

Report Number: KTC-24-19 DOI: https://doi.org/10.13023/ktc.rr.2024.19



Kentucky Transportation Center
College of Engineering, University of Kentucky, Lexington, Kentucky

in cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky

The Kentucky Transportation Center is committed to a policy of providing equal opportunities for al persons in recruitment, appointment, promotion, payment, training, and other employment and education practices without regard for economic, or social status and will not discriminate on the basis of race, color, ethnic origin, national origin, creed, religion, political belief, sex, sexual orientation, marital status or age.

Kentucky Transportation Center College of Engineering, University of Kentucky, Lexington, Kentucky

> in cooperation with Kentucky Transportation Cabinet Commonwealth of Kentucky

© 2024 University of Kentucky, Kentucky Transportation Center Information may no tbe used, reproduced, or republished without KTC's written consent.





## **Research Report**

KTC-24-19

# Impact of the New Context Functional Classifications for KYTC

Arlen Sandlin, P.E. Research Engineer

Jill Asher, P.E. Research Engineer

Nikiforos Stamatiadis, Ph.D., P.E. Professor of Civil Engineering

Jeff Jasper, P.E. Program Manager

Rachel Catchings, P.E. Program Manager

and

Chris Van Dyke, Ph.D. Program Manager

Kentucky Transportation Center
College of Engineering
University of Kentucky
Lexington, Kentucky

In Cooperation With Kentucky Transportation Cabinet Commonwealth of Kentucky

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Kentucky, the Kentucky Transportation Center, the Kentucky Transportation Cabinet, the United States Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The inclusion of manufacturer names or trade names is for identification purposes and should not be considered an endorsement.

| 1. Report No.                      | 2. Government Accession No.          | 3. Recipient's Catalog No.            |  |  |  |
|------------------------------------|--------------------------------------|---------------------------------------|--|--|--|
| KTC-24-19                          |                                      |                                       |  |  |  |
| 4. Title and Subtitle              |                                      | 5. Report Date                        |  |  |  |
| Impact of the New Context Fu       | nctional Classifications for KYTC    | March 2024                            |  |  |  |
|                                    |                                      | 6. Performing Organization Code       |  |  |  |
|                                    |                                      |                                       |  |  |  |
| 7. Author(s):                      |                                      | 8. Performing Organization Report No. |  |  |  |
| Arlen Sandlin, Jill Asher, Nikifor | ros Stamatiadis, Jeff Jasper, Rachel | KTC-24-19                             |  |  |  |
| Catchings, Chris Van Dyke          |                                      |                                       |  |  |  |
| 9. Performing Organization N       | ame and Address                      | 10. Work Unit No. (TRAIS)             |  |  |  |
| Kentucky Transportation Cente      | er                                   |                                       |  |  |  |
| College of Engineering             |                                      | 11. Contract or Grant No.             |  |  |  |
| University of Kentucky             |                                      | SPR 22-629                            |  |  |  |
| Lexington, KY 40506-0281           |                                      | SPR 22-029                            |  |  |  |
| 12. Sponsoring Agency Name         | and Address                          | 13. Type of Report and Period Covered |  |  |  |
| Kentucky Transportation Cabir      | net                                  |                                       |  |  |  |
| State Office Building              |                                      | 14 Sponsoring Agoncy Codo             |  |  |  |
| Frankfort, KY 40622                |                                      | 14. Sponsoring Agency Code            |  |  |  |
|                                    |                                      |                                       |  |  |  |

#### 15. Supplementary Notes

Prepared in cooperation with the Kentucky Transportation Cabinet

#### 16. Abstract

State transportation agencies are adopting an expanded context classification system to inform project development and delivery. This system classifies roadways into one of five categories based on factors such as level of development, building densities and setbacks, multimodal user patterns and requirements, network permeability, and speed. Compared to functional classification, context classification better captures the types of mobility, travel patterns, and user mixes observed in specific contexts. The expanded context classification system is found in AASHTO's A Policy on Geometric Design of Highways and Streets (7th Edition). The forthcoming 8th edition will deepen integration of context classification throughout the design process. Based on knowledge of roadway context, agencies can plan and design context-appropriate facilities that accommodate a wide range of users. The Kentucky Transportation Cabinet's (KYTC) current planning and design activities rely on functional classification (categorizing roads as arterials, collectors, or local and indicating if they are located in an urban or rural area). Functional classification categorizes roads based on their position in a transportation network and the type of service they provide to motor vehicles. KYTC plans to supplement functional classification with context classification so it can better address the needs of different communities and user groups. To facilitate KYTC's agencywide introduction of context classification, this report documents its impacts on project development and delivery, outlines an implementation plan focused on KYTC-specific uses of context classification, and recommends updates to the agency's manuals and guidance.

| 17. Key Words                        | 18. Distribution Statement              |                  |                |  |
|--------------------------------------|-----------------------------------------|------------------|----------------|--|
| context sensitive design, highway    | Unlimited with approval of the Kentucky |                  |                |  |
| transportation planning, transport   | Transportation Cabi                     | net              |                |  |
| city planning, urban transportation  |                                         |                  |                |  |
| context classification, transportati |                                         |                  |                |  |
| 19. Security Classification          | 20. Security Classification (this       | 21. No. of Pages | 19.Security    |  |
| (report)                             | page)                                   | 158              | Classification |  |
| Unclassified                         | Unclassified                            |                  | (report)       |  |
|                                      |                                         |                  |                |  |

# **Table of Contents**

| Executive Summary                                                                                              | 1   |
|----------------------------------------------------------------------------------------------------------------|-----|
| Chapter 1 Introduction                                                                                         | 3   |
| 1.1 Functional Classification                                                                                  | 3   |
| 1.2 Study Background                                                                                           | 4   |
| 1.3 Context Classification Tools Used at Other State DOTs                                                      | 8   |
| 1.3.1 Florida Department of Transportation                                                                     | 9   |
| 1.3.2 Washington Department of Transportation                                                                  | 18  |
| 1.3.3 Minnesota Department of Transportation                                                                   | 24  |
| 1.3.4 Oregon Department of Transportation                                                                      | 29  |
| 1.3.5 Maryland Department of Transportation                                                                    | 40  |
| 1.3.6 Tennessee Department of Transportation                                                                   | 41  |
| Chapter 2 National Guidance and Research                                                                       | 43  |
| 2.1 NCHRP 855 – An Expanded Functional Classification System for Highways and Streets                          | 43  |
| 2.2 AASHTO's A Policy on Geometric Design of Highways and Streets 7 <sup>th</sup> Edition                      | 48  |
| 2.3 NCHRP 1022 – Context Classification: A Guide                                                               | 48  |
| 2.4 NCHRP Web-Only Document 320 – Aligning Geometric Design with Roadway Context                               | 53  |
| 2.5 KYTC's Highway Design Manual                                                                               | 54  |
| 2.6 KYTC's Complete Streets, Roads, and Highways Policy and Manual                                             | 54  |
| 2.7 NCHRP 07-29 and the 8 <sup>th</sup> Edition of AASHTO's Policy on Geometric Design of Highways and Streets | 55  |
| Chapter 3 Kentucky's Reliance on Functional Classification                                                     | 57  |
| Chapter 4 Kentucky-Specific Context Classification Recommendations                                             | 58  |
| 4.1 Immediate to Near-Term Phase                                                                               | 61  |
| 4.1.1 Division of Planning                                                                                     | 62  |
| 4.1.2 Division of Highway Design                                                                               | 62  |
| 4.2 After Completion of the Network-Level Classification                                                       | 64  |
| 4.3 After KYTC's Adoption of the 8th Edition of the Green Book                                                 | 64  |
| Chapter 5 Conclusion                                                                                           | 65  |
| References                                                                                                     | 66  |
| Appendix A Washington DOT Context and Modal Accommodation Report                                               | 68  |
| Appendix B Washington DOT Basis of Design Form                                                                 | 80  |
| Appendix C Oregon DOT Urban Design Concurrence Document                                                        | 88  |
| Appendix D Maryland DOT Context Driven Toolkit                                                                 | 94  |
| Appendix E Maryland DOT Context Frameworks                                                                     | 110 |
| Appendix F KYTC's Use of Functional Classification                                                             | 116 |
| Appendix G KYTC's Use of Context                                                                               | 120 |
| Appendix H KYTC's Proposed Context Classification Edits to the Highway Design Manual                           | 124 |
| Appendix I Revised Common Geometric Practice Sheets                                                            | 132 |
| Appendix J Designing for Transitions Between Contexts                                                          | 138 |
| Appendix K Proposed Context Classification Edits to the Planning Manual                                        | 147 |

# **List of Figures**

| Figure 1.1 Relationship of Functionally Classified Systems Serving Traffic Mobility and Land Access for Moto | r-Vehicle |
|--------------------------------------------------------------------------------------------------------------|-----------|
| Traffic                                                                                                      | 4         |
| Figure 1.2 Typical User Priorities in the Expanded Functional Classification System                          | 6         |
| Figure 1.3 Fayette County, Kentucky, Functional Classification Map                                           | 7         |
| Figure 1.4 Athens Boonesboro Road Near I-75                                                                  | 8         |
| Figure 1.5 Richmond Road in Downtown Lexington                                                               | 8         |
| Figure 1.6 Richmond Road between New Circle Road and Downtown                                                | 8         |
| Figure 1.7 Richmond Road between New Circle Road and Man O'War Boulevard                                     | 8         |
| Figure 1.8 Florida DOT Context Classifications                                                               | 9         |
| Figure 1.9 Florida DOT Context Classification Matrix                                                         | 11        |
| Figure 1.10 A Step-by-Step Guide for Determining Context Classification                                      | 13        |
| Figure 1.11 Typical User Types and Intensities for Context Classifications                                   | 14        |
| Figure 1.12 Washington DOT Context Documentation Process                                                     | 19        |
| Figure 1.13 Washington DOT Land Use Context Worksheet                                                        | 21        |
| Figure 1.14 Washington DOT Initial Modal Accommodation Table                                                 | 23        |
| Figure 1.15 Minnesota DOT Context Category Matrix                                                            | 26        |
| Figure 1.16 Oregon DOT Urban Context Matrix                                                                  | 31        |
| Figure 1.17 Oregon DOT General Modal Considerations in Each Context                                          | 32        |
| Figure 1.18 Design Guidance based on Context and Roadway Classification                                      | 33        |
| Figure 1.19 Oregon DOT Design Speed Selection                                                                | 37        |
| Figure 1.20 Oregon DOT Cross Section Realms                                                                  | 38        |
| Figure 1.21 Oregon DOT Design Element Considerations within the Pedestrian Realm                             | 39        |
| Figure 1.22 Maryland Traditional Town Center Context Framework                                               | 41        |
| Figure 2.1 Typical User Priority Matrix of an Expanded Functional Classification System                      | 44        |
| Figure 2.2 Expanded Functional Classification System Driver Interaction Matrix                               | 45        |
| Figure 2.3 Bicyclist Interaction Matrix for an Expanded Functional Classification System                     | 46        |
| Figure 2.4 Pedestrian Interaction Matrix for an Expanded Functional Classification System                    | 47        |
| Figure 2.5 Automated Context Classification Approach – Statewide Level                                       | 51        |
| Figure 2.6 KYTC District 7 Roadway Network                                                                   | 52        |
| Figure 4.1 Documentation of Design Functional Classification (KYTC Design Executive Summary form)            | 63        |

# **List of Tables**

| Table 1.1 Florida DOT Context Classification Designations                               | 10 |
|-----------------------------------------------------------------------------------------|----|
| Table 1.2 Florida DOT Design Speed Guidance                                             | 16 |
| Table 1.3 Florida DOT Context Classification Matrix Standard Sidewalk Widths            | 17 |
| Table 1.4 Washington DOT Factors for Determining Initial Land Use Context               | 20 |
| Table 1.5 Land-Use Context for Roadway Types                                            | 24 |
| Table 2.1 Guidelines for Selection of Design Level of Service                           | 48 |
| Table 2.2 Maximum Grades for Collectors in Urban and Urban Core Contexts                | 48 |
| Table 2.3 Transportation Expectations by Context                                        | 50 |
| Table 2.4 Data Sources Used for Automated Context Classification                        | 52 |
| Table 2.5 Context Classification Thresholds                                             | 52 |
| Table 2.6 Transportation Expectations by Context                                        | 55 |
| Table 4.1 Road Context Characteristics                                                  | 58 |
| Table 4.2 Recommended Implementation Plan for the Context Classification System at KYTC | 61 |

### Acknowledgements

This research was conducted in cooperation with the Kentucky Transportation Cabinet (KYTC) and the Federal Highway Administration. The research team gratefully acknowledges the contributions of the Study Advisory Committee:

- Elizabeth Niemann, P.E., KYTC Division of Program Management and Study Advisory Committee Chair
- Jason Siwula, P.E., Deputy State Highway Engineer
- John Moore, P.E., Deputy State Highway Engineer
- Gretchen Sanford, KYTC Division of Planning
- Casey Smith, P.E., KYTC District 7
- Wendy Southworth, P.E., KYTC Division of Highway Design
- Darrin Eldridge, P.E., KYTC District 9

As part of the study, a stakeholder meeting was held to obtain information on KYTC's current uses of functional classification. The authors thank the workshop participants:

- Tim Tharpe, P.E., KYTC Division of Traffic Operations
- James Minckley, P.E., KYTC District 6
- Brian Schroeder, P.E., KYTC Division of Maintenance
- Craig Caudill, P.E., KYTC Department of Rural & Municipal Aid
- Keith Lovan, P.E., KYTC Division of Planning
- Jeremy Edgeworth, P.E., KYTC Division of Planning
- Ramsey Quarles, P.E., KYTC Division of Planning
- Daniel Hulker, KYTC Division of Planning
- Dave Harmon, KYTC Division of Environmental Analysis
- Corbett Caudill, P.E., KYTC District 10
- Jessica Goodwin, P.E., KYTC Division of Traffic Operations

The authors also than the following KTC staff members for their contributions to the project:

- Robin Baskette, Research Engineer
- Michael Mabe, Graphic Designer

### **Executive Summary**

Across the United States transportation agencies are adopting an expanded context classification system to inform roadway project development and delivery. Introduced by Stamatiadis et al. (2018) in NCHRP Report 855, the expanded context classification system assigns roadways to one of five categories (rural, rural town, suburban, urban, urban core) based on several factors, including level of development, building densities and setbacks, multimodal user patterns and requirements, network permeability, and speed. Knowing a roadway's context classification can help transportation practitioners plan and design context-appropriate facilities that accommodate a wide range of users. The expanded context classification system was included in AASHTO's *Policy on Geometric Design of Highways and Street* 7<sup>th</sup> Edition (*Green Book*). And the forthcoming 8<sup>th</sup> edition will further integrate context classification into recommended design practices and processes.

The Kentucky Transportation Cabinet (KYTC) commissioned this report to evaluate the potential implications of implementing context classification at the programmatic and project levels. Currently, KYTC's planning and design activities rely on functional classification (categorizing roads as arterials, collectors, or local and indicating if they are in an urban or rural setting). The Federal Highway Administration (FHWA) mandates the use of functional classification and the Cabinet relies on it in several areas. Moving forward, KYTC wants to supplement functional classification with information from the expanded context classification so it can better address a variety of contexts and system users. Based on a review of how other state transportation agencies have introduced expanded context classification systems and conversations with KYTC stakeholders, this report advances a three-phased approach to facilitate agencywide implementation of the expanded context classification system found in AASHTO's *Green Book*:

#### Phase 1

- Complete network-level context classification.
- Encourage the deliberate use and incorporation of context classification into applicable planning- and design-level processes.

#### Phase 2

- Introduce context classification agencywide.
- Determine which agency processes can benefit from using context classification.

### Phase 3

• Final implementation following the release and adoption of *Green Book 8*.

Table E1 lists recommended actions to implement the expanded context classification system. Appendix H and Appendix K propose updates and modifications to KYTC's Highway Design Guidance Manual and Planning Guidance Manual, respectively, so these publications can help agency staff and external consultants put the expanded context classification into practice.

Table E1 Phased Approach for Expanded Context Classification System Implementation at KYTC

| Phase 1: Immediate and Near-Term Activities                                                                                                                                                                                                                                                                                                                              | Planning | Design |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| Designate a network level context classification for all state-maintained roadways using an automated system based on guidance in NCHRP 1022 <i>Context Classification Application: A Guide</i> . Use the contexts currently recognized by KYTC - rural, rural town, suburban, urban, and urban core. Determine an appropriate process for making changes to the system. | x        |        |
| Update the guidance manuals to include a description of the Context Classification System.                                                                                                                                                                                                                                                                               | х        | x      |
| Update the guidance manuals to emphasize the consideration of context classification when developing the project's purpose and need.                                                                                                                                                                                                                                     | х        | х      |
| Address areas of the guidance manuals that discuss project scoping to include consideration of context classifications.                                                                                                                                                                                                                                                  | х        | х      |
| Identify the project's context classification in planning documentation such as Continuous Highway Analysis Framework (CHAF), planning studies, scoping meeting minutes, and the Data Needs Analysis (DNA) scoping study form.                                                                                                                                           | х        |        |
| Update the Common Geometric Practices sheets in the Highway Design Manual with context classification parameters as necessary. All updates will be based on context information in the 7 <sup>th</sup> Edition of the Green Book.                                                                                                                                        |          | х      |
| Update Design Executive Summary documentation to include the broader application of context classification and identify it on the Pre-Design Conference Minutes.                                                                                                                                                                                                         |          | х      |
| Coordinate with the Complete Streets, Roads, and Highways Manual and Policy to consider recommended facility types by context. Ensure context descriptions and names are the same for all documents referring to context classification.                                                                                                                                 | X        | х      |
| Develop improved guidance and options for designing transition zones between contexts.                                                                                                                                                                                                                                                                                   |          | х      |
| Offer training, as necessary, to help inform KYTC personnel as well as consultants, Local Public Agencies (LPAs), etc.                                                                                                                                                                                                                                                   | х        | х      |

### Phase 2: Potential Uses After Completion of the Network-Level Context Classification

Consider opportunities for use in SHIFT prioritization (e.g., prioritization of facilities for all users)

Easier identification of potential grant funding opportunities for different project types (e.g., pedestrian or bike facilities)

Potential for more comprehensive HSIP network screening

Statewide or regional planning of facilities for all users

Application of future access management policies

Inclusion of the context classification in the Highway Information System and development of an interactive map of the system.

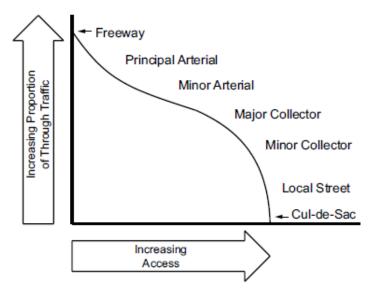
### Phase 3: After Adoption of the 8th Edition of the Green Book

KYTC guidance should be updated to reflect updated guidance in the Green Book.

Develop training on updates as necessary.

### **Chapter 1 Introduction**

Historically, the federal government and state departments of transportation (DOTs) have tied decision making about road designs to a facility's functional classification. Functional classification categorizes roads based on their position in a transportation network and the type of service they provide to motor vehicles. Although functional classification shines a light on how vehicles utilize and move through road systems, it does not speak directly to the needs of multimodal users (e.g., pedestrians, micromobility users like bicyclists and people who use scooters). Nor does functional classification characterize a road's surrounding environment and context beyond categorizing it as urban or rural.


The purpose of context classification is to categorize roads based on the surrounding environment and how they fit into the community. Transportation agencies are adopting modified functional classification systems that incorporate context to fill these conceptual gaps by using data on development density, land uses, building setbacks, and multimodal users. This develops balanced designs responsive to the needs of all transportation modes.

While variations have been utilized by some transportation agencies for two decades, <u>NCHRP 855 – An Expanded Functional Classification System for Highways and Streets</u> formally introduced context classification on a national level. Compared to the traditional functional classification system, context classification offers an improved indicator of mobility and access while considering all modes of travel and users. Context classification is intended to offer flexibility to practitioners to develop more contextually appropriate solutions. The expanded context classification system was introduced in AASHTO's Policy on Geometric Design of Highways and Streets 7<sup>th</sup> Edition (*Green Book 7*). The Green Book stresses that context classification does not replace functional classification. Under federal law (23 CFR Part 470), state DOTs are responsible for developing and maintaining a statewide functional classification in urban and rural areas, although these agencies are assisted by local governments and Metropolitan Planning Organizations (MPOs). Decisions about federal-aid program funding eligibility are also contingent on functional classification. Planners and designers should view functional classification and context classification as complementary.

As KYTC implements context classification, many aspects of the project development process will be impacted. This research project will document the impacts of context classification on KYTC practices, provide an implementation plan, and recommend KYTC-specific uses of an expanded classification system in preparation for adoption of further context-related guidance in the upcoming 8<sup>th</sup> Edition of AASHTO's *Policy on Geometric Design of Highways and Streets* (*Green Book 8*).

### 1.1 Functional Classification

Functional classification categorizes roads based on how they convey traffic through a network, specifically the degree to which they support mobility or access. With few opportunities for entry or exit, mobility-oriented roads minimize travel friction, are highly efficient, and support higher travel speeds. Good examples are interstates and freeways. Conversely, a road that prioritizes accessibility gives motorists many opportunities to access adjacent land uses and roads lower in the functional classification hierarchy. This results in greater travel friction, less efficiency, and lower speeds. Roadway functional classifications include freeways, arterials, collectors, and local roadways. Arterials and collectors can be further broken down into minor and major classifications (FHWA 2023).



**Figure 1.1** Relationship of Functionally Classified Systems Serving Traffic Mobility and Land Access for Motor-Vehicle Traffic

Source: AASHTO Green Book (7<sup>th</sup> Edition; Figure 1-3)

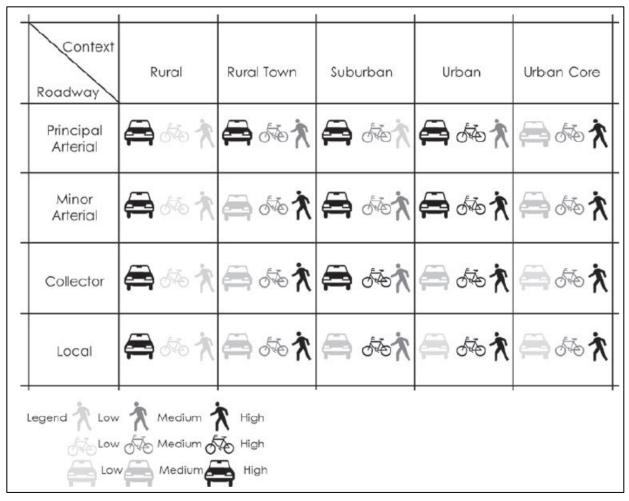
Roads that provide a high degree of mobility are called arterials. They support efficient travel and often have full or partial access control. Conversely, local roads prioritize accessibility. Collectors balance mobility and accessibility. They collect traffic from local roads and funnel it to arterials or vice versa.

Arterials, collectors, and local roads are further broken down into sub-categories based on facility characteristics and whether they are located in an urban or rural area. The starting point for differentiating urban and rural areas is US Census Bureau maps. The US Census Bureau defines urban areas as developed areas with at least 2,000 housing units or a population greater than or equal to 5,000. The FHWA further stratifies urban areas into three categories — urban, small urban, and urbanized. Under functional classification, the urban — rural distinction is tied to the thresholds of 5,000 people or 2,000 housing units. Under federal law, state DOTs, in collaboration with their local partners (e.g., local governments, MPOs), can adjust urban boundaries outward for transportation planning purposes. Updated boundaries must include the entire area defined by the US Census Bureau as urban. That is, an agency cannot shrink urban area boundaries so that an urban area footprint is smaller than what is defined in US Census Bureau maps.

In general, federal-aid funding is available for: (1) roads classified as urban minor collectors or higher in urban areas, and (2) roads classified as rural major collectors or higher in rural areas.

### 1.2 Study Background

NCHRP 855 – An Expanded Functional Classification System for Highways and Streets formally introduced context classification on a national level. The traditional functional classification system categorizes roads as interstate/freeway, arterial, collector, or local. Even with a rural or urban designation, this system does not always account for the true context associated with a roadway. The existing system tends to prioritize the needs of motor vehicles and limit focus on other users such as bicyclists and pedestrians. The intent of an expanded functional classification system is to remedy those concerns and provide a framework for practitioners to design and construct facilities that complement the context of their environment and that consider the needs of all users for a particular context.


NCHRP 855 (2018) identifies the following five contexts:

- **Rural** Areas with lowest density, few houses or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- **Rural Town** Areas with low density but diverse land uses with commercial main street character, potential for on-street parking and sidewalks, and small setbacks.
- **Suburban** Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks.
- **Urban** Areas with high density, mixed land uses and prominent destinations, potential for some on-street parking and sidewalks, and mixed setbacks.
- **Urban Core** Areas with highest density, mixed land uses within and among predominantly high-rise structures, and small setbacks.

The Expanded Functional Classification System did not address context types for Interstates or Freeways. Designs for these facilities are based on federally developed standards with less flexibility.

It was not the intent of NCHRP 855 to replace the existing functional classification system with context classification and it is not KYTC's intent to do so. Rather, the context classification system should supplement the functional classification system so that new or reconstructed facilities more properly match their environment and serve their real users.

Figure 1.2 indicates typical user priorities in an expanded functional classification system that was developed in the NCHRP 855 report. Note the first column identifies the traditional functional class while the top row indicates context.



**Figure 1.2** Typical User Priorities in the Expanded Functional Classification System Source: Stamatiadis et al. (2018)

NCHRP 855 presented two case studies to display the intended use of the expanded system. Case Study 1 was prepared for approximately 10.5 miles of Richmond Road (US 25/US 421/KY 418) in Fayette County, Kentucky, and is an excellent example of the intent of the expanded classification.

Figure 1.3 is a map of Fayette County showing functional classification for state routes in the County. Richmond Road, which transitions to Athens Boonesboro Road from Downtown Lexington to I-75, is highlighted. It is categorized as an Urban Principal Arterial throughout that section of the route.

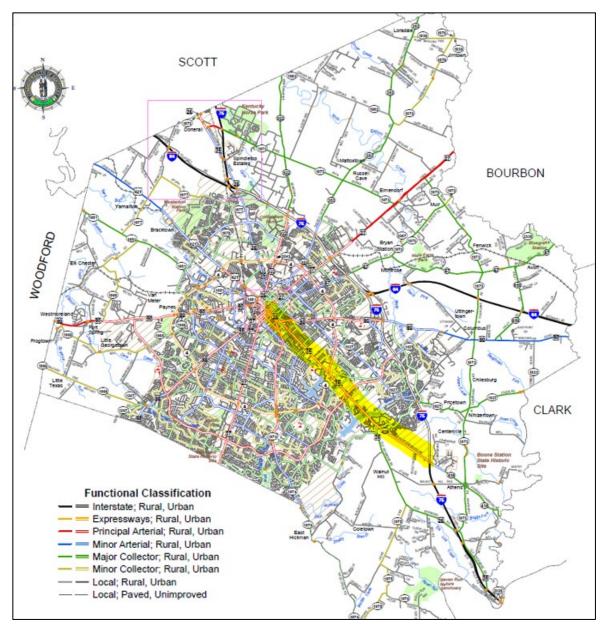



Figure 1.3 Fayette County, Kentucky, Functional Classification Map

Figures 1.4 and 1.5 depict the vast difference in context between Athens Boonesboro Road near I-75 and Richmond Road in Downtown Lexington. Near I-75, Athens Boonesboro Road is a four-lane divided highway with variable width median and partial access control. The area includes turn lanes, paved shoulders, and roadway ditches on both sides. In Downtown Lexington, Richmond Road becomes a one-way pair, generally with three lanes in each direction. Curb and gutter with closed storm sewer systems accommodate drainage and shared lanes/bicycle lanes/sidewalks serve bicyclists and pedestrians. Contexts for these sections of road are clear. However, a significant length of the 10.5-mile section fits neither context well.



Figure 1.4 Athens Boonesboro Road Near I-75



Figure 1.5 Richmond Road in Downtown Lexington



**Figure 1.6** Richmond Road between New Circle Road and Downtown



**Figure 1.7** Richmond Road between New Circle Road and Man O'War Boulevard

Photo Source: Google © 2023

Figures 1.6 and 1.7 show two more contrasting examples of the same roadway. The first depicts a section of Richmond Road between New Circle Road and Man O' War Boulevard. In that area, Richmond Road is lined with commercial businesses on both sides. The existing roadway includes three lanes in each direction with curb and gutter. A bicycle lane can be seen in the image shown (Figure 1.6). However, no sidewalks exist for most of Richmond Road in this area. Figure 1.7 depicts a section of Richmond Road between New Circle Road and Downtown Lexington. This area is residential in nature and the existing roadway includes two lanes in each direction with deteriorated curb and gutter, bicycle lanes, and sidewalks. Each location presents a wide range of access density.

This example clearly demonstrates the need for an enhanced classification system. While KYTC's *Highway Design Guidance Manual* (HDM) includes guidance for a rural arterial and an urban arterial which is well-defined by the first two photos (Figures 4 and 5), the areas shown in the second pair of photos (Figures 1.6 and 1.7) fit neither context. The additional contexts proposed by NCHRP 855, specifically Suburban and Urban, could be useful along those portions of the route to provide a framework for better accommodation of its users.

### 1.3 Context Classification Tools Used at Other State DOTs

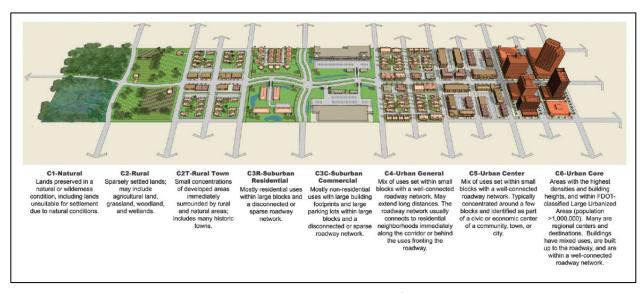
Several state departments of transportation have already begun the process of implementing the enhanced context classification system. The following provides a summary of the methods used by other states to incorporate an enhanced context classification system.

### 1.3.1 Florida Department of Transportation

The Florida Department of Transportation (FDOT) published the *FDOT Context Classification Guide* in July 2020, adopting the use of a roadway classification system consisting of eight context classifications for all state routes, not including those with limited access. The combination of context classification and transportation characteristics are used to understand who the roadway users are, determine the regional and local travel demand a facility satisfies, identify the challenges and opportunities for each roadway user type and ultimately, determine key design criteria. Figure 1.8 depicts the eight context classifications utilized by FDOT. For each classification, the general characteristics of the land use, development pattern, and roadway connectivity are described. The intent of each description is to provide cues about the types of users that may use the route. Each context is described as follows:

**C1-Natural** – Lands preserved in a natural or wilderness condition, including lands unsuitable for settlement due to natural conditions.

C2-Rural – Sparsely settled lands; may include agricultural land, grassland, woodland, and wetlands.


**C2T-Rural Town** – Small concentrations of developed areas immediately surrounded by rural and natural areas; includes many historic towns.

**C3R-Suburban Residential** – Mostly residential uses within large blocks and a disconnected or sparse roadway network.

**C3C-Suburban Commercial** – Mostly non-residential uses with large building footprints and large parking lots within large blocks and a disconnected or sparse roadway network.

**C4-Urban General** – Mix of uses set within small blocks with a well-connected roadway network. May extend long distances. The roadway network usually connects to residential neighborhoods immediately along the corridor or behind the uses fronting the roadway.

**C5-Urban Center** — Mix of uses set within small blocks with a well-connected roadway network. Typically concentrated around a few blocks and identified as part of a civic or economic center of a community, town, or city. **C6-Urban Core** — Areas with the highest densities and building heights, and within FDOT-classified Large Urbanized Areas (population >1,000,000). Many are regional centers and destinations. Buildings have mixed uses, are built up to the roadway, and are within a well-connected roadway network.



**Figure 1.8** Florida DOT Context Classifications Source: Florida DOT *Context Classification Guide* (2020)

**Determining context classification** – Each FDOT district office was required to develop preliminary existing and preliminary future context classification designations for the state routes within their respective districts. These were developed based on readily available GIS data, are noted to be preliminary only, serve as a foundation for beginning a project, and should be refined on a project-by-project basis. A database similar to KYTC's Highway Information System (HIS) is used to house the data. FDOT requires that the context classification for a project be determined and/or confirmed at the beginning of each project development phase. When the context classification for a portion of a roadway is determined, the information within FDOT's database is updated for future use. As a result, the database is dynamic and constantly being updated. Table 1.1 identifies the methodologies for determining the four potential context classification designations.

**Table 1.1** Florida DOT Context Classification Designations

|             |          | Methods                            |                                      |
|-------------|----------|------------------------------------|--------------------------------------|
|             |          | Preliminary                        | Project-Level                        |
| Time Period | Existing | Districtwide evaluation based on   | Project specific evaluation based on |
|             |          | existing conditions, using readily | existing conditions, using the most  |
|             |          | available GIS data                 | recent data available                |
|             | Future   | Districtwide evaluation based on   | Project specific evaluation based on |
|             |          | future conditions, using readily   | future conditions, using the most    |
|             |          | available GIS data                 | recent data available                |

Source: FDOT Context Classification Guide (2020)

Figure 1.9 identifies characteristics for each of FDOT's contexts and provides a framework for making those determinations. The distinguishing characteristics provide a broad description of the land use types and street patterns found in each context while the primary and secondary measures guide more detailed assessments of the existing or future conditions along a route.

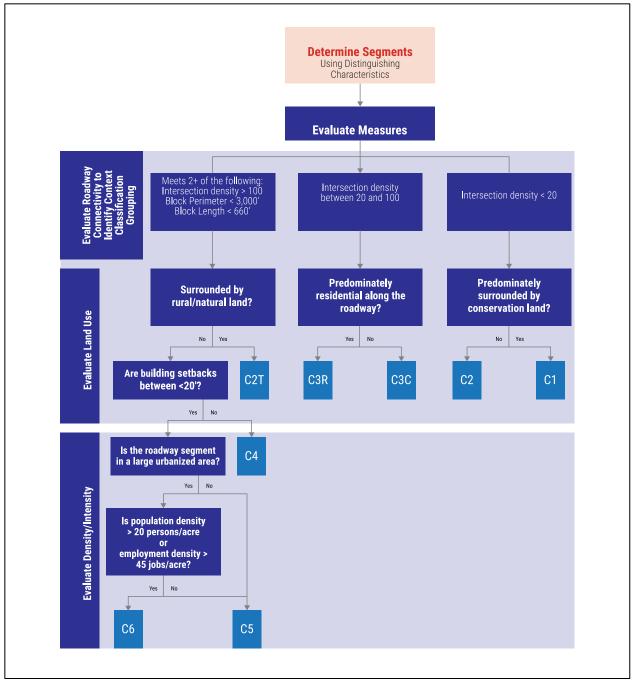

| TABLE 4 CON                                      |                                                                                                                                                                                                                                                                                                       | mary Measu                    | res             |          |                                                                                                                       |                                               |                                                                                                            |                                      | (2 C) Secondary Measures                                                                            |                                      |                           |                       |                      |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------|----------------------|
| TABLE 1 CON                                      | Intersection Density                                                                                                                                                                                                                                                                                  | Block<br>Perimeters           | Block<br>Length | Land Use | Building<br>Height                                                                                                    | Building<br>Placement                         | Fronting<br>Uses                                                                                           | Location of<br>Off-street<br>Parking | Allowed<br>Residential<br>Density                                                                   | Allowed<br>Office/<br>Retail Density | Population<br>Density     | Employment<br>Density |                      |
| <b>Context</b><br>Classification                 | (1) Distinguishing Characteristics                                                                                                                                                                                                                                                                    | Intersections/<br>Square Mile | Feet            | Feet     | Description                                                                                                           | Floor Levels                                  | Description                                                                                                | Yes/No                               | Description                                                                                         | DwellingUnits/<br>Acre               | Floor-Area Ratio<br>(FAR) | Persons/Acre          | Jobs/Acre            |
| C1-Natural                                       | Lands preserved in a natural or wilderness<br>condition, including lands unsuitable for<br>settlement due to natural conditions.                                                                                                                                                                      | N/A                           | N/A             | N/A      | Conservation<br>Land, Open Space,<br>and/or Park                                                                      | N/A                                           | N/A                                                                                                        | N/A                                  | N/A                                                                                                 | N/A                                  | N/A                       | N/A                   | N/A                  |
| C2-Rural                                         | Sparsely settled lands; may include agricultural<br>land, grassland, woodland, and wetlands.                                                                                                                                                                                                          | <20                           | N/A             | N/A      | Agricultural and/<br>or Single-Family<br>Residential                                                                  | 1 to 2                                        | Detached<br>buildings with no<br>consistent pattern<br>of setbacks                                         | No                                   | N/A                                                                                                 | <1                                   | N/A                       | <2                    | N/A                  |
| C2T-Rural Town                                   | Small concentrations of developed areas<br>immediately surrounded by rural and natural<br>areas; includes many historic towns.                                                                                                                                                                        | >100                          | <3,000          | <500     | Retail, Office,<br>Single-Family<br>Residential, Multi-<br>Family Residential,<br>Institutional, and/or<br>Industrial | 1 to 2                                        | Both detached<br>and attached<br>buildings with no<br>or shallow (<20')<br>front setbacks                  | Yes                                  | Mostly on side or<br>rear; occasionally<br>in front                                                 | >4                                   | >0,25                     | N/A                   | >2                   |
| C3R-Suburban<br>Residential                      | Mostly residential uses within large blocks and a disconnected or sparse roadway network.                                                                                                                                                                                                             | <100                          | N/A             | N/A      | Single-Family and/<br>or Multi-Family<br>Residential                                                                  | 1 to 2,<br>with some 3                        | Detached<br>buildings with<br>medium (20' to<br>75') front setbacks                                        | No                                   | Mostly in front;<br>occasionally in<br>rear or side                                                 | 1 to 8                               | N/A                       | N/A                   | N/A                  |
| C3C-Suburban<br>Commercial                       | Mostly non-residential uses with large building<br>footprints and large parking lots within large<br>blocks and a disconnected or sparse roadway<br>network.                                                                                                                                          | <100                          | >3,000          | >660     | Retail, Office,<br>Multi-Family<br>Residential,<br>Institutional, and/or<br>Industrial                                | 1 (retail uses)<br>and 1 to 4 (offic<br>uses) | Detached<br>e buildings with<br>large (>75')<br>setbacks on all<br>sides                                   | No                                   | Mostly in front;<br>occasionally in<br>rear or side                                                 | N/A                                  | <0,75                     | N/A                   | N/A                  |
| C4-Urban General                                 | Mix of uses set within small blocks with a well-<br>connected roadway network. May extend long<br>distances. The roadway network usually connects<br>to residential neighborhoods immediately along<br>the corridor or behind the uses frontling the<br>roadway.                                      | >100                          | <3,000          | <500     | Single-Family<br>or Multi-Family<br>Residential,<br>Iristhutional,<br>Neighborhood<br>Scale Retail, and/<br>or Office | 1 to 3, with<br>some taller<br>buildings      | Both detached<br>and attached<br>buildings with no<br>setbacks or up<br>to medium (<75')<br>front setbacks | Yes                                  | Mostly on side or<br>rear; occasionally<br>in front                                                 | >4                                   | N/A                       | >5                    | >5                   |
| C5-Urban Center                                  | Mix of uses set within small blocks with a<br>well-connected roadway network. Typically<br>concentrated around a few blocks and identified<br>as part of a civic or economic center of a<br>community, town, or city.                                                                                 | >100                          | <2,500          | <500     | Retail, Office,<br>Single-Family<br>or Multi-Family<br>Residential,<br>Institutional, and/or<br>Light Industrial      | 1 to 5, with<br>some taller<br>buildings      | Both detached<br>and attached<br>buildings with no<br>or shallow (<20')<br>front setbacks                  | Yes                                  | Mostly on side or<br>rear; occasionally<br>in front, or in<br>shared off-site<br>parking facilities | <b>≫</b> 8                           | >0.75                     | >10                   | >20                  |
| C6-Urban Core                                    | Areas with the highest densities and building<br>heights, and within FDOT dessified Large<br>Urbanized Areas (copulation 3-100,000,00). Many<br>are regional centers and destinations. Buildings<br>have mixed uses, are built up to the roadway, and<br>are within a well-connected roadway network. | >100                          | <2,500          | <660     | Retail, Office,<br>Institutional, and/<br>or Multi-Family<br>Residential                                              | >4, with some<br>shorter building:            | Mostly attached<br>buildings with no<br>or minimal (<10')<br>front setbacks                                | Yes                                  | Side or rear; often<br>in shared off-site<br>garage parking                                         | >16                                  | >2                        | >20                   | >45                  |
| 2008 Smart Transport     Department of Transport | ed in Table 1 are based on the Edicwing sources, with<br>Hallon Guidelook: Planning and Designing Highways and<br>Iation and Pennsylvania Department of Tansportation;<br>substook, Flonda Department of Transportation;                                                                              |                               |                 |          |                                                                                                                       | 4) 2010 Designi                               |                                                                                                            | horoughlares: A                      | dy Sorien, and William Wi<br>Context Sensilive Approxi                                              |                                      | sportation Engineer       | s and Congress        | for the New Urbanisn |
|                                                  | 8                                                                                                                                                                                                                                                                                                     |                               |                 |          |                                                                                                                       |                                               |                                                                                                            |                                      | 9                                                                                                   |                                      |                           |                       |                      |

Figure 1.9 Florida DOT Context Classification Matrix

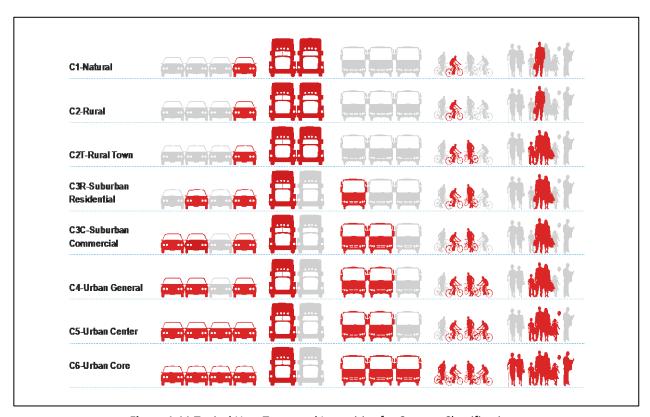
Source: Florida DOT Context Classification Guide (2020)

It is intended that primary measures can be evaluated through field visits, aerial photography, available street view imagery, or a combination. Secondary measures require more detailed map analysis and determination of future land use and/or zoning information, if available.

Figure 1.10 outlines a step-by-step process to evaluate context classification for a specific project. Generally, a subset of the primary measures can be enough to determine a roadway's context classification. It may not be necessary to evaluate all primary and secondary measures.



**Figure 1.10** A Step-by-Step Guide for Determining Context Classification Source: Florida DOT *Context Classification Guide* (2020)


Finally, FDOT acknowledges that not all roadways adhere to the standards in the context classification matrix. In those cases, a Special District (SD) context classification can be applied. Some examples may include:

- Military bases
- University campuses
- Airport

- Seaports or riverports
- Rail yards
- Theme parks or other tourist areas
- Sports complexes
- Hospitals
- Freight distribution centers

Typically, a Special District attracts a unique mix of users with unique travel patterns. Planning and engineering judgment are used to understand those situations and determine appropriate design controls and criteria on a case-by-case basis.

