90 3127
otherwise)
Lane shlft/crossover. (1 if work zone type is lane shift or 767 3.95
crossover, 0 otherwise)
Work Zone Characteristics
Activity area (1. if crash location is in the work zone activity 69.03 66.38
area, 0 otherwise)
Before flrist sign (1 if crash location is before the first sign, 575 4.6
0 otherwise)
Advanced warning (1 if crash location is in the work zone

. . 11.43 9.54
advanced warning area, 0 otherwise)
Workers present (1 if workers present, 0 otherwise) 72.07 50.93
Temporal Characteristics
Weekday (1 if crash happens on weekday, 0 otherwise) 94.07 87.37
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For the second analysis, the dataset was filtered to include only rear-end collisions with collision
speeds greater than or equal to 35 mph. It was suspected that rear-end crashes with higher
collision speeds would likely increase the risk of injury. This hypothesis led the project team to
the work of Jurewicz et al. (2016). who analyzed the relationship between collision speed and the
probability of fatal and serious injuries in rear-end crashes for a range of common crash
scenarios. They found rear-end collision speeds of 55 km/h (~35 mph) are more likely to produce
an injury probability of approximately 10%, considered a critical threshold in Safe Systems or
Vision Zero. When we plotted the cumulative distribution function for rear-end crashes (see
Figure 3), we found that 10% of the fatal and serious injury crashes have collision speeds less
than 32.20 mph. For these reasons, 35 mph was chosen as the collision speed threshold. No
other speed threshold was considered because the lone study found on this topic Jurewicz et al.
(2016), and our data suggest 35 mph to be the most appropriate value. As mentioned, the
collision speeds are approximated by the investigating officers through drivers' testimonies and
evidence gathered from the crash site, such as skid marks, airbag deployment, and the extent of
damage sustained by the vehicles. To ensure adequate data representation across various injury
severity levels, the five distinct injury levels were consolidated into two: injuries sustained and
property damage only (PDO). The resultant dataset comprised 3,648 collisions, among which
1,144 led to injuries, while 2,504 resulted solely in PDO. Table 3 shows the descriptive statistics
for all variables in this dataset.

100 4 —® Fatal & Serious Injury
=== Threshold

Cumulative Frequency Percentage
£

30

20 1

10 1

04

0 10 20 30 40 50 60 70 B0 90 100
Collision Speed

Figure 3. Cumulative frequency percentage vs. collision speeds for rear end crashes.
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Table 3. Descriptive statistics of variables for Rear-end crashes with high collision speed.

Variables

Percent (%)
(when variable = 1)

Driver Characteristics

Gender (1 if at-fault driver in a crash is female, 0 otherwise) 34.34
Younger drivers (1 if age of at-fault driver is below 35, 0 otherwise) 55.93
Middle-aged drivers (1 if age of at-fault driver is between 35 and 50 years, 0 20.96
otherwise) ’
Older drivers (1 if age of at-fault driver is above 50, 0 otherwise) 23.16
Driving too fast (1 if marked as contributing factor by investigation officer, 0 84.02
otherwise) ’
Distracted (1 if marked as contributing factor by investigation officer, 0 519
otherwise) )
Failed to yield right of way (1 if marked as contributing factor by investigation 0.66
officer, 0 otherwise) )
Under the influence (1 if marked as contributing factor by investigation officer, 373
0 otherwise) )
Crash Characteristics

2-vehicles (1 if the number of vehicles involved in a crash is 2, 0 otherwise) 71.72
3+ vehicles (1 if the number of vehicles involved in a crash is 3 or more, 0 2831
otherwise) ’
Truck involved (1 if a truck is involved in the crash, 0 otherwise) 16.88
Vehicle Characteristics

Airbag (1 if airbag is deployed, 0 otherwise) 26.50
Roadway Characteristics

Interstate (1 if crash occurred on an interstate, O otherwise) 71.47
Curve - level (1 if crash occurred on a horizontal curve with level grade, 0 1.92
otherwise) )
Straight - on grade (1 if crash occurred on a straight section on a grade, 0 11.37
otherwise) ’
Straight - level (1 if crash occurred on a straight section on level grade, 0 8526
otherwise) ’
Roadway (1 if first harmful event occurred on roadway, 0 otherwise) 98.44
Two-way divided (1 if roadway is divided, 0 otherwise) 80.27
Environmental Characteristics

Dark (1 if crash occurred in dark lighting condition, 0 otherwise) 22.20
Dawn or Dusk (1 if crash occurred in dawn or dusk lighting condition, 0 396
otherwise) )
Daylight (1 if crash occurred in daylight lighting condition, 0 otherwise) 74.60
Clear (1 if crash occurred in a clear weather condition, O otherwise) 86.49
Posted speed limit (1 if posted speed limit is above 60, 0 otherwise) 45.79
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3.1.2. Data for Crash Report Narrative Discrepancies

Traffic collision forms (TR-310 forms) of fatal crashes occurring within work zones from 2014 to
2020 were provided by the SCDOT in PDF format as shown in Figures 4 and 5. Fields containing
personal information were removed from the reports by the SCDOT. The information in the
collision forms has been digitized by the SCDPS, and the digitized data were provided in a
spreadsheet format. From the provided 300 traffic collision forms, 200 were randomly selected
for review of discrepancies between the written narrative and the form fields on the traffic
collision form. The reason for not reviewing all 300 forms is that the process of analyzing the
information on the form and documenting the discrepancies can take up to two hours for each
form. A sample size of 200 or two-thirds of the population is often considered sufficient.
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Figure 4. South Carolina traffic collision form (TR-310), front side.
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Figure 5. South Carolina traffic collision form (TR-310), back side.
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When information in a form field does not match the written narrative, the entire traffic collision
form is classified as having a discrepancy. An example of a discrepancy is shown in Figures 6 and
7. The narrative describes Unit 2 as moving and Unit 3 as stopped in traffic, but the relevant form
field has this information backward.

Photo:  Describe What Happened (Refer to Units by Number )

Z0)
UNITS 1, 2 AND 3 WERE TRAVELING WEST ON I-26. UNIT 3
STOPPED FOR TRAFFIC. UNIT 2 WAS DRIVING TOO FAST FOR
CONDITIONS AND STRUCK UNIT 3 IN THE REAR. UNIT 1 WAS
DRIVING TOO FAST FOR CONDITIONS AND STRUCK UNIT 2 IN
THE REAR.

Figure 6. Discrepancy example, written narrative (Field 86). Highlights added for clarity.

Action Prior to Impact | (Vehicle)
106 | 01-Backing 08-Parked

209 | 02-Changing lanes 09-Slowing or

306 |03-Entering traffic lane  Stopped in traffic
04-Leaving traffic lane 10-Tuming left
05-Making U-turn 11-Turning right
06-Movements Essentially Straight Ahead

07-Overtaking/passing 88-Other )

Figure 7. Discrepancy example, action prior to impact (Field 129). Highlights added for clarity.

In addition to classifying discrepancies at the form level, the discrepancies were also counted at
the field level. When multiple items in a field contain incorrect information, they are treated as
a single discrepancy. For example, Fields 109 to 112 in Figure 5 capture the sequence of events
following the action prior to impact. If the officer left out an event described in the written
narrative, a correction would affect the entire sequence of fields. If only a single event was
omitted, it is counted as one discrepancy. A total of 17 distinct fields were investigated based on
what information was included in the narrative. Given the reporting officers’ conciseness in their
descriptions, some narratives may not have contained information that could be compared to
some of the 17 fields. As such, the selected fields represent the most common information
available in the narrative, but not all fields could be compared to the narrative in every case.
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A summary of the frequency of discrepancies at the form level is shown in Table 4. It can be seen
that 63.5%, 31%, and 5.5% of the forms contained 0, 1, and 2 discrepancies, respectively. The
discrepancies by form field are shown in Table 5. The fields with the most discrepancies are the
sequence of events, action prior to impact, manner of collision, and contributing factors. Their
discrepancy rates are 31.0%, 21.4%, and 13.1%, respectively. Many of the fields had 0, 1, or 2
discrepancies.

Table 4. Number of forms with discrepancies between form fields and narrative.
Number of Discrepancies Traffic Collision Form Count

0 127
1 62
2 11

Table 5. Number of discrepancies by form fields.

Discrepancy Type Form Field Number(s) Error Count
Sequence of Events 109-112 26
Most Harmful Event 113
First Harmful Event 114
Manner of Collision 115 11

Deformed Areas 116-117 7

Vehicle Type 118

Vehicle Attachments 126
Extent of Deformity 128 2
Action Prior to Impact 129 18
Trafficway Type 131 0
First Harmful Event Location 133 1
Road Character 134 0
Traffic Control Type 136 1
Work Zone Type 142 0
Worker Presence 143 0
Junction Type 144 2
Contributing Factors 145-149 11

3.1.3. Data for Law Enforcement Effectiveness

To determine the effectiveness of law enforcement, data on police presence was compared to
average vehicle speed at five selected work zones. Data on police presence was acquired from
the monthly invoices from the Safety Improvement Team (SIT) provided by SCDOT in PDF format
for all months between January 2018 and December 2020. Each PDF file contained pages for
individual officers displaying the number of hours spent at each work zone identifier. One such
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page is shown in Figure 8. For the months between January 2018 and December 2019, the officer
name, hours worked, and work zone identifier were manually entered into a spreadsheet format.
Months within 2020 were excluded at the recommendation of the project steering and
implementation committee (PSIC) due to the potential impact of the COVID-19 pandemic on the
data. Additionally, it was assumed that law enforcement is “present” if the hours spent at the
site are 10 or more, and there is no law enforcement if the hours spent at the site are less than
10 hours. The reason for this is that the assignment is intended to be full-time. Anything less than
10 hours is assumed to not have the intended effect. The percentage of days when troopers spent
less than 10 hours on site is 5.6% among the five projects analyzed in this study. Therefore, this
assumption does not have a significant bearing on the results.

EMPLOYEE MONTHLY TIME RECORD
Participation Agreement for Safety Improvement Team
Enforcement Campaign
Mame of Employes:
SIT Region: SIT Post 5 Maonith: | Year: 2018
Work l Mon-Work
Zone Work Work Zone Zone Over Time
Hours | Other |County | Zone Tickets Speeding Warnings | Collisions | Collisions | Hours
Day | Worked | Hours | Code Worked Issued | Seatbelt | Contacts | DUI Issued | PD _Inj Ftl ) PD Inj Ftl | Worked
1 10 21 8805531 5 1 10 []
2 SR = S—
= - |
4
5
[}
1
10 B805531
10 2 BB05S.
- 10 2 88055
10 2 BA0 55
19 10 21 | BBOSS3Y | 1 10 9
20 10 21 8805531 10 10
21 10 21 | 880553 7 2 9 9
22
2 50 I I I SR —
24
25 10 21 8805531 7 7 8
26 10 21 BE05531 2 3 1 1
27 10 | 21| s805531 3 [ T
28 10 21 | 8805531 - H F]
28
30
3
Hours 120 0 I i | Wk " s Voo g ] #n | Po ] m | Fu | =
Total 120 wainin 3 3 63 1] 52 ojojojijojo o
Comments: _*‘PO- Property Damage _nj- Inyury _Fii- Fatality™*
11/5-11/8 AL
11/12 Rain
11/13 Line Inspection
11/14 Rain
11115 Admin. & Rain
Employee:
Ravisad DM G Supervisor,

Figure 8. One SIT Invoice for November 2018.

From this spreadsheet, a list of all identifiers used by the officers was acquired. Because the type
of identifier (contract or project) was not stated in the SIT invoices, researchers searched for each
identifier in the P2S database. Five work zones with substantial police presence and P2S
information available were selected to gather data on average vehicle speed, as shown in Table
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6. Analysis was limited to these five work zones due to the time-consuming nature of acquiring
speed data for each work zone.

Table 6. Contract and project IDs for the five work zones analyzed for this project.

Contract ID Project ID
1091731 24011
4208281 P029074
4210170 P029699
5384210 38111
3288840 P027003

To determine average vehicle speed, each work zone location was identified in GIS. The locations
were cross-referenced with a shapefile provided by SCDOT containing link IDs associated with
roadway segments. SCDOT provided vehicle speed data for each link ID that the researchers
requested. For each work zone, two groupings of link IDs were determined: one for all link IDs
within the mile markers of the project, and one for the link ID representing the beginning of the
project. There are no records regarding the exact location where troopers positioned themselves
in the work zone area, but the SCDOT generally asks troopers to be positioned in the transition
area (assumed to be the beginning mile marker of the project). For work zones affecting more
than one road, the link IDs were determined separately for each road, and speed data was
combined using an average weighted by the length of each affected road. For a given interstate
link 1D, SCDOT provided speed data for each hour of each day in 2019. For non-interstate link
IDs, a spreadsheet showing the TCD IDs associated with each link ID was provided, and the hourly
speed data for each TCD ID was given. As such, for non-interstate roads, link ID lists representing
each road were converted to TCD ID lists before speed data was determined.

Because officers only record the number of hours spent at a given work zone and not the times
of day in SIT invoices, vehicle speed was averaged over different daily periods. These periods
included 0:00to 11:59, 12:00to 23:59, 7:00 to 16:59, and 0:00 to 23:59. The final dataset included
one value (in miles per hour) for the average speed over the entire work zone and one value for
the average speed at the start of the work zone for each work zone on each day of 2019.

During one of the monthly meetings, the project committee expressed concern that comparing
average vehicle speed to police presence from the SIT invoices would not accurately reflect real-
life conditions because this comparison did not account for lane closures. It was suggested that
highway patrol troopers are most often present during lane closures, and thus, lane closures
could potentially account for slowdowns in vehicle speed. The only source of information
available for lane closures was daily work reports (DWRs) provided by SCDOT. Given the volume
of reports, keywords were used to designate days with lane closures rather than individually
studying each report. Lane closures were determined present at a work zone on a given day if
one of the selected keywords (“closure”, case-sensitive “LC”, or “traffic control”) was mentioned
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in at least one daily work report for that day. The results of this query were compared to the
number of days known to have police presence from the SIT invoices as well as the number of
days each project was active in 2019. The results are shown in Table 7. The PSIC concluded that
information from the daily work reports was insufficient to accurately capture the effect of lane
closures. As such, results from the models developed to measure law enforcement effectiveness
should be taken with the disclaimer that they cannot account for the impact of lane closures on
average vehicle speed.

