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Executive Summary 

Stroup et al. (2018) sought to  review work zone-related crash reports to verify the reported 
information, Fotios and Robbins (2024) identify factors that contribute to work zone-related 
crashes in South Carolina, Shinar et al. 1983 identify countermeasures based on said factors, 
Amoros et al. (2007) understand the impact of the presence of law enforcement at work zones, 
and Hausman et al. (1998) develop a predictive work zone risk assessment tool to proactively 
assess the risk at the beginning and during the lifespan of a project. Different statistical models 
were developed to achieve each objective. 

A total of 200 forms containing information about fatal crashes in work zones between 2014 and 
2020 were analyzed to determine how many discrepancies exist between the written narrative 
and other fields. To test the hypothesis that crash complexity and weather influence the 
investigating officer’s level of processing (a theory developed by Craik and Lockhart in 1972), and 
consequentially his/her ability to complete the traffic collision form accurately, a structural 
equation model (SEM) was developed. SEM results show that increases in collision speed, 
number of units, number of events, and temperature increased the number of words and 
characters written in the narrative, whereas increases in precipitation, humidity, and poor 
weather conditions resulted in a decrease in the number of words and characters written in the 
narrative. Notably, the number of discrepancies was not statistically significant, suggesting crash 
and weather-related factors do not affect an officer’s reporting accuracy. A multiple linear 
regression model was also developed to identify factors that influence a form field’s frequency 
of discrepancies. The form field’s level of difficulty and its number of inputs were found to be 
statistically significant. 

Utilizing crash data spanning from 2014 to 2020, two models were developed using mixed logit 
models to find contributing factors affecting crash injury (versus no injury): one tailored for non-
interstate roads with speed limits below 60 miles per hour (mph), and another tailored for 
interstates with speed limits of 60 mph or higher.  The findings indicated the necessity for 
separate models based on speed. Common factors contributing to injury across both models 
encompass dark lighting conditions, female (at-fault) drivers, and driving too fast for conditions. 
Furthermore, factors impacting injury on non-interstate roadways include SC or US primary 
roadways, work zone activity area, at-fault drivers under 35, sideswipe collisions, presence of 
workers, and collisions with fixed objects.  Conversely, factors affecting injury on interstates 
include the number of vehicles involved, rear-end collisions, proximity to the first work zone sign, 
and crashes occurring on weekdays. 

To determine factors influencing injury (versus no injury) in a work zone, rear-end crashes with 
collision speeds over 35 mph, a mixed binary logit model with heterogeneity in both mean and 
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variance was developed.  Significant factors contributing to injury included multi-vehicle 
involvement, airbag deployment, dark conditions, and crashes involving trucks. Conversely, late-
night and dawn/dusk conditions, along with variables such as advanced warning areas, activity 
zones, lane shifts/crossovers, and the presence of young and middle-aged at-fault drivers were 
associated with no injury. 

A split plot design with blocking was used to investigate the effectiveness of law enforcement on 
speed reduction in South Carolina work zones. The analysis used speed as the response variable, 
seasons as the main plots, the presence of law enforcement as subplots, and traffic volume as a 
covariate.  Using data from 2019, eight alternative models were explored to determine whether 
the speed for the entire work zone should be considered or just the speed at the locations where 
troopers were stationed.  Additionally, the models examined whether the average speed of 
traffic or the speed exceeding the temporary posted speed limit (excess speed) should be used.  
These combinations were considered with and without traffic volume as a covariate. All eight 
models showed a reduction in traffic speed when law enforcement was present. The model with 
the best fit is the one that considers excess speed for the entire work zone without having traffic 
volume as a covariate.  However, the ANCOVA analysis found the covariate to be efficient.  Thus, 
it is recommended that traffic volume be included in future analyses.  Seasonal analysis indicated 
that throughout the entire work zone, there is no difference in average traffic speed and excess 
speed between seasons.  However, for the transition area, the average traffic speeds and excess 
speed were lower in the winter compared to fall and summer.  In the absence of troopers, there 
is no variation in speeds between seasons. 

The work zone assessment tool was developed in Excel using  Visual Basic for Applications (VBA) 
to enable SCDOT engineers to determine crash risk and the benefit/cost of implementing 
countermeasures at a work zone.  Countermeasures and their associated Crash Modification 
Factors (CMFs) developed specifically for work zones by researchers from the University of 
Missouri were adopted. To determine the benefit-to-cost ratio, specifically, the estimated crash 
cost savings divided by the cost of implementing the measures, a crash prediction model was 
developed to estimate the expected number of crashes in work zones based on their length, 
duration, and Annual Average Daily Traffic (AADT).  This model used work zone data manually 
extracted from ProjectWise for four types of work zones: widening, rehabilitation, 
reconstruction, and preservation.  Work zone length and duration were computed from project 
descriptions, while AADT was determined by averaging traffic counts from count stations within 
work zone boundaries.  Due to the high number of work zones experiencing zero crashes, a zero-
inflated Negative Binomial model was developed instead of the traditional Negative Binomial 
model.  The models indicated that work zone length, duration, and log of AADT were significant 
in predicting crash counts across different work zone types.   
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1.  Introduction 

The 2020‒2024 South Carolina Strategic Highway Safety Plan (SHSP) identified 12 emphasis areas 
based on a detailed analysis of statewide crash data.  Among these are work zones due to 
highway workers being vulnerable users.  Work zones alter the normal traffic flow requiring 
motorists to change their speeds, process information from roadside signs, make merging 
maneuvers, and travel next to cones or barricades.  These activities can lead to vehicular crashes 
and injury to motorists and workers in the work zone.  Figure 1 shows the trend in the total 
number of crashes and the number of fatalities in South Carolina work zones from 2014 to 2020.  

 
Figure 1. Total number of work zone crashes and fatalities from 2014 to 2020 in South Carolina. 

The South Carolina Department of Transportation (SCDOT) has made several concerted efforts 
to improve work zone safety.  On June 2, 2006, the agency entered into an agreement with the 
South Carolina Department of Public Safety where Highway Patrol Troopers would devote their 
time to selective, concentrated, and strict enforcement of the state’s traffic laws at work zones.  
In 2016, the SCDOT created the Procedures and Guidelines for Work Zone Traffic Control Design 
document aimed at reducing work zone collisions.  Despite these efforts and the introduction of 
the Workers’ Safety Act (House Bill 4033) in 2017 where penalties include fines, jail time, and 
points assessed against an offender’s driving record, the number of work zone-related crashes 
has remained high as shown in Figure 1, which suggest that more can be done to improve work 
zone safety.  This fact is recognized by the 2020‒2024 SHSP and it outlined several strategies for 
the SCDOT and South Carolina Department of Public Safety (SCDPS) to implement to get closer 
to its “target zero” goal.  These strategies include improving data collection for work zone-related 
collisions, improving driver compliance with work zone traffic controls, and increasing public 
knowledge and awareness of work zones. 
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This project sought to contribute to the mission and commitment of the SCDOT and SCDPS to 
increase work zone safety through the following five research objectives: 

1. Review work zone-related crash reports to verify the reported information. 
2. Identify factors that contribute to work zone-related crashes in SC. 
3. Identify countermeasures based on factors identified in objective 2. 
4. Understand the impact of the presence of law enforcement at work zones.  
5. Develop a predictive work zone risk assessment tool to proactively assess the risk at 

the beginning/during the lifespan of a project. 

The aim of research objective 1 is to enhance the collection of crash data at work zones so that 
the SCDOT can identify high-risk work zone locations and activity areas, and to improve the 
accuracy of the South Carolina Traffic Collision Fact Books.  While it is known from the 2020‒
2024 SHSP that “the most frequently reported contributing factors in work zone-related fatal and 
serious injury collisions are driving too fast for conditions and failure to yield right of way,” 
research objective 2 sought to provide the SCDOT with a more comprehensive understanding of 
the contributing factors by examining multiple data sources (i.e., crash, unit, and occupant).  
Research objectives 3 and 4 aim to identify strategies that have a high likelihood of being 
successful in South Carolina.  Lastly, research objective 5 aims to provide the SCDOT with a 
practical, useful, and impactful work zone risk assessment tool. 

The next chapter (Chapter 2) presents a literature review of related work and results from a 
survey of state DOTs on data collection for work zone crashes. Chapter 3 describes the 
procedures used to synthesize the data for analysis and the methods used to model the acquired 
data.  Chapter 4 presents the findings from the statistical models.  Chapter 5 includes a discussion 
of the model findings and explains the project deliverables.  Lastly, Chapter 6 presents this study’s 
conclusions, recommendations, and implementation plan.  
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2.  Literature Review 

Many studies have investigated factors that contribute to work zone crashes. The majority can 
be categorized as focusing on either injury severity (most often defined as the most severely 
injured person involved in the crash) or crash frequency (the rate of occurrence).  Some studies 
considered both aspects, while others considered neither injury severity nor crash frequency. 
The authors from prior studies employed a variety of parametric and non-parametric methods 
to understand injury severity and crash frequency of work-zone-related crashes. Consequently, 
the work zone literature was grouped as follows: injury severity, crash frequency, combined 
severity and frequency, and additional contributing factors. 

2.1.  Injury Severity 

The following includes studies that investigated contributing factors to injury severity in work 
zone-related crashes. The sub-sections (2.1.1, 2.1.2, 2.1.3, and 2.1.4) group papers focused on 
work zone injury severity as it relates to truck involvement, lighting conditions, work zone type, 
and area within the work zone respectively. 

Li and Bai (2008) developed a crash severity index (CSI) to evaluate the risk of an accident being 
fatal within a work zone. Data were obtained from the Kansas Department of Transportation 
(KDOT) database and included both fatal crashes from 1998 to 2004 and injury crashes from 2003 
to 2004. The procedure to develop work zone CSI models began with identifying contributing 
factors to work zone crashes, and then the models themselves were developed using logistic 
regression.  Last, prediction accuracy was tested using the most recent crash data. Four models 
were developed: two models were first created depending on the identified contributing factors, 
resulting in driver-independent and driver-dependent models. Simplified models for each of the 
two types were created by dropping non-statistically significant variables from each of the 
models. Model validation found that crash severity prediction was generally accurate for injury 
work zone crashes, but less so for fatal crashes. 

Weng and Meng (2011) developed a tree-based logistic regression model for work zone crashes 
to assess the vehicle occupant’s casualty risk.  Work zone crash injury data were collected from 
a database maintained by the University of Michigan Transportation Institute. The decision tree 
was built using sampled data.  Based on the tree structure, the sample data was split into 
separate groups. A logistic regression model was then built for each of the groups. It was found 
that interacting variables were airbag, occupant identity, and gender.  The tree-based logistic 
regression model was found to give more accurate predictions for injury events when compared 
to a pure logistic regression model. 
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Liu et al. (2016) investigated how pre-crash behavior affects injury severity in work zone crashes. 
Data were acquired from the Virginia 2013 statewide crash database, which itself was derived 
from Virginia police crash reports.  A hierarchical modeling methodology was applied to focus on 
pre-crash driver actions, which are nested within driver-vehicle characteristics.  The study found 
that improper actions, such as following too closely or speeding, had a high correlation with 
injuries.  Additionally, not using seat belts and driving under the influence of alcohol or drugs 
were associated with severe injuries. 

Zhang et al. (2018) developed a hybrid approach of combining factor analysis with ordered probit 
model to determine the most significant factors affecting work zone crash severity in Egypt. Data 
were pulled from a database maintained by Egypt’s General Authority for Roads, Bridges and 
Land Transport (GARBLT) from 2010 to 2015.  The factor analysis first determined both main and 
common factors in determining crash severity.  With these results, the ordered probit model was 
calibrated using three levels of crash severity (no injury, injury, and fatal injury) to determine the 
most influential factors. Four factors, the most influential being weather conditions, were found 
to significantly affect work zone crash severity. 

Ghasemzadeh and Ahmed (2019) utilized a probit-classification tree to identify factors 
contributing to injury severity of work zone crashes in adverse weather conditions.  Crash data 
were extracted from the Strategic Highway Research Program 2 (SHRP2) Roadway Information 
Dataset (RID) in Washington State from 2006 to 2013.  This technique combined the conventional 
parametric probit regression model with a nonparametric classification tree model to 
compensate for the disadvantages of both individual models.  Relevant factors usually in the 
conventional probit model were included, such as vehicle type and age, lighting, and weather 
conditions.  It was found that the presence of a traffic control device and lighting conditions were 
significant interacting variables, and the authors recommended installing countermeasures to 
compensate for weather conditions. 

Sze and Song (2019) examined which risk factors contributed to work zone crashes involving 
fatalities or severe injuries in New Zealand.  Data were extracted from New Zealand’s Crash 
Analysis System, where work zone crashes were selected from November 25, 2008, to November 
25, 2013, for locations where the speed limit was temporarily reduced.  Notably, data did not 
include information on the type of road, road environment, or characteristics of the work zone 
itself.  A multinomial logistic regression model using a 20% level of significance was applied to 
determine contributing factors, and injuries were grouped into fatal/serious, minor, and non-
injury.  Day of week, time of day, and involvement of motorcycles/bicycles/pedestrians were 
found to affect the likelihood of fatal/serious and minor injury. 

Zhang and Hassan (2019a) investigated the contributing factors leading to work zone rear-end 
crashes in Egypt.  Data on crashes were acquired from Egypt’s Ministry of Transport for 12 long-
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term (longer than one year) work zones in Egypt from 2010 to 2017.  Six categories were acquired 
from the data: driver information, vehicle information, crash time, road characteristics, work 
zone information, and environmental conditions.  A random parameter ordered probit model, 
which allows for unobserved heterogeneity, was utilized, and injury severity was categorized as 
no injury, injury, and fatal.  Findings include that unexpected maneuvers and young male drivers 
traveling at nighttime on weekends both increased the chances of fatality, and injury severity is 
higher during asphalt surface construction than milling surface construction.  The authors 
recommended driver training programs and intelligent transportation systems (ITS) technologies 
as countermeasures to reduce the number of rear-end crashes. 

Zhang and Hassan (2019b) aimed to determine the difference in injury severity and contributing 
factors in work zone crashes during daytime and nighttime.  The data used were from ten long-
term (longer than one year) work zones in Egypt from 2010 to 2016.  Separate mixed multinomial 
logit models were used for day and night, with each separating injuries into three categories: 
property damage only, injury, and fatality.  Likelihood ratio tests statistically justified the usage 
of separate models for daytime and nighttime.  It was found that significant factors had 
substantial differences between day and night models.  Even in cases where variables were 
significant in both, they displayed different directions or magnitudes of effect across models. 

Mokhtarimousavi et al. (2019) compared the performance of two different approaches, one 
parametric and one non-parametric, in predicting the injury severity of work zone crashes.  Crash 
records from 2013 to 2017 in Miami-Dade County were obtained from the Florida Signal Four 
analytics tool.  The parametric approach utilized a mixed logit modeling framework to predict 
crashes.  The non-parametric approach utilized support vector machine (SVM) modeling and 
applied three unique optimization algorithms to determine which most improved results.  The 
base SVM model and all three applied algorithms outperformed the mixed logit model in 
correctly predicting observed crashes.  The SVM model including the harmony search algorithm 
was found to perform best, with an accuracy of 83.5% compared to the mixed logit model’s 
67.2%. 

Yu et al. (2020) analyzed the injury severity of rear-end work zone crashes and their contributing 
factors.  Work zone crash data in North Carolina from 2010 to 2013 were acquired from the 
Federal Highway Administration Highway Safety Information System (HSIS) and then split into 
two-year periods (2010-11 and 2012-13).  Likelihood ratio tests confirmed that the two time 
periods should indeed be modeled separately, thus implying temporal instability.  The random 
parameters logit approach with heterogeneity in mean and variance was selected with three 
injury severity levels (injury, possible injury, and property damage only).  Akaike’s and Bayesian 
information criteria (AIC and BIC) demonstrate that this method outperforms the random 
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parameters logit approach.  Contributing factors were found to vary with time, although 
involvement of alcohol or drugs and full access control have similar outcomes over both periods. 

Islam et al. (2020) investigated the severity of work-zone related crashes over a six-year period, 
from January 1, 2012, to December 31, 2017.  Data were retrieved from the Florida Crash Analysis 
Reporting (CAR) data system and combined with a vehicle dataset, resulting in a comprehensive 
dataset of single-vehicle work zone crashes.  To account for possible unobserved heterogeneity, 
a random parameters logit model was used.  Likelihood-ratio tests rejected the null hypothesis 
that parameters are equal in all years, so differences in injury severity data by year were deemed 
statistically significant.  Only two variables were found to be statistically significant over all years.  
The authors noted that variations in work zones, which by nature are temporary, are a source of 
the temporal instability that has been observed. 

Hosseini et al. (2021) developed a Multiple Correspondence Analysis approach to finding 
significant contributing factors influencing crash severity in New Jersey.  Work zone crash data 
from 2016 to 2018 in New Jersey were utilized for the study.  A total of 20 independent variables, 
categorized into crash, road, temporal, driver, and environmental characteristics were selected, 
with injury severity as the dependent variable.  The results illustrated that the most significant 
factors were lighting conditions, time, vehicles involved in crashes, and crash type.  Subsequently, 
the authors suggested installing lighting equipment, providing speed limits and enforcement, 
implementing Variable Speed Limit technology, increasing fines for offending drivers, and 
providing education as effective countermeasures to reduce the rate and severity of crashes. 

Mokhtarimousavi et al. (2021) investigated factors affecting crash severity and its relation to time 
of day. Crash data from the S4 crash database were obtained for Florida from 2015 to 2017. 
Separate binary mixed logit models were utilized to determine contributing factors for daytime 
and nighttime conditions. Furthermore, SVM models trained by the Cuckoo Search (CS) algorithm 
were used to explore nonlinear relationships among crash severity levels.  In both daytime and 
nighttime models, driver alcohol involvement, rainy weather, wet surfaces, multiple vehicle 
occupants, and distraction were found to be the most significant contributors to injury severity 
in work zone crashes.  Additionally, the CS-SVM models were found to more accurately predict 
crashes in comparison to the SVM models, which themselves outperformed the logit models. 