**Expected user types** – The context classification of a segment of a roadway is intended to inform project teams of the types and intensity of users that can be expected. Figure 1.11 illustrates typical user types and intensities for each context classification. The types and intensities of users shown for each context are typical in nature and planners and engineers should confirm the recommendations prior to determining the actual need to accommodate them.



**Figure 1.11** Typical User Types and Intensities for Context Classifications Source: Florida DOT *Context Classification Guide* (2020)

**Role of functional classification** – FDOT considers functional classification and context classification together when determining the role and function of a roadway within the transportation network. The FDOT Context Classification Guide provides guidance with two specific examples where the combination of the two is appropriate:

- The relationship between functional classification and access needs may be less consistent in more urban context classifications where roadways serve a wider variety of purposes beyond moving motor vehicular traffic.
- In growing suburban areas, retail and commercial businesses usually appear along arterials, requiring access and creating demands for short-distance and local trips for not only vehicles, but also pedestrians and bicyclists.

The example of Richmond Road in Lexington, Kentucky introduced earlier displays both points well. First, the surrounding context of the principal arterial changes significantly while the functional classification does not. Second, as development along Richmond Road has crept away from the urban core of downtown Lexington, the desired access and additional user types generated by surrounding residential neighborhoods benefit from a facility that does not necessarily serve the purpose of minimizing travel time and distance. Those are the typical roles of a principal arterial. These examples are indicative of the importance of layering context classification criteria on top of the use of functional classification.

**Design controls** – FDOT uses the following key design controls for project development: design speed, design vehicle, design period, traffic volumes, level of service, functional classification, access classification, and context classification. Design speed is a principal design control that determines many of the key design criteria for a project. Table 1.2 depicts the incorporation of context classification into the selection of the allowable design speed range for a non-limited-access facility.

**Design speed and target speed** – FDOT selects a design speed early in the design process that reflects a target speed. Target speed is the highest speed vehicles should operate on a roadway within in a specific context. FDOT notes the following regarding target speed:

- Target speed should be within the allowable design speed guidance shown in Table 1.2. The Strategic Intermodal
  System (SIS) is Florida's high-priority network of transportation facilities important to the state's economy and
  mobility.
- Target speed should allow for an operational speed consistent with the multimodal activity generated by the surrounding context of a facility.
- Target speed may change during project development as information is gathered and decisions are made.
- Target speed for C1 and C2 roadways should be in the higher range of the allowable design speed shown.
- Target speed for C2T through C6 roadways should be in the lower range of the allowable design speed shown with justification required otherwise.
- The 85<sup>th</sup> percentile speed should be considered when selecting the target speed. They are not required to be the same, however. If the selected target speed is lower than the 85<sup>th</sup> percentile speed, speed management intervention techniques may be required.
- When target speed and design speed are lower than the posted speed, the posted speed may need to be changed over time.

Table 1.2 Florida DOT Design Speed Guidance

|     | Table 112 Florida Do F Design Speed Galdanie                          |                       |                   |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------|-----------------------|-------------------|--|--|--|--|--|--|
|     | Limited Access Facilities<br>(Interstates, Freeways, and Expressways) |                       |                   |  |  |  |  |  |  |
|     | Area Allowable Range (mph) SIS Minimum (mph)                          |                       |                   |  |  |  |  |  |  |
|     | Rural and Urban                                                       | 70                    | 70                |  |  |  |  |  |  |
|     | Urbanized                                                             | 50-70                 | 60                |  |  |  |  |  |  |
|     | Arterials and Collectors                                              |                       |                   |  |  |  |  |  |  |
| Co  | ontext Classification                                                 | Allowable Range (mph) | SIS Minimum (mph) |  |  |  |  |  |  |
| C1  | Natural                                                               | 55-70                 | 65                |  |  |  |  |  |  |
| C2  | Rural                                                                 | 55-70                 | 65                |  |  |  |  |  |  |
| С2Т | Rural Town                                                            | 25-45                 | 40                |  |  |  |  |  |  |
| СЗ  | Suburban                                                              | 35-55                 | 50                |  |  |  |  |  |  |
| C4  | Urban General                                                         | 25-45                 | 45                |  |  |  |  |  |  |
| C5  | Urban Center                                                          | 25-35                 | 35                |  |  |  |  |  |  |
| C6  | Urban Core                                                            | 25-30                 | 30                |  |  |  |  |  |  |

### Notes:

- (1) SIS Minimum Design Speed may be reduced to 35 mph for C2T Context Classification when appropriate design elements are included to support the 35-mph speed, such as on-street parking.
- (2) SIS Minimum Design Speed may be reduced to 45 mph for curbed roadways within C3 Context Classification.
- (3) For SIS facilities on the State Highway System, a selected Design Speed less than the SIS Minimum Design Speed requires a Design Variation as outlined in SIS Procedure (Topic No. 525-030-260).
- (4) For SIS facilities not on the State Highway System, a selected Design Speed less than the SIS Minimum Design Speed may be approved by the District Design Engineer following a review by the District Planning (Intermodal Systems Development) Manager.

Source: Florida DOT Design Manual (2022)

In Florida, most other key design criteria are primarily controlled by the selected design speed with secondary contributing factors. However, the FDOT Design Manual specifically incorporates context classification into the selection of the following design features:

- Lane widths
- Median width on divided roadways with design speeds of 45 MPH or greater
- Minimum border width
- Maximum grades

Pedestrian and bicycle facilities – The FDOT Design Manual states that sidewalks should be provided on curbed roadways except where prohibited by statute. Sidewalks are also not required within C1 or C2 context classification and when no other connecting pedestrian facilities exist. The manual also states that sidewalks should be provided on high speed curbed and paved shoulder roadways with C2T, C3R, C4, C5, or C6 context classifications and along roadways with C1, C2, or C3C context classifications with a demonstrated demand for use. Standard sidewalk widths are provided as shown in Table 1.3.

Table 1.3 Florida DOT Context Classification Matrix Standard Sidewalk Widths

| C1         Natural         5           C2         Rural         5           C2T         Rural Town         6           C3         Suburban         6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| C2T Rural Town 6                                                                                                                                     |
|                                                                                                                                                      |
| C3 Suburban 6                                                                                                                                        |
|                                                                                                                                                      |
| C4 Urban General 6                                                                                                                                   |
| C5 Urban Center 10                                                                                                                                   |
| C6 Urban Core 12                                                                                                                                     |

#### Notes:

- (1) For C2T, C3 and C4, sidewalk width may be increased up to 8 feet when the demand is demonstrated.
- (2) For C5 and C6, when standard sidewalk width cannot be attained, provide the greatest attainable width possible, but not less than 6 feet.
- (3) For RRR projects, unaltered sidewalk with width 4 feet or greater may be retained within any context classification.
- (4) See FDM 260.2.2 for sidewalk width requirements on bridges.

Source: Florida DOT Design Manual (2022)

Regarding pedestrian and bicycle facilities, context classification is also mentioned as a determining factor in the following situations:

- Paved shoulders should be marked with bicycle lane arrow markings within C4, C5, and C6 context classifications, or within C3 when demand is demonstrated. This is only one of several criteria which must be met.
- Shared use path may be substituted for sidewalks or a bicycle lane when the design speed is 35 MPH or greater and the context classification is C1, C2, or C3.

- An urban side path may be used in C2T, C4, C5, and C6 context classifications when the roadway design speed is 35 MPH or less. In C5 and C6 contexts, a separate sidewalk must be provided along with the urban side path to accommodate pedestrian demand.
- A separated bicycle lane and sidewalk should be utilized in C2T, C4, C5, or C6 contexts when non-motorist
  volumes are expected to be high and higher than usual numbers of more vulnerable users such as the elderly
  or disabled are anticipated.

#### 1.3.2 Washington Department of Transportation

The Washington Department of Transportation (WSDOT) states that it is "committed to context-appropriate, multimodal, performance-based designs". The July 2017 Design Manual update included guidance for determining context for non-freeway facilities. WSDOT defines context as the "environmental, economic, and social features that influence livability and travel characteristics". Context informs the selection of design controls such as target speed and modal priority. For WSDOT, context is divided into two categories: land use and transportation.

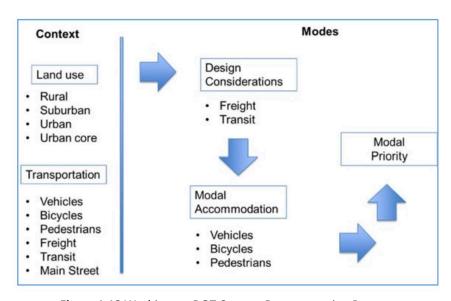
WSDOT chose to utilize four land use categories. Those four categories along with their key characteristics are rural, suburban, urban, and urban core. They are further described below.

**Rural** – Land use ranges from no development to some light development, with sparse residential and other structures mostly associated with farms. Land is primarily used for outdoor recreation, agriculture, farms, and/or resource extraction. Occasional small communities may include a few residential and commercial structures. Rural is further defined by these characteristics:

- No or few pedestrians except in outdoor recreation areas or where socioeconomic factors suggest walking to be an essential form of transportation,
- Recreational bicycle use except for potential commutes between communities or where socioeconomic factors suggest bicycling to be an essential form of transportation,
- Commercial uses include general stores, restaurants, and gas stations, normally at crossroads,
- Large setbacks except in small communities, and
- Limited transit service availability.

**Suburban** – Locations classified as suburban are usually connected and integrated with an urban area and include a diverse range of commercial and residential uses with low or medium density. Multi-story buildings with off-street parking tend to exist. Sidewalks will usually exist, and facilities may include bicycle lanes. Suburban areas may include big box commercial, light industrial, health services, gas stations, restaurants, schools, and libraries. Suburban is further defined by these characteristics:

- Heavy reliance on passenger vehicles,
- Transit services may be available,
- May include single and/or multi-family residential structures,
- May include planned facilities for multimodal activities such as walking and biking, and
- Schools and parks may be integrated with residential and commercial areas.


**Urban** – Urban locations are high density with multi-story and low to medium rise residential and commercial buildings. Some light and heavy industrial use may exist. Many structures accommodate mixed use and specialized structures for entertainment, athletics, or social events or conferences may exist. Urban is further defined by these characteristics:

- Various public use structures, including government, typically exist.
- Varying setbacks and streets typically include on-street parking.
- Wide sidewalks accommodate greater pedestrian traffic.
- Bicycle lanes and transit typically exist.
- Off-street parking in multi-level buildings is integrated with commercial and residential uses.

**Urban Core** – Urban core locations are the densest, with mixed residential and commercial use in high-rise structures. Time-restricted on-street parking is utilized along with parking in multi-level structures shared with commercial and residential use. Urban core areas are accessible to passenger vehicles, commercial delivery vehicles, bicycles, pedestrians, and transit. Urban Core is further defined by these characteristics:

- Sidewalks and plazas accommodate pedestrians,
- Bicycle facilities and transit facilities are common,
- Mixed land use includes commercial, residential, government, and institutional,
- Mixed use high-rise structures, and
- Minimal setbacks due to high land values.

**Determining land use and transportation context** – WSDOT provides specific guidance for determining both the land use and transportation contexts for a project and notes that a project may need to be broken into segments if more than one category applies within the project limits. Designers are directed to use the Context and Modal Accommodation Report and accompanying learner's guide in conjunction with the Basis of Design form when making these determinations. Figure 1.12 depicts a general overview of the process to determine modal priorities for a project based on land use and transportation contexts.



**Figure 1.12** Washington DOT Context Documentation Process Source: Washington DOT *Context and Modal Accommodation Report* (2019)

Table 1.4 Washington DOT Factors for Determining Initial Land Use Context

| Factor   | Criteria                          |
|----------|-----------------------------------|
| Land Use | Land uses within ½ mi of roadway  |
| Density  | Housing units / acre              |
| Density  | Jobs / acre                       |
| Density  | Intersections per sq. mi.         |
| Density  | Typical building height           |
| Setback  | Typical building setback          |
| Setback  | Parking (on street or off street) |

Source: Washington DOT Design Manual (2022)

The factors shown in Table 1.4 are used to determine the initial land use category. The first step involves determining the initial land use context category for the current state, or existing conditions. The factors shown can be quantified based on readily available data. Second, the project team should consult with local agency staff and review available planning documents to determine whether any potential changes to the surrounding land use warrant a change in the initial land use context category for the future conditions. Finally, the final land use context category for both the current and future conditions is established and takes into account any additional considerations, such as information gained through community engagement, as well as professional judgement. WSDOT includes a Land Use Context Worksheet to aid in determining the land use context category within their *Context and Modal Accommodation Report*. See Figure 1.13.

# Context and Modal Accommodation Report Version 2.2 (10/24/2019)

### LAND USE CONTEXT WORKSHEET

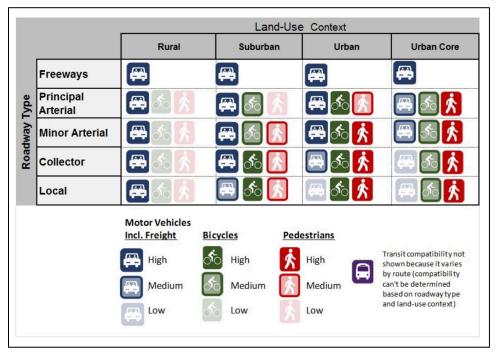
- 1. Review indicators (far left column) to define Current and future context (rural, suburban, urban/town, urban core).
- 2. Check one box in each row based on Current condition and another box in each row based on future condition.
- 3. Split segments by mileposts if indicators change significantly. Use one sheet for each milepost range.

| Indicator                         | Relevance                          | Rural                                                           | Suburban                                                                             | Urban/Town                                                                                      | Urban Core                                       | Source<br>(Current)               | Source<br>(Future)                                                |
|-----------------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Land Use                          | Within ½<br>mile of<br>roadway     | Agricultural uses with some isolated residential and commercial | Single uses (divided into residential, commercial, institutional or industrial uses) | Mixed-uses (includes 2+<br>residential, commercial,<br>institutional and/or<br>industrial uses) | Mixed uses except industrial and agriculture     | Aerial Photos                     | City or County Comprehensive Plan. Zoning & Land Use Designations |
| Housing<br>Units/Acre             | Polygons<br>adjacent to<br>roadway | Current ☐ Future ☐ < 1 unit/acre                                | Current                                                                              | Current                                                                                         | Current   Future   15+ units/acre                | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                              |
|                                   |                                    | Current □ Future □                                              | Current ☐ Future ☐                                                                   | Current ☐ Future ☐                                                                              | Current ☐ Future ☐                               |                                   |                                                                   |
| Jobs/Acre                         | Polygons<br>adjacent to<br>roadway | 0-1 jobs/acre                                                   | 1-10 jobs/acre                                                                       | 10-50 jobs/acre                                                                                 | 50+ jobs/acre                                    | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                              |
|                                   |                                    | Current   Future                                                | Current   Future                                                                     | Current  Future                                                                                 | Current  Future                                  |                                   |                                                                   |
| Street<br>Intersection<br>Density | Polygons<br>adjacent to<br>roadway | < 15 intersections/<br>square mile                              | 15-75 intersections per square mile                                                  | 75-150 intersections per square mile                                                            | 150+ intersections/<br>square mile               | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                              |
|                                   |                                    | Current   Future                                                | Current ☐ Future ☐                                                                   | Current  Future                                                                                 | Current 🗆 Future 🗆                               |                                   |                                                                   |
| Typical Building<br>Height        | Visible from roadway               | N/A                                                             | Mostly 1 to 2 story                                                                  | Mostly 2 to 4 story                                                                             | Mostly 4+ stories                                | Google Maps<br>Streetview         | City or County Zoning Code                                        |
|                                   |                                    | Current  Future                                                 | Current 🗆 Future 🗆                                                                   | Current  Future                                                                                 | Current  Future                                  |                                   |                                                                   |
| Setbacks                          | Visible from<br>roadway            | Varies                                                          | 24 ft min (arterial)<br>12 ft min (non-arterial)                                     | 6 ft min to 18 ft max                                                                           | 2 ft min to 12 ft max                            | Aerial Photos                     | City or County Zoning Code                                        |
|                                   |                                    | Current  Future                                                 | Current 🗆 Future 🗆                                                                   | Current  Future                                                                                 | Current  Future                                  |                                   |                                                                   |
| Parking                           | Visible from roadway               | Off-street (on-street rare)                                     | On-street residential,<br>off-street commercial                                      | On-street common supplemented by off-                                                           | Mostly on-street with some off-street structures | Aerial Photos                     | City or County<br>Comprehensive Plan                              |
|                                   |                                    | Current ☐ Future ☐                                              | Current ☐ Future ☐                                                                   | Current   Future                                                                                | Current   Future                                 |                                   |                                                                   |

Page 10 of 11

Figure 1.13 Washington DOT Land Use Context Worksheet

| Beginning   Ending   Current Context   Future Context   (Initial)   (Initial)   (Initial)   (Final)   (Fin | al<br>urban<br>an/Town |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Sources/interpretations made in these determinations not captured in the table:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |


Figure 1.13 Continued

Source: Washington DOT Context and Modal Accommodation Report (2019)

The transportation context is the basis for modal priority decisions for a project and are based on the following:

- Roadway type Functional classification,
- Bicycle route type Based on the trip purpose and network connectivity a facility provides,
- Pedestrian route type Described in terms of estimated current and potential future volumes,
- Freight route type Could be an identified freight route or based on amount of use,
- Transit use considerations Depends on type and volume of service provided, and
- Complete streets and main street highways Previously designated routes.

The *Context and Modal Accommodation Report* provides additional worksheets for context determination. All the above modes are addressed and lead to a determination of the initial modal priority for a project. Figure 1.14 depicts typical modal priorities based on route type and land use context.



**Figure 1.14** Washington DOT Initial Modal Accommodation Table Source: Washington DOT *Context and Modal Accommodation Report* (2019)

Following selection of the initial modal priority, the *Context and Modal Accommodation Report* (Appendix A) provides worksheets intended to assist with assessing the need to increase or decrease the priority needed for motor vehicles, bicycles, and pedestrians. Following completion of those worksheets, the final modal priority for each mode will be determined for both existing and future conditions. The results and justification are recorded in the project Basis of Design document.

**Design controls** – The modal priority for a project becomes one of five key design controls along with design year, access control type, design speed, and terrain classification. Unlike FDOT, WSDOT design guidance does not prescribe the use of certain features to accommodate particular modes. WSDOT recommends that sidewalks will typically be considered in suburban, urban, and urban core contexts. The designer is expected to document priority of modes on the Basis of Design document, which is similar to KYTC's Design Executive Summary, and requires approval near

the 30% design stage. The Basis of Design will document the design elements selected by the project team that accommodate those modes being prioritized. See <u>Appendix B</u> for WSDOT's Basis of Design form.

WSDOT also utilizes target speed and provides recommendations based on land use context and roadway type as shown in Table 1.5. Low speed is 35 MPH or less. Intermediate speeds are 40 and 45 MPH. High speed is 50 MPH and above.

Table 1.5 Land-Use Context for Roadway Types

|         |                    | Land                  | I-Use Context          |                       |            |
|---------|--------------------|-----------------------|------------------------|-----------------------|------------|
|         |                    | Rural                 | Suburban               | Urban                 | Urban Core |
|         | Freeways           | High                  | High                   | High                  | High       |
| Туре    | Principal Arterial | High                  | Intermediate /<br>High | Low /<br>Intermediate | Low        |
| Roadway | Minor Arterial     | High                  | Low /<br>Intermediate  | Low /<br>Intermediate | Low        |
|         | Collector          | Low /<br>Intermediate | Low/<br>Intermediate   | Low                   | Low        |
|         | Local              | Low /<br>Intermediate | Low                    | Low                   | Low        |

Source: Washington DOT Context and Modal Accommodation Report (2019)

The goal of the target speed approach is that the posted speed for a project is the same as the design speed and operating speed while considering existing and proposed context, modal priority, access control selection, performance need, and other important contributing factors specific to a project.

### 1.3.3 Minnesota Department of Transportation

The Minnesota Department of Transportation (MnDOT) Facilities Design Guide (2022) includes the identification of context categories for a project. MnDOT chose to utilize nine land use context categories. Those categories along with their key characteristics are described below.

**Natural** – Describes primarily undeveloped land that exists in its original state. Any buildings have very large setbacks and may not be visible.

**Rural** – Applies to farmland, forestry, mining, or very low density residential or commercial areas. Buildings have large setbacks and small pockets of natural context may be interspersed with rural developments.

**Rural crossroad** – Small developed areas at the intersections of two rural highways. May be a small community or unincorporated town. Land use is typically residential, commercial, industrial, institutional, and agricultural. Typical one-story buildings with varying setbacks.

**Suburban commercial** – Consists of large, developed parcels for commercial, office, institutional, and entertainment uses. Businesses may have large on-site parking lots and on-street parking may be available. Buildings are typically large, but not multi-story.

**Suburban residential** – Consists of mostly single-family houses with some multi-family. May include parks and natural spaces and a small amount of commercial and institutional uses.

**Industrial/warehouse/port** – Usually consists of industry and manufacturing, storage, and shipping, commercial, or air, rail, or water ports. Typically includes large buildings on large lots separated by parking areas.

**Urban commercial** – Densely developed area with a mix of commercial, retail, office, institutional, public/civic, and some residential. Building heights will vary. Parking lots and on-street parking are typical with parking structures in the denser areas.

**Urban residential** – Consists of single and multi-family homes and some commercial uses. May include parks and natural spaces and a small amount of commercial and institutional uses. Buildings have little or no setbacks and parking is typically on-street or in lots or garages accessed by alleys.

**Urban core** – Densely developed area of mixed uses including commercial/office, residential, public/civic, special event, and parks or open space. Most common in moderate or large cities. Lot sizes vary, buildings typically share walls, and buildings may be multi-story. Parking structures are common with some on-street parking and dedicated lots.

Figure 1.15 is from Exhibit 3C-2 in MnDOT's Facility Design Guide (2022). The exhibit provides additional detail on the selection of context for MnDOT projects.

| Context Category               | Description                                                                                                                                                                                                       | Land Use                                                                                                                                                                                                                                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural                        | <ul> <li>Sparsely developed or not developed.</li> <li>If present, scale of development is typically small.</li> <li>Wetlands, forests, prairies, lakes, waterways, steep slopes, historic areas.</li> </ul>      | Resource conservation/ preservation, scenic, recreational areas, parks, open space, water (with or without public access), forest.                                                                                                                                                                            |
| Rural                          | <ul> <li>Sparsely developed.</li> <li>Scale of development may be large (e.g., farm land).</li> <li>Low intensity of use.</li> </ul>                                                                              | Agriculture, forestry, mining, some industrial, park/recreation, water (with or without public access), sparse residential or commercial.                                                                                                                                                                     |
| Rural Crossroad                | <ul> <li>A developed area with small scale and<br/>moderate density.</li> <li>A variety of land use types typically<br/>resulting in moderate intensity of use.</li> </ul>                                        | Commercial (e.g., corner bar, gas), institutional (e.g., church), public/civic, (e.g., town hall, post office), park, open space. Often intermixed with agriculture, forestry, or industrial.                                                                                                                 |
| Suburban<br>Commercial         | - Low to moderate density of development - Typically, one type of land use (commercial) resulting in low to medium intensity of use Large scale land uses (e.g., big box retailers) are common.                   | Commercial, retail & big box, office parks, entertainment venues, some public/civic buildings (e.g., city hall), parks, institutional (e.g., community college). Some suburban commercial areas include a moderate density and mix of land uses centered on either historic or recently created town centers. |
| Suburban<br>Residential        | - Low density of development (e.g., few residences per acre) Typically, one type of land use (residential) resulting in low intensity of use.                                                                     | Single family houses, some multi-family buildings, some public/civic (e.g., school, library), parks/open spaces, small retail nodes (e.g., gas station, convenience store) adjacent to or along the edge.                                                                                                     |
| Industrial/<br>Warehouse/ Port | - May be in an isolated location in a rural area or intermixed with suburban or urban settings Typically large scale developments with a low to moderate intensity of use.                                        | Manufacturing, logistics, warehouse, intermodal facilities (air, water, rail)                                                                                                                                                                                                                                 |
| Urban Commercial               | <ul> <li>Moderate to high density of development,<br/>typically at a small or moderate scale.</li> <li>A variety of land uses (including some<br/>residential) resulting in high intensity of<br/>use.</li> </ul> | Often mixed use, including office, retail, large event centers, residential, regional public/civic (e.g., court house, county or state government, universities).                                                                                                                                             |
| Urban Residential              | - Moderate to high density of development (e.g. many residences per acre) Typically one type of land use (residential) resulting in low intensity of use.                                                         | A mix of single-family houses and multi-<br>family buildings, some public/civic (e.g.,<br>school, library), parks/open space uses, small<br>retail nodes (e.g., corner store).                                                                                                                                |
| Urban Core                     | <ul> <li>Extremely densely developed, often including vertical density.</li> <li>Typically high intensity of use.</li> <li>All varieties of land use may be present.</li> <li>All scales of land use.</li> </ul>  | Mixed retail, commercial, office, residential, institutional, event & sports centers, local and regional public/civic (e.g., library, court house) Open spaces are typically plazas.                                                                                                                          |

**Figure 1.15** Minnesota DOT Context Category Matrix Source: Minnesota DOT *Facility Design Guide* (2022)

| Context<br>Category                                       | Density   Buildings                                                                                                                                                                                                          |                                                                                                                                                                                 | Setback                                                |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Natural                                                   | Zero to very low                                                                                                                                                                                                             | - Rare.<br>- Mostly single-use.<br>- 1 to 2 stories tall.                                                                                                                       | Very large                                             |  |
| Rural                                                     | - Sparse Mostly single-use 1 to 2 stories tall.                                                                                                                                                                              |                                                                                                                                                                                 | Large                                                  |  |
| Rural<br>Crossroad                                        | - Concentrated Often mixed-use 1 to 2 stories tall.                                                                                                                                                                          |                                                                                                                                                                                 | Small to medium                                        |  |
| Suburban Commercial Low to medium, higher in town centers |                                                                                                                                                                                                                              | <ul> <li>Frequent buildings.</li> <li>Large lots, buildings are separated by parking lots.</li> <li>Mostly single-use, some mixed use.</li> <li>1 to 4 stories tall.</li> </ul> | Medium to large                                        |  |
| Suburban<br>Residential                                   | Residential  Low to medium or yards Single-use 1 to 3 stories tall.                                                                                                                                                          |                                                                                                                                                                                 | Medium to large                                        |  |
| Industrial/<br>Warehouse/<br>Port                         | rehouse/ Medium lots or outdoor uses.                                                                                                                                                                                        |                                                                                                                                                                                 | Medium to large                                        |  |
| Urban<br>Commercial                                       | Medium to high                                                                                                                                                                                                               |                                                                                                                                                                                 | None to small                                          |  |
| Urban<br>Residential                                      | Medium to high                                                                                                                                                                                                               |                                                                                                                                                                                 | None (multi-unit) to<br>small (single-unit/<br>duplex) |  |
| Urban Core                                                | - Frequent buildings Lot sizes vary, but buildings typically have shared walls In large cities, one building may occupy an entire blocks Building height depends on size of community but ranges from 1 story to 30 stories. |                                                                                                                                                                                 | Typically none                                         |  |

Figure 1.15 Continued

| Context<br>Category               | Frontage                                                                                                                                                                             | Facilities                                                                                                                                                                                                                                                                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural                           | - Natural areas.<br>- Parking lots in vicinity of<br>buildings.                                                                                                                      | <ul> <li>Roadway and shoulders used by all modes.</li> <li>Some shared-use paths, few sidewalks.</li> <li>Some on-demand or shuttle transit, no fixed route service.</li> </ul>                                                                                                               |
| Rural                             | - Mostly farm or natural.<br>- Private yards, parking lots, or both<br>in vicinity of buildings.                                                                                     | <ul> <li>Roadway and shoulders used by all modes.</li> <li>Some shared-use paths, few sidewalks.</li> <li>Some on-demand or shuttle transit, no fixed route service.</li> </ul>                                                                                                               |
| Rural<br>Crossroad                | - Landscaped buffers or small<br>parking lots.                                                                                                                                       | <ul> <li>Roadway and shoulders typically used by drivers and bicyclists, may be used by pedestrians in absence of sidewalks.</li> <li>Occasional sidewalk or shared-use path.</li> <li>Some on-demand or shuttle transit, no fixed route service.</li> </ul>                                  |
| Suburban<br>Commercial            | - Landscaped buffers and/or large<br>parking lots.                                                                                                                                   | <ul> <li>Roadway typically used by drivers only.</li> <li>Shoulders may or may not be present.</li> <li>Sidewalks or shared-use paths.</li> <li>Served by on-demand transit.</li> <li>Some fixed-route transit service.</li> <li>Park and rides access to commuter transit routes.</li> </ul> |
| Suburban<br>Residential           | - Private yard and/or driveway.                                                                                                                                                      | <ul> <li>Roadway typically used by drivers and bicyclists.</li> <li>Occasional sidewalks or shared-use paths.</li> <li>Served by on-demand transit.</li> <li>Some fixed-route transit service.</li> <li>Park and rides access to commuter transit routes.</li> </ul>                          |
| Industrial/<br>Warehouse/<br>Port | - Landscaped buffers, some fences,<br>parking lots.                                                                                                                                  | <ul> <li>Roadway and shoulders typically used by drivers and bicyclists.</li> <li>Occasional sidewalks or shared-use paths.</li> <li>Facilities where cargo is transferred from one mode to another (e.g., from train to ship).</li> <li>Some fixed route transit service.</li> </ul>         |
| Urban<br>Commercial               | - If present, frontage may be<br>landscaped or paved area for use<br>as seating, retail, or access to<br>storefront.                                                                 | <ul> <li>Street typically used by drivers and bicyclists; alleys used by all modes.</li> <li>Sidewalks.</li> <li>Bike lanes or separated bike lanes.</li> <li>Fixed route transit service.</li> </ul>                                                                                         |
| Urban<br>Residential              | - If present, multi-unit residential frontage may be private yard, or a small landscaped or paved area for use by residents Single unit/duplex frontage is typically a private yard. | - Street typically used by drivers and bicyclists; alleys used by<br>all modes.<br>- Sidewalks.<br>- Bike lanes or bike boulevards.<br>- Fixed route transit service.                                                                                                                         |
| Urban Core                        | <ul> <li>If present, frontage may be<br/>landscaped or paved area for use<br/>as seating, retail, or access to<br/>storefront.</li> </ul>                                            | <ul> <li>Street typically used by drivers and bicyclists; alleys used by all modes.</li> <li>Sidewalks.</li> <li>Bike lanes or bike boulevards.</li> <li>Fixed route transit service.</li> </ul>                                                                                              |

Figure 1.15 Continued

| Context Category               | Parking                                                                                                                                           | Minnesota Examples                                                                                                                                                                 |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Natural                        | - Mainly surface lot, some on<br>highway shoulder.                                                                                                | - TH 1 Superior National Forest<br>- TH 38 Chippewa National Forest<br>- TH 74 Whitewater State Park                                                                               |  |  |  |
| Rural                          | - Mainly surface lot, some on highway shoulder.                                                                                                   | - TH 52 in Goodhue County<br>- TH 61 along the north shore of Lake Superior                                                                                                        |  |  |  |
| Rural Crossroad                | - Mainly surface lot, some on-<br>street parking or on highway<br>shoulder.                                                                       | - TH 210/CR 6-16 in Tamarack<br>- TH 38/CR 5 in Effie<br>- TH 19/10th Ave in Stanton<br>- TH 61 in Miesville (transitional)                                                        |  |  |  |
| Suburban<br>Commercial         | - Large surface lots, occasional on-street and structure parking.                                                                                 | <ul><li>Division St in Saint Cloud</li><li>Robert St in West Saint Paul</li><li>Excelsior Blvd in Saint Louis Park</li></ul>                                                       |  |  |  |
| Suburban<br>Residential        | - Private garage, private driveway, occasional on-street parking.                                                                                 | - Chippewa Park neighborhood in Woodbury<br>- Northern Hills neighborhood in Rochester                                                                                             |  |  |  |
| Industrial/<br>Warehouse/ Port | - Large surface lots.                                                                                                                             | - Terminal Drive industrial area in Eagan<br>- Industrial Drive area in north Faribault-<br>- ConAgra Foods area in New Prague<br>- Port of Duluth<br>- Various airports statewide |  |  |  |
| Urban Commercial               | - Small surface lots or on-street<br>parking.<br>- Structure parking (in larger<br>communities)."                                                 | - Superior St E in Duluth<br>- University Ave in Minneapolis and Saint Paul<br>- Grand Ave in Saint Paul<br>- Many downtown main streets                                           |  |  |  |
| Urban Residential              | - Private garage or surface<br>parking accessed via alley, on-<br>street parking.<br>- Large multi-unit buildings may<br>have structure parking." | - Lyndale Ave in Minneapolis<br>- 66th St in Richfield<br>- East Hillside neighborhood in Duluth<br>- Older residential areas of some small towns                                  |  |  |  |
| Urban Core                     | - Structure parking is common,<br>some on-street parking, some<br>small surface lots.                                                             | - Downtown Minneapolis and Saint Paul<br>- Downtown Duluth<br>- Downtown Rochester                                                                                                 |  |  |  |

Figure 1.15 Continued

### 1.3.4 Oregon Department of Transportation

The Oregon Department of Transportation (ODOT) published the *Blueprint for Urban Design* in January 2020 which incorporated context classification into project development. ODOT updated their *Highway Design Manual* in January 2023 incorporating the *Blueprint for Urban Design*.

ODOT recognizes that context includes the adjacent land use and the context of the roadway itself. The roadway context, or the intended function of the road, using functional classification, provides input to the overall context of a roadway. Urban contexts defined by ODOT are based on current and future land use, development patterns, roadway classification and connectivity, and overall community goals for an area. ODOT recognizes six context classifications for non-limited access roadways. Those six classifications along with their key characteristics are described below.

**Traditional downtown/central business district** – Buildings are generally located at the back of sidewalk with minimal setbacks and access is provided from the sidewalk. Land use is mostly commercial and retail with some mixed residential, park areas, or other small recreational areas. Block sizes are generally small with on-street or parking behind buildings. The street grid system is usually well-developed.

**Urban Mix** – Building setbacks are mixed, but generally shallow and adjacent to the sidewalk or with a pedestrian pathway from sidewalk to building. Land use is commercial, retail, or professional offices and may include some residential. Older residential may be mixed in with newer development. Parking is mainly behind or beside buildings with some on-street parking. Block sizes are small to medium with a connected street grid system.

**Commercial Corridor** – Consists primarily of large commercial, retail, or industrial properties typically along major, high-speed arterials. A street grid system is not usually present. Building setbacks are medium to large with large parking areas between sidewalk and the building entrances. Large parking lots for employees and customers are typical.

**Residential Corridor** – Similar to a commercial corridor except with higher density of residential. May also be located along a higher speed arterial, but pedestrian, bicycle, and transit users will be more prevalent. This context typically has a better street grid network due to the existence of residential neighborhoods. Mixed commercial, retail, and light industrial land uses may support the residential area. Access to the main route is usually through public street connections.

**Suburban Fringe** – This context is the area of transition from higher speed rural roads to lower speed urban settings entering communities. Focus is on speed control. Building setbacks vary with generally larger properties and smaller buildings resulting in open green space. Residential, farming, commercial, retail, and industrial may all exist. Parking is primarily off the street.

**Rural Community** – Established for small communities with a major route being the primary through route. Will typically consist of small, concentrated areas of development surrounded by undeveloped areas. Building setbacks are generally shallow with parking along the edge of the road. Land use is mixed with primarily residential and small commercial. Facilities such as post offices, parks, schools, and recreational facilities are common.

**Determining Urban Context** – Figure 1.16 depicts the general criteria for each context as defined by ODOT. General guidelines for building setback, building orientation, land use, building coverage, parking location, and block size are provided.

| Land Use<br>Context             | <b>Building Setbacks</b> Distance from the building to the property line | Building Orientation Buildings with front doors that can be accessed from the sidewalks along a pedestrian path | <b>Land Use</b> Existing or future mix of land uses                      | Building Coverage  Percent of area adjacent to right-of- way with buildings, as opposed to parking, landscape, or other uses | Parking Location of parking in relation to the buildings along the right-of-way | Block Size  Average size of blocks adjacent to the right-of-way |
|---------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Traditional<br>Downtown/<br>CBD | Shallow/ None                                                            | Yes                                                                                                             | Mixed (Residential,<br>Commercial,<br>Park/Recreation)                   | High                                                                                                                         | On-street/ garage/<br>shared in back                                            | Small, consistent<br>block structure                            |
| Urban Mix                       | Shallow                                                                  | Some                                                                                                            | Commercial<br>fronting, residential<br>behind or above                   | Medium                                                                                                                       | Mostly off-<br>street/Single row in<br>front/ In back/ On<br>side               | Small to medium blocks                                          |
| Commercial<br>Corridor          | Medium to Large                                                          | Sparse                                                                                                          | Commercial,<br>Institutional,<br>Industrial                              | Low                                                                                                                          | Off-street/In front                                                             | Large blocks, not wel<br>defined                                |
| Residential<br>Corridor         | Shallow                                                                  | Some                                                                                                            | Residential                                                              | Medium                                                                                                                       | Varies                                                                          | Small to medium blocks                                          |
| Suburban<br>Fringe              | Varies                                                                   | Varies                                                                                                          | Varied, interspersed development                                         | Low                                                                                                                          | Varies                                                                          | Large blocks, not wel                                           |
| Rural<br>Community              | Shallow/ None                                                            | Some                                                                                                            | Mixed (Residential,<br>Commercial,<br>Institutional,<br>Park/Recreation) | Medium                                                                                                                       | Single row in front/ In back/ On side                                           | Small to medium blocks                                          |

**Figure 1.16** Oregon DOT Urban Context Matrix Source: Oregon DOT *Highway Design Manual* (2023)

**Expected user types** – Figure 1.17 identifies the typical significance of each mode of transportation for each context. ODOT notes that the table is a starting point and that final context determinations should be made on a project-by-project basis with analysis of the unique circumstances of each individual project.

| Land Use Context         | Motorist | Freight | Transit | Bicyclist | Pedestrian |
|--------------------------|----------|---------|---------|-----------|------------|
| Traditional Downtown/CBD | Low      | Low     | High    | High      | High       |
| Urban Mix                | Medium   | Low     | High    | High      | High       |
| Commercial Corridor      | High     | High    | High    | Medium    | Medium     |
| Residential Corridor     | Medium   | Medium  | Low     | Medium    | Medium     |
| Suburban Fringe          | High     | High    | Varies  | Low       | Low        |
| Rural Community          | Medium   | Medium  | Varies  | High      | High       |

High: Highest level facility should be considered and prioritized with other modal treatments.

Medium: Design elements should be considered; trade-offs may exist based on desired outcomes and user needs.

Low: Incorporate design elements as space permits.

**Figure 1.17** Oregon DOT General Modal Considerations in Each Context Source: Oregon DOT *Highway Design Manual* (2023)

**Role of functional classification** – Figure 1.18 provides general guidance for design criteria for the following: typical speed range, travel lanes, turn lanes, shy distance, median, bicycle facility, sidewalk, pedestrian crossing spacing, and parking. These figures provide criteria for each context and for functional classification. In some circumstances where context and functional classification overlap, the designer is advised to reference the criteria for both.

| Context                                                     | Typical<br>Speed<br>Ranges<br>(MPH) <sup>4</sup> | Travel<br>Lanes <sup>1,2</sup>                              | Turn<br>Lanes <sup>1,2</sup>                                             | Shy<br>Distance <sup>1,3</sup>                                           | Median <sup>1,2</sup>                                          | Bicycle<br>Facility <sup>1,2,5</sup>                                        | Sidewalk                                                                         | Target Pedestrian Crossing Spacing Range (feet) <sup>6</sup> | On-street<br>parking <sup>1</sup>                           |
|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| Urban and<br>Rural<br>Freeways<br>(including<br>interstates | 50-70<br>mph                                     | Start with standard                                         | Not<br>Applicable                                                        | Start with standard                                                      | Start with standard                                            | Generally,<br>Not<br>Applicable<br>(only in<br>specific<br>cases)           | Not<br>Applicable                                                                | Not<br>Applicable                                            | Not<br>Applicable                                           |
| Grade<br>Separated<br>Urban and<br>Rural<br>Expressways     | 45-70<br>mph                                     | Start with standard                                         | Not<br>Applicable<br>for Grade<br>Separations/<br>Start with<br>standard | Not<br>Applicable<br>for Grade<br>Separations/<br>Start with<br>standard | Start with standard                                            | Generally,<br>Not<br>Applicable<br>(only in<br>specific<br>cases)           | Not<br>Applicable                                                                | Not<br>Applicable                                            | Not<br>Applicable                                           |
| At-Grade<br>Urban and<br>Rural<br>Expressways               | 45-70<br>mph                                     | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard              | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard              | Urban -<br>Use<br>Context<br>Rural -<br>Start With<br>Standard | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard<br>See Part 900 | Urban - Use<br>Context<br>Rural - Start<br>With Standard<br>See Part 800,<br>900 | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard  | Urban - Use<br>Context<br>Rural - Start<br>With<br>Standard |

**Figure 1.18** Design Guidance based on Context and Roadway Classification Source: Oregon DOT *Highway Design Manual* (2023)

| Context                                           | Typical<br>Speed<br>Ranges<br>(MPH) <sup>4</sup> | Travel<br>Lanes <sup>1,2</sup>                                                      | Turn Lanes <sup>1,2</sup>                                       | Shy<br>Distance <sup>1,3</sup>                | Median <sup>1,2</sup>                                   | Bicycle<br>Facility <sup>1,2,5</sup>                                                   | Sidewalk                                                                                  | Target Pedestrian Crossing Spacing Range (feet) <sup>6</sup> | On-street<br>parking <sup>1</sup>                      |
|---------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| Rural<br>Arterials/<br>Collectors/<br>Local Route | 45-70<br>mph                                     | Start with standard                                                                 | Start with standard                                             | When<br>applicable,<br>Start with<br>standard | Start with standard                                     | Start with standard                                                                    | When<br>applicable,<br>Start with<br>standard                                             | When<br>applicable,<br>Start with<br>standard                | When<br>applicable,<br>Start with<br>standard          |
| Traditional<br>Downtown/<br>CBD                   | 20-25                                            | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Minimize<br>additional<br>crossing width<br>at<br>intersections | Minimal                                       | Optional,<br>use as<br>pedestrian<br>crossing<br>refuge | Start with<br>separated<br>bicycle facility                                            | Ample space<br>for sidewalk<br>activity (e.g.,<br>sidewalk cafes,<br>transit<br>shelters) | 250-550<br>(1-2<br>blocks)                                   | Include on-<br>street<br>parking if<br>possible        |
| Urban Mix                                         | 25-30                                            | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Minimize<br>additional<br>crossing width<br>at<br>intersections | Minimal                                       | Optional,<br>use as<br>pedestrian<br>crossing<br>refuge | Start with<br>separated<br>bicycle facility,<br>consider<br>roadway<br>characteristics | Ample space<br>for sidewalk<br>activity (e.g.,<br>sidewalk cafes,<br>transit<br>shelters) | 250-550<br>(1-2<br>blocks)                                   | Consider<br>on-street<br>parking if<br>space<br>allows |

Figure 1.18 Continued

| Context                 | Typical<br>Speed<br>Ranges<br>(MPH) <sup>4</sup> | Travel<br>Lanes <sup>1,2</sup>                                                      | Turn<br>Lanes <sup>1,2</sup>                                                     | Shy<br>Distance <sup>1,3</sup>                               | Median <sup>1,2</sup>                                | Bicycle<br>Facility <sup>1,2,5</sup>                                                   | Sidewalk                                                                             | Target<br>Pedestrian<br>Crossing<br>Spacing<br>Range<br>(feet) <sup>6</sup> | On-street<br>parking <sup>1</sup>                                   |
|-------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|
| Commercial<br>Corridor  | 30-35                                            | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Balance<br>crossing<br>width and<br>operations<br>depending<br>on desired<br>use | Consider<br>roadway<br>characteristics,<br>desired<br>speeds | Typically used for safety/ operational management    | Start with<br>separated<br>bicycle facility,<br>consider<br>roadway<br>characteristics | Continuous<br>and<br>buffered<br>sidewalks,<br>with space<br>for transit<br>stations | 500-1,000                                                                   | Not<br>Applicable                                                   |
| Residential<br>Corridor | 30-35                                            | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Balance<br>crossing<br>width and<br>operations<br>depending<br>on desired<br>use | Consider<br>roadway<br>characteristics,<br>desired<br>speeds | Optional, use<br>as pedestrian<br>crossing<br>refuge | Start with<br>separated<br>bicycle facility,<br>consider<br>roadway<br>characteristics | Continuous<br>and<br>buffered<br>sidewalks                                           | 500-1,000                                                                   | Generally<br>Not<br>Applicable,<br>Consider<br>roadway<br>character |
| Suburban<br>Fringe      | 35-40                                            | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Balance<br>crossing<br>width and<br>operations<br>depending<br>on desired<br>use | Consider<br>roadway<br>characteristics,<br>desired<br>speeds | Optional, use<br>as pedestrian<br>crossing<br>refuge | Start with<br>separated<br>bicycle facility,<br>consider<br>roadway<br>characteristics | Continuous<br>and<br>buffered<br>sidewalks                                           | 750-1,500                                                                   | Not typical                                                         |

Figure 1.18 Continued

| Context            | Typical<br>Speed<br>Ranges<br>(MPH) <sup>4</sup> | Travel<br>Lanes <sup>1,2</sup>                                                      | Turn<br>Lanes <sup>1,2</sup>                                                     | Shy<br>Distance <sup>1,3</sup>                               | Median <sup>1,2</sup>                                   | Bicycle<br>Facility <sup>1,2,5</sup>                                                   | Sidewalk                                                                | Target Pedestrian Crossing Spacing Range (feet) <sup>6</sup> | On-street<br>parking <sup>1</sup>                 |
|--------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| Rural<br>Community | 25 - 35                                          | Evaluate, start<br>with preferred<br>widths, wider<br>by roadway<br>characteristics | Balance<br>crossing<br>width and<br>operations<br>depending<br>on desired<br>use | Consider<br>roadway<br>characteristics,<br>desired<br>speeds | Optional,<br>use as<br>pedestrian<br>crossing<br>refuge | Start with<br>separated<br>bicycle facility,<br>consider<br>roadway<br>characteristics | Continuous<br>and<br>buffered<br>sidewalks,<br>sized for<br>desired use | 250-750                                                      | Consider on-<br>street parking<br>if space allows |

<sup>&</sup>lt;sup>1</sup>Design decisions consider the presence and volumes of freight and transit activity. Follow the Reduction Review Route policy and process.