Table 7. Comparison of project duration, daily work report findings, and SIT invoice data for 2019.
ProjectID Duration @ DWR Keyword Hits Police Presence  Overlapping Days

24011 365 31 136 18
P027003 365 215 183 138
P029074 326 = 79 =
P029699 121 - 77 -
38111 365 277 167 143

3.1.4. Data for Negative Binomial Crash Prediction Model

The crash prediction model was designed to provide an expected number of crashes for a work
zone given the work zone’s length, duration, and AADT. Length and duration were to be acquired
from the P2S data provided by SCDOT at the beginning of the research project; however, it was
discovered when comparing against data from the SIT invoices previously mentioned that the
P2S data did not seem to provide a comprehensive list of work zones. To replace the original
dataset, the PSIC recommended that the researchers manually extract all P2S data for four work
zone types: widening, rehabilitation, reconstruction, and preservation. This amended P2S
dataset included information regarding length, duration, and project type. For work zone length,
project descriptions listed the roads affected by the project and their beginning and ending mile
points. The highest mile point for each road was subtracted from the lowest mile point for each
road mentioned in the project description, and all separate road lengths were added together if
the work zone project included more than one road. For work zone duration, project IDs included
a notice to proceed (NTP) date and a substantial work completion (SWC) date. The NTP date was
subtracted from the SWC date to find the duration. Because crash data was only provided for
2014 to 2020, in cases where the SWC date was empty (implying the project was ongoing) or
after 12/31/2020, a date of 12/31/2020 was used instead, and NTP dates were replaced with
01/01/2014 if they were earlier than 2014.

To find AADT, traffic count station locations were extracted from SCDOT'’s GIS resources. Using
the work zone location information from P2S, a list of all traffic count stations within the work
zone’s boundaries was determined for each work zone. For all years during which the work zone
was active, traffic counts from historical data provided by SCDOT were averaged together to
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determine a single AADT value for a work zone over the project duration. For work zones
affecting more than one road, the AADT for each segment was found separately and combined
using an average weighted by each segment’s length. The descriptive statistics of the variables
used in the crash prediction model are shown in Table 8: length (miles), duration (days), and
AADT (veh/day). The statistics provided for each project type are 25% percentile, 75th percentile,
minimum, maximum, mean, and standard deviation.

Table 8. Descriptive statistics of crash prediction model variables.

Variable Project Type 25" pct 75 pct Min Max Mean Std. Dev.
Length Widening 1.25 5.6 0.06 21.23 4.14 4.48
Length Rehabilitation 1.5 4.38 0.01 36.82 3.66 4.02
Length Preservation 1.6 6.26 0.02 61.66 5.55 7.15
Length Reconstruction 1.68 4.27 0.05 22.05 3.39 2.9
Duration  Widening 484.0 1416.75 91.0 2037.0 920.48 531.38
Duration  Rehabilitation 270.0 537.0 14.0 1535.0 414.56 233.29
Duration  Preservation 163.0 331.0 23.0 1091.0 265.23 164.57
Duration  Reconstruction 213.0 466.0 16.0 794.0 350.28 199.63
AADT Widening 4843.75 14968.75 683.0 69400.0 14772.92 17003.52
AADT Rehabilitation 1680.25 9141.5 100.0 95975.0 8047.96 12935.95
AADT Preservation 1312.5 10750.0 50.0 126508.0 9561.56 14433.04
AADT Reconstruction 1050.0 6220.0 50.0 61533.0 5558.82 7708.49

The researchers and PSIC discussed accounting for traffic control measures in the zero-inflated
negative binomial model, but this was not done due to the limited availability of traffic control
data in South Carolina. Researchers attempted to gather traffic control data from two separate
sources: traffic control plans from ProjectWise and daily work reports provided by SCDOT. The
traffic control plans provided information regarding traffic control practices at each work zone
but did not include any dates or times during which these measures were implemented. Daily
work reports were consulted as an attempt to fill this gap in information. Researchers found that
the volume of daily work reports made it difficult to filter useful from irrelevant information. Any
mentions of traffic control were not substantial enough for use in conjunction with the traffic
control plans; as such, it was determined that the available data was insufficient to determine
how effective a particular traffic control was at the work zone.

To count how many crashes occurred in each work zone, the P2S dataset was filtered by crash
date, road type, route number, and mile marker where the crashes occurred. This helped us
identify where and when each crash took place within the work zones. The process of filtering
the P2S dataset is shown in Figure 9.
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Filter data, based on Filter data, based on Filter data, based on Filter data, based on
date of crash road category road number mile point

Figure 9. The process of filtering the P2S dataset to find the number of crashes in each work zone

3.2. Methods to Identify Contributing Factors

Based on the previous studies, mixed logit models have been considered as an efficient method
to overcome unobserved heterogeneity due to their ability to account for observation-specific
variation for explanatory variables Anastasopoulos and Mannering (2011); Anderson and
Hernandez (2017); Chen et al. (2019). Thus, two separate analyses were conducted to identify
contributing factors using mixed logit models which are explained below:

3.2.1. Factors Affecting Injury in Interstate and Non-Interstate Work Zone Crashes
Sub-sections 3.2.1.1, 3.2.1.2, and 3.2.1.3 present the mathematical details of the mixed logit
model, marginal effect of factors and likelihood ratio test Madarshahian et al. (2023).

3.2.1.1. Mixed Logit Model
The utility function for mixed logit model is derived by establishing the linear relation between

injury severity level i for observation crash n which is demonstrated in Eq. (1) Madarshahian et
al. (2023)

Yin = BiXin + &in (1)

where y;, is defined as a variable explaining each injury severity level i (i in I representing injury
and no injury severity level) for driver n. f; is considered as a vector of estimated parameters,
X;n is @ vector of explanatory variables affecting work zone driver-injury severity level i and ¢;,
is the error term or extreme value to capture unobserved heterogeneity distributed independent
and identically over time, individual and alternatives. If the error term is generalized extreme
value distributed, then the choice probability can be determined using the standard multinomial
logit shown in Eq. (2).

exp [BiXin]
Ziel exp [ﬁixin]

Pn() = (2)

Pn(i) is regarded as the probability of injury severity level i caused by driver n. Mixed logit models
allow the vector of estimated parameters to vary across different crashes. Each element of £;
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may be either fixed or randomly distributed with fixed means, allowing for heterogeneity within
the observed crash dataset. Extending the above multinomial logit model, Eq. (3) can be
rewritten as:

exp[fixin] .
Ziel eXp[lgl’xin] f(ﬁllQ))dﬁl

PnGle) =

where py, ;¢ is the weighted average of the multinomial logit probabilities called mixed logit.
The weight used to estimate the probability is calculated by f(B;|@)dp; which is the density
function of §; and @ is the parameter vector. The density function uses a distribution of
parameter @, where both a mean and variance are estimated. For the current work, normal
distribution is used. It should be noted that elements of §; are fixed and randomly distributed
with specific statistical distributions. If the estimated variance is statistically significant then the
modeled injury severity levels vary with respect to x across observations and account for crash-
specific variation due to unobservables[59]. To overcome the computation complexity of
estimating the parameters 5; maximum likelihood estimation is implemented using simulation-
based procedure and Halton draws ("Statistical and Econometric Methods for Transportation
Data Analysis"). The pseudo R-squared (p?) value is used to assess the overall model fit; it is
computed using Eq. (4).

pzzl—L('m

LL(0) (4)

In above equation LL(0) is defined as the log-likelihood at zero and LL(f) calculates log-
likelihood at convergence.

3.2.1.2. Marginal Effect
Marginal effect is used to determine how the probability of injury severity levels would be
changed considering one unit change in the explanatory variables illustrated in. Eq. (5).

MPin = Pin [givenxink =1] - Pin [givenxink = 0] ©)

Xink

In the above equation, p;, states the probability of injury severity level i for driver n and X, is
the k-th independent variable affecting injury severity level i for driver n.

3.2.1.3. Likelihood Ratio Test
To determine whether the data should be modeled using two different speed categories, the log-
likelihood ratio (LR) test between the full model using the entire dataset and speed models using
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separate datasets shown in Eq. (6) was performed (“Statistical and Econometric Methods for
Transportation Data Analysis,” n.d.).

LRfull — —Z[LL(ﬁfu”) _ LL(ﬁspeed<60) _ LL(ﬁspeedzm)] (6)

The model's log likelihood at convergence for the full model on the entire dataset is defined as
LL(BT™Y) while LL(B5P¢2<60) and LL(S°P¢¢?%%0) are the model's log-likelihood at the
convergence on the separated data sets for speed limit less than 60 mph and speed limit greater
than or equal to 60 mph respectively. It should be noted that to calculate the log-likelihood
values for two separate speed limits, the variables identified from the full model should be tested
on the two categorized speed limit datasets. LR statistic has y? distribution with the degree of
freedom computed by the difference among the summation of the number of estimated
variables in two models and the number of estimated variables in the full model.

Parameter transferability is another test ("Statistical and Econometric Methods for
Transportation Data Analysis"). often used to ascertain whether two different speed limits should
be modeled separately; it is calculated using Eq. (7).

LRq, = =2[LL(B*") — LL(B*)] (7)

The log likelihood at convergence for speed model a on the data from model b is defined as
LL(B%) and the log likelihood at convergence for speed model a is defined as LL(8%). The
degrees of freedom of this test are equal to the number of estimated variables in §%b.

To estimate contributing factors affecting injury severity levels and to test the need to estimate
separate models, the NLOGIT software (version 6) was used. The process used to produce model
estimates is shown in Figure 10. As shown, this study used three datasets provided by the South
Carolina DOT: (1) unit crash dataset which contains information of all vehicles involved in crashes,
(2) location dataset which provides environmental and temporal characteristics of the crashes,
and (3) occupant dataset which includes details about the occupants of all vehicles involved in
the crashes. It's important to note that each dataset has a different number of observations. To
create the final dataset for modeling in Nlogit software, the three datasets were merged using a
common index, and this was accomplished using Python programming. The dataset was then
filtered to include only truck-involved crashes and relevant variables. Subsequently, the variables
were categorized based on previous research and SCDOT practices. The last data preparation
step involved creating binary variables for modeling. The forward and backward stepwise
selection method was used to arrive at the final model specification. A variable was retained in
the model if it is significant at the 90% confidence interval. Models were compared against one
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another using the log-likelihood at convergence and the McFadden Pseudo R-squared
Madarshahian et al. (2023).

SCDOT Crash Datasets
Unit dataset Location dataset Occupant dataset
Unit Type Route Category Occupant Gender
Driver Gender Route Characteristics | Seating position
Mumber of Rows: Number of Rows: Number of Rows:
32,134 15,729 43,058
Python

Merge three datasets using crash 1D
(Rows in the final dataset:15.729)

Remove irrelevant variables

Prepare categorical variables

Convert categorical variables to binary
for modding

h

Nlogit

Find Contnbuting Factors

- Forward and backward stepwise
selection

= Check log-likelthood values at zero
and at convergence

= Check McFadden Pseudo R-squared

- Retain significant factors
(90% confidence interval)

Figure 10. Model estimation process.

3.2.2. Factors Affecting Injury in Work Zone Rear End Crashes where collision speed 2 35 mph
The method used for this analysis is the same as the one described in Section 3.2.1, except that
it accounts for heterogeneity in both mean and variance. In such a model, the vector of estimable
parameters is permitted to vary across crash observations Mannering et al. (2016);
Seraneeprakarn et al. (2017) as shown in Eq. (8).

36



Bin = Bi + PinZin + 0in EXP(Wir Win)vin (8)

The parameter estimate f; represents the average value calculated for all crashes. The vector Z;,
comprises explanatory variables specific to crash, which account for heterogeneity in the mean
impacting injury severity level i, the vector ®;, consists of coefficients assigned to estimable
parameters, W;, is the vector of crash-specific explanatory variables that address the
heterogeneity in the standard deviation o;,, having an associated parameter vector ¥;,, and v;,
is considered as a disturbance term. To address the computational complexity associated with
estimating the parameters [5;, a simulation-based method and Halton draws O’Donnell and
Connor (1996) are utilized in implementing maximum likelihood estimation.

3.3. Analyze Crash Report Narratives and Identify Discrepancies

This project determined discrepancies within individual traffic collision forms by comparing the
narrative text (Field 86) to information recorded in the form fields. In this project, the text in the
narrative field was considered to have higher fidelity and is treated as the ground truth.
Discrepancies between the narrative and form fields suggest that there are internal and external
factors that affect the officer’s cognitive ability to recall information and record it in a consistent
manner. To this end, this project sought to determine the level of discrepancies in South Carolina
traffic collision forms and to identify factors that may have contributed to the discrepancies. The
researchers postulated that weather conditions and crash characteristics affect the process of
recording crash information for the investigating officer. For example, the greater the number
of vehicles involved in a crash, the more complex the situation, thereby requiring a higher level
of processing by the officer to accurately fill out the form. The levels of processing theory states
that the way information is encoded affects how well it is remembered. The deeper the level of
processing, the easier the information is to recall Craik and Lockhart (1972). The psychology-
based approach to understanding discrepancies in traffic collision forms is unique in the study of
misclassification. Both structural equation modeling (SEM) and multiple linear regression (MLR)
were used to identify factors that may have contributed to the discrepancies. Specifically, SEM
was used to investigate the relationships between latent variables and level of processing, and
MLR was used to investigate factors that affect the frequency of discrepancies in form fields.

