Precursor Systems Analyses of Automated Highway Systems

RESOURCE MATERIALS

Performance Measures Analysis – Task Q

U.S. Department of Transportation Federal Highway Administration Publication No. FHWA-RD-96-055 February 1996

FOREWORD

This report was a product of the Federal Highway Administration's Automated Highway System (AHS) Precursor Systems Analyses (PSA) studies. The AHS Program is part of the larger Department of Transportation (DOT) Intelligent Transportation Systems (ITS) Program and is a multi-year, multi-phase effort to develop the next major upgrade of our nation's vehicle-highway system.

The PSA studies were part of an initial Analysis Phase of the AHS Program and were initiated to identify the high level issues and risks associated with automated highway systems. Fifteen interdisciplinary contractor teams were selected to conduct these studies. The studies were structured around the following 16 activity areas:

- (A) Urban and Rural AHS Comparison, (B) Automated Check-In, (C) Automated Check-Out,
- (D) Lateral and Longitudinal Control Analysis, (E) Malfunction Management and Analysis,
- (F) Commercial and Transit AHS Analysis, (G) Comparable Systems Analysis, (H) AHS Roadway Deployment Analysis, (I) Impact of AHS on Surrounding Non-AHS Roadways, (J) AHS Entry/Exit Implementation, (K) AHS Roadway Operational Analysis, (L) Vehicle Operational Analysis, (M) Alternative Propulsion Systems Impact, (N) AHS Safety Issues,
- (O) Institutional and Societal Aspects, and (P) Preliminary Cost/Benefit Factors Analysis.

To provide diverse perspectives, each of these 16 activity areas was studied by at least three of the contractor teams. Also, two of the contractor teams studied all 16 activity areas to provide a synergistic approach to their analyses. The combination of the individual activity studies and additional study topics resulted in a total of 69 studies. Individual reports, such as this one, have been prepared for each of these studies. In addition, each of the eight contractor teams that studied more than one activity area produced a report that summarized all their findings.

Lyle Saxton Director, Office of Safety and Traffic Operations Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

Technical Report Documentation Page

	1,	semmean report Bocamentation rage
1. Report No. FHWA-RD-96-055	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
Precursor Systems Analys	es Of Automated	February 1996
Highway Systems: Perform	nance Measures Analysis-	6. Performing Organization Code
Task Q	•	
7. Author(s)		8. Performing Organization Report No.
Calspan and Dunn Engineeri	ng	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Calspan Corporation Advance	d Technology Center	
P.O. Box 400		11. Contract or Grant No.
Buffalo, New York 14225		DTFH61-93-C-00192
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Federal Highway Administration	on	Final Report
Turner-Fairbank Highway R	esearch Center	9/93-11/94 Resource Materials
6300 Georgetown Pike,		14. Sponsoring Agency Code
McLean, Virginia 22101		
15 C 1 N.		•

15. Supplementary Notes

Contracting Officer's Technical Representative (COTR) – J. Richard Bishop

16. Abstract

This report summarizes an analysis to identify performance measures to be used in comparing alternative Automated Highway Systems (AHS) concepts.

This document type is resource materials.

17. Key Words	18. Distribution States	ment		
Automated Highway Syste	No restrictions. This document is available to the			
Intelligent Vehicle Highway System		public through the National Technical Information		
Intelligent Transportation Systems		Services, Sprii	ngfield, Virginia 2216	51.
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price
Unclassified	Unclassified		402	

Table of Contents

Section	on		Page				
1.0	INTRO	INTRODUCTION					
2.0	METHO	DDOLOGY	2				
3.0	RESULT	rs	7				
	3.1	Check-Out	7				
	3.2	Check-In	12				
	3.3	Malfunction Management	18				
	3.4	Training	22				
	3.5	Reliability	23				
Appe	ndix A:	AHS Throughput Measure of Effectiveness (MOE)	Al				
	A.1	Introduction	Al				
	A.1.1	Facility Vehicle Miles per Hour	Al				
	A.1.2	Facility Vehicle Hours per Hour	Al				
	A.1.3	Facility Speed	A3				
	A.2	Conditions for the Use of Throughput MOE	A3				
	A.3	Relationships for Throughput MOE	A4				