Figure 1.18 Continued

<sup>&</sup>lt;sup>2</sup> Design decisions must consider the existing level of access management and/or the driveway density.

<sup>&</sup>lt;sup>3</sup> Shy distance: the lateral distance from the edge of the travel way beyond which a roadside object will not be perceived as an immediate hazard by the typical driver.

 $<sup>^4</sup>$  Section 207.10, (Target Speed) provides the approach and strategies associated with target speed.

<sup>&</sup>lt;sup>5</sup> Section 306 and Part 900 provide guidance to determine appropriate bicycle facility selection.

<sup>&</sup>lt;sup>6</sup> Section 307 and Part 800 provide guidance for pedestrian crossing locations and pedestrian facilities.

**Design controls** – Figure 1.19 provides design speed guidance based on functional classification and context. For ODOT's urban contexts, the concept of target speed is utilized. Desirably, in urban areas, the target speed, posted speed, and design speed should be the same and a roadway should encourage an actual operating speed equal to the target speed. ODOT recommends specific design treatments to encourage operations at the target speed when the target speed is less than the posted speed and design speed.

| Urban Context               | Target Speed<br>(MPH) | Design Treatments                                                                                                                                                                                                                                            |
|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traditional<br>Downtown/CBD | 20-25                 | Roundabouts, lane narrowing, speed feedback signs, on-street parking <sup>1</sup> , street trees <sup>2</sup> , median islands, curb extensions, chicanes <sup>3</sup> , textured surface, coordinated signal timing, speed tables <sup>3</sup> , road diets |
| Urban Mix                   | 25-30                 | Roundabouts, lane narrowing, speed feedback signs, on-street parking <sup>1</sup> , street trees <sup>2</sup> , median islands, curb extensions, chicanes <sup>3</sup> , textured surface, coordinated signal timing, road diets                             |
| Commercial Corridor         | 30-35                 | Roundabout, lane narrowing, speed feedback signs, landscaped median Islands, coordinated signal timing, road diets                                                                                                                                           |
| Residential Corridor        | 30-35                 | Roundabout, lane narrowing, speed feedback signs, landscaped median Islands, coordinated signal timing, road diets                                                                                                                                           |
| Suburban Fringe*            | 35-40                 | Roundabouts, transverse pavement markings, lane narrowing, speed feedback signs, road diets, entry treatments                                                                                                                                                |
| Rural Community             | 25-35                 | Roundabouts, lane narrowing, speed feedback signs, on-street parking <sup>1</sup> , street trees <sup>2</sup> , median islands, curb extensions, chicanes <sup>3</sup> , speed tables <sup>3</sup> , road diets, entry treatment                             |

Figure 1.19 Oregon DOT Design Speed Selection

Source: Oregon DOT Highway Design Manual (2023). See Figure 1.20 for footnotes.

ODOT separates a project typical section into areas based on intended function. Those areas and their descriptions are as follows:

- Land use realm Adjacent to and outside of the roadway right of way
- Pedestrian realm Includes sidewalk and buffer zone
- Transition realm Area between the curb and sidewalk
- Travel way realm Travel lanes, turn lanes, etc., used for vehicular travel

The ODOT Highway Design Manual provides general guidance for the consideration of various improvements for each realm. Figure 1.20 is an example of guidance for the realms.

| Realm                            | Design Element                                                                            | Width      |
|----------------------------------|-------------------------------------------------------------------------------------------|------------|
|                                  | Frontage Zone                                                                             | 4' to 2'   |
| Pedestrian                       | Pedestrian Zone                                                                           | 10' to 8'  |
| Realm                            | Buffer/Furniture Zone                                                                     | 6' to 0'   |
|                                  | Curb/Gutter <sup>1</sup>                                                                  | 2' to 0.5' |
|                                  | Separated Bicycle Lane Width (Curb Constrained Facility) <sup>2</sup>                     | 8' to 7'   |
|                                  | On-Street Bicycle Lane Width (not including Buffer) <sup>2</sup>                          | 6' to 5'   |
| Transition<br>Realm <sup>6</sup> | Bicycle/Street Buffer <sup>2</sup>                                                        | 3' to 2'   |
| realin                           | Right Side Shoulder (if travel lane directly adjacent to curb) <sup>3,5</sup>             | 2' to 0'   |
|                                  | On-Street Parking                                                                         | 7' to 8'   |
|                                  | Travel Lane <sup>4,5</sup>                                                                | 11′        |
|                                  | Right Turn Lane (including Shy Distances)                                                 | 11' to 12' |
|                                  | Left Turn Lane <sup>4</sup>                                                               | 11′        |
| Travelway                        | Left Side / Right Side Shy Distance                                                       | 1' to 0'   |
| Realm <sup>5</sup>               | Two-Way-Left-Turn Lane                                                                    | 11' to 12' |
|                                  | Raised Median – No Turn Lane (including Shy Distances)                                    | 8' to 11'  |
|                                  | Left-Turn Lane with Raised Curb Median/separator (includes 16" separator & Shy Distances) | 12' to 14' |

- <sup>1</sup> Where curb and gutter is used and on-street parking is provided or travel lane is directly adjacent to curb, gutter pan should be included in shoulder/shy or on-street parking measurement. Gutter pan should be included in travel lane, bicycle lane or turn lane measurements only where a smooth transition from gutter pan to roadway surface is provided.
- <sup>2</sup> Refer to Bicycle Facility Selection process (Section 306 and Part 900) to determine appropriate bicycle facility type. Consider raised bicycle lanes where appropriate. Except for right-turn channelizations, 5-foot on-street bicycle lane is allowed only with a street buffer. When a raised buffer is used to protect the bicycle lane, the width should be 6′ if parking is adjacent or if signs or other features are anticipated.
- <sup>3</sup> Overall shoulder width depends on other section elements. Elimination of shoulder width/lateral offset should only be considered in constrained locations and needs to be balanced with all cross-section and drainage needs. If the travel lane is next to a curb with a gutter (e.g., a 2-foot curb zone), the gutter typically serves as the right-side shoulder. A wider shoulder may be needed to accommodate drainage based on hydrological analysis or other specific needs.
- <sup>4</sup> 11-foot lane width preferred; 12-foot lane optional, where needed; 10-foot lane width requires a formal design exception from the State Roadway Engineer. On freight- or transit-oriented streets, a 10-foot travel lane is generally not appropriate without a buffer zone or shoulder.
- <sup>5</sup> On Reduction Review Routes, comply with ODOT Freight Mobility Policies, ORS 366.215 and OAR 731-012. Element dimensions may need to be modified.
- <sup>6</sup> When painted buffers or vertical elements like curbing or flexible delineators are proposed to provide separation in a bicycle facility design, evaluate long-term maintenance needs and provide a solution to identified problems.

**Figure 1.20** Oregon DOT Cross Section Realms Source: Oregon DOT *Highway Design Manual* (2023)

ODOT provides detailed guidance for the design of elements pertinent to each realm for each context. Figure 1.21 is an example of guidance for all three realms or zones for the Pedestrian Realm.

| Design<br>Element  | Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frontage<br>Zone   | <ul> <li>The frontage zone is located between the pedestrian zone and the right-of-way.</li> <li>Depending on the available space, this zone may include items such as sandwich boards (if sidewalk locally owned), bicycle racks, and benches.</li> <li>This area is used by window shoppers and is where people enter and exit buildings.</li> <li>The width of the frontage zone is needed to prevent adjacent property owners from installing a fence at the back of walk, or for maintenance personnel to make sidewalk repairs.</li> <li>In a Traditional Downtown/CBD context, additional width is needed to provide space for merchandise and sidewalk cafés (if sidewalk is locally owned and permitted), and opening doors (typically needs 4 feet).</li> </ul> |
| Pedestrian<br>Zone | What is the travel speed next to the sidewalk?  Is the street a high priority for pedestrian activity, based on community input and local jurisdiction planning efforts?  If so, prioritize serving pedestrians with a high-quality facility (width and buffer).  What level of pedestrian activity is occurring today? Is there a desire or potential for higher pedestrian activity?  Select sidewalk widths with sufficient space to accommodate anticipated/desired level of activity.  What is the target pedestrian level-of-traffic-stress for this location?  A pedestrian accessible route is provided in the pedestrian zone.                                                                                                                                   |
| Buffer<br>Zone     | People walking need to be buffered from motor vehicle movement. Ensure that a buffer is provided within the pedestrian realm or the transition realm, or that generous sidewalk width provides sufficient space for buffering if sidewalk is curb-tight.  Permitted items such as sandwich boards, bicycle racks, and other street furniture are typically placed in this zone.  Additional design elements to consider in sidewalk design include:  Pedestrian scale lighting  Utility pole placement  Do transit stops need extra buffer?  Where vehicle speeds or volumes are high, sufficient buffer is important.  Downtown area may have parked cars that can serve as a buffer.  Suburban areas have no parking but may include a planter strip.                   |

**Figure 1.21** Oregon DOT Design Element Considerations within the Pedestrian Realm Source: Oregon *Highway Design Manual* (2023)

Finally, ODOT developed an Urban Design Concurrence document (Appendix C) similar to KYTC's DES that serves as a tool to:

- Document selection of the proposed context for a project,
- Document the extent to which each mode of travel shall be accommodated by a project, and
- Document dimensions for specific proposed design elements.

### 1.3.5 Maryland Department of Transportation

The Maryland Department of Transportation (MDOT) State Highway Administration (SHA) published *Context Driven Access & Mobility for All Users* in 2020. It is a "planning and design resource offering practitioners guidelines centered on establishing safe and effective multimodal transportation systems". MDOT SHA emphasizes that "land use context should be a primary factor in the design of a transportation project".

In the guide, MDOT identifies the following six contexts along with their key characteristics:

**Urban Core** – This context is the typical downtown or central business district, defined by diversity of uses including multi-family residential, office, retail, entertainment, civic, and cultural facilities. Development is dense with high-rise structures with minimal setbacks and off-street parking. This land use pattern generates a high proportion of walking, transit, and bicycle trips.

**Urban Center** – Similar to Urban Core, this context includes diverse uses such as multi-family residential, office, retail, entertainment, civic, and cultural facilities. Development is dense with mid-rise structures with minimal setbacks and off-street parking. This land use pattern generates a moderate to high volume of non-vehicular trips.

**Traditional Town Center** – Development in this context is less dense than Urban Core or Urban Center and characterized by a high diversity of uses including residential, office, retail, civic, and cultural facilities. Mid to low-rise buildings with minimal setbacks are typical with on-street parking often provided.

**Suburban Activity Center** – This context is typically located outside Urban Centers and along major arterials. Land use includes both multi-family and single-family residential, office and retail. Development density is less than Urban Core, Urban Center, or Traditional Town Center. Low-rise structures with varying setbacks are typical along with offstreet parking between the structures and road. This context usually serves a variety of trip types.

**Suburban** – Diversity of use is considered moderate to low in this context and may include single-family residential development. Office parks and small commercial strip retail may be scattered throughout along with neighborhood-level civic and cultural facilities. Developments are typically larger and serve a single use which discourages non-vehicular trips. Buildings are primarily oriented toward off-street parking.

**Rural** – Development density is lowest in this context. Agricultural use and green spaces are common. Some residential clusters with large lot sizes may exist. Trip distances are long, discouraging non-vehicular travel.

While the goals are the same, MDOT's approach to context classification and associated design elements is very different than other DOTs. The MDOT SHA is less prescriptive than other DOTs in its application of context to the design process. Their context guide "provides a process for balancing the needs of Maryland's transportation system as a whole with the accessibility, mobility, and safety needs of individual communities". Maryland approaches context classification through the lens of balancing access and mobility and improving safety, specifically stating this should be accomplished by "countering the different types of crash risks that occur in different context zones". To that end, the MDOT SHA Context Driven Toolkit (2020) identifies potential countermeasures and defines which are typically appropriate for a given context. The toolkit is included as Appendix D.

For each of the six contexts, MDOT developed a framework for a typical scenario. Each framework defines the balance between access and mobility that should be necessary. Each framework also provides information regarding potential countermeasures that are applicable to each context and typical areas of need that represent common

purpose and need elements in each context. Figure 1.22 depicts this framework for MDOT's Traditional Town Center context. See Appendix E for the remaining five context frameworks.



Figure 1.22 Maryland Traditional Town Center Context Framework

Finally, MDOT has developed an ArcGIS platform that:

- Provides mapping of the existing contexts for the entire state to be used as a starting point for project development, and
- Provides interactive mapping for the public to identify locations where walking and biking conditions are challenging as well as where opportunities for both walking and biking exist, but facilities are not provided.

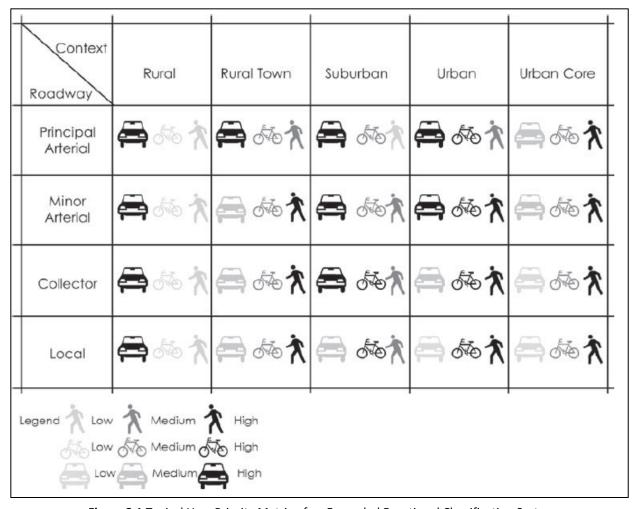
# 1.3.6 Tennessee Department of Transportation

The Tennessee Department of Transportation (TDOT) published its *Multimodal Project Scoping Manual* (2018) to require the consideration of safe access and mobility for all roadway users. It utilizes three primary land use contexts — rural, suburban, and urban — but provides additional descriptions when necessary for rural town and urban core contexts. The manual states that the designer should:

- Consider existing conditions and future plans for the area by reviewing planning and zoning documents. Project travel demand for all modes in the project limits should also be evaluated.
- Acknowledge design characteristics may vary in transition zones between contexts.
- Identify current and future levels of pedestrian, bicycle, and transit activity.

TDOT's Highway System Access Manual (2021) references the contexts in Stamatiadis et al. (2018) and includes varying driveway spacing by suburban, urban, and urban core context as well as functional classification. Minimum spacing of median openings varies by context and functional classification.

# **Chapter 2 National Guidance and Research**


# 2.1 NCHRP 855 – An Expanded Functional Classification System for Highways and Streets

*NCHRP 855 – An Expanded Functional Classification System for Highways and Streets* formally introduced context classification on a national level. The intent of an expanded functional classification system is to provide a framework for practitioners to design and construct facilities that match the context of their environment and that consider the needs of all appropriate users for a particular context.

Context is generally defined by density of development, type of land use, and building setback. *NCHRP 855* identifies five contexts.

- **Rural** Areas with the lowest density, few houses or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- **Rural Town** Areas with low density but diverse land uses with a commercial main street character, potential for on-street parking and sidewalks, and small setbacks.
- **Suburban** Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks.
- **Urban** Areas with high density, mixed land uses and prominent destinations, potential for some on-street parking and sidewalks, and mixed setbacks.
- **Urban Core** Areas with the highest density, mixed land uses within and among predominantly high-rise structures, and small setbacks.

These five contexts typically represent unique land use patterns that require different geometric design practices in terms of operating speeds, mobility and access demands, and facility user groups. Combining these contexts with traditional functional classes that identify the intended function of a roadway yields a matrix of user priorities for each combination. Potential users include motor vehicles, bicyclists, and pedestrians. Figure 2.1 depicts typical user priority in an expanded functional classification system.



**Figure 2.1** Typical User Priority Matrix of an Expanded Functional Classification System Source: Stamatiadis et al. (2018)

**Motor vehicle accommodation** – Target operating speed and the balance between mobility and access define the context-roadway interaction for drivers. Figure 2.2 summarizes those interactions across the same matrix. Note: High is >45 mph, Medium is 30-45 mph, Low is <30 mph.

| Context               | Rural                              | Rural Town                           | Suburban                             | Urban                                  | Urban Core                           |
|-----------------------|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|
| Principal<br>Arterial | H speed<br>H mobility-<br>L access | L/M speed<br>M mobility-<br>H access | M/H speed<br>M mobility-<br>M access | L/M speed<br>M mobility-<br>M access   | L speed<br>M mobility-<br>M access   |
| Minor<br>Arterial     | H speed<br>H mobility-<br>M access | L/M speed<br>M mobility-<br>H access | M speed<br>M mobility-<br>M access   | L/M speed<br>M mobility-<br>M/H access | L speed<br>M mobility-<br>M/H access |
| Collector             | M speed<br>M mobility-<br>M access | L speed<br>M mobility-<br>H access   | M speed<br>M mobility-<br>H access   | L speed<br>M mobility-<br>H access     | L speed<br>M mobility-<br>H access   |
| Local                 | M speed<br>M mobility-<br>M access | L speed<br>M mobility-<br>H access   | L speed<br>L mobility-<br>H access   | L speed<br>L mobility-<br>H access     | L speed<br>L mobility-<br>H access   |

H = high, M = medium, L = low

**Figure 2.2** Expanded Functional Classification System Driver Interaction Matrix Source: Stamatiadis et al. (2018)

In general, speed decreases from left to right and top to bottom across the matrix. Speeds are typically higher in rural areas and along arterials than in urban areas and along local roads. The need for mobility generally decreases from left to right and top to bottom and is higher in rural areas and along arterials than in urban areas and along local roads. The need for access provision typically increases from left to right and top to bottom as rural arterials are generally less accessible than local, urban routes.

**Bicyclist accommodation** – NCHRP 855 provides general guidance regarding the treatment of bicyclists within an expanded functional classification system. The primary consideration for bicycle facilities is the level of separation between them and vehicular traffic. Level of separation depends on the amount of bicycle traffic on the facility, the speed of vehicles on the adjacent roadway, and the volume of traffic on the adjacent roadway. In general, these facilities can be categorized as follows:

- High separation—provides physical separation from traffic in the form of a physical barrier or lateral buffer
- Medium separation—provides a dedicated space adjacent to motorized traffic
- Low/No separation—provides joint-use facilities for motorized and non-motorized traffic

Potential treatments for each of these separation levels are:

- Low or no separation
  - No specific treatment for cases with rare or occasional bicycle traffic
  - Sharrows when a bicycle lane is not feasible. Can be used with narrow lanes, ensuring that a driver cannot pass a cyclist except very slowly
- Medium separation
  - o Bike lanes for separating bicycles from vehicular traffic
- High separation treatments

- o Buffered bike lane/cycle track for cases with high bicycle volume
- Multi-use path for cases with high bicycle and pedestrian traffic

To further signify the priority and network importance of bicycle facilities, NCHRP 855 identifies three distinct classes of bicycle facilities. A citywide connector (CC) connects the city or major activity centers and can be several miles in length. A neighborhood connector (NC) connects neighborhoods or other smaller areas and connects those areas to higher-order facilities or local activity centers. A local connector (LC) provides internal connections of short lengths within neighborhoods.

| 1                     | 1                                                          | ı                                                          | ı                                                          | ı                                                            | 1 1                                                        |
|-----------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| Context               | Rural                                                      | Rural Town                                                 | Suburban                                                   | Urban                                                        | Urban Core                                                 |
| Principal<br>Arterial | LC: L separation;<br>NC: M separation;<br>CC: H separation |                                                            | NC: M separation;                                          | LC: L separation;<br>NC: M/H separation;<br>CC: H separation | LC: L separation;<br>NC: M separation;<br>CC: M separation |
| Minor<br>Arterial     | LC: L separation;<br>NC: M separation;<br>CC: H separation |                                                            | NC: M separation;                                          | LC: L separation;<br>NC: M separation;<br>CC: M separation   | LC: L separation;<br>NC: M separation;<br>CC: M separation |
| Collector             | LC: L separation;<br>NC: M separation;<br>CC: M separation | NC: L separation;                                          | NC: M separation;                                          | LC: L separation;<br>NC: M separation;<br>CC: M separation   | LC: L separation;<br>NC: L separation;<br>CC: M separation |
| Local                 | LC: L separation;<br>NC: L separation;<br>CC: L separation   | LC: L separation;<br>NC: L separation;<br>CC: L separation |
| 1                     |                                                            |                                                            |                                                            |                                                              |                                                            |

Bicycle facility class: CC = citywide connector, NC = neighborhood connector, LC = local connector Separation level: <math>H = high, M = medium, L = low

**Figure 2.3** Bicyclist Interaction Matrix for an Expanded Functional Classification System Source: Stamatiadis et al. (2018)

Figure 2.3 depicts the bicyclist interaction matrix for an expanded functional classification system based on roadway type, context, and bicycle facility class. In general, the need to accommodate bicyclists and the level of facility to potentially be utilized increases from left to right and top to bottom.

**Pedestrian accommodation** – NCHRP 855 provides general guidance regarding the treatment of pedestrians within an expanded functional classification system. Pedestrian facilities can generally be categorized based on and in order of increasing width as follows:

- Minimum width based on ADA requirements,
- Wide width additional width beyond minimum, and
- Enhanced width additional width to accommodate groups of people and/or street furniture.

The necessary width to accommodate pedestrians generally relies upon the amount of pedestrian traffic, the speed of vehicles on the adjacent roadway and width of separation, and the volume of traffic on the adjacent roadway.

| 1                     | ı                                        | I                                     | l                                        | l                                     | 1 1                       |
|-----------------------|------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|---------------------------|
| Context               | Rural                                    | Rural Town                            | Suburban                                 | Urban                                 | Urban Core                |
| Principal<br>Arterial | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P3: Wide;<br>P4: Enhanced |
| Minor<br>Arterial     | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P3: Wide;<br>P4: Enhanced |
| Collector             | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P3: Wide;<br>P4: Enhanced |
| Local                 | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P1: *; P2: Min;<br>P3: Wide;<br>P4: Wide | P2: Min;<br>P3: Wide;<br>P4: Enhanced | P3: Wide;<br>P4: Enhanced |
| _                     |                                          |                                       |                                          |                                       |                           |

Pedestrian traffic levels: P1 = rare/occasional, P2 = low, P3 = medium, P4 = high

Pedestrian facility width: \* = site specific, Min = minimum, Wide = greater than minimum, Enhanced = wide for large congregating pedestrian groups

Pedestrian facility separation should be considered in conjunction with driver target speeds.

**Figure 2.4** Pedestrian Interaction Matrix for an Expanded Functional Classification System Source: Stamatiadis et al. (2018)

The research report identified four classifications of pedestrian volume. These include: P1 - rare or occasional volume, P2 - low volume measured in pedestrians per day, P3 - medium volume measured in pedestrians per hour, and P4 - high volume measured in pedestrians per hour over a short period of time. Each of these volumes will require a different facility based on the context—roadway interaction. Figure 2.4 depicts the pedestrian interaction matrix for an expanded functional classification system based on roadway type, context, and pedestrian classification. In general, the need to accommodate pedestrians and the width of facility to potentially be utilized increases from left to right.

**Transit and freight** – NCHRP 855 recognizes that transit and freight must be considered along with other users. Neither may require additional or improved facilities beyond those already being provided by a project. When transit or freight routes are involved, a designer should consider the impacts each may have on facilities provided for bicyclists and pedestrians. Facilities that accommodate bicyclists and pedestrians may be somewhat different when transit or freight routes exist.

# 2.2 AASHTO's A Policy on Geometric Design of Highways and Streets 7th Edition

This most recently published edition of the Green Book incorporates the research from NCHRP 855 and introduces the five context classifications from the research report as elements of the geometric design process. The policy supports flexible design, encouraging project teams to focus on project-specific conditions and roadway performance rather than meeting specific design criteria. It is stressed that the "functional and context classes provide a classification framework that designers can use to identify and organize many of the needs for specific transportation modes that should be addressed in projects. This framework provides a tool that can be used by the designer to organize information about user needs for various transportation modes and seek an appropriate balance among those needs."

Green Book 7 utilizes target speed as the highest speed at which vehicles should operate on a roadway in a specific context. The target speed should be consistent with the level of multimodal activity along the roadway and should provide a balance of mobility for motor vehicles and a desirable environment for pedestrians, bicyclists, and transit users. Target speed is intended to be the posted limit. As stated previously, in some cases, the posted speed may be higher than the target speed and the general approach should be to develop a design that encourages an operating speed that equals the target speed.

General guidelines for design speed are provided for different functional class routes in different contexts and are similar to those discussed previously in this report. *Green Book 7* also includes guidance on design level of service (Table 2.1) and grades for collectors in urban and urban core contexts (Table 2.2)..

Table 2.1 Guidelines for Selection of Design Level of Service

| Functional Class | Customary Level of Service for Specified<br>Combination of Context and Terrain Type |               |                      |                                                |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------|---------------|----------------------|------------------------------------------------|--|--|--|--|
|                  | Rural Level                                                                         | Rural Rolling | Rural<br>Mountainous | Suburban, Urban, Urban<br>Core, and Rural Town |  |  |  |  |
| Freeway          | В                                                                                   | В             | С                    | C or D                                         |  |  |  |  |
| Arterial         | В                                                                                   | В             | С                    | C or D                                         |  |  |  |  |
| Collector        | С                                                                                   | С             | D                    | D                                              |  |  |  |  |
| Local            | D                                                                                   | D             | D                    | D                                              |  |  |  |  |

Source: AASHTO A Policy on Geometric Design of Highways and Streets (7<sup>th</sup> Edition)

Table 2.2 Maximum Grades for Collectors in Urban and Urban Core Contexts

|                    |    |       | U          | .S. C | Custo | omai            | у  |        |    | ľ                                                     |    |    |    | M     | etric |    |    |     |
|--------------------|----|-------|------------|-------|-------|-----------------|----|--------|----|-------------------------------------------------------|----|----|----|-------|-------|----|----|-----|
| Type of<br>Terrain | M  | laxin | num<br>Des |       |       | 6) for<br>ed (m |    | ecifie | ed | Maximum Grade (%) for Specifie<br>Design Speed (km/h) |    |    |    | ified |       |    |    |     |
|                    | 20 | 25    | 30         | 35    | 40    | 45              | 50 | 55     | 60 | Ι.                                                    | 30 | 40 | 50 | 60    | 70    | 80 | 90 | 100 |
| Level              | 9  | 9     | 9          | 9     | 9     | 8               | 7  | 7      | 6  | Ι΄                                                    | 9  | 9  | 9  | 9     | 8     | 7  | 7  | 6   |
| Rolling            | 12 | 12    | 11         | 10    | 10    | 9               | 8  | 8      | 7  | Ι.                                                    | 12 | 12 | 11 | 10    | 9     | 8  | 8  | 7   |
| Mountainous        | 14 | 13    | 12         | 12    | 12    | 11              | 10 | 10     | 9  | Ι΄                                                    | 14 | 13 | 12 | 12    | 11    | 10 | 10 | 9   |

Source: AASHTO A Policy on Geometric Design of Highways and Streets (7<sup>th</sup> Edition)

# 2.3 NCHRP 1022 - Context Classification: A Guide

Published in 2022, the purpose of NCHRP 1022 is to provide a guide to assist state, regional, and local planners in identifying the appropriate context classification or classifications for an area or transportation project. The guide describes the context classification framework proposed in NCHRP Research Report 855: An Expanded Functional

Classification System for Highways and Streets and included in Green Book 7. It includes an additional context, Special Context, which may be applied to unique environments that do not fit within the five defined contexts. It also includes expected movements based on an area's current and future context and methods and measures used to identify users.

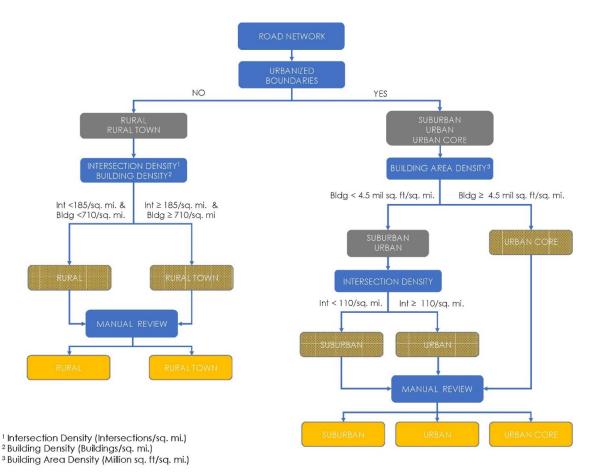
NCHRP 1022 defines the term *transportation expectations*. Transportation expectations describe how users are expected to travel within an area with a certain land use and development pattern. Project data is used to (1) define fundamental project features, (2) verify that projects are scoped to address all intended outcomes, and (3) confirm that all user needs are addressed. The following questions are posed for each expectation:

- Users/Vehicles. What is the anticipated range of users or vehicles in the context?
- **Movement (mobility).** What is the ease of movement for each mode?
- **Permeability (access).** How accessible are other elements of the transportation network and adjacent land use to each mode?
- Network. Are alternative routes available for each mode within the transportation system?
- **Speed.** What is the target vehicle speed of the roadway?

Table 2.3 summarizes Transportation Expectations for each context.

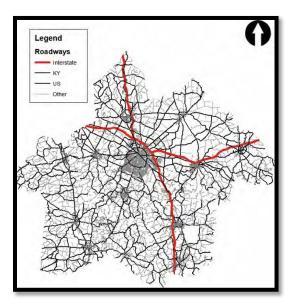
**Table 2.3** Transportation Expectations by Context

| Transportation                  |                                                                                                                                                                |                                                                                                                                                                                                                    | Context                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expectations                    | Rural                                                                                                                                                          | Rural Town                                                                                                                                                                                                         | Suburban                                                                                                                                                                                                                                                                                                                     | Urban                                                                                                                                                                                                                                                                   | Urban Core                                                                                                                                                                                                                                                   |
| Users/Vehicles                  | High frequency of motor vehicles/freight     Limited or no pedestrian activity     Potential for recreational cyclists     Potential for agricultural vehicles | Regional vehicular/freight traffic     Moderate pedestrian activity     Potential for some bicyclists                                                                                                              | Regional traffic on primary roadways mixed with local vehicular traffic and transit Low to moderate pedestrian activity, which may be concentrated around commercial areas and/or transit Increased potential for recreational walking/running in residential areas Increased potential for recreational/commuter bicyclists | Moderate to high pedestrian activity     High potential for commuter bicyclists     High potential for transit interaction     Primarily local users                                                                                                                    | High pedestrian activity with congregation and pedestrian activity zones     High potential for commuter bicyclists     High transit presence     High potential for micromobility     Primarily local traffic                                               |
| Movement                        | High desired movement<br>(primarily for vehicles) with high<br>quality of service     Minimal disruptions limited to<br>peak times of day and/or<br>seasons    | Moderate quality of service and slower traffic     Delays acceptable to local traffic     High quality of service for non-motorized users due to street-oriented development patterns                              | Moderate to low vehicular quality of service during peak periods     Lower movement for non-motorized users due to higher vehicular speeds and longer travel distances                                                                                                                                                       | Lower vehicular quality of<br>service and slower travel speeds<br>through majority of the day     Increased movement for non-<br>motorized users due to<br>increased activity densities and<br>crossing opportunities                                                   | Low vehicular quality of service<br>and low travel speeds through<br>most periods of the day     High mobility for non-motorized<br>and micromobility users due to<br>increased density, high crossing<br>potential, and pedestrian-<br>oriented development |
| Permeability                    | Direct vehicular access to land uses     Lack of opportunities for pedestrian access     Minimal crossing opportunities for all users                          | High vehicular, bicyclist, and pedestrian access opportunities     Direct pedestrian access to land uses     Vehicular and bicyclist access may be provided on adjacent roadways within the network                | Low to moderate access opportunities for all users     Primarily vehicle-oriented access with opportunities for localized pedestrian-oriented access                                                                                                                                                                         | High access opportunities for<br>most users (vehicles, bicyclists,<br>and pedestrians)     Access for freight movement<br>may be restricted                                                                                                                             | High access opportunities for<br>non-motorized and micro-<br>mobility users     Street-oriented businesses<br>increase access for non-<br>motorized users, while limited<br>parking areas may decrease<br>access for motorized users                         |
| Network                         | No redundant roadway network     May have cross streets/ intersections accessing dispersed locations                                                           | Expanded street network within a limited area serving immediate land uses     May include cross streets accessing dispersed areas in surrounding rural area(s)     Through traffic concentrated on primary roadway | Limited supporting roadway network Parallel streets may be present but disjointed Alternative routes between destinations may exist but likely on different roadway types Large intersection spacing (~1/2 mile)                                                                                                             | High level of supporting roadway network with parallel and cross streets     Network supports localized area, but may be disjointed due to natural/built boundaries     Alternative routes between destinations exist     Regional traffic may have bypass alternatives | Cohesive and dense surrounding street network with multiple parallel and cross streets Multiple alternative routes exist on similar roadway types Regional traffic may have bypass alternative                                                               |
| Target Vehicular<br>Speed (mph) | 35+                                                                                                                                                            | 25-35                                                                                                                                                                                                              | 30-45                                                                                                                                                                                                                                                                                                                        | 20-35                                                                                                                                                                                                                                                                   | ≤25                                                                                                                                                                                                                                                          |


Source: Stamatiadis et al. (2022)

NCHRP 1022 discusses three levels of applying context classification.

- **Statewide**. Using national or statewide datasets (e.g., U.S Census data). Information is reviewed or refined at the project level.
- **Regional.** Evaluation by a local or regional agency using data that may be available at a regional level. It is typically reviewed and refined at the project level.
- **Project level.** The most detailed evaluation. Uses local data sources and remotely sensed data or windshield surveys. Project-level evaluations serve as the basis for applying the forthcoming *Green Book 8's* planning and design guidance.


The report notes that context classification and transportation expectations were developed with a focus on major collectors and arterials. Functional classification (sometimes referred to as roadway or facility type) may refine a facility's final transportation expectation. During the project-level context review, practitioners must revisit operational speeds based on the functional classification or facility type.

A case study is included with step-by-step instructions for an automated context classification on a statewide level using U.S. Census data, building density, intersection density, and building area density. Figure 2.5 depicts the process.



**Figure 2.5** Automated Context Classification Approach – Statewide Level Source: Stamatiadis et al. (2022)

The case study details the application of a GIS-based context classification at the regional level. The TIGER/Line Roadway Network data (i.e. readily available roadway network GIS data) for KYTC District 7 was used to test the methodology and determine context measures that could be utilized to automate context classification. The TIGER/Line Roadway Network data was separated into urbanized contexts (Suburban, Urban, Urban Core) and rural contexts (Rural, Rural Town) based on U.S. Census Urbanized Area and Urban Cluster boundaries.



**Figure 2.6** KYTC District 7 Roadway Network Source: Stamatiadis et al. (2022)

ArcGIS was used to calculate intersection density, building density, building area density, employment density, population density, block length, street density, building setback, and block perimeter for roadway segments of varying lengths and buffer widths. Table 2.4 shows a summary of the data sources used for the analysis.

Table 2.4 Data Sources Used for Automated Context Classification

| Measure                           | Data Source                                     |
|-----------------------------------|-------------------------------------------------|
| Building Density                  | Microsoft Maps U.S. Building Footprint database |
| Building Area Density             | Microsoft Maps U.S. Building Footprint database |
| Intersection Density Block Length | TIGER/Line Street Network                       |

Source: Stamatiadis et al. (2022)

Each measure was tested to determine how well context was identified, resulting in the thresholds in Table 2.5.

**Table 2.5** Context Classification Thresholds

| Urbanized Areas     |                            |                             |  |  |  |  |  |  |
|---------------------|----------------------------|-----------------------------|--|--|--|--|--|--|
| Context             | Building Area Density      | Intersection Density        |  |  |  |  |  |  |
| Urban Core          | > 5,600,000 sq. ft/sq. mi. |                             |  |  |  |  |  |  |
| Urban               | < 5,600,000 sq. ft/sq. mi. | > 110 intersections/sq. mi. |  |  |  |  |  |  |
| Suburban            | < 5,600,000 sq. ft/sq. mi. | < 110 intersections/sq. mi. |  |  |  |  |  |  |
| Non-Urbanized Areas |                            |                             |  |  |  |  |  |  |
| Context             | Building Area Density      | Intersection Density        |  |  |  |  |  |  |

| Rural Town | > 710 buildings/sq. mi.              | > 185 intersections/sq. mi. |  |  |
|------------|--------------------------------------|-----------------------------|--|--|
| Rural      | All remaining non-urbanized segments |                             |  |  |

Source: Stamatiadis et al. (2022)

Once automated context classification is complete, practitioners should refine the results through a manual review. This review can be undertaken using aerial photography, land-use data, Google Street View, and local knowledge. A manual review of the study area (with over 7,000 miles of roadway) was completed in under 3 hours by a two-person team.

### 2.4 NCHRP Web-Only Document 320 - Aligning Geometric Design with Roadway Context

NCHRP 320 is a Conduct of Research Report for NCHRP Project 15-77. The objective of NCHPR 15-77 research was to draft Part IV – Facility Design in Context of the upcoming 8<sup>th</sup> edition of the Green Book. Part IV will build upon the context classifications envisioned in NCHRP 855 and Chapter 1 of the 7<sup>th</sup> edition of the Green Book. The AASHTO Technical Committee on Geometric Design adopted the following outline to support a flexible, multimodal, performance based, and context sensitive design process.

- Part I—Introduction
  - Chapter 1 Overview
  - Chapter 2 Performance-Based Concepts
  - Chapter 3 Design Decision-Making
- Part II—Performance- Based Evaluations
  - Chapter 4 Performance Metrics
  - Chapter 5 Design Model
  - Chapter 6 Applying a Performance-Based Process Framework
- Part III—Geometric Elements and Configurations
  - Chapter 7 Design Information and Sources
  - Chapter 8 Elements of Design
  - Chapter 9 Cross-Section Elements
  - Chapter 10 Intersection Fundamentals
  - Chapter 11 Freeways and Controlled Access Fundamentals
  - Chapter 12 Interchange Fundamentals
- Part IV—Facility Design in Context
  - Chapter 13 Context and Facility Type Considerations
  - Chapter 14 Rural and Natural Areas
  - Chapter 15 Rural Towns
  - Chapter 16 Suburban Roadways
  - Chapter 17 Urban Roadways
    - Chapter 18 Urban Core Roadways
    - Chapter 19 Industrial, Warehouse, or Port Roads

While the purpose of this research project was to draft Part IV chapters, only chapter outlines were publicly available at the time this report was written. Since they are in draft form and the release of *Green Book 8* is not expected until at least 2025, we do not address them here.

### 2.5 KYTC's Highway Design Manual

In 2020, KYTC updated its *Highway Design Manual* (HDM) to correspond with the updates and changes in *Green Book 7*. The updates to the HDM included context classification as one of the design controls. It listed the following contexts to consider for geometric design:

- Rural
- Rural town
- Suburban
- Urban
- Urban Core

The HDM included context classification as one of the factors to consider when selecting a proposed design speed and typical section. Context was mentioned as a consideration for the design of clear zones. The manual also cautioned designers to be aware of transitions between areas with different contexts. The HDM referenced *Green Book 7* as a resource for more information on context classifications.

# 2.6 KYTC's Complete Streets, Roads, and Highways Policy and Manual

KYTC adopted a Complete Streets, Roads, and Highways Policy through official order in 2022. The policy lists context as one of several factors to consider when identifying accommodations for all users of the transportation network. It states that a "one size fits all" strategy based on functional roadway classification does not work. Using a Complete Streets approach should provide a flexible design based on context and need.

Discussion of context in the *Complete Streets, Roads, and Highways Manual* (CSRHM) focuses on land use (e.g., who is travelling the transportation network, where they are going and why). It refers to context zones, which generally align with the context classifications adopted by the *Green Book 7* and the current version of the HDM. The use of small town for a context zone in the CSRHM is used instead of the rural town classification described in *Green Book 7* and the HDM. The CSRHM includes Table 2.6, which describes transportation expectations by context and includes a range of target vehicular speeds for each context.