Ashqar et al. (2021) investigated the impact of different risk factors on work zone crash severity.  
Data were pulled from work zone crashes along highway I-94 in Michigan for the 2016 calendar 
year.  Frequency analyses, logistic regression statistics, and a machine learning Random Forest 
(RF) algorithm were all used to identify and model risk factors.  Driver, crash, road, and 
environmental specifications were considered as independent variables, and crash severity was 
used as the dependent variable. Based on the results, the authors suggested potential 
countermeasures to reduce work zone crashes, including traffic calming before the work zone, 
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improving illumination during the work zone, as well as education and awareness measures for 
high-risk driver groups.   For small sample sizes, the RF algorithm was proposed as a more 
effective approach to crash data analysis when compared to logistic regression. 

Islam (2022) proposed a model to identify contributing factors to injury severity in work zone 
motorcyclist crashes.  Data contained Florida work zone crashes involving motorcycles from 2012 
to 2016 and were obtained from the CAR system.  The resulting dataset contained a variety of 
potential factors, including motorcycle type, speed, helmet usage, roadway characteristics, crash 
characteristics, and both spatial and temporal characteristics.  The random parameter 
multinomial logit model with heterogeneity in mean and variance was utilized for both single and 
multi-vehicle motorcycle crashes.  It was found that license endorsement and partial ejection 
were the only variables statistically significant in both single- and multi-vehicle crashes.  Based 
on the results, the authors suggested lighting at night, shoulder widening, increasing signage on 
surface conditions, improving helmet usage, and increasing motorcycle endorsement (education-
based) as potential countermeasures to decrease the number and severity of crashes of work 
zone crashes involving motorcycles. 

2.1.1. Truck Involvement 
Khattak and Targa (2004) investigated how work zone characteristics affect total harm and the 
most seriously injured occupant in crashes with a distinction between truck-involved and non-
truck-involved collisions.  Data were obtained from HSIS and combined with police crash reports 
from the State of North Carolina in 2000.  An ordered probit model was used with consideration 
of the ordinal and categorical nature of injury severity.  A new total harm variable was created 
by assigning an economic value to injury severity and summing all injuries.  The ordinary least-
square log-transformed model was used for total harm.  It was found that truck-involved, 
multivehicle crashes were most harmful and injurious under a variety of conditions. 

Osman et al. (2016) analyzed which causal factors contributed to injury severity of large truck 
crashes in work zones.  Data were collected from 2003 to 2012 in Minnesota from HSIS.  A variety 
of unordered and ordered modeling methods were utilized and compared, with the generalized 
ordered response logit (GORL) model outperforming the rest based on the Bayesian Information 
Criterion (BIC) test statistic.  The most significant variables increasing the risk of severe outcomes 
in work zone crashes involving large trucks were found to be daytime crashes, no control of 
access, higher speed limit, and rural principal arterial road classification.  The authors suggested 
that lowering speed limits and using warning signs to inform motorists or large trucks of work 
zones can lower occurrences of crashes. 
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2.1.2. Lighting Condition 
Dias and Dissanayake (2016) identified which factors contributed to higher injury severity in 
work-zone crashes and compared nighttime and daytime crashes in work zones.  Data were 
obtained from KDOT for all work zone crashes within the state from 2010 to 2013.  Crash severity 
was considered as the dependent variable with five categories: fatal, incapacitating injury, non-
incapacitating injury, possible injury, and not injured.  Ordered probit models, one for daytime 
and one for nighttime, were produced.  Some factors increased or decreased crash severity 
consistently over both day and night, but other variables, such as work zone area of crash 
occurrence and driver age, had differing effects at day and night. 

Wei et al. (2017) analyzed injury severity in work zone crashes under different lighting conditions.  
Data from 2003 to 2015 were pulled from the Enhanced Tennessee Roadway Information 
Management System.  Although five unique light conditions were described in this data, they 
were grouped into three categories: daylight, dark-lighted, and dark-not-lighted.  Using the 
Classification and Regression Trees (CART) algorithm, decision trees for each of the three light 
conditions were generated to determine contributing factors to work zone crashes and severity. 
The study found that traffic control devices had differing effects depending on lighting conditions, 
implying they should be designed differently according to light conditions.  Additionally, an 
increase in the number of lanes may increase crash severity in daylight conditions but have the 
opposite effect in dark-not-lighted conditions. 

Al-Bdairi (2020) investigated the significance of time of day in highway work zone crashes. The 
time of day is separated into four groups: (1) Morning from 6:00 to 11:00 a.m., (2) Midday from 
12:00 to 5:00 p.m., (3) Night from 6:00 to 11:00 p.m., and (4) Late night from 12:00 to 5:00 a.m. 
using data obtained from the Washington State Department of Transportation (WSDOT).  A 
mixed logit model was used to account for unobserved heterogeneity and predict injury severity.  
Likelihood ratio tests reject the null hypothesis that estimated parameters are the same across 
holistic and separated models, so the different periods must be separately modeled.  Some 
factors, such as lack of airbag deployment and rear-end collision, affect injury severity regardless 
of time of day (albeit their impact varies with time of day).  Other factors are common in multiple 
periods, such as female drivers decreased the probability of no injury during morning and night.  
Some factors are significant in only one period, such as sober drivers increasing the probability 
of no injury during the morning. 

2.1.3. Work Zone Type 
Weng and Meng (2011) analyzed casualty risk for drivers in work zone crashes for different work 
zone types.  The Fatality Analysis Reporting System (FARS) was used to obtain data on work zones 
within the United States between 2001 and 2006.  The binary logistic regression model was used 
to predict either injury or non-injury; fatalities were not considered separately due to their 
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relatively small contribution to the total number of crashes and thus grouped within the injury 
category. Models were created for each of the three work zone types: construction, 
maintenance, and utility.  It was found that construction zones have the largest casualty risk and 
that several factors influence risk in all three types.  The authors noted that the relatively small 
sample sizes for maintenance and utility work zones may affect these results. 

Osman et al. (2018) investigated which factors contributed to injury severity in passenger-car 
crashes with specific attention to work zone configuration.  The dataset used was collected from 
HSIS for work zone crashes in Minnesota from 2003 to 2012.  Work zones were categorized into 
five types: lane closure, lane shift, crossover, shoulder or median, and intermittent/mobile. A 
mixed generalized ordered response probit model was utilized, which allows additional flexibility 
over the standard ORP model.  Some variables were found to be significant across all work zone 
types, while others were type-specific.  The author recommended collecting work zone-specific 
data such as duration, lane widths, and speed limits to improve findings. 

Yu et al. (2020) investigated the factors affecting work zone crashes involving trucks in rural and 
urban areas.  Data on truck-involved work zone crashes were obtained from HSIS from 2005 to 
2014 in North Carolina.  To account for unobserved heterogeneity, the mixed logit and partial 
proportional odds models are utilized and compared. Three injury severity levels 
(fatal/incapacitating/non-incapacitating injury, possible injury, and property damage only) were 
considered for the dependent variable.  Conclusions include that usage of restraint and 
involvement of alcohol are contributing factors regardless of area. Visibility improvement and 
speed reductions would be effective in rural areas, while appropriate placement and design of 
indicator signs would be effective in urban areas. 

2.1.4. Work Zone Area 
Osman et al. (2019) investigated the different risk factors affecting driver injury severity in work 
zone crashes within different work zone areas. Work zone crash data from 2002 to 2013 in 
Minnesota were acquired from HSIS. Work zones are broken into four distinct areas: advance 
warning area, transition area, activity area, and termination area. Injury severity is classified into 
three categories: severe injury, injury, and no injury. A mixed generalized ordered response 
probit model is adopted, which accounts for unobserved heterogeneity and ordering of injury 
severity. Airbag deployment, alcohol involvement, ejection, seatbelt use, and partial control of 
access are all found to contribute to severe outcomes, and many covariates had varying effects 
across different work zone areas. 

Koilada et al. (2020) examined how the odds of crash occurrence and its contributing factors 
change with work zone area.  Work zones were split into four area types per the Manual on 
Uniform Traffic Control Devices (MUTCD): advance warning, transition, activity, and termination. 
Five years (2010-2014) of crash data from North Carolina were acquired from the Highway Safety 



  10 

Information Systems.  Four models were developed: proportional odds for injury severity in the 
transition area, and partial proportional odds models for work zone area types, injury severity in 
the advance warning area, and injury severity in the transition area.  The results indicated specific 
variables affected the odds of crashes depending on the work zone area.  Another notable result 
is that the odds of a crash increased in transition and activity areas when flexible post barriers 
were used as a median. 

2.2. Crash Frequency 
The following includes studies that investigated contributing factors to crash frequency in work 
zones.  The sub-sections (2.2.1 and 2.2.2) group papers focused on work zone crash frequency as 
it relates to rear-end crashes and traffic control devices respectively. 

Daniel et al. (2000) studied fatal work-zone crashes and compared them to fatal crashes at non-
work-zone locations.  Data were obtained from FARS and from the Georgia Department of 
Transportation for work zones in Georgia from 1995 to 1997.  Different factors, such as manner 
of collision, light conditions, truck involvement, and roadway classification were examined and 
summarized.  Statistical tests for independence were performed for each of the above factors, 
and the null hypothesis of independence between work-zone and non-work-zone crashes was 
rejected.  Several findings were identified: crashes more often occurred in construction work 
zones rather than maintenance work zones, vehicles were more likely to be involved in fatal work 
zone crashes than fatal non-work-zone crashes, and rear-end crashes were a high proportion of 
work zone crashes. 

Garber and Zhao (2002) studied the characteristics of crashes within different work zone areas.  
Data were acquired using Virginia police crash reports from 1996 through 1999.  Crashes in work 
zones were classified as occurring in one of five areas: advance warning, transition, buffer, 
activity, and termination. Proportionality tests were performed to determine whether crash 
frequency, severity level, crashes by severity, and collision type had statistically significant 
differences in each work zone area.  It was found that the activity area was the most prevalent 
accident location, property damage only was the common severity, and rear-end crashes were 
the most predominant collision type. 

Arditi et al. (2007) investigated fatal work zone crashes to find a potential safety difference 
between daytime and nighttime safety.  Data were collected from FARS and filtered into crashes 
occurring at work zones in Illinois from 1996 to 2000.  The data were sorted into daytime based 
on the “Day” classification, and all other classifications were considered nighttime, which 
included dawn and dusk and was irrespective of light conditions.  Calibration factors for traffic 
volume, number of work zones, and hours of daylight vs nighttime were combined to 
compensate for the difference between day and night, thus making the dataset more directly 
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comparable.  Using the Kruskal-Wallis test, the null hypothesis of no differences between 
daytime and nighttime fatal crash occurrences was rejected.  As such, statistical evidence pointed 
to nighttime construction being five times more hazardous than daytime in regard to fatal work 
zone crashes. 

Yang et al. (2013) investigated the relationship between explanatory variables and work zone 
crash frequency.  Data for work zone crashes in New Jersey were assembled from independent 
sources within the New Jersey Department of Transportation. The negative binomial model was 
extended to incorporate effects arising from errors in the measurement of work zone length.  
This error is due to variability in work zone length as the project progresses.  A new model coined 
MENB, accounted for this to better fit the data.  It was found that work zone length and traffic 
volume were positively correlated with work zone crash occurrence. 

Weng et al. (2015) investigated drivers’ merging behavior as well as rear-end crash risk in work 
zone merging areas.  The period considered begins with the start of the merging maneuver and 
ends with the vehicle fully entering the adjacent through lane.  For calibration and validation, a 
case study with merging trajectory data from a work zone in Singapore was used.  A mixed probit-
based merging behavior model was developed to determine the probability a merging vehicle 
completes the merging maneuver.  Two surrogate safety measures were selected to compute 
the rear-end crash risk between the merging vehicle and its neighboring vehicles.  It was found 
that rear-end crashes were more likely to occur when the merging vehicle moves very slowly or 
quickly, and the probability of completing the merging maneuver increases over the time 
elapsed. 

Weng et al. (2016) investigated casualty patterns in work zone crashes using association rules .  
The association rule approach is a data mining technique that can interpret relationships 
between a large number of variables; these relationships can then be easily described.  By 
changing the support and confidence, different lift values, determining association strength, 
were found.  A case study was performed with data including environmental characteristics, 
control information, crash information, and occupant information.  Data were acquired from the 
University of Michigan Transportation Institute.  This case study concluded that crashes were 
more likely on roads with more than four lanes where the speed limit was more than 40 miles 
per hour. 

Weng et al. (2018) developed a time-varying mixed logit model for modeling vehicle merging 
behavior within work zones .  The period considered begins with the start of the merging 
maneuver and ends with the vehicle fully entering the adjacent through lane.  For calibration and 
validation, a case study with merging trajectory data from a work zone in Singapore was used. 
This new method was found to have a higher prediction accuracy than models utilizing vehicle 
speeds and gap sizes.  Several factors were found to affect merging behavior, and specific 
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scenarios in which vehicles were more likely to successfully complete the merging maneuver 
were defined. 

Hou and Chen (2020) presented an integrated framework for work zone safety under adverse 
driving conditions .  The framework is broken into four parts.  In the first, work zone traffic is 
simulated using a cellular automaton model considering a variety of factors.  In the second and 
third, multiple-vehicle and single-vehicle crash simulations respectively are used to determine 
the probability of each.  In the fourth, overall safety is assessed using both single-vehicle and 
multiple-vehicle crashes.  A case study was used to investigate safety under different weather 
conditions.  The results of their study indicated rain and snow conditions lower work zone 
capacity and increase the probability of crashes, and the most prevalent type of crash varies with 
weather conditions.  Limitations of their study include a lack of validation with actual crash data 
and not considering the possibility of multi-vehicle crashes caused by single-vehicle crashes. 

Gupta et al. (2021) investigated work zone crashes resulting in fatalities and involving trucks . 
Crash data was pulled from the S4 database developed by the Florida Department of Highway 
Safety and Motor Vehicles over seven years.  Data resampling was accomplished using the 
SMOTE-NC algorithm and random over-sampling, and then significant variables were extracted 
from decision trees to create tuned RF models.  For truck crashes, pedestrian involvement, 
lighting conditions, safety equipment, driver condition, driver age, and work zone location were 
all identified as primary contributors.  Some environmental and roadway-specific conditions 
notably did not show significant contribution to the model. Fatality patterns for pedestrian 
crashes showed different factors contributed when compared to non-pedestrian fatal crashes. 

Santos et al. (2021) identified risk factors affecting work zone crashes and compared binary 
logistic (logit) to probit regression modeling methods .  Data were collected from police crash 
reports in mainland Portugal from 2013 to 2015.  Due to limitations related to the filling of data 
into crash report forms, the authors decided that performing modeling by road environment 
would compensate for missing information.  Analysis was performed to determine risk factors 
for crash type, primary contributing factor, and driver age group.  Logit and probit models were 
found to produce very similar results.  The authors suggested that their differences may be due 
to the small sample size. 

2.2.1. Rear-End Crashes 
Meng and Weng (2011) evaluated the rear-end crash risk at work zones and investigated driver 
merging behavior .  Data were obtained from two work zones in Singapore using a video camera 
to record vehicle trajectory.  The primary measure to determine crash probability was the 
deceleration rate to avoid the crash (DRAC).  Using the stepwise regression method, four models 
were produced: one for each of the two work zones data were collected by considering 
macroscopic contributing factors, one which combined the two work zones, and one which 
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additionally considered twelve microscopic variables.  Findings included the lane closest to the 
work zone, the expressway work zone, and trucks having the highest crash risk out of their 
respective categories. 

Weng et al. (2015) evaluated the effect of vehicle-following patterns on rear-end crash risk in 
work zones .  Four front vehicle-following vehicle patterns were used: car-car, car-truck, truck-
car, and truck-truck.  Data were collected using video cameras at two expressway work zone sites 
in Singapore.  DRAC was the primary measure to determine rear-end crash risk, and tests for 
statistical significance proved each of the four patterns should be separately modeled. The 
highest risk for rear-end crashes in work zones was found to be the car-truck pattern. 

2.2.2. Traffic Control Devices 
Li and Bai (2009) investigated the effectiveness of different temporary traffic control devices in 
reducing severe work zone crashes .  Data represented work zone crashes resulting in fatality or 
injury in Kansas occurring in 2003 or 2004.  The binary logistic regression technique was used for 
evaluating effectiveness, which was measured by severity reduction and odds of crash 
occurrence.  This was compared against the following human errors: inattentive driving, 
disregarding traffic control, following too closely, and exceeding speed limit/driving too fast for 
conditions.  The most effective devices were found to be the presence of a flagger or officer, 
followed by having flashers or center/edge lines.  Stop signs/signals and no passing zones were 
not found to be effective. 

Rista et al. (2017) examined the impact of various temporary traffic control measures on work 
zone safety .  Data included lane closure reports, AADT estimates, as well as traffic crash 
information and was provided by the Michigan Department of Transportation and state police 
crash database.  Safety performance functions including site-specific information were 
developed and reinforced by count data models to account for unobserved heterogeneity.  Sites 
were primarily compared to their respective locations before the implementation of work zones. 
Results found that there was no difference in crash rates in shoulder closure work zones when 
compared to pre-work-zone conditions, while other work zone types (single and multilane 
closures, lane shifts) showed higher crash rates. 

Department of Transportation & Infrastructure Studies, Morgan State University, Baltimore, MD, 
USA et al. (2018) studied the impact of mobile barriers on driver behavior on arterial roads  A 
driving simulator was utilized to replicate a one-mile stretch of Hillen Road, located in Baltimore, 
Maryland.  Test drivers’ throttle/brake control (speeding) behavior and steering handling (lateral 
movement) behavior were recorded along with pre- and post-simulation surveys to collect 
demographics and preferences on barrier type, respectively.  Three types of work zone barriers 
were investigated: cone pylons, concrete jersey barriers, and metal barriers. Results found that 
participants drove faster next to concrete barriers than cone pylons but tended to move away 
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from concrete barriers.  The authors suggested that concrete jersey barriers may be more 
effective in improving safety on arterial roads. 

2.3. Combined Injury Severity and Crash Frequency 
Dias (2015) analyzed work zone crash characteristics and identified factors associated with crash 
severity and frequency data were acquired for the entire state of Kansas from 2010 to 2013 using 
a variety of databases, including the Kansas CAR and KANPLAN, a GIS portal for KDOT.  A common 
crash severity model was developed alongside individual models for crash severity for daytime, 
nighttime, single-vehicle, and multi-vehicle work zone crashes.  All injury severity models utilized 
ordered probit.  Crash frequency negative binomial models were also developed to find crash 
characteristics related to crash frequencies.  The author recommended that appropriate 
countermeasures be implemented based on the contributing factors leading to increased crash 
severity.  He noted that the unavailability of a full work zone database to find proper information 
was a major difficulty in the study. 