3.3.1. Structural Equation Model

The data set used for SEM considered each traffic collision form as an observation. Fields
hypothesized to affect crash complexity include the number of units involved, the number of
events describing the collision, collision speed, the number of alcohol or drug tests administered,
and the license class of the at-fault driver. The level of processing was operationalized by the
number of discrepancies, the number of words in the narrative, and the number of characters in
the narrative. This information was extracted from the traffic collision forms and the digitized
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data set. Additionally, weather station data for each crash was acquired from Local
Climatological Data (LCD) on a website managed by the National Oceanic and Atmospheric
Administration (NOAA). A spreadsheet containing each station’s observations with date and time
was obtained through the NOAA’s Geoportal. The weather station closest to the crash location
was selected for each crash, and weather readings for the observation time closest to the police
arrival time were used. The complete list of variables and their data types used for SEM analysis
are shown in Table 9. It should be noted that because the SCDOT dataset was limited to only
fatal work zone crashes, crash severity, and work zone presence could not be used as variables,
although they may indeed affect reporting accuracy.

Table 9. Variables used for SEM analysis.

Data Source Variable Name Variable
Type

Form TR-310 Number of Discrepancies Discrete
Number of Characters in Narrative Discrete
Number of Words in Narrative Discrete
Number of Units (Vehicles or Pedestrians) Involved in Crash Discrete
Number of Events (for all Units) in Crash Discrete
Collision Speed (mph) Continuous
Number of Alcohol/Drug Test Administered Discrete
License Class Nominal

Weather Station Data Dry Bulb Temperature (F) Continuous

from LCD Precipitation (in) Continuous
Relative Humidity (%) Continuous
Wind Speed (mph) Continuous

SEM allows the relationship between different latent variables to be modeled. In this project,
latent variables represent the different factors that could affect an officer’'s comprehension of
the crash. These are weather conditions, crash characteristics, and level of processing. Latent
variables are inherently unmeasurable and must be measured using observed variables. In this
project, the observed variables are those shown in Table 9. These variables are not uniform in
value. For example, the variable “Character Count” has values ranging from 56 to 761, while
“Precipitation” has values ranging from 0 to 0.06 inches. Before proceeding with the SEM
analysis, the variables’ values were homogenized to the Likert scale with values ranging between
1to 5, where 1 denotes the worst condition and 5 denotes the best condition.

First, hypothesized relationships between the observed variables shown in Table 6 and the latent
variables were developed. The weather conditions factor was operationalized by wind speed,
temperature, humidity, and precipitation. The crash characteristics factor was operationalized
by the number of units, number of events, collision speed, license class, and the number of
alcohol and/or drug tests administered. The level of processing factor was operationalized by
the number of words in the narrative, the number of characters in the narrative, and the number
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of discrepancies in the form. Once the latent factors and their associated observed variables
were defined, Confirmatory Factor Analysis (CFA) was performed to test whether the data fit the
hypothesized relationships. Once results were obtained from CFA, the SEM could be developed.

SEM consists of a structural model (the paths between latent variables) and measurement
models (the relationship between each latent variable and its respective observed variables).
Latent variables are called endogenous when they are dependent on another latent variable and
exogenous when they are independent of other latent variables.  For this project, the
endogenous latent variable is the level of processing, whereas the weather conditions and crash
characteristics are exogenous. These factors were confirmed using Exploratory Factor Analysis
(EFA) with Promax rotation. Each latent variable has a measurement model composed of the
factor and its indicators. The exogenous variable measurement models can be expressed by the
following equation.

x=A,&+6 (9)

where x is a (q X 1) column vector of observed exogenous variables. § is a (q X 1) column
vector of measurement error terms for the observed variables in x. & is an (n X 1) column
vector of latent exogenous variables. A, is a (g X n) matrix of structural coefficients
corresponding to the effects of the latent exogenous variables on their observed variables. The
endogenous variable measurement model can be expressed by the following equation.

y=A4Amn+e¢ (10)

where y is a (p X 1) column vector of observed endogenous variables. €is a (p X 1) column
vector of measurement error terms for the observed variables in y. nis an (m X 1) column
vector of the latent endogenous variable. A, is a (p x m) matrix of structural coefficients
corresponding to the effects of the latent endogenous variable on its observed variables.

The structural model consists of the exogenous variables weather conditions and crash
characteristics, and the endogenous variable level of processing. Intuitively, this model
resembles the levels of processing theory. Crash factors will affect crash complexity, and weather
factors will likely have an impact on the officers’ decision on how long to spend at the crash site.
Both of these factors affect the level of processing the officer undergoes when filling out the
traffic collision form. The structural model can be expressed by the following equation.

n=pm+Iri+¢ (11)
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where B is an (m X m) matrix of coefficients for the effects between latent endogenous
variables. Since this project uses only one latent endogenous variable, the fn term is zero. I is
an (m X n) matrix of coefficients for the effects of latent exogenous variables on the latent
endogenous variables. { isan (m X 1) column vector of error terms.

Three measures of model fit were used to assess the model: Root Mean Squared Error of
Approximation (RMSEA), Tucker-Lewis Index (TLI), and comparative fit index (CFl). The RMSEA
measures goodness of fit based on the Chi-Square (y?) statistic and degrees of freedom . RMSEA
is computed using the following equation:

(12)

Rusga = |2
dfu(N —1)

where xZ is the chi-squared test statistic for the model, dfy, is the is the degrees of freedom,
and N is the sample size. There are differing opinions on the maximum acceptable RMSEA value,
but even the more stringent cutoffs agree a value less than 0.05 indicates a good model fit
(Boonyoo and Champahom (2022); Champahom et al. (2020); Hair et al. (2006); Mw (1993); Shi
et al. (2011); Steiger (2007); Wang and Qin (2014)). TLI and CFI are relative fit indices that
compare to a baseline model to assess fit, but they differ in how they are affected by model
complexity . The equation for TLI is shown below.

_ )(z%/de - XI%/I/dfM

TLI
Xﬁ/dfs -1

(13)

The equation for CFl is shown below.

2 _ df 0
CFI:l_max(XM fu,0) (14)

max (¢ — df, 0)

where y2 and dfy are the y2 and degrees of freedom for the baseline model, respectively. Both
CFl and TLI fall between 0 and 1, and values greater than 0.90 indicate the model has good
relative fit .

3.3.2. Multiple Linear Regression

The data set used for MLR considered each form field discrepancy to be an observation. With
the help of experts from SCDOT, each observation was assigned a level of difficulty, with 0
denoting a relatively simple field, requiring only visual comprehension, and 1 a more complex
field, requiring deeper comprehension. Forinstance, form fields 116-117 (Deformed Areas) were
assigned a 0 due to their visual nature, whereas form fields 109-112 (Sequence of Events) were
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assigned a 1 due to the complexity of sequentially ordering the crash-related events. Each
observation was also assigned a count of inputs and options. The input count was defined as the
number of individual boxes within the field the officer could fill out. The option count was
defined as the number of possible options the officer could select from. For example, in Figure
11, form field 126 (Vehicle Attachment) has an input count of one for each unit, with three boxes
provided. If there are more than three units, a second page is required. For each input/box, the
officer can select from 15 options. Because the narrative only includes information regarding the
crash and not personal driver information, only 17 form fields can be compared to the narrative.
The data set used to estimate the MLR model is shown in Table 10.

\ehicle Attachment [J4- Utility Trailer 8- Towed Motor Vehicle C- Other Tanker
12 6] - None 5- Farm Trailer 9- Petroleum Tanker D- Flat Bed

= 2- Mobile Home  6- Trailer wi Boat A~ Lowboy Trailer E- Twin Trailers
a 3= Semi-Trailer 7- Camper Trailer B- Awtocarrier Trailer F- Other

Figure 11. Form field 126 (Vehicle Attachment). The red number is for labeling each field and does not appear on
the actual form.

Table 10. Reports by type of error.
Form Location Level of Difficulty Error Count Input Count Option Count

109-112 1 26 12 51
113 1 1 3 12
114 1 1 1 12
115 1 11 3 11

116-117 0 7 6 61
118 0 0 3 18
126 0 1 3 15
128 0 2 3 6
129 1 18 3 20
131 0 0 1 5
133 1 1 2 11
134 0 0 1 6
136 0 1 1 16

For MLR, the following assumptions are made: (1) the residuals are normally distributed, (2) there
is a linear relationship between the dependent and independent variables, (3) the variance of
errors is consistent across independent variables (homoskedasticity), and (4) the independent
variables are independent . The data set used for the MLR model was assessed and found to
satisfy the assumption criteria Osborne and Waters (2019); Uyanik and Giler (2013); Williams et
al. (2019). An MLR model was created to assess the effect of the level of processing, number of
inputs, and number of options on the number of discrepancies by field type. The MLR model can
be expressed as follows.
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Yy =PBo+ Bix1+ Paxz + -+ Bix; + € (15)

where y is the expected value for the dependent variable (discrepancies), and x; is the list of
independent variables (level of difficulty, number of inputs, and number of options). [, is the
value of y when the independent variables are all zero, and f; through [; are the regression
coefficients for the independent variables x;. ¢ is the error between the predicted and observed
value for the dependent variable, or residual.

To assess the goodness of fit, R-squared and adjusted R-squared were used. These values
indicate the amount of variance explained by the model and range from 0 to 1, with a value of 1
indicating all variance can be explained by the model. Adjusted R-squared compensates for the
addition of variables into a model Eberly (2007); Favero et al. (2023); Jobson (2012).

3.4. Law Enforcement Effectiveness

To determine the effectiveness of law enforcement, a split-plot design with a blocking factor was
used and AADT was used as the covariate. The split-plot design structure is a hierarchical or
multi-level design consisting of experimental units with two different sizes with separate
randomization steps Stroup et al. (2018). It is a useful design when it is difficult to have the same
size of experimental units and by using it we can remove some variability due to the larger
experimental units. That is, we can gain extra precision for some comparisons compared to a
factorial treatment design. The main factor in the design was the season, which had four levels,
while the subplot factor was the presence of state troopers. We also accounted for the type of
work zone (treated as a blocking factor). Overall, we assessed and compared eight different
models as depicted in Table 11. Models 1 through 4 were based on the average speed of the
entire work zone as the response variable, whereas Models 5 through 8 focused on the average
speed specifically within the transition area. For each response type, we examined two
variations. The first involved subtracting the temporary posted speed limit from the average
speed. This approach aimed to shed light on the degree of speeding or adherence to the
temporary posted speed limit. Another variation entailed the inclusion of a covariate. Traffic
volume was introduced as a covariate, and relative efficiency was computed to gauge whether
adding the covariate enhanced the model's performance. The eight evaluated models are listed
below. Models 1, 3, 5, and 7, excluding the covariate, can be represented as:

yijk = u+ ai+wij+rk+(ar)ik+bj+£ijk (16)

Where y; i represents the response variable, which is the average speed in the work zone for
Models 1-4, and the average speed where troopers are stationed for Models 5-8, corresponding
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to season i (i =1,2,3,4), where i =1 represents 'Fall', i = 2 represents 'Winter', i =3
represents 'Spring', and i = 4 represents 'Summer'. The blocks are denoted by j (j =
1,2,3,4,5), and police presence is denoted by k (k = 1,2), where k = 1 indicates no police
presence in the work zone and k = 2 indicates police presence in the work zone. The block term
denotes the different types of work zones, with j = 1 corresponding to 'Widening', j = 2 to
'‘Bridge Replacement', j = 3 to 'Resurfacing', j = 4 to 'Interchange Improvement', andj = 5 to
'‘Rehabilitation’. The overall mean is denoted by u. a; stands for the effect of season i, which is
the main plot effect. w;; represents the main plot error term, also interpreted as the interaction
between the main plot effect and the block effect (the interaction between the season effect and
the type of work zone). 7 signifies the subplot effect, reflecting the effect of police presence.
(at);x indicates the interaction between the main plot and subplot effects (the interaction
between the season and police presence effects). b; denotes the block effect, representing the
effect of the type of work zone. Lastly, &;;; represents the subplot. The main plot error and
subplot error terms are assumed to follow identical and independent normal distributions.

(w;;~N(0,0,3) and €;;,~N(0,0?)).
Models 2, 4, 6, and 8, incorporating the covariate, can be expressed as:
Vijk = U+ a; +wij + 1 + (@0 + by + B(xijr — X) &k (17)

In Eqg. (16), the terms mentioned, apart from 3, x;x, and X, have been previously defined. In Eq.
(17), we introduce the covariate into the model using the term S (x;;, — X). Here, 8 represents
the coefficient signifying the relationship between the response y;j, and the specific covariate
Xijk, Which in this case is traffic volume. The data were centered by subtracting the overall mean
X from the actual covariate. It was determined that a common slope f across all treatment
combinations was adequate.

Table 11. Splot-plot Models Analyzed

Subtract .
Temporary Posted Add Traffic
Model Response Variable .. Volume as a
Speed Limit from Covariate
Observed Speed
1 Average speed throughout work-zone No No
2 Average speed throughout work-zone No Yes
3 Average speed throughout work-zone Yes No
4 Average speed throughout work-zone Yes Yes
5 Average speed where troopers stationed No No
6 Average speed where troopers stationed No Yes
7 Average speed where troopers stationed Yes No
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Subtract .
. Temporary Posted e
Model Response Variable . Volume as a
Speed Limit from Covariate
Observed Speed
8 Average speed where troopers stationed Yes Yes

3.4.1. Model Efficiency with Traffic Volume as a Covariate
To evaluate the efficacy of incorporating a covariate into the model for error control, one could
assess the difference in error variances when comparing models with and without the covariate

adjusted by the treatment, as denoted in Eq. (18).

Txx ]
(t — DExx (18)
MSE

MSE(COV) [1 +

E =

The efficiency (denoted by E) of including a covariate in the analysis can be quantified. Mean
Squared Error (MSE) is a metric that gauges the average squared deviation between observed
and predicted values. It is computed for both models, with and without the covariate. In this
context, Exy represents the sum of squared discrepancies between each observed value of the
covariate and its mean, while T,, signifies the sum of squared discrepancies between the
predicted values of the covariate from the ANCOVA model and its mean. In Eq. (18), "t"
corresponds to the number of treatment groups being compared.