Table 2.6 Transportation Expectations by Context

|                                    | CONTEXT                                                                                                                                                        |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TRANSPORTATION EXPECTATIONS        | RURAL                                                                                                                                                          | RURAL TOWN                                                                                                                                                                                                         | SUBURBAN                                                                                                                                                                                                                                                                                                                         | URBAN                                                                                                                                                                                                                                                                       | URBAN CORE                                                                                                                                                                                                                                                                |  |  |  |  |  |
| USERS/<br>VEHICLES                 | High frequency of motor vehicles/freight     Limited or no pedestrian activity     Potential for recreational cyclists     Potential for agricultural vehicles | Regional vehicular/<br>freight traffic  Moderate pedestrian<br>activity  Potential for some<br>bicyclists                                                                                                          | Regional traffic on primary roadways mixed with local vehicular traffic and transit  Low-to-moderate pedestrian activity, which may be concentrated around commercial areas and/or transit  Increased potential for recreational walking/running in residential areas  Increased potential for recreational/ commuter bicyclists | Moderate-to-high pedestrian activity     High potential for commuter bicyclists     High potential for transit interaction     Primarily local users                                                                                                                        | High pedestrian activity with congregation and pedestrian activity zones     High potential for commuter bicyclists     High transit presence     High potential for micromobility     Primarily local traffic                                                            |  |  |  |  |  |
| MOVEMENT                           | High desired movement (primarily for vehicles) with high quality of service Minimal disruptions limited to peak times of day and/or seasons                    | Moderate quality of<br>service and slower traffic     Delays acceptable<br>to local traffic     High quality of service<br>for non-motorized users<br>because of street-oriented<br>development patterns           | Moderate-to-low vehicular quality of service during peak periods     Lower movement for non-motorized users because of higher vehicular speeds and longer travel distances                                                                                                                                                       | Lower vehicular quality of service and slower travel speeds through majority of the day     Increased movement for non-motorized users because of increased activity densities and crossing opportunities                                                                   | Low vehicular quality of<br>service and low travel<br>speeds through most<br>periods of the day     High mobility for<br>non-motorized and<br>micromobility users<br>because of increased<br>density, high crossing<br>potential, and pedestrian-<br>oriented development |  |  |  |  |  |
| PERMEABILITY                       | Direct vehicular access to land uses     Lack of opportunities for pedestrian access     Minimal crossing opportunities for all users                          | High vehicular, bicyclist, and pedestrian access opportunities     Direct pedestrian access to land uses     Vehicular and bicyclist access may be provided on adjacent roadways within the network                | Low-to-moderate access opportunities for all users     Primarily vehicle-oriented access with opportunities for localized pedestrian-oriented access                                                                                                                                                                             | High access opportunities for most users (vehicles, bicyclists, and pedestrians)     Access for freight movement may be restricted                                                                                                                                          | High access opportunities for non-motorized and micromobility users     Street-oriented businesses increase access for non-motorized users, while limited parking areas may decrease access for motorized users                                                           |  |  |  |  |  |
| NETWORK                            | No redundant roadway network May have cross streets/ intersections accessing dispersed locations                                                               | Expanded street network within a limited area serving immediate land uses     May include cross streets accessing dispersed areas in surrounding rural area(s)     Through traffic concentrated on primary roadway | Limited supporting roadway network Parallel streets may be present but disjointed Alternative routes between destinations may exist but likely on different roadway types Large intersection spacing (–1/2 mi)                                                                                                                   | High level of supporting roadway network with parallel and cross streets     Network supports localized area, but may be disjointed because of natural/built boundaries     Alternative routes between destinations exist     Regional traffic may have bypass alternatives | Cohesive and dense surrounding street network with multiple parallel and cross streets Multiple alternative routes exist on similar roadway types Regional traffic may have bypass alternative                                                                            |  |  |  |  |  |
| TARGET<br>VEHICULAR<br>SPEED (MPH) | 35 +                                                                                                                                                           | 25–35                                                                                                                                                                                                              | 30–45                                                                                                                                                                                                                                                                                                                            | 20–35                                                                                                                                                                                                                                                                       | <25                                                                                                                                                                                                                                                                       |  |  |  |  |  |

Source: KYTC Complete Streets, Roads, and Highways Manual

The manual includes a description of the context zones, typical users, and the user accommodations that may be considered. It also identifies context as a consideration when selecting a target speed for urban and suburban environments and recommends the planning and design of transition zones between contexts to inform driver behavior and influence safety outcomes for all users.

# 2.7 NCHRP 07-29 and the 8th Edition of AASHTO's Policy on Geometric Design of Highways and Streets

NCHRP 07-29 is developing a draft *Green Book 8* — in progress as of this writing. A greater emphasis on the consideration of context is expected to be included. The new edition is envisioned to shift focus towards multimodal transportation and provide structured guidance for land use contexts. The exact set of context classifications that

| will be incorporated is yet to be finalized, but it is anticipated that it will closely follow the system developed by NCHRP 855 which includes the five original contexts (rural, rural town, suburban, urban, urban core) as well as a |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Special District context.                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |  |  |  |  |  |  |

# Chapter 3 Kentucky's Reliance on Functional Classification

Kentucky currently uses functional classification in varying degrees for processes and decision making within many areas of the Cabinet. While not the only factor considered, it can play a significant role. As part of this study, a stakeholders meeting was held with representatives from several KYTC Divisions and Districts to retrieve information on the current use of functional classification throughout the Cabinet. Planning and Highway Design workflows were the initial focus, but the research team incorporated a range of other perspectives (e.g., Division of Program Management, Division of Traffic Operations, and Division of Maintenance-Permits Branch). Appendix F includes a summary of the Cabinet's use of functional classification in the collection and reporting of data and in KYTC's processes and policies. In addition to functional classification, a separate effort identified areas where the Cabinet uses Urban and Rural contexts in their workflow. This information is summarized in Appendix G.

There are no known plans for FHWA to discontinue the use of the functional classification system (e.g., arterial, collector, and local roads). Due to KYTC's reliance on the current functional classification system and the federal requirements for its use, KYTC processes will continue to rely upon functional classifications to some extent in the near-term. There is a need for a broader application of contexts which will supplement the functional classification system to better address a variety of contexts and users of the systems. The functional classification represents the appropriate role of roadways in serving vehicles. Context classification helps planners and designers serve community needs and the needs of non-motorized users. KYTC currently recognizes the use of the following contexts for highway design: rural, rural town, suburban, urban, and urban core.

# **Chapter 4 Kentucky-Specific Context Classification Recommendations**

Context classification gives planners and designers baseline information about a road's environmental context, road functions, and user needs. With this knowledge, they can understand what roles roads play within their communities, their relationship to broader transportation networks, and how the needs of different users should be prioritized.

It is recommended that KYTC continue to use the five contexts described in *Green Book 7* and NCHRP Report 1022 — rural, rural town, suburban, urban, and urban core. Contexts are defined based on development density, land uses, and building setbacks. Table 4.1 lists the primary characteristics of each context and provides accompanying visuals.



Table 4.1 Road Context Characteristics

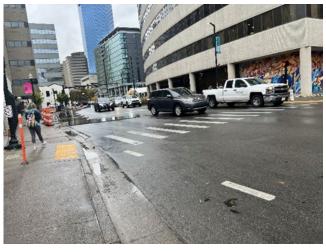
**Features** 

- Areas with the lowest densities, few houses or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- Common land uses include agriculture, natural resource preservation, and outdoor recreation.



 Areas with low density but diverse land uses with commercial main street character, potential for on-street parking and sidewalks and small setbacks.

# Suburban


 Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks. Sidewalks are often present. Most parking is off street.





 Areas with high density, mixed land uses and prominent destinations, potential for some on-street parking and sidewalks, and mixed setbacks.

**Urban Core** 



 Areas with the highest densities, mixed land uses within and among predominately highrise structures, and small setbacks. Sidewalks are abundant.

Photo Source (All Except Rural Town and Urban Core): Google © 2023

With the delay of the publication of *Green Book 8*, a phased implementation plan is proposed. In the near term, a linkage between the functional classification system and context classifications will need to be provided to maintain current processes that rely on functional classification and to address the accessibility and mobility of the roadway

system for motorists. In preparation of further direction on the context classification of roadways expected in *Green Book 8*, and to better address the transportation expectations and needs of all users, the expanded context classification should supplement the functional classification. Projects will have a context and functional classification (e.g., suburban arterial or urban core collector).

A Summary Implementation of Context Classifications for KYTC was developed using the information from the Literature Review and input from the KYTC stakeholders and the Study Advisory Committee (SAC) for this study. Implementation recommendations are in three phases. Table 4.2 provides a breakdown.

### Phase 1

- Complete network-level context classification.
- Encourage the deliberate use and incorporation of context classification into applicable planning- and design-level processes.

#### Phase 2

- Introduce context classification agencywide.
- Determine which agency processes can benefit from using context classification.

### Phase 3

• Final implementation following the release and adoption of *Green Book 8*.

Table 4.2 Recommended Implementation Plan for the Context Classification System at KYTC

| Phase 1: Immediate and Near-Term Activities                                                                                                                                                                                                                                                                                                                              | Planning | Design |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| Designate a network level context classification for all state-maintained roadways using an automated system based on guidance in NCHRP 1022 <i>Context Classification Application: A Guide</i> . Use the contexts currently recognized by KYTC - rural, rural town, suburban, urban, and urban core. Determine an appropriate process for making changes to the system. | X        |        |
| Update the guidance manuals to include a description of the Context Classification System.                                                                                                                                                                                                                                                                               | х        | x      |
| Update the guidance manuals to emphasize the consideration of context classification when developing the project's purpose and need.                                                                                                                                                                                                                                     | х        | х      |
| Address areas of the guidance manuals that discuss project scoping to include consideration of context classifications.                                                                                                                                                                                                                                                  | х        | x      |
| Identify the project's context classification in planning documentation such as the Continuous Highway Analysis Framework (CHAF), planning studies, scoping meeting minutes, and the Data Needs Analysis (DNA) scoping study form.                                                                                                                                       | х        |        |
| Update the Common Geometric Practices sheets in the Highway Design Manual with context classification parameters as necessary. All updates will be based on context information in the 7 <sup>th</sup> Edition of the Green Book.                                                                                                                                        |          | x      |
| Update Design Executive Summary documentation to include the broader application of context classification and identify it on the Pre-Design Conference Minutes.                                                                                                                                                                                                         |          | x      |
| Coordinate with the Complete Streets, Roads, and Highways Manual and Policy to consider recommended facility types by context. Ensure context descriptions and names are the same for all documents referring to context classification.                                                                                                                                 | х        | х      |
| Develop improved guidance and options for designing transition zones between contexts.                                                                                                                                                                                                                                                                                   |          | x      |
| Offer training, as necessary, to help inform KYTC personnel as well as consultants, LPAs, etc.                                                                                                                                                                                                                                                                           | х        | x      |

# Phase 2: Potential Uses After Completion of the Network Level Context Classification

Consider opportunities for use in SHIFT prioritization (e.g., prioritization of facilities for all users)

Easier identification of potential grant funding opportunities for different project types (e.g., pedestrian or bike facilities)

Potential for more comprehensive HSIP network screening

Statewide or regional planning of facilities for all users

Application of future access management policies

Inclusion of the context classification in the Highway Information System and development of an interactive map of the system.

# Phase 3: After Adoption of the 8th Edition of the Green Book

KYTC guidance should be updated to reflect updated guidance in the Green Book.

Develop training on updates as necessary.

### 4.1 Immediate to Near-Term Phase

This section includes detailed recommendations for the summary of the near-term items in the Implementation Plan. These tasks can be completed immediately and are focused on planning and highway design guidance and processes. As needed, short, informational webinars or conference presentations could be offered to educate

planners and designers on context classification. Context classification was presented at the general session of the 2023 ACEC-KY/FHWA/KYTC Partnering Conference.

### 4.1.1 Division of Planning

**Develop a network-level context classification system for all state-maintained roadways.** Assign all roadways to one of the five context classifications (Rural, Rural Town, Suburban, Urban, Urban Core). Apply the methodology described in NCHRP Report 1022 (Context Classification Application: A Guide), which classifies facilities based on:

- Urbanized area boundaries as identified by the U.S. Census Bureau
- Intersection density
- Building density/building area density

Depending on resource and staff availability, initial classification may be done in-house or through a consultant contract. A manual review of the network, as detailed in NCHRP 1022, should be completed by District staff in coordination with local ADDs and MPOs familiar with the roadways in the district and the context descriptions. Establish a process to change or update the context classification system.

Document and consider the context classification at the project level in DNA and Planning Studies. Include context classification in scoping meeting discussions for planning studies. Incorporate context classification into purpose and need discussions. Include an entry on the DNA form for Design Context Classification that allows for the selection (e.g., dropdown or check boxes) of the contexts. This can be implemented immediately at the project level before the network-level classification is complete.

Coordinate context classification with Complete Streets implementation. KYTC's Complete Streets, Roads, and Highways Manual uses context classifications to recommend facility types. There is an inconsistency in the name of one of the classifications. The Green Book 7 and the KYTC Division of Highway Design use Rural Town, and the Complete Streets guidance uses Small Town. To avoid confusion, the classification should be updated in the Complete Streets guidance to Rural Town. Continue to use context classification when considering Complete Streets applications in the planning and design process.

### 4.1.2 Division of Highway Design

**Update the Highway Design Guidance Manual (HDM)** to include a description of context classifications (see Appendix H). HD-703.5 in the HDM lists the five contexts. Add the following definitions from the *Green Book 7* to HD-703.5:

- Rural: Areas with the lowest densities, few houses, or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- Rural town: Areas with low density but diverse land uses with commercial main street character, potential for on-street parking and sidewalks and small setbacks.
- Suburban: Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks.
- Urban: Areas with high density, mixed land uses and prominent destination, potential for some on-street parking and sidewalks, and mixed setbacks.
- Urban Core: Areas with the highest densities, mixed land uses within and among predominately high-rise structures, and small setbacks.

Consider context classification when defining the purpose and need and during project scoping. Project-level context classification can be applied prior to network-level classification. Local knowledge of the area, zoning maps, and comprehensive plans should be examined to understand ongoing and upcoming projects that may change land-use conditions. If the network-level assignment of context is complete, it can be used as a starting point. But each project should be evaluated to determine a context classification that will be used for project design. Network-level context classification, when available, should remain as originally established. This is similar to the current design process that identifies existing, network-level functional classification while the Project Development Team (PDT) identifies design functional classification for the proposed conditions.

Using knowledge of the project context to determine what user types should be accommodated and including an estimated cost for potential improvements in the initial cost estimate for the project will help ensure context is considered throughout the project development process. <u>Appendix H</u> includes recommended changes to Sections 202 and 203 of the HDM in red text.

**Update common geometric practices.** The HDM includes Common Geometric Practices as exhibits. These sheets provide recommendations for design speed and roadway geometrics based on the roadway's functional classification. *Green Book 7* includes guidance on design speeds for each context classification and a few other context-related geometric recommendations. Proposed updates to the HDM's Common Geometric Practices are noted in red in <u>Appendix I</u>. The updates reflect guidance provided in *Green Book 7*. The proposed sheets include Exhibits for the following classifications:

- Local Rural
- Local and Collector Rural Town, Suburban, Urban, and Urban Core
- Collector Rural
- Arterial Rural and Rural Town
- Arterial Suburban, Urban, and Urban Core

*Identify context classification in project documentation*. Add new entry fields to forms or templates on Pre-Design Conference minutes and the Design Executive Summary (DES) where the project's context classification is identified along with the other general project information. For example, the DES has a field for *Design Functional Classification* (Figure 4.1) that could be revised and expanded to accommodate the newly adopted context classifications.

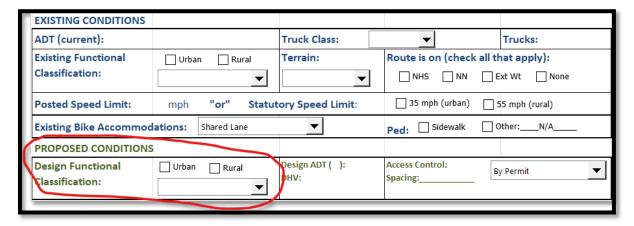



Figure 4.1 Documentation of Design Functional Classification (KYTC Design Executive Summary form)

Identifying context in project documentation increases the likelihood that context will be considered in decision making throughout the project development process.

**Provide options for design transitions between contexts.** The use of context classification allows for the opportunity to place a stronger focus on design transitions between areas with different contexts. Transitions should alert drivers of the need to adjust their speeds to match the needs of the adjacent land use, roadway users, community, and roadway network. Appendix J includes speed-reduction applications and best practices for designing transition zones.

### 4.2 After Completion of the Network-Level Classification

**Develop an interactive map or map overlay of context classifications** like the functional classification map (<a href="https://maps.kytc.ky.gov/functionalclass/">https://maps.kytc.ky.gov/functionalclass/</a>). Also, include the Context Classification System in HIVEi.

**Update the Planning Guidance Manual** to include information on Context Classification System. <u>Appendix K</u> includes proposed edits to the *KYTC Planning Guidance Manual*. Edits are shown in red. Implementation of edits should coincide with development of the network-level context classification system.

**Consider how a network-level context classification may benefit other KYTC activities or processes.** Potential areas to consider include:

- a. SHIFT prioritization (e.g., prioritization of facilities for all users)
- b. Statewide or regional planning of facilities for all users
- c. More comprehensive HSIP network screening
- d. Development of more accurate preliminary cost estimates that take into consideration facilities for all users
- e. Potential applications for future access management policies
- f. Updated design recommendation based on context

# 4.3 After KYTC's Adoption of the 8th Edition of the Green Book

**Review KYTC guidance and update as needed.** The 8th Edition of the Green Book is expected to include substantial changes to design guidance that are tied to context classification. Evaluate *Green Book 8* and determine if the Cabinet needs to update its guidance and develop training.

#### **Chapter 5 Conclusion**

This report reviewed research, national guidance, and state DOT strategies on context classification; discussed KYTC's reliance on the functional classification system; and advanced recommendations for implementing context classification at the Cabinet. Incorporating context classifications — rural, rural town, suburban, urban, urban core — into KYTC's guidance and project development process will help practitioners critically evaluate the mobility and access needs of all user types. Chapter 4 outlined a three-step process the Divisions of Planning and Highway Design can take to implement context classification:

#### Phase 1

- Complete network-level context classification.
- Encourage the deliberate use and incorporation of context classification into applicable planning- and designlevel processes.

#### Phase 2

- Introduce context classification agencywide.
- Determine which agency processes can benefit from using context classification.

#### Phase 3

• Final implementation following the release and adoption of *Green Book 8*.

Members of the project's Study Advisory Committee and the research team will assist with implementation. Use of context classification may begin at the project level immediately. Applying context classification to all statemaintained roads will open up opportunities to improve the safety, mobility, and accessibility of all users at the network level. To realize the full benefits of context classification, KYTC needs to coordinate its implementation with other recent initiatives (e.g., Complete Streets, Safe System Approach, Human Factors in Design, Intersection Control Evaluation).

#### References

American Association of State Highway & Transportation Officials (AASHTO). (2018). *Policy on Geometric Design of Highways and Streets*, 7<sup>th</sup> Edition, Green Book-7. Washington DC.

Code of Federal Regulations, Highway Systems, 23 CFR Part 470. (2024). <a href="https://www.ecfr.gov/current/title-23/chapter-l/subchapter-E/part-470#:~:text=https%3A//www.ecfr.gov/current/title%2D23/part%2D470">https://www.ecfr.gov/current/title%2D23/part%2D470</a>

Florida Department of Transportation (FDOT). (2020). *Context Classification Guide*. <a href="https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/roadway/completestreets/">https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/roadway/completestreets/</a>

 $\frac{https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/roadway/completestreets/files/fdot-context-classification.pdf$ 

Florida Department of Transportation (FDOT). (2022). FDOT Design Manual.

https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/roadway/completestreets/files/fdot-context-classification.pdf

Federal Highway Administration (FHWA). (2023). *Highway Functional Classification Concepts, Criteria and Procedures, 2023 Edition*. <a href="https://www.fhwa.dot.gov/planning/processes/statewide/related/hwy-functional-classification-2023.pdf">https://www.fhwa.dot.gov/planning/processes/statewide/related/hwy-functional-classification-2023.pdf</a>

Kentucky Transportation Cabinet. (2022). *KYTC Complete Streets, Roads, and Highways Policy and Manual*. <a href="https://transportation.ky.gov/BikeWalk/Documents/Complete%20Streets,%20Roads,%20and%20Highways%20Manual.pdf">https://transportation.ky.gov/BikeWalk/Documents/Complete%20Streets,%20Roads,%20and%20Highways%20Manual.pdf</a>

Kentucky Transportation Cabinet. (2022). *KYTC Highway Design Guidance Manual*. <a href="https://transportation.ky.gov/Organizational-Resources/Policy%20Manuals%20Library/Highway%20Design.pdf">https://transportation.ky.gov/Organizational-Resources/Policy%20Manuals%20Library/Highway%20Design.pdf</a>

Maryland Department of Transportation State Highway Administration. (2020). *Context Driven Access & Mobility For All Users*.

Maryland Department of Transportation State Highway Administration. (2020). Context Driven Toolkit.

Minnesota Department of Transportation. (2022). MnDOT's Facility Design Guide.

National Academies of Sciences, Engineering, and Medicine. (2022). *NCHRP Web-Only Document 320 – Aligning Geometric Design with Roadway Context*. Washington, DC: The National Academies Press.

National Academies of Sciences, Engineering, and Medicine. (2018). *NCHRP 855 - An Expanded Functional Classification System for Highways and Streets*. Washington, DC: The National Academies Press. <a href="https://doi.org/10.17226/24775">https://doi.org/10.17226/24775</a>.

National Academies of Sciences, Engineering, and Medicine. (2022). *NCHRP 1022 – Context Classification: A Guide*. Washington, DC: The National Academies Press.

Oregon Department of Transportation. (2020). ODOT Blueprint for Urban Design.

Oregon Department of Transportation. (2023). *ODOT Highway Design Manual*. https://www.oregon.gov/ODOT/Engineering/Pages/Hwy-Design-Manual.aspx.

Stamatiadis, N., Kirk, A., Hartman, D., Jasper, J., Wright, S., King, M., & Chellman, R. (2018). *An Expanded Functional Classification System for Highways and Streets* (No. Project 15-52).

Stamatiadis N., Kirk A., Steyn, H., Musselman, J., and Raulerson, M. (August 1 2022). *Context Classification and Associated Transportation Expectations in Support of Contextual Roadway Design*. Transportation Research Record Volume 2677, Issue #2. Transportation Research Board, Washington, D.C.

Tennessee Department of Transportation. (2021). *Highway System Access Manual*. <a href="https://www.tn.gov/content/dam/tn/tdot/traffic-engineering/TDOT%20HSAM%20Vol%203%20Design%20Criteria.pdf">https://www.tn.gov/content/dam/tn/tdot/traffic-engineering/TDOT%20HSAM%20Vol%203%20Design%20Criteria.pdf</a>

Tennessee Department of Transportation. (2018). *Multimodal Project Scoping Manual*. <a href="https://www.tn.gov/content/dam/tn/tdot/roadway-design/documents/additional-resource/TDOT%20Multimodal%20Project%20Scoping%20Manual%20-%20041018.pdf">https://www.tn.gov/content/dam/tn/tdot/roadway-design/documents/additional-resource/TDOT%20Multimodal%20Project%20Scoping%20Manual%20-%20041018.pdf</a>

Washington State Department of Transportation. (2019). WSDOT Context and Modal Accommodation Report.

Wisconsin Department of Transportation. (2022). WSDOT Design Manual. <a href="https://wsdot.wa.gov/engineering-standards/all-manuals-and-standards/manuals/design-manual">https://wsdot.wa.gov/engineering-standards/all-manuals-and-standards/manuals/design-manual</a>

| Appendix A Washington DOT Context and Modal Accommodation Report |
|------------------------------------------------------------------|
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |

| (For use                                                                  | in conjunct       | tion with a Basi             | s of Design fo      | orm on non-free               | eway projects    | s)          |
|---------------------------------------------------------------------------|-------------------|------------------------------|---------------------|-------------------------------|------------------|-------------|
| roject Title:                                                             | -                 |                              | <del>_</del>        |                               | <b>-</b>         |             |
| PIN:                                                                      |                   |                              |                     |                               |                  |             |
| Date:                                                                     |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   | Planning Do                  | cument Sı           | ımmary                        |                  |             |
| Has a <u>Corridor Sketch</u>                                              |                   |                              |                     | Yes □ No                      |                  |             |
| Notes:                                                                    |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
| List any applicable pla                                                   | nning and envi    | ironmental reports           | or studies (option  | onal: highlight maj           | or consideration | rs):        |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   | General Pro                  |                     |                               |                  |             |
|                                                                           | SR                | NHS (Y/N)                    | Functional<br>Class | Current Posted<br>Speed       | Truck %          | Current ADT |
| Route Information                                                         |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           | Begin MP          | End MP                       | County              | Within City?                  | Within UGA?      | Funding     |
|                                                                           |                   |                              |                     |                               |                  |             |
| Project Information                                                       | Existing          | IMPROT PI                    |                     | F                             |                  |             |
| roje et illorination                                                      | Access<br>Control | WSDOT Planned Access Control | Current Year        | Forecast (aka<br>Future) Year |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
| Data Barata of                                                            |                   |                              |                     |                               |                  |             |
| Brief Project<br>Description                                              |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
|                                                                           |                   | Communi                      | ty Engage           | ment                          |                  |             |
|                                                                           |                   |                              |                     |                               |                  |             |
| Describe Community                                                        |                   |                              |                     |                               |                  |             |
| Describe Community<br>Engagement and<br>Summarize Major<br>Commitments or |                   |                              |                     |                               |                  |             |

Page 1 of 11

|                                                                                           | Section 2 C                                                                                                      | ontext I                                                                                                                                        | Determination                                                                  |                    |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|
|                                                                                           | Roadway                                                                                                          | _ MP_                                                                                                                                           | to MP                                                                          |                    |
| [If the land use or                                                                       |                                                                                                                  |                                                                                                                                                 | oject boundaries, divide the roadway int<br>cord the context for each segment] | o smaller segments |
|                                                                                           | Note: Fields in purple dire                                                                                      | ectly relate                                                                                                                                    | e to Basis of Design entries                                                   |                    |
| Land Use<br>Context (Non-<br>Freeways – Use<br>Attached Land<br>Use Context<br>Worksheet) | CURRENT  Rural Suburban Urban/Town Urban Core                                                                    |                                                                                                                                                 | FUTURE  Rural  Suburban  Urban/Town  Urban Core                                |                    |
|                                                                                           | Current Federal Functional Class                                                                                 | ☐ Principa ☐ Minor A ☐ Collecto                                                                                                                 | rterial                                                                        |                    |
|                                                                                           | Future Function Based on Local,<br>Regional & State Plans (note:<br>does not change Federal<br>Functional Class) | Il Arterial (Regionally important corric<br>tivity centers)<br>rterial (Locally important corridor cor<br>or (Roadways connecting arterials and | nnecting activity                                                              |                    |
|                                                                                           | If Current and Future Roadway Type                                                                               | are different, <sub>l</sub>                                                                                                                     | provide your reasoning here:                                                   |                    |
| Roadway Type                                                                              |                                                                                                                  |                                                                                                                                                 |                                                                                |                    |
| Bicycle Route<br>Type<br>Pedestrian                                                       |                                                                                                                  |                                                                                                                                                 | Connector □ Local Connector                                                    | □ N/A              |
| Route Type                                                                                | , , , , ,                                                                                                        |                                                                                                                                                 | . , , , , , , , , , , , , , , , , , , ,                                        |                    |

Page **2** of **11** 

| Freight Use                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|
| General (mark any that apply)                                                                                       |
| ☐ Freight route present (Circle one: present/planned)                                                               |
| Freight route type:   T-1   T-2   T-3   T-4   T-5                                                                   |
| ☐ Freight vehicles turning (high/low volume)                                                                        |
| ☐ Freight rail crossings                                                                                            |
| ☐ Other (Specify)                                                                                                   |
| ☐ Other (Specify)                                                                                                   |
| ☐ Other (Specify)                                                                                                   |
|                                                                                                                     |
| Are any boxes checked above? $\ \square$ Yes $\ \square$ No (If Yes then special design considerations may apply)   |
| Transit Use                                                                                                         |
| General (mark any that apply)                                                                                       |
| ☐ Transit route (Circle one: present/planned)                                                                       |
| ☐ Transit route type (Circle one: local/limited/express)                                                            |
| ☐ High frequency route (15 minute or less headways)                                                                 |
| ☐ BRT or Light Rail present                                                                                         |
| ☐ Primary transit lane (Circle one: outside/inside)                                                                 |
| ☐ In lane bus stops or bus pullouts (Circle one: present/planned)                                                   |
| ☐ Transit vehicles turning (Circle one: high/low volume)                                                            |
| ☐ Transit signal priority (Circle one: present/planned)                                                             |
| ☐ Intermodal connections (Circle one: present/planned)                                                              |
| ☐ Presence of facilities for people with specialized transportation needs (e.g. hospitals, senior centers, schools, |
| transit-dependent populations)                                                                                      |
| Other (Specify)                                                                                                     |
| Other (Specify)                                                                                                     |
| Other (Specify)                                                                                                     |
| Are any boxes checked above?   Yes   No (If Yes then special design considerations may apply)                       |
| ☐ Designated Main Street Highway (see Appendix B: Identification of State Highways as Main Streets                  |
| (http://www.wsdot.wa.gov/research/reports/fullreports/733.1.pdf)                                                    |
| □ A Local Complete Streets Ordinance applies to the project location                                                |
| (http://www.tib.wa.gov/grants/Grants.cfm)                                                                           |

Page **3** of **11** 

|                             |                     | Section                   |                                   |                  |                     |                                                                              |       |
|-----------------------------|---------------------|---------------------------|-----------------------------------|------------------|---------------------|------------------------------------------------------------------------------|-------|
|                             |                     |                           |                                   | Land-Use         | e Context           |                                                                              |       |
|                             |                     |                           | Rural                             | Suburban         | Urban               | Urban Core                                                                   |       |
|                             |                     | Freeways                  | <b>A</b>                          | <b>#</b>         | <b>=</b>            | <b>#</b>                                                                     |       |
|                             |                     | Principal<br>Arterial     | <b>₽ 6 ★</b>                      | Æ 65 K           | <b>₽</b> € <b></b>  |                                                                              |       |
|                             |                     | Minor Arterial  Collector | <b>₽ ★</b>                        | <b>(4)</b>       | <b>∰</b> ∱ <b>∱</b> |                                                                              |       |
|                             |                     | Collector                 |                                   | # 6 K            | <b>墨</b> 参 <b>於</b> |                                                                              |       |
| Initial Modal Accommodation |                     | Local                     | # 6 K                             | <u></u>          | (#) 🖒 🔥             |                                                                              |       |
| Use table at right          |                     |                           | Motor Vehicles Incl. Freight Bicy | ycles <u>Ped</u> | <u>estrians</u>     |                                                                              |       |
| and record in<br>next row   |                     |                           | High of                           | High 🕏           | High st             | ransit compatibility not<br>hown because it varies<br>y route (compatibility |       |
|                             |                     |                           | Medium 6                          | Medium 📝         | Medium ca           | an't be determined<br>ased on roadway type                                   |       |
|                             |                     |                           | Low                               | Low              |                     | nd land-use context)                                                         |       |
|                             |                     |                           |                                   |                  |                     |                                                                              |       |
|                             |                     |                           |                                   |                  |                     |                                                                              |       |
|                             | Initial Modal Accom | nmodation (Cur            | rent):                            | Initial Mo       | odal Accommo        | odation (Future)                                                             | i.    |
|                             | Motor Vehicles □    | High   Medi               | um 🗆 Low                          | Motor V          | ehicles 🗆 Hig       | h 🗆 Medium                                                                   | ☐ Low |
|                             | Bicycles            | High $\square$ Medi       | um 🗆 Low                          | Bicycles         | ☐ Hig               | h 🗆 Medium                                                                   | ☐ Low |
|                             | Pedestrians         | High   Medi               | um 🗆 Low                          | Pedestri         | ans 🗆 Hig           | h 🗆 Medium                                                                   | ☐ Low |

Page **4** of **11** 

#### Context and Modal Accommodation Report Version 2.2 (10/24/2019) Use adjustment factors below to assess need to increase or decrease demand for modal accommodation: Factor Conditions That Decrease Conditions That Increase (Check box for factors you use) Motor Vehicle Accommodation Motor Vehicle Accommodation Lower classifications (3, 4, and 5) Higher classifications (1,2, and 3) Access Classification ☐ Current ☐ Future ☐ Current ☐ Future None, T-3, T-4, T-5 T1, T2 Strategic Factors Strategic Freight Corridor ☐ Current ☐ Future ☐ Current ☐ Future Local plan includes goal to Local plan does not include goal reduce SOV travel to reduce SOV travel Local Goals to Reduce SOV Mode ☐ Current ☐ Future ☐ Current ☐ Future High or medium frequency Minimal or no transit available in Availability of Transit transit is available in the corridor the corridor ☐ Current ☐ Future ☐ Current ☐ Future V/C or vehicle LOS within V/C or Vehicle LOS outside designated target range designated target range ☐ Mobility Suitability Factors ☐ Current ☐ Future ☐ Current ☐ Future Bicyclists and/or pedestrians Bicyclists and/or pedestrians use Presence of Bicyclists and or cross the corridor rarely use or cross the corridor Pedestrians ☐ Current ☐ Future ☐ Current ☐ Future Modal Lower speeds Intermediate and Higher speeds Accommodation **Traffic Speed** - Motor Vehicles (see DM 1103.05(1)) ☐ Current ☐ Future ☐ Current ☐ Future Other (Specify): Other (Specify) ☐ Current ☐ Future ☐ Current ☐ Future Other (Specify): ☐ Current ☐ Future ☐ Current ☐ Future Provide your reasoning for adjusting the initial vehicle modal accommodation here, noting any need for strategic crossings and/or investments in off-system alternative routes: Motor Vehicle Accommodation (Current) Motor Vehicle Accommodation (Future) Initial □ High □ Medium □ Low (see pg 3) Initial ☐ High ☐ Medium ☐ Low (see pg 3) ☐ High ☐ Medium ☐ Low Page **5** of **11**

|                        | l                   | Use adjustment factors below to asse | ess need to increase or decrease de          | mand for modal accommodation:                |
|------------------------|---------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|
|                        |                     | Factor                               | Conditions That Decrease                     | Conditions That Increase                     |
|                        |                     | (Check box for factors you use)      | Bicycle Accommodation                        | Bicycle Accommodation                        |
|                        |                     | Bicycle Route Type (see              | Local connector or not identified            | Citywide or neighborhood                     |
|                        |                     | Page 2 above)                        |                                              | connector                                    |
|                        |                     |                                      | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | Local & Regional Bicycle             | Not in local or regional bicycle             | Planned or developed bicycle                 |
|                        |                     | Plans                                | network                                      | route                                        |
|                        |                     |                                      | ☐ Current ☐ Future                           | ☐ Developed ☐ Planned                        |
|                        |                     | Distance to Major Bicycle            | Long Distance                                | Short (<3 miles) to                          |
|                        | ors                 | Destinations (e.g. work,             | (> 15 miles)                                 | Medium (3-15 miles) Distance                 |
|                        | act                 | recreation, school,                  |                                              | Identify Destinations:                       |
|                        | Strategic Factors   | services)                            | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        | atec                | ☐ Distance to Transit Stop           | Long Distance                                | Short (< 1mile) to                           |
|                        | Stra                | Distance to Transit Stop             | (> 3 miles)                                  | Medium (1-3 miles) Distance                  |
|                        |                     |                                      | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | ☐ Alternative Bicycle Route          | Planned or developed suitable                | No alternative route                         |
|                        |                     | within ½ Mile                        | alternative route. Identify Route:           |                                              |
|                        |                     |                                      |                                              |                                              |
|                        |                     |                                      | ☐ Current ☐ Future                           | ☐ Developed ☐ Planned                        |
| Madal                  |                     | Disadvantaged                        | Below 50 <sup>th</sup> Percentile Nationally | Above 50 <sup>th</sup> Percentile Nationally |
| Modal<br>Accommodation |                     | Populations                          | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
| - Bicycles             |                     | Traffic Speed                        | Higher Speed (35 mph +)                      | Low (25 mph or less) to                      |
|                        |                     |                                      | G. Command G. Fottoma                        | Medium Speeds (30 mph)                       |
|                        |                     | ☐ Traffic Volume (with               | ☐ Current ☐ Future  High Volume (> 20,000)   | ☐ Current ☐ Future  Low (< 9,000) to         |
|                        |                     | bicycle lanes)                       | High volume (> 20,000)                       | Medium (9,000-20,000) Volume                 |
|                        |                     | bicycle lanes)                       | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | ☐ Traffic Volume (without            | High Volume (> 7,000)                        | Low (<2,000) to                              |
|                        |                     | bicycle lanes)                       |                                              | Medium (2,000-7,000) Volume                  |
|                        |                     | ·                                    | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        | S                   | Truck Volume (%)                     | Higher Volumes (> 2.5%)                      | Lower Volumes (< 2.5%)                       |
|                        | to                  |                                      | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        | Suitability Factors | Bicycle Volume                       | Rare                                         | Occasional or Frequent                       |
|                        | <u> </u>            |                                      | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        | tab                 | Bicycle Facility Type                | None                                         | Designated or physically                     |
|                        | Sui                 |                                      | ☐ Current ☐ Future                           | separated bike lanes  ☐ Current ☐ Future     |
|                        |                     | ☐ Width of Bike & Parking            | Narrow (13.5 ft or less)                     | Moderate (14-14.5 feet) or                   |
|                        |                     | Lanes (Combined)                     | Narrow (13.3 it of less)                     | Wide (15 ft or more)                         |
|                        |                     | Lanes (combined)                     | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | ☐ Bicycle Lane Width (No             | Narrow (< 3 ft)                              | Moderate (3-5 ft) or Wide (6 ft +)           |
|                        |                     | Parking)                             | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | Bicycle Lane Blockage                | Frequent                                     | Rare or Occasional                           |
|                        |                     |                                      | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |
|                        |                     | Pavement Condition                   | Poor or Fair                                 | Good or Excellent                            |
|                        | l                   | _                                    | ☐ Current ☐ Future                           | ☐ Current ☐ Future                           |

Page **6** of **11** 

|                 |       | Throug   | jh lanes j | per        |             | more (no me<br>Irrent 🗆 Futi |           |                                       | l or 2 with rai<br>□ Current □ |        | dian |
|-----------------|-------|----------|------------|------------|-------------|------------------------------|-----------|---------------------------------------|--------------------------------|--------|------|
| Other (Specify) |       |          | Specify):  |            | □ Cı        | ırrent 🗆 Futı                | ure       | [                                     | □ Current □                    | Future |      |
| Other (\$       |       | Other    | Specify):  |            |             | ırrent 🗆 Futı                | ure       | 1                                     | □ Current □                    | Future |      |
| cros            | sings | and/or i | nvestmei   | nts in off | -system alt | ernative rou                 | tes:      |                                       |                                |        |      |
|                 |       |          |            |            |             |                              |           |                                       |                                |        |      |
|                 |       |          |            |            |             |                              |           |                                       |                                |        |      |
|                 |       |          |            |            |             |                              |           |                                       |                                |        |      |
|                 |       | High     | dation (C  | um 🗆       | Low (see p  | og 3)                        | Initial 🗆 | High                                  | dation (Future  Medium  Medium | □ Low  |      |
| Initi<br>Fina   |       | High     |            |            |             |                              |           | 9                                     |                                |        |      |
|                 |       | High     |            |            |             |                              |           | 111911                                |                                |        |      |
|                 |       | High     |            |            |             |                              |           |                                       |                                |        |      |
|                 |       | High     |            |            |             |                              |           | Tingir                                |                                |        |      |
|                 |       | High     |            |            |             |                              |           | · · · · · · · · · · · · · · · · · · · |                                |        |      |
|                 |       | High     |            |            |             |                              |           |                                       |                                |        |      |
|                 |       | High     |            |            |             |                              |           |                                       |                                |        |      |
|                 |       | High     |            |            |             |                              |           |                                       |                                |        |      |

#### Context and Modal Accommodation Report Version 2.2 (10/24/2019) Use adjustment factors below to assess need to increase or decrease demand for modal accommodation: Conditions That Decrease Conditions That Increase Factor (Check box for factors you use) Pedestrian Accommodation Pedestrian Accommodation P-1 or P-2 P-3 or P-4 Pedestrian Route Type (see Page 2 above) □ Current □ Future □ Current □ Future Local & Regional Not in local or regional Planned and/or developed Strategic Factors Pedestrian Plans pedestrian plan pedestrian route □ Current □ Future ☐ Developed ☐ Planned Distance to Major >0.5 mile < 0.5 mile **Pedestrian Destinations** ☐ Current ☐ Future ☐ Current ☐ Future (e.g. work, recreation, school, services) Below 50th Percentile Nationally Above 50th Percentile Nationally Disadvantaged Populations ☐ Current ☐ Future ☐ Current ☐ Future Pedestrian Safety Vehicle speeds > 35 mph and Vehicle speeds ≤ 35 mph or pedestrian traffic best measured pedestrian traffic measured in in pedestrians/day pedestrians/hour Suitability Factors ☐ Current ☐ Future ☐ Current ☐ Future Distance to Transit Stop > 0.5 mile < 0.5 mile ☐ Current ☐ Future ☐ Current ☐ Future Block Length > 600 feet < 600 feet $\hfill\square$ Current $\hfill\square$ Future ☐ Current ☐ Future Comfort TBD TBD Modal □ Current □ Future □ Current □ Future Accommodation Other (Specify): - Pedestrians ☐ Current ☐ Future ☐ Current ☐ Future Other (Specify): ☐ Current ☐ Future ☐ Current ☐ Future Provide your reasoning for adjusting the initial bicycle accommodation here, noting any need for strategic crossings and/or investments in off-system alternative routes: Pedestrian Accommodation (Current) Pedestrian Accommodation (Future) Initial □ High □ Medium □ Low (see pg 3) Initial □ High □ Medium □ Low (see pg 3) ☐ High ☐ Medium ☐ Low ☐ High ☐ Medium ☐ Low Page **8** of **11**

| Approval Signatures |      |
|---------------------|------|
| REGION              | Date |
| REGION              |      |
| REGION              | Date |
| REGION              | Date |

Context & Modal Accommodation Report Form Date: 12-31-2017

Page **9** of **11** 

#### LAND USE CONTEXT WORKSHEET

- 1. Review indicators (far left column) to define Current and future context (rural, suburban, urban/town, urban core).
- 2. Check one box in each row based on Current condition and another box in each row based on future condition.
- 3. Split segments by mileposts if indicators change significantly. Use one sheet for each milepost range.

| Indicator                         | Relevance                          | Rural                                                           | Suburban                                                                             | Urban/Town                                                                                      | Urban Core                                             | Source<br>(Current)               | Source<br>(Future)                                                         |
|-----------------------------------|------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|
| Land Use                          | Within ½<br>mile of<br>roadway     | Agricultural uses with some isolated residential and commercial | Single uses (divided into residential, commercial, institutional or industrial uses) | Mixed-uses (includes 2+<br>residential, commercial,<br>institutional and/or<br>industrial uses) | Mixed uses except industrial and agriculture           | Aerial Photos                     | City or County<br>Comprehensive Plan.<br>Zoning & Land Use<br>Designations |
|                                   |                                    | Current ☐ Future ☐                                              | Current ☐ Future ☐                                                                   | Current 🗆 Future 🗆                                                                              | Current 🗆 Future 🗆                                     |                                   |                                                                            |
| Housing<br>Units/Acre             | Polygons<br>adjacent to<br>roadway | < 1 unit/acre                                                   | 1-4 units/acre                                                                       | 4-15 units/acre                                                                                 | 15+ units/acre                                         | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                                       |
|                                   |                                    | Current ☐ Future ☐                                              | Current ☐ Future ☐                                                                   | Current 🗆 Future 🗆                                                                              | Current   Future                                       |                                   |                                                                            |
| Jobs/Acre                         | Polygons<br>adjacent to<br>roadway | 0-1 jobs/acre                                                   | 1-10 jobs/acre                                                                       | 10-50 jobs/acre                                                                                 | 50+ jobs/acre                                          | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                                       |
|                                   |                                    | Current ☐ Future ☐☐                                             | Current ☐ Future ☐                                                                   | Current 🗆 Future 🗆                                                                              | Current ☐ Future ☐                                     |                                   |                                                                            |
| Street<br>Intersection<br>Density | Polygons<br>adjacent to<br>roadway | < 15 intersections/<br>square mile                              | 15-75 intersections per square mile                                                  | 75-150 intersections per square mile                                                            | 150+ intersections/<br>square mile                     | EPA Smart<br>Location<br>Database | City or County<br>Comprehensive Plan                                       |
|                                   |                                    | Current ☐ Future ☐                                              | Current ☐ Future ☐                                                                   | Current 🗆 Future 🗆                                                                              | Current ☐ Future ☐                                     |                                   |                                                                            |
| Typical Building<br>Height        | Visible from roadway               | N/A                                                             | Mostly 1 to 2 story                                                                  | Mostly 2 to 4 story                                                                             | Mostly 4+ stories                                      | Google Maps<br>Streetview         | City or County Zoning Code                                                 |
|                                   |                                    | Current 🗆 Future 🗆                                              | Current 🗆 Future 🗆                                                                   | Current 🗆 Future 🗆                                                                              | Current 🗆 Future 🗆                                     |                                   |                                                                            |
| Setbacks                          | Visible from roadway               | Varies                                                          | 24 ft min (arterial)<br>12 ft min (non-arterial)                                     | 6 ft min to 18 ft max                                                                           | 2 ft min to 12 ft max                                  | Aerial Photos                     | City or County Zoning Code                                                 |
|                                   |                                    | Current  Future                                                 | Current  Future                                                                      | Current   Future                                                                                | Current   Future                                       |                                   |                                                                            |
| Parking                           | Visible from roadway               | Off-street (on-street rare)                                     | On-street residential,<br>off-street commercial                                      | On-street common<br>supplemented by off-<br>street surface                                      | Mostly on-street<br>with some off-street<br>structures | Aerial Photos                     | City or County<br>Comprehensive Plan                                       |
|                                   |                                    | Current ☐ Future ☐                                              | Current ☐ Future ☐                                                                   | Current 🗆 Future 🗆                                                                              | Current 🗆 Future 🗆                                     |                                   |                                                                            |

Page 10 of 11

### Context and Modal Accommodation Report Version 2.2 (10/24/2019) **RESULTS:** Beginning **Ending Current Context Future Context Current Context Future Context** (Initial) (Initial) (Final) (Final) ☐ Rural ☐ Rural ☐ Rural ☐ Rural ☐ Suburban □ Suburban □ Suburban □ Suburban ☐ Urban/Town ☐ Urban/Town ☐ Urban/Town ☐ Urban/Town □ Urban Core ☐ Urban Core ☐ Urban Core ☐ Urban Core Sources/interpretations made in these determinations not captured in the table: Page 11 of 11

| Appendix B Washington DOT Basis of Design Form |
|------------------------------------------------|
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |

| Basis of Design<br>Project Title:<br>PIN:<br>Date: |
|----------------------------------------------------|
|                                                    |
| Practical decision n                               |
| constrained budget en                              |
| focusing on id                                     |
|                                                    |

PRACTICAL DECISION MAKING

Practical decision making is a philosophy that considers each situation, aligns with our financially constrained budget environment, and encourages incremental, flexible, and sustainable investments by focusing on identified performance needs and engaging stakeholders at the right time.