Khattak et al. (2002) analyzed the effect of work zone duration on the frequency and severity of 
crashes in California. Their analysis used data obtained from HSIS and project-level information 
obtained from CALTRANS.  Using calculated crash rates before the work zone and during the work 
zone, the authors developed five negative binomial models.  Crash frequency, non-injury crashes 
pre-work zone, non-injury crashes during work zone, injury crashes pre-work zone, and injury 
crashes during work zone were used as dependent variables for each of the models.  The factors 
considered include average daily traffic (ADT), work zone duration, work zone length, traffic 
exposure, and urban setting of the work zone.  The first model predicted that the total crash rate 
would increase by 21.5% during the work zone period compared to the pre-work zone period and 
that the non-injury crash rate has a larger increase than the injury crash rate. The other four 
models indicated that increased work zone length, work zone duration, and traffic exposure raise 
the frequency of non-injury and injury crashes in the work zone. 

2.4. Analysis of Factors that Contribute to Work Zone Crashes 
This section summarizes studies that investigated contributing factors in work zone crashes but 
do not specifically focus on injury severity or crash frequency.  The subsection (2.4.1) focuses on 
papers that focused specifically on the misclassification of data in work zone crashes. 

Debnath et al. (2015) performed a qualitative study of worker perceptions of common work zone 
hazards and countermeasures .  Participants for the study were recruited from private and 
government organizations involved in road construction, maintenance, and traffic control in 
Queensland, Australia, and averaged over nine years of roadwork-related experience.  Responses 
were split into three groups based on exposure to traffic: fully exposed, semi-exposed (usually 
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behind some barrier or protection), and non-exposed (those working primarily from officers with 
only occasional visits to sites).  The most frequent hazard mentioned was drivers exceeding work 
zone speed limits.  Other significant factors included driver inattention and adverse 
environmental conditions.  Respondents additionally mentioned driver aggression as a hazard, 
which is rarely investigated in studies.  Police reinforcement and education measures were the 
most common suggested means of improving safety in work zones. 

Yang et al. (2015) reviewed work zone modeling and safety-related analysis.  Generally consistent 
results confirmed that work zones increase crash rates, crashes are not uniformly distributed 
across work zones, and rear-end crashes are the most common type of crash.  The majority of 
studies utilized negative binomial and logistic regression models based on police crash report 
data, but the authors argue that these models cannot accurately incorporate work zone-specific 
factors, such as their inherent short-term nature and common lack of sufficient crash data at any 
given work zone.  The authors recommended more advanced statistical modeling methods once 
more comprehensive data can be collected about work zone crashes. 

Theofilatos et al. (2017) attempted to summarize the effect of work zones on road safety and 
crash frequency from other studies.  Studies related to work zone crashes focusing on either 
length and/or duration which applied fixed effects negative binomial models were selected for 
this study.  Meta-analysis and meta-regression techniques were utilized to provide a general 
estimate of coefficients for work zone duration and work zone length.  After correction, duration 
was found to have a positive non-significant effect on work zone crash frequency, while length 
had a positive significant effect.  The author noted the rather small selection of studies matching 
the criteria and the fundamental heterogeneity across different studies as limitations when 
applying the results. 

Mannering (2018) explored the temporal instability of highway accident data and discussed its 
possible implications. The author drew from several fields, including cognitive science, 
economics, neuroscience, and psychology to conclude that decision-making, which applies to all 
drivers, is temporally unstable.  He suggested that temporal instability is potentially a significant 
portion of unobserved heterogeneity in models and that many of the existing accident prediction 
methods are unable to account for this factor.  Some potential methods of compensating for said 
instability are presented, such as developing a function that predicts how variables will change 
over time.  Although appropriately modeling temporal instability remains a significant challenge, 
the author recommended further investigation and increasing awareness of this factor in current 
safety assessment practices. 

Thapa and Mishra (2021) investigated the influence of external variables on the performance of 
Work Zone Intrusion Alert Systems (WZIAS) .  Three different types of WZIAS were used over 525 
trials to determine factors resulting in work zone crashes.  The subsequent data were analyzed 
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using survival analysis, including the non-parametric Kaplan Meir estimator and the semi-
parametric Cox proportional hazard model.  Intrusion speed, sensor-to-worker spacing, and 
system accuracy were all found to significantly influence crash occurrence.  In addition to 
suggesting standardized deployment strategies for different WZIAS types, the authors 
recommended reducing speed limits and standardizing the length of the buffer space as work 
zone crash countermeasures. 

Azimi et al. (2021) created a guideline to assist decision-makers in analyzing whether and what 
type of ITS technologies should be used in work zone projects through a four-step system . Based 
on interviews with practicing engineers and contractors involved in work zone projects, a scoring 
system and flowchart were developed to assess the feasibility of ITSs given work zone conditions.  
ITS candidates for the work zone were identified based on the intent of the ITS device and project 
characteristics.  The ITS to be used was selected based on its potential benefits and associated 
costs. Last, the ITSs were deployed and evaluated for performance. A Texas Department of 
Transportation (TxDOT) highway improvement project was used as a case study for 
recommending potential ITSs to deploy. 

2.4.1. Misclassification of Data in Work Zone Crashes 
Ullman and Scriba (2004) presented how differences in state crash report forms can influence 
work zone crash data in FARS.  Researchers reviewed and categorized crash report forms for each 
of the states based on whether work zone fields were included explicitly, indirectly, or not at all.  
These forms were then compared to their respective 1992 counterparts to determine which had 
added fields for work zones.  Based on three years of crash data for each state (1998-2000), it 
was found that there is a statistically significant, linear relationship between the percentage of 
fatalities recorded in work zones and the way work zone data is included on crash report forms.  
Based on this analysis, the authors suggested that existing data may underreport work zone 
fatalities by up to 10%. 

Yahaya et al. (2020) studied the effects of mislabeling in crash datasets using machine learning 
algorithms to identify misclassified information .  A work zone crash injury severity dataset from 
Cairo, Egypt from 2010 to 2015 was acquired from Egypt’s GARBLT and the Police Reports 
Accident Database.  A new M-IPF algorithm, based on the Iterative Partitioning Filter (IPF), was 
proposed, which included additional sampling techniques. The additions were intended to 
minimize the incorrect deletion of minority class samples.  M-IPF filter was compared to other 
state-of-the-art filtering algorithms for effectiveness and efficiency and was found to have 
superior performance; albeit the authors noted that the method is too likely to eliminate samples 
that are not mislabeled. 

Sayed et al. (2021) developed a classifier to find unidentified work zone crashes in crash reports 
through text mining .  Wisconsin crash reports from January 2017 to January 2018 were used as 
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training data, and January to October 2019 data were used for testing.  The classifier utilized the 
noisy-OR method to determine unigram and bigram work-zone-indicative “keywords” in the 
crash report narrative.  In the top 450 cases identified, 201 were identified as missed work zone 
crashes, proving the unigram + bigram noisy-OR method classifier was effective at classifying 
missing work zone crashes. The authors utilized ad-hoc analysis of misclassified work zone 
crashes to find the reason for work zone missing crashes. It was found that work zone crashes 
were most often missed during the daytime (specifically during the 4-5 p.m. period), during 
summer months, and on urban city streets. 
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3.  Methodology 

3.1. Data Acquisition 
Crash data were provided by the SCDOT and came in three separate CSV files: crash, unit, and 
occupant.  These tables were joined using the field “ANO,” the primary key/unique identifier for 
each collision as illustrated in Figure 2. 

 
Figure 2.  Merge procedure of SCDOT crash data tables using unique keys. 

The available crash data contains information on time and day (such as day of the week and time 
of day), roadway and environmental conditions (such as functional classification, curve, and 
grade), crash attributes (such as number of vehicles involved, collision speed), work zones (such 
as configuration type), vehicles (such as airbag deployment), and drivers characteristics (such as 
age, gender).  Note that these data pertain to the conditions observed by the reporting officer.   
For example, collision speed is not the actual or measured speed, but rather, an estimated speed.  
It is obtained based on answers provided by the drivers involved and based on the evidence at 
the crash scene (e.g., length of skid marks, deployment of airbags, extent of damages to vehicles).   

Several data sets were developed for the different tasks associated with this project. The 
development processes for these sets are described below according to the tasks each set was 
used for.  In this study, the injury severity used for a crash is the most severe one; there could be 
more than one injury in a crash.   

3.1.1. Data for Identifying Contributing Factors 
As previously noted, two separate analyses were conducted to identify the contributing factors, 
each utilizing a different dataset.  The first analysis sought to identify contributing factors to 
injury for work zone-related crashes on roadways with 60 mph or higher speed limits (assumed 
to be predominantly interstates) and on roadways with less than 60 mph (assumed to be 
predominantly non-interstate).  Mixed logit models were developed using South Carolina 
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statewide work zone crash data from 2014 to 2020.  This analysis focused on truck-involved 
crashes.  The reason is that truck-involved crashes at work zones pose a greater risk for injuries 
and fatalities, and they are more serious in nature than crashes that occur in non-work zones 
Khattak and Targa (2004). Additionally, truck-involved crashes pose a greater economic impact 
as trucks carry high-value goods and require a longer incident clearance time.  Despite initiatives 
implemented by SCDOT to improve work zone safety (e.g., National Work Zone Awareness 
Week), the number of truck-involved crashes at work zones increased from 189 in 2014 to 666 in 
2019 (a 252.4% increase) with the peak occurring in 2018.  The increasing trend from 2014 to 
2019 is a concern, given that the number of work zones is expected to increase significantly due 
to the increase in funding for construction projects.  It should be noted that due to the COVID-19 
pandemic, the total number of crashes and truck-involved crashes at work zones in South 
Carolina decreased in 2020.   

In total, there were 15,727 crashes: 93 were fatal crashes, 176 were serious injury crashes, 674 
were minor injury crashes, 2,451 were possible injuries, and 12,333 were property damage only 
(PDO) crashes.  To prepare the dataset for modeling, it was filtered to include only those crashes 
that involved at least one truck whether at fault or not.  In the truck-involved work zone crash 
dataset, there were a total of 3064 crashes: 29 (0.95%) were fatal crashes, 36 (1.75%) were 
serious injury crashes, 121 (3.95%) were minor injury crashes, 381 (12.43%) were possible injury 
crashes, and 2,496 (81.46%) were PDO crashes.   Due to the small number of observations per 
injury severity level, the five levels are combined into two, injury and PDO, where injury includes 
fatal, serious injury, minor injury, and possible injury.  The final dataset contains 565 injury 
crashes and 2,488 PDO crashes.  It should be noted that the final dataset has 11 fewer 
observations [3064 - (565 + 2488)] than the initial dataset because these crash records did not 
have posted speed limits.  To evaluate the effect of the posted speed limit on the roadway where 
the work zone is located, the final dataset was first divided into three different speed limit 
categories: less than 40 mph, between 40 and 60 mph, and 60 mph or greater.  The number of 
observations for the less than 40 mph category was only 312.  For this reason, two speed limit 
categories were used, less than 60 mph and greater than or equal to 60 mph.  The former 
category has 305 injury crashes and 1,443 PDO crashes, whereas the latter category has 260 
injury crashes and 1,045 PDO crashes.  The reason for choosing 60 mph as the demarcation speed 
is that interstates in South Carolina typically have a posted limit of 60 mph or higher and 
guidelines for setting up work zones on interstates are more stringent.  Table 1 presents the injury 
severity level frequency and percentage distribution by speed limit categories. 

Table 1. Injury severity level frequency and percentage distribution by posted speed limit levels. 
Speed category Total observation Injury (%) PDO (%) 

Less than 60 mph 1,748 305 (17.45) 1,443 (82.55) 
Greater than or equal to 60 mph 1,305 260 (19.92) 1,045 (80.08) 
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Descriptive statistics of explanatory variables used in this analysis are shown in Table 2. They 
include characteristics related to vehicles, crashes, roadways, work zones, day and time, 
environment, and drivers. 

Table 2. Descriptive statistics of variables by two posted speed limit levels. 

Variables Speed < 60 mph Speed ≥ 60 mph 
Percent (%) Percent (%) 

Driver Characteristics 
Gender (1 if female driver are at fault in a crash, 0 
otherwise) 20.41 14.60 

Younger drivers (1 if age of at-fault driver are group below 
35 years, 0 otherwise) 30.82 31.22 

Middle-aged drivers (1 if age of at-fault driver are 
between 35 and 50 years, 0 otherwise) 27.06 30.26 

Older drivers (1 if age of at-fault driver are group above 50 
years, 0 otherwise) 41.97  

38.47 
Driving too fast (1 if the contributing factor of crash is 
driving too fast, 0 otherwise) 24.75 43.31 

Distracted (1 if the contributing factor of crash is 
distracted, 0 otherwise) 8.83 0.80 

Failed (1 if the contributing factor of crash is failed to yield 
right of way, 0 otherwise) 12.45 4.21 

Improper usage (1 if the contributing factor of crash is 
improper lane usage, 0 otherwise) 12.88 37.99 

Under influence (1 if the contributing factor of crash is 
under the influence, 0 otherwise) 2.32 2.02 

Crash Characteristics 
1 vehicle (1 if the number of vehicles involved in a crash is 
1 or more, 0 otherwise) 6.80 6.13 

2-vehicles (1 if the number of vehicles involved in a crash 
is 2, 0 otherwise) 84.66 78.48 

3+ vehicles (1 if the number of vehicles involved in a crash 
is 3 or more, 0 otherwise) 8.39 15.34 

Rear End (1 if manner of collision is rear end, 0 otherwise) 32.13 39.80 
Sideswipe (1 if manner of collision is sideswipe, 0 
otherwise) 24.02 35.59 

Crash Characteristics 
Angle (1 if manner of collision is Angle, 0 otherwise) 21.85 10.18 
Fixed object (1 if 1st harmful event is fixed object, 0 
otherwise) 5.93 8.10 

Not fixed object (1 if 1st harmful event is Not fixed object, 
0 otherwise) 92.19 90.09 

No collision (1 if 1st harmful event is no collision, 0 
otherwise) 1.74 1.76 

Roadway Characteristics 
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Variables Speed < 60 mph Speed ≥ 60 mph 
Percent (%) Percent (%) 

SC, US Primary (1 if crash occurred in SC or US Primary, 0 
otherwise) 58.60 0.61 

Interstate (1 if crash occurred in interstate, 0 otherwise) 3.01 98.01 
County/Secondary/Ramp (1 if crash occurred in County, 
Secondary or Ramp, 0 otherwise) 38.49 1.45 

Straight on grade (1 if crash occurred in a straight on 
grade, 0 otherwise) 7.96 12.79 

Straight level (1 if crash occurred in a straight level, 0 
otherwise) 84.66 83.22 

Roadway (1 if first harmful event occurred on roadway, 0 
otherwise) 90.88 89.24 

Two-way divided (1 if traffic-way is two-way undivided, 0 
otherwise) 33.00 98.08 

Environmental Characteristics 
Dark (1 if crash occurred in a dark lighting condition, 0 
otherwise) 11.87 31.43 

Dawn or Dusk (1 if crash occurred in a dawn or dusk 
lighting condition, 0 otherwise)   1.30 3.68 

Daylight (1 if crash occurred in a daylight lighting 
condition, 0 otherwise) 86.69 64.84 

Clear (1 if crash occurred in a clear weather condition, 0 
otherwise) 90.45 84.50 

Dry (1 if crash occurred in a dry surface condition, 0 
otherwise) 93.63 88.07 

Work Zone Characteristics 
Shoulder/Median (1 if work zone type is Shoulder or 
Median, 0 otherwise) 30.97 51.04 

Lane closure (1 if work zone type is Lane Closure, 0 
otherwise) 36.90 31.22 

Lane shift/crossover (1 if work zone type is lane shift or 
crossover, 0 otherwise) 7.67 8.95 

Work Zone Characteristics 
Activity area (1 if crash location is in the work zone activity 
area, 0 otherwise)   69.03 66.38 

Before first sign (1 if crash location is before the first sign, 
0 otherwise) 2.75 4.26 

Advanced warning (1 if crash location is in the work zone 
advanced warning area, 0 otherwise) 11.43 9.54 

Workers present (1 if workers present, 0 otherwise) 72.07 50.93 
Temporal Characteristics 
Weekday (1 if crash happens on weekday, 0 otherwise) 94.07 87.37 
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For the second analysis, the dataset was filtered to include only rear-end collisions with collision 
speeds greater than or equal to 35 mph.  It was suspected that rear-end crashes with higher 
collision speeds would likely increase the risk of injury.  This hypothesis led the project team to 
the work of Jurewicz et al. (2016). who analyzed the relationship between collision speed and the 
probability of fatal and serious injuries in rear-end crashes for a range of common crash 
scenarios.  They found rear-end collision speeds of 55 km/h (~35 mph) are more likely to produce 
an injury probability of approximately 10%, considered a critical threshold in Safe Systems or 
Vision Zero. When we plotted the cumulative distribution function for rear-end crashes (see 
Figure 3), we found that 10% of the fatal and serious injury crashes have collision speeds less 
than 32.20 mph.  For these reasons, 35 mph was chosen as the collision speed threshold.  No 
other speed threshold was considered because the lone study found on this topic Jurewicz et al. 
(2016), and our data suggest 35 mph to be the most appropriate value.  As mentioned, the 
collision speeds are approximated by the investigating officers through drivers' testimonies and 
evidence gathered from the crash site, such as skid marks, airbag deployment, and the extent of 
damage sustained by the vehicles.  To ensure adequate data representation across various injury 
severity levels, the five distinct injury levels were consolidated into two: injuries sustained and 
property damage only (PDO).  The resultant dataset comprised 3,648 collisions, among which 
1,144 led to injuries, while 2,504 resulted solely in PDO.  Table 3 shows the descriptive statistics 
for all variables in this dataset. 

 
Figure 3.  Cumulative frequency percentage vs. collision speeds for rear end crashes. 
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Table 3. Descriptive statistics of variables for Rear-end crashes with high collision speed. 