3.5. Inflated Zero Negative Binomial Crash Prediction Model

There were a number of work zones with zero crashes as shown in Table 12. It can be seen that
39% of widening projects had zero crashes, 82% for rehabilitation, 86% for reconstruction, and
89% for preservation. For this reason, the zero-inflated Negative Binomial (ZINB) model was used
for it is designed to handle overdispersion and excessive zeros simultaneously.

Table 12. Percentage of zero crashes for each work zone type
Percentage of zero crashes
Widening Rehabilitation Reconstruction Preservation
39% 82% 86% 89%

To further explain Table 12, it should be noted that a 39% widening indicates that among all
crashes occurring in all widening projects, 39% of these projects experienced no crashes. This
trend is also consistent for rehabilitation, reconstruction, and preservation projects.

The ZINB model accounts for both the frequency of non-zero counts and the presence of excess
zeros in the data as shown in Eq. (19):
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E(crashes) = (1 — m,) x e*Xif (19)

In the formula shown above, the value of iy is determined by the following equation:

1

= — 20
1+ e %P (20)

Ty

In the ZINB model, , represents the likelihood of observing excess zeros, indicating the
probability that a given observation arises from the zero-inflated component of the model rather
than the count component. The variable X, in Eq. (20) signifies the predictor or explanatory
variable (work zone length, work zone duration, and AADT) to estimate the probability of excess
zeros for each observation in the dataset. Additionally, B represents the coefficients linked to
the predictor variables X,, illustrating their impact on the probability of excess zeros; positive
coefficients imply an increase in the likelihood of observing excess zeros, while negative
coefficients suggest the opposite effect. On the contrary, x;£ in Eq. (19) arises from the count
model, representing the linear combination of predictor variables x; (work zone length, work
zone duration, and AADT) and their corresponding coefficients f. This term encapsulates the
relationship between the predictors and the expected count of non-zero observations, providing
insights into how changes in the predictors influence the count outcome. In essence, x;f3
qguantifies the impact of the predictor variables on the expected count, facilitating the prediction
of non-zero observations in the dataset.

It should be noted that we used the natural logarithm of AADT as the independent variable for
predicting the crash counts. The reason for using log(AADT) instead of just AADT is that its
variance is significantly different from that of other variables, resulting in parameter estimation
errors. By using the logarithmic transformation, we successfully mitigated this issue. The ZINB
model was estimated using the R statistical software. A copy of the code is provided in Appendix
A.
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4. Findings

4.1. Contributing Factors

There are many angles from which factors that contribute to work zone-related crashes in SC
could be analyzed. In this project, two different angles are taken. The first is to determine if
there is any difference in the contributing factors between work zones on roads with speed limits
of 60 mph or higher and work zones on roads with speed limits less than 60 mph. The motivation
for this analysis is to determine if the stringent work zone guidelines required for interstates
lower injury risk. If so, the SCDOT could consider increasing traffic control standards for work
zones on lower-speed roads. The other angle is to determine if rear-end crashes with collision
speeds greater than or equal to 35 mph increase injury risk. If so, the SCDOT could consider
putting in countermeasures to reduce the traffic speed through the work zones.

4.1.1. Factors Affecting Injury in Interstate and Non-Interstate Work Zone Crashes

The log-likelihood ratio test yielded a value of 20.92 with 10 degrees of freedom (p_value<
0.022); the log-likelihood value for the full model is -1329.43, the log-likelihood value for the
posted speed limit less than 60 mph is -744.83, and the log-likelihood value for the posted speed
limit greater than or equal to 60 mph equals is -574.14. To find the log-likelihood values for the
different speed categories, the full model is needed, and its estimation results are shown in Table
13.

Table 13. Parameters estimate and marginal effects for full model.

Variable Coefficient | t-statistic | p-value M_arglnal Effects
Injury ‘ PDO

Defined for injury
Rear End (standard deviation of parameter 0.86 4.02 0.000
distribution) (1.037) (1.68) (0.09) 0.064 -0.064
Constant -0.49 -2.31 0.020
Two vehicles -1.24 -8.67 0.000 -0.109 0.109
Interstate -0.42 -3.36 0.000 -0.039 0.039
Dark 0.42 3.52 0.000 0.017 -0.017
Female 0.53 3.54 0.000 0.011 -0.011
Weekday -0.40 -2.62 0.009 -0.441 0.441
Lane shift/Crossover -0.49 -2.25 0.025 -0.004 0.004
Under Influence -1.04 -2.76 0.006 0.004 -0.004
Model Statistics
Number of observations 3064
Log-likelihood at zero, LL(0) -2123.8
Log-likelihood at convergence, LL(f) -1329.4
p?=1— LL(B)/LL(0) 0.37
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The result of the log-likelihood test suggests that the two different speed limit groups should be
modeled separately with over 95% confidence. It follows from the parameter transferability tests
that two separate mixed logit models are to be estimated, one for a posted speed limit less than
60 mph (representing non-interstates) and one for a posted speed limit greater than or equal to
60 mph (representing interstates). Table 14 shows the results of the parameter transferability
test Madarshahian et al. (2023).

Table 14. Results of parameter transferability tests for two speed categories.

.. Speed limit category
|
Speed limit category < 60 mph > to 60 mph
< 60 mph - 32.69 (p<0.001)
> to 60 mph 28.28 (12) (p=0.005) -

Each model predicts two levels of injury severity: injury and PDO. A simulation-based maximum
likelihood method was utilized to estimate the parameters 5 for the mixed logit models. To
estimate random parameters, the normal distribution was considered, and 500 Halton draws
were used. The normal distribution was adopted because it was found to be statistically
significant in several previous studies Uddin and Huynh2020, 2017). During the model
development process, variables were retained in the specification if they had t-statistics
corresponding to the 90% confidence level or higher on a two-tailed t-test. The random
parameters were retained if their standard deviations had t-statistics corresponding to the 90%
confidence level or higher. Model estimation results are shown in Tables 14 and 15 along with
marginal effects for all the variables included in the final specifications. It should be noted that
other speed grouops such as < 50 mph and = 50 mph were not evaluated. Thus, the following
results and their implications apply only to the selected speed groups, < 60 mph and = 60 mph.

Table 15. Parameter estimates and marginal effects for the model with a speed limit <60 mph.

Variable Coefficient | t-statistic | p-value M.a izlallEffcors
Injury | PDO

Defined for injury
Two vehicles (standard deviation of -3.13 0.002
parameter distribution) "2:37(2.72) (3.12) (0.002) -0.00440.0044
Constant -2.40 -5.78 0.000
SC, US primary 1.10 3.85 0.000 0.2880 -0.2880
Dark 0.67 2.78 0.005 0.0176 -0.0176
Female 0.71 2.25 0.024  0.0096 -0.0096
Age less than 35 0.51 2.32 0.020 0.0133 -0.0133
Activity area 0.49 -2.12 0.034 0.0304 -0.0304
Driving too fast 1.09 -4.48 0.000 0.0404 -0.0404
Sideswipe -0.86 2.81 0.005 -0.0171 0.0171
Workers present 0.45 -2.01 0.004 0.0249 -0.0249
Fixed Object -1.28 3.53 0.000 -0.0097 0.0097
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Model Statistics

Number of observations 1748
Log-likelihood at zero, LL(0) -1211.62
Log-likelihood at convergence, LL(f) -730.77
p?=1— LL(B)/LL(0) 0.397

Table 16. Parameter estimates and marginal effects for the model with a speed limit > 60 mph.

Variable Coefficient | t-statistic | p-value M.argmal Effects
Injury PDO

Defined for injury
Constant -2.42 -7.40 0.000
Shoulder median (standard deviation of 2.13 0.033
parameter distribution) 11(262) (3.74) (0.000) 0.0325 -0.0325
Multi vehicles 1.82 7.20 0.000 0.0484 -0.0484
Driving too fast 0.61 2.52 0.012 0.0330 -0.0330
Rear end 0.96 3.86 0.000 0.0526 -0.0526
Weekday -0.71 -2.68 0.007 -0.0607 0.0607
Before first sign 0.64 -1.80 0.072 0.0051 -0.0051
Dark 0.95 -4.16 0.000 0.0308 -0.0308
Female 0.65 -2.35 0.019 0.0094 -0.0094
Model Statistics
Number of observations 1305
Log-likelihood at zero, LL(0) -904.56
Log-likelihood at convergence, LL(f) -567.27
p?=1— LL(B)/LL(0) 0.37

Table 15 shows the parameter estimates for the model corresponding to work zone crashes
where the posted speed limit of the roadway is less than 60 mph. A positive coefficient implies
that the variable is positively associated with the likelihood of that specific injury severity level.
In other words, an increase in an independent variable with a positive coefficient results in a
higher probability of occurrence of the specific injury severity level. In this model, one indicator
variable, Two vehicles, has a statistically significant standard deviation (random parameter). This
result suggests that the effect of the Two vehicles' variable on injury severity varied significantly
across crashes. This coefficient is normally distributed with a mean of -2.37 and a standard
deviation of 2.72, indicating that this variable has a positive impact on 19.18% of observations
(increases the likelihood of an injury crash) and a negative impact on 80.82% of observations
(decreases the likelihood of an injury crash). This finding suggests that for a majority of truck-
involved crashes at work zones where the roadway posted speed limit is below 60 mph
(representing non-interstates), the involvement of two vehicles (as opposed to three or greater)
reduces the likelihood of an injury crash.

Table 16 shows the parameter estimates for the model corresponding to work zone crashes
where the posted speed limit of the roadway is 60 mph or greater. In this model, one indicator
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variable, Shoulder/Median (from field 142 shown in Figure 4), has a statistically significant
standard deviation (random parameter). This result suggests that the effect of the
Shoulder/Median variable on injury severity varied significantly across crashes. This coefficient
is normally distributed with a mean of 1.1 and a standard deviation of 2.62, indicating that this
variable has a positive impact on 66.27% of observations (increases the likelihood of an injury
crash) and a negative impact on 33.73% of observations (decreases the likelihood of an injury
crash). This finding suggests that for a majority of truck-involved crashes at work zones where
the roadway posted speed limit is 60 mph or greater (representing interstates), crash occurrence
on a shoulder or median increases the likelihood of injury. A possible explanation for this is the
use of concrete barriers on interstates in South Carolina and the smaller clear zones in some
areas. According to the Federal Highway Administration, “By creating Clear Zones, roadway
agencies can increase the likelihood that a roadway departure results in a safe recovery rather
than a crash, and mitigate the severity of crashes that do occur.”

Building separate injury severity models based on posted speed limits allows for a deeper
understanding of how contributing factors vary across different speed limit ranges. The two
models presented in this section show that there are considerable differences in terms of the
combination of factors affecting injury severity, and the magnitude of the impact of these factors.
These results highlight the fact that the posted speed limit of the roadway where the work zone
is located interacts greatly with other factors impacting injury severity. Table 17 provides a
summary of the variables that are statistically significant for the two speed-limit groups. The
random parameters are not included in this table because they have varying impacts across
observations.

Table 17. Models Comparison.

) Speed < 60 mph Speed > 60 mph
Variable ; -
Injury PDO Injury PDO
SC, US Primary T l
Dark T l T l
female T l T l
Younger Driver T l
Activity area T l
Driving too fast T l T l
Sideswipe l T
Workers present T l
Fixed object l T
3+ vehicles l
Rear End T l
Before 1% sign T l
Weekday l T
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4.1.2. Factors Affecting Injury in Work Zone Rear End Crashes where collision speed 2 35 mph

The mixed-logit model which takes into account variations in both mean and variance was
estimated using the NLOGIT (version 6) software. The estimation of parameters f8; was
conducted through a simulation-based maximum likelihood method with 1000 Halton draws. In
analyzing random parameters, a normal distribution was assumed, following its statistical
significance as noted by previous studies Uddin and Huynh (2020, 2017). Variables were included
in the model if their t-statistics met or surpassed the 90% confidence level, with random
parameters retained if their variance showed significance at the same confidence level. Table 18
shows the final model coefficients and corresponding t-statistics, p-values, marginal effects, and
base level. Interpretation of the mixed logit model is the same as that of the multinomial logit
model, wherein a positive coefficient indicates a positive association with injury probability.
Notably, the model demonstrates a favorable statistical fit, evidenced by an p2 value of 0.2. The
random parameter linked to the "Interstate" variable reveals a statistically significant standard
deviation, suggesting variability in its impact on injury severity across different crashes. Further
analysis reveals that the "Interstate" variable predominantly influences injury severity positively
for approximately 83.52% of the cases, with a minority (16.48%) showing a negative impact. This
implies a higher likelihood of injury in rear-end crashes at work zones on interstates in South
Carolina compared to non-interstates when collision speed exceeds 35 mph. Moreover, the
estimation highlights heterogeneity in both mean and variance of the "Interstate" random
parameter, with variations noted based on crash time and lighting conditions, as well as the
presence of drivers under the influence contributing to increased variance.