List of Tables

Table		Page
1	NAHSC Provided Outline of AHS Requirements	3
2.	Example Portion of the Evaluation Analysis Matrix Illustrating the Format	
	Used	6
3	Interpretation of Evaluation Sensitivity Scores	7
4	Relative Sensitivity of Check-Out Performance Objectives Check-Out	
	Operational Requirements	8
5	Summary of AHS Design Issues within the Matrix of Performance Objectives	
	by Operational Requirements for Check-Out	9
6	Example Requirement Matrix	13
7	Relative Sensitivity of Check-In Performance Objectives Check-In Operational	
	Requirements	14

Page

Table

8	Summary of AHS Design Issues within the Matrix of Performance Objectives	
	by Operational Requirements for Check-In	15
9	Relative Sensitivity of Malfunction Management Performance Objectives	
	Malfunction Management Operational Requirements	18
10	Summary of AHS Design Issues within the Matrix of Performance Objectives	
	by Operational Requirements for Malfunction Management	19
11	Relative Sensitivity of Training Performance Objectives to Training	
	Operational Requirements	22
12	Summary of AHS Design Issues within the Matrix of Performance Objectives	
	by Operational Requirements for Training	23
13	Relative Sensitivity of-Reliability Performance Objectives Reliability	
	Operational Requirements	24
14	Summary of AHS Design Issues within the Matrix of Performance Objectives	
	by Operational Requirements for Training	24
	List of Figures	
Figur	re	Page
Al T	hroughput for Boston 1-93 (Southeast Expressway NB)	A4

CALSPAN PRECURSOR SYSTEMS ANALYSIS

TASK Q - PERFORMANCE MEASURES ANALYSIS

1.0 INTRODUCTION

As part of Calspan's Precursor Systems Analysis program, we started an analysis effort to identify performance measures to be used in comparing alternative AHS concepts. This report summarizes our work in this area.*

The evaluation measures of effectiveness (MOEs) for the AHS system should be defined based on past experience and research. Specifically, they should meet the following requirements:

- MOEs that are applied to current highways and transportation systems should be defined for AHS wherever applicable. By applying established MOEs it will be possible to compare measures of AHS performance to data already available from conventional systems (e.g., conventional highways, HOVs). Also, by using established MOEs, the interpretability and sensitivity of the measures will be known, and communication of the resulting data within the transportation community will be facilitated. Proven approaches to data collection are also more available when using standard techniques.
- MOEs applied to assess AHS unique features should be developed oil basis q[the PSA of AHS research. These MOEs should be developed to assess the degree to which an AHS design meets AHS objectives and desired characteristics. By building upon existing AHS related research foundation (e.g., the PSA of AHS studies), MOEs can be focused on the most important issues related to AHS performance.

The focus of this report is on development of MOEs of the second category, since a large portion of the PSA of AHS effort dealt with AHS unique issues and concerns. The application of more standard highway and transportation MOEs needs to be added using the process and structure described.

The PSA of AHS research results represent one year of focused technical effort accomplished by several study teams. AHS design issues and performance requirements are documented within many volumes of reports and are summarized within an issues database. The ambitious schedule for the NAHSC effort requires rapid assimilation of this work. Further, these results represent important facets of the evaluation process that should not be overlooked.

^{*}The work in the *main* body of this report was performed by Calspan staff. A separate. parallel **effort** was **performed** by Dunn Engineering **Associates** and is presented as Appendix A.

Our approach on this task is to provide summaries of major AHS design and evaluation issues mapped to the design and evaluation structure being used by the NAHSC'. It provides: (1) a high level summary of main results of Calspan's PSA of MIS effort within the structure of the NAHSC requirements document for a small subset of the PSA analysis; and (2) a reference to Calspan's PSA of AHS final report where more detailed information can be found. These results are structured and presented for use in defining MIS performance measurement requirements and the supporting MOEs.

It Is important to note that the final set of MOEs will need to be tailored to the specific concepts being evaluated to some extent. For example, MOEs associated with AHS entry will be different when applied to an Ii concept (mixed traffic) versus an 13 concept (dedicated AHS). The examples in this document have not yet attempted to deal with the specific needs of various AHS concept types.

2.0 METHODOLOGY

The methodology applied in the development of this document involved a three-step process. First, the preliminary AHS Description Document objectives and characteristics were matrixed to AHS performance objective categories. Second, the evaluation oriented PSA of AHS issues were summarized within this structure and references to the main report were added. Third, MOEs describing actual metrics and specific questions to be answered are defined based on the issues identified in step two.