There are six core principles that capture the essence of practical decision making:

- ☐ Starts with a clear purpose and need
- ☐ Considers resource constraints and life cycle cost
- □ Engages stakeholder and looks for partnerships
- □ Considers overall system performance
- □ Considers incremental, phase solutions
- □ Applies innovation and creativity

Where the six core principles are incorporated into this form are noted along the right side of this form. Consider all of the core principles as you progress through completing this Basis of Design.

#### **NOTE TO DESIGNERS**

There are tips provided in red italics text. This text along with the BOD instructions are intended to help you fill out this document. Delete the red text [including this note] in the final version of the document.

#### **Related Documents and Technical Reports**

Insert a list of documents and reports that were integral to the origination of this project. Include enough information so the document may be found at a later date

### Community Engagement

Describe past and planned community engagement

Community Engagement Engage Stakeholders

|                                          |               |                                                                                     | General Pro                                                                                                                                                           | oject Infor            | mation                                                                        |                                                                 |                 |                        |  |  |
|------------------------------------------|---------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|------------------------|--|--|
| Route                                    | SR            | NHS<br>(Y/N)                                                                        | <u>Functional Class</u>                                                                                                                                               | City                   |                                                                               | Cour                                                            |                 |                        |  |  |
| Information                              |               |                                                                                     |                                                                                                                                                                       |                        |                                                                               |                                                                 |                 |                        |  |  |
| Project                                  | Begin<br>SRMP | End<br>SRMP                                                                         | Budget                                                                                                                                                                | Funding<br>Sub-Program | Posted<br>Speed                                                               | AADT                                                            | Truck %         |                        |  |  |
| Information                              |               |                                                                                     |                                                                                                                                                                       |                        |                                                                               |                                                                 |                 | 7                      |  |  |
| Brief Project<br>Description             |               |                                                                                     |                                                                                                                                                                       |                        |                                                                               |                                                                 |                 |                        |  |  |
| Important Project History or Background  |               |                                                                                     |                                                                                                                                                                       |                        |                                                                               |                                                                 |                 |                        |  |  |
| Future and<br>Related Projects           |               |                                                                                     |                                                                                                                                                                       |                        |                                                                               |                                                                 |                 | Clear Purpose and Need |  |  |
| Major<br>Environmental<br>Considerations | of the pro    | oject area to<br>Chronic<br>Fish pas<br>Historic<br>Stormwa<br>Other co<br>could be | Review Summary is ava-<br>evaluate the following:<br>Environmental Deficience<br>sage barriers<br>bridges<br>ther retrofits<br>nsiderations: Are any str<br>impacted? | reams, wetlands, v     | Climate vulne<br>Habitat conn<br>Noise walls<br>Wetland miti<br>water bodies, | erability<br>ectivity<br>gation sites<br>or other critical area | as present that | Cle                    |  |  |

Basis of Design Version 1.2, November 2021

Page 1 of 7

# Basis of Design Project Title: PIN: Date:

| Baseline<br>Need  | BN1 Statement: Describe the first baseline need                                                                       |                               |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| (BN)              | Metric:                                                                                                               |                               |  |  |  |  |  |  |
| (BN)              | Target:                                                                                                               | Ž                             |  |  |  |  |  |  |
|                   | Contributing Factors: What are the contributing factors to each Baseline Need?                                        | <br>Clear Purpose and Need    |  |  |  |  |  |  |
|                   | BN# Statement: Describe BN2, BN3, BN4, etc. Delete if not applicable.                                                 | onrpo                         |  |  |  |  |  |  |
|                   | Metric:                                                                                                               |                               |  |  |  |  |  |  |
|                   | Target:                                                                                                               |                               |  |  |  |  |  |  |
|                   | Contributing Factors: What are the contributing factors to each Baseline Need?                                        |                               |  |  |  |  |  |  |
| ontextual<br>Need | CN1 Statement: Describe the contextual need                                                                           | र्घ                           |  |  |  |  |  |  |
| (CN)              | Metric:                                                                                                               | ia .                          |  |  |  |  |  |  |
| (011)             | Target:                                                                                                               | onst                          |  |  |  |  |  |  |
|                   | Contributing Factors: What are the contributing factors to each Contextual Need?                                      | Consider Resource Constraints |  |  |  |  |  |  |
|                   | CN# Statement: Describe additional contextual needs using CN2, CN3, CN4, etc. Delete if not applicable.               | Seson                         |  |  |  |  |  |  |
|                   | Metric:                                                                                                               | ler F                         |  |  |  |  |  |  |
|                   | Target:                                                                                                               | onsic I                       |  |  |  |  |  |  |
|                   | Contributing Factors: What are the contributing factors to each Contextual Need?                                      | ပိ                            |  |  |  |  |  |  |
| Safety            | □ No □ Yes                                                                                                            |                               |  |  |  |  |  |  |
| Analysis          | If YES, enter the title and date. If NO enter why it was not needed. See DM Chapter 321 and the Safety Analysis Guide | Consider                      |  |  |  |  |  |  |

Basis of Design Version 1.2, November 2021

Page 2 of 7

## Basis of Design Project Title:

|                        |                                |                                                                                | Sec                                                                                                         | ction                                                                                                                                                                                            | 2) C                | onte                                                                                                                                                                                                                                                                                                                       | xt                   |                                             |                                                   |                  |  |  |
|------------------------|--------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|---------------------------------------------------|------------------|--|--|
|                        |                                | Roadway                                                                        |                                                                                                             |                                                                                                                                                                                                  | 1P _                |                                                                                                                                                                                                                                                                                                                            | to N                 |                                             |                                                   |                  |  |  |
|                        | 1111                           | [Duplicate this section                                                        |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             |                                                   |                  |  |  |
|                        | ciplinary<br>Members           | the agencies, commur                                                           | nity stakeno                                                                                                | olders, and                                                                                                                                                                                      | d divisio           | ins invoi                                                                                                                                                                                                                                                                                                                  | ved in de            | termining the coi                           | ntext for this project.                           | Engage<br>Stake- |  |  |
| ŧ                      | Freeway                        | ☐ Rural ☐ Urba                                                                 | ın                                                                                                          |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            | nterstate            | e □ Non-Inters                              | state                                             |                  |  |  |
| Use                    | Non Francisco                  | Existing                                                                       | □ Rura                                                                                                      | I □ Su                                                                                                                                                                                           | ıburbaı             | n 🗆 l                                                                                                                                                                                                                                                                                                                      | Jrban □              | Urban Core                                  |                                                   | ,                |  |  |
| ŭ                      | Non-Freeway                    | Future                                                                         | ☐ Rura                                                                                                      | l □ Su                                                                                                                                                                                           | ıburbaı             | n 🗆 l                                                                                                                                                                                                                                                                                                                      | Jrban □              | Urban Core                                  |                                                   |                  |  |  |
|                        |                                | Accommodation                                                                  | Prohibi                                                                                                     | ted L                                                                                                                                                                                            | .ow                 | Мє                                                                                                                                                                                                                                                                                                                         | ed                   | High                                        | Involve                                           |                  |  |  |
|                        |                                | Current                                                                        |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            | ]                    |                                             | Multidisciplinary                                 |                  |  |  |
|                        |                                | Future                                                                         |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            | ]                    |                                             | Team Members                                      |                  |  |  |
|                        |                                | Comments                                                                       |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      | that apply. Utilizilli in this informat     | ze the <u>Context and</u><br>ion.                 |                  |  |  |
|                        | Bicycles                       | Primary User<br>Type                                                           | Interest                                                                                                    | ed but                                                                                                                                                                                           | Son                 | newhat<br>nfident                                                                                                                                                                                                                                                                                                          |                      | Highly<br>onfident                          | Involve                                           |                  |  |  |
|                        | ,                              | Current                                                                        |                                                                                                             |                                                                                                                                                                                                  | 001                 |                                                                                                                                                                                                                                                                                                                            |                      |                                             | Multidisciplinary                                 |                  |  |  |
|                        |                                | Future                                                                         |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             | Team Members                                      |                  |  |  |
|                        |                                | Comments                                                                       | the FHW.                                                                                                    | A <u>Bikewa</u>                                                                                                                                                                                  | y Select            | ion Gui                                                                                                                                                                                                                                                                                                                    | <u>de</u> (Page      |                                             | ons of User Types see<br>ign Manual Chapter<br>n. |                  |  |  |
|                        |                                | Accommodation                                                                  | Prohibi                                                                                                     | ted                                                                                                                                                                                              | Low                 |                                                                                                                                                                                                                                                                                                                            | led                  | High                                        | Involve                                           | )<br>Se          |  |  |
|                        | Pedestrians                    | Current                                                                        |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             | Multidisciplinary                                 | nar              |  |  |
|                        |                                | Future                                                                         | Describe                                                                                                    |                                                                                                                                                                                                  | lal da ai           |                                                                                                                                                                                                                                                                                                                            | ida waki a wa        |                                             | Team Members                                      | for              |  |  |
|                        |                                | Comments                                                                       |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      | triat apply nere.<br>) to fill in this info | Utilize the Context rmation.                      | Per              |  |  |
| ext                    |                                | Classification                                                                 | T-1                                                                                                         | T-2                                                                                                                                                                                              | T-3                 | T-4                                                                                                                                                                                                                                                                                                                        | T-5                  |                                             |                                                   | Ë                |  |  |
| ō                      |                                | Current                                                                        |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             | Truck Freight assification                        | yste             |  |  |
| ت                      | Freight                        | Future                                                                         |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             |                                                   | S                |  |  |
| Transportation Context |                                | Comments                                                                       | Coordinate with Multidisciplinary Team Members. Describe any special design considerations that apply here. |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             | Consider Overall System Performance               |                  |  |  |
| port                   |                                | Fixed route type                                                               | None                                                                                                        | Local                                                                                                                                                                                            | Limi<br>Sto         |                                                                                                                                                                                                                                                                                                                            | Express              | Tran                                        | sit Agencies                                      | der C            |  |  |
| aus                    |                                | Current                                                                        |                                                                                                             |                                                                                                                                                                                                  |                     | ]                                                                                                                                                                                                                                                                                                                          |                      |                                             | agencies that operate                             | nsic             |  |  |
| Ë                      | Transit                        | Future                                                                         |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      | within the proj                             |                                                   | ပိ               |  |  |
|                        |                                | Comments                                                                       | design co                                                                                                   | See DM 1102.03(5). Coordinate with Multidisciplinary Team, describe special design considerations. Utilize the <u>Context and Modal Accommodation Report</u> (CMAR) to fill in this information. |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             |                                                   |                  |  |  |
|                        |                                | □ No □ Yes                                                                     |                                                                                                             |                                                                                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                            |                      |                                             |                                                   |                  |  |  |
|                        | Main Street<br>Highway         | Has the location been A Study of Communication. Reference Program for design   | <u>nity Design</u><br>r to case st                                                                          | <u>and Visio</u><br>udies in <u>V</u>                                                                                                                                                            | ning)? (<br>Vashing | Consult ton's Co                                                                                                                                                                                                                                                                                                           | with the roomplete S | egion planning of<br>Streets & Main St      | fice when making this                             |                  |  |  |
|                        | Complete<br>Streets            | □ No □ Yes  Does the local jurisc and local plans or of design criteria that a | rdinances v                                                                                                 | vhen mak                                                                                                                                                                                         | ing this            | determi                                                                                                                                                                                                                                                                                                                    | nation. S            |                                             |                                                   |                  |  |  |
|                        |                                | Are there existing                                                             | Design V                                                                                                    | ariances                                                                                                                                                                                         | within              | the Pro                                                                                                                                                                                                                                                                                                                    | oject Lim            | nits?   No                                  | Yes                                               |                  |  |  |
|                        | Existing<br>Design<br>Variance | If YES, can this proj<br>Request a list of kno                                 | ect correct                                                                                                 | any of the                                                                                                                                                                                       | e existin           | Are there existing Design Variances within the Project Limits?   If YES, can this project correct any of the existing design variances?  Request a list of known variances from your ASDE. Go through this list and see if you have the opportunity to correct or change the elements associated with the design variance. |                      |                                             |                                                   |                  |  |  |

# Basis of Design Project Title: PIN: Date:

|                                     |                 | Section                                            | n 3) Design Co     | ontrols                                   |                                                |
|-------------------------------------|-----------------|----------------------------------------------------|--------------------|-------------------------------------------|------------------------------------------------|
|                                     |                 | adway                                              | MP                 | to MP<br>Context described in Section 2]  |                                                |
| Design Year                         | Design year an  | nd selection rational                              |                    |                                           | Incremental<br>Phased<br>Solutions             |
|                                     | Mode            | Priority Current Future                            | Đ                  | Notes                                     |                                                |
|                                     | Automobiles     |                                                    |                    |                                           |                                                |
| Modal Accommodation Priorities      | Transit         |                                                    |                    |                                           |                                                |
|                                     | Freight         |                                                    |                    |                                           |                                                |
| Priority 1,2,3 etc.<br>1 is highest | Pedestrians     |                                                    |                    |                                           |                                                |
|                                     | Bicyclists      |                                                    |                    |                                           | _ 0                                            |
|                                     | Other           |                                                    |                    |                                           | eral                                           |
| I/S Design<br>Vehicle               |                 | stersection design vehi<br>for each leg of the int |                    | that will be modified by the project. Sta | out of the consider Overall System Performance |
| Тептаіп                             | ☐ Level         | □ Rolling □                                        | Mountainous        |                                           |                                                |
| Access Control                      | Existing        | See Access Master P                                | lan Database       |                                           |                                                |
|                                     | Planned         | See Access Master F                                | Plan Database      |                                           |                                                |
|                                     | Proposed        |                                                    |                    |                                           |                                                |
| Target Speed                        | State the Targe | et Speed and how you                               | it was determined. |                                           |                                                |
|                                     |                 |                                                    |                    |                                           |                                                |

Basis of Design Version 1.2, November 2021

Page 4 of 7

# Basis of Design Project Title: PIN:

Date:

| Section 4) Alternative Analysis              |                                |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |  |  |  |  |
|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|
|                                              |                                | Alternative Name and Description                                                                                                                                                                                                                                                                                                                                                   |                                                               |  |  |  |  |
|                                              | Α                              | Provide a brief description of each alternative considered. Talk about key elements of the alternative that came into consideration when selecting the preferred alternative. Include cost.                                                                                                                                                                                        | Cycle Cost<br>Itions                                          |  |  |  |  |
| Alternatives<br>Considered                   | В                              |                                                                                                                                                                                                                                                                                                                                                                                    | Life<br>Solu<br>ativit                                        |  |  |  |  |
| (circle the preferred alternative)           | С                              |                                                                                                                                                                                                                                                                                                                                                                                    | ce Constraints and<br>ncremental Phased<br>Innovation and Cre |  |  |  |  |
|                                              | D                              |                                                                                                                                                                                                                                                                                                                                                                                    | P 2 2 L                                                       |  |  |  |  |
| Preferred Alte                               | rnative _                      | was selected because:                                                                                                                                                                                                                                                                                                                                                              | ider Resou<br>Consider I<br>Apply                             |  |  |  |  |
| analysis, trade-offs con<br>COMPARISON TABLE | nparison, or :<br>If the prime | erred alternative. Attach copies or provide information (title, date, etc.) regarding alternatives<br>similar exercises that have been completed for this project, such as an ALTERNATIVES<br>e considerations for selecting an alternative were documented in another document, you do not<br>, provide a summary, reference the document, and include it in the Design Approval. | Consi                                                         |  |  |  |  |

Basis of Design Version 1.2, November 2021

Page 5 of 7

## Basis of Design Project Title:

PIN: Date:

### Section 5) Design Elements Changed

For each design element below, identify the design elements that will have dimensions changed in the preferred alternative for each alignment or location. You can group alignments into a single location if desired. You may need to add or delete columns.

| Design Element                         | Alignment<br>#1 | Alignment<br>#2 | Alignment<br>#3 | Alignment<br>#4 | Alignment<br>#5 | Alignment<br>#6 |
|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1. Lane                                |                 |                 |                 |                 |                 |                 |
| 2. Median / Buffer                     |                 |                 |                 |                 |                 |                 |
| 3. Shoulder                            |                 |                 |                 |                 |                 |                 |
| 4. Streetside / Roadside Zone          |                 |                 |                 |                 |                 |                 |
| 5. Pedestrian Facility                 |                 |                 |                 |                 |                 |                 |
| 6. Bicycle Facility                    |                 |                 |                 |                 |                 |                 |
| 7. Bridges and Buried Structures       |                 |                 |                 |                 |                 |                 |
| 8. Horizontal Alignment                |                 |                 |                 |                 |                 |                 |
| 9. Vertical Alignment                  |                 |                 |                 |                 |                 |                 |
| 10. Cross Slope                        |                 |                 |                 |                 |                 |                 |
| 11. Side Slope                         |                 |                 |                 |                 |                 |                 |
| 12. Clear Zone                         |                 |                 |                 |                 |                 |                 |
| 13. Barrier, Guardrail & Rumble Strips |                 |                 |                 |                 |                 |                 |
| 14. Signals, Illumination, and ITS     |                 |                 |                 |                 |                 |                 |
| 15. Signing and Delineation            |                 |                 |                 |                 |                 |                 |
| 16. On/Off Connections                 |                 |                 |                 |                 |                 |                 |
| 17. Intersection / Ramp Terminal       |                 |                 |                 |                 |                 |                 |
| 18. Road Approaches                    |                 |                 |                 |                 |                 |                 |
| 19. Roundabout                         |                 |                 |                 |                 |                 |                 |
| 20. Access Control                     |                 |                 |                 |                 |                 |                 |

Basis of Design Version 1.2, November 2021

Page 6 of 7

## Basis of Design Project Title: PIN: Date: Prepared by [Insert name of Project Engineer or person who oversaw the development of the BOD] [Insert title] Date [Insert name of Region/Program] Approval Signature [Insert name of Region/Program designated signee] [Insert title] [Insert name of Region/Program] Date **Concurrence Signature** [Insert name of ASDE. If not applicable, delete this signature block] Assistant State Design Engineer Date Headquarters Page 7 of 7 Basis of Design Version 1.2, November 2021

| Ар | pendix C Oregon DOT | Urban Design Concur | rence Document |  |
|----|---------------------|---------------------|----------------|--|
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |
|    |                     |                     |                |  |

## OREGON DEPARTMENT OF TRANSPORTATION Urban Design Concurrence CONTEXT AND MODAL INTEGRATION

| ject/Corrid            | or Title                       | <b>e</b> : |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|------------------------|--------------------------------|------------|-------------------------------------|----------------------------------|--------|------------|----------------------------------------------------|------------------------------------|--------------------------------|-------------------|-------------------------|
| Number:                |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
| :                      |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     | Planning                         |        |            |                                                    |                                    |                                |                   |                         |
| List any appl          | icable                         | planni     | ing or e                            | nvironme                         | ntal   | reports,   | plans                                              | or studies                         |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                |                   |                         |
|                        |                                |            |                                     | General                          | Proj   | ect Infor  | matio                                              | n                                  |                                |                   |                         |
|                        | Rt.                            | Hwy        | NHS                                 | Function                         |        | State      |                                                    | Reduction                          | Truck                          | Pos               |                         |
| Route                  | No.                            | No.        | W []                                | Classificat                      | ion    | Classifica | ation                                              | Review Rt                          | %                              | Spe               | ed ADT                  |
| nformation             |                                |            | Yes □<br>No □                       |                                  |        |            |                                                    | Yes □<br>No □                      |                                |                   |                         |
|                        | Fun                            | ding       |                                     |                                  |        |            |                                                    | Begin                              | End                            | Spe               | ed Future               |
|                        |                                | едогу      | City and Cour                       |                                  |        | MP MP      |                                                    | MP                                 | -                              | ADT               |                         |
| Project                |                                |            |                                     |                                  |        |            |                                                    |                                    |                                | Design            | 1                       |
|                        |                                |            |                                     |                                  |        |            |                                                    |                                    |                                | Torret            | <u> </u>                |
|                        |                                |            | _                                   |                                  |        |            |                                                    |                                    |                                | Target            |                         |
|                        |                                | ilding     |                                     | Adjacent La                      |        |            |                                                    | destrian                           | On-St<br>Park                  | reet              | # Accesses              |
| Project<br>Information | Set<br>None                    | back       |                                     |                                  | xistii | ng Future  | C<br>Spaci                                         | rossings<br>ng:                    | Park<br>Yes                    | reet<br>ing<br>No |                         |
|                        | Set<br>None<br>Shallo          | back       | Retail                              | E<br>/Industrial                 | xisti: | ng Future  | С                                                  | rossings<br>ng:                    | Park                           | reet<br>ing       | # Accesses              |
| Information            | Set<br>None<br>Shallo          | back       |                                     | E<br>/Industrial                 | xistii | ng Future  | Spacion<br>Type:                                   | rossings<br>ng:                    | Park Yes                       | reet<br>ing<br>No | # Accesses              |
| Information  Defining  | Set<br>None<br>Shallo<br>Media | back       | Retail<br>Reside                    | E<br>/Industrial<br>ntial        | xistii | ng Future  | Spacin<br>Type:<br>Bicy<br>None                    | rossings ng:  cle Facility         | Park Yes □ Typ Parallel        | reet ing No       | # Accesses<br>Per Block |
| Information            | Set<br>None<br>Shallo<br>Media | back       | Retail<br>Reside<br>Mixed           | E<br>/Industrial<br>ntial<br>lec | xistiı | ng Future  | Spacin<br>Type:<br>Bicy<br>None<br>Share           | rossings ng:  cle Facility  d Lane | Park Yes  Typ Parallel Diagona | reet ing No       | # Accesses<br>Per Block |
| nformation  Defining   | Set<br>None<br>Shallo<br>Media | back       | Retail<br>Reside<br>Mixed<br>Park/f | E<br>/Industrial<br>ntial<br>lec | xistii | ng Future  | Spacin<br>Type:<br>Bicy<br>None<br>Share<br>Std. L | rossings ng:  cle Facility  d Lane | Park Yes □ Typ Parallel        | reet ing No       | # Accesses<br>Per Block |
| nformation  Defining   | Set<br>None<br>Shallo<br>Media | back       | Retail<br>Reside<br>Mixed<br>Park/f | E<br>/Industrial<br>ntial<br>lec | xistii | ng Future  | Spacin<br>Type:<br>Bicy<br>None<br>Share<br>Std. L | cle Facility  d Lane               | Park Yes  Typ Parallel Diagona | reet ing No       | # Accesses<br>Per Block |

## OREGON DEPARTMENT OF TRANSPORTATION Urban Design Concurrence CONTEXT AND MODAL INTEGRATION

|                              |                           | Proje      | ct Goals and | d Outcor   | nes                       |          |             |       |
|------------------------------|---------------------------|------------|--------------|------------|---------------------------|----------|-------------|-------|
| Brief Project<br>Description |                           |            |              |            |                           |          |             |       |
|                              |                           | Co         | mmunity E    | ngageme    | ent                       |          |             |       |
| Describe Com-                |                           |            |              |            |                           |          |             |       |
| munity Outreach              |                           |            |              |            |                           |          |             |       |
| Summarize Com-               |                           |            |              |            |                           |          |             |       |
| mitments, Ex-                |                           |            |              |            |                           |          |             |       |
| pectations                   |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            | Modal Inte   | egration   |                           |          |             |       |
|                              | Existing Moda             |            |              |            | Future Modal              | _        |             |       |
|                              | Pedestrians               | _          | ☐ Medium     |            | Pedestrians               | _        | ☐ Medium    |       |
| Determine                    | Bicycles                  | _          | ☐ Medium     |            | Bicycles                  | _        | ☐ Medium    |       |
| Modal                        | Transit                   | _          | ☐ Medium     |            | Transit                   | _        | ☐ Medium    |       |
| Integration                  | Freight/Motor<br>Vehicles | ⊔ High     | ⊔ Medrum     | □Low       | Freight/Motor<br>Vehicles | ⊔ High   | ∐ Medium    | ⊔ Low |
|                              |                           |            | Conte        | ĸt         |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
| Trad                         | itional Downto            | own/CBD    | ☐ Urban      | Міх 🗆      | Commercial C              | Corridor |             |       |
| Re                           | esidential Corr           | idor 🗆     | Suburban F   | ringe 🗆    | Rural Commi               | unity 🗆  |             |       |
|                              |                           |            | Context Disc | ussion     |                           |          |             |       |
| Additional informati         | ion for determi           | ination of | fappropriate | e context: |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
|                              |                           |            |              |            |                           |          |             |       |
| Form Updated: 31Mai          | rch 2020                  |            |              |            |                           |          | Page 2 of ! | 5     |

## OREGON DEPARTMENT OF TRANSPORTATION Urban Design Concurrence DESIGN DECISION DOCUMENTATION

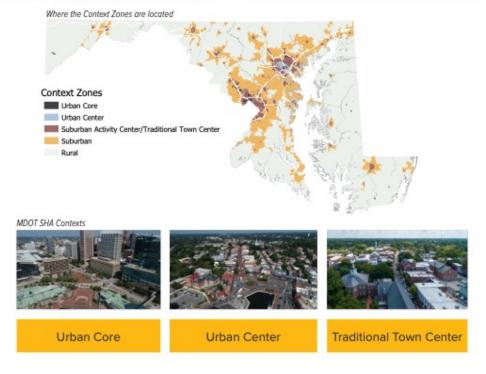
| Section Name               |                             |                    |                      |                                                | Route          |                       |                |
|----------------------------|-----------------------------|--------------------|----------------------|------------------------------------------------|----------------|-----------------------|----------------|
| Highway Nam<br>County Name |                             | Region:            | Key No.              | •                                              | EA No          | ay No.:               |                |
| Begin MP:                  |                             | RDWY ID:           | 1 2                  | Mileage                                        |                |                       | 0              |
| End MP:                    |                             |                    | erlap Code:          | 0 1                                            | Type.<br>□ 2 □ |                       | <u> </u>       |
| ROJECT DAT                 | <u>'A</u>                   | mneage OV          | eriap Code.          |                                                |                |                       |                |
| Functional Cla             |                             |                    |                      | State Classi                                   |                |                       |                |
| Current ADT (              | (Year):                     | Vertical Cl        | earance / Reduc-     |                                                | Design A       | DT (Year              | ·):            |
| % Trucks:                  |                             | tion Review        |                      | Yes 🗌 N                                        | lo             |                       |                |
| Posted Speed               |                             |                    | Design Speed:        |                                                | Target \$      | Speed:                |                |
| C                          | Funding:<br>rrent Estimate: |                    |                      |                                                | Context        |                       |                |
| Federal Highv              |                             |                    |                      |                                                | Context        |                       |                |
| Approval (PO<br>Required:  |                             | Design<br>Category | 3R   1R   4R   SF    | NHS:<br>Non NHS:                               |                | Top 10%<br>SPIS Sit   |                |
|                            |                             | Design Eleme       | ent Summary Table    | )                                              |                |                       | Width (ft.) ** |
|                            | Frontage Zo                 | ne                 |                      |                                                |                |                       |                |
| Pedestrian                 | Pedestrian Z                | one                |                      |                                                |                |                       |                |
| Realm                      | Buffer Zone                 |                    |                      |                                                |                |                       |                |
|                            | Curb/Gutter                 |                    |                      |                                                |                |                       |                |
|                            | Separated B                 | icvcle Lane (C     | Curb Constrained F   | acility)                                       |                |                       |                |
|                            | _                           |                    | ot Including Buffer  |                                                |                |                       |                |
| Transition                 | Bicycle/Stree               |                    |                      | <u>,                                      </u> |                |                       |                |
| Realm                      |                             |                    | avel Lane Directly   | Adiacent to 0                                  | Curb           |                       |                |
|                            | On-street Pa                |                    |                      |                                                |                |                       |                |
|                            | Travel Lane                 |                    |                      |                                                |                |                       |                |
|                            |                             | ane (Includin      | a Shv)               |                                                |                |                       |                |
|                            | Left Turn La                | •                  | a31                  |                                                |                |                       |                |
| Travelway                  |                             | ht Side Shy [      | )<br>Vistance        |                                                |                |                       |                |
| Realm                      | Two-Way Le                  | <u>-</u>           | - Salito             |                                                |                |                       |                |
|                            |                             |                    | Lane (Including Sh   | v Dietanase                                    | <u> </u>       |                       |                |
|                            |                             |                    | d Curbed Median/S    |                                                |                | 5" Sen-               |                |
|                            | arator and S                | hy Distance        |                      |                                                |                | •                     |                |
| 'For dimensio<br>uired     | ns less than ra             | inge defined i     | in the Blueprint for | Urban Desig                                    | jn, a desi     | ign exce <sub>l</sub> | otion is re-   |

# OREGON DEPARTMENT OF TRANSPORTATION Urban Design Concurrence DESIGN DECISION DOCUMENTATION

|                                                                     | N                                                                                                              | lodal Integ                | gration                                                                       |                                           |                                      |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| Appropriate<br>Modal Integra-<br>tion                               | Pedestrians<br>Bicycles<br>Transit<br>Freight/Motor Vehicles                                                   | ☐ High<br>☐ High           | <ul><li>☐ Medium</li><li>☐ Medium</li><li>☐ Medium</li><li>☐ Medium</li></ul> | □ Low<br>□ Low                            |                                      |
| Briefly Discuss<br>Final Modal Inte-<br>gration Deci-<br>sions      |                                                                                                                |                            |                                                                               |                                           |                                      |
|                                                                     | P                                                                                                              | edestrian                  | Realm                                                                         |                                           |                                      |
| Discuss final<br>Dimensions of<br>Pedestrian<br>Realm Ele-<br>ments | Include enough informati<br>chosen for Frontage Zone<br>need to correlate with Tra<br>tradeoffs between elemen | e, Pedestri<br>Insition Zo | ian Zone, Bu<br>one elements                                                  | ffer Zone and Curk                        | /Gutter. May                         |
|                                                                     | T                                                                                                              | ransition                  | Realm                                                                         |                                           |                                      |
| Discuss final<br>Dimensions of<br>Transition<br>Realm Ele-<br>ments | Include enough informati<br>chosen for Separated Bio<br>Right Side Shoulder and<br>Zone elements. Identify a   | ycle Lane<br>On-Street     | , On-Street B<br>Parking.  Ma                                                 | icycle Lane, Bicyc<br>y need to correlate | le/Street Buffer,<br>with Pedestrian |
|                                                                     | _                                                                                                              |                            |                                                                               |                                           |                                      |
| Discuss final<br>Dimensions of<br>Travelway<br>Realm Ele-<br>ments  | Include enough informati<br>chosen for Travel Lanes,<br>Treatments. May need to<br>stantiate tradeoffs between | Right and correlate        | blish reason<br>/or Left Turn<br>with Transiti                                | Lanes, Shy Distar on Zone elements        | ices and Median                      |
|                                                                     |                                                                                                                |                            |                                                                               |                                           |                                      |

# OREGON DEPARTMENT OF TRANSPORTATION Urban Design Concurrence DESIGN DECISION DOCUMENTATION

| Final Design El-                                     | Are Any Final Design Elements Less Than the                                     | Approved Dimension Range? |  |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|
| ements Less<br>Than Approved<br>Range Dimen-<br>sion | d Yes ☐ If yes, list the elements below and attach an approved design exception |                           |  |  |  |  |  |
| <u>Signatures</u><br>Prepared By:                    |                                                                                 | Date:                     |  |  |  |  |  |
| Γ                                                    | Prepare By  Company Name:                                                       | · .                       |  |  |  |  |  |
| Concurred<br>By:                                     | (ODOT Region Maintenance Manager or Region Maintenance                          | _ Date:                   |  |  |  |  |  |
| -                                                    | Operations Manager                                                              |                           |  |  |  |  |  |
|                                                      | (Print Name)                                                                    |                           |  |  |  |  |  |
| Approved<br>By:                                      | (Region Technical Center Manager)                                               | _ Date:                   |  |  |  |  |  |
| -                                                    | (Print Name)                                                                    |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
|                                                      |                                                                                 |                           |  |  |  |  |  |
| Form Updated: 31N                                    | March 2020                                                                      | Page 5 of 5               |  |  |  |  |  |


| Appendix D Maryland DOT C | ontext Driven Toolkit |  |
|---------------------------|-----------------------|--|
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |
|                           |                       |  |

#### INTRODUCTION

#### CONTEXT DRIVEN TOOLKIT

The Context Driven Toolkit ("the Toolkit") is part of the Context Driven initiative, which emphasizes that land use context should be a primary factor in the design of a transportation project. The Maryland Department of Transportation State Highway Administration (MDOT SHA) initiated this effort in Spring 2019, and since then over 200 projects have incorporated the Context Driven approach. An example of the types of Context Zones outlined in the Context Driven Guide are shown on these pages, in addition to a map of where each Context Zone is located in Maryland.

The Context Driven approach is based on the concept that our streets should be designed for safety in a way that supports the land uses that surround them. This means that the design of a street in densely-populated downtown Frederick that is in an "Urban Center" Context Zone should be different from the design of a road in a quiet part of Allegany County that is in a "Rural" Context Zone. This is because the users of those transportation facilities have different needs: pedestrians in downtown Frederick could benefit from slower vehicle traffic, more frequent street





crossings, wider sidewalks, and dedicated street space for bikes. However, those same considerations may not be appropriate for a road in rural Allegany County, where population density is low and where the road is not likely to experience high volumes of pedestrian travel.

In this Toolkit, road and street design elements such as safety measures are referred to as countermeasures. The term refers to the need to improve safety by countering the different types of crash risks that occur in different Context Zones.

Mitigating crash risks may result in adverse impacts to motor vehicle operations. It is important that the needs and safety of all road users be taken into consideration when evaluating potential countermeasures, which may require further evaluation to balance traffic operations.

The selection and assessment of each countermeasure in this Toolkit is rooted in MDOT SHA's Context Driven initiative. The diagram above shows how the Toolkit relates to the other components of Context Driven. Countermeasures in the Toolkit are directly informed by federal and state engineering standards, as well as guidance from national best practices.

#### MDOT SHA Contexts



Suburban Activity Center



Suburban



Rural

2

#### **GUIDANCE & STANDARDS**

Engineering guidance and standards at the state and national level have influenced the types of countermeasures included in the Toolkit and their recommended design elements. Considering existing engineering standards and guidance is not only required; it ensures that the countermeasures benefit from insights and lessons learned.

One of the main purposes of the Toolkit is to create an innovative handbook of countermeasures that both works for Maryland's unique circumstances and introduces new practices that will improve mobility and safety outcomes. Striking this balance between consistency and innovation requires consulting a variety of existing guides and standards. The sections below outline the standards and guidance that were considered when selecting and formulating the countermeasures.

#### **FEDERAL**

The Federal Highway Administration (FHWA) provides funding for surface transportation projects to states that is accompanied by requirements that include design criteria, with special criteria for projects on the National Highway System (NHS). FHWA also provides national best practice design guidance for various types of facilities and user groups. This type of guidance was consulted in the development of several countermeasures in this Toolkit.

The Manual on Uniform Traffic Control Devices (MUTCD) is another important element of federal design conditions, which contains standards, guidance, and optional specifications for traffic control devices (signage, lane markings, traffic signals, etc.). The State of Maryland has its own additions to the MUTCD discussed in the next section.

The countermeasures in this Toolkit were selected and formulated with design guidance and criteria from FHWA in mind. However designs used for each project should always be reviewed for consistency with FHWA requirements.

#### STATE OF MARYLAND

The State of Maryland builds upon federal design guidance with its own design criteria that is intended to address requirements unique to this state. Each project utilizing these countermeasures should consult the following design guidance from the State of Maryland, in addition to the latest guidance cited by MDOT SHA:

- » Maryland MUTCD (MDMUTCD): This is the adaptation of the MUTCD that provides standards specific to Maryland.
- » Traffic Control Devices Design Manual: To be used in conjunction with the MdMUTCD, this manual is intended to guide development of signing and pavement marking plans, signal plans, and lighting plans.
- » Book of Standards for Highways and Incidental Structures, most recent revisions: This book provides a complete catalog of standards for highways, incidental structures and traffic control applications.
- » Accessibility Policy and Guidelines for Pedestrian Facilities along State Highways: This provides guidance in designing public sidewalks and crossings that comply with the Americans with Disabilities Act (ADA).
- » Bicycle Policy and Design Guidelines: This document provides guidance for designing bicycling facilities in Maryland.

The countermeasures in this Toolkit are intended to build upon the statewide guidance in the documents above, and in many cases improve upon them with Maryland-specific applications of national best practices. However, each project should consult these manuals and coordinate with MDOT SHA as appropriate to ensure all required design standards are met.

#### OTHER GUIDANCE

The National Association of City Transportation Officials (NACTO) is a national organization that publishes guidance for transportation facilities based on emerging best practices, with a particular focus on pedestrian and bike safety and mobility. This Toolkit draws on guidance from this organization in many instances. In addition, the Institute of Transportation Engineers (ITE) is a national knowledge-sharing organization for the transportation engineering field that was consulted in the development of this Toolkit.

The American Association of State Highway Transportation Officials (AASHTO) is another important source of national engineering guidance. This includes, but is not limited to, the AASHTO "Green Book" that provides widely-referenced guidance.

A Crash Modification Factor (CMF) is a multiplicative factor that indicates the proportion of crashes that would be expected after implementing a countermeasure. Another way of representing the safety effect of a countermeasure is through a Crash Modification Function (CMFunction). A CMFunction is an equation used to calculate a CMF based on the characteristics of the site where it will be applied. Available information can be found in the searchable database, CMF Clearinghouse (<a href="http://www.cmfclearinghouse.org/">http://www.cmfclearinghouse.org/</a>). The CMF Clearinghouse provides a searchable database of CMFs, funded by FHWA and maintained by the University of North Carolina Highway Safety Research Center.

#### HOW TO USE THIS TOOLKIT

The Context Driven Toolkit is intended to be a guide that illustrates countermeasures in a way that is intuitive to both professionals and the general public. The sample countermeasure spread below highlights each informational element of the Toolkit and how to interpret it.



3

.



## BARRIER SEPARATED BIKE LANES



#### **DEFINITION AND DESCRIPTION**











A barrier separated bike lane is an exclusive facility for bicyclists that is located within or directly adjacent to the roadway and is physically separated from motor vehicle traffic by a vertical element. They are differentiated from shared use paths because they are bike-only facilities. Barrier separated bike lanes are also referred to as "cycle tracks" or "protected bike lanes." These treatments have been used in Maryland by Baltimore City and Montgomery County, and nearby in Washington DC.

Vertical elements in the barrier area provide an increased sense of comfort and safety for users of the bike lane. Selection of vertical element can be based on the presence of on-street parking, overall street and barrier width, cost, durability, aesthetics, traffic speeds and volumes, potential for bike lane encroachment, emergency vehicle and service access, and maintenance. Examples of vertical elements include delineator posts, bollards, concrete barriers, raised medians, or elevating the facility to intermediate or sidewalk grade.



#### CONSIDERATIONS

- Streets that naturally draw cyclists, even in the absence of any bike facility, are likely to draw more bicyclists if a protected bike lane is constructed.
- A protected bike lane that improves connections between and among high-demand destinations such as schools, parks, transit stops, commercial areas, residential clusters, and other attractions will better serve a community than if it is located at random without these considerations.
- Consider the relationship with surrounding communities, ensuring connections between origins and destinations in a low-stress environment.
- Existing roadway drainage patterns can be considered for retrofit installations.
- Appropriate signing and pavement markings shall be provided to designate and regulate the separated bike lane.
- Specific vertical elements to be used along a corridor will depend on the context zone and target speed of the roadway.
- Placement and type of vertical elements should be consistent with the guidance in the Roadside Design Guide.