Table 18. Model estimation results.

i L. . Marginal Effects Base
Variable Coefficient t-statistic | p-value Injury PDO Level
Interstate
(Standard deviation of parameter -0.78 (0.80) -5.02 0.000 -0.051 0.051 N.A
S (1.83) (0.067)
distribution)
Heterogeneity in the mean of random parameter
Interstate: Late night
(1 if crash occurs between 12-6 a.m., 0.6 2.60 0.009
0 otherwise)
Interstate: Dawn or Dusk
(1 if crash occurred in a dawn or dusk 1.70 3.03 0.002
lighting condition, 0 otherwise)
Heterogeneity in the variance of random parameter
Interstate: Under influence
(1 if the contributing factor of crash is 1.35 1.77 0.076
under the influence, 0 otherwise)
Constant -0.35 -1.70 0.089
3+ Vehicles 0.76 7.29 0.000 0.042 -0.042 2 Vehicles
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. .. . Marginal Effects Base
Variable Coefficient t-statistic | p-value Injury PDO Level
Airbag
Airbag deployed 1.32 10.31 0.000 0.073 -0.073 not
deployed
Termination/transition -0.39 -1.95 0050 0012 0012 Defore
first sign
Advanced warning area -0.48 -2.33 0020 -0012 o012 Defore
first sign
Activity area -0.39 214 0033 0043 0043 Defore
first sign
. Lane
Lane shift/crossover -0.39 -2.41 0.016 -0.006 0.006
closure
Shoulder/Median -0.29 -2.85 0.004 -0.028 0.028  Old driver
Middle-aged drivers -0.38 -2.96 0.003 -0.013 0.013  Old driver
Dawn or Dusk -1.10 -2.26 0.024 -0.006 0.006 Day light
Dark 0.29 2.69 0.007 0.012 -0.012 Day light
Truck involved 0.51 4.29 0000 0016 -0016 oruck
involved
Model statistics
Number of observations 3648
Log-likelihood at zero, LL(0) -2528.60
Log-likelihood at convergence, LL() -2037.27
p?=1- LL(B)/LL(0) 0.2

Table 19 summarizes the impact of statistically significant variables concerning rear-end crashes
at collision speeds greater than or equal to 35 mph. The random parameter is not included since
its effects vary across observations. These variables exhibit a positive effect on injury:
involvement of 3 or more vehicles, deployment of airbags, dark conditions, and involvement of
one or more trucks. All other variables demonstrate a negative effect.

Table 19. effect of variables.

Variable Base Level Injury
3+ Vehicles 2 Vehicles T
Airbag deployed Airbag not deployed T
Termination/transition Before first sign l
Advanced warning area Before first sign l
Activity area Before first sign l
Lane shift/crossover Lane closure l
Shoulder/Median Lane closure l
Young drivers Old drivers l
Middle-aged drivers Old drivers l
Dawn or Dusk Day light l
Dark Day light T
Truck involved No-truck involved T
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4.2. Countermeasures

As detailed in Section 3.1.4, efforts to extract pertinent work zone data from traffic control plans
and daily work reports proved unsuccessful. Given the absence of suitable SC data to assess the
effectiveness of specific traffic controls or countermeasures at work zones, it is recommended
that the SCDOT consider utilizing work zone countermeasures developed specifically for work
zones by the University of Missouri. These countermeasures were established through research
supported by the U.S. Department of Transportation under cooperative agreement numbers
DTFH6113RA00019 and 693JJ31750003. Their corresponding Crash Modification Factors (CMFs)
are shown in Figure 12 which were used in the work zone risk assessment tool to calculate the
reduction in the number of crashes. For the “Active Work with no Lane Closure”
countermeasure, the baseline is “no work zone.” For the “Implement left-hand merge and
downstream lane shift,” the baseline is the conventional right-lane closure. When more than
one countermeasure is used, the combined effect can be determined using Eq. (21):

CMF; = CMF, X CMF, X ... (21)
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Crash Severi
Description Fatal Sen:-ous Minor roo | Al CMF
Injul Injury
- - - ' in Duration x 1.11
Increase Work Zone Duration w v o1+ S cnenedse ml 0 :; ol
- - - oL § i
Increase Work Zone Length - v 1+ N incredee llnolgngth 2367
v v v - - 1.17
Active Work with no Lane Closure (Daytime)* - - - v - 1.40
- - - - v 1.31
v v i - - 1.41
Active Work with no Lane Closure (Nighttime)** - - - v - 1.67
- - - - v 1.58
v v v - - 1.46
Active Work with Temporary Lane Closure (Daytime)* - - - 1 - 1.81
- - - - v 1.66
v v v - - 1.42
Active Work with Temporary Lane Closure (Nighttime)™ - - - v - 1.75
- N = - v 1.61
v v v - = 1.02
No Active Work with No Lane Closure (Daytime)* - - - v - 1.20
- - - - v 1.13
v v v - - 111
Mo Active Work with No Lane Closure (Nighttime)** - - - v - 1.33
- - - - v 1.24
] v v Vi - - 224
Implement left-hand merge and downstream lane shift = = = 7 054
Increase the outside shoulder width inside the WZ by one foot - - - - v 0.95
Increase the inside shoulder width inside the WZ by one foot - - - - v 0.97
Two-way traffic operation-crossover closure - - - - ¥ 1.00
Implement mobile automated speed enforcement system” v v v - - 0.83
End of Queue Warning System (Nighttime)* - - - - v 0.56
Portable Rumble Strips - No Queue (Nighttime)* - - - - v 0.89
Portable Rumble Strips - Queued (Nighttime)* - - - - v 0.40
EOQ Warning System and Portable Rumble Strips - No Queue (Nightime)*| - - - - v 0.72
EOQ Warning System and Portable Rumble Strips - Queued (Nighttime)* - - - - s 0.47

*Daytime : 6 am to 7 pm **Nighttime : 7 pm to 6 am *Nighttime : 7 pm to 7 am *CMF based on non-work zone data

Figure 12. Work zone crash modification factors (“Development of Work Zone Crash Modification Factors
(CMFs),” n.d.).

Figure 13 illustrates the process incorporated into the risk assessment tool for determining
whether countermeasures should be implemented. The first step is to select suitable
countermeasures for the identified contributing factors. The second step is to calculate the
combined effect using Eq. (21) if more than one countermeasure is selected. The third step is to
determine the threshold for the benefit-cost ratio (BCR). Generally, if a project has a BCR greater
than 1.0, then it is expected to deliver a positive net present value to the agency. However, some
agencies may prefer to have a higher threshold than 1.0. The fourth step is to determine the cost
of implementing the countermeasures per mile, the average crash cost, and the expected
number of crashes in the work zone. The fifth step is to determine the estimated crash cost
savings and total cost of improvement. The sixth and last step is to calculate their quotient (i.e.,
BCR) and if it is greater than the threshold determined in the third step, then the implementation
of the countermeasures is justified.

53



A highway agency would like to assess the benefits of increasing the
work zone outside shoulder width by | ft. on a two miles section of
urban interstate.

[ Step |: Identify Countermeasures for Analysis ]

Increasing the outside shoulder width by | ft. within the work zone
[ Step 2: Determine CMF Availability ]

Based on the table in the previous sheet, a CMF is available for this
countermeasure. The CMF value is 0.95, indicating a 5 percent
decrease in crashes.

[ Step 3: Determine Countermeasure Evaluation Criteria ]

In this example, the agency determined that the countermeasure will
be implemented if the benefit-cost-ratio is greater than 1.5.

[ Step 4: Data Collection ]

Cost of Improvement = $3,000/mile
Average Crash Cost = $86,000
Expected Number of Crashes in this work zone = 8 crashes

[ Step 5: Perform Analysis ]

Total Cost of Improvement for 2 miles = 2%$3,000 = $6,000
Estimated Number of Crashes with Countermeasure = 0.95*8 = 7.6
crashes

Change in expected number of crashes = 7.6-8 = -0.4 crashes
Estimated Crash Cost Savings = 0.4*$86,000 = $34,400

[ Step 6: Select Countermeasures for Implementation ]
Benefit-Cost Ratio = $34,400/$6,000 = 5.73 > |.5— Implement the
Countermeasure

Figure 13. Procedure for Determining benefit-cost of contemplated Countermeasures.

4.3. Crash Report Narratives and Discrepancies

4.3.1. Discrepancies by Form

First, the Confirmatory Factor Analysis or CFA was conducted to assess the fit of the proposed
model. The results indicated a good model fit, so the SEM model was developed. Both CFA and
SEM analysis were performed using SPSS Amos. Figure 14 shows the SEM model results for the
200 traffic collision forms with coefficients standardized. The fit indices indicate that the SEM
model is statistically significant, meaning its null hypothesis (crash characteristics and weather
conditions affect the level of processing) cannot be rejected: y?/df = 1.119 (<3), CFl = 0.986
(>0.9), TLI = 0.981 (>0.9), and RMSEA = 0.024 (<0.05). Overall, 76% of the variance in the level of
processing is explained by crash characteristics and weather conditions.
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Figure 14. SEM Results. Regression estimates have been standardized.

Due to the relatively small sample size, the 90% confidence level was used. At this threshold,
several variables are significant. The structural model indicates the expected relationships
between the latent variables. The coefficient estimate for the latent crash characteristics (0.42)
indicates that it has a strong positive effect on the level of processing, whereas the coefficient
estimate for the latent weather conditions (-0.26) indicates that it has a negative impact on the
level of processing, meaning as the measure of poor weather conditions increases, the level of
processing decreases. Since both of these variables are statistically significant, it can be
concluded that crash characteristics and weather conditions positively and negatively affect the
level of processing, respectively, with crash characteristics having a more significant role.

The measurement models indicate which observed variables are significant to the model. Out of
the statistically significant variables affecting crash characteristics, the number of events, the
number of units, and collision speed all have a positive effect on crash characteristics (0.97, 0.58,
and 0.18, respectively). The number of events has the strongest effect. A higher value for any of
these variables will result in an increase in the level of processing. Multiplying the coefficient
estimate for any of these variables by the coefficient estimate for crash characteristics will give
the effect of the variable on the level of processing. Humidity and precipitation have positive
effects on weather conditions (0.26 and 0.66, respectively), and thus will lower the level of
processing with an increase in value due to the negative relationship between weather
conditions and the level of processing. Temperature has the opposite effect because it has a
negative relationship with weather conditions (-0.22), which in turn has a negative relationship
with the level of processing; an increase in temperature will increase the level of processing.
Multiplying their coefficients shows a positive impact of temperature on the level of processing.
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The number of words and characters in the narrative both have positive relationships with the
latent variable level of processing (0.91 and 0.97, respectively), although the number of
characters has a slightly stronger impact. As the level of processing increases, both the number
of words and the number of characters in the narrative will increase. To find the direct impact
of any variable on the number of characters or words, simply multiply the coefficients forming
the path between the variables. For example, the effect of precipitation on number of words
would be the product of the coefficients 0.26, -0.26, and 0.91.

The variables not found to be statistically significant were number of alcohol and/or drug tests
administered, license class, wind speed, and, most notably, the number of discrepancies (p =
0.87, 0.35, 0.23, and 0.78, respectively). For these variables, the model failed to reject the null
hypothesis that each was not related to their respective latent variables. As such, it can be
concluded that no variables in the model affect the occurrence of discrepancies. This result
suggests that poorer weather conditions and crashes with a higher measure of complexity result
in a longer written narrative (and vice versa), but these factors do not contribute to form
discrepancies. Form discrepancies may be explained through the results of the MLR model
examined below.

4.3.2. Discrepancies by Type

The MLR model estimation results are shown in Table 20. The model’s R-squared and adjusted
R-squared are 0.752 and 0.695, respectively, indicating a very good model fit. At the 90%
confidence level, the level of difficulty (p = 0.054) and input count (p = 0.007) are statistically
significant. Their positive coefficients indicate that as the level of difficulty and/or input count
increases, so will the number of discrepancies. That is, when the level of difficulty is complex
instead of simple, the number of discrepancies can be expected to increase by 4.678. When the
input count is increased by 1, the number of discrepancies can be expected to increase by 1.928.
These findings correspond to intuition. That is, a field that is more difficult or requires more
information to be entered is more likely to have discrepancies.

Table 20. MLR model estimation results.

Variable B Std. Error t-value p-value
(Intercept) -2.670 1.592 -1.677 0.117
Level of Processing 4.678 2.213 2.114 0.054
Input Count 1.928 0.603 3.194 0.007
Option Count -0.005 0.084 -0.064  0.950
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4.4. Law Enforcement Effectiveness

The findings from eight models discussed in Section 3.4 are examined using the PROC MIXED2
method in SAS OnDemand for Academics. Table 21 displays the outcomes for all potential
models.

Table 21. Test of model’s fixed effects.

Model 11

Effect Degree of freedom P-value

Seasons 3 0.6641

Trooper presence 1 0.0001

Seasons* Trooper presence 3 0.2484
Model 2

Effect Degree of freedom P-value

Seasons 3 0.4557

Trooper presence 1 0.0001

Seasons* Trooper presence 3 0.0891
Model 52

Effect Degree of freedom P-value

Seasons 3 0.1145

Trooper presence 1 0.0001

Seasons* Trooper presence 3 0.0062
Model 6

Effect Degree of freedom P-value

Seasons 3 0.0600

Trooper presence 1 0.0001

Seasons* Trooper presence 3 0.0012

1: Models 3 and 4 yield identical results to Models 1 and 2, respectively.
2: Models 7 and 8 yield identical results to Models 5 and 6, respectively.

In Model 1, the presence of troopers significantly affected the average speed throughout the
work zone, indicating effective law enforcement in reducing speed. However, seasons and the
interaction between seasons and police presence didn't show significant effects. Model 2, which
included traffic volume as a covariate, showed similar results, with trooper presence significantly
impacting average speed in the work zone. There were no significant effects for seasons or their
interaction with police presence. Models 3 and 4 focused on excess speed rather than average
speed. Their results reaffirmed the effectiveness of law enforcement in reducing speed across
the work zone, with no significant seasonal effects observed. Model 5 considered only the
average speed in the area where troopers were stationed. Trooper presence significantly
impacted speed, with winter showing the most significant reduction compared to fall and
summer. Model 6, incorporating traffic volume as a covariate, also showed significant effects of
trooper presence on speed, with winter exhibiting the most significant reduction compared to
fall and summer. The results of Models 7 and 8, which focused on excess speed, mirror that of
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Models 5 and 6, highlighting law enforcement's effectiveness in reducing excessive speed in the
transition area and the presence of a significant interaction between seasons and trooper
presence.