Variables Percent (%) 
(when variable = 1) 

Driver Characteristics 
Gender (1 if at-fault driver in a crash is female, 0 otherwise) 34.34 
Younger drivers (1 if age of at-fault driver is below 35, 0 otherwise) 55.93 
Middle-aged drivers (1 if age of at-fault driver is between 35 and 50 years, 0 
otherwise) 20.96 

Older drivers (1 if age of at-fault driver is above 50, 0 otherwise) 23.16 
Driving too fast (1 if marked as contributing factor by investigation officer, 0 
otherwise) 84.02 

Distracted (1 if marked as contributing factor by investigation officer, 0 
otherwise) 2.19 

Failed to yield right of way (1 if marked as contributing factor by investigation 
officer, 0 otherwise) 0.66 

Under the influence (1 if marked as contributing factor by investigation officer, 
0 otherwise) 3.73 

Crash Characteristics 
2-vehicles (1 if the number of vehicles involved in a crash is 2, 0 otherwise) 71.72 
3+ vehicles (1 if the number of vehicles involved in a crash is 3 or more, 0 
otherwise) 28.31 

Truck involved (1 if a truck is involved in the crash, 0 otherwise) 16.88 
Vehicle Characteristics 
Airbag (1 if airbag is deployed, 0 otherwise) 26.50 
Roadway Characteristics 
Interstate (1 if crash occurred on an interstate, 0 otherwise) 71.47 
Curve - level (1 if crash occurred on a horizontal curve with level grade, 0 
otherwise) 1.92 

Straight - on grade (1 if crash occurred on a straight section on a grade, 0 
otherwise) 11.37 

Straight - level (1 if crash occurred on a straight section on level grade, 0 
otherwise) 85.26 

Roadway (1 if first harmful event occurred on roadway, 0 otherwise) 98.44 
Two-way divided (1 if roadway is divided, 0 otherwise) 80.27 
Environmental Characteristics 
Dark (1 if crash occurred in dark lighting condition, 0 otherwise) 22.20 
Dawn or Dusk (1 if crash occurred in dawn or dusk lighting condition, 0 
otherwise) 3.26 

Daylight (1 if crash occurred in daylight lighting condition, 0 otherwise) 74.60 
Clear (1 if crash occurred in a clear weather condition, 0 otherwise) 86.49 
Posted speed limit (1 if posted speed limit is above 60, 0 otherwise) 45.79 
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3.1.2. Data for Crash Report Narrative Discrepancies  
Traffic collision forms (TR-310 forms) of fatal crashes occurring within work zones from 2014 to 
2020 were provided by the SCDOT in PDF format as shown in Figures 4 and 5.  Fields containing 
personal information were removed from the reports by the SCDOT.  The information in the 
collision forms has been digitized by the SCDPS, and the digitized data were provided in a 
spreadsheet format.  From the provided 300 traffic collision forms, 200 were randomly selected 
for review of discrepancies between the written narrative and the form fields on the traffic 
collision form.  The reason for not reviewing all 300 forms is that the process of analyzing the 
information on the form and documenting the discrepancies can take up to two hours for each 
form.  A sample size of 200 or two-thirds of the population is often considered sufficient.   
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Figure 4. South Carolina traffic collision form (TR-310), front side. 
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Figure 5. South Carolina traffic collision form (TR-310), back side. 
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When information in a form field does not match the written narrative, the entire traffic collision 
form is classified as having a discrepancy.  An example of a discrepancy is shown in Figures 6 and 
7.  The narrative describes Unit 2 as moving and Unit 3 as stopped in traffic, but the relevant form 
field has this information backward. 

 

Figure 6. Discrepancy example, written narrative (Field 86). Highlights added for clarity. 

 

Figure 7. Discrepancy example, action prior to impact (Field 129). Highlights added for clarity. 

In addition to classifying discrepancies at the form level, the discrepancies were also counted at 
the field level.  When multiple items in a field contain incorrect information, they are treated as 
a single discrepancy.  For example, Fields 109 to 112 in Figure 5 capture the sequence of events 
following the action prior to impact.  If the officer left out an event described in the written 
narrative, a correction would affect the entire sequence of fields.  If only a single event was 
omitted, it is counted as one discrepancy.  A total of 17 distinct fields were investigated based on 
what information was included in the narrative.  Given the reporting officers’ conciseness in their 
descriptions, some narratives may not have contained information that could be compared to 
some of the 17 fields.  As such, the selected fields represent the most common information 
available in the narrative, but not all fields could be compared to the narrative in every case. 
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A summary of the frequency of discrepancies at the form level is shown in Table 4.  It can be seen 
that 63.5%, 31%, and 5.5% of the forms contained 0, 1, and 2 discrepancies, respectively. The 
discrepancies by form field are shown in Table 5.  The fields with the most discrepancies are the 
sequence of events, action prior to impact, manner of collision, and contributing factors.  Their 
discrepancy rates are 31.0%, 21.4%, and 13.1%, respectively.  Many of the fields had 0, 1, or 2 
discrepancies. 

Table 4. Number of forms with discrepancies between form fields and narrative. 
Number of Discrepancies Traffic Collision Form Count 

0 127 
1 62 
2 11 

  
Table 5. Number of discrepancies by form fields. 

Discrepancy Type Form Field Number(s) Error Count 
Sequence of Events 109-112 26 
Most Harmful Event 113 1 
First Harmful Event 114 1 
Manner of Collision 115 11 

Deformed Areas 116-117 7 
Vehicle Type 118 0 

Vehicle Attachments 126 1 
Extent of Deformity 128 2 

Action Prior to Impact 129 18 
Trafficway Type 131 0 

First Harmful Event Location 133 1 
Road Character 134 0 

Traffic Control Type 136 1 
Work Zone Type 142 0 
Worker Presence 143 0 

Junction Type 144 2 
Contributing Factors 145-149 11 

 

3.1.3. Data for Law Enforcement Effectiveness 
To determine the effectiveness of law enforcement, data on police presence was compared to 
average vehicle speed at five selected work zones.  Data on police presence was acquired from 
the monthly invoices from the Safety Improvement Team (SIT) provided by SCDOT in PDF format 
for all months between January 2018 and December 2020.  Each PDF file contained pages for 
individual officers displaying the number of hours spent at each work zone identifier.  One such 
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page is shown in Figure 8. For the months between January 2018 and December 2019, the officer 
name, hours worked, and work zone identifier were manually entered into a spreadsheet format. 
Months within 2020 were excluded at the recommendation of the project steering and 
implementation committee (PSIC) due to the potential impact of the COVID-19 pandemic on the 
data. Additionally, it was assumed that law enforcement is “present” if the hours spent at the 
site are 10 or more, and there is no law enforcement if the hours spent at the site are less than 
10 hours. The reason for this is that the assignment is intended to be full-time. Anything less than 
10 hours is assumed to not have the intended effect. The percentage of days when troopers spent 
less than 10 hours on site is 5.6% among the five projects analyzed in this study. Therefore, this 
assumption does not have a significant bearing on the results. 

 
Figure 8. One SIT Invoice for November 2018. 

From this spreadsheet, a list of all identifiers used by the officers was acquired. Because the type 
of identifier (contract or project) was not stated in the SIT invoices, researchers searched for each 
identifier in the P2S database. Five work zones with substantial police presence and P2S 
information available were selected to gather data on average vehicle speed, as shown in Table 



  30 

6.  Analysis was limited to these five work zones due to the time-consuming nature of acquiring 
speed data for each work zone. 

Table 6. Contract and project IDs for the five work zones analyzed for this project. 
Contract ID Project ID 

1091731 24011 
4208281 P029074 
4210170 P029699 
5384210 38111 
3288840 P027003 

To determine average vehicle speed, each work zone location was identified in GIS.  The locations 
were cross-referenced with a shapefile provided by SCDOT containing link IDs associated with 
roadway segments.  SCDOT provided vehicle speed data for each link ID that the researchers 
requested.  For each work zone, two groupings of link IDs were determined: one for all link IDs 
within the mile markers of the project, and one for the link ID representing the beginning of the 
project. There are no records regarding the exact location where troopers positioned themselves 
in the work zone area, but the SCDOT generally asks troopers to be positioned in the transition 
area (assumed to be the beginning mile marker of the project).  For work zones affecting more 
than one road, the link IDs were determined separately for each road, and speed data was 
combined using an average weighted by the length of each affected road. For a given interstate 
link ID, SCDOT provided speed data for each hour of each day in 2019.  For non-interstate link 
IDs, a spreadsheet showing the TCD IDs associated with each link ID was provided, and the hourly 
speed data for each TCD ID was given.  As such, for non-interstate roads, link ID lists representing 
each road were converted to TCD ID lists before speed data was determined. 

Because officers only record the number of hours spent at a given work zone and not the times 
of day in SIT invoices, vehicle speed was averaged over different daily periods. These periods 
included 0:00 to 11:59, 12:00 to 23:59, 7:00 to 16:59, and 0:00 to 23:59. The final dataset included 
one value (in miles per hour) for the average speed over the entire work zone and one value for 
the average speed at the start of the work zone for each work zone on each day of 2019. 

During one of the monthly meetings, the project committee expressed concern that comparing 
average vehicle speed to police presence from the SIT invoices would not accurately reflect real-
life conditions because this comparison did not account for lane closures.  It was suggested that 
highway patrol troopers are most often present during lane closures, and thus, lane closures 
could potentially account for slowdowns in vehicle speed. The only source of information 
available for lane closures was daily work reports (DWRs) provided by SCDOT.  Given the volume 
of reports, keywords were used to designate days with lane closures rather than individually 
studying each report.  Lane closures were determined present at a work zone on a given day if 
one of the selected keywords (“closure”, case-sensitive “LC”, or “traffic control”) was mentioned 
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in at least one daily work report for that day.  The results of this query were compared to the 
number of days known to have police presence from the SIT invoices as well as the number of 
days each project was active in 2019.  The results are shown in Table 7.  The PSIC concluded that 
information from the daily work reports was insufficient to accurately capture the effect of lane 
closures.  As such, results from the models developed to measure law enforcement effectiveness 
should be taken with the disclaimer that they cannot account for the impact of lane closures on 
average vehicle speed. 

Table 7. Comparison of project duration, daily work report findings, and SIT invoice data for 2019. 
Project ID Duration DWR Keyword Hits Police Presence  Overlapping Days 
24011 365 31 136 18 
P027003 365 215 183 138 
P029074 326 - 79 - 
P029699 121 - 77 - 
38111 365 277 167 143 

 

3.1.4. Data for Negative Binomial Crash Prediction Model 
The crash prediction model was designed to provide an expected number of crashes for a work 
zone given the work zone’s length, duration, and AADT.  Length and duration were to be acquired 
from the P2S data provided by SCDOT at the beginning of the research project; however, it was 
discovered when comparing against data from the SIT invoices previously mentioned that the 
P2S data did not seem to provide a comprehensive list of work zones.  To replace the original 
dataset, the PSIC recommended that the researchers manually extract all P2S data for four work 
zone types: widening, rehabilitation, reconstruction, and preservation.  This amended P2S 
dataset included information regarding length, duration, and project type.  For work zone length, 
project descriptions listed the roads affected by the project and their beginning and ending mile 
points.  The highest mile point for each road was subtracted from the lowest mile point for each 
road mentioned in the project description, and all separate road lengths were added together if 
the work zone project included more than one road.  For work zone duration, project IDs included 
a notice to proceed (NTP) date and a substantial work completion (SWC) date.  The NTP date was 
subtracted from the SWC date to find the duration.  Because crash data was only provided for 
2014 to 2020, in cases where the SWC date was empty (implying the project was ongoing) or 
after 12/31/2020, a date of 12/31/2020 was used instead, and NTP dates were replaced with 
01/01/2014 if they were earlier than 2014. 

To find AADT, traffic count station locations were extracted from SCDOT’s GIS resources.  Using 
the work zone location information from P2S, a list of all traffic count stations within the work 
zone’s boundaries was determined for each work zone.  For all years during which the work zone 
was active, traffic counts from historical data provided by SCDOT were averaged together to 
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determine a single AADT value for a work zone over the project duration.  For work zones 
affecting more than one road, the AADT for each segment was found separately and combined 
using an average weighted by each segment’s length.  The descriptive statistics of the variables 
used in the crash prediction model are shown in Table 8: length (miles), duration (days), and 
AADT (veh/day).  The statistics provided for each project type are 25th percentile, 75th percentile, 
minimum, maximum, mean, and standard deviation. 

Table 8. Descriptive statistics of crash prediction model variables. 
Variable Project Type 25th pct 75 pct Min Max Mean Std. Dev. 
Length Widening 1.25 5.6 0.06 21.23 4.14 4.48 
Length Rehabilitation 1.5 4.38 0.01 36.82 3.66 4.02 
Length Preservation 1.6 6.26 0.02 61.66 5.55 7.15 
Length Reconstruction 1.68 4.27 0.05 22.05 3.39 2.9 
Duration Widening 484.0 1416.75 91.0 2037.0 920.48 531.38 
Duration Rehabilitation 270.0 537.0 14.0 1535.0 414.56 233.29 
Duration Preservation 163.0 331.0 23.0 1091.0 265.23 164.57 
Duration Reconstruction 213.0 466.0 16.0 794.0 350.28 199.63 
AADT Widening 4843.75 14968.75 683.0 69400.0 14772.92 17003.52 
AADT Rehabilitation 1680.25 9141.5 100.0 95975.0 8047.96 12935.95 
AADT Preservation 1312.5 10750.0 50.0 126508.0 9561.56 14433.04 
AADT Reconstruction 1050.0 6220.0 50.0 61533.0 5558.82 7708.49 

 
The researchers and PSIC discussed accounting for traffic control measures in the zero-inflated 
negative binomial model, but this was not done due to the limited availability of traffic control 
data in South Carolina.  Researchers attempted to gather traffic control data from two separate 
sources: traffic control plans from ProjectWise and daily work reports provided by SCDOT.  The 
traffic control plans provided information regarding traffic control practices at each work zone 
but did not include any dates or times during which these measures were implemented.  Daily 
work reports were consulted as an attempt to fill this gap in information.  Researchers found that 
the volume of daily work reports made it difficult to filter useful from irrelevant information.  Any 
mentions of traffic control were not substantial enough for use in conjunction with the traffic 
control plans; as such, it was determined that the available data was insufficient to determine 
how effective a particular traffic control was at the work zone. 

To count how many crashes occurred in each work zone, the P2S dataset was filtered by crash 
date, road type, route number, and mile marker where the crashes occurred. This helped us 
identify where and when each crash took place within the work zones.  The process of filtering 
the P2S dataset is shown in Figure 9. 
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Figure 9. The process of filtering the P2S dataset to find the number of crashes in each work zone 

3.2. Methods to Identify Contributing Factors 
Based on the previous studies, mixed logit models have been considered as an efficient method 
to overcome unobserved heterogeneity due to their ability to account for observation-specific 
variation for explanatory variables Anastasopoulos and Mannering (2011); Anderson and 
Hernandez (2017); Chen et al. (2019).  Thus, two separate analyses were conducted to identify 
contributing factors using mixed logit models which are explained below: 
 

3.2.1. Factors Affecting Injury in Interstate and Non-Interstate Work Zone Crashes 
Sub-sections 3.2.1.1, 3.2.1.2, and 3.2.1.3 present the mathematical details of the mixed logit 
model, marginal effect of factors and likelihood ratio test Madarshahian et al. (2023). 
 
3.2.1.1. Mixed Logit Model 
The utility function for mixed logit model is derived by establishing the linear relation between 
injury severity level 𝑖𝑖 for observation crash n which is demonstrated in Eq. (1) Madarshahian et 
al. (2023) 
 
𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1) 

 
 
where 𝑦𝑦𝑖𝑖𝑖𝑖 is defined as a variable explaining each injury severity level 𝑖𝑖 (𝑖𝑖 in 𝐼𝐼 representing injury 
and no injury severity level) for driver 𝑛𝑛. 𝛽𝛽𝑖𝑖 is considered as a vector of estimated parameters, 
𝑥𝑥𝑖𝑖𝑖𝑖 is a vector of explanatory variables affecting work zone driver-injury severity level 𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖 
is the error term or extreme value to capture unobserved heterogeneity distributed independent 
and identically over time, individual and alternatives. If the error term is generalized extreme 
value distributed, then the choice probability can be determined using the standard multinomial 
logit shown in Eq. (2). 
 

𝑝𝑝𝑖𝑖(𝑖𝑖) =
exp [𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖]

∑ exp [𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖]𝑖𝑖𝑖𝑖𝑖𝑖
 (2) 

 
𝑝𝑝𝑖𝑖(𝑖𝑖) is regarded as the probability of injury severity level 𝑖𝑖 caused by driver 𝑛𝑛. Mixed logit models 
allow the vector of estimated parameters to vary across different crashes. Each element of 𝛽𝛽𝑖𝑖 
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may be either fixed or randomly distributed with fixed means, allowing for heterogeneity within 
the observed crash dataset. Extending the above multinomial logit model,  Eq. (3) can be 
rewritten as: 
 

𝑝𝑝𝑖𝑖(𝑖𝑖|∅) =
exp[𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖]

∑ exp[𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖]𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓(𝛽𝛽𝑖𝑖|∅)𝑑𝑑𝛽𝛽𝑖𝑖 

(3) 

 
where 𝑝𝑝𝑖𝑖(𝑖𝑖|∅) is the weighted average of the multinomial logit probabilities called mixed logit. 
The weight used to estimate the probability is calculated by 𝑓𝑓(𝛽𝛽𝑖𝑖|∅)𝑑𝑑𝛽𝛽𝑖𝑖  which is the density 
function of 𝛽𝛽𝑖𝑖  and ∅  is the parameter vector. The density function uses a distribution of 
parameter ∅, where both a mean and variance are estimated. For the current work, normal 
distribution is used. It should be noted that elements of 𝛽𝛽𝑖𝑖  are fixed and randomly distributed 
with specific statistical distributions. If the estimated variance is statistically significant then the 
modeled injury severity levels vary with respect to 𝑥𝑥 across observations and account for crash-
specific variation due to unobservables[59]. To overcome the computation complexity of 
estimating the parameters 𝛽𝛽𝑖𝑖 maximum likelihood estimation is implemented using simulation-
based procedure and Halton draws ("Statistical and Econometric Methods for Transportation 
Data Analysis"). The pseudo R-squared (𝜌𝜌2) value is used to assess the overall model fit; it is 
computed using Eq. (4). 
 