#### APPLICATIONS

Separated bike lanes are well-suited for installation along roadways with higher vehicular volumes and/or operating speeds, or where high levels of both bike and pedestrian activity are expected to provide separate facilities for each road user. They can provide useful bike network connections to off-road trail facilities. Separated bike lanes often require reallocation of existing street space, which may involve narrowing travel lanes, removing lanes, and/or reconfiguring on-street parking.

A separated bike lane may provide single direction or bidirectional bike travel. Single direction may run in the same direction with automobile travel, or contraflow to accommodate bike access on a one-way street.

Separated bike lanes are important when speeds of vehicles are high, leading to a higher probability of lateral shifts in the vehicular path particularly when large trucks are present, and in urban environments where many visual cues demand the attention of vehicle operators.

#### COMPLEMENTARY COUNTERMEASURES

- » Reduced curb radii
- » Green pavement markings
- » Road diet
- » Protected signal phases
- » Leading pedestrian intervals
- » Roadway lighting
- » Protected intersections

Additional scenarios where separated bike facilities are appropriate may include:

- » High bike / pedestrian volume road segments
- » Areas where children are expected to regularly use the facility
- » Bike-related crash history
- » Segments with lower densities of driveways / access points
- » Steep roadway grades resulting in greater speed differentials between motor vehicles and bikes
- » Roads in the vicinity of bike generators (transit hubs, schools, central business districts, etc.)
- Barrier widths will vary based on material used. Special consideration may be given to buffers when adjacent to parking lanes.
- Bike lanes are designated for exclusive use by bicyclists, and may be configured for one-way or two-way travel. Highlighting of conflicts is preferred, or bicyclist transitions that occur along the separated bike lane may be accommodated using complementary countermeasures.



#### REFERENCES

- » Maryland Department of Transportation State Highway Administration (MDOT SHA) Bicycle Policy & Design Guidelines
- National Association of City Transportation Officials (NACTO)
   Urban Bikeway Design Guide
- » Federal Highway Administration (FHWA) Separated Bike Lane Planning and Design Guide
- » FHWA Small Town and Rural Multimodal Networks

5

6



## CONTINENTAL CROSSWALKS



#### DEFINITION AND DESCRIPTION











Continental (Longitudinal Bar) crosswalks are a type of highvisibility crosswalk markings. Continental crosswalk markings use thick striping oriented parallel to the approach travel lanes to increase the visibility of pedestrian crossings for both pedestrians and motorists. Motorists are warned to expect pedestrian crossings while approaching the intersection and to stop for crossing pedestrians because these pavement markings can be detected sooner than traditional parallel line crosswalk markings. At uncontrolled locations, continental crosswalks identify a preferred crossing location for pedestrians. At midbloack locations, crosswalk markings legally establish the crosswalk in March 2019, Maryland Department of Transportation State Highway Administration (MDOT SHA) published Typical No. 550.02 detailing line width and spacing ranges for installation along MDOT SHA roadways.



#### CONSIDERATIONS

- Continental crosswalk markings are recommended for all crossings in school zones, serving trails, at uncontrolled crossings, midblock crossings, or crossings in a central business district.
- Crossings with motor vehicle speeds above 30 MPH, more than one lane in one direction, or an Annual Average Daily Traffic (AADT) above 9,000 can supplement continental crosswalk markings with additional treatments.
- Supplemental warning signage should be installed at uncontrolled crossings.
- Crosswalk markings at uncontrolled crossings must have appropriate sight lines to ensure adequate visibility, and induce motorist stopping.
- Crosswalk marking locations are preferred to be convenient for pedestrian access and accommodate the desirable path where practical.
- Crosswalk markings must be placed to include the limits of the depressed curb for a sidewalk ramp. All ramps must be compliant with the Americans with Disabilities Act (ADA).
- At controlled intersections, mark all legs where possible to reduce crossing exposure for pedestrians.
- Implement parking restrictions on the crosswalk approach at all pedestrian crossings to maintain sight lines. This may require a Memorandum of Agreement (MOA) with the jurisdiction responsible for parking enforcement.

#### APPLICATIONS

Continental (Longitudinal Bar) crosswalks consist of 16-inch to 24-inch wide pavement marking lines oriented parallel to the approaching travel way with 20-inch to 36-inch spacing.

- Crosswalk lines typically consist of 24-inch wide markings, 10 feet in length, spaced at 36 inches between lines. It is preferred that markings avoid wheel paths where possible.
- A minimum crosswalk width of 8 feet is preferred, and the maximum width may vary based on pedestrian demand and desirable paths within central business districts.

#### COMPLEMENTARY COUNTERMEASURES

- » Pedestrian Hybrid Beacon (PHB) or Rectangular Rapid-Flashing Beacon (RRFB)
- » Advance STOP HERE FOR PEDESTRIANS (R1-5b or R1-6a(3)) sign and stop line
- » Median pedestrian refuge island
- » Raised crosswalk (speed table)
- » Curb extensions
- » IN-STREET PEDESTRIAN CROSSINGS (R1-6a(1)) sign
- » ADA compliant curb ramps



#### REFERENCES

- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- » NCHRP Research Report 893

- » NCHRP Research Report 841
- » National Association of City Transportation Officials (NACTO) Urban Street Design Guide

7

Ω



### **GREEN PAVEMENT FOR BIKE LANES**



#### **DEFINITION AND DESCRIPTION**











Colored pavement within a bike lane increase visibility of the facility, highlight potential areas of conflict, and reinforce that drivers must yield to bicyclists when entering a conflict area. Green-colored pavement is used to designate locations where bicyclists are expected to operate, and areas where bicyclists and other roadway traffic might have potentially conflicting weaving or crossing movements. This may include a bike box, extension lines through an intersection or across driveways, turning queue boxes or protected intersections. Consistent application of color within a roadway corridor is important to promote clear understanding by all users.

Green-colored pavement have Interim Approval (IA-14) through Federal Highway Administration (FHWA) for use pending revision to the Manual on Uniform Traffic Control Devices (MUTCD) conditions. This provides guidance for the optional use of greencolored pavement in marked bike lanes and in extensions of bike lanes through intersections and other conflict areas.

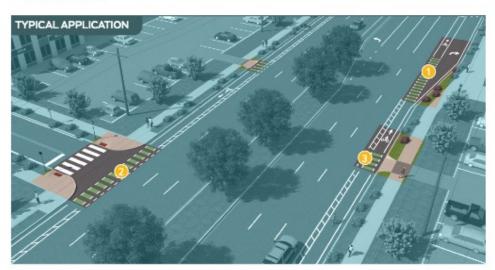
Benefits of colored pavement markings within bike lanes include:

- » Enhances the multi-modal character of a corridor.
- » Increases the visibility of bicyclists.
- » Discourages illegal parking, stopping or standing in the bike lane.
- » When used in conflict areas, raises motorist and bicyclist awareness to potential areas of conflict.
- » Increases bicyclist comfort through clearly delineated space.
- » Increases motorist yielding behavior.
- » Helps reduce bike conflicts with turning motorists.

#### CONSIDERATIONS

- Green-colored pavement shall only be used within bike facilities in accordance with FHWA Interim Approvals.
- Can be considered at conflict areas such as vehicle rightturn lanes (pocket lane transitions).
- Can be considered at intersections, particularly through wide or complex intersection where the bike path may be unclear, and conflicts with medium or high permissive turning volumes.
- Can be considered at driveways and Stop- or Yieldcontrolled streets where there are medium or high conflicting turn movements from the mainline.
- » Where typical vehicle movements frequently encroach into bike space, such as approaches and departures to intersections.
- Facility designers can match application strategy to desired design outcomes of projects.
- » Because the effectiveness of markings depends entirely on their visibility, maintaining markings must be a high priority.
- » Pavement within bike facilities must be maintained to remain free of potholes, broken glass, and other debris.




#### APPLICATIONS

Green-colored pavement may be used within any designated bike facility – cycle track, bike lane, bike box, or conflict areas

- Green-colored pavement may be used to highlight areas where drivers entering a turn lane cross a bike lane.
- Green-colored pavement may be used to highlight areas where drivers turning at intersections with public or private streets, and commercial entrances will cross a bike lane.
- Green-colored pavement may be appropriate crossing minor driveways or alleys where drivers may not expect to encounter bike traffic.

#### COMPLEMENTARY COUNTERMEASURES

- » In-lane floating bus stops
- » Raised crosswalks
- » Barrier separated and buffered bike lanes
- » Road diet
- » Protected intersections



#### REFERENCES

- » NACTO Urban Bikeway Design Guide
- FHWA MUTCD Interim Approval for Optional Use of Green Colored Pavement for Bike Lanes (IA-14)
- » FHWA MUTCD Interim Approval for Optional Use of an Intersection Bicycle Box (IA-18)
- » FHWA MUTCD Interim Approval for Optional Use of Two-Stage Bicycle Turn Boxes (IA-20)

9

10





#### DEFINITION AND DESCRIPTION













Hardened centerlines are roadway treatments that slow leftturning vehicle traffic by "hardening" (creating a physical barrier) between opposing travel directions. The hardened centerline may also extend past the crosswalk to provide an even greater safety benefit. Hardened centerlines can slow down left-turning vehicles by

discouraging motorists from over-steering through a turning movement. This is achieved by forcing the left-turning vehicle to navigate around the hardened centerline, and by making it more difficult for the left-turning vehicle to use parts of the crosswalk and opposing vehicle lanes to execute a wider, higher speed left turn. The smaller turn radius not only slows the left-turning vehicle down, but also increases the visibility of pedestrians in the crosswalk, improves motorist reaction time to pedestrians in the crosswalk, and reduces serious injury risk in the event of a collision.

Reducing the left-turning vehicle's speed and increasing visibility through a tighter turn radius improves safety for crossing pedestrians, bicycles traveling in the roadway, vehicles in the opposing travel lane, and the left-turning vehicle itself. The New York City Department of Transportation (NYCDOT) has shown that pedestrian injuries at intersections have decreased by 20% where hardened centerlines have been implemented, and 85th percentile left turn speeds at those intersections



have decreased by 59.8%. A study of similar hardened centerline treatments in Washington, DC resulted in a more modest 5.6% reduction of 85th percentile left turn speeds (from 18mph to 17mph).

Installing hardened centerlines can involve relatively low-cost temporary curbing materials such as rubber curbs and flexible delineators, and can be used at both signalized and unsignalized

#### CONSIDERATIONS

- Hardened centerline treatments can be installed using temporary curbing materials, which may consist of a rubber curb and rubber speed bumps meeting MDOT SHA specifications or per the Qualified Products List (QPL). NYCDOT uses 6', 10', and 19' rubber speed bumps.
- A hardened centerline may extend into the intersection, provided that the crosswalks and vehicle lanes remain clear.
- » Striping the rubber curb border in yellow or using products with high visibility features, such as flexible delineators, may increase the visibility of the hardened centerline.
- Left turn volume, pedestrian and/or bicyclist crash history, and field-observed pedestrian-vehicle conflicts can be used to identify and prioritize locations for hardened centerlines.
- Centerline hardening treatments cannot be used in lieu of required KEEP RIGHT (R4-7 or R4-7(1)) and OBJECT MARKER (OM1-3) signs where median noses are present.
- Hardened centerlines may be installed using products with mountable heights to allow vehicles with larger turn radii to proceed unobstructed through intersections with this
- While no maximum posted speed limit has been established for the use of hardened centerlines, operating speed for the intersection can be considered during implementation.
- Where opposing concurrent left turn movements are present, perform an AutoTurn analysis to ensure that resulting turning paths do not conflict. Larger design vehicles may encroach on centerline treatments in some scenarios.

#### APPLICATIONS

- The hardened centerline up to the stop line may consist. of cast-in-place curbing materials such as concrete. but may also be installed using temporary or "quickbuild\* curbing materials such as rubber curbs or flexible delineators. Striping the border of the hardened curb or installing flexible delineators will increase the visibility of the treatment. A physical median is preferred, however it is not required for use of centerline hardening.
- An additional centerline treatment is preferred to extend beyond the crosswalk and into the intersection, to provide a greater safety benefit by further slowing left-turning vehicles. Similar to the hardened centerline up to the stop line, this treatment may be constructed with cast-in-place curbing materials or "quick-build" materials as appropriate. Striping around the curbing material will increase visibility.

#### COMPLEMENTARY COUNTERMEASURES

- » Continental-style crosswalks
- » Lead Pedestrian Interval (LPI) phasing
- » TURNING TRAFFIC YIELD TO PEDESTRIANS (R10-15) signage
- » In-street pedestrian warning signs
- » Median pedestrian refuge islands



#### REFERENCES

- » NYCDOT Turn Calming Program
- National Cooperative Highway Research Program (NCHRP) Research Report 926
- » Insurance Institute for Highway Safety (IIHS), "Simple infrastructure changes make left turns safer for pedestrians"

11

12



## IN-LANE FLOATING BUS STOPS



### **DEFINITION AND DESCRIPTION**











An in-lane floating bus stop consists of a raised platform that allows buses to pick up passengers without pulling out of traffic lanes. Bike facilities such as bike lanes are diverted behind the bus stop amenities. This configuration allows transit vehicles to stay in their own lane without crossing the bike paths, and gives cyclists added protection from vehicular traffic at the bus stop.

Benefits to an in-lane floating bus stop include:

- » Where transit vehicles stop in the travel lane, dwell times can be reduced, which improves reliability. Enhanced reliability can increase transit usage and reduce overall roadway congestion.
- » Eliminate bus-bike conflicts at stops where buses merge across or into bike travel path at stops, causing bikes to merge into general traffic to pass the stopped bus, only to be passed again as the bus accelerates.
- » Islands provide more space for transit passengers and amenities while maintaining a clear pedestrian path on the sidewalk.



### CONSIDERATIONS

- Streets with moderate to high transit frequency, transit ridership, pedestrian volume, or bicycling volume can utilize boarding islands to maintain in-lane stops and provide separation to more users.
- Island stops must maintain continuity of the bike lanes if bike facilities exist.
- » Platforms can be configured for level or near-level boarding.
- If sidewalk width permits, boarding islands may be applied to streets with curbside transit operations and a bike facility.
- Boarding islands usually require less complex drainage modifications than boarding bulbs.
- Proper markings and signing can be provided at pedestrian-bike conflict points. Bike approaches can be required to yield right-ofway to pedestrians where crossings are provided.
- Grading in the boarding island and bike lane must ensure positive drainage into the roadway to prevent pooling and sediment from settling in the bike facility.
- Bus stops near closely spaced driveways or other vehicular access points are not candidate locations for floating bus stops.
- » Special considerations are required for in-lane floating bus stops located at signalized intersections, including bike and pedestrian signal controls.
- It is not preferred for an uncontrolled bike or pedestrian movement to cross a signal-controlled bike or pedestrian movement.
- » Boarding islands must be designed to permit accessible boarding.
- Detectable warning surfaces must be placed on both sides of every crossing over the bike lane.
- » Americans with Disabilities Act (ADA) requirements must be met.
- » Railings can help reduce pedestrian-bike conflict points.

### APPLICATIONS

It is preferred that in-lane floating bus stops include proper bus stop signage located at every stop in the network, marking where passengers can stand to wait and where the bus operator should stop, with supplemental curb restriction signs as needed. Transit signing, shelters and other amenities should follow Maryland Department of Transportation Maryland Transit Administration (MDOT MTA) or relevant transit agency guidance. The curbed island must meet ADA requirements.

- A minimum 5-ft x 8-ft level landing is required for boarding and alighting.
- An accessible route is required from the sidewalk to the boarding and alighting area, ADA-compliant ramps, if grade changes are required.
- The bike path are preferred to be clearly marked with the appropriate bike facility pavement markings and signs.

- Where a pedestrian path crosses the bike facility, crosswalk markings and yield lines are preferred.
- Sailings may be installed along the bike lane curb line, as determined by the transit agency.

### COMPLEMENTARY COUNTERMEASURES

- » Continental (Longitudinal Bar) crosswalks
- » Raised crosswalks
- » Green pavement markings
- » Protected phasing (bike signal phases)
- » Separated Bike Lane



#### REFERENCES

- » National Association of City Transportation Officials (NACTO) Urban Bikeway Design Guide
- » NACTO Transit Streets Design Guide

13

1/





### **DEFINITION AND DESCRIPTION**











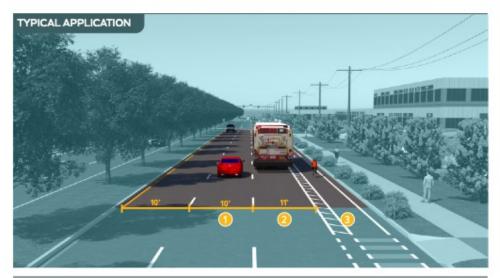
Where safety and speeding concerns are identified, or where travel lanes are wide or not defined with markings, a lane width reduction or "lane diet" may be used to reallocate road space. Lane width reductions often occur during a resurfacing or roadway improvement project, and may include re-purposing of additional paved space with markings, or by physically removing unused paved areas.

Lane diets provide multiple benefits, including encouraging reduced vehicle operating speeds in denser context environments, reducing crossing distances for pedestrians to decrease exposure to motor vehicle traffic, allowing for compact intersection geometry that facilitates shorter signal cycles, reducing paved surfaces to decrease stormwater impacts, and reallocating roadway space for other uses. American Association of State Highway and Transportation Officials (AASHTO) outlines minimum and recommended lane widths that vary, depending on the roadway classification, with additional consideration of surrounding land uses and community context.

### CONSIDERATIONS

- Lane widths of 10 feet may be appropriate in urban areas and have a positive impact on a street's safety without impacting traffic operations.
- » Along truck and bus routes, 11 foot lanes may be necessary to accommodate larger vehicles. On multilane roads, a wider outside lane is often provided. Identification of transit vehicles and truck classifications along the segment may be needed to determine the appropriate minimums.
- Additional lane width may be necessary to accommodate turning movements, or along tight curves.
- Lane width reductions cannot be considered along expressways or freeways, except for work zone activities.
- » Lane width reductions must properly transition to existing lane widths at the limits of the improved segment.






### APPLICATIONS

- 10-foot lane widths may be desirable to encourage reduced speeds and enhance safety.
- 11-foot lanes may be desired by transit agencies, or required for corridors with high volumes of buses and heavy vehicles.
- 6 Additional paved areas that are not designated for vehicular use may be marked as shoulders, bike lanes, painted buffers, parking lanes, or removed to accommodate construction of other roadside facilities.

### COMPLEMENTARY COUNTERMEASURES

- » Posted speed limit reduction
- » Road diet
- » Barrier-separated or buffered bike lanes
- » Curb extensions



### REFERENCES

- » American Association of State Highway Transportation Officials (AASHTO) Green Book - A Policy on Geometric Design of Highways and Streets
- » National Association of City Transportation Officials (NACTO) Urban Street Design Guide – Lane Width
- » Pedestrian Safety Guide and Countermeasure Selection System (PEDSAFE)

15



# LEADING PEDESTRIAN INTERVALS



### **DEFINITION AND DESCRIPTION**











A leading pedestrian interval (LPI) is the presence of a pedestrian phase prior to any vehicular phase when crossing at a signalized intersection. The interval allows the pedestrian the opportunity to enter an intersection 4 to 7 seconds (7 seconds preferred) before any vehicles are given a green signal indication. This extra time provides pedestrians with an opportunity to establish their presence in the crosswalk before motorists start turning and provides additional crossing time for those who need it. This head start increases the percentage of motorists who yield the right-of-way to pedestrians and can reduce conflicts between pedestrians crossing a roadway and turning vehicles. Consideration will be given to balancing vehicle capacity at each location where the treatments are being considered.

Additional benefits of a LPI include:

- » Increased visibility of crossing pedestrians.
- » Enhanced safety for pedestrians who may be slower to start into the intersection.
- » Provide prioritization to vulnerable road users.

LPIs can be provided automatically with each phase (passive) or be provided only when actuated (active).



### CONSIDERATIONS

- » At locations where driver yielding is observed to be low, a LPI can be considered to improve compliance.
- Crossings with low pedestrian volumes may result in drivers not expecting pedestrians at a given location.
- » An LPI may be considered at all signalized intersections.
- » An LPI can be considered where there are medium to high volumes of turning vehicles conflicting with high pedestrian volumes, and at locations with particularly high elderly populations, a history of pedestrian collisions involving turning vehicles, or at school crosswalks.
- An LPI duration may be extended, if desired, or an exclusive pedestrian walk phase may be considered instead of an LPI.
- Pedestrian crossings providing LPI can operate on pedestrian recall.
- Where pedestrian volumes are so high that motorists are unable to turn across the crosswalk, an exclusive turn phase can be considered.
- Conflicting right-turn movements may be restricted with a No Turn on Red.
- Left turning traffic can use Protected phasing, or approaches phasing can be split to avoid potential confusion caused by permissive left turn phasing. A LPI with protected-permissive turn phasing should be avoided.

### APPLICATIONS

- The LPI can consist of a 4 to 7 second Walk phase (4 second minimum) prior to the corresponding parallel vehicular phase. The LPI phase may be on pedestrian recall or actuated.
- Turn on red restrictions may be installed to ensure leading pedestrian movements are protected and provide vulnerable road users to establish their presence in the crosswalk.
- TURNING VEHICLES YIELD TO PEDESTRIANS (R10-15) sign may be provided to reinforce pedestrian priority in the crosswalk.

### COMPLEMENTARY COUNTERMEASURES

- » Continental (Longitudinal Bar) crosswalks
- » Protected left-turn phasing
- » Right turn on red restrictions
- » Hardened centerlines
- » Curb extensions
- » Lighting



### REFERENCES

- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- » National Association of City Transportation Officials (NACTO) Urban Street Design Guide
- » PEDSAFE Pedestrian Safety Guide and Countermeasure Selection System
- » Federal Highway Administration (FHWA) Proven Safety Countermeasures

17





### **DEFINITION AND DESCRIPTION**











Midblock Crosswalks designate appropriate locations for pedestrians to cross a road at non-intersection locations, and include appropriate traffic control devices to manage conflicts and improve safety. These facilities may be provided where significant pedestrian generators are located on opposite sides of a road, or where a pedestrian or bike path is located away from intersections, like a regional trail. Frequent applications include midblock bus stops, metro stations, parks, plazas, or entrances to key destinations.

The location and placement of midblock crosswalks are subject to a variety of factors, including context, intersection spacing, roadway width, traffic volume and speed, stopping sight distance, presence of pedestrian generators, and reported safety concerns. Because midblock crosswalks are located away from intersections, where motorists traditionally expect to encounter pedestrians crossing the road, design of the crosswalk must include appropriate traffic control features. Where conflicts are uncontrolled, the design must allow drivers to recognize potential conflicts, and stop for pedestrians in or entering the crosswalk.

### CONSIDERATIONS

- » Midblock crosswalks can be provided where there is evidence of a pedestrian desire line, including pedestrian generators, trails, or observed road user behaviors, and where diversion to other crosswalks is unlikely.
- Midblock crosswalks can include complimentary countermeasures that address traffic characteristics, and increase potential driver compliance.
- Where crosswalks are provided across multi-lane approaches, additional traffic controls are necessary to make the crossing location and pedestrians in the crosswalk more visible to approaching drivers.
- Midblock crosswalks can be located outside of the influence of nearby intersections.
- » Roadway lighting may be provided at the crossing location. The lighting designer should ensure the ramps are illuminated as well as the roadway crossing itself.
- Americans with Disabilities Act (ADA)-complaint ramps are required.





### APPLICATIONS

- Continental (Longitudinal Bar) crosswalk markings improve driver recognition that a crosswalk is present, and must be provided at all uncontrolled midblock crosswalk locations. These markings may be appropriate for controlled midblock crosswalks, and often meet other Maryland Department of Transportation State Highway Administration (MDOT SHA) criteria for use of high-visibility crosswalks, such as trail crossings or school crossings.
- 2 Appropriate warning sign assemblies and in-road pedestrian crosswalk signs may be provided. Actuated traffic control devices like Pedestrian Hybrid Beacon (PHB) or Rectangular Rapid-Flashing Beacon (RRFB) are appropriate for crosswalks on higher speed or volume roads.

Advance stop lines and STOP HERE FOR PEDESTRIANS (R1-5b or R1-6a(3)) signs may be provided to increase visibility of pedestrians in the crosswalk.

### COMPLEMENTARY COUNTERMEASURES

- » Continental (Longitudinal Bar) crosswalk markings
- » PHB or RRFB
- » Curb extensions
- » Raised crosswalk
- » Median pedestrian refuge islands
- » In-street pedestrian crossing signs



#### REFERENCES

- » MDOT SHA Accessibility Policy & Guidelines for Pedestrian Facilities along State Highways
- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- » Federal Highway Safety Administration (FHWA) Safety for Every Pedestrian (STEP) Resources

19

# NO TURN ON RED



### DEFINITION AND DESCRIPTION



A No Turn On Red (NTOR) restriction is designated by a posted NO TURN ON RED (R10-11b) sign at the signalized intersection for any approach where the restriction may improve safety. The purpose of this treatment is to eliminate conflicts between turning vehicles and pedestrians or bicyclists during a concurrent walk (or bike signal) phase, and to mitigate sight line restrictions.





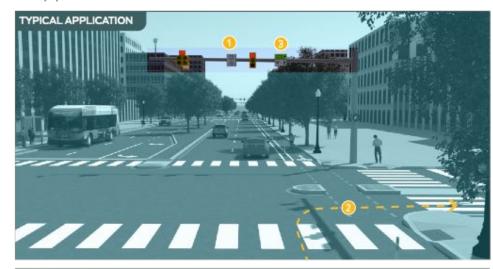






### CONSIDERATIONS

- Intersections with exclusive pedestrian phases, leading pedestrian intervals, bike boxes or left-turn queue boxes may need restrictions to avoid conflicts with pedestrians or bicyclists.
- School crossings are appropriate locations to restrict turns on red to improve student safety.
- Turns across two-way separated bike lanes may be restricted due to increased complexity of conflicting movements.
- Part-time NTOR restrictions may be appropriate during the busiest times of the day.
- It is preferred for signs to be clearly visible to turning motorists and positioned near the signal face associated with the turning movement.
- Restricting turning movements to provide enhanced vulnerable road user safety may result in reduced vehicular capacity.
- Implementation of NTOR requires a Memorandum of Agreement (MOA) with the enforcing jurisdiction.




### APPLICATIONS

- A NO TURN ON RED (R10-11b) sign is preferred to be positioned overhead and close to the signal face associated with the turning movement. Alternative sign locations must be clearly visible from the approach, preferably on the far side of the intersection.
- Geometric features that reinforce the turn restriction are preferred, including compact approach geometry that considers the appropriate design vehicle.
- Additional signing and/or pavement markings that emphasize conflicting pedestrian or bike traffic may be used to reinforce the purpose of the restriction.

### COMPLEMENTARY COUNTERMEASURES

- » Leading pedestrian intervals
- » Exclusive pedestrian phase
- » Buffered or barrier-separated bike lanes
- » Protected intersections



### REFERENCES

- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- Pedestrian Safety Guide and Countermeasure Selection System (PEDSAFE)
- » Bicycle Safety Guide and Countermeasure Selection System (BIKESAFE)
- » Highway Safety Manual 1st Ed. 2010

21



### PEDESTRIAN HYBRID BEACON



### DEFINITION AND DESCRIPTION












Pedestrian Hybrid Beacons (PHBs), also called the High-intensity activated crosswalk (HAWK), are traffic control devices that are installed at crossings of major streets that provide a controlled opportunity for pedestrians to cross the street. The beacon is different from a conventional traffic signal because it includes a three-section triangular signal display, with two red signal faces side-by-side, above a yellow signal face below and centered between the red signals. It also remains "dark" until a pedestrian that desires to cross the street is detected. The signal activates with an initial yellow to red lighting sequence that directs motorists to slow and come to a stop. The pedestrian signal then displays WALK to allow the pedestrian to begin their crossing. At conclusion of the WALK interval, the red signals begin flashing in an alternating wig-wag pattern, and the pedestrian signal displays Flashing Don't Walk, and upraised hand symbols for the pedestrian clearance interval. During this time, drivers are permitted to treat the beacon under a stop-and-go operation, yielding to any pedestrians in the crosswalk, or proceeding if the crosswalk is clear. After the pedestrian clearance is complete, the hybrid beacon reverts to a dark display.

A 2010 FHWA study found that PHBs can reduce pedestrian crashes by 69% and all crashes by 29%. PHBs were granted interim approval for use by SHA on November 1, 2017.



### CONSIDERATIONS

- PHBs may be appropriate where traffic signals are unwarranted.
- » PHBs may be used at intersection or midblock locations.
- At midblock crossing locations where posted speed limits are equal to or greater than 40 MPH, PHBs may be strongly considered
- » PHBs are beneficial at uncontrolled locations with safety concerns or high frequency of pedestrian crashes, long pedestrian delay due to few available gaps in traffic, and near schools, parks, and senior centers.
- The preferred design is to place the beacon over or near the crosswalk. This configuration increases distance between the stop line and crosswalk, increasing visibility of crosswalk users and potential for driver compliance.
- PHBs may be placed outside of the functional area of signalized intersections.
- Some cities use PHBs along heavily used bike routes to help bicyclists cross major streets.
- Research indicates that PHBs are most effective at roads with three or more lanes with Average Annual Daily Traffic (AADTs) above 9.000.
- Rectangular Rapid Flashing Beacons (RRFB) cannot be installed with PHBs.
- » PHBs are preferred to operate free, calling a phase promptly after being actuated by a pedestrian, rather than as part of a systemized corridor to limit pedestrian delay and provide greater compliance from all road users.
- \* Americans with Disabilities Act (ADA)-compliant facilities, including ramps and Accessible Pedestrian Signals (APS)/ Countdown Pedestrian Signals (CPS) are required with all PHB installations.
- Median widths over 16 feet may need to evaluate APS/CPS placement in the median if a pedestrian refuge is provided.

### APPLICATIONS

- PHB installations are to include overhead signal displays mounted on mast arms.
- Per Chapter 4F of Maryland Manual on Uniform Traffic Control Devices (MdMUTCD), signal displays are a three-section assembly, with a circular yellow centered below two horizontally aligned circular red indications. At least two signal displays are required for each approach.
- CROSSWALK, STOP ON RED (R10-23) or STOP ON RED-PROCEED ON FLASHING RED WHEN CLEAR (R10-23a) sign is required for each approach.
- APS detection is required to activate the beacon. CPS may be located on a mast arm pole upright or pedestal post.
- 6 Provide continental crosswalk markings.

PHB installations require stop lines for each approach. For midblock applications, it is preferred that advance stop lines be placed at least 20 feet in advance of the crosswalk, 40 feet in advance of the signal displays, and be supplemented with STOP HERE ON RED (R10-6a) signs.

### COMPLEMENTARY COUNTERMEASURES

- » Continental (Longitudinal Bar) crosswalks
- » Curb extensions
- » Reduced lane widths
- » Median pedestrian refuge islands
- » Driver education



#### REFERENCES

- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- » Federal Highway Administration (FHWA) Proven Countermeasures
- » FHWA Safety for Every Pedestrian (STEP) Guide

23



# POSTED SPEED LIMIT REDUCTION



### **DEFINITION AND DESCRIPTION**











Posted speed limits notify drivers of the maximum safe speed, established either by statute or through an engineering study to establish a speed zone, based on a variety of operational, safety and roadside factors. On roadways with observed safety challenges, where reducing operating speeds would reduce the frequency of collisions, and reduce the severity of collisions that do occur, a posted speed limit reduction may be utilized to improve safety.

The Insurance Institute for Highway Safety (IIHS) examined longterm changes associated with statewide maximum posted speed limit changes between 1993 and 2017. They determined that a 5 MPH increase in the maximum posted state speed limit was associated with an 8% increase in roadway fatalities on interstates and freeways and a 3% increase on other roads.

In denser context areas, a reduction in the posted speed limit may have a significant impact on safety for more vulnerable users, including pedestrians and bicyclists. Higher operating speeds reduce a driver's ability to react when they encounter these users in the road, and result in higher severity outcomes when collisions

As part of the proactive treatments aimed at increasing safety for vulnerable road users, Maryland Department of Transportation State Highway Administration (MDOT SHA) has the option, particularly within the highlighted context zones, to consider posted speed limit reductions if speed is identified as a factor in pedestrian- or cyclist-related crashes along a corridor. Posted speed limit reductions require study as part of the application, but engineering judgment may be used to identify safety concerns and potential geometric modifications to complement the reduction in posted speed limit.

### CONSIDERATIONS

- » Posted speed limit reductions may be reinforced with other roadway design elements that are self-enforcing and encourage motorists to travel at or below the target speed (operating speed that the designer intends for drivers to use) to maximize the safety benefit.
- If incorporating the necessary roadway design elements to achieve the desired target speed is cost prohibitive, automated speed enforcement may be considered. Applicable environments for automated speed enforcement are established by state statute, and may not be permitted on all roadways.
- Changes to posted speed limits may require documentation in the form of a Memorandum of Agreement or Memorandum of Understanding with the local jurisdiction.



### APPLICATIONS

SPEED LIMIT (R2-1) signs are posted at the point where the reduced posted speed limit begins. Post signs on both sides of the travelway where a median is present.

New posted speed limit sign assemblies may be supplemented with NEW (W16-14(1)) plaques for a period of 30 to 90 days to notify drivers of the change.

Driver education using variable message boards can be considered, prior to enacting the posted speed limit reduction and during the initial 30 to 90 day period.

According to the Maryland Manual on Uniform Traffic Control Devices (MdMUTCD), REDUCED SPEED LIMIT AHEAD (W3-5) signs are to be posted approaching the segment of road where the posted speed limit has been reduced by more than 10 MPH. Within a reduced speed zone along a State, arterial or major highway, a second SPEED LIMIT (R2-1) should be placed within 800 feet beyond the first sign for lower speeds (35 mph or less) or within 1500 feet for higher speeds (40mph and higher).

### COMPLEMENTARY COUNTERMEASURES

- » Automated Enforcement
- » Lane width reduction
- » Road diet
- » Raised Crosswalks
- » Reduced curb radii



### REFERENCES

- National Cooperative Highway Research Program (NCHRP) Research Report 926
- National Association of City Transportation Officials (NACTO)
   Urban Bikeway Design Guide
- » Federal Highway Administration (FHWA) Speed Management Safety Initiative
- » National Conference of State Legislatures Transportation Review - Speeding and Speed Limits

25



# PROTECTED INTERSECTIONS



### **DEFINITION AND DESCRIPTION**











A protected intersection maintains physical separation between wehicular and bicyclist movements through an intersection. A corner protection island, forward queuing area, and recessed bike and pedestrian crossings reduces vehicular turning speeds, increases visibility of bicyclists or pedestrians crossing the street, and provides space to yield while vulnerable users clear the intersection. This treatment is most effective at locations with high volumes of bicyclists and motorists, or medium to high volumes of bicyclists, motorists, and pedestrians. Protected intersections are a preferred treatment for separated bike lanes in an urban context. At signalized intersections, signal timing may provide leading or protected phasing to further reduce potential conflicts.





### CONSIDERATIONS

- Mountable truck aprons can reduce turning speeds for passenger vehicles while accommodating the offtracking of larger vehicles where a larger corner radius is necessary.
- » Use clear markings and signs to direct users.
- Protected intersections may require greater clear space along the intersection approach than conventional intersections to improve drivers visibility and recognition of bicyclists when approaching the intersection.
- » Americans with Disabilities Act (ADA) compliance and Accessible Pedestrian Signals (APS) guidelines will require detailed design to ensure accessibility criteria can be achieved.
- It is preferred that rights-of-way at pedestrian-bike conflict points are clearly defined and reinforced with proper traffic control devices and signal phasing. Yield-controlled crossings cannot conflict with a signalcontrolled crossing.
- » Bike detection is required, except where the bike approach is served by a recall phase.
- On-street parking restrictions may be established to provide adequate sight lines.
- » No Turn on Red restrictions are recommended.



### APPLICATIONS

- Corner Islands may consist of curb, or paint and vertical separation material like flex posts. Curb radii can be minimized to encourage slow turning speeds. Mountable truck aprons may be used to accommodate infrequent larger design vehicles, but still promote safe turning behaviors by smaller passenger vehicles.
- It is desirable for approaches to the protected intersection to include a clear space of 40 to 60 feet in the buffer to provide a clear view of approaching bicyclists to turning motorists.
- Green-colored pavement may be used to designate the bike lane within the intersection. Green conflict zone markings can be provided through the intersection to further emphasize the conflict between turning motorists and through bicyclists.
- No Turn on Red restrictions can reduce potential conflicts. Where 2-way bike lanes are provided, the restriction is required.
- Continental crosswalks are preferred where pedestrian paths cross bike facilities.

Bike signal indications may be used where phase separation eliminates motor vehicle conflicts or where extra emphasis on bike priority is desired. If bike signal indications are not provided, it may be appropriate to use signing to direct bicyclists to use pedestrian signals.

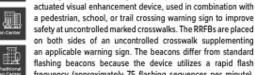
### COMPLEMENTARY COUNTERMEASURES

- » Bike lanes/barrier-separated bike lanes
- » Leading Pedestrian Interval (LPI)
- » Protected phasing (bike signal phasing)
- » Green-colored pavement
- » Median pedestrian refuge islands
- » Continental (Longitudinal Bar) crosswalk markings
- » No Turn on Red restrictions



#### REFERENCES

- National Cooperative Highway Research Program (NCHRP) Research Report 926
- Federal Highway Administration (FHWA) Separated Bike Lane Planning and Design Guide
- » National Association of City Transportation Officials (NACTO) Don't Give Up at the Intersection Guide
- » FHWA MUTCD Interim Approval for Optional Use of a Bicycle Signal Face (IA-16)


27



# RECTANGULAR RAPID FLASHING BEACON



### **DEFINITION AND DESCRIPTION**










a pedestrian, school, or trail crossing warning sign to improve safety at uncontrolled marked crosswalks. The RRFBs are placed on both sides of an uncontrolled crosswalk supplementing an applicable warning sign. The beacons differ from standard flashing beacons because the device utilizes a rapid flash frequency (approximately 75 flashing sequences per minute), and brighter light intensity display. RRFBs can be activated by passive or pedestrian-actuated detection.

Rectangular Rapid Flashing Beacons (RRFBs) are a pedestrian-

RRFBs have been shown to significantly increase motorist compliance at uncontrolled crosswalks, with motorist compliance rates ranging from 34% to over 90%. Similar benefits would be expected for bicyclists in crosswalks serving shared-use facilities.

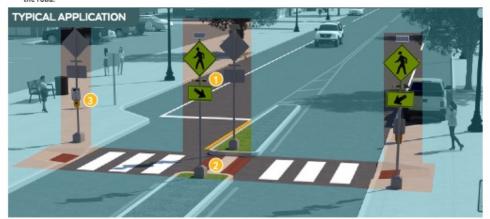
Federal Highway Administration (FHWA) granted interim approval to RRFBs for optional use in limited circumstances in March 2018 in accordance with Interim Approval for Optional Use of Pedestrian-Actuated Rectangular Rapid-Flashing Beacons at Uncontrolled Marked Crosswalks (IA-21). The interim approval allows for usage as a pedestrian-actuated visibility enhancement to supplement standard pedestrian crossing signs, school crossing signs, or combination bicycle and pedestrian crossing signs at uncontrolled marked crosswalks.



### CONSIDERATIONS

- RRFBs are most effective along roadways with low-to-medium vehicle volumes, and at roadways with posted speeds less
- The crosswalk approach may not be controlled by a YIELD sign, STOP sign, or traffic control signal.
- RRFBs may be used to supplement crossings of a roundabout.
- » RRFBs are appropriate for two-lane streets. Careful consideration must be given to installation on multi-lane roadways to avoid multiple-threat crash risk.
- If multiple RRFBs are needed in close proximity, consider redesigning the roadway to address systemic safety
- » If sight distance is a concern, IA-21 permits installation of supplemental advanced RRFB assemblies to provide upstream warning. However, other treatments may be more appropriate.
- An RRFB can be installed in the median rather than the far side of the roadway if there is a pedestrian refuge or other type of
- » Advance stop line pavement markings and signs may be used
- Solar equipped RRFB units can be used to eliminate the need for a wired power source.
- Americans with Disabilities Act (ADA)-compliant ramps and Accessible Pedestrian Signals (APS) pushbuttons are required.
- RRFB units are typically installed supplementing groundmounted sign assemblies on pedestal poles with breakaway bases, but may be installed in overhead mast arm mounted applications for specific site constraint conditions.

### APPLICATIONS

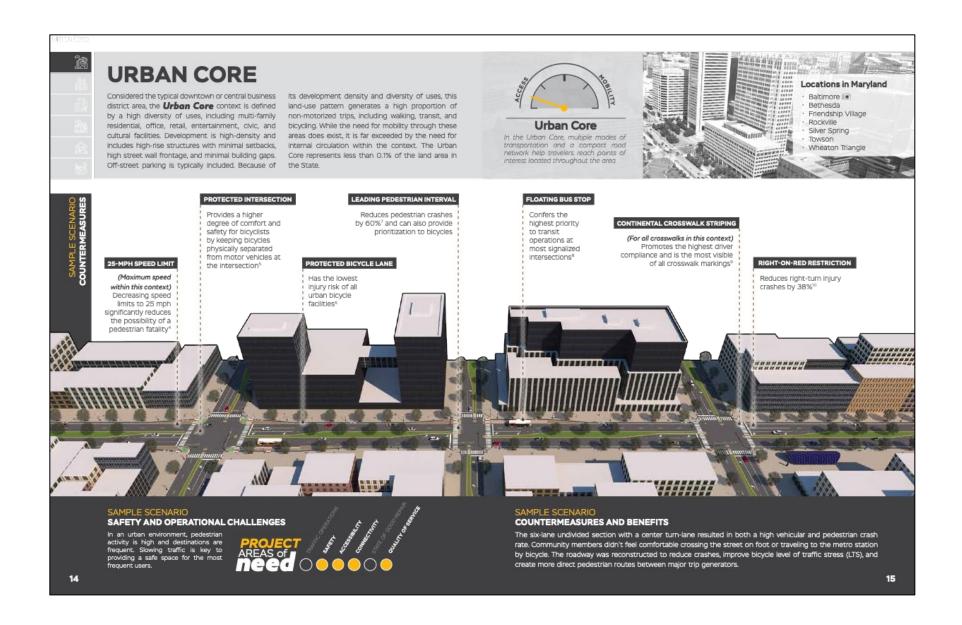

All RRFB installations must comply with the requirements of FHWA IA-21.