4.4.1. Efficiency of ANCOVA

After analyzing how traffic volume affects the models, we found that adding it as a factor in
Model 1 (resulting in Model 2) and Model 3 (resulting in Model 4) gave almost the same results,
with an efficiency of 1.016. The same goes for adding traffic volume to Model 5 (resulting in
Model 6) and Model 7 (resulting in Model 8), efficiency is 1.021. This similarity is due to these
models sharing the same criteria for evaluation. If the efficiency is over 1, including traffic volume
will likely improve the result’s accuracy. However, since the efficiency is close to 1, keeping traffic
volume as a covariate in Models 2, 4, 6, and 8 will not make much of a difference.

4.4.2. Evaluating Model Fitness: A Comparative Analysis

In Table 22, the goodness-of-fit (GOF) statistics such as the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and Corrected Akaike Information Criterion (AICC) for all
eight models are presented. Model 3 has the lowest GOF statistics, indicating its superiority over
Models 1, 2, and 4, which used average speed across the entire work zone as their response
variable. On the other hand, for models using average speed in the transition area as their
response variable, Model 7 has the lowest GOF statistics. However, considering the efficiency
gained by adding traffic volume as a covariate, Model 4 is preferred over Model 3, and Model 8
is favored over Model 7.

Table 22. Comparison of Models’ Goodness-of-Fit statistics.

Model AIC BIC AICC
1 9129.2 9128.0 9129.2
2 9256.4 9255.2 9256.4
3 9123.7 9123.7 9122.5
4 9251.1 9250.0 9251.2
5 9880.4 9880.5 9879.3
6 9996.6 9995.5 9996.6
7 9875.7 9874.5 9875.7
8 9990.9 9989.8 9991.0

4.5. Inflated Zero Negative Binomial Crash Prediction Model

The zero-inflated negative binomial models were estimated using the R statistical software. The
estimation results for each work zone type are presented in subsequent subsections.

58



4.5.1. Work Zones for Widening Projects

Table 23 shows the estimation results of the ZINB model for widening projects. As shown, the
results consist of two parts, a count model with negative binomial distribution and a zero-
inflation model with binomial distribution. In the count model, significant predictors include
Length, Duration, and log(AADT), indicating their positive association with crash counts.
Although these variables are not significant in the zero-inflation model, it is best to retain them
due to their importance based on previous research. All predictors have a positive coefficient
which implies that as their values increase so will the crash count. The interpretation of the
negative binomial regression coefficient is as follows: for a one unit change in the predictor
variable, the log of expected counts of the response variable changes by the respective regression
coefficient, given the other predictor variables in the model are held constant. A simpler way to
interpret the coefficients is to use the Incidence Rate Ratio (IRR) which is shown in Table 22. The
IRR for Length indicates that with each additional unit increase in Length, the crash count
increases by 14.46%.
increases by about 0.19%, and for each additional unit increase in the logarithm of AADT, the

Similarly, for each additional unit increase in Duration, the crash count

crash rate increases by approximately 96.05%.

Table 23. Estimation Results of ZINB model for Widening Projects.

Count model coefficients
IRR Estimate | Std. Error | zvalue | Pr(>|z]) | Significant
Intercept 0.0018 -6.3334 1.808551 | -3.502 | 0.000462 *Ex
Length 1.1446 | 0.135035 | 0.037864 | 3.566 | 0.000362 oA
Duration 1.0019 0.001923 | 0.000391 | 4.921 8.60E-07 *Ex
log(AADT) 1.9605 0.673193 | 0.201265 | 3.345 | 0.000823 oA
Log(theta) | 0.9005 -0.10486 | 0.252087 | -0.416 | 0.677424
Zero-inflation model coefficients
Estimate Std. Error | zvalue Pr(>|z]|) | Significant
Intercept 392.80902 545.98777 | 0.719 0.472
Length -7.02164 10.10864 | -0.695 0.487
Duration -0.07483 0.10102 -0.741 0.459
Log(AADT) -37.28779 51.65359 | -0.722 0.470
Signif. codes: 0 '***'(0.001 '**'0.01'*'0.05"'.'0.1"''1

4.5.2. Work Zones for Rehabilitation Projects

Table 24 shows the estimation results of the ZINB model for rehabilitation projects. The results
are similar to that of widening projects. From the count model, the IRR for Length indicates that
increasing it by one unit will increase the crash count by 11.2%. Similarly, increasing Duration by
one unit will increase the crash count by 0.17%, and increasing the logarithm of AADT by one unit
will increase the crash count by 235.35%.
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Table 24. Estimation Results of ZINB model for Rehabilitation Projects.
Count model coefficients

IRR Estimate | Std. Error | zvalue | Pr(>|z]) | Significant
Intercept 0 '1'25128+0 1.257e+00 | -9.962 | <2e-16 *x
Length 1.112 1.062e-01 | 2.969e-02 | 3.577 0.000347 HokE
Duration 1.0017 1.743e-03 | 4.116e-04 | 4.235 2.29e-05 ok
log(AADT) | 3.3535 | 1.210e+00 | 1.383e-01 | 8.752 | <2e-16 *ok
Log(theta) | 0%t | 3 '2517‘*'0 2.304e-01 | -2.281 | 0.022531 *
Zero-inflation model coefficients
Estimate Std. Error | zvalue Pr(>|z]|) | Significant
Intercept 14.301665 5.622745 2.544 0.0110 *
Length -1.878046 0.755548 | -2.486 0.0129 *
Duration 0.005086 0.003188 1.595 0.1107
Log(AADT) -1.427746 0.626858 | -2.278 | 0.0227 *

Signif. codes: 0 '***'(0.001 '**'0.01"*'0.05'.'0.1"'"'1

4.5.3. Work Zones for Preservation Projects

Table 25 shows the estimation results of the ZINB model for preservation projects. The results
are similar to that of widening and rehabilitation projects. From the count model, the IRR for
Length indicates that increasing it by one unit will increase the crash count by 3.4%. Similarly,
increasing Duration by one unit will increase the crash count by 0.3%, and increasing the
logarithm of AADT by one unit will increase the crash count by 258.59%.
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Table 25. Estimation Results of ZINB model for Preservation Projects.

Count model coefficients
IRR Estimate | Std. Error | zvalue | Pr(>|z]) | Significant
Intercept 0 '1'40178+0 1.412e+00 | -9.968 | <2e-16 ok
Length 1.0304 2.999e-02 | 1.352e-02 | 2.219 0.0265 *
Duration 1.003 2.994e-03 | 4.854e-04 | 6.169 6.88e-10 *Ex
log(AADT) 3.5859 1.277e+00 | 1.410e-01 | 9.060 < 2e-16 ok
Logitheta) | 30 '2'1118e'0 2.502¢-01 | -0.847 | 03971
Zero-inflation model coefficients
Estimate Std. Error | zvalue Pr(>|z]) | Significant
Intercept 5.085280 3.851104 1.320 0.18668
Length -0.658410 0.239424 | -2.750 0.00596 ok
Duration -0.000152 0.001516 | -0.100 0.92014
Log(AADT) -0.331898 0.399613 | -0.831 0.40623
Signif. codes: 0 '***'0.001 '**'0.01'*'0.05"'.'0.1"''1

4.5.4. Work Zones for Reconstruction Projects
Table 26 shows the estimation results of the ZINB model for reconstruction projects. For this

model, the Duration predictor is not significant. From the count model, the IRR for Length

indicates that increasing it by one unit will increase the crash count by 12.1%. Similarly,
increasing the logarithm of AADT by one unit will increase the crash count by 257.46%.
Table 26. Estimation Results of ZINB model for Reconstruction Projects.
Count model coefficients
IRR Estimate | Std. Error | zvalue Pr(>|z]|) | Significant
0 -
Intercept 13.324755 1.763071 | -7.557 | 4.11e-14 ok
Length 1.121 0.114232 | 0.037731 3.028 0.00247 ok
Duration 1.0011 0.001071 | 0.001207 0.888 0.37480
log(AADT) 3.5746 1.273861 | 0.207155 6.149 7.78e-10 ok
Log(theta) | 1.7199 | 0.542267 | 0.577903 | 0.938 | 0.34807
Zero-inflation model coefficients
Estimate Std. Error | zvalue Pr(>|z|) | Significant
Intercept -771.4504 601.2049 | -1.283 0.199
Length 4.0232 3.0292 1.328 0.184
Duration -0.8338 0.6506 -1.282 0.200
Log(AADT) 103.4465 80.7976 | 1.280 0.200
Signif. codes: 0 '***'(0.001 '**' 0.01'*'0.05"'.'0.1''1
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4.6 Summary

Based on the findings of the SEM and MLR models assessing discrepancies in police crash reports,
it can be concluded that officers in South Carolina are doing their job well in filling out the traffic
collision forms. That is, they do not let the circumstances surrounding the crash, such as its
complexity and weather conditions, affect their ability to process information and record it. This
study has several limitations that need to be considered when interpreting its findings. First, the
provided traffic collision forms are limited to fatal crashes occurring within work zones. Analyzing
traffic collision forms of other injury severity levels may yield different results. Along this line,
crashes occurring within work zones are a relatively small subset of all traffic crashes. Future
work that analyzes traffic collision forms not occurring within work zones may yield different
results. Second, the narrative text does not allow for all fields to be validated. Thus, the number
of discrepancies is likely to be more than what was identified in this study. Third, police officers
used an app to fill out the traffic collision form rather than a pen and paper. As such,
discrepancies could be due to errors in inputting the information rather than the inability to
accurately recall the crash information. Fourth, because personal information was removed from
the forms by SCDOT, this study did not investigate how demographic factors (i.e., age, gender, or
race of involved drivers) affect the officer’s level of processing. Fifth, in some cases, officers may
not include enough information in their narratives to compare to all 17 form fields. Subsequently,
some inaccuracies may have been unidentified because the officer omitted information that
could result in a discrepancy. Lastly, because officer training varies across states, the findings in
this study cannot be generalized to the entire nation.

In terms of contributing factors on interstates, multiple vehicles, driving too fast for conditions,
rear-end collisions, area before the first work zone sign, weekdays, dark light conditions, and
female drivers are significant, whereas on non-interstates, factors such as specific road types,
dark light conditions, female drivers, work zone activity areas, younger at-fault drivers, sideswipe
collisions, worker presence, and collisions with fixed objects are significant. Marginal effects
analysis suggests higher impacts of certain factors like driving too fast for conditions and female
at-fault drivers on interstates. Additionally, darker lighting conditions have higher marginal
effects on interstates, highlighting the need for brighter lighting in interstate work zones
compared to non-interstates to mitigate the heightened risks associated with higher traveling
speeds.

In terms of contributing factors to rear-end crashes with high collision speed (> 35 mph),
compared to drivers aged 50 or older, those below 35 exhibit lower injury probabilities by 0.028,
while those between 35 and 50 show a decrease by 0.013. Work zone configurations such as
(termination/transition, advanced warning,) and activity areas demonstrate reduced injury
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probabilities by 0.012 and 0.043, respectively, compared to crashes occurring before the first
sign. Conversely, crashes in lane closure configurations serve as the base level, indicating higher
injury probabilities. Additionally, crashes involving trucks increase injury likelihood by 0.016
compared to those without trucks, while rear-end crashes involving three or more vehicles
elevate injury probabilities by 0.042. Deployed airbags raise injury probabilities by 0.073
compared to crashes without airbag deployment, signifying higher collision severity. Moreover,
crashes in dark conditions exhibit increased injury probabilities by 0.012, while those during dawn
and dusk show decreases by 0.006, contradicting daylight crashes. These findings provide
valuable insights for designing safer work zones and implementing targeted safety measures.

A split-plot design with blocking showed that there was a decrease in average speed across the
work zone when troopers were present, and similar speed reductions were observed in the
transition area. Additionally, trooper presence increases the likelihood of compliance with the
posted temporary speed limits. Most models found no significant variation in average speed
reduction between seasons. When the average speed of the entire work zone was considered,
thereis no interaction between seasons. However, when the average traffic speed around where
troopers were stationed was considered, there was interaction between trooper presence and
fall and summer seasons. Moreover, the average speed in the transition area was the lowest in
the winter regardless of trooper presence.
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5. Conclusions, Recommendations, and Implementation

5.1. Conclusions

The SEM and MLR models created to predict discrepancies in traffic collision suggest that site-
specific factors affect written narrative length but not the frequency of discrepancies occurring.
However, the frequency of discrepancies in a form field will increase with additional inputs or if
it has a higher level of difficulty.

The mixed logit models for two separate speed limit models provided better insights than a single
aggregate model, supported by statistical tests. Two mixed logit models developed for speed
limits under 60 mph and 60 mph or greater showed factors contributing to injury included dark
lighting conditions, female drivers at fault, and driving too fast for conditions. Additional
significant factors varied by the speed limit group, such as roadway type, work zone activity area,
and crash characteristics.

Developing a mixed logit model with heterogeneity in mean and variance for rear-end crashes
with high collision speed revealed significant factors, including the presence of three or more
vehicles, airbag deployment, specific work zone areas, lane configurations, at-fault driver’s age,
lighting conditions, and truck involvement. Countermeasures to mitigate injury include
enhancing driver education, improving lighting and warning systems, installing rumble strips,
educating the trucking industry and public about work zones, and improving traffic flow in
congested areas. These findings emphasize the need for considering heterogeneity in future
studies and implementing targeted safety measures in work zones.

Findings of split-plot design with blocking showed the efficacy of trooper presence in reducing
speeds across the entire length of work zones and within transition areas, as well as in ensuring
compliance with temporary speed limits. Seasonal influences were statistically insignificant.
From a statistical standpoint, incorporating traffic volume as a covariate was found to enhance
model precision.

5.2. Recommendations

Should the traffic collision form need to be modified in the future, the new fields should be kept
as simple as possible with minimum input boxes to minimize the frequency of discrepancies.
Future work in discrepancies could compare discrepancy rates across different states to assess
South Carolina’s officer training quality.