𝜌𝜌2 = 1 −  
𝐿𝐿𝐿𝐿(𝛽𝛽)
𝐿𝐿𝐿𝐿(0)

 (4) 

 
In above equation 𝐿𝐿𝐿𝐿(0)  is defined as the log-likelihood at zero and 𝐿𝐿𝐿𝐿(𝛽𝛽)  calculates log-
likelihood at convergence. 
 
3.2.1.2. Marginal Effect 
Marginal effect is used to determine how the probability of injury severity levels would be 
changed considering one unit change in the explanatory variables illustrated in. Eq. (5). 
 
𝑀𝑀𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖[𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑛𝑛𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1] − 𝑝𝑝𝑖𝑖𝑖𝑖[𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑛𝑛𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0] (5) 

 
In the above equation, 𝑝𝑝𝑖𝑖𝑖𝑖 states the probability of injury severity level 𝑖𝑖 for driver 𝑛𝑛 and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is 
the k-th independent variable affecting injury severity level 𝑖𝑖 for driver 𝑛𝑛. 
 
3.2.1.3. Likelihood Ratio Test 
To determine whether the data should be modeled using two different speed categories, the log-
likelihood ratio (𝐿𝐿𝐿𝐿) test between the full model using the entire dataset and speed models using 
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separate datasets shown in Eq. (6) was performed (“Statistical and Econometric Methods for 
Transportation Data Analysis,” n.d.). 
 
𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −2[𝐿𝐿𝐿𝐿(𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) − 𝐿𝐿𝐿𝐿(𝛽𝛽𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠<60) − 𝐿𝐿𝐿𝐿(𝛽𝛽𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠≥60)] (6) 

 
The model's log likelihood at convergence for the full model on the entire dataset is defined as 
𝐿𝐿𝐿𝐿(𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  while 𝐿𝐿𝐿𝐿(𝛽𝛽𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠<60)  and 𝐿𝐿𝐿𝐿(𝛽𝛽𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠≥60)  are the model's log-likelihood at the 
convergence on the separated data sets for speed limit less than 60 mph and speed limit greater 
than or equal to 60 mph respectively.  It should be noted that to calculate the log-likelihood 
values for two separate speed limits, the variables identified from the full model should be tested 
on the two categorized speed limit datasets. 𝐿𝐿𝐿𝐿 statistic has 𝜒𝜒2 distribution with the degree of 
freedom computed by the difference among the summation of the number of estimated 
variables in two models and the number of estimated variables in the full model. 
 
Parameter transferability is another test ("Statistical and Econometric Methods for 
Transportation Data Analysis"). often used to ascertain whether two different speed limits should 
be modeled separately; it is calculated using Eq. (7). 
 
𝐿𝐿𝐿𝐿𝑎𝑎𝑏𝑏 = −2[𝐿𝐿𝐿𝐿(𝛽𝛽𝑎𝑎𝑏𝑏) − 𝐿𝐿𝐿𝐿(𝛽𝛽𝑎𝑎)] (7) 

 
The log likelihood at convergence for speed model 𝑎𝑎 on the data from model 𝑏𝑏 is defined as 
𝐿𝐿𝐿𝐿(𝛽𝛽𝑎𝑎𝑏𝑏) and the log likelihood at convergence for speed model 𝑎𝑎  is defined as 𝐿𝐿𝐿𝐿(𝛽𝛽𝑎𝑎). The 
degrees of freedom of this test are equal to the number of estimated variables in 𝛽𝛽𝑎𝑎𝑏𝑏. 
 
To estimate contributing factors affecting injury severity levels and to test the need to estimate 
separate models, the NLOGIT software (version 6) was used.  The process used to produce model 
estimates is shown in Figure 10. As shown, this study used three datasets provided by the South 
Carolina DOT: (1) unit crash dataset which contains information of all vehicles involved in crashes, 
(2) location dataset which provides environmental and temporal characteristics of the crashes, 
and (3) occupant dataset which includes details about the occupants of all vehicles involved in 
the crashes. It's important to note that each dataset has a different number of observations. To 
create the final dataset for modeling in Nlogit software, the three datasets were merged using a 
common index, and this was accomplished using Python programming. The dataset was then 
filtered to include only truck-involved crashes and relevant variables.  Subsequently, the variables 
were categorized based on previous research and SCDOT practices.  The last data preparation 
step involved creating binary variables for modeling.  The forward and backward stepwise 
selection method was used to arrive at the final model specification.  A variable was retained in 
the model if it is significant at the 90% confidence interval. Models were compared against one 
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another using the log-likelihood at convergence and the McFadden Pseudo R-squared 
Madarshahian et al. (2023). 
 

 
Figure 10. Model estimation process. 

3.2.2. Factors Affecting Injury in Work Zone Rear End Crashes where collision speed ≥ 35 mph 
The method used for this analysis is the same as the one described in Section 3.2.1, except that 
it accounts for heterogeneity in both mean and variance.  In such a model, the vector of estimable 
parameters is permitted to vary across crash observations Mannering et al. (2016); 
Seraneeprakarn et al. (2017) as shown in Eq. (8). 
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𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖 + Φ𝑖𝑖𝑖𝑖Z𝑖𝑖𝑖𝑖 +  𝜎𝜎𝑖𝑖𝑖𝑖𝐸𝐸𝑋𝑋𝐸𝐸(Ψ𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖)𝜈𝜈𝑖𝑖𝑖𝑖 (8) 
 
The parameter estimate 𝛽𝛽𝑖𝑖 represents the average value calculated for all crashes. The vector Z𝑖𝑖𝑖𝑖 
comprises explanatory variables specific to crash, which account for heterogeneity in the mean 
impacting injury severity level 𝑖𝑖, the vector Φ𝑖𝑖𝑖𝑖  consists of coefficients assigned to estimable 
parameters, 𝑊𝑊𝑖𝑖𝑖𝑖  is the vector of crash-specific explanatory variables that address the 
heterogeneity in the standard deviation 𝜎𝜎𝑖𝑖𝑖𝑖 having an associated parameter vector Ψ𝑖𝑖𝑖𝑖, and 𝜈𝜈𝑖𝑖𝑖𝑖 
is considered as a disturbance term.  To address the computational complexity associated with 
estimating the parameters 𝛽𝛽𝑖𝑖 , a simulation-based method and Halton draws O’Donnell and 
Connor (1996) are utilized in implementing maximum likelihood estimation.   

3.3. Analyze Crash Report Narratives and Identify Discrepancies 
This project determined discrepancies within individual traffic collision forms by comparing the 
narrative text (Field 86) to information recorded in the form fields. In this project, the text in the 
narrative field was considered to have higher fidelity and is treated as the ground truth. 
Discrepancies between the narrative and form fields suggest that there are internal and external 
factors that affect the officer’s cognitive ability to recall information and record it in a consistent 
manner.  To this end, this project sought to determine the level of discrepancies in South Carolina 
traffic collision forms and to identify factors that may have contributed to the discrepancies. The 
researchers postulated that weather conditions and crash characteristics affect the process of 
recording crash information for the investigating officer.  For example, the greater the number 
of vehicles involved in a crash, the more complex the situation, thereby requiring a higher level 
of processing by the officer to accurately fill out the form.  The levels of processing theory states 
that the way information is encoded affects how well it is remembered. The deeper the level of 
processing, the easier the information is to recall Craik and Lockhart (1972). The psychology-
based approach to understanding discrepancies in traffic collision forms is unique in the study of 
misclassification. Both structural equation modeling (SEM) and multiple linear regression (MLR) 
were used to identify factors that may have contributed to the discrepancies. Specifically, SEM 
was used to investigate the relationships between latent variables and level of processing, and 
MLR was used to investigate factors that affect the frequency of discrepancies in form fields. 

3.3.1. Structural Equation Model 
The data set used for SEM considered each traffic collision form as an observation. Fields 
hypothesized to affect crash complexity include the number of units involved, the number of 
events describing the collision, collision speed, the number of alcohol or drug tests administered, 
and the license class of the at-fault driver.  The level of processing was operationalized by the 
number of discrepancies, the number of words in the narrative, and the number of characters in 
the narrative. This information was extracted from the traffic collision forms and the digitized 
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data set.  Additionally, weather station data for each crash was acquired from Local 
Climatological Data (LCD) on a website managed by the National Oceanic and Atmospheric 
Administration (NOAA).  A spreadsheet containing each station’s observations with date and time 
was obtained through the NOAA’s Geoportal.  The weather station closest to the crash location 
was selected for each crash, and weather readings for the observation time closest to the police 
arrival time were used.  The complete list of variables and their data types used for SEM analysis 
are shown in Table 9.  It should be noted that because the SCDOT dataset was limited to only 
fatal work zone crashes, crash severity, and work zone presence could not be used as variables, 
although they may indeed affect reporting accuracy.  

Table 9. Variables used for SEM analysis. 
Data Source Variable Name Variable 

Type 
Form TR-310 Number of Discrepancies Discrete 

Number of Characters in Narrative Discrete 
Number of Words in Narrative Discrete 
Number of Units (Vehicles or Pedestrians) Involved in Crash Discrete 
Number of Events (for all Units) in Crash Discrete 
Collision Speed (mph) Continuous 
Number of Alcohol/Drug Test Administered Discrete 
License Class Nominal 

Weather Station Data 
from LCD 

Dry Bulb Temperature (F) Continuous 
Precipitation (in) Continuous 
Relative Humidity (%) Continuous 
Wind Speed (mph) Continuous 

SEM allows the relationship between different latent variables to be modeled. In this project, 
latent variables represent the different factors that could affect an officer’s comprehension of 
the crash.  These are weather conditions, crash characteristics, and level of processing.  Latent 
variables are inherently unmeasurable and must be measured using observed variables.  In this 
project, the observed variables are those shown in Table 9.  These variables are not uniform in 
value.  For example, the variable “Character Count” has values ranging from 56 to 761, while 
“Precipitation” has values ranging from 0 to 0.06 inches.  Before proceeding with the SEM 
analysis, the variables’ values were homogenized to the Likert scale with values ranging between 
1 to 5, where 1 denotes the worst condition and 5 denotes the best condition. 

First, hypothesized relationships between the observed variables shown in Table 6 and the latent 
variables were developed. The weather conditions factor was operationalized by wind speed, 
temperature, humidity, and precipitation.  The crash characteristics factor was operationalized 
by the number of units, number of events, collision speed, license class, and the number of 
alcohol and/or drug tests administered.  The level of processing factor was operationalized by 
the number of words in the narrative, the number of characters in the narrative, and the number 
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of discrepancies in the form.  Once the latent factors and their associated observed variables 
were defined, Confirmatory Factor Analysis (CFA) was performed to test whether the data fit the 
hypothesized relationships.  Once results were obtained from CFA, the SEM could be developed. 

SEM consists of a structural model (the paths between latent variables) and measurement 
models (the relationship between each latent variable and its respective observed variables). 
Latent variables are called endogenous when they are dependent on another latent variable and 
exogenous when they are independent of other latent variables.   For this project, the 
endogenous latent variable is the level of processing, whereas the weather conditions and crash 
characteristics are exogenous.  These factors were confirmed using Exploratory Factor Analysis 
(EFA) with Promax rotation.  Each latent variable has a measurement model composed of the 
factor and its indicators.  The exogenous variable measurement models can be expressed by the 
following equation. 
 
𝑥𝑥 = 𝛬𝛬𝑥𝑥𝜉𝜉 + 𝛿𝛿 (9) 

 
where 𝑥𝑥  is a (𝑞𝑞 × 1)  column vector of observed exogenous variables. 𝛿𝛿  is a (𝑞𝑞 × 1)  column 
vector of measurement error terms for the observed variables in 𝑥𝑥 .  𝜉𝜉  is an (𝑛𝑛 × 1)  column 
vector of latent exogenous variables.  𝛬𝛬𝑥𝑥  is a (𝑞𝑞 × 𝑛𝑛)  matrix of structural coefficients 
corresponding to the effects of the latent exogenous variables on their observed variables.  The 
endogenous variable measurement model can be expressed by the following equation. 
 
𝑦𝑦 = 𝛬𝛬𝑦𝑦𝜂𝜂 + 𝜀𝜀 (10) 

 
where 𝑦𝑦 is a (𝑝𝑝 × 1) column vector of observed endogenous variables.  𝜀𝜀 is a (𝑝𝑝 × 1) column 
vector of measurement error terms for the observed variables in 𝑦𝑦.  𝜂𝜂  is an (𝑚𝑚 × 1) column 
vector of the latent endogenous variable.  𝛬𝛬𝑦𝑦  is a (𝑝𝑝 × 𝑚𝑚)  matrix of structural coefficients 
corresponding to the effects of the latent endogenous variable on its observed variables. 

The structural model consists of the exogenous variables weather conditions and crash 
characteristics, and the endogenous variable level of processing.  Intuitively, this model 
resembles the levels of processing theory.  Crash factors will affect crash complexity, and weather 
factors will likely have an impact on the officers’ decision on how long to spend at the crash site. 
Both of these factors affect the level of processing the officer undergoes when filling out the 
traffic collision form.  The structural model can be expressed by the following equation. 
 
𝜂𝜂 = 𝛽𝛽𝜂𝜂 + 𝛤𝛤𝜉𝜉 + 𝜁𝜁 
 

(11) 
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where 𝛽𝛽  is an (𝑚𝑚 × 𝑚𝑚)  matrix of coefficients for the effects between latent endogenous 
variables.  Since this project uses only one latent endogenous variable, the 𝛽𝛽𝜂𝜂 term is zero.  𝛤𝛤 is 
an (𝑚𝑚 × 𝑛𝑛) matrix of coefficients for the effects of latent exogenous variables on the latent 
endogenous variables.  𝜁𝜁 is an (𝑚𝑚 × 1) column vector of error terms. 

Three measures of model fit were used to assess the model: Root Mean Squared Error of 
Approximation (RMSEA), Tucker-Lewis Index (TLI), and comparative fit index (CFI). The RMSEA 
measures goodness of fit based on the Chi-Square (𝜒𝜒2) statistic and degrees of freedom  . RMSEA 
is computed using the following equation: 
 

𝐿𝐿𝑀𝑀𝑅𝑅𝐸𝐸𝑅𝑅 = �
𝜒𝜒𝑀𝑀2 − 𝑑𝑑𝑓𝑓𝑀𝑀
𝑑𝑑𝑓𝑓𝑀𝑀(𝑁𝑁 − 1)

 
(12) 

 
where 𝜒𝜒𝑀𝑀2  is the chi-squared test statistic for the model, 𝑑𝑑𝑓𝑓𝑀𝑀 is the is the degrees of freedom, 
and 𝑁𝑁 is the sample size. There are differing opinions on the maximum acceptable RMSEA value, 
but even the more stringent cutoffs agree a value less than 0.05 indicates a good model fit 
(Boonyoo and Champahom (2022); Champahom et al. (2020); Hair et al. (2006); Mw (1993); Shi 
et al. (2011); Steiger (2007); Wang and Qin (2014)).  TLI and CFI are relative fit indices that 
compare to a baseline model to assess fit, but they differ in how they are affected by model 
complexity  . The equation for TLI is shown below. 

𝑇𝑇𝐿𝐿𝐼𝐼 =
𝜒𝜒𝐵𝐵2 𝑑𝑑𝑓𝑓𝐵𝐵⁄ − 𝜒𝜒𝑀𝑀2 𝑑𝑑𝑓𝑓𝑀𝑀⁄

𝜒𝜒𝐵𝐵2 𝑑𝑑𝑓𝑓𝐵𝐵⁄ − 1
 (13) 

 
The equation for CFI is shown below. 

𝐶𝐶𝐶𝐶𝐼𝐼 = 1 −
𝑚𝑚𝑎𝑎𝑥𝑥 (𝜒𝜒𝑀𝑀2 − 𝑑𝑑𝑓𝑓𝑀𝑀 , 0)
𝑚𝑚𝑎𝑎𝑥𝑥 (𝜒𝜒𝐵𝐵2 − 𝑑𝑑𝑓𝑓𝐵𝐵 , 0)  (14) 

 
where 𝜒𝜒𝐵𝐵2  and 𝑑𝑑𝑓𝑓𝐵𝐵 are the 𝜒𝜒2 and degrees of freedom for the baseline model, respectively.  Both 
CFI and TLI fall between 0 and 1, and values greater than 0.90 indicate the model has good 
relative fit . 

3.3.2. Multiple Linear Regression 
The data set used for MLR considered each form field discrepancy to be an observation.  With 
the help of experts from SCDOT, each observation was assigned a level of difficulty, with 0 
denoting a relatively simple field, requiring only visual comprehension, and 1 a more complex 
field, requiring deeper comprehension.  For instance, form fields 116-117 (Deformed Areas) were 
assigned a 0 due to their visual nature, whereas form fields 109-112 (Sequence of Events) were 
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assigned a 1 due to the complexity of sequentially ordering the crash-related events.  Each 
observation was also assigned a count of inputs and options.  The input count was defined as the 
number of individual boxes within the field the officer could fill out.  The option count was 
defined as the number of possible options the officer could select from.  For example, in Figure 
11, form field 126 (Vehicle Attachment) has an input count of one for each unit, with three boxes 
provided.  If there are more than three units, a second page is required.  For each input/box, the 
officer can select from 15 options.  Because the narrative only includes information regarding the 
crash and not personal driver information, only 17 form fields can be compared to the narrative.  
The data set used to estimate the MLR model is shown in Table 10. 

 
Figure 11. Form field 126 (Vehicle Attachment). The red number is for labeling each field and does not appear on 

the actual form. 