The NAHSC requirements outline that formed the starting point for this analysis is shown in Table 1 below. Two of the more important design characteristics, affordability and evolvability (also referred to as deployability in the MIS Description Document), were added to the supplied list of design objectives after consideration of their overall importance. These are important enough to be treated as system level objectives for the purposes of our study. Table 2 shows an example portion of the matrix of design characteristics with respect to the AHS objectives.

^{&#}x27;We were provided NAH SC preliminary system definition documents in December. 1994 from Parsons Brinckeroff.

Table 1. NAHSC Provided Outline of AHS Requirements

SECTION	DESCRIPTION
3.0	REQUIREMENTS
3.1	System Description
3.2	Performance Objectives
3.2.1	Safety
3.2.2	Throughput
3.2.3	Inclement Weather Operations
3.2.4	Enhanced Mobility
3.2.5	Improved User Comfort & Convenience
3.2.6	Reduced Fuel Consumption & Emissions
3.3	System Characteristics
3.3.1	Affordability
3.3.2	User Desirability
3.3.3	Effect on Surrounding Non-AHS Roadways
3.3.4	Vehicle Instrumentation
3.3.5	System Technology
3.3.6	Evolvability
3.3.7	Vehicle Type
3.3.8	Roadway Type
3.3.9	Intermodality
3.3.10	Environmental Impacts
3.4	Operational Requirements
3.4.1	Check-In
3.4.1.1	Pre Check-In Inspections & Test
3.4.1.1.1	Vehicle Identification
3.4.1.1.2	Destination Information
3.4.1.1.3	Periodic Certifications
3.4.1.1.4	Check Vehicle Subsystems
3.4.1.1.4.1	Initial Self Test
3.4.1.1.4.2	Continuous Built-In Test
3.4.1.1.4.3	Roadside Non-Contact Testing
3.4.1.1.5	Special Equipment (Chains, Tires, etc.)
3.4.1.2	Verification of Operator License and Insurance
3.4.1.3	Verification of Vehicle Registration and Operating Certification

Table 1. NAHSC Provided Outline of AHS Requirements (continued)

SECTION	DESCRIPTION			
3.4.1.4	Vehicle Systems Checks			
3.4.1.4.1	Sensors			
3.4.1.4.2	Actuators			
3.4.1.4.3	Continuous Built-In Test			
3.4.1.4.4	Roadside Non-Contact Testing			
3.4.1.4.5	Inspection			
3.4.1.5	Check-In Abort			
3.4.1.6	Enforcement			
3.4.1.7	Safe Sequence for Transfer from Manual to Automated Lanes			
3.4.1.8	Vehicle Merging			
3.4.1.9	Traffic Flow Control			
3.4.1.10	Driver~Operator Interface			
3.4.2	Roadway Operations			
3.4.2.1	Automated Lane Keeping			
3.4.2.2	Automated Headway Control			
3.4.2.3	Coordinated Vehicle Maneuvering (Platooning)			
3.4.2.4	Communications			
3.4.2.5	Vehicle Diagnostics			
3.4.2.6	Roadway Condition Determination			
3.4.2.7	Trip Guidance & Control			
3.4.2.9	Collision Avoidance			
3.4.2.9.1	AHS Vehicles			
3.4.2.9.2	Rogue Vehicles			
3.4.2.9.3	Other Obstacles			
3.4.2.9.3.1	Obstacles on Roadway			
3.4.2.9.3.2	Animals Near Roadway			
3.4.2.10	Vehicle Location			
3.4.2.11	Human Factors			
3.4.2.12	Driver/Operator Interface			
3.4.3	Check-Out			
3.4.3.1	Normal Check-Out			
3.4.3.1.1	Driver Readiness			
3.4.3.1.1.1	Alert Driver			

Table 1. NAHSC Provided Outline of AHS Requirements (continued)