It is recommended that the SCDOT consider improving lighting conditions at work zones at night,
as dark lighting conditions were identified as a significant contributing factor to injury in truck-
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involved crashes.  Given that driving too fast for roadway conditions was identified as a
significant factor contributing to injury, the SCDOT should consider prioritizing speed
management measures in work zones; it should be noted that in practice, officers may use
“driving too fast for conditions” as a contributing factor when they are unable to pinpoint the
exact reason such as distracted driving. This includes implementing speed enforcement
strategies, enhancing signage, and utilizing traffic calming measures to encourage drivers to
adhere to posted speed limits and adjust their speed according to roadway conditions. Lastly,
educational campaigns to improve safety such as promoting the use of seat belts and avoiding
distracted driving should target both male and female drivers.

Several countermeasures are recommended to address factors contributing to injury in work
zone rear-end crashes with collision speeds of 35 mph or higher. When promoting work zone
safety during the National Work Zone Awareness Week held each spring in South Carolina, the
SCDOT should consider getting the message to older drivers. The use of lighting and advanced
warning systems in work zones improves visibility and safety, particularly during nighttime
operations. Thus, these countermeasures should be considered when applicable. Other
countermeasures to consider include educating both the trucking industry and the public about
the danger of truck-involved crashes in work zones, improving traffic flow and reducing
congestion in the proximity of the first work zone sign.

This study found the presence of law enforcement to be effective in reducing traffic speed
through the work zones. The SCDOT could consider expanding the Safety Improvement Team
Program in partnership with the South Carolina Department of Public Safety (SCDPS). Specific
strategies include having troopers stationed near the first work zone sign and in the activity area.
To reduce cost, SCDOT and SCDPS could consider nuanced approaches to variable time spent at
the work zones without sacrificing effectiveness. Additionally, it may be helpful for the two
agencies to evaluate the levels of active enforcement (e.g., the number of citations issued by
troopers) on compliance with the work zone posted speed limit.

5.3. Implementation Plan

The work zone risk assessment tool provided to the SCDOT in this study can be utilized to assess
the crash risk of a work zone and the benefit-cost of implementing countermeasures to mitigate
those risks. The SCDOT should consider distributing this tool to SCDOT engineers or contractors
designing work zone traffic control plans. This tool was developed in Microsoft Excel using VBA
and the estimation results of the zero-inflated negative binomial model discussed in Section 4.5.
The tool returns a predicted number of crashes given the work zone type, length in miles,
duration in days, and AADT. Additionally, it determines the benefit-cost ratio following the
procedure explained in Section 4.2. The input required from the user are comtemplated
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countermeasure(s), cost to implement the countermeasure(s), average cost of a crash, and the

minimum benefit-cost ratio to justify implementing the countermeasure(s). Figure 15 shows the

report generated by the tool.

Risk Assessment Report
Report Information
Work Zone Name Prnject,J’Cnntract 1D 00000000
Reviewer First Last MM/ DD YYYY
Agency South Carolina Department of Transportation
Work Zone Data
Length WK miles AADT WK vehicles
Duration HX days Cost per Crash HX usD
Countermeasure Selection

Selected Countermeasure(s) [Countermeasure 1 Name]

[Countermeasure 2 Name]

[Countermeasure 3 Name]
Countermeasure Crash Modification Factor H
Countermeasure Implementation Price X UsD

Countermeasure Assessment
Expected Mumber of Crashes with No Countermeasure XX crashes
Expected Mumber of Crashes with Countermeasure ¥ crashes
Crash Cost Savings from Countermeasure Xx USD
XX =Or<or= XX
Minimum Benefit-Cost Ratio Countermeasure Benefit-Cost Ratio

Figure 15. Report generated by Work Zone Risk Assessment Tool.

66



References

Al-Bdairi, N.S.S., 2020. Does time of day matter at highway work zone crashes? J. Safety Res. 73, 47-56.
https://doi.org/10.1016/;.jsr.2020.02.013

Amoros, E., Martin, J.-L., Chiron, M., Laumon, B., 2007. Road Crash Casualties: Characteristics of
Police Injury Severity Misclassification. J. Trauma Acute Care Surg. 62, 482.
https://doi.org/10.1097/01.ta.0000202546.49273.19

Anastasopoulos, P.Ch., Mannering, F.L., 2011. An empirical assessment of fixed and random parameter
logit models using crash- and non-crash-specific injury data. Accid. Anal. Prev. 43, 1140-1147.
https://doi.org/10.1016/j.aap.2010.12.024

Anderson, J., Hernandez, S., 2017. Roadway classifications and the accident injury severities of heavy-
vehicle drivers. Anal. Methods Accid. Res. 15, 17-28. https://doi.org/10.1016/j.amar.2017.04.002

Arditi, D., Lee, D.-E., Polat, G., 2007. Fatal accidents in nighttime vs. daytime highway construction
work zones. J. Safety Res. 38, 399—405. https://doi.org/10.1016/j.jsr.2007.04.001

Ashqar, H.I., Shaheen, Q.H.Q., Ashur, S.A., Rakha, H.A., 2021. Impact of risk factors on work zone
crashes using logistic models and Random Forest, in: 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC). Presented at the 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), pp. 1815-1820.
https://doi.org/10.1109/ITSC48978.2021.9564405

Azimi, M., Oyelade, 1., Aremu, A.M., Balal, E., Cheu, R.L., Qi, Y., 2021. Selection and Implementation
of Intelligent Transportation Systems for Work Zone Construction Projects. Future Transp. 1,
169-187. https://doi.org/10.3390/futuretransp1020011

Bentler, P.M., 1990. Comparative fit indexes in structural models. Psychol. Bull. 107, 238-246.
https://doi.org/10.1037/0033-2909.107.2.238

Boonyoo, T., Champahom, T., 2022. ANALYSIS OF FACTORS AFFECTING REAR-END CRASH
SEVERITY USING STRUCTURAL EQUATION MODELING 29.

Champahom, T., Jomnonkwao, S., Karoonsoontawong, A., Hantanong, N., Beeharry, R., Ratanavaraha,
V., 2020. Modeling user perception of bus service quality: A case study in Mauritius.

Chen, F., Song, M., Ma, X., 2019. Investigation on the Injury Severity of Drivers in Rear-End Collisions
Between Cars Using a Random Parameters Bivariate Ordered Probit Model. Int. J. Environ. Res.
Public. Health 16, 2632. https://doi.org/10.3390/ijerph16142632

Craik, F.ILM., Lockhart, R.S., 1972. Levels of processing: A framework for memory research. J. Verbal
Learn. Verbal Behav. 11, 671-684. https://doi.org/10.1016/S0022-5371(72)80001-X

Daniel, J., Dixon, K., Jared, D., 2000. Analysis of Fatal Crashes in Georgia Work Zones. Transp. Res.
Rec. 1715, 18-23. https://doi.org/10.3141/1715-03

Debnath, A.K., Blackman, R., Haworth, N., 2015. Common hazards and their mitigating measures in
work zones: A qualitative study of worker perceptions. Saf. Sci. 72, 293-301.
https://doi.org/10.1016/j.ss¢1.2014.09.022

Department of Transportation & Infrastructure Studies, Morgan State University, Baltimore, MD, USA,
Banerjee, S., Jeihani, M., Moghaddam, Z.R., 2018. Impact of Mobile Work Zone Barriers on
Driving Behavior on Arterial Roads. J. Traffic Logist. Eng. 37-42.
https://doi.org/10.18178/jtle.6.2.37-42

Development of Work Zone Crash Modification Factors (CMFs) [WWW Document], n.d. . Work Zone
Saf. Inf. Clgh. URL https://workzonesafety.org/training/development-of-work-zone-crash-
modification-factors-cmfs/ (accessed 6.10.24).

Dias, 1., Dissanayake, S., 2016. Comparison of Factors Affecting Work Zone Crash Severity Between
Nighttime and Daytime. Presented at the Transportation Research Board 95th Annual
MeetingTransportation Research Board.

Dias, .M., n.d. Work zone crash analysis and modeling to identify the factors affecting crash severity and
frequency (Ph.D.). Kansas State University, United States -- Kansas.

67



Dong, X., Xie, K., Yang, H., 2022. How did COVID-19 impact driving behaviors and crash Severity? A
multigroup structural equation modeling. Accid. Anal. Prev. 172, 106687.
https://doi.org/10.1016/j.aap.2022.106687

Eberly, L.E., 2007. Multiple Linear Regression, in: Ambrosius, W.T. (Ed.), Topics in Biostatistics.
Humana Press, Totowa, NJ, pp. 165—187. https://doi.org/10.1007/978-1-59745-530-5 9

Favero, L.P., Belfiore, P., Souza, R. de F., 2023. Data Science, Analytics and Machine Learning with R.
Academic Press.

Fotios, S., Robbins, C., 2024. Incorrect categorisation of ambient light level at the time of a road traffic
collision. Light. Res. Technol. 56, 87—101. https://doi.org/10.1177/14771535211069028

Garber, N.J., Zhao, M., 2002. Distribution and Characteristics of Crashes at Different Work Zone
Locations in Virginia. Transp. Res. Rec. 1794, 19-25. https://doi.org/10.3141/1794-03

Ghasemzadeh, A., Ahmed, M.M., 2019. Complementary parametric probit regression and nonparametric
classification tree modeling approaches to analyze factors affecting severity of work zone
weather-related crashes. J. Mod. Transp. 27, 129—140. https://doi.org/10.1007/s40534-018-0178-
6

Gupta, R., Asgari, H., Azimi, G., Rahimi, A., Jin, X., 2021. Analysis of Fatal Truck-Involved Work Zone
Crashes in Florida: Application of Tree-Based Models. Transp. Res. Rec. 2675, 1272—-1290.
https://doi.org/10.1177/03611981211033278

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., 2006. Multivariate data analysis 6th
Edition.

Hamdar, S.H., Schorr, J., 2013. Interrupted versus uninterrupted flow: A safety propensity index for
driver behavior. Accid. Anal. Prev. 55, 22-33. https://doi.org/10.1016/j.aap.2013.01.017

Hassan, H.M., Abdel-Aty, M.A., 2013. Exploring the safety implications of young drivers’ behavior,
attitudes and perceptions. Accid. Anal. Prev. 50, 361-370.
https://doi.org/10.1016/j.aap.2012.05.003

Hausman, J.A., Abrevaya, J., Scott-Morton, F.M., 1998. Misclassification of the dependent variable in a
discrete-response setting. J. Econom. 87, 239-269. https://doi.org/10.1016/S0304-
4076(98)00015-3

Hosseini, P., Jalayer, M., Das, S., 2021. A Multiple Correspondence Approach to Identify Contributing
Factors Related to Work Zone Crashes. Presented at the Transportation Research Board 100th
Annual MeetingTransportation Research BoardTransportation Research Board.

Hou, G., Chen, S., 2020. Study of work zone traffic safety under adverse driving conditions with a
microscopic traffic simulation approach. Accid. Anal. Prev. 145, 105698.
https://doi.org/10.1016/j.aap.2020.105698

Islam, M., 2022. An analysis of motorcyclists’ injury severities in work-zone crashes with unobserved
heterogeneity. IATSS Res. 46, 281-289. https://doi.org/10.1016/].iatssr.2022.01.003

Islam, M., Alnawmasi, N., Mannering, F., 2020. Unobserved heterogeneity and temporal instability in the
analysis of work-zone crash-injury severities. Anal. Methods Accid. Res. 28, 100130.
https://doi.org/10.1016/j.amar.2020.100130

Jobson, J.D., 2012. Applied Multivariate Data Analysis: Regression and Experimental Design. Springer
Science & Business Media.

Jurewicz, C., Sobhani, A., Woolley, J., Dutschke, J., Corben, B., 2016. Exploration of Vehicle Impact
Speed — Injury Severity Relationships for Application in Safer Road Design. Transp. Res.
Procedia, Transport Research Arena TRA2016 14, 4247-4256.
https://doi.org/10.1016/j.trpro.2016.05.396

Khattak, A.J., Targa, F., 2004. Injury Severity and Total Harm in Truck-Involved Work Zone Crashes.
Transp. Res. Rec. 1877, 106—116. https://doi.org/10.3141/1877-12

Khattak, Asad J, Khattak, Aemal J, Council, F.M., 2002. Effects of work zone presence on injury and
non-injury crashes. Accid. Anal. Prev. 34, 19-29. https://doi.org/10.1016/S0001-4575(00)00099-
3

68



Koilada, K., Mane, A.S., Pulugurtha, S.S., 2020. Odds of work zone crash occurrence and getting
involved in advance warning, transition, and activity areas by injury severity. IATSS Res. 44, 75—
83. https://doi.org/10.1016/j.iatssr.2019.07.003

Li, Y., Bai, Y., 2009. Effectiveness of temporary traffic control measures in highway work zones. Saf.
Sci. 47, 453-458. https://doi.org/10.1016/j.ss¢i.2008.06.006

Li, Y., Bai, Y., 2008a. Development of crash-severity-index models for the measurement of work zone
risk levels. Accid. Anal. Prev. 40, 1724—1731. https://doi.org/10.1016/j.aap.2008.06.012

Li, Y., Bai, Y., 2008b. Development of crash-severity-index models for the measurement of work zone
risk levels. Accid. Anal. Prev. 40, 1724—1731. https://doi.org/10.1016/j.aap.2008.06.012

Liu, J., Khattak, A., Zhang, M., 2016. What Role Do Precrash Driver Actions Play in Work Zone
Crashes?: Application of Hierarchical Models to Crash Data. Transp. Res. Rec. 2555, 1-11.
https://doi.org/10.3141/2555-01

Madarshahian, M., Balaram, A., Ahmed, F., Huynh, N., Siddiqui, C.K., Ferguson, M., 2023. Analysis of
injury severity of work zone truck-involved crashes in South Carolina for interstates and non-
interstates. Sustainability 15, 7188.