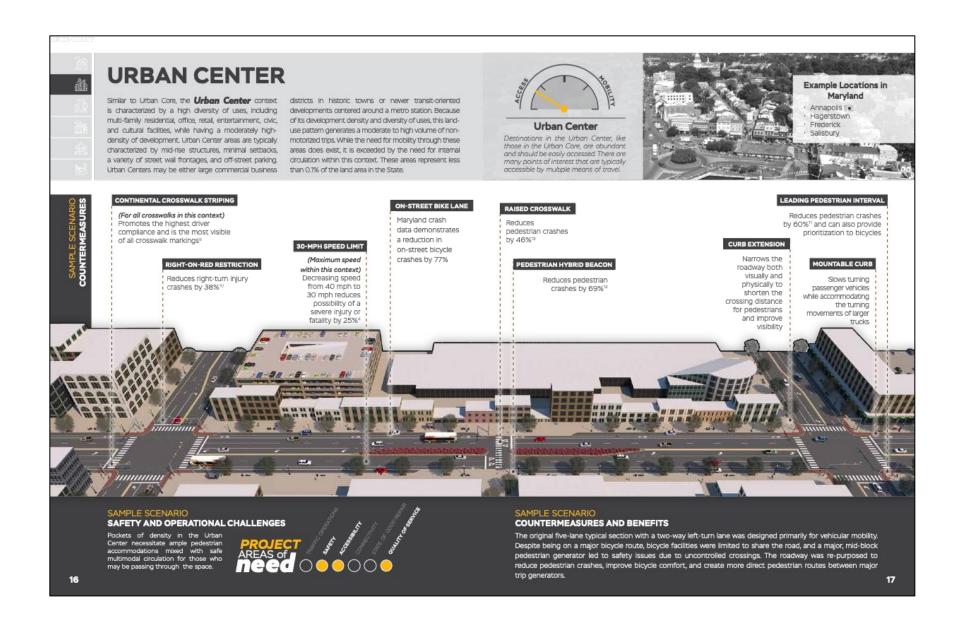
- 1 A RRFB consists of two rapidly flashed rectangular-shaped yellow indications with an LED-array-based light source. RRFB units must supplement a PEDESTRIAN (W11-2). SCHOOL (S1-1), or COMBINATION BIKE AND PEDESTRIAN CROSSING (W11-15) sign, which may be mounted overhead, or post-mounted with a supplemental diagonal downward
- Post-mounted RRFB units are required on both the right and left sides of the travelway. For median-divided roadways, place the left side unit in the median, or if the median width is insufficient, the device may be placed on the left side of the road.

APS pushbuttons are required for pedestrian detection.

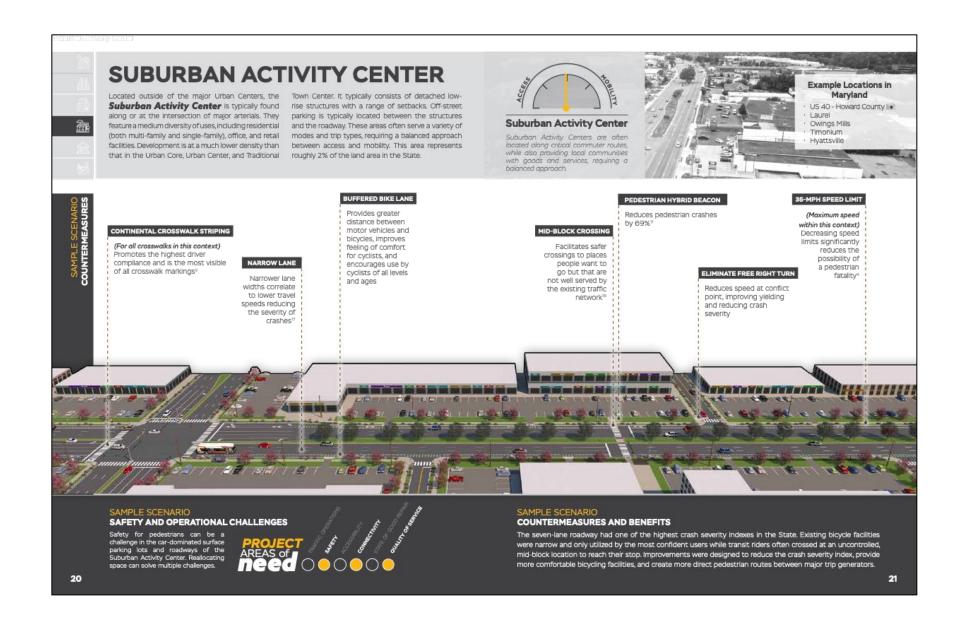
### COMPLEMENTARY COUNTERMEASURES

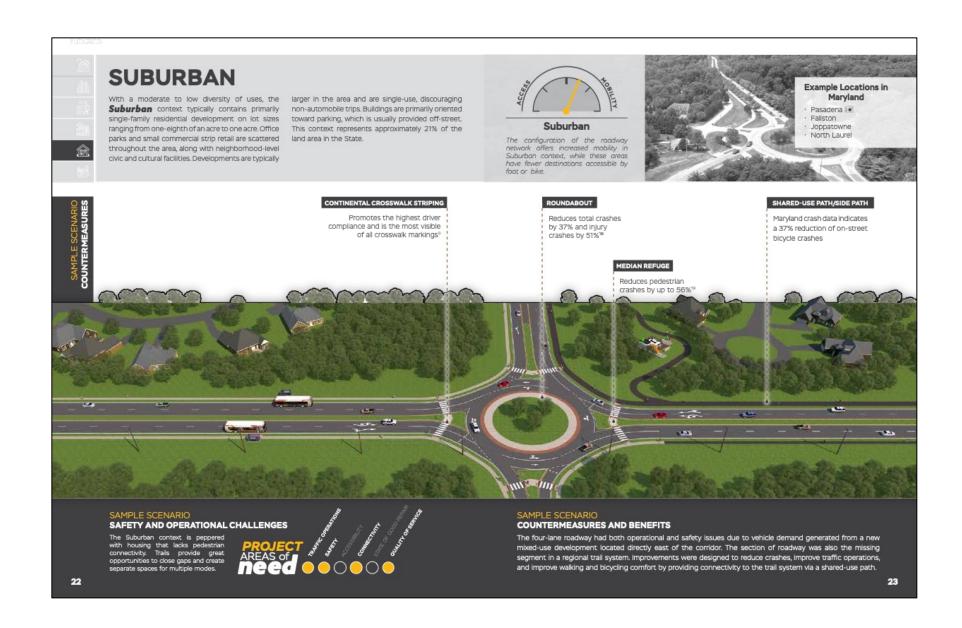
- » Continental (Longitudinal Bar) crosswalks
- » Raised crosswalk
- » Curb extensions
- » In-street pedestrian warning signs
- » Median pedestrian refuge islands
- » Reduced lane widths





### REFERENCES

- » FHWA Manual on Uniform Traffic Control Devices (MUTCD) - Interim Approval for Optional Use of Pedestrian-Actuated Rectangular Rapid-Flashing Beacons at Uncontrolled Marked Crosswalks (IA-21)
- » Pedestrian Safety Guide and Countermeasure Selection System (PEDSAFE)
- » National Cooperative Highway Research Program (NCHRP) Research Report 926
- » FHWA Safety for Every Pedestrian (STEP) Guide


29


| Appendix E Maryland DOT Context Frameworks |
|--------------------------------------------|
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |











### Appendix F KYTC's Use of Functional Classification

### **KYTC's Use of Functional Classification**

| Document                                                      | Page   | Topic                                     | Who?                                       | What?                                                                                                                                                                                                                                                      | Why?                                         | When?                                                                                                       |
|---------------------------------------------------------------|--------|-------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Planning<br>Guidance<br>Manual                                | 203-5  | Highway<br>Information<br>System (HIS)    | Data Management and Transportation Systems | KYTC's Functional Classification System is an important planning tool that groups streets and highways according to the character of travel service they provide. Modifications require approval of the KYTC Secretary through the Official Order process. | FHWA Criteria<br>and Procedures              | Continuously monitored and updates are made as community growth and changes in travel patterns necessitate. |
| KYTC Website                                                  | Web    | Highway<br>Information<br>System (HIS)    | Data Management and Transportation Systems | Functional Classification Maps and Reports, GIS<br>Data                                                                                                                                                                                                    | FHWA Criteria<br>and Procedures              | Continuously monitored and updates are made as community growth and changes in travel patterns necessitate. |
| Planning<br>Guidance<br>Manual                                | 503-1  | Official Highway<br>System Records        | Transportation<br>Systems                  | Notify all necessary personnel of approved revisions to functional classification system  Conform                                                                                                                                                          |                                              | Upon approval.                                                                                              |
| Planning<br>Guidance<br>Manual &<br>Title 23 USC<br>101(a)(6) | 503-11 | Federal-aid<br>funding and<br>eligibility | Program<br>Management                      | Functional classification determines funding eligibility                                                                                                                                                                                                   | FHWA Criteria                                | Continuous. Reimbursement and matching.                                                                     |
| Planning<br>Guidance<br>Manual                                | 503-11 | Traffic modeling                          | Modal<br>Programs                          | Statewide modeling                                                                                                                                                                                                                                         | Planning                                     | Continuous                                                                                                  |
| Planning<br>Guidance<br>Manual                                | 503-11 | Reporting of highway statistics           | Data<br>Management                         | Statistics such as VMT per classification                                                                                                                                                                                                                  | Planning and funding                         | Annually                                                                                                    |
| Planning<br>Guidance<br>Manual                                | 504-8  | Automatic traffic counting                | Traffic and<br>Equipment<br>Management     | ATR stations should be located using a combination of functional classification and geographic location of roadways.                                                                                                                                       | Sufficient<br>number of sites<br>are located | Reviewed annually.                                                                                          |

| Document                       | Page     | Topic                                       | Who?                                   | What?                                                                                                                                     | Why?                                                                                         | When?                      |
|--------------------------------|----------|---------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|
|                                |          |                                             |                                        |                                                                                                                                           | within each factor.                                                                          |                            |
| Planning<br>Guidance<br>Manual | 505-1    | Highway<br>Performance<br>Monitoring System | Data<br>Management                     | Submittal of certified public road mileage to FHWA used in the analysis of highway system conditions, performance, and investment needs.  | Biennial condition and performance reports to Congress.                                      | Report submitted annually. |
| Planning<br>Guidance<br>Manual | 703-15   | SHIFT scoring for traffic congestion        | Planning                               | Vehicle hours of delay is used for scoring traffic congestion and a functional classification adjustment factor is applied.               | Project prioritization                                                                       | Biannually.                |
| Planning<br>Guidance<br>Manual | 801-7    | Air Quality<br>Planning                     | Planning Air<br>Quality<br>Coordinator | Average Speed Distribution (by roadway functional classification) is established using either direct TDM outputs or data from KTC report. | Regional conformity analysis supporting State Implementation Plans for non- attainment areas | LRTP or TIP is updated.    |
| Highway Design<br>Manual       | Multiple | Design Criteria                             | Designers                              | Various design criteria guidance based on functional classification in Green Book                                                         | Guidance for<br>new and<br>reconstructed<br>roadways                                         | As needed.                 |
| Highway Design<br>Manual       | 702-8    | Typical cross section                       | Designers                              | Functional classification is one of seven basic design controls (context classification is also one of seven)                             | Guidance for<br>new and<br>reconstructed<br>roadways                                         | As needed.                 |

| Document                                                            | Page           | Topic                             | Who?      | What?                                                                                            | Why?                                                 | When?      |
|---------------------------------------------------------------------|----------------|-----------------------------------|-----------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|
| Highway Design<br>Manual                                            | 703-1          | Design guidance                   | Designers | Proposed functional classification for a project                                                 | Guidance for<br>new and<br>reconstructed<br>roadways | As needed. |
| Traffic Operations Guidance Manual                                  | 504-3          | Pedestrian safety countermeasures | Designers | One of several factors in evaluating need for crosswalk markings and appropriate countermeasures | Intersection and pedestrian safety design guidance   | As needed. |
| Traffic Operations Guidance Manual                                  | 709-2          | Intersection<br>lighting          | Designers | Average maintained illuminance values are based on functional classification                     | Countermeasure                                       | As needed. |
| Complete<br>Streets, Roads,<br>and Highways<br>Manual and<br>Policy | Section<br>4.4 | Complete streets implementation   | Designers | Functional classification is defined as a relevant factor in determination of operating speed    | Guidance for<br>new and<br>reconstructed<br>roadways | As needed. |

### Appendix G KYTC's Use of Context

### KYTC's Use of Context (Rural and Urban)

| Document                                                                            | Section   | Topic                                               | Who?                      | What?                                                                                                                                                                                                      | Why?                                                                              | When?                                   |
|-------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
| Highway Design Manual & AASHTO's Policy on Geometric Design of Highways and Streets | Various   | Design                                              | Designers                 | Various design criteria are influenced by rural or urban context and the functional classification                                                                                                         | Typical operating speed, project context, accessibility and mobility expectations | Project planning and design             |
| Highway Design<br>Manual & KRS<br>177.315                                           | HD-1101.2 | Design                                              | Design /<br>Permits       | Minimum distance between access points on partial control of access facilities for rural vs urban                                                                                                          | Access /<br>mobility balance                                                      | Design or permit requests               |
| Highway Design Manual & A policy on Design Standards - Interstate System            | HD-1101.5 | Design                                              | Designers /<br>Permits    | Minimum distance between first access point and interchange ramp terminal                                                                                                                                  | Access /<br>mobility / safety                                                     | Design or permit requests               |
| Highway Design<br>Manual                                                            | HD-1501   | Design                                              | Designers                 | Common practices for pedestrian facilities based on rural or urban                                                                                                                                         | Multimodal accommodation                                                          | Project planning and design             |
| Highway Design<br>Manual                                                            | HD-1501   | Design                                              | Designers                 | Common practices for bicycle facilities based on rural or urban                                                                                                                                            | Multimodal accommodation                                                          | Project planning and design             |
| Planning Guidance<br>Manual                                                         | PL-503.4  | State Primary<br>Route System                       | Planning                  | Rural secondary route system                                                                                                                                                                               | Maintenance responsibility                                                        | Continuous                              |
| Planning Guidance<br>Manual                                                         | PL-503.5  | Context &<br>Functional<br>Classification<br>System | Planning                  | Routes are designated as rural or urban based on FHWA Adjusted Urban Area Boundaries. Functional classification is based on FHWA criteria and procedures but relies on state and local planners to assign. | Funding eligibility / maintenance responsibility                                  | Continuous. Reimbursement and matching. |
| Planning Guidance<br>Manual                                                         | PL-504.4  | Traffic counting                                    | Planning -<br>Traffic and | Assists in determination of location and number of ATR stations                                                                                                                                            | Monitor traffic growth                                                            | Continuous                              |

| Document                                         | Section     | Topic                                          | Who?                    | What?                                                                                                                                    | Why?                                                    | When?                       |  |
|--------------------------------------------------|-------------|------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|--|
|                                                  |             |                                                | Equipment<br>Management |                                                                                                                                          |                                                         |                             |  |
| Planning Guidance<br>Manual                      | PL-505.2    | Highway<br>Performance<br>Monitoring<br>System | Data<br>Management      | Submittal of certified public road mileage to FHWA used in the analysis of highway system conditions, performance, and investment needs. | Biennial condition and performance reports to Congress. | Report submitted annually.  |  |
| Traffic Operations<br>Guidance Manual            | TO-402-5    | Sign Spacing                                   | Traffic Ops             | Spacing based on rural or urban for some signs.                                                                                          | Focus<br>application on<br>context                      | Continuous monitoring       |  |
| Traffic Operations<br>Guidance Manual            | TO-403-10   | Signs                                          | Traffic Ops             | Signs only used in rural.                                                                                                                | Focus application on context                            | Continuous monitoring       |  |
| Traffic Operations<br>Guidance Manual            | TO-504      | Pedestrian safety countermeasures              | Designers               | One of several factors in evaluating need for crosswalk markings and appropriate countermeasures                                         | Intersection and pedestrian safety design guidance      | As needed.                  |  |
| Traffic Operations Guidance Manual               | TO-708      | Lighting                                       | Traffic Ops             | Need for lighting and also based on ADT                                                                                                  | Safety                                                  | As needed.                  |  |
| Complete Streets<br>Roads and<br>Highways Manual | Section 2.1 | Complete Street<br>Examples                    | Planners &<br>Designers | Provides examples of Complete Street strategies for each context.                                                                        | Safe and equitable transportation strategies            | Project planning and design |  |
| Complete Streets<br>Roads and<br>Highways Manual | Section 3.1 | Relationship to<br>Land Use                    | Planners &<br>Designers | Provides transportation expectations by context.                                                                                         | Safe and equitable transportation strategies            | Project planning and design |  |

| Document                                         | Section     | Topic                                               | Who?                    | What?                                                       | Why?                                         | When?                       |
|--------------------------------------------------|-------------|-----------------------------------------------------|-------------------------|-------------------------------------------------------------|----------------------------------------------|-----------------------------|
| Complete Streets<br>Roads and<br>Highways Manual | Section 3.3 | Project Planning and Prioritization                 | Planners                | Used to determine appropriate facilities and target speeds. | Safe and equitable transportation strategies | Project planning and design |
| Complete Streets<br>Roads and<br>Highways Manual | Section 5.3 | Bicycle Facility<br>Selection                       | Planners                | Used to determine appropriate bicycle facilities.           | Safe and equitable transportation strategies | Project planning and design |
| Complete Streets<br>Roads and<br>Highways Manual | Section 6.6 | Mid-Block and<br>Other<br>Uncontrolled<br>Crossings | Planners &<br>Designers | Mid-Block crossing recommendations for urban contexts.      | Safe and equitable transportation strategies | Project planning and design |
| Complete Streets<br>Roads and<br>Highways Manual | Section 8.1 | Tactical<br>Urbanism                                | Planners &<br>Designers | Appropriate application of tactical urbanism                | Safe and equitable transportation strategies | Project planning and design |

| Appendix H KYTC's Proposed Context Classification Edits to the Highway D | esign Manual |
|--------------------------------------------------------------------------|--------------|
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |
|                                                                          |              |

Proposed Edits - Division of Highway Design

The following are proposed edits to the Highway Design Manual to better incorporate context classification. The edits are in red text.

### **HD-202.6 PRE-DESIGN COORDINATION**

The PDM should review project data (see HD-202.3) and evaluate the existing context classification of the project area. After project authorization, the PDM should coordinate with other project team members to review the issues faced by the project. The primary focus of this coordination is to address the following:

- Performance Measures
- Purpose and Need
- Project Scope
- Schedule and Milestones
- Additional Resources
- Additional Mapping
- Environmental Overview
- Traffic Forecasting
- Public Involvement

HD-202.6.1 through HD-202.6.9 details these discussion points.

### HD-202.6.3 Project Scope

Properly scoping a project is essential to its successful development. All projects regardless of size, location, complexity, or funding require scoping in order to discuss the needs and challenges associated with the project, develop the tasks and schedule for preliminary engineering, assess the level of environmental studies required to obtain clearances, and to estimate preliminary costs for comparison to programmed costs. The project should be clearly defined and should address the following:

- > Type of project (New Route, Reconstruction, Construction of Existing Roads)
- Project description and limits (project location, study area including context, magnitude and length, classification, current AADT, etc.)
- Performance Based Flexible Design (aspects of roadway performance identified and need of improvement/s determined
- > Draft purpose and need statement including clear description of objectives
- Roadway characteristics including the context classification and facility type
- Users/Design Vehicles
- > Potential options to consider (without preference to meet purpose and need and to fit context)
- > Design criteria
- Proposed access control
- Current project estimate, programmed budget and possible funding types
- > Potential environmental impacts and constraints
- Right-of-way requirements
- Utility impacts
- Constructability and MOT
- Number and types of structures anticipated

For quantitative performance measures, it is imperative in determining a project's scope to gather existing data (safety, traffic, etc.) to assess current performance and identify issues affecting the project. Future performance with improvements and without improvements should be forecasted to compare the impacts of the proposed improvements. For analyzing safety and capacity performance, please refer to methodologies in the Highway Safety Manual and the Highway Capacity Manual. Ultimately, the project manager should rely on the data and the resources available, and the engineering judgement of the project team and subject matter experts. Some projects may benefit from taking the time to scope different project types, i.e., reconstruction and spot improvements. This would allow the project team to compare the effectiveness of each project type and determine the appropriate value to address the identified needs.

### HD-203.5 PRELIMINARY LINE & GRADE (PL&G) MEETING MINUTES

The PL&G meeting minutes are a critical part of the Design Executive summary and will serve as the main body of the DES. These minutes should document most, if not all, of the design decisions prior to moving into final design. The PL&G meeting minutes should include at a minimum:

- Project identification
- Meeting location and date
- Meeting attendees
- Purpose and need (needs should be documented with supporting data)
- Project overview and existing conditions
- Description of proposed alternatives (including no-build alternative)
- Consideration of all users, including bicycle and pedestrian facilities discussion (HD-1501)
- Discussion of alternatives
  - Discussions that assist in the recommendation
  - Performance of each alternative (how well each alternative addresses the need, may include traffic analysis, safety analysis, etc., as applicable)
  - o R/W, Utility, and Environmental impacts for each alternative
- > Traffic control schemes
- Cost Comparison Tables for D, R, U, & C for each alternative (include Highway Plan Funding and potential environmental mitigation fees)
- Recommended Alternative
- Reason for cost overrun (if estimated costs exceed the Six-Year Highway Plan budget costs for all phases by 15 percent or more)
- Discussion of Clear Zone
- Design Exceptions/Variances discussion (if applicable per HD-704 guidelines) and mitigation strategies
- > Discussion of low cost maintenance improvements while working toward long term solution (If applicable)
- > Listing of considerations to address the Water Related Impacts Summary (BMP Discussion)
- > Tentative list by station and size of all structures, if applicable

### **HD-703.4 FUNCTIONAL CLASSIFICATION**

The purpose of functional classification or facility type is to categorize The "functional classification" of a roadway is the grouping together of roadways by based on the type of service they provide based upon land use and type of traffic being generated along a corridor and their position in the transportation network. Functional classification establishes a shared vocabulary that transportation professionals can use to quickly characterize the way in which a facility This classification has been developed as a means of communication within the transportation industry. balances mobility and access for motor-vehicle traffic. The determination of a facility's functional classification is one of the first steps in the design process. However, information on a roadway's functional classification is not enough to implement design strategies capable of delivering a facility that balances with the community context while addressing the needs of non-motorized users. See HD-703.5 for more information on roadway context classification and how it is used with functional classification in the design process.

Note: Over time, the functional classification of a highway can change depending on the intensity of development and the type of traffic being generated by the development of the corridor. Recognizing this, the designer can choose to use a different functional classification to better fit the intended function of the highway. Any changes to the existing functional classification should be documented in the DES.

The basic types of functional classifications are:

- Rural/Urban Local Roads and Streets: Local roads and streets have relatively short trip lengths, and because property access is their main function, there is limited need for mobility or high operating speeds. The use of a lower design speed and level of service reflects this function. Local roads and streets are discussed in Chapter 5 of AASHTO's A Policy on Geometric Design of Highways and Streets.
- Rural/Urban Collectors: Collectors serve a dual function in accommodating shorter trips and feeding arterials. They must also provide some degree of mobility and serve abutting property. Thus, an intermediate design speed and level of service are appropriate. Collectors are discussed in Chapter 6 of AASHTO's A Policy on Geometric Design of Highways and Streets.
- Rural/Urban Arterials: Arterials provide a high degree of mobility for longer trip lengths. Therefore, they may provide a high operating speed and level of service. Since access to abutting property is not their primary function, some degree of access control is desirable to enhance mobility. Arterials are discussed in Chapter 7 of AASHTO's A Policy on Geometric Design of Highways and Streets.
- Freeways: A freeway is normally classified as a principal arterial that has unique geometric criteria. Freeways are discussed in Chapter 8 of AASHTO's A Policy on Geometric Design of Highways and Streets.
- Interstate: The interstate system is the most important highway system in the United States. It carries more traffic per mile than any of the other comparable highway systems. Interstates are designed to provide safety and mobility with fully controlled access. For guidance on interstates refer, to AASHTO's A Policy on Design Standards Interstate System, current edition.

The geometric design of -low-volume roads presents a unique challenge, as the very low traffic volumes and reduced frequency of crashes make designs normally applied on higher-volume roads less cost-effective. The guidance by AASHTO's Geometric Design of Low-Volume Roadways addresses the unique needs of such roads and the geometric designs appropriate to meet those needs. These guidelines can be considered on local and collector roads that have a design average daily traffic volume of 2,000 vehicles per day or less.

Chapter 1 of AASHTO's A Policy on Geometric Design of Highways and Streets gives a more detailed discussion of roadway classifications.

### **HD-703.5 CONTEXT CLASSIFICATION**

There are five contexts to consider for geometric design criteria:

- Rural: Areas with the lowest density, few houses or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- Rural town: Areas with low density but diverse land uses with a commercial main street character, potential for on-street parking and sidewalks and small setbacks.
- Suburban: Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks.
- ➤ Urban: Areas with high density, mixed land uses and prominent destinations, potential for some on-street parking and sidewalks, and mixed setbacks.
- ➤ Urban Core: Areas with the highest density, mixed land uses within and among predominately high-rise structures, and small setbacks.

These contexts are defined based on development density, land uses, and building setbacks. The context classifications supplement, but do not replace, overlay with the functional classification system used in geometric design. Chapter 1 of AASHTO's A Policy on Geometric Design of Highways and Streets gives a more detailed discussion of context classifications.

Note: Over time, the functional and context classifications of a highway can change depending on the intensity of development and the user types being generated by the development of the corridor. Recognizing this, the designer, with input from the PM and PDT, should review the assigned classification to ensure it matches the context and expectations for mobility and accessibility. Use project information, local zoning maps and comprehensive plans to determine if the design should be based on an updated functional and/or context classification that better fits the highway's intended function. The classification used for design should be documented in the DES.

Note: A project may include segments with different functional and/or context classifications. It is critical to design transition zones in these areas that alert users to downstream changes in roadway character.

### **HD-703.8 DESIGN SPEED**

Design speed is the selected speed used to determine the various geometric design features of the roadway. Factors that are considered when selecting the design speed for a project include, but are not limited to, project type, anticipated operating speed, topography, functional classification, context classification, and modal mix. When selecting the design speed every effort should be made to attain a desired combination of safety, mobility, and efficiency for a facility's users within the constraints of environmental quality, economics, aesthetics, and social or political impacts. AASHTO's A Policy on Geometric Design of Highways and Streets provides further discussion on the philosophy of design speed.

Below is the method of selecting the design speed based on project type (HD 703.6):

For projects that are considered new construction the starting place for selecting a design speed should be the minimum design criteria as set forth in AASHTO's A Policy on Geometric Design of Highways and Streets, AASHTO's Guidelines for Geometric Design of Low-Volume Roads, or AASHTO's A Policy on Design Standards-Interstate System, whichever is applicable.

The design criteria can then be adjusted up or down with the appropriate justification and/or design exceptions to the controlling criteria. It is important to utilize engineering judgement when considering the use of "all" minimums for the geometric criteria of a project, which could result in a project that does not meet the purpose and need. It is also important consider the facility's users and the context when selecting a design speed.

- For projects that are considered reconstruction projects the designer must first determine the existing and proposed functional classification and context classification of the roadway within the project area.
  - o If the project proposes keeping the existing functional and context classification the designer should first evaluate the project area and determine the existing design speed based upon the existing geometrics. This should be the starting point for evaluating and choosing the proposed design speed. After a review of crash data, typical roadway widths and shoulder widths, sight distance restrictions, possible drainage issues, and a review of the existing corridor the designer can then use engineering judgement to "design up" from the existing conditions to better meet the purpose and need of the project. Any changes in design speed from existing should also consider the overall roadway system.
  - o If the project proposes changing the functional and/or context classification from the existing conditions then the starting place for selecting a design speed should be the minimum design criteria as set forth in AASHTO's A Policy on Geometric Design of Highways and Streets, AASHTO's Guidelines for Geometric Design of Low-Volume Roads, or AASHTO's A Policy on Design Standards-Interstate System, whichever is applicable. The design criteria can then be adjusted up or down with the appropriate justification and/or design exceptions to the controlling criteria. It is important to utilize engineering judgement when considering the use of "all" minimums for the geometric criteria of a project, which could result in a project that does not meet the purpose and need. It is also important to select design speeds that consider the users and the context of the facility.
- For projects that are considered construction on existing roads (spot improvements), the designer should first evaluate the project area and determine the existing design speed based upon the existing geometrics.

This should be the starting point for evaluating and choosing the proposed design speed. After a review of crash data, typical roadway widths and shoulder widths, sight distance restrictions, possible drainage issues, and a review of the existing corridor the designer can then use engineering judgement to "design up" from the existing conditions to better meet the purpose and need of the project. Any changes in design speed from existing should also consider the overall roadway system.

Designers should be aware of context classification transitional zones between rural collector or arterial roads and rural town contexts. These transitional areas should be effectively designed to encourage speed reduction because, if drivers do not appropriately reduce speeds, they may create conflicts with other vehicles, pedestrians, and bicyclists and may adversely affect community livability. AASHTO's A Policy on Geometric Design of Highways and Streets provides further guidance and design treatments that may be implemented to help high-speed to low-speed transition zones function more effectively.

Justification for design speeds should be documented in the Design Executive Summary (HD-704). This justification should consider all project conditions including maximum service and safety benefits for the dollar invested, compatibility with adjacent sections of the existing roadway, and the probable time before reconstruction of the adjacent sections due to increased traffic demands or changed conditions. When requesting exceptions, include a discussion of safety analysis and the related crash data associated with the site. Mitigation measures should be considered when the design speeds are less than the regulatory or posted speed.

| А | ppendix I Revised Common G | Seometric Practice Sheets |  |
|---|----------------------------|---------------------------|--|
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |
|   |                            |                           |  |

|                                          |                                 | COMMON GE    | OMETRIC                                | PRACTIC   | ES RURAL                               | LOCAL R    | OADS (    | )                               | EX       | HIBIT 700 | <b>-01</b> |  |
|------------------------------------------|---------------------------------|--------------|----------------------------------------|-----------|----------------------------------------|------------|-----------|---------------------------------|----------|-----------|------------|--|
|                                          |                                 |              |                                        |           | TRA                                    | WHC VOL    | UME       |                                 |          |           |            |  |
|                                          | TEDDAM                          | UNDER 50 A.  | D.T.                                   | 50-       | 250                                    | 250        | 400       | 400-                            | 2000     | OVER 20   | 00 A D.    |  |
|                                          | TERRAIN                         | UNDER SUA.   | D.1.                                   | A.I       | D.T.                                   | A.I        | D.T.      | I.A                             | D.T.     | OVER 20   | OU A.D.    |  |
| MINIMUM DESIGN                           | LEVEL                           |              | 30                                     |           |                                        | 4          | Ю         |                                 | ţ        | 50        |            |  |
| (H.P.M) CEEPE                            | ROLLING                         | 20           |                                        |           | 3                                      | 80         |           |                                 |          | 10        |            |  |
| <b>6</b> 7                               | MOUNTAIN                        |              |                                        | 20        |                                        |            |           |                                 |          | 30        |            |  |
|                                          |                                 | DESIGN SPEED | UNE                                    | DER 400 A | .D.T.                                  | 40         | )-2000 A. | D.T.                            | OV       | ER 2000 A | .D.T       |  |
|                                          |                                 | 15 MPH       |                                        |           |                                        |            |           |                                 |          |           |            |  |
|                                          |                                 | 20 MPH       |                                        |           |                                        |            |           |                                 |          |           |            |  |
|                                          |                                 | 25 MPH       |                                        | 9         |                                        |            | 10(9)     |                                 |          |           |            |  |
|                                          |                                 | 30 MPH       |                                        |           |                                        |            |           |                                 |          | 11        |            |  |
| LANE MIDTH (                             | (HHT) 40 (8)                    | 40 MPH       |                                        |           |                                        |            |           |                                 |          |           |            |  |
|                                          |                                 | 45 MPH       |                                        | 10        |                                        |            |           |                                 |          |           |            |  |
|                                          |                                 | 50 MPH       |                                        | 10        |                                        |            |           |                                 |          |           |            |  |
|                                          |                                 | 55 MPH       |                                        |           |                                        | 11         |           |                                 | _        |           |            |  |
|                                          |                                 | 60 MPH       |                                        | 11        |                                        |            |           |                                 | 11 🕦     |           |            |  |
|                                          |                                 | 65 MPH       |                                        |           |                                        |            |           |                                 |          |           |            |  |
| MIN. USABLE SHOULDER<br>WIDTH (FEET) (5) |                                 | ALL SPEEDS   |                                        | 2         |                                        |            | 39        |                                 |          | 6         |            |  |
| MIN. CLEAR ROADW<br>AND RECONSTR         | AYWIDTH OF NEW<br>UCTED BRIDGES | ALL SPEEDS   | TOTALWIDTH OF LANES<br>+2" (EACH SIDE) |           | TOTALWIDTH OF LANES<br>+3" (EACH SIDE) |            |           | + USAFLE SHOULDER<br>WIDTHS(II) |          |           |            |  |
|                                          |                                 | DESIGN SPEED |                                        | eM AX, 4% |                                        | eMAX, 6%   |           |                                 | eMAX, 8% |           |            |  |
|                                          |                                 | 20 MPH       |                                        | 86        |                                        | 81         |           |                                 | 76       |           |            |  |
|                                          |                                 | 25 MPH       |                                        | 154       |                                        |            | 144       |                                 |          | 134       |            |  |
| MINIMUM R                                | ADMIS(DEET)                     | 30 MPH       |                                        | 250       |                                        |            | 231       |                                 | 214      |           |            |  |
| MELMONIV                                 | WORDS(FEET)                     | 35 MPH       |                                        | 371       |                                        |            | 340       |                                 |          | 314       |            |  |
|                                          |                                 | 40 MPH       |                                        | 533       |                                        |            | 485       |                                 |          | 444       |            |  |
|                                          |                                 | 45 MPH       |                                        | 711       |                                        |            | 643       |                                 |          | 587       |            |  |
|                                          |                                 | 50 MPH       |                                        | 926       |                                        |            | 833       |                                 |          | 758       |            |  |
| NORMALPAVEMEN                            | TOROSS SLOPES ③                 |              |                                        |           | RATEOF                                 | CROSS 9    | OFE = 2%  | ,                               |          |           |            |  |
| NORMAL SHOULD                            | ERCROSS 9LOPES                  |              | EARTH =                                | 8%        |                                        |            |           | PA                              | VED = 4% | ;         |            |  |
|                                          | M.P.H.                          | 15           | 20                                     | 25        | 30                                     | 35         | 40        | 45                              | 50       | 55        | 60         |  |
| MAXIMUM GRADE                            | LEVEL                           | 9            | 8                                      |           |                                        | 7          |           |                                 |          | 6         | 5          |  |
| ( <del>Perce</del> nt)                   | ROLLING                         | 12           | 1                                      | 11        |                                        | 10         |           | 9                               | 8        | 7         | 6          |  |
|                                          | MOUNTAIN                        | 17           | 16                                     | 15        | 1                                      | <b>.</b> 4 | 13        | 12                              |          | 10        |            |  |
| MINIMUM STOPPIN<br>(FEE)                 |                                 | 80           | 115                                    | 155       | 200                                    | 250        | 305       | 360                             | 425      | 495       | 570        |  |
| MINIMUM PASSIN<br>(FEE)                  |                                 | _            | 400                                    | 450       | 500                                    | 550        | 600       | 700                             | 800      | 900       | 1000       |  |

- ① MINIMUM STOPPPING SIGHT DISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 2.0 FT CONSIDER BOTH HORIZONTAL AND VERTICALALIGNMENTS
- ② MINIMUM PASSING SIGHT DISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 3.5 FT, CONSIDER BOTH HORIZONTAL, AND VERTICAL AUGUMENTS.
- NORMAL PAVEMENT CROSS SLOPES ON BRIDGES IS 2%.
- (4) CONSIDER CURVE WIDENEING ON PROJECT WHEN TRUCKS AND/OR HORIZONTAL CURVATURE INDICATE A NEED.
- (5) FOR SLOPES 4:1 ORFLATTER, USABLE WIDTH IS GRADED WIDTH, FOR SLOPES STEEPER THAN 4:1, USABLE WIDTH TERMINATES AT THE SLOPE PROTUNDING
- ® WHERE SELECTED DESIGN SPEED IS>50 MFH, USE COMMON GEOMETRIC PRACTICES EXHIBIT 700-02 FOR RURAL COLLECTOR ROADS.
- ① JUSTIFICATION FOR THE CHOSEN DESIGN SEED SHOULD BE DOCUMENTED IN THE DESIGN EXECUTIVE SUMMARY.
- ® FORRONDS≤2000 NDT, REFERTO ANSHTO'S "GUIDPLINES FOR GEOMETRIC DESIGN OF LOW-VOLUME RONDS."
- (9) FOR ROADS IN MOUNTAINOUS TERRAIN WITH DESIGN VOLUME OF 400 TO 600 VEH/DAY, 9 FT LANEW IDTH MAY BE USED.
- (II) CONSIDERUSING A LANEWIDTH OF 12 FTWHERE SUBSTANTIAL TRUCK VOLUMES ARE PRESENT OR AGRICULTURAL EQUIPMENT HEQUENTLY
- (I) FOR BRIDGES IN EXCESS OF 100 FT IN LENGTH, THE MINIMUM WIDTH OF LANES + 3 FT (ON EACH SIDE) MAY BE ACCEPTABLE,
- (1) FOR FULLWILTOWN LOCAL FOADS, SEE EXHIBIT 700-02 FOR COMMON FRACTICES OF LOCAL URBAN AND SUBURBAN STREETS.

|                                    |                      | CO MIMON GEOMETRIC PI                       | RACTICES     |       |               |               | XHIBIT        | 700-0 | 2  |       |    |
|------------------------------------|----------------------|---------------------------------------------|--------------|-------|---------------|---------------|---------------|-------|----|-------|----|
|                                    | SUBURBAN, RURAI      | LTOWN, URBAN AND URB                        | AN CORE LOCA | L & C | COLLECTOR R   | DADWAYS 🕕     |               |       |    |       |    |
|                                    |                      | LOCAL ①                                     | 3            |       |               | COLLECTO      | <b>yr</b> ② ③ | )     |    |       |    |
|                                    |                      | SUBURBAN,                                   | URBAN,       |       | SUBURBAN      | RURAL         | URB           | AN    | U  | RBAN  | V. |
|                                    |                      | RURALTOWN                                   | URBAN OOF    | Œ     |               | TOWN          |               |       | (  | ORE   |    |
|                                    |                      | LESS THAN RURAL LOCAL                       | 20 M.P.H. =3 | 30    |               |               | 30-           | 10    | 2  | 25-35 |    |
| DESIGN SPE                         | ED 49-10             |                                             | M.P.H.       |       | 35-50 M.P.H   | . ≤ 45 M.P.H. | M.P           | Н.    | N  | 4.P.H | l. |
| NUMBER                             | OF LANES             | DESTRABLE:                                  |              |       | MINIMU        |               |               |       |    |       |    |
|                                    | RESIDENTIAL          | MIN. 9'                                     |              |       |               | MIN           | . 10′         |       |    |       |    |
| LANE WIDTH (9)                     | COMMERICAL           | MIN. 10                                     |              |       | MIN           | . 10′         |               |       |    |       |    |
|                                    | INDUSTRIAL           | MIN. 11' MIN. 12'                           |              |       |               |               |               |       |    |       |    |
| SIDEW.                             | ALK (18              |                                             |              |       | INIMUM 4'     |               |               |       |    |       |    |
|                                    | _                    |                                             |              | DESI  | RABLE 8' 🙆    |               |               |       |    |       |    |
| MIN. CLEAR ROADWA'<br>RECONSTRUCTI |                      | MINIMUM CURB TO CURB WIDTH                  |              |       |               |               |               |       |    |       |    |
| BORDER A                           | REA (5) (9)          | 10' DESIRABLE 10' DESIRABLE (6) 12' MINIMUM |              |       |               |               |               |       |    |       | _  |
| MINIMUM R                          | ADIUS(FEET)          | 6                                           | 100'         |       |               | 6             | )             |       |    |       | _  |
|                                    |                      |                                             |              |       |               | M.P.H.        | 30            | 35    | 40 | 45    | 50 |
| 141101411400                       | 10 F (DEDOCK IT)     | RESIDENTIA                                  |              |       | (6)           | LEVEL         |               | 9     |    | 8     | 7  |
| MAXIMUM GR                         | ADE (PERCENT)        | COMMERICAL                                  | 0            |       | (6)           | ROШNG         | 1             | 1 1   | 10 | 9     |    |
|                                    |                      | INDUSTRIA                                   | II: 8        |       |               | MOUNTAI       | N             | 12    |    | 11    | 1  |
| NORMAL PAVEMEN                     | TOROSSAOPE®          |                                             | RATI         | EOF   | ORO SS SLO PE | = 2%          |               |       |    |       |    |
| NORMAL SHOULE                      |                      | EARTH 8% PAVED 4%                           |              |       |               |               |               |       |    |       |    |
| SUPEREL                            |                      | ① 4% N                                      |              |       | 8% MAX.       | I             | 6% M          | AX.   |    |       | _  |
|                                    | IGHT DISTANCE (FEET) |                                             | 20 25        | 30    |               | 40 45         | 50            |       | 5  | 60    |    |
|                                    | )                    |                                             | 15 155       | 200   | 250 3         | 05 360        | 425           |       | 95 | 57    | _  |

- (D) TURNING LANES 9' MINIMUM-12' DESRED PARKING LANES RESIDENTIAL-7' MINIMUM: COMMERICAL & INDUSTRIAL-8' MINIMUM
- TURNING LANES 10' MINIMUM-12' DESIRED: PARKING LANES RESIDENTIAL-7'-8'; COMMERCIAL & INDUSTRIAL-8'-11'.
- (3) VERTICAL CURBS WITH HEIGHTS OF 4" OR GREATER ADJACENT TO TRAVELED WAY SHOULD BE OFFSET A MINIMUM OF 1 FOOT WHEN A CURB AND GUTTER SECTION IS PROVIDED, THE GUTTER PAN WIDTH, NORMALLY 2 FEET, SHOULD BE USED AS THE OFFSET DISTANCE.
- ① THE NUMBER OF LANESTO BE PROVIDED ON STREETSWITH CURRENT ADT OF 2000 OR GREATER SHOULD EE DETERMINED BY A HIGHWAY CAPACITY ANALYSIS OF THE DESIGN TRAFFIC VOLUMES SUCH ANALYSIS SHOULD BE MADE FOR FUTURE DESIGN TRAFFIC (DESIRABLE)
- (5) THE BORDER AREA, MEASURED FROM THE FACE OF CURB, BETWEEN THE ROADWAY AND THE RIGHT-OF-WAY LINE SHOULD BE WIDE ENOUGH TO SERVE SEVERAL PURPOSES, INCLUDING SERVING AS A BUFFER SPACE BETWEEN PEDESTRIANS AND VEHICULAR TRAFFIC, A SIDEWALK, AND AN AREA POR UTILITIES
- © REFER TO CHAPTER 3 OF AASHTO'S "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT EDITION.
- (2) MINIMUM STOPPING SIGHT DISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 2.0 FT CONSIDER BOTH HORIZONTAL.
  AND VERTICAL ALIGHMENTS.
- ③ NORMAL PAVEMENT CROSS SLOPES ON BRIDGES SHALL BE 2%.
- WHERE PARALLEL PARKING LANES ARE PRESENT, THEY SHOULD BE A MIN OF 7' IN RESIDENTIAL AREAS AND 8' IN COMMERCIAL AND INDUSTRIAL AREAS
- ARTERIALS WITH LARGE NUMBER OF TRUCKS AND OPERATING NEAR CAPACITY SHOULD CONSIDER GRADES FLATTER THAN THOSE IN RURAL-SECTIONS TO AVOID UNDESRABLE REDUCTIONS IN SPEED.
- 🛈 SUPERELEVATION MAY NOT BE REQUIRED ON LOCAL STREETS IN RESIDENTIAL, COMMERICAL, AND INDUSTRIAL AREAS.
- ① THE BRIDGE WIDTH FOR <mark>URBAN.</mark> ROADWAYSWITH SHOULDERS SHOULD NOT BE LESS THAN WIDTHS SHOWN FOR RURAL ROADS APPROVED. ROADWAY WIDTHS
- MAXIMUM GRADESOF SHORT LENGTHS (LESS THAN 500') AND ON ONE-WAY DOWN GRADES MAY BE TWO PERCENT STEEPER.
- (9) FOR QUIDANCE ON FREEWAYS, REFER TO AASHTO'S, "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT EDITION.
- INTERMEDIATE DESIGN SPEEDS (5 MPH INCREMENTS) MAY BE APPROPRATE WHERE TERRAIN AND OTHER ENVIRONMENTAL CONDITIONS DICTATE.
- REFER TO AASHTO'S "GUIDE FOR THE DEVELOPMENT OF BICYCLE FACILITIES", CURRENT EDITION, WHEN COMBINING A PEDESTRIAN SIDEWALK.
  WITH A BICYCLE PATH.
- (5) USE RURAL COLLECTOR MAX GRADES IN EXHIBIT 700-03.
- (III) USE RUKALCOLLECTOR MAX GHADESTN EXHIBIT 700-03.