SECTION	DESCRIPTION			
3.4.3.1.1.2	Verify Operator Competence			
3.4.3.1.2	Vehicle Readiness			
3.4.3.1.2.1	Verify Operation of Safety Critical Manual Vehicle Functions			
3.4.3.1.2.2	Safe SOE for Transfer of Control from Automated to Manual			
3.4.3.1.3	Check-Out Abort			
3.4.3.2	Emergency Check-Out			
3.4.3•3	Storage Area for Failed Vehicles			
3.4.3.4	Driver(Operator Interface			
3.4.4	Operations Management			
3.4.4.1	Central Control Facility			
3.4.4.2	Alternate Routing			
3.4.4.3	Flow Management			
3.4.4.4	Incident Management			
3.4.4.4.1	Central Control Facility			
3.4.4.4.2	Verification			
3.4.4.4.3	Response			
3.4.4.5	Modify System Operating Parameters			
3.4.4.6	Emergency Service Management			
3.4.4.7	Operator Interface			
3.4.5	Malfunction Management			
3.4.5.1	Subsystem Failure			
3.4.5.2	Hazard Management			
3.4.5.2.1	Man-Made Hazards			
3.4.5.2.2	Natural Hazards			
3.4.5.3	Emergency Abort			
3.4.6	Information Management			
3.4.7	Control Center Operations			
3.4.8	Communications			
	Interfaces			
3.5.J	Vehicle to Driver			
3.5.2	Vehicle to Infrastructure			
3.5.3	Driver to Infrastructure			

Table 1. NAHSC Provided Outline of AHS Requirements (continued)

SECTION	DESCRIPTION			
3.5.4	Vehicle to Other Vehicle			
3.5.4.1	AHS Vehicle to AHS Vehicle			
3~5.4.2	AHS Vehicle to Non-AHS Vehicle			
3.6	Deployment			
3.7	Training			
3.7.1	Vehicle Operator			
3.7.2	Control Center Operator			
3.7.3	Vehicle Maintenance Personnel			
3.11	Reliability			
3.12	Maintenance			
3.12.1	Preventative			
3.12.2	Response			
3.12.3	Record Keeping			
3.14	System Security			

Table 2. Example Portion of the Evaluation Analysis Matrix Illustrating the Format Used

Oper. Req.		Performance Objectives						
Charle Out	Cofota.	Through	All	Enhanced	User	Fuel &		Evolva
Check-Out	Safety	-put	Weather	Mobility	Comfort	Emissions	ability	bility
Normal Check-Out								
Driver alertness								
Driver competence								
Vehicle readiness								
Check-out abort								
Emergency Check- Out								
Storage Area for								
Failed Vehicles								
D river/Operator								
Interface								

It is recognized that the sensitivity of a given performance measure to the various design characteristics is not equal. A scale for indicating the weighting among performance objectives was created. This scale is shown in Table 3. The scale indicates the relative impact of each design category on the respective performance objectives.

Table 3. Interpretation of Evaluation Sensitivity Scorcs

Scale Value	Interpretation
blank	No impact, the evaluation category is not sensitive to this aspect of design
I	Minor impact, the evaluation category is only slightly sensitive to this aspect of design
2	(Between minor and moderate impact)
3	Moderate impact the evaluation category is sensitive to this aspect of design
4	(Between moderate and strong impact)
5	Strong impact, the evaluation category is extremely sensitive to this aspect of design

The second part of the methodology is populating the table with design issue summaries. Many of these issues are discussed in detail in Calspan's PSA of MIS final report and are included in the issues database. Specific references to the PSA of MIS final report sections are included in the table. The final version of the table will include issues *drawn* from all PSA of MIS reports as well as other relevant sources.

Finally, the design issues summarized in the table, and discussed in full in the PSA of MIS report, are used to define evaluation MOEs. This process is accomplished by interpreting and expanding the design issues in a way that allows their assessment within the context of evaluation. This involves determining how an evaluation MOE can be defined and applied to ensure that the particular design issue (or issues) are adequately dealt with within the AHS design.

As noted earlier, the preliminary draft of the AHS Description Document, dated 8 March 1995, differs somewhat from the outline and used to structure this work.

3.0 RESULTS

We are supplying results in the areas of check-out, check-in, malfunction management, training and reliability. These results are provided to illustrate the approach. Other areas can be analyzed using the methodology.

3.1 Check-Out

Candidate MIS check-out processes need to be evaluated to ensure that they provide adequate levels of <u>safety</u>, will not impede <u>throughput</u>, are acceptable to drivers (<u>user comfort</u>), are <u>affordable</u>, and are able to be implemented in an <u>evolutionary</u> fashion. The evaluation must ensure check-out adequacy with respect to each of these categories for both nominal and emergency check-out situations. Further, the implications of the check-out system on AHS infrastructure requirements must be assessed. Table 4 shows our estimate of the relative sensitivity of each check-out evaluation category to the major check-out design components.