Mannering, F., 2018. Temporal instability and the analysis of highway accident data. Anal. Methods
Accid. Res. 17, 1-13. https://doi.org/10.1016/j.amar.2017.10.002

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical analysis of
highway accident data. Anal. Methods Accid. Res. 11, 1-16.
https://doi.org/10.1016/j.amar.2016.04.001

Meng, Q., Weng, J., 2011. Evaluation of rear-end crash risk at work zone using work zone traffic data.
Accid. Anal. Prev. 43, 1291-1300. https://doi.org/10.1016/j.aap.2011.01.011

Mokhtarimousavi, S., Anderson, J.C., Azizinamini, A., Hadi, M., 2019. Improved Support Vector
Machine Models for Work Zone Crash Injury Severity Prediction and Analysis. Transp. Res. Rec.
2673, 680—692. https://doi.org/10.1177/0361198119845899

Mokhtarimousavi, S., Anderson, J.C., Hadi, M., Azizinamini, A., 2021. A temporal investigation of crash
severity factors in worker-involved work zone crashes: Random parameters and machine learning
approaches. Transp. Res. Interdiscip. Perspect. 10, 100378.
https://doi.org/10.1016/j.trip.2021.100378

Mw, B., 1993. Alternative ways of assessing model fit. Test. Struct. Equ. Models.

O’Donnell, C.J., Connor, D.H., 1996. Predicting the severity of motor vehicle accident injuries using
models of ordered multiple choice. Accid. Anal. Prev. 28, 739—753.
https://doi.org/10.1016/S0001-4575(96)00050-4

Osborne, J., Waters, E., 2019. Four assumptions of multiple regression that researchers should always
test. Pract. Assess. Res. Eval. 8. https://doi.org/10.7275/r222-hv23

Osman, M., Mishra, S., Paleti, R., Golias, M., 2019. Impacts of Work Zone Component Areas on Driver
Injury Severity. J. Transp. Eng. Part Syst. 145, 04019032.
https://doi.org/10.1061/JTEPBS.0000253

Osman, M., Paleti, R., Mishra, S., 2018. Analysis of passenger-car crash injury severity in different work
zone configurations. Accid. Anal. Prev. 111, 161-172. https://doi.org/10.1016/j.aap.2017.11.026

Osman, M., Paleti, R., Mishra, S., Golias, M.M., 2016. Analysis of injury severity of large truck crashes
in work zones. Accid. Anal. Prev. 97, 261-273. https://doi.org/10.1016/j.aap.2016.10.020

Rista, E., Barrette, T., Hamzeie, R., Savolainen, P., Gates, T.J., 2017. Work Zone Safety Performance:
Comparison of Alternative Traffic Control Strategies. Transp. Res. Rec. 2617, 87-93.
https://doi.org/10.3141/2617-11

Santos, B., Trindade, V., Polonia, C., Picado-Santos, L., 2021. Detecting Risk Factors of Road Work
Zone Crashes from the Information Provided in Police Crash Reports: The Case Study of
Portugal. Safety 7, 12. https://doi.org/10.3390/safety7010012

Sayed, M.A., Qin, X., Kate, R.J., Anisuzzaman, D.M., Yu, Z., 2021. Identification and analysis of
misclassified work-zone crashes using text mining techniques. Accid. Anal. Prev. 159, 106211.
https://doi.org/10.1016/j.aap.2021.106211

69



Seraneeprakarn, P., Huang, S., Shankar, V., Mannering, F., Venkataraman, N., Milton, J., 2017. Occupant
injury severities in hybrid-vehicle involved crashes: A random parameters approach with
heterogeneity in means and variances. Anal. Methods Accid. Res. 15, 41-55.
https://doi.org/10.1016/j.amar.2017.05.003

Shi, J., Bai, Y., Tao, L., Atchley, P., 2011. A model of Beijing drivers’ scrambling behaviors. Accid.
Anal. Prev. 43, 1540—-1546. https://doi.org/10.1016/j.aap.2011.03.008

Shinar, D., Treat, J.R., McDonald, S.T., 1983. The validity of police reported accident data. Accid. Anal.
Prev. 15, 175-191. https://doi.org/10.1016/0001-4575(83)90018-0

Significance tests and goodness of fit in the analysis of covariance structures - ProQuest [WWW
Document], n.d. URL
https://www.proquest.com/openview/ad7ec3686dd1bbe533b628ecccaf741b/12¢cbl=60977&pq-
origsite=gscholar&parentSessionld=6%2BtLIr3XzCiBDPz%2Fi69Kyplpzn0CY2h%2BTIHHRN
aSn8Y%3D (accessed 6.10.24).

Statistical and Econometric Methods for Transportation Data Analysis | [WWW Document], n.d. URL
https://www.taylorfrancis.com/books/mono/10.1201/9780429244018/statistical-econometric-
methods-transportation-data-analysis-simon-washington-fred-mannering-panagiotis-
anastasopoulos-matthew-karlaftis (accessed 6.10.24).

Steiger, J.H., 2007. Understanding the limitations of global fit assessment in structural equation modeling.
Personal. Individ. Differ., Special issue on Structural Equation Modeling 42, 893—898.
https://doi.org/10.1016/j.paid.2006.09.017

Stroup, W.W., Milliken, G.A., Claassen, E.A., Wolfinger, R.D., 2018. SAS for Mixed Models:
Introduction and Basic Applications. SAS Institute.

Sze, N.N., Song, Z., 2019. Factors contributing to injury severity in work zone related crashes in New
Zealand. Int. J. Sustain. Transp. 13, 148—154. https://doi.org/10.1080/15568318.2018.1452083

Thapa, D., Mishra, S., 2021. Using worker’s naturalistic response to determine and analyze work zone
crashes in the presence of work zone intrusion alert systems. Accid. Anal. Prev. 156, 106125.
https://doi.org/10.1016/j.aap.2021.106125

Theofilatos, A., Ziakopoulos, A., Papadimitriou, E., Yannis, G., Diamandouros, K., 2017. Meta-analysis
of the effect of road work zones on crash occurrence. Accid. Anal. Prev. 108, 1-8.
https://doi.org/10.1016/j.aap.2017.07.024

Uddin, M., Huynh, N., 2020. Injury severity analysis of truck-involved crashes under different weather
conditions. Accid. Anal. Prev. 141, 105529. https://doi.org/10.1016/j.aap.2020.105529

Uddin, M., Huynh, N., 2017. Truck-involved crashes injury severity analysis for different lighting
conditions on rural and urban roadways. Accid. Anal. Prev. 108, 44-55.
https://doi.org/10.1016/j.aap.2017.08.009

Ullman, G.L., Scriba, T.A., 2004. Revisiting the Influence of Crash Report Forms on Work Zone Crash
Data. Transp. Res. Rec. 1897, 180-182. https://doi.org/10.3141/1897-23

Uyanik, G.K., Giiler, N., 2013. A Study on Multiple Linear Regression Analysis. Procedia - Soc. Behav.
Sci., 4th International Conference on New Horizons in Education 106, 234-240.
https://doi.org/10.1016/j.sbspro.2013.12.027

Wang, K., Qin, X., 2014. Use of Structural Equation Modeling to Measure Severity of Single-Vehicle
Crashes. Transp. Res. Rec. 2432, 17-25. https://doi.org/10.3141/2432-03

Wei, X., Shu, X., Huang, B., Taylor, E.L., Chen, H., 2017. Analyzing Traffic Crash Severity in Work
Zones under Different Light Conditions. J. Adv. Transp. 2017, 5783696.
https://doi.org/10.1155/2017/5783696

Weng, J., Du, G., Li, D., Yu, Y., 2018. Time-varying mixed logit model for vehicle merging behavior in
work zone merging areas. Accid. Anal. Prev. 117, 328-339.
https://doi.org/10.1016/j.aap.2018.05.005

Weng, J., Meng, Q., 2011. Analysis of driver casualty risk for different work zone types. Accid. Anal.
Prev. 43, 1811-1817. https://doi.org/10.1016/j.aap.2011.04.016

70



Weng, J., Meng, Q., Yan, X., 2014. Analysis of work zone rear-end crash risk for different vehicle-
following patterns. Accid. Anal. Prev. 72, 449—-457. https://doi.org/10.1016/j.aap.2014.08.003

Weng, J., Xue, S., Yang, Y., Yan, X., Qu, X., 2015. In-depth analysis of drivers’ merging behavior and
rear-end crash risks in work zone merging areas. Accid. Anal. Prev. 77, 51-61.
https://doi.org/10.1016/j.aap.2015.02.002

Weng, J., Zhu, J.-Z., Yan, X., Liu, Z., 2016. Investigation of work zone crash casualty patterns using
association rules. Accid. Anal. Prev. 92, 43-52. https://doi.org/10.1016/j.aap.2016.03.017

Williams, M., Grajales, C., Kurkiewicz, D., 2019. Assumptions of Multiple Regression: Correcting Two
Misconceptions. Pract. Assess. Res. Eval. 18. https://doi.org/10.7275/55hn-wk47

Yahaya, M., Fan, W., Fu, C., Li, X., Su, Y., Jiang, X., 2020. A machine-learning method for improving
crash injury severity analysis: a case study of work zone crashes in Cairo, Egypt. Int. J. Inj. Contr.
Saf. Promot. 27, 266-275. https://doi.org/10.1080/17457300.2020.1746814

Yang, H., Ozbay, K., Ozturk, O., Xie, K., 2015. Work Zone Safety Analysis and Modeling: A State-of-
the-Art Review. Traffic Inj. Prev. 16, 387-396. https://doi.org/10.1080/15389588.2014.948615

Yang, H., Ozbay, K., Ozturk, O., Yildirimoglu, M., 2013. Modeling work zone crash frequency by
quantifying measurement errors in work zone length. Accid. Anal. Prev. 55, 192-201.
https://doi.org/10.1016/j.aap.2013.02.031

Yu, C.-Y., n.d. Evaluating cutoff criteria of model fit indices for latent variable models with binary and
continuous outcomes (Ph.D.). University of California, Los Angeles, United States -- California.

Yu, M., Zheng, C., Ma, C., 2020. Analysis of injury severity of rear-end crashes in work zones: A random
parameters approach with heterogeneity in means and variances. Anal. Methods Accid. Res. 27,
100126. https://doi.org/10.1016/j.amar.2020.100126

Zhang, K., Hassan, M., 2019a. Identifying the Factors Contributing to Injury Severity in Work Zone
Rear-End Crashes. J. Adv. Transp. 2019, 4126102. https://doi.org/10.1155/2019/4126102

Zhang, K., Hassan, M., 2019b. Crash severity analysis of nighttime and daytime highway work zone
crashes. PLOS ONE 14, €0221128. https://doi.org/10.1371/journal.pone.0221128

Zhang, K., Hassan, M., Yahaya, M., Yang, S., 2018. Analysis of Work-Zone Crashes Using the Ordered
Probit Model with Factor Analysis in Egypt. J. Adv. Transp. 2018, 8570207.
https://doi.org/10.1155/2018/8570207

71



Appendix A

library(readr)

library(dplyr)

library(MASS)

library(pscl)

#install.packages("pscl")

3k 3k 3k 3k 3k 3k sk sk sk ok sk 3k 3k 3k sk sk sk sk sk 3k 3k 3k 3k sk sk sk sk ok 3k 3k sk sk sk sk ok 3k 3k 3k 3k sk sk sk 3k sk 3k 3k 3k sk sk sk 3k 3k 3k sk 3k sk sk sk 3k 3k 3k sk sk sk ok sk sk ok 3k sk sk sk skosk ok sk k sk sk sk sk sk k ki k
# Whole Data

Data <- read.csv("Path\\Neg_Bin_Dat.csv")
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# Subset data for "Widening"

Data_Widening <- Data[DataSTYPE == "Widening", |

# Fit zero-inflated negative binomial model

zeroinfl_model <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) | LENGTH + DURATION +
log(AADT), data = Data_Widening, dist = "negbin", maxit = 500)

summary(zeroinfl_model)

predicted_crashes <- predict(zeroinfl_model, newdata = Data_Widening, type = "response")
observed_counts <- Data_WideningSCRASHES

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0))
head(result_data)

s s ks ok sk o e ks ko sk ok sk ke ke ks ko sk ko sk sk ko sk s ke ks sk sk s ke sk sk ok ks ko sk ks sk ks ks s ok ok sk ok ok sk sk ok sk sk sk sk ks ok ok sk ok ok ok
# Rehabilitation dataset

Data_Rehabilitation <- Data[DataSTYPE == "Rehabilitation", ]

inflated_all_Rehabilitation <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) | LENGTH +
DURATION + log(AADT), data = Data_Rehabilitation,link = "logit", dist = "negbin")

summary(inflated_all_Rehabilitation)
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round(inflated_all_RehabilitationS$fitted.values,0)

predicted_crashes <- predict(inflated_all_Rehabilitation, newdata = Data_Rehabilitation, type =
"response")

observed_counts <- Data_RehabilitationSCRASHES

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0))
head(result_data)
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# Subset data for "Preservation"

Data_Preservation <- Data[DataSTYPE == "Preservation", |

# Fit zero-inflated negative binomial model

zeroinfl_model_Preservation <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT)| LENGTH +
DURATION + log(AADT), data = Data_Preservation, dist = "negbin", maxit = 500)

# Display summary statistics
summary(zeroinfl_model_Preservation)

predicted_crashes <- predict(zeroinfl_model_Preservation, newdata = Data_Preservation, type =
"response")

observed_counts <- Data_PreservationSCRASHES

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0))
head(result_data)
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Data_Reconstruction <- Data[DataSTYPE == "Reconstruction", ]

# Fit zero-inflated negative binomial model

zeroinfl_model_Reconstruction <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) |LENGTH +
DURATION + log(AADT), data = Data_Reconstruction, dist = "negbin", maxit = 1000)

# Display summary statistics

summary(zeroinfl_model_Reconstruction)
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predicted_crashes <- predict(zeroinfl_model_Reconstruction, newdata = Data_Reconstruction, type =
"response")

observed_counts <- Data_ReconstructionSCRASHES
result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0))

head(result_data)
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