  WHERE RIGHT-OF-WAYTSLIMITED, A BORDER AREA OF 2 FT MAY BE TOLERATED WHERE NO SIDEWALK IS PRESENT.
- To For Additional Guidance for Roads< 2000 adt, refer to "Guidelines for Geometric design of Low-Volume Roads",
- 🔞 REFER to AASHTO'S "GUIDE FOR THE PLANNING, DESIGN, AND OPERATION OF PEDESTRIAN FACILITIES, CURRENT EDITION.
- REFER TO RURAL COMMON PRACTICES FOR SHOULDER WIDTH ON ROADWAYS WITHOUT CURB

|                                            |                |              |       | ON GEON  |           |        |                                         |                 |           | ы                                                 | <b>HIBIT 700</b> | <b>-U3</b> |
|--------------------------------------------|----------------|--------------|-------|----------|-----------|--------|-----------------------------------------|-----------------|-----------|---------------------------------------------------|------------------|------------|
|                                            |                |              | RURAL | CONNILLB | CTOR ROA  | ADS 🕖  |                                         |                 |           |                                                   |                  |            |
|                                            | _              |              |       |          |           |        |                                         | FHC <b>V</b> OL |           |                                                   |                  |            |
|                                            |                | TERRRAIP     | 4     | UNI      | DER 400 A | AD.T   | 40                                      | )-2000 AJ       | D.T.      | OV                                                | ER 2000 A        | D.T        |
| AINIMUM DESIGN                             |                | LEVEL        |       |          | 40        |        |                                         | 50              |           |                                                   | 60               |            |
| PEED (M.P.H.) (7)                          | RURAL          | ROLLING      |       |          | 30        |        |                                         | 40              |           |                                                   | 50               |            |
| (                                          |                | MOUNTA       |       |          | 20        |        |                                         | 30              |           |                                                   | 40               |            |
|                                            |                | DESIGN SPE   |       | UN       | DER 400 A | AD.T   | 40                                      | 1-2000 AJ       | D.T.      | OV                                                | ER 2000 A        | D.T        |
|                                            |                | 20 MPH       |       |          |           |        |                                         |                 |           |                                                   |                  |            |
|                                            |                | 25 MPH       |       | 1        | _         |        |                                         | 10              |           |                                                   |                  |            |
|                                            |                | 30 MPH       |       |          | 10 🗐      |        |                                         |                 |           |                                                   |                  |            |
|                                            |                | 35 MPH       |       | 1        |           |        |                                         |                 |           |                                                   | 11               |            |
| LANEWIDTH (                                | HED (1) (8)    | 40 MPH       |       |          |           |        |                                         |                 |           |                                                   |                  |            |
|                                            |                | 45 MPH       |       |          | 10        |        |                                         |                 |           |                                                   |                  |            |
|                                            |                | 50 MPH       |       |          |           |        |                                         | 11              |           |                                                   |                  |            |
|                                            |                | 55 MPH       |       |          |           |        |                                         |                 |           |                                                   |                  |            |
|                                            |                | 60 MPH       |       | 4        | 11        |        |                                         |                 |           | 11 🕦                                              |                  |            |
|                                            |                | 65 MPH       |       |          |           |        |                                         |                 |           |                                                   |                  |            |
| Minimum usable shoulderwidth<br>(heet) 🌘 🥼 |                | ALL SPEED    | ns    |          | 2         |        |                                         | 4               |           | 6                                                 |                  |            |
| AIN. CLEAR ROADWA<br>AND RECONSTRU         |                | ALSPEDS      |       | 1        | WIDTH O   |        | TOTAL WIDTH OF LANES<br>+4' (EACH SIDE) |                 |           | TOTALWIDTH OF LANE<br>+ USABLE SHOULDER<br>WIDTHS |                  |            |
|                                            |                | DESIGN SPEED |       |          | eMAX. 43  | 1      |                                         | eMAX.6%         |           |                                                   | eMAX 8%          | i          |
|                                            |                | 20 MPH       |       |          | 86        |        |                                         | 81              |           |                                                   | 76               |            |
|                                            |                | 25 MPH       |       |          | 154       |        | 144                                     |                 |           | 134                                               |                  |            |
|                                            |                | 30 MPH       |       |          | 250       |        | 231                                     |                 |           | 214                                               |                  |            |
| MINIMUM                                    | RADIUS         | 35 MPH       |       | 371      |           | 340    |                                         |                 | 314       |                                                   |                  |            |
| (FEE                                       | r) [           | 40 MPH       |       | 533      |           | 485    |                                         |                 | 444       |                                                   |                  |            |
|                                            |                | 45 MPH       |       | 711      |           | 643    |                                         |                 | 587       |                                                   |                  |            |
|                                            |                | 50 MPH       |       | 926      |           | 833    |                                         |                 | 758       |                                                   |                  |            |
|                                            |                | 55 MPH       |       |          | 1190      |        |                                         | 1060            |           | 960                                               |                  |            |
|                                            |                | 60 MPH       |       |          | 1500      |        |                                         | 1330            |           |                                                   | 1200             |            |
| NORMAL PA<br>CROSS SLC                     |                |              |       |          | RAT       | EOFCRO | es slope                                | = <b>2%</b>     |           |                                                   |                  |            |
| NORMALSI<br>CROSSS                         |                |              |       | EARTH =  | 8%        |        |                                         | В               | AVED = 45 | 6                                                 |                  |            |
|                                            |                | мрн          | 20    | 25       | 30        | 35     | 40                                      | 45              | 50        | 55                                                | 60               | 65         |
| MANNIN ACCO                                | (NEDSOLID &    | LEVEL        |       | •        |           | 7      |                                         | •               | -         | 6                                                 | 5                | -          |
| MAXIMUM GRADE                              | (HIHOENII) (5) | ROLLING      |       | 10       |           | 9      |                                         | В               |           | 7                                                 | 6                | -          |
|                                            | İ              | MOUNTAIN     | 12    | 11       |           | 1      | 0                                       |                 |           | 9                                                 | 8                | -          |
| MINIMUM S<br>SENT DES                      |                | (FEET)       | 115   | 155      | 200       | 250    | 305                                     | 360             | 425       | 495                                               | 570              | 645        |
| MINDM UM                                   |                | (FEET)       | 400   | 450      | 500       | 550    | 600                                     | 700             | 800       | 900                                               | 1000             | 110        |

- ① WIDEN PAVEMINT ON CURVES IN ACCORDANCE WITH APPROVED DESIGN STANDARDS. REFER TO CURVENT STANDARD DRAWING FOR ADDITIONAL DETAIL.
- ② MINIMUM STOPPING SIGHT DISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 2.0 FT CONSIDER BOTH HORIZONTAL AND VERTICAL AUGUMENTS.
- (S) MINIMUM PASSING SIGHTDISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 3.5 FT. CONSIDER BOTH HORIZON TALAND VERTICAL ALIGNMENTS.
- (W) NORM ALPANEMENT CROSS SLOFES ON BRIDGES IS 2%.

  (S) MAY USE ONE PERCENT SIEBPER MAXIMUM GRADES ON SHORT LENGTHS (LESS THAT 500 FT) AND ON ONE-WAY DOWN GRADES FOR LOW-VOLUME RURAL COLLECTORS (AND TLESS THAN 2,000 VEH
- ® FOR SLOPES 4:1 OR FLATTER USABLE WIDTH IS GRADED WIDTH, FOR SLOPES STEEPER THAN 4:1 USABLE WIDTH TERMINATES AT THE SLOPE ROUNDING.

  ② JUSTIFICATION FOR THE SELECTED DESIGN SPEED SHOULD BE DOCUMENTED IN THE DESIGN EXECUTIVE SUMMARY.
- (3) ON ROADSWAYS TO BE RECONSTRUCTED, 11 FT LANES MAY BE RETAINED WHERE SAFETY RECORDS AND ALIGNMENT ARE SATISFACTORY.
  (3) 18 FT MINIMUM WIDTH (9 FT LANES) MAY BE USED FOR ROADWAYS WITH DESIGN VOLUMES UNDER 250 A.D.T.
- ① CONSIDER USING A LANEW DITH OF 12 FTW HERE SUBSIANTIAL TRUCK VOLUMES ARE PRESENT OR AGRICULTURAL EQUIPMENT FREQUENTLY USES THE ROAD.
- (1) FOR BRIDGES IN EXCESS OF 100 FT IN LENGTH, THE MINIMUM WIDTH OF LANES + 3 FT (ON EACH SIDE) MAY BE ACCEPTABLE.
- (3) COM M ON PRACTICES FOR RUPAL TOWIN COLLECTORS MIAY BE FOUND IN EXHIBIT 700-02.
  (3) MAY BE APPLIED ON RUPAL TOWIN COLLECTORS WITHOUT CURB.

|                                          |              | COMMON GEOMETRIC PRACTICES                                 |         |            |                        |                |          |           |           |        |                 | EXHIBIT 700-04 |       |      |  |  |
|------------------------------------------|--------------|------------------------------------------------------------|---------|------------|------------------------|----------------|----------|-----------|-----------|--------|-----------------|----------------|-------|------|--|--|
|                                          |              | RURAL                                                      | & RURAL | TOWN AF    | RTERIAL R              | OADS (OT       | HER THAI | N FREEWA  | (YS) @ (Z | >      |                 |                |       |      |  |  |
|                                          |              | TER                                                        | RAIN    | 1          |                        |                |          |           | -         |        |                 |                |       |      |  |  |
| DESIGN SPEED (M.P.H.)                    | RURAL        | LEVEL<br>ROLLING                                           |         | 50-75      |                        |                |          |           |           |        |                 |                |       |      |  |  |
|                                          |              |                                                            |         | 50-65      |                        |                |          |           |           |        |                 |                |       |      |  |  |
|                                          |              | MOU                                                        | NTAIN   |            | 45-60                  |                |          |           |           |        |                 |                |       |      |  |  |
|                                          | RURAL        | TOWN                                                       |         |            | 20-45                  |                |          |           |           |        |                 |                |       |      |  |  |
|                                          |              |                                                            |         |            |                        | TRAFFIC VOLUME |          |           |           |        |                 |                |       |      |  |  |
| LANE WIDTH (FEET)                        | DESIGN SPEED | u                                                          | NDER 40 | B A.D.T. 🗓 | AD.T. ① 400-2000 A.D.T |                |          |           |           |        | OVER 2000 A.D.T |                |       |      |  |  |
|                                          | 40 MPH       | 10                                                         |         |            |                        | 11             |          |           |           |        |                 |                |       |      |  |  |
|                                          | 45 MPH       |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
|                                          | 50 M PH      | ļ                                                          |         |            |                        |                |          |           |           |        | 1               |                |       |      |  |  |
|                                          | 55 MPH       | 11                                                         |         |            |                        |                |          |           |           |        | 12              |                |       |      |  |  |
|                                          | 60 MPH       |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
|                                          | 65 MPH       |                                                            |         |            |                        | 12             |          |           |           |        |                 |                |       |      |  |  |
|                                          | 70 M PH      |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
|                                          | 75 MPH       |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
| MIN. USABLE SHOULDER<br>WIDTH (FEET) ⑤ ③ | ALL SPEEDS   | 4                                                          |         |            |                        | 6              |          |           |           |        | 8               |                |       |      |  |  |
| MIN. CLEAR ROADWAY                       |              |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
| WIDTH OF NEW AND                         | ALL SPEEDS   | ALL SPEEDS TOTAL WIDTH OF LANES + USABLE SHOULDER WIDTHS ® |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
| RECONSTRUCTED                            |              |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
| MINIMUM RADIUS<br>(FEET)                 | DESIGN SPEED | eMAX.4%                                                    |         |            |                        | eMAX. 6%       |          |           |           |        | eMAX. 8%        |                |       |      |  |  |
|                                          | 30 M PH      | 250                                                        |         |            |                        | 231            |          |           |           |        | 214             |                |       |      |  |  |
|                                          | 35 MPH       | 371                                                        |         |            |                        | 340            |          |           |           |        | 314             |                |       |      |  |  |
|                                          | 40 MPH       | 533                                                        |         |            |                        | 485            |          |           |           |        | 444             |                |       |      |  |  |
|                                          | 45 MPH       | 711                                                        |         |            |                        | 643            |          |           |           |        | 587             |                |       |      |  |  |
|                                          | 50 M PH      | 926                                                        |         |            |                        | 833            |          |           |           |        | 758             |                |       |      |  |  |
|                                          | 55 MPH       | 1190                                                       |         |            |                        | 1060           |          |           |           |        | 960             |                |       |      |  |  |
|                                          | 60 M PH      | 1500                                                       |         |            |                        | 1330           |          |           |           |        | 1200            |                |       |      |  |  |
|                                          | 65 MPH       | _                                                          |         |            |                        | 1660           |          |           |           |        | 1480            |                |       |      |  |  |
|                                          | 70 M PH      |                                                            | -       |            |                        | 2040           |          |           |           |        | 1810            |                |       |      |  |  |
|                                          | 75 MPH       |                                                            | -       | _          |                        | 2500           |          |           |           |        |                 | 2210           |       |      |  |  |
| NORM AL PAVEMENT                         |              |                                                            |         |            |                        | RATE OF        | CROSSISL | OPES = 2% |           |        |                 |                |       |      |  |  |
| CROSS SLOPES ③                           |              |                                                            |         |            |                        |                |          |           |           |        |                 |                |       |      |  |  |
| NORMAL SHOULDER                          |              |                                                            |         |            | EARTH = 8              | 1%             |          | F         | AVED = 4  | %      |                 |                |       |      |  |  |
| CROSS SLOPES                             | M.P.H.       | 20                                                         | 25      | 30         | 35                     | 40             | 45       | 50        | 55        | 60     | 65              | 70             | 75    | 80   |  |  |
| MAXIMUM GRADE<br>(PERCENT)               |              | 20                                                         | 25      |            |                        | 40             | 43       |           |           | 60     | 63              | 3              | /3    | 80   |  |  |
|                                          | LEVEL        | ļ .                                                        | 8       |            | 5<br>7                 |                | 6        |           | 5         |        | 3<br>4          |                |       |      |  |  |
|                                          | ROLLING      | 10                                                         |         |            | 8                      |                | -        | 7         |           | <br>6  |                 |                | 5     |      |  |  |
| BAINIBALBA CTOOPING                      | MOUNTAIN     | 10                                                         | 9       |            |                        | 1              | -        | ,         |           | i<br>I |                 |                | ,<br> | ı    |  |  |
| MINIMUM STOPPING<br>SIGHT DISTANCE ①     | (FEET)       | 115                                                        | 155     | 200        | 250                    | 305            | 360      | 425       | 495       | 570    | 645             | 730            | 820   | 910  |  |  |
| MINIMUM PASSING<br>SIGHT DISTANCE ②      | (FEET)       | 400                                                        | 450     | 500        | 550                    | 600            | 700      | 800       | 900       | 1000   | 1100            | 1200           | 1300  | 1400 |  |  |

- 🛈 M. INJIM UM STOPPING SIGHT DISANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 2.0 FT. CONSIDER BOTH HORIZONTAL AND VERTICAL ALIGNMENTS.
- 🕲 M INIM UM-PASSING SIGHT DISTANCE BASED ON AN EYE HEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 3.5 FT, CONSIDER BOTH HORIZONTAL AND VERTICAL

### ALIGNMENTS.

- ③ NORMAL PAVEMENT CROSS SLOPES ON BRIDGES IS 2%.
- FOR GUIDANCE ON FREEWAYS, REFER TO AASHTO'S, "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT EDITION.
- 💲 FOR SLOPES 4:1 OR FLATTER, USABLE WIDTH IS THE SAME AS GRADED WIDTH, FOR SLOPES STEEPER THAN 4:1, USABLE WIDTH TERMINATES AT SLOPE ROUNDING.
- SUSTIFICATION FOR THE SELECTED DESIGN SPEED SHOULD BE DOCUMENTED IN THE DESIGN EXECUTIVE SUMMARY.
- FOR GUIDANCE ON INTERSTATES, REFER TO AASHTO, "A POLICY ON DESIGN STANDARDS INTERSTATE SYSTEM", CURRENT EDITION.
- 🕲 ON ROADWAYS TO BE RECONSTRUCTED, EXISTING 11 FT LANES MAY BE RETAINED WHERE THE SAFETY RECORDS AND ALIGNMENT ARE SATISFACTORY.
- PREFERABLY, USABLE SHOULDERS ON ARTERIALS SHOULD BE PAVED; HOW EVER, WHERE VOLUMES ARE LOW OR IN AREAS WHERE WIDE PAVED SHOULDERS ARE JNDESTRABLE, THE PAVED PORTION MAY BE A MINIM UM OF 2 FT, PROVIDED BICYCLE ACCOMM COATIONS ARE NOT BEING PROVIDED.
- © ON BRIDGES IN EXCESS OF 200FT IN LENGTH, OFFSET TO PARAPET, RAIL, OR BARRIER MAY BE AT A MINIMUM OF 4FT FROM EDGE OF TRAVELED WAY ON BOTH SIDES.

   WHERE FREDUENT USE BY TRUCKS IS ANTICIPATED, ADDITIONAL TRAVELED-WAY SHOULD BE CONSIDERED.
- MIN WIDTH FOR ROADWAYS IN RURAL TOWNS IS THE WIDTH FOR THE 45 MPH AND BELOW DESIGN SPEED. IN LOW SPEED CONDITIONS AND ON ROADWAYS WITH

| C OMMON GEOMETRIC PRACTICES                                                |                                                                                                                                                                        |        |     |                   | EXHIBIT 700-05 |    |             |     |       |     |     |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------------------|----------------|----|-------------|-----|-------|-----|-----|
| SUBURBAN, URBAN, & URBAN CORE ARTERIAL ROADWAYS (OTHER THAN FREEWAYS) ( () |                                                                                                                                                                        |        |     |                   |                |    |             |     |       |     |     |
|                                                                            | SUBURBAN URBAN URBAN CORE                                                                                                                                              |        |     |                   |                |    |             |     |       |     |     |
| DESIGN SPEED (1)                                                           | 30 M.P.H =55 M.P.H                                                                                                                                                     |        |     | 25 M.P.H45 M.P.H. |                |    | ≤ 30 M.P.H. |     |       |     |     |
| NUMBEROFLANES                                                              | MINIMUM 2 @                                                                                                                                                            |        |     |                   |                |    |             |     |       |     |     |
| LANEWIDIH<br>② ③                                                           | 10': < 35 MFH SPEDS AND LOW TRUCK AND BUS VOLUME 11': ≤ 45 MFH (IN HERRUPHED FLOW CONDITIONS) 12': > 45 MFH DESTRABLE ON HIGH SPEED, FREE FLOWING, PRINCIPAL ARTERIALS |        |     |                   |                |    |             |     |       |     |     |
| SEDEW ALK                                                                  | MINIMUM 4'<br>Destrable 8' (\$)                                                                                                                                        |        |     |                   |                |    |             |     |       |     |     |
| MIN. CLEAR FOADWAY WID IH OF NEW AND<br>FECONSTRUCTED BRIDGES (1)          | Милими слев то слев миртн                                                                                                                                              |        |     |                   |                |    |             |     |       |     |     |
| BORDERAREA (1) (5)                                                         | 8' M INIM UM                                                                                                                                                           |        |     |                   |                |    |             |     |       |     |     |
| MINIMUM RADIUS(FEET)                                                       |                                                                                                                                                                        |        |     |                   | (              | 6  |             |     |       |     |     |
| MAXIMUM GRADE (FERCENT)                                                    |                                                                                                                                                                        | M.P.H. |     | 25                | 30             | 35 |             | 40  | 45-50 | 55  | 60  |
|                                                                            |                                                                                                                                                                        | LEVEL  |     |                   | 7              |    |             | 6   | 5     |     |     |
|                                                                            |                                                                                                                                                                        | ROШNG  |     | 0                 | 9              |    | 8           |     | 7     | 6   |     |
|                                                                            | MOUNTAIN                                                                                                                                                               |        | 13  | 12                | 11             | 10 |             | 9   |       | 3   |     |
| NORMAL PAVEMENT CROSS SLOPE (8)                                            | RATE OF CROSS SLOPE = 2%                                                                                                                                               |        |     |                   |                |    |             |     |       |     |     |
| NORMAL SHOULDER CROSS SLOPE                                                | EARTH 8% PAVED 4%                                                                                                                                                      |        |     |                   |                |    |             |     |       |     |     |
| SUPERELEVATION                                                             | 6                                                                                                                                                                      |        |     |                   |                |    |             |     |       |     |     |
| MINIMUM STOPPING SIGHT DISTANCE                                            | M.P.H.                                                                                                                                                                 | 20     | 25  | 30                | 35             |    | 40          | 45  | 50    | 55  | 60  |
| (HEI) ⑦                                                                    | MIN.                                                                                                                                                                   | 115    | 155 | 200               | 250            |    | 305         | 360 | 425   | 495 | 570 |

- ① PEFER TO PURAL ARTIERIAL COMMON PRACTICES (EXHIBIT 700-04) FOR SHOULDER WIDTH ON POADW A/SWITHOUT CURB.
- (2) TURNING LANES 10' MINIMUM-12' DESIRED: PARKING LANES RESIDENTIAL-7-8'; COMMERCIAL& INDUSTRIAL-8'-11'.
- ③ VERTICAL CURBS WITH HEIGHTS OF 4" OR GREATER ADJACENT TO TRAVELED WAY SHOULD BE OFFSET A MINIMUM OF 1 FOOT.
  WHEN A CURB AND GUTTER SECTION OSPROVIDED, THE GUTTER FAN WIDTH, NORMALLY 2 FEET, SHOULD BE USED AS THE OFFSET
  DISTANCE
- ④ THE NUMBER OF LANES TO BE PROVIDED ON STREETS WITH CURRENT ADTOF 2000 OR GREATER SHOULD BE DETERMINED BY A HIGHWAY CAPACITY ANALYSIS OF THE DESIGN TRAFFIC VOILIMES SUCH ANALYSIS SHOULD BE MADE FOR FUTURE DESIGN TRAFFIC (DESIDARS) E)
- (5) THE BORDER AREA, MEASURED FROM THE FACE OF CURB, BETWEEN THE ROADWAY AND THE RIGHT OF WAY LINE SHOULD BE WIDE BNOUGH TO SERVE SEVERAL FURPOSES, INCLUDING SERVING AS A BUFFER SPACE BETWEEN PEDESTRIANS AND VEHICULAR TRAFFIC, A SIDEWALK, AND AN AREA FOR UTILITIES
- (6) REFER TO CHAPTER 3 OF AASHTO'S "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT EDITION.
- (7) MINIMUM STOPPING SIGHT DISTANCE BASED ON AN EYEHEIGHT OF 3.5 FT AND AN OBJECT HEIGHT OF 2.0 FT, CONSIDER BOTH HORIZON TALLAND VERTICAL AUGUMENTS
- ® NORMALPAVEMENT CROSS SLOPES ON BRIDGES SHALL BE 2%.
- (9) ARTIERIALS WITH LARGE NUMBER OF TRUCKS AND OPERATING NEAR CAPACITY SHOULD CONSIDER GRADES FLATTER THAN THOSE IN IRLIPAL SECTIONS TO AVOID UNDESTWELE PEDUCTIONS IN SPEED.
- (® SUPERELEVATION MAY NOT BE REQUIRED ON LOCAL STREETS IN RESIDENTIAL, COMMERICAL, AND INDUSTRIAL AREAS.
- (1) THE BIRD XE WIDTH FOR UPPAY ROADWAYS WITH SHOULD BESS SHOULD NOT BE LESS THAN WIDTHS SHOWN FOR RURAL ROADS AFFROVED ROADWAY WIDTHS
- (D) MAXIMUM GRADES OF SHORTLENGTHS (LESS THAN 500°) AND ON ONE-WAYDOWN GRADES MAY BE TWO PERGENT STEEPER
- (1) FOR CUIDANCE ON FREEWAYS, REFER TO AASHTO'S, "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", CURRENT FEDION
- (i) Intermediate design 97±05(5 mph increments) may be approprieste where terrain and other environmental conditions dictate.
- (§) REFER TO AASHTO'S "GUIDE FOR THE DEVELOPMENT OF BICYCLE FACILITIES", CURRENT EDITION, WHEN COMBINING A PEDESTRIAN SIDEWALK WITH A BICYCLE PATH.
- (I) FOR CUIDANCE ON INTERSTATES, REFER TO AASHTO'S "A POLICY ON DESIGN STANDARDS INTERSTATE SYSTEM", CURRENT EDITION.
- (1) WHERE FIGHT OF WAY ISLIMITED, A BORDER AREA OF 2 FT MAY BE TOLERATED WHERE NO SIDEWALK IS PRESENT.
- (®) FOR ADDITIONAL GUIDANGE FOR ROADS < 2000 ADT, REFER TO "GUIDELINES FOR GEOMETRIC DESIGN OF LOW-VOLUME ROADS", 2019 EDITION.
- ♠ RETER to AASHTO'S "GUIDE FOR THE PLANNING, DESIGN, AND OPERATION OF PEDESTRIAN FACILITIES, CURRENT EDITION.

| Appendix J Designing for Transitions Between Contexts |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |
|                                                       |  |  |  |  |  |

Adopting context classification enables a deeper focus on designing transition zones — areas that join roadway segments with different context classifications. Transitions should alert drivers of the impending change in context so they can adjust their speeds to match the needs of the adjacent land use, roadway users, community, and roadway network.

**Transition Applications** 

Below are brief descriptions of some of the applications that can encourage the use of appropriate speeds for the context of the transition area. It is not an all-inclusive list but does provide options that can be used for different project types. Some options may be more feasible on new or reconstruction projects.

Roundabouts. Roundabouts are typically designed for entry speeds of 25-35 mph. They are often used as a
gateway into a community, providing users with a visual indication of a change in context. On high-speed
approaches to a roundabout, consider implementing additional speed reduction countermeasures. For more
information on designing for high-speed approaches at roundabouts, see KYTC's Roundabout Design Guidance.



**Figure 1** Roundabout at KY 1681 and Alexandria Dr. (Fayette County)

Photo Source: Google © 2023

Speed Reduction Markings. Optical speed bars are transverse pavement markings that can increase rate of speed limit compliance. For more information on the application of speed reduction markings, see <a href="Figure 3B-28">Figure 2</a> shows the use of optical speed bars on a high-speed approach to a roundabout.



Figure 2 Optical Speed Bars on US 60 (Bath County)

Photo Source: Google © 2023

- Chicanes or Horizontal Deflection. A series of horizontal deflections can be installed on a relatively straight
  roadway. Consider operating speeds at entry when designing curves and superelevation rates. Details for
  designing a series of successively smaller curves are available in KYTC's Roundabout Design Guidance.
- Center Island/Raised Median. A median may be created by combining striping with raised curbs, landscaping, and other features. Details on the application of markings for short median lengths are similar to Figure 3B-15 in the MUTCD.

https://mutcd.fhwa.dot.gov/htm/2009/part3/fig3b 15 1 longdesc.htm.

- Traveled Way Narrowing. Multiple methods can be used to narrow a roadway.
  - o If there is enough available capacity to reduce the number of lanes, traveled way narrowing may be done as part of a **Road Diet** or roadway reconfiguration.
  - Lane width narrowing may be done with striping or curb extensions.
  - Physically reduce the roadway width. This may include transitions from roadways with shoulders and clear zone to cross sections with narrower lanes and curb and gutter.

Excess width may be repurposed for other uses (e.g., bike or pedestrian facilities).

• **Curb Extensions.** Curb extensions may extend out at crosswalk areas and are usually 1-2 ft narrower than onstreet parking. They increase the visibility of vulnerable roadway users and reduce pedestrian crossing times. Consider other applications if within the turning path of an area that regularly accommodates large trucks.



Figure 3 Curb Extensions, Paducah Photo Source: Google © 2023

Addition of Bicycle and/or Pedestrian Facilities. For more information on the transportation expectations and
types of facilities that may be considered for different roadway contexts, see <a href="KYTC's Complete Streets, Roads">KYTC's Complete Streets, Roads</a>
 and Highways Manual. Figure 4 shows a transition from a rural to a suburban context. A shared use path (SUP)
was added to the facility.



Figure 4 Addition of SUP and Raised Median on US 60, Shelby County
Photo Source: Google © 2023

- Transverse Rumble Strips. Transverse rumble strips, which are perpendicular to the direction of travel, may be beneficial when approaching an intersection or clusters of development and transitioning from different contexts. When installed near residential dwellings, consider potential noise impacts.
- **Speed-Activated Feedback Signs**. Dynamic speed feedback signs are traffic control devices that are often used to reduce vehicle speeds (Figure 5).



Figure 5 Speed-Activated Feedback Sign

• Speed Tables. Speed tables are traffic-calming devices used on **low-speed** facilities and often include raised pedestrian crossings. Slopes are not greater than 1:10 or less than 1:25. Vertical height is 3-3.5 inches. They are around 22 ft long — 6 ft. approaches and a 10 ft. plateau (see Figure 6).



Figure 6 Speed Table in Lexington, KY

- Raised Crosswalks. Raised crosswalks are often placed on top of the flat part of a speed table. Figure 3B-30 of
  the MUTCD illustrates typical dimensions and markings for speed tables with crosswalks. When used at midblock or uncontrolled crossings, KYTC's Complete Streets, Roads, and Highways Manual recommends their use
  on facilities with posted speeds ≤ 30 mph and AADT < 9,000.</li>
- **Signs.** Signs that indicate downstream speed reductions (<u>W3-5 and W3-5a</u>) and advisory speeds are available. Welcome signs may also alert roadway users of a downstream change in context.
- **Gateways.** Gateways are a combination of applications that indicate a change in context. They are typically located at the entry of a community or town and may include some combination of lane narrowing, welcome signs, raised medians, and roundabouts.

Combinations of treatments are more effective than a single treatment at reducing speeds and minimizing crashes within a transition zone.

## **Context Application of Transitions**

When transitioning from a roadway context with a higher operating speed to contexts with lower speed, not all treatments or applications are appropriate. The designer should consider the users of the facility, the transportation expectations for the area, and the feasibility of the application.

### Rural

Rural contexts usually have the highest operating speeds. Transitions may be needed within the rural context classification if there are locations (e.g., intersections, school zones) that would benefit. Advisory signs, dynamic

speed feedback signs, transverse rumble strips, roundabouts, traveled way narrowing, horizontal deflection, and speed reduction markings may be appropriate for these areas.



Figure 7 Rural Road, US 421, Woodford County Photo Source: Google © 2023

## **Rural Town**

Roadways transitioning from a high-speed, Rural context into a Rural Town may use the following design treatments, when appropriate: raised medians, roundabouts, roadway narrowing, lane reductions, and transverse pavement markings. Transitions may also include changes in typical section from roadways with shoulders and clear zone to roadways with narrower lanes and curb and gutter. Combining treatments can create a gateway into a community that encourages slower speeds and preserves the character of the Rural Town.



Figure 8 Rural Town, US 62, Grayson County Photo Source: Google © 2023

The Green Book (7<sup>th</sup> Edition) breaks the transition zone into two areas — the perception-reaction area, and the deceleration area (Figure 9). Before selecting a treatment, consider the two areas that make up the transition zone. In the perception-reaction area, warning treatments (e.g., signs and pavement markings) are appropriate. In the deceleration area, physical treatments should be installed. Consider prohibiting passing in transitions zones.

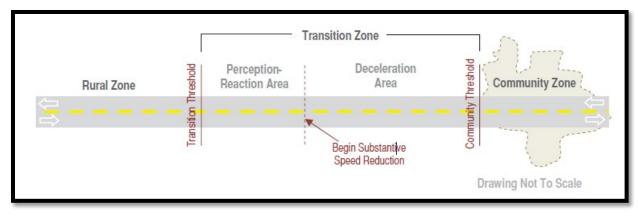



Figure 9 Transition Zone

(Source: AASHTO's A Policy on Geometric Design of Highway and Streets (2018))

## Suburban

Suburban roadways may serve as transition areas between rural roadways (Rural) and urban roadways (Urban/Urban Core). Treatments used to address speed changes from Rural areas to Suburban areas may be similar to those used when transitioning from Rural areas to Rural Towns. The roadway cross section and roadside design will transition within the Suburban context to match the predominant land uses and facility users.



Figure 10 Suburban Road, US 60, Franklin County
Photo Source: Google © 2023

#### Urban

Urban roadways may transition into Urban Core contexts or may serve as the city center in a smaller town. Speed transitions should be established on segments that approach Urban roadways from Suburban and Rural contexts. Urban roadways often have higher bicycle, pedestrian and transit activity. Transitions may include changes in typical section from roadways with shoulders or shared-use-paths to roadways with narrower lanes, curb and gutter, and bicycle and pedestrian facilities. Curb extensions or raised crosswalks may be considered.



Figure 11 Urban Road (Jefferson County)
Photo Source: Google © 2023

## **Urban Core**

When transitioning from a higher-speed context to an Urban Core context, consider the following:

- Raised crosswalks, curb extensions, and tight corner radii at intersections
- Reduce lane widths and eliminate unnecessary travel lanes, reallocating space for bicycle facilities, wider sidewalks, curb extensions, and other uses.
- Use of landscaped or raised medians to facilitate mid-block pedestrian crossings
- Limit superelevation, usually to normal or reverse crown, to encourage lower speeds
- Horizontal clearance may be narrower since speeds are lower.
- Roadway illumination for overall or pedestrian-scale lighting

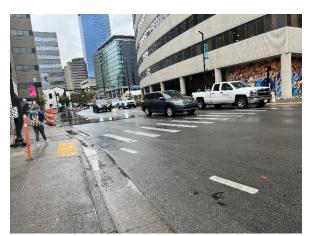



Figure 12 Urban Core

As segments transition into an Urban Core, pedestrian crossings are typically provided at every block.

| Appendix K Proposed Context Classification Edits to the Planning Manual |  |
|-------------------------------------------------------------------------|--|
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |
|                                                                         |  |

## Proposed Edits - Division of Planning Guidance Manual

The following are proposed edits to the Planning Manual to better incorporate context classification. The edits are in red.

## **PL-503.5 FUNCTIONAL CLASSIFICATION**

How is the Functional Classification system defined?

Functional classification is the process of grouping streets and highways according to the character of travel service they provide. This classification system recognizes that travel involves movement through a hierarchical system of facilities that progress from lower classifications handling short, locally oriented trips, to higher classifications that serve longer-distance travel at a higher level of mobility. The function performed by a roadway within this hierarchical system determines its classification. Functional classification is an important transportation planning tool used for programs such as federal-aid funding and eligibility, traffic modeling, reporting of highway statistics, highway and pavement design, and measurement of highway system performance.

For federal funding and other federal requirements, Aa roadway's classification is further defined as either urban or rural, based upon its location within one of the FHWA Adjusted Urban Area Boundaries. All public roadways, including those maintained by non-state agencies, are assigned one of the following functional classifications:

- Interstates: Roadways that comprise the Dwight D. Eisenhower National System of Interstate and Defense Highways and other interstates as designated by the U. S. Secretary of Transportation
- > Other Freeways & Expressways: Non-interstate roadways with access points limited to on-ramp and offramp locations and directional travel lanes usually separated by a physical barrier
- Other Principal Arterials: Roadways that provide a high level of traffic mobility for substantial statewide travel, or serving major activity centers and the longest trip demands within urban areas
- Minor Arterials: Roadways that serve trips of moderate length to smaller geographic areas and at slightly lower level of traffic mobility than principal arterials
- Major Collectors: Roadways that distribute and channel trips between roadways with lower classifications and the arterial systems
- Minor Collectors: Roadways that distribute and channel trips between local roads and roadways with higher classifications at a lower level of traffic mobility than major collectors
- Local Roads: Roadways that primarily provide direct access to adjacent land and are not intended for use in long distance travel

FHWA establishes classification criteria and procedures but relies on state and local transportation planning professionals to assign the classifications. Further guidance is accessible from FHWA's Highway Functional Classification Concepts, Criteria and Procedures.

What input is required to maintain the Functional Classification System?

KYTC's Division of Planning, Transportation Systems Branch and Data Management Branch, ensure functional classifications of Kentucky's roadways are updated regularly. In concert with ADDs and MPOs, KYTC reviews its highway systems every 10 years to coincide with the decennial census and the adjusted urban area boundary update cycle.

What forms are used?

There are no official TC 59 planning forms for this process.

What are the steps in maintaining the Functional Classification System?

This maintenance process involves ongoing coordination with local planning partners to identify roadways that require changes to their functional classification due to changes in transportation network and land use patterns.

## These changes can involve:

- Adding newly constructed or extended roadways to the network, which can in turn affect the functional classification of connecting or nearby roadways
- Upgrading the functional classification of an existing roadway due to land use changes or an improvement made to the roadway
- Downgrading the functional classification of an existing roadway due to land use changes, traffic controls that discourage through traffic, or other controls that limit the speed and capacity of a road

KYTC maintains the functional classification attributes of roadways to reduce effort needed for periodic updates. Issues related to functional classification are kept in mind as KYTC works with local transportation planning partners on various initiatives, such as long-range planning activities and project programming and development.

It is useful to consider the following questions when determining if a classification change may be necessary:

- Have new significant roadways been constructed that may warrant arterial or collector status?
- > Has any previously non-divided principal arterial roadway been reconstructed as a divided facility?
- Has any new major development (such as an airport, regional shopping center, or major medical facility) been built in a location that has caused traffic patterns to change?
- Has there been significant overall growth that may have caused some roadways to serve more access or mobility needs than they have previously?
- Have any arterial or collector roadways been extended or realigned in such a way as to attract more through-trip movements?
- > Has a roadway experienced a significant growth in daily traffic volumes?

Should a change in functional classification be deemed necessary, KYTC's Division of Planning, Transportation Systems Branch, prepares and processes an official order in accordance with PL-600. The change is made when the official order is signed by the Secretary of Transportation.

When is Functional Classification System maintenance complete?

KYTC's Division of Planning, Transportation Systems Branch, manages functional classification maintenance, with day-to-day interactions under the direct purview of the branch manager. The approval chain for the preparation of official orders approving functional classification systems modifications follows the approval chain outlined in PL-600. Any specific data concerns or issues encountered within the functional classification system maintenance process may be elevated at any time to KYTC's Division of Planning Director.

## PL-503.9 CONTEXT CLASSIFICATION FOR GEOMETRIC DESIGN

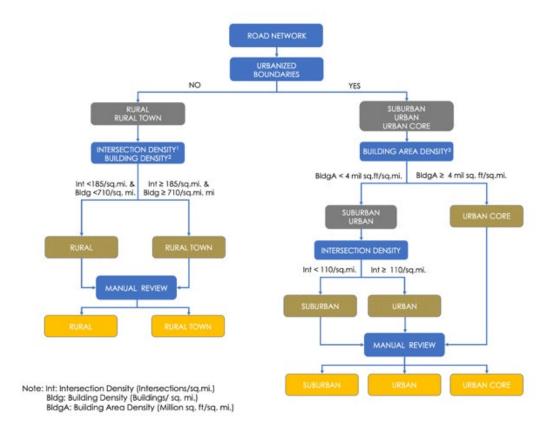
# How is the Context Classification defined?

Rural and urban boundaries used to determine functional classification are further broken down into the following classifications:

## Rural areas:

- Rural context: Areas with the lowest density, few houses or structures (widely dispersed or no residential, commercial, and industrial uses), and usually large setbacks.
- Rural town context: Areas with low density but diverse land uses with a commercial main street character, potential for on-street parking, and sidewalks and small setbacks.

#### **Urban** areas


- Suburban context: Areas with medium density, mixed land uses within and among structures (including mixed-use town centers, commercial corridors, and residential areas), and varied setbacks.
- Urban context: Areas with high density, mixed land uses and prominent destinations, potential for some on-street parking and sidewalks, and mixed setbacks.
- Urban core context: Areas with the highest density, mixed land uses within and among predominately highrise structures, and small setbacks.

AASHTO's A Policy on Geometric Design of Highways and Streets recommends criteria for context classification, which are to be applied by state and local transportation planning professionals. Additional guidance is available in NCHRP Report 1022 (Context Classification Application: A Guide).

Context classification is an overlay used with function classification for geometric design. Functional classification categorizes roadways based on the balance between motor vehicle mobility and access afforded by a facility. The four principal functional classifications are principal arterials (for main movement), minor arterials (distributors), collectors, and local roads and streets.

## What input is required to maintain the Context Classification?

At the statewide level, the U.S. Census urban boundaries, a road network database, and a database that can be used to determine building density and setbacks (e.g., Microsoft Maps U.S. Building Footprint database) are analyzed to determine context classification. The flowchart below illustrates the methodology described in NCHRP 1022 *Context Classification Application: A Guide* for performing context classification at the network scale.



At the project level, in addition to local data sources, knowledge of the project area or a site visit (e.g., to evaluate development type, density, building setbacks) that may not be available in regional or statewide databases. Review of local zoning maps and comprehensive plans to identify ongoing and upcoming projects in the area will help clarify future potential network conditions. These can serve as a basis for applying context classification in geometric design.

## What forms are used?

No official TC 59 planning forms are used for this process.

# What are the steps in maintaining the Context Classification System?

Maintenance involves routine review of the databases used to develop classifications at the statewide level network as well as ongoing coordination with local planning partners to identify roadways whose context classification should be updated to reflect changes in the transportation network and evolving land use patterns.

Include the identification of the Project-Level Context Classification on the DNA form. When the Network of Context Classification is complete, that can also be included.

Other recommended changes to the Planning Guidance Manual after completion of the network-level context classification include:

- On Figures 15 and 16, include a step in the flowchart, "Determine project-level context classification."
- Update Table 2. Planning Activity Matrix in PL-203 to include the following row:

| Planning Topic | What is done?       | Why is it done?   | When is it done?   | Who does this?     |
|----------------|---------------------|-------------------|--------------------|--------------------|
| Context        | KYTC's Context      | Supports AASHTO   | Context            | Data Management    |
| Classification | Classification      | guidance for      | Classification     | and Transportation |
|                | System is an        | designing for all | System data is     | Systems            |
|                | important planning  | users.            | continuously       |                    |
|                | tool that groups    |                   | monitored, and     |                    |
|                | streets and         |                   | updates are made   |                    |
|                | highways according  |                   | as community       |                    |
|                | to the character of |                   | growth and changes |                    |
|                | travel service they |                   | in travel patterns |                    |
|                | provide. It is      |                   | necessitate.       |                    |
|                | developed using an  |                   |                    |                    |
|                | automated system    |                   |                    |                    |
|                | based on            |                   |                    |                    |
|                | development         |                   |                    |                    |
|                | density, land uses, |                   |                    |                    |
|                | and building        |                   |                    |                    |
|                | setbacks.           |                   |                    |                    |
|                |                     |                   |                    |                    |