 

  Table 10. Reports by type of error. 
Form Location Level of Difficulty Error Count Input Count Option Count 

109-112 1 26 12 51 
113 1 1 3 12 
114 1 1 1 12 
115 1 11 3 11 

116-117 0 7 6 61 
118 0 0 3 18 
126 0 1 3 15 
128 0 2 3 6 
129 1 18 3 20 
131 0 0 1 5 
133 1 1 2 11 
134 0 0 1 6 
136 0 1 1 16 

For MLR, the following assumptions are made: (1) the residuals are normally distributed, (2) there 
is a linear relationship between the dependent and independent variables, (3) the variance of 
errors is consistent across independent variables (homoskedasticity), and (4) the independent 
variables are independent  .  The data set used for the MLR model was assessed and found to 
satisfy the assumption criteria Osborne and Waters (2019); Uyanık and Güler (2013); Williams et 
al. (2019).  An MLR model was created to assess the effect of the level of processing, number of 
inputs, and number of options on the number of discrepancies by field type.  The MLR model can 
be expressed as follows. 
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𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + 𝜀𝜀 (15) 

 
where 𝑦𝑦 is the expected value for the dependent variable (discrepancies), and 𝑥𝑥𝑖𝑖  is the list of 
independent variables (level of difficulty, number of inputs, and number of options).  𝛽𝛽0 is the 
value of 𝑦𝑦 when the independent variables are all zero, and 𝛽𝛽1 through 𝛽𝛽𝑖𝑖  are the regression 
coefficients for the independent variables 𝑥𝑥𝑖𝑖.  𝜀𝜀 is the error between the predicted and observed 
value for the dependent variable, or residual. 

To assess the goodness of fit, R-squared and adjusted R-squared were used.  These values 
indicate the amount of variance explained by the model and range from 0 to 1, with a value of 1 
indicating all variance can be explained by the model.  Adjusted R-squared compensates for the 
addition of variables into a model Eberly (2007); Favero et al. (2023); Jobson (2012). 

3.4. Law Enforcement Effectiveness 
To determine the effectiveness of law enforcement, a split-plot design with a blocking factor was 
used and AADT was used as the covariate.  The split-plot design structure is a hierarchical or 
multi-level design consisting of experimental units with two different sizes with separate 
randomization steps Stroup et al. (2018).  It is a useful design when it is difficult to have the same 
size of experimental units and by using it we can remove some variability due to the larger 
experimental units.  That is, we can gain extra precision for some comparisons compared to a 
factorial treatment design.  The main factor in the design was the season, which had four levels, 
while the subplot factor was the presence of state troopers.  We also accounted for the type of 
work zone (treated as a blocking factor).  Overall, we assessed and compared eight different 
models as depicted in Table 11.  Models 1 through 4 were based on the average speed of the 
entire work zone as the response variable, whereas Models 5 through 8 focused on the average 
speed specifically within the transition area.  For each response type, we examined two 
variations. The first involved subtracting the temporary posted speed limit from the average 
speed. This approach aimed to shed light on the degree of speeding or adherence to the 
temporary posted speed limit. Another variation entailed the inclusion of a covariate. Traffic 
volume was introduced as a covariate, and relative efficiency was computed to gauge whether 
adding the covariate enhanced the model's performance. The eight evaluated models are listed 
below.  Models 1, 3, 5, and 7, excluding the covariate, can be represented as: 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 +  𝛼𝛼𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖 + (𝛼𝛼𝜏𝜏)𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (16) 

 
Where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 represents the response variable, which is the average speed in the work zone for 
Models 1-4, and the average speed where troopers are stationed for Models 5-8, corresponding 
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to season 𝑖𝑖 (𝑖𝑖 = 1, 2, 3, 4),  where 𝑖𝑖 = 1  represents 'Fall', 𝑖𝑖 = 2  represents 'Winter', 𝑖𝑖 = 3  
represents 'Spring', and 𝑖𝑖 = 4  represents 'Summer'. The blocks are denoted by 𝑗𝑗  (𝑗𝑗 =
1, 2, 3, 4, 5), and police presence is denoted by 𝑘𝑘 (𝑘𝑘 = 1, 2), where 𝑘𝑘 = 1 indicates no police 
presence in the work zone and 𝑘𝑘 = 2 indicates police presence in the work zone. The block term 
denotes the different types of work zones, with 𝑗𝑗 = 1  corresponding to 'Widening', 𝑗𝑗 = 2 to 
'Bridge Replacement', 𝑗𝑗 = 3 to 'Resurfacing', 𝑗𝑗 = 4 to 'Interchange Improvement', and 𝑗𝑗 = 5 to 
'Rehabilitation'.  The overall mean is denoted by 𝜇𝜇.  𝛼𝛼𝑖𝑖 stands for the effect of season 𝑖𝑖, which is 
the main plot effect. 𝑤𝑤𝑖𝑖𝑖𝑖 represents the main plot error term, also interpreted as the interaction 
between the main plot effect and the block effect (the interaction between the season effect and 
the type of work zone).  𝜏𝜏𝑖𝑖 signifies the subplot effect, reflecting the effect of police presence. 
(𝛼𝛼𝜏𝜏)𝑖𝑖𝑖𝑖  indicates the interaction between the main plot and subplot effects (the interaction 
between the season and police presence effects).  𝑏𝑏𝑖𝑖 denotes the block effect, representing the 
effect of the type of work zone.  Lastly, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  represents the subplot. The main plot error and 
subplot error terms are assumed to follow identical and independent normal distributions.   
 
(𝑤𝑤𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑤𝑤2) and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)). 
 
Models 2, 4, 6, and 8, incorporating the covariate, can be expressed as: 
 
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 +  𝛼𝛼𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖 + (𝛼𝛼𝜏𝜏)𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝛽𝛽(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − �̅�𝑥)𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (17) 

 
In Eq. (16), the terms mentioned, apart from 𝛽𝛽, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, and �̅�𝑥, have been previously defined. In Eq. 
(17), we introduce the covariate into the model using the term 𝛽𝛽(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − �̅�𝑥). Here, 𝛽𝛽 represents 
the coefficient signifying the relationship between the response 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 and the specific covariate 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, which in this case is traffic volume.  The data were centered by subtracting the overall mean 
�̅�𝑥  from the actual covariate. It was determined that a common slope 𝛽𝛽  across all treatment 
combinations was adequate.  
 

Table 11. Splot-plot Models Analyzed 

Model Response Variable 

Subtract 
Temporary Posted 
Speed Limit from 
Observed Speed 

Add Traffic 
Volume as a 

Covariate 

1 Average speed throughout work-zone No No 
2 Average speed throughout work-zone No Yes 
3 Average speed throughout work-zone Yes No 
4 Average speed throughout work-zone Yes Yes 
5 Average speed where troopers stationed No No 
6 Average speed where troopers stationed No Yes 
7 Average speed where troopers stationed Yes No 
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Model Response Variable 

Subtract 
Temporary Posted 
Speed Limit from 
Observed Speed 

Add Traffic 
Volume as a 

Covariate 

8 Average speed where troopers stationed Yes Yes 
 

3.4.1. Model Efficiency with Traffic Volume as a Covariate 
To evaluate the efficacy of incorporating a covariate into the model for error control, one could 
assess the difference in error variances when comparing models with and without the covariate 
adjusted by the treatment, as denoted in Eq. (18). 

𝐸𝐸 =  
𝑀𝑀𝑅𝑅𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶)[1 + 𝑇𝑇𝑥𝑥𝑥𝑥

(𝑡𝑡 − 1)𝐸𝐸𝑋𝑋𝑋𝑋
]

𝑀𝑀𝑅𝑅𝐸𝐸
 (18) 

 
The efficiency (denoted by E) of including a covariate in the analysis can be quantified. Mean 
Squared Error (MSE) is a metric that gauges the average squared deviation between observed 
and predicted values. It is computed for both models, with and without the covariate. In this 
context, 𝐸𝐸𝑋𝑋𝑋𝑋 represents the sum of squared discrepancies between each observed value of the 
covariate and its mean, while 𝑇𝑇𝑥𝑥𝑥𝑥  signifies the sum of squared discrepancies between the 
predicted values of the covariate from the ANCOVA model and its mean. In Eq. (18), "t" 
corresponds to the number of treatment groups being compared. 

3.5. Inflated Zero Negative Binomial Crash Prediction Model 
There were a number of work zones with zero crashes as shown in Table 12.  It can be seen that 
39% of widening projects had zero crashes, 82% for rehabilitation, 86% for reconstruction, and 
89% for preservation.  For this reason, the zero-inflated Negative Binomial (ZINB) model was used 
for it is designed to handle overdispersion and excessive zeros simultaneously. 

Table 12. Percentage of zero crashes for each work zone type 
Percentage of zero crashes 

Widening Rehabilitation Reconstruction Preservation 
39% 82% 86% 89% 

 

To further explain Table 12, it should be noted that a 39% widening indicates that among all 
crashes occurring in all widening projects, 39% of these projects experienced no crashes. This 
trend is also consistent for rehabilitation, reconstruction, and preservation projects. 

The ZINB model accounts for both the frequency of non-zero counts and the presence of excess 
zeros in the data as shown in Eq. (19): 
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𝐸𝐸(𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝑔𝑔𝑐𝑐) = (1 −  𝜋𝜋0) × 𝑔𝑔𝑥𝑥𝑖𝑖𝛽𝛽 (19) 
 

In the formula shown above, the value of 𝜋𝜋0 is determined by the following equation: 

𝜋𝜋0 =  
1

1 + 𝑔𝑔−𝑥𝑥𝚤𝚤́ 𝛽𝛽
 (20) 

 

In the ZINB model, 𝜋𝜋0 represents the likelihood of observing excess zeros, indicating the 
probability that a given observation arises from the zero-inflated component of the model rather 
than the count component. The variable 𝑥𝑥�́�𝚤  in Eq. (20) signifies the predictor or explanatory 
variable (work zone length, work zone duration, and AADT) to estimate the probability of excess 
zeros for each observation in the dataset.  Additionally, β represents the coefficients linked to 
the predictor variables 𝑥𝑥𝚤𝚤́ , illustrating their impact on the probability of excess zeros; positive 
coefficients imply an increase in the likelihood of observing excess zeros, while negative 
coefficients suggest the opposite effect.  On the contrary, 𝑥𝑥𝑖𝑖𝛽𝛽 in Eq. (19) arises from the count 
model, representing the linear combination of predictor variables 𝑥𝑥𝑖𝑖  (work zone length, work 
zone duration, and AADT) and their corresponding coefficients 𝛽𝛽.  This term encapsulates the 
relationship between the predictors and the expected count of non-zero observations, providing 
insights into how changes in the predictors influence the count outcome. In essence, 𝑥𝑥𝑖𝑖𝛽𝛽 
quantifies the impact of the predictor variables on the expected count, facilitating the prediction 
of non-zero observations in the dataset. 

It should be noted that we used the natural logarithm of AADT as the independent variable for 
predicting the crash counts.  The reason for using log(AADT) instead of just AADT is that its 
variance is significantly different from that of other variables, resulting in parameter estimation 
errors.  By using the logarithmic transformation, we successfully mitigated this issue.  The ZINB 
model was estimated using the R statistical software.  A copy of the code is provided in Appendix 
A. 
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4.  Findings 

4.1. Contributing Factors 
There are many angles from which factors that contribute to work zone-related crashes in SC 
could be analyzed.  In this project, two different angles are taken.  The first is to determine if 
there is any difference in the contributing factors between work zones on roads with speed limits 
of 60 mph or higher and work zones on roads with speed limits less than 60 mph.  The motivation 
for this analysis is to determine if the stringent work zone guidelines required for interstates 
lower injury risk.  If so, the SCDOT could consider increasing traffic control standards for work 
zones on lower-speed roads.  The other angle is to determine if rear-end crashes with collision 
speeds greater than or equal to 35 mph increase injury risk.  If so, the SCDOT could consider 
putting in countermeasures to reduce the traffic speed through the work zones. 

4.1.1. Factors Affecting Injury in Interstate and Non-Interstate Work Zone Crashes 
The log-likelihood ratio test yielded a value of 20.92 with 10 degrees of freedom (𝜌𝜌_𝑔𝑔𝑎𝑎𝑣𝑣𝑣𝑣𝑔𝑔< 
0.022); the log-likelihood value for the full model is -1329.43, the log-likelihood value for the 
posted speed limit less than 60 mph is -744.83, and the log-likelihood value for the posted speed 
limit greater than or equal to 60 mph equals is -574.14.  To find the log-likelihood values for the 
different speed categories, the full model is needed, and its estimation results are shown in Table 
13.   

Table 13. Parameters estimate and marginal effects for full model. 

Variable Coefficient t-statistic p-value Marginal Effects 
Injury PDO 

Defined for injury 
Rear End (standard deviation of parameter 
distribution) 

0.86 
(1.037) 

4.02 
(1.68) 

0.000 
(0.09) 0.064 -0.064 

Constant -0.49 -2.31 0.020   
Two vehicles -1.24 -8.67 0.000 -0.109 0.109 
Interstate -0.42 -3.36 0.000 -0.039 0.039 
Dark 0.42 3.52 0.000 0.017 -0.017 
Female 0.53 3.54 0.000 0.011 -0.011 
Weekday -0.40 -2.62 0.009 -0.441 0.441 
Lane shift/Crossover -0.49 -2.25 0.025 -0.004 0.004 
Under Influence -1.04 -2.76 0.006 0.004 -0.004 
Model Statistics 
Number of observations 3064     
Log-likelihood at zero, 𝐿𝐿𝐿𝐿(0) -2123.8     
Log-likelihood at convergence, 𝐿𝐿𝐿𝐿(𝛽𝛽) -1329.4     
𝜌𝜌2 = 1 −  𝐿𝐿𝐿𝐿(𝛽𝛽)/𝐿𝐿𝐿𝐿(0) 0.37     
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The result of the log-likelihood test suggests that the two different speed limit groups should be 
modeled separately with over 95% confidence.  It follows from the parameter transferability tests 
that two separate mixed logit models are to be estimated, one for a posted speed limit less than 
60 mph (representing non-interstates) and one for a posted speed limit greater than or equal to 
60 mph (representing interstates).  Table 14 shows the results of the parameter transferability 
test Madarshahian et al. (2023). 

Table 14. Results of parameter transferability tests for two speed categories. 

Speed limit category Speed limit category 
<  𝟔𝟔𝟔𝟔 𝒎𝒎𝒎𝒎𝒎𝒎 ≥ 𝒕𝒕𝒕𝒕 𝟔𝟔𝟔𝟔 𝒎𝒎𝒎𝒎𝒎𝒎 

<  𝟔𝟔𝟔𝟔 𝒎𝒎𝒎𝒎𝒎𝒎 - 32.69 (p<0.001) 
≥ 𝒕𝒕𝒕𝒕 𝟔𝟔𝟔𝟔 𝒎𝒎𝒎𝒎𝒎𝒎 28.28 (12) (p=0.005) - 

Each model predicts two levels of injury severity: injury and PDO.  A simulation-based maximum 
likelihood method was utilized to estimate the parameters 𝛽𝛽 for the mixed logit models.  To 
estimate random parameters, the normal distribution was considered, and 500 Halton draws 
were used.  The normal distribution was adopted because it was found to be statistically 
significant in several previous studies Uddin and Huynh2020, 2017). During the model 
development process, variables were retained in the specification if they had t-statistics 
corresponding to the 90% confidence level or higher on a two-tailed t-test.  The random 
parameters were retained if their standard deviations had t-statistics corresponding to the 90% 
confidence level or higher.  Model estimation results are shown in Tables 14 and 15 along with 
marginal effects for all the variables included in the final specifications.  It should be noted that 
other speed grouops such as < 50 mph and ≥ 50 mph were not evaluated.  Thus, the following 
results and their implications apply only to the selected speed groups, < 60 mph and ≥ 60 mph. 

Table 15. Parameter estimates and marginal effects for the model with a speed limit  < 60 mph. 

Variable Coefficient t-statistic p-value Marginal Effects 
Injury PDO 

Defined for injury 
Two vehicles (standard deviation of 
parameter distribution) -2.37 (2.72) -3.13 

(3.12) 
0.002 

(0.002) -0.0044 0.0044 

Constant -2.40 -5.78 0.000   
SC, US primary 1.10 3.85 0.000 0.2880 -0.2880 
Dark 0.67 2.78 0.005 0.0176 -0.0176 
Female 0.71 2.25 0.024 0.0096 -0.0096 
Age less than 35 0.51 2.32 0.020 0.0133 -0.0133 
Activity area 0.49 -2.12 0.034 0.0304 -0.0304 
Driving too fast 1.09 -4.48 0.000 0.0404 -0.0404 
Sideswipe -0.86 2.81 0.005 -0.0171 0.0171 
Workers present 0.45 -2.01 0.004 0.0249 -0.0249 
Fixed Object -1.28 3.53 0.000 -0.0097 0.0097 
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Model Statistics 
Number of observations 1748     
Log-likelihood at zero, 𝐿𝐿𝐿𝐿(0) -1211.62     
Log-likelihood at convergence, 𝐿𝐿𝐿𝐿(𝛽𝛽) -730.77     
𝜌𝜌2 = 1 −  𝐿𝐿𝐿𝐿(𝛽𝛽)/𝐿𝐿𝐿𝐿(0) 0.397     

 

Table 16. Parameter estimates and marginal effects for the model with a speed limit ≥ 60 mph. 

Variable Coefficient t-statistic p-value 
Marginal Effects 
Injury PDO 

Defined for injury 
Constant -2.42 -7.40 0.000   
Shoulder median (standard deviation of 
parameter distribution) -1.1 (2.62) 2.13 

(3.74) 
0.033 

(0.000) 0.0325 -0.0325 

Multi vehicles 1.82 7.20 0.000 0.0484 -0.0484 
Driving too fast 0.61 2.52 0.012 0.0330 -0.0330 
Rear end 0.96 3.86 0.000 0.0526 -0.0526 
Weekday -0.71 -2.68 0.007 -0.0607 0.0607 
Before first sign 0.64 -1.80 0.072 0.0051 -0.0051 
Dark 0.95 -4.16 0.000 0.0308 -0.0308 
Female 0.65 -2.35 0.019 0.0094 -0.0094 
Model Statistics 
Number of observations 1305     
Log-likelihood at zero, 𝐿𝐿𝐿𝐿(0) -904.56     
Log-likelihood at convergence, 𝐿𝐿𝐿𝐿(𝛽𝛽) -567.27     
𝜌𝜌2 = 1 −  𝐿𝐿𝐿𝐿(𝛽𝛽)/𝐿𝐿𝐿𝐿(0) 0.37     

 
Table 15 shows the parameter estimates for the model corresponding to work zone crashes 
where the posted speed limit of the roadway is less than 60 mph.  A positive coefficient implies 
that the variable is positively associated with the likelihood of that specific injury severity level.  
In other words, an increase in an independent variable with a positive coefficient results in a 
higher probability of occurrence of the specific injury severity level.  In this model, one indicator 
variable, Two vehicles, has a statistically significant standard deviation (random parameter).  This 
result suggests that the effect of the Two vehicles' variable on injury severity varied significantly 
across crashes.  This coefficient is normally distributed with a mean of -2.37 and a standard 
deviation of 2.72, indicating that this variable has a positive impact on 19.18% of observations 
(increases the likelihood of an injury crash) and a negative impact on 80.82% of observations 
(decreases the likelihood of an injury crash).  This finding suggests that for a majority of truck-
involved crashes at work zones where the roadway posted speed limit is below 60 mph 
(representing non-interstates), the involvement of two vehicles (as opposed to three or greater) 
reduces the likelihood of an injury crash.  

Table 16 shows the parameter estimates for the model corresponding to work zone crashes 
where the posted speed limit of the roadway is 60 mph or greater.  In this model, one indicator 
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variable, Shoulder/Median (from field 142 shown in Figure 4), has a statistically significant 
standard deviation (random parameter). This result suggests that the effect of the 
Shoulder/Median variable on injury severity varied significantly across crashes.  This coefficient 
is normally distributed with a mean of 1.1 and a standard deviation of 2.62, indicating that this 
variable has a positive impact on 66.27% of observations (increases the likelihood of an injury 
crash) and a negative impact on 33.73% of observations (decreases the likelihood of an injury 
crash).  This finding suggests that for a majority of truck-involved crashes at work zones where 
the roadway posted speed limit is 60 mph or greater (representing interstates), crash occurrence 
on a shoulder or median increases the likelihood of injury.  A possible explanation for this is the 
use of concrete barriers on interstates in South Carolina and the smaller clear zones in some 
areas.  According to the Federal Highway Administration, “By creating Clear Zones, roadway 
agencies can increase the likelihood that a roadway departure results in a safe recovery rather 
than a crash, and mitigate the severity of crashes that do occur.” 

Building separate injury severity models based on posted speed limits allows for a deeper 
understanding of how contributing factors vary across different speed limit ranges. The two 
models presented in this section show that there are considerable differences in terms of the 
combination of factors affecting injury severity, and the magnitude of the impact of these factors.  
These results highlight the fact that the posted speed limit of the roadway where the work zone 
is located interacts greatly with other factors impacting injury severity. Table 17 provides a 
summary of the variables that are statistically significant for the two speed-limit groups.  The 
random parameters are not included in this table because they have varying impacts across 
observations. 

Table 17. Models Comparison. 

Variable 
Speed < 60 mph Speed ≥ 60 mph 

Injury PDO Injury PDO 
SC, US Primary ↑ ↓   

Dark ↑ ↓ ↑ ↓ 
female ↑ ↓ ↑ ↓ 

Younger Driver ↑ ↓   
Activity area ↑ ↓   

Driving too fast ↑ ↓ ↑ ↓ 
Sideswipe ↓ ↑   

Workers present ↑ ↓   
Fixed object ↓ ↑   
3+ vehicles    ↓ 
Rear End   ↑ ↓ 

Before 1st sign   ↑ ↓ 
Weekday   ↓ ↑ 
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4.1.2. Factors Affecting Injury in Work Zone Rear End Crashes where collision speed ≥ 35 mph 
The mixed-logit model which takes into account variations in both mean and variance was 
estimated using the NLOGIT (version 6) software.  The estimation of parameters 𝛽𝛽𝑖𝑖  was 
conducted through a simulation-based maximum likelihood method with 1000 Halton draws.  In 
analyzing random parameters, a normal distribution was assumed, following its statistical 
significance as noted by previous studies Uddin and Huynh (2020, 2017). Variables were included 
in the model if their t-statistics met or surpassed the 90% confidence level, with random 
parameters retained if their variance showed significance at the same confidence level.  Table 18 
shows the final model coefficients and corresponding t-statistics, p-values, marginal effects, and 
base level. Interpretation of the mixed logit model is the same as that of the multinomial logit 
model, wherein a positive coefficient indicates a positive association with injury probability.  
Notably, the model demonstrates a favorable statistical fit, evidenced by an 𝜌𝜌2 value of 0.2.  The 
random parameter linked to the "Interstate" variable reveals a statistically significant standard 
deviation, suggesting variability in its impact on injury severity across different crashes. Further 
analysis reveals that the "Interstate" variable predominantly influences injury severity positively 
for approximately 83.52% of the cases, with a minority (16.48%) showing a negative impact. This 
implies a higher likelihood of injury in rear-end crashes at work zones on interstates in South 
Carolina compared to non-interstates when collision speed exceeds 35 mph. Moreover, the 
estimation highlights heterogeneity in both mean and variance of the "Interstate" random 
parameter, with variations noted based on crash time and lighting conditions, as well as the 
presence of drivers under the influence contributing to increased variance. 

Table 18. Model estimation results. 

Variable Coefficient t-statistic p-value 
Marginal Effects Base 

Level Injury PDO 
 

Interstate 
(Standard deviation of parameter 

distribution) 
-0.78 (0.80) -5.02 

(1.83) 
0.000 

(0.067) -0.051 0.051 N.A 

Heterogeneity in the mean of random parameter 
Interstate: Late night 

(1 if crash occurs between 12-6 a.m., 
0 otherwise) 

0.6 2.60 0.009   

 
Interstate: Dawn or Dusk 

1.70 3.03 0.002 
  

(1 if crash occurred in a dawn or dusk 
lighting condition, 0 otherwise)   

Heterogeneity in the variance of random parameter 
Interstate: Under influence  

(1 if the contributing factor of crash is 
under the influence, 0 otherwise) 

1.35 1.77 0.076    

Constant -0.35 -1.70 0.089 
3+ Vehicles 0.76 7.29 0.000 0.042 -0.042 2 Vehicles 
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Variable Coefficient t-statistic p-value 
Marginal Effects Base 

Level Injury PDO 

Airbag deployed 1.32 10.31 0.000 0.073 -0.073 
Airbag 

not 
deployed 

Termination/transition -0.39 -1.95 0.050 -0.012 0.012 Before 
first sign 

Advanced warning area -0.48 -2.33 0.020 -0.012 0.012 Before 
first sign 

Activity area -0.39 -2.14 0.033 -0.043 0.043 Before 
first sign 

Lane shift/crossover -0.39 -2.41 0.016 -0.006 0.006 Lane 
closure 

Shoulder/Median -0.29 -2.85 0.004 -0.028 0.028 Old driver 
Middle-aged drivers -0.38 -2.96 0.003 -0.013 0.013 Old driver 

Dawn or Dusk -1.10 -2.26 0.024 -0.006 0.006 Day light 
Dark 0.29 2.69 0.007 0.012 -0.012 Day light 

Truck involved 0.51 4.29 0.000 0.016 -0.016 No-truck 
involved 

Model statistics 
Number of observations 3648 

 Log-likelihood at zero, 𝐿𝐿𝐿𝐿(0) -2528.60 
Log-likelihood at convergence, 𝐿𝐿𝐿𝐿(𝛽𝛽) -2037.27 

𝜌𝜌2 = 1 −  𝐿𝐿𝐿𝐿(𝛽𝛽)/𝐿𝐿𝐿𝐿(0) 0.2 
 
Table 19 summarizes the impact of statistically significant variables concerning rear-end crashes 
at collision speeds greater than or equal to 35 mph.  The random parameter is not included since 
its effects vary across observations.  These variables exhibit a positive effect on injury: 
involvement of 3 or more vehicles, deployment of airbags, dark conditions, and involvement of 
one or more trucks.  All other variables demonstrate a negative effect. 

Table 19. effect of variables. 
Variable Base Level Injury 

3+ Vehicles 2 Vehicles ↑ 
Airbag deployed Airbag not deployed ↑ 

Termination/transition Before first sign ↓ 
Advanced warning area Before first sign ↓ 

Activity area Before first sign ↓ 
Lane shift/crossover Lane closure ↓ 

Shoulder/Median Lane closure ↓ 
Young drivers Old drivers ↓ 

Middle-aged drivers Old drivers ↓ 
Dawn or Dusk Day light ↓ 

Dark Day light ↑ 
Truck involved No-truck involved ↑ 
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4.2. Countermeasures 
As detailed in Section 3.1.4, efforts to extract pertinent work zone data from traffic control plans 
and daily work reports proved unsuccessful.  Given the absence of suitable SC data to assess the 
effectiveness of specific traffic controls or countermeasures at work zones, it is recommended 
that the SCDOT consider utilizing work zone countermeasures developed specifically for work 
zones by the University of Missouri.  These countermeasures were established through research 
supported by the U.S. Department of Transportation under cooperative agreement numbers 
DTFH6113RA00019 and 693JJ31750003.  Their corresponding Crash Modification Factors (CMFs) 
are shown in Figure 12 which were used in the work zone risk assessment tool to calculate the 
reduction in the number of crashes.  For the “Active Work with no Lane Closure” 
countermeasure, the baseline is “no work zone.”  For the “Implement left-hand merge and 
downstream lane shift,” the baseline is the conventional right-lane closure.  When more than 
one countermeasure is used, the combined effect can be determined using Eq. (21): 
 
𝐶𝐶𝑀𝑀𝐶𝐶𝑇𝑇 = 𝐶𝐶𝑀𝑀𝐶𝐶1 𝑋𝑋 𝐶𝐶𝑀𝑀𝐶𝐶2 𝑋𝑋 . .. (21) 
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Figure 12. Work zone crash modification factors (“Development of Work Zone Crash Modification Factors 

(CMFs),” n.d.). 

Figure 13 illustrates the process incorporated into the risk assessment tool for determining 
whether countermeasures should be implemented.  The first step is to select suitable 
countermeasures for the identified contributing factors.  The second step is to calculate the 
combined effect using Eq. (21) if more than one countermeasure is selected.  The third step is to 
determine the threshold for the benefit-cost ratio (BCR).  Generally, if a project has a BCR greater 
than 1.0, then it is expected to deliver a positive net present value to the agency.  However, some 
agencies may prefer to have a higher threshold than 1.0.  The fourth step is to determine the cost 
of implementing the countermeasures per mile, the average crash cost, and the expected 
number of crashes in the work zone.  The fifth step is to determine the estimated crash cost 
savings and total cost of improvement.  The sixth and last step is to calculate their quotient (i.e., 
BCR) and if it is greater than the threshold determined in the third step, then the implementation 
of the countermeasures is justified. 
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Figure 13. Procedure for Determining benefit-cost of contemplated Countermeasures. 

4.3. Crash Report Narratives and Discrepancies 

4.3.1. Discrepancies by Form 
First, the Confirmatory Factor Analysis or CFA was conducted to assess the fit of the proposed 
model.  The results indicated a good model fit, so the SEM model was developed.  Both CFA and 
SEM analysis were performed using SPSS Amos.  Figure 14 shows the SEM model results for the 
200 traffic collision forms with coefficients standardized.  The fit indices indicate that the SEM 
model is statistically significant, meaning its null hypothesis (crash characteristics and weather 
conditions affect the level of processing) cannot be rejected: 𝜒𝜒2/df = 1.119 (<3), CFI = 0.986 
(>0.9), TLI = 0.981 (>0.9), and RMSEA = 0.024 (<0.05).  Overall, 76% of the variance in the level of 
processing is explained by crash characteristics and weather conditions. 



  55 

 
Figure 14. SEM Results. Regression estimates have been standardized. 

Due to the relatively small sample size, the 90% confidence level was used.  At this threshold, 
several variables are significant. The structural model indicates the expected relationships 
between the latent variables.  The coefficient estimate for the latent crash characteristics (0.42) 
indicates that it has a strong positive effect on the level of processing, whereas the coefficient 
estimate for the latent weather conditions (-0.26) indicates that it has a negative impact on the 
level of processing, meaning as the measure of poor weather conditions increases, the level of 
processing decreases.  Since both of these variables are statistically significant, it can be 
concluded that crash characteristics and weather conditions positively and negatively affect the 
level of processing, respectively, with crash characteristics having a more significant role. 
 
The measurement models indicate which observed variables are significant to the model.  Out of 
the statistically significant variables affecting crash characteristics, the number of events, the 
number of units, and collision speed all have a positive effect on crash characteristics (0.97, 0.58, 
and 0.18, respectively).  The number of events has the strongest effect.  A higher value for any of 
these variables will result in an increase in the level of processing.  Multiplying the coefficient 
estimate for any of these variables by the coefficient estimate for crash characteristics will give 
the effect of the variable on the level of processing.  Humidity and precipitation have positive 
effects on weather conditions (0.26 and 0.66, respectively), and thus will lower the level of 
processing with an increase in value due to the negative relationship between weather 
conditions and the level of processing.  Temperature has the opposite effect because it has a 
negative relationship with weather conditions (-0.22), which in turn has a negative relationship 
with the level of processing; an increase in temperature will increase the level of processing. 
Multiplying their coefficients shows a positive impact of temperature on the level of processing. 
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The number of words and characters in the narrative both have positive relationships with the 
latent variable level of processing (0.91 and 0.97, respectively), although the number of 
characters has a slightly stronger impact.  As the level of processing increases, both the number 
of words and the number of characters in the narrative will increase.  To find the direct impact 
of any variable on the number of characters or words, simply multiply the coefficients forming 
the path between the variables.  For example, the effect of precipitation on number of words 
would be the product of the coefficients 0.26, -0.26, and 0.91. 
 
The variables not found to be statistically significant were number of alcohol and/or drug tests 
administered, license class, wind speed, and, most notably, the number of discrepancies (p = 
0.87, 0.35, 0.23, and 0.78, respectively).  For these variables, the model failed to reject the null 
hypothesis that each was not related to their respective latent variables.  As such, it can be 
concluded that no variables in the model affect the occurrence of discrepancies.  This result 
suggests that poorer weather conditions and crashes with a higher measure of complexity result 
in a longer written narrative (and vice versa), but these factors do not contribute to form 
discrepancies. Form discrepancies may be explained through the results of the MLR model 
examined below. 

4.3.2. Discrepancies by Type 
The MLR model estimation results are shown in Table 20.  The model’s R-squared and adjusted 
R-squared are 0.752 and 0.695, respectively, indicating a very good model fit.  At the 90% 
confidence level, the level of difficulty (p = 0.054) and input count (p = 0.007) are statistically 
significant.  Their positive coefficients indicate that as the level of difficulty and/or input count 
increases, so will the number of discrepancies.  That is, when the level of difficulty is complex 
instead of simple, the number of discrepancies can be expected to increase by 4.678.  When the 
input count is increased by 1, the number of discrepancies can be expected to increase by 1.928.  
These findings correspond to intuition. That is, a field that is more difficult or requires more 
information to be entered is more likely to have discrepancies. 

Table 20. MLR model estimation results. 
Variable 𝜷𝜷 Std. Error t-value p-value 
(Intercept) -2.670 1.592 -1.677 0.117 
Level of Processing 4.678 2.213 2.114 0.054 
Input Count 1.928 0.603 3.194 0.007 
Option Count -0.005 0.084 -0.064 0.950 
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4.4. Law Enforcement Effectiveness 
The findings from eight models discussed in Section 3.4 are examined using the PROC MIXED2 
method in SAS OnDemand for Academics. Table 21 displays the outcomes for all potential 
models. 
 

Table 21. Test of model’s fixed effects. 
Model 𝟏𝟏𝟏𝟏 

Effect Degree of freedom P-value 
Seasons 3 0.6641 

Trooper presence 1 0.0001 
Seasons* Trooper presence 3 0.2484 

Model 𝟐𝟐 
Effect Degree of freedom P-value 

Seasons 3 0.4557 
Trooper presence 1 0.0001 

Seasons* Trooper presence 3 0.0891 
Model 𝟓𝟓𝟐𝟐 

Effect Degree of freedom P-value 
Seasons 3 0.1145 

Trooper presence 1 0.0001 
Seasons* Trooper presence 3 0.0062 

Model 𝟔𝟔 
Effect Degree of freedom P-value 

Seasons 3 0.0600 
Trooper presence 1 0.0001 

Seasons* Trooper presence 3 0.0012 
1: Models 3 and 4 yield identical results to Models 1 and 2, respectively. 
2: Models 7 and 8 yield identical results to Models 5 and 6, respectively. 

 
In Model 1, the presence of troopers significantly affected the average speed throughout the 
work zone, indicating effective law enforcement in reducing speed. However, seasons and the 
interaction between seasons and police presence didn't show significant effects.  Model 2, which 
included traffic volume as a covariate, showed similar results, with trooper presence significantly 
impacting average speed in the work zone.  There were no significant effects for seasons or their 
interaction with police presence.  Models 3 and 4 focused on excess speed rather than average 
speed.  Their results reaffirmed the effectiveness of law enforcement in reducing speed across 
the work zone, with no significant seasonal effects observed.  Model 5 considered only the 
average speed in the area where troopers were stationed. Trooper presence significantly 
impacted speed, with winter showing the most significant reduction compared to fall and 
summer.  Model 6, incorporating traffic volume as a covariate, also showed significant effects of 
trooper presence on speed, with winter exhibiting the most significant reduction compared to 
fall and summer.  The results of Models 7 and 8, which focused on excess speed, mirror that of 
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Models 5 and 6, highlighting law enforcement's effectiveness in reducing excessive speed in the 
transition area and the presence of a significant interaction between seasons and trooper 
presence. 

4.4.1. Efficiency of ANCOVA 
After analyzing how traffic volume affects the models, we found that adding it as a factor in 
Model 1 (resulting in Model 2) and Model 3 (resulting in Model 4) gave almost the same results, 
with an efficiency of 1.016.  The same goes for adding traffic volume to Model 5 (resulting in 
Model 6) and Model 7 (resulting in Model 8), efficiency is 1.021.  This similarity is due to these 
models sharing the same criteria for evaluation.  If the efficiency is over 1, including traffic volume 
will likely improve the result’s accuracy.  However, since the efficiency is close to 1, keeping traffic 
volume as a covariate in Models 2, 4, 6, and 8 will not make much of a difference.   