Table 4. Relative Sensitivity of Check-Out Performance Objectives to Check-Out Operational Requirements

Oper. Req.			I	Performance	e Objective	es		
Check-Out	Safety	Through -put	All Weather	Enhanced Mobility	User Comfort	Fuel & Emissions	Afford- ability	Evolv- ability
Normal Check-Out								
Driver alertness	5	2			2		1	2
Driver competence	3	2			2		1	2
Vehicle readiness	4						1	2
Check-out abort								
Emergency Check-Out	5				2			2
Storage Area for		2					4	.'
Failed Vehicles								
Driver/Operator Interface	5	3			-,			

^{*} A!! items scoring a 2 or greater are discussed in Table 5 below.

Table 5 summarizes evaluation-related issues identified during the PSA of AHS Study within the NAHSC requirements structure.

The next step in the methodology is to translate the AHS design issues described in Table 5 into requirements linked to specific MOEs. This can be accomplished by interpreting the details of the PSA of AHS reports and other relevant research and documents within an evaluation framework. This involves determining evaluation approaches and metrics for ensuring that the design issues are satisfied. A few examples will illustrate.

The first issue defined in Table 5 is that the check-out process should: (1) help restore alertness and (2) test for adequate alertness. Related issues state that the process should address all alertness-related aspects of driver behavior (stimuli detection, discrimination, recognition, and comprehension), and that the process should be related to the driving situation (e.g., not just ensure alertness, but alertness to the roadway etc.). From these issues, requirements and related

Table 5. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-Out

Oper. Req.	Performance Objectives					
Check-Out	Safety	Throughput	User Comfort	Affordability	Evolvability	
Normal Check-Out Driver alertness (Volume 4, Chapter 2, Section 1.2.3. Driver Readiness Issues, Section 3.2. Driver Readiness Issues)	 The check-out process should: (1) help restore alertness and (2) test for adequate alertness The check-out process must be appropriate for range of driver categories (e.g. elderly) The process should addresses all alertness aspects of driver behavior The process should be related to the driving situation (e.g., not just ensure alertness, but alertness to the roadway etc.) The process for assuring driver readiness should build on the human factors research related to vigilance and information processing. If check-out is failed there must be provisions for automatically parking the vehicle or sending the it to die next exit 	 Check-out tests should be accomplished within tile check-out and transition process (and not constrain throughput) Check-out process should be started early enough to allow for completion before transfer of control point Allow time/space for retest if check-out failed 	- Check-out process should not be intrusive, difficult, and/or annoy in" - Check-out test (especially for periodic, ongoing tests rather than tests at exits) should be meaningful to the task of travel (e.g., system status, upcoming exits, etc.)	•	- adapt to ','evolving driver roles (especially role during AHS operation and malfunction management)	
Normal Check-Out Driver competence (Volume 4, Chapter 2, Section 1.2.3, Driver Readiness Issues; Section 3.2, Driver Readiness Issues)	 The check-out process should address all important aspects of driver performance The driver should be required to take control rather than be give control of die vehicle. If check-out is failed there must be provisions for automatically parking the vehicle or sending it to the next exit 	(same concerns as above)	(same concerns as above)		(same concerns as above)	

Table 5. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-Out (continued)

Oper. Req.	Performance Objectives				
Check-Out	Safety	Throughput	User Comfort	Affordability	Evolvability
Normal Check-Out Vehicle readiness (Volume 4, Chapter 2, Section 1.2.4,	- All safety critical Systems not used during automated driving need to be verified during check-out.				- Must be able to evolving AHS design and supporting technology
Vehicle Readiness Issues; Section 3.3 Vehicle Check-Out Issues)	 Consider fail-safe switch interlock approaches for mechanical switching design. 				
	 Consider control response testing approach for software switching design. If check-out is failed there must be provisions for automatically parking the vehicle or sending the it to ~e next exit 				
Normal Check-Out Check-out abort (,E specifically addressed)					
Emergency Check-Out (Volume 4, Chapter 2, Section 2.1.2	 If emergency check-out has a driver role, driver must remain alert throughout trip and this needs to be periodically verified. 		- If periodic driver alertness tests are required (e.g., the driver has role in malfunction		- Check-out should be able to adapt to the evolving AHS design mid associated driver
Emergency Check-Out; 3.2 Driver Readiness Issues; 3.2.3.1 Implication of Driver Role)	- May need salient alarm for situations requiring immediate human intervention.		management and/or system monitoring) then the tests should be meaningful (e.g., associated with the trip)		role.

Table 5. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-Out (continued)

Oper. Req.	Performance Objectives						
Check-Out	Safety	Throughput	User Comfort	Affordability	Evolvability		
Storage Area for		- The storage area for		- If failed			
Failed Vehicles		failed vehicles must be		vehicles are to			
(Volume 4, Chapter 2,		sufficient to handle all		be parked,			
Section 3.4		failed vehicles.		adequate			
Highway/AHS				space must be			
Design Issues)				provided, this			
				will be a			
				significant			
				cost driver.			
Driver/Operator	- The check-out driver interface will be a	- The driver readiness test -	Tests should he				
Interface	critical element for its success must be	should be an integrated	meaningful (e.g.,				
(Volume 4, Chapter 2,	tested for usability	portion of the check-out	associated with the task of				
Section 1.2.3 Driver		process.	traveling on the AHS),				
Readiness Issues; 3.2	- The check-out procedure should be		unintrusive, and should				
Driver Readiness	obvious to use, and compatible with the		not be				
Issues)	driving tasks.		annoying.				

MOEs appropriate for assessing candidate check-out processes can be determined. Example MOEs that address these questions are shown in Table **6.**

These MOEs need to be expanded to include all relevant issues in Table 5. For **example** issues relating to throughput and consideration of requirements for re-test need to be added. By developing the AHS-unique evaluation factors based on MIS design requirements and drawing from existing relevant research, the resulting MOEs will be comprehensive and supported by the best available research base available Table 7 shows our estimate of the relative sensitivity of each checkin evaluation category to the major check-in design components.

3.2 Check-In

Check-in functions need to be closely evaluated for adequate <u>safety</u>. Vehicles with faulty components that pass the check-in inspection pose a threat to all MIS users. In addition to being a safety risk, vehicles with faulty or malfunctioning components risk a breakdown that could affect the <u>throughput of</u> the AHS lanes and cause an increase in driver travel time as well as stress level. Table 8 summarizes evaluation-related issues identified during the PSA of AHS Study within the NAHSC requirements structure.

Check-In is addressed in Calspan's Precursor System Analysis of Automated Highway systems report, Volume 4 (Check-In). A majority of the comments were derived from chapter 1.

Table 6. Example Requirement Matrix

				Pas	sed
Requirement Evaluation	Verification Approach	MOE	score*	Yes	No
Is the candidate check-out process designed and	Test. Tests using	Apply SAGAT			
structured in a way that will help a driver who has	representative subjects	(Situation Awareness			
not been attending to the driving task to become	and realistic AHS use	Global Assessment			
aware of the driving situation dynamics?	characteristics (e.g.,	Technique) test at			
	trip duration) must be	point of control			
	verified using a driving simulator.	transfer			
Are all important components of driver alertness		Relate subjective scale			
and performance included in tile check-out process	_	-			
(stimuli detection, discrimination, recognition)?	ensure that all items are				
Does the check-out process require the driver to	covered.				
attend to stimuli in the future view? Does it require					
demonstration of stimuli detection aid					
discrimination, recognition and comprehension,					
and correct decision and response?					
Does tile check-out evaluation require adequate	Test. Tests using	Apply measures of			
demonstration of driver alertness before allowing	representative subjects	driving performance			
the driver to take control? Has this been verified	and realistic AHS use	(e.g., lane deviation,			
empirically for all potential driver populations? Is	characteristics	false alarm rate related			
the test and associated criteria set to provide	(e.g., trip duration)	to driving			
adequate differentiation without an unacceptable	must be verified using a				
false alarm rate?	driving simulator.				

Score: 1 = did not pass: 2=marginally passed: 3=clearly passed

Table 7. Relative Sensitivity of Check-In Performance Objective to Check-In Operational Requirements

Oper. Req.	Performance Objectives							
Check-In	Safety	Through	All	Enhanced	User	Fuel &	Afford-	Evolv-
		-put	Weather	Mobility	Comfort	Emission	ability	ability
Pre Check-In								
Inspection & Test								
Vehicle Identification		0						
Destination			3					
Information								
Periodic Certifications	3							
Check Vehicle								
Subsystems								
Initial Self Test	5							
Continuous Built-In	5	3						
Test								
Roadside Non-Contact	5							
Testing								
Verification of