

SCORN Developer’s Guide

Laboratory for Advanced Construction Technology

Prof. David Lee

Jeongbeom Lee

1 | S C O R N

Table of Contents

1. Environment Setup

- Software Requirements

- Download the Project Repository with Git

2. Project Structure and Key Files Explanation

- App.js

- Criteria.js

- Display.js

- DisplayResults.js

- CalculateGrade.js

3. Getting Started

- Installation

- Running the Project

4. Contributing to SCORN

- Forking the Repository

- Making Changes and Submitting a Pull Request

5. Advanced Features and Customization

- Adding New Criteria

- Modifying the Grading Algorithm

6. Deploying SCORN to AWS Amplify

- Setting up AWS Amplify

- Initializing Your Project in AWS Amplify

- Deploying the Backend

- Hosting Your Application

- Verifying the Deployment

- Removing Your Application

2 | S C O R N

1. Environment Setup

To start development with the SCORN web application, setting up the right environment
is essential. The foundation of this setup includes having the latest version of Node.js installed
on your system, which is pivotal for running and developing React applications like SCORN.
Node.js comes bundled with Node Package Manager, an indispensable tool for managing
packages and dependencies within the project. Equally crucial is Git, a version control system
that facilitates code management, allowing developers to clone the project repository, track
changes, and collaborate efficiently.

Once the software prerequisites are in place, the next step involves downloading the
SCORN project repository. This can be achieved through Git by executing a clone command that
copies the entire project structure to your local machine. This process ensures that you have a
personal copy of the project's codebase, making it possible to embark on development, perform
tests, and contribute to the project.

3 | S C O R N

2. Project Structure and Key Files Explanation

The SCORN web application is structured around several key JavaScript (JS) files that
collectively define its functionality, interface, and the dynamic interactions users experience.
Understanding the role of each file is crucial for developers looking to contribute to the project,
as it enables efficient navigation and modification of the codebase. Here’s an overview of the
core files:

2.1 App.js

This is the heart of the SCORN application, serving as the
main entry point. `App.js` orchestrates the rendering of the entire
application, managing state transitions, routing, and the display of
major components such as `Criteria`, `Display`, and
`DisplayResults`. It integrates the different parts of the application
into a cohesive user experience.

2.2 Criteria.js

This file defines the `Criteria` component, which is
responsible for presenting the sustainability assessment criteria to
the user. It lays out the evaluation standards and domains in an
informative manner, guiding users on how to assess their
sustainability practices effectively. The `Criteria` component is
crucial for the educational aspect of SCORN, ensuring users understand the basis of their
sustainability evaluation.

2.3 Display.js

The `Display` component, defined in this file, handles the presentation and interaction of
the questionnaire. It dynamically generates questions based on the criteria selected by the user,
captures responses, and manages the navigation through different parts of the questionnaire. This
file is key to the interactive nature of SCORN, making the assessment process engaging and
user-friendly.

2.4 DisplayResults.js

After users complete the questionnaire, the `DisplayResults` component takes over to
show the calculated sustainability grade. Defined in this file, it processes the grading results,
displays them in a clear and concise manner, and offers functionality to export the results for
further analysis or record-keeping. This component brings closure to the assessment process by
providing users with tangible feedback on their sustainability efforts.

2.5 CalculateGrade.js

4 | S C O R N

The logic for calculating the sustainability grade based on user responses is encapsulated
in this file. `CalculateGrade.js` is a critical component of SCORN, as it directly impacts the
outcome of the assessment. It takes into account the points associated with each response, applies
the grading logic, and determines the final grade. This file is essential for ensuring the accuracy
and reliability of the assessment results.

Together, these files form the backbone of the SCORN application, each playing a
distinct role in delivering a comprehensive sustainability assessment tool. For developers
contributing to SCORN, familiarity with these files is the first step towards effective
collaboration and enhancement of the project.

5 | S C O R N

3. Getting Started

The commencement of development activities for the SCORN web application is
predicated upon a methodical installation process, followed by procedural steps to operationalize
the project on a local computational environment. This segment elucidates a structured guide
aimed at facilitating developers in establishing their development milieu efficiently and initiating
contributions to the project.

The foundational step in preparing for development on the SCORN project involves the
installation of Node.js, inclusive of npm (Node Package Manager). Given that SCORN is
constructed utilizing the React framework, the presence of Node.js is imperative for the
activation of the development server, whilst npm is utilized for the management of packages and
dependencies within the project framework.

Subsequent to the installation of Node.js, it is requisite to clone the SCORN repository to
a local directory. This can be achieved by executing the following command in a terminal or
command prompt, thereby navigating to the desired directory where the project will reside:

>>> git clone https://github.com/jeongbeom98/SCORN_WebApp.git

Post-cloning, one must transition into the SCORN project directory via:

>>> cd SCORN_WebApp

Within the project directory, the installation of necessary npm packages is accomplished by
executing:

>>> npm install

This command interprets the `package.json` file and procures all requisite dependencies for the
project.

Upon completion of the installation, the project is ready to be executed locally. Within the
project's directory, the development server is initiated by executing:

>>> npm start

This action activates the React development server and automatically renders the SCORN
application within the default web browser. Typically, the application is accessible at
`http://localhost:3000`, offering an interactive platform for engaging with the SCORN
questionnaire, implementing new functionalities, or ameliorating extant code.

https://github.com/jeongbeom98/SCORN_WebApp.git

6 | S C O R N

The local execution of SCORN permits developers to witness real-time reflections of
their modifications, facilitating an immediate feedback loop essential for development and
diagnostic processes. As modifications are made to the codebase, the development server
seamlessly reloads the application within the browser, instantaneously showcasing the
implemented alterations.

Through adherence to these installation and execution directives, developers are equipped
to commence with contributions towards the SCORN project, thus augmenting the tool’s
functionality and further endorsing its objective of propagating sustainability practices across
varied domains.

7 | S C O R N

4. Contributing to SCORN

Engagement with the SCORN project, by means of contributing to its development, is
encouraged under a structured framework designed to facilitate meaningful and coherent
additions. This section delineates the protocol for engaging with the project, encompassing the
initial steps of forking the repository, the intricacies of integrating modifications—specifically
the addition of new questions—and the procedural approach to submitting these changes for
review through pull requests.

The initial phase in the contribution process entails creating a personal copy of the
SCORN repository. This is accomplished by navigating to the SCORN GitHub page and utilizing
the 'Fork' feature, thereby generating a replica of the repository under your GitHub account. This
forked repository serves as a private platform where modifications can be freely implemented
without affecting the original codebase.

To integrate new questions into the SCORN web app, developers need to update the
`SCORN_Data.json` file, which serves as the database for all sustainability-related questions
presented within the application. Here's a detailed guide and template you can include in the
SCORN Developer's Guide:

4.1. Prepare the Data:

 - Ensure your new questionnaire data is organized with the necessary attributes:
`Category`, `Abbreviation`, `Number`, `Title`, `Option`, and `Points`.

- For new questions, assign a unique `Number` within each `Category`. The `Option`
field should detail the possible answers, and `Points` assign a score to each option.

4.2. Format the Data:

- Convert your data into a JSON array format. Each question and its options should be a
separate object within the array, similar to the example provided.

4.3. Update the `SCORN_Data.json` File:

- Replace the existing content of `SCORN_Data.json` with your newly formatted JSON
data. Ensure the format is correct to avoid errors in the application.

4.4. Test Your Changes:

- After updating the JSON file, run the SCORN web app locally to ensure the new
questions are displayed correctly and that the grading logic functions as expected.

- Template for `SCORN_Data.json`:

[{ "Category": "Your Category",

 "Abbreviation": "Abbreviation",

8 | S C O R N

 "Number": 1,

 "Title": "Question Title",

 "Option": "Answer Option",

 "Points": 1.0},

 {"Category": "Your Category",

 "Abbreviation": "Abbreviation",

 "Number": 1,

 "Title": "Question Title",

 "Option": "Another Answer Option",

 "Points": 2.0},

 // Add more questions and options here]

- Example Addition: If you're adding a new question about "Reducing Plastic Use" within
the "Facilities" category, your entry might look like this:

[{"Category": "Facilities",

 "Abbreviation": "FA",

 "Number": 3, // Assuming 1 and 2 are already taken

 "Title": "Reduce Plastic Use",

 "Option": "Reduce single-use plastic by 10%",

 "Points": 1.0},

 {"Category": "Facilities",

 "Abbreviation": "FA",

 "Number": 3,

 "Title": "Reduce Plastic Use",

 "Option": "Not Applicable",

 "Points": -1.0}

 // Continue adding other options as needed]

Upon the completion of modifications, contributors are required to initiate a pull
request—a formal proposal to merge their changes into the original SCORN repository. This is

9 | S C O R N

achieved by navigating to the 'Pull Requests' section of the original SCORN GitHub repository
and selecting 'New Pull Request'. Contributors must then choose their forked repository as the
'compare' branch and outline the nature and rationale of their contributions in the provided
description field.

The submission of a pull request triggers a
review process, during which the proposed
changes are evaluated by the project's maintainers.
This review ensures that contributions align with
the project's objectives, standards, and quality
requirements. Upon approval, the changes are
merged into the SCORN repository, marking the
successful contribution of new content or features to the project.

10 | S C O R N

6. Deploying SCORN to AWS Amplify

To make SCORN accessible as a fully functional web application, deployment through
AWS Amplify is recommended. AWS Amplify streamlines hosting both the backend and
frontend of web applications, ensuring scalability and reliability. Follow these steps to deploy
SCORN to AWS:

6.1 Setting up AWS Amplify

Before you begin, ensure you have the AWS Amplify CLI installed and configured as
outlined in Part II of the initial setup guide. The CLI will interface with your AWS account to
provision cloud resources.

6.2 Initializing Your Project in AWS Amplify

In your project's root directory, initiate the Amplify project by running:

>>> amplify init

Follow the prompts to:

- Name your project and environment.

- Specify the default code editor.

- Choose 'javascript' for the type of app and 'react' for the framework.

- Accept default configurations for paths.

- Select the AWS profile you've set up during the Amplify CLI configuration.

6.3 Deploying the Backend

To deploy the backend resources to your Amplify environment, execute:

>>> amplify push

Confirm when prompted to proceed with the deployment.

6.4 Hosting Your Application

For hosting the frontend, run:

>>> amplify add hosting

Choose 'Amplify Console' and 'Manual deployment'. Once hosting is set up, publish your
application by running:

>>> amplify publish

Confirm with 'yes' when prompted.

11 | S C O R N

6.5 Verifying the Deployment

After the deployment, the Amplify Console will provide a URL to your hosted application. Visit
this link to ensure that the SCORN web application is live and functional.

6 .6 Removing Your Application

Should you need to remove your application from AWS, avoid deleting directly from AWS
services. Instead, use the Amplify CLI with the command:

>>> amplify delete

This ensures a clean removal of services provisioned by AWS Amplify for your project.