4.4.2. Evaluating Model Fitness: A Comparative Analysis 
In Table 22, the goodness-of-fit (GOF) statistics such as the Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), and Corrected Akaike Information Criterion (AICC) for all 
eight models are presented.  Model 3 has the lowest GOF statistics, indicating its superiority over 
Models 1, 2, and 4, which used average speed across the entire work zone as their response 
variable.  On the other hand, for models using average speed in the transition area as their 
response variable, Model 7 has the lowest GOF statistics.  However, considering the efficiency 
gained by adding traffic volume as a covariate, Model 4 is preferred over Model 3, and Model 8 
is favored over Model 7. 
 

Table 22. Comparison of Models’ Goodness-of-Fit statistics. 
Model AIC BIC AICC 

1 9129.2 9128.0 9129.2 
2 9256.4 9255.2 9256.4 
3 9123.7 9123.7 9122.5 
4 9251.1 9250.0 9251.2 
5 9880.4 9880.5 9879.3 
6 9996.6 9995.5 9996.6 
7 9875.7 9874.5 9875.7 
8 9990.9 9989.8 9991.0 

4.5. Inflated Zero Negative Binomial Crash Prediction Model 
The zero-inflated negative binomial models were estimated using the R statistical software.  The 
estimation results for each work zone type are presented in subsequent subsections. 
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4.5.1. Work Zones for Widening Projects 
Table 23 shows the estimation results of the ZINB model for widening projects.  As shown, the 
results consist of two parts, a count model with negative binomial distribution and a zero-
inflation model with binomial distribution.  In the count model, significant predictors include 
Length, Duration, and log(AADT), indicating their positive association with crash counts.  
Although these variables are not significant in the zero-inflation model, it is best to retain them 
due to their importance based on previous research.  All predictors have a positive coefficient 
which implies that as their values increase so will the crash count.  The interpretation of the 
negative binomial regression coefficient is as follows: for a one unit change in the predictor 
variable, the log of expected counts of the response variable changes by the respective regression 
coefficient, given the other predictor variables in the model are held constant.  A simpler way to 
interpret the coefficients is to use the Incidence Rate Ratio (IRR) which is shown in Table 22.  The 
IRR for Length indicates that with each additional unit increase in Length, the crash count 
increases by 14.46%.   Similarly, for each additional unit increase in Duration, the crash count 
increases by about 0.19%, and for each additional unit increase in the logarithm of AADT, the 
crash rate increases by approximately 96.05%. 
 

Table 23. Estimation Results of ZINB model for Widening Projects. 
 Count model coefficients 
 IRR Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 0.0018 -6.3334 1.808551 -3.502 0.000462 *** 
Length  1.1446  0.135035 0.037864 3.566 0.000362 *** 

Duration 1.0019 0.001923 0.000391 4.921 8.60E-07 *** 
log(AADT) 1.9605 0.673193 0.201265 3.345 0.000823 *** 
Log(theta) 0.9005 -0.10486 0.252087 -0.416 0.677424  

 Zero-inflation model coefficients 
 Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 392.80902 545.98777 0.719 0.472  
Length -7.02164 10.10864 -0.695 0.487  

Duration -0.07483 0.10102 -0.741 0.459  
Log(AADT) -37.28779 51.65359 -0.722 0.470  

 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

4.5.2. Work Zones for Rehabilitation Projects 
Table 24 shows the estimation results of the ZINB model for rehabilitation projects.  The results 
are similar to that of widening projects.  From the count model, the IRR for Length indicates that 
increasing it by one unit will increase the crash count by 11.2%.  Similarly, increasing Duration by 
one unit will increase the crash count by 0.17%, and increasing the logarithm of AADT by one unit 
will increase the crash count by 235.35%. 
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Table 24. Estimation Results of ZINB model for Rehabilitation Projects. 

 Count model coefficients 
 IRR Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 0 -1.252e+0
1 1.257e+00 -9.962 < 2e-16 *** 

Length 1.112 1.062e-01 2.969e-02 3.577 0.000347 *** 
Duration 1.0017 1.743e-03 4.116e-04 4.235 2.29e-05 *** 

log(AADT) 3.3535 1.210e+00 1.383e-01 8.752 < 2e-16 *** 

Log(theta) 0.5911 -5.257e-0
1 2.304e-01 -2.281 0.022531 * 

 Zero-inflation model coefficients 
 Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 14.301665 5.622745 2.544 0.0110 * 
Length -1.878046 0.755548 -2.486 0.0129 * 

Duration 0.005086 0.003188 1.595 0.1107  
Log(AADT) -1.427746 0.626858 -2.278 0.0227 * 

 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

4.5.3. Work Zones for Preservation Projects 
Table 25 shows the estimation results of the ZINB model for preservation projects.  The results 
are similar to that of widening and rehabilitation projects.  From the count model, the IRR for 
Length indicates that increasing it by one unit will increase the crash count by 3.4%.  Similarly, 
increasing Duration by one unit will increase the crash count by 0.3%, and increasing the 
logarithm of AADT by one unit will increase the crash count by 258.59%. 
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Table 25. Estimation Results of ZINB model for Preservation Projects. 
 Count model coefficients 
 IRR Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 0 -1.407e+0
1 1.412e+00 -9.968 < 2e-16 *** 

Length 1.0304 2.999e-02 1.352e-02 2.219 0.0265 * 
Duration 1.003 2.994e-03 4.854e-04 6.169 6.88e-10 *** 

log(AADT) 3.5859 1.277e+00 1.410e-01 9.060 < 2e-16 *** 

Log(theta) 0.8091 -2.118e-0
1 2.502e-01 -0.847 0.3971  

 Zero-inflation model coefficients 
 Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 5.085280 3.851104 1.320 0.18668  
Length -0.658410 0.239424 -2.750 0.00596 ** 

Duration -0.000152 0.001516 -0.100 0.92014  
Log(AADT) -0.331898 0.399613 -0.831 0.40623  

 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

4.5.4. Work Zones for Reconstruction Projects 
Table 26 shows the estimation results of the ZINB model for reconstruction projects.  For this 
model, the Duration predictor is not significant.  From the count model, the IRR for Length 
indicates that increasing it by one unit will increase the crash count by 12.1%.  Similarly, 
increasing the logarithm of AADT by one unit will increase the crash count by 257.46%. 

Table 26. Estimation Results of ZINB model for Reconstruction Projects. 
 Count model coefficients 
 IRR Estimate Std. Error z value Pr(>|z|) Significant 

Intercept 0 -
13.324255 1.763071 -7.557 4.11e-14 *** 

Length 1.121 0.114232 0.037731 3.028 0.00247 ** 
Duration 1.0011 0.001071 0.001207 0.888 0.37480  

log(AADT) 3.5746 1.273861 0.207155 6.149 7.78e-10 *** 
Log(theta) 1.7199 0.542267 0.577903 0.938 0.34807  

 Zero-inflation model coefficients 
 Estimate Std. Error z value Pr(>|z|) Significant 

Intercept -771.4504 601.2049 -1.283 0.199  
Length 4.0232 3.0292 1.328 0.184  

Duration -0.8338 0.6506 -1.282 0.200  
Log(AADT) 103.4465 80.7976 1.280 0.200  

 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 



  62 

4.6 Summary 
Based on the findings of the SEM and MLR models assessing discrepancies in police crash reports, 
it can be concluded that officers in South Carolina are doing their job well in filling out the traffic 
collision forms.  That is, they do not let the circumstances surrounding the crash, such as its 
complexity and weather conditions, affect their ability to process information and record it.  This 
study has several limitations that need to be considered when interpreting its findings.  First, the 
provided traffic collision forms are limited to fatal crashes occurring within work zones.  Analyzing 
traffic collision forms of other injury severity levels may yield different results.  Along this line, 
crashes occurring within work zones are a relatively small subset of all traffic crashes.  Future 
work that analyzes traffic collision forms not occurring within work zones may yield different 
results.  Second, the narrative text does not allow for all fields to be validated. Thus, the number 
of discrepancies is likely to be more than what was identified in this study.  Third, police officers 
used an app to fill out the traffic collision form rather than a pen and paper.  As such, 
discrepancies could be due to errors in inputting the information rather than the inability to 
accurately recall the crash information.  Fourth, because personal information was removed from 
the forms by SCDOT, this study did not investigate how demographic factors (i.e., age, gender, or 
race of involved drivers) affect the officer’s level of processing.  Fifth, in some cases, officers may 
not include enough information in their narratives to compare to all 17 form fields.  Subsequently, 
some inaccuracies may have been unidentified because the officer omitted information that 
could result in a discrepancy.  Lastly, because officer training varies across states, the findings in 
this study cannot be generalized to the entire nation. 
 
In terms of contributing factors on interstates, multiple vehicles, driving too fast for conditions, 
rear-end collisions, area before the first work zone sign, weekdays, dark light conditions, and 
female drivers are significant, whereas on non-interstates, factors such as specific road types, 
dark light conditions, female drivers, work zone activity areas, younger at-fault drivers, sideswipe 
collisions, worker presence, and collisions with fixed objects are significant.  Marginal effects 
analysis suggests higher impacts of certain factors like driving too fast for conditions and female 
at-fault drivers on interstates. Additionally, darker lighting conditions have higher marginal 
effects on interstates, highlighting the need for brighter lighting in interstate work zones 
compared to non-interstates to mitigate the heightened risks associated with higher traveling 
speeds. 
 
In terms of contributing factors to rear-end crashes with high collision speed (≥ 35 mph), 
compared to drivers aged 50 or older, those below 35 exhibit lower injury probabilities by 0.028, 
while those between 35 and 50 show a decrease by 0.013.  Work zone configurations such as 
(termination/transition, advanced warning,) and activity areas demonstrate reduced injury 
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probabilities by 0.012 and 0.043, respectively, compared to crashes occurring before the first 
sign.  Conversely, crashes in lane closure configurations serve as the base level, indicating higher 
injury probabilities.  Additionally, crashes involving trucks increase injury likelihood by 0.016 
compared to those without trucks, while rear-end crashes involving three or more vehicles 
elevate injury probabilities by 0.042.  Deployed airbags raise injury probabilities by 0.073 
compared to crashes without airbag deployment, signifying higher collision severity.  Moreover, 
crashes in dark conditions exhibit increased injury probabilities by 0.012, while those during dawn 
and dusk show decreases by 0.006, contradicting daylight crashes.  These findings provide 
valuable insights for designing safer work zones and implementing targeted safety measures. 
 
A split-plot design with blocking showed that there was a decrease in average speed across the 
work zone when troopers were present, and similar speed reductions were observed in the 
transition area.  Additionally, trooper presence increases the likelihood of compliance with the 
posted temporary speed limits.  Most models found no significant variation in average speed 
reduction between seasons.  When the average speed of the entire work zone was considered, 
there is no interaction between seasons.  However, when the average traffic speed around where 
troopers were stationed was considered, there was interaction between trooper presence and 
fall and summer seasons.  Moreover, the average speed in the transition area was the lowest in 
the winter regardless of trooper presence. 
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5.  Conclusions, Recommendations, and Implementation 

5.1.  Conclusions 
The SEM and MLR models created to predict discrepancies in traffic collision suggest that site-
specific factors affect written narrative length but not the frequency of discrepancies occurring.  
However, the frequency of discrepancies in a form field will increase with additional inputs or if 
it has a higher level of difficulty. 

The mixed logit models for two separate speed limit models provided better insights than a single 
aggregate model, supported by statistical tests.  Two mixed logit models developed for speed 
limits under 60 mph and 60 mph or greater showed factors contributing to injury included dark 
lighting conditions, female drivers at fault, and driving too fast for conditions. Additional 
significant factors varied by the speed limit group, such as roadway type, work zone activity area, 
and crash characteristics.  

Developing a mixed logit model with heterogeneity in mean and variance for rear-end crashes 
with high collision speed revealed significant factors, including the presence of three or more 
vehicles, airbag deployment, specific work zone areas, lane configurations, at-fault driver’s age, 
lighting conditions, and truck involvement.  Countermeasures to mitigate injury include 
enhancing driver education, improving lighting and warning systems, installing rumble strips, 
educating the trucking industry and public about work zones, and improving traffic flow in 
congested areas. These findings emphasize the need for considering heterogeneity in future 
studies and implementing targeted safety measures in work zones. 

Findings of split-plot design with blocking showed the efficacy of trooper presence in reducing 
speeds across the entire length of work zones and within transition areas, as well as in ensuring 
compliance with temporary speed limits.  Seasonal influences were statistically insignificant.  
From a statistical standpoint, incorporating traffic volume as a covariate was found to enhance 
model precision. 

5.2.  Recommendations 
Should the traffic collision form need to be modified in the future, the new fields should be kept 
as simple as possible with minimum input boxes to minimize the frequency of discrepancies. 
Future work in discrepancies could compare discrepancy rates across different states to assess 
South Carolina’s officer training quality. 

It is recommended that the SCDOT consider improving lighting conditions at work zones at night, 
as dark lighting conditions were identified as a significant contributing factor to injury in truck-
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involved crashes.   Given that driving too fast for roadway conditions was identified as a 
significant factor contributing to injury, the SCDOT should consider prioritizing speed 
management measures in work zones; it should be noted that in practice, officers may use 
“driving too fast for conditions” as a contributing factor when they are unable to pinpoint the 
exact reason such as distracted driving.  This includes implementing speed enforcement 
strategies, enhancing signage, and utilizing traffic calming measures to encourage drivers to 
adhere to posted speed limits and adjust their speed according to roadway conditions.  Lastly, 
educational campaigns to improve safety such as promoting the use of seat belts and avoiding 
distracted driving should target both male and female drivers.  

Several countermeasures are recommended to address factors contributing to injury in work 
zone rear-end crashes with collision speeds of 35 mph or higher.  When promoting work zone 
safety during the National Work Zone Awareness Week held each spring in South Carolina, the 
SCDOT should consider getting the message to older drivers.  The use of lighting and advanced 
warning systems in work zones improves visibility and safety, particularly during nighttime 
operations.  Thus, these countermeasures should be considered when applicable. Other 
countermeasures to consider include educating both the trucking industry and the public about 
the danger of truck-involved crashes in work zones, improving traffic flow and reducing 
congestion in the proximity of the first work zone sign. 

This study found the presence of law enforcement to be effective in reducing traffic speed 
through the work zones.  The SCDOT could consider expanding the Safety Improvement Team 
Program in partnership with the South Carolina Department of Public Safety (SCDPS).  Specific 
strategies include having troopers stationed near the first work zone sign and in the activity area.  
To reduce cost, SCDOT and SCDPS could consider nuanced approaches to variable time spent at 
the work zones without sacrificing effectiveness.  Additionally, it may be helpful for the two 
agencies to evaluate the levels of active enforcement (e.g., the number of citations issued by 
troopers) on compliance with the work zone posted speed limit. 

5.3.  Implementation Plan 
The work zone risk assessment tool provided to the SCDOT in this study can be utilized to assess 
the crash risk of a work zone and the benefit-cost of implementing countermeasures to mitigate 
those risks.  The SCDOT should consider distributing this tool to SCDOT engineers or contractors 
designing work zone traffic control plans.  This tool was developed in Microsoft Excel using VBA 
and the estimation results of the zero-inflated negative binomial model discussed in Section 4.5.  
The tool returns a predicted number of crashes given the work zone type, length in miles, 
duration in days, and AADT.  Additionally, it determines the benefit-cost ratio following the 
procedure explained in Section 4.2.  The input required from the user are comtemplated 



  66 

countermeasure(s), cost to implement the countermeasure(s), average cost of a crash, and the 
minimum benefit-cost ratio to justify implementing the countermeasure(s).  Figure 15 shows the 
report generated by the tool. 

 
Figure 15. Report generated by Work Zone Risk Assessment Tool. 
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Appendix A 

library(readr) 

library(dplyr) 

library(MASS) 

library(pscl) 

#install.packages("pscl") 

************************************************************************************* 

# Whole Data 

Data <- read.csv("Path\\Neg_Bin_Dat.csv") 

************************************************************************************* 

# Subset data for "Widening" 

Data_Widening <- Data[Data$TYPE == "Widening", ] 

# Fit zero-inflated negative binomial model 

zeroinfl_model <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) | LENGTH + DURATION + 
log(AADT), data = Data_Widening, dist = "negbin", maxit = 500) 

summary(zeroinfl_model) 

predicted_crashes <- predict(zeroinfl_model, newdata = Data_Widening, type = "response") 

observed_counts <- Data_Widening$CRASHES 

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0)) 

head(result_data) 

************************************************************************************* 

# Rehabilitation dataset 

Data_Rehabilitation <- Data[Data$TYPE == "Rehabilitation", ] 

inflated_all_Rehabilitation <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) | LENGTH + 
DURATION + log(AADT), data = Data_Rehabilitation,link = "logit", dist = "negbin") 

summary(inflated_all_Rehabilitation) 
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round(inflated_all_Rehabilitation$fitted.values,0) 

predicted_crashes <- predict(inflated_all_Rehabilitation, newdata = Data_Rehabilitation, type = 
"response") 

observed_counts <- Data_Rehabilitation$CRASHES 

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0)) 

head(result_data) 

************************************************************************************* 

# Subset data for "Preservation" 

Data_Preservation <- Data[Data$TYPE == "Preservation", ] 

# Fit zero-inflated negative binomial model 

zeroinfl_model_Preservation <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT)| LENGTH + 
DURATION + log(AADT), data = Data_Preservation, dist = "negbin", maxit = 500) 

# Display summary statistics 

summary(zeroinfl_model_Preservation) 

predicted_crashes <- predict(zeroinfl_model_Preservation, newdata = Data_Preservation, type = 
"response") 

observed_counts <- Data_Preservation$CRASHES 

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0)) 

head(result_data) 

************************************************************************************* 

Data_Reconstruction <- Data[Data$TYPE == "Reconstruction", ] 

# Fit zero-inflated negative binomial model 

zeroinfl_model_Reconstruction <- zeroinfl(CRASHES ~ LENGTH + DURATION + log(AADT) |LENGTH + 
DURATION + log(AADT), data = Data_Reconstruction, dist = "negbin", maxit = 1000) 

# Display summary statistics 

summary(zeroinfl_model_Reconstruction) 
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predicted_crashes <- predict(zeroinfl_model_Reconstruction, newdata = Data_Reconstruction, type = 
"response") 

observed_counts <- Data_Reconstruction$CRASHES 

result_data <- data.frame(Observed = observed_counts, Predicted = round(predicted_crashes,0)) 

head(result_data) 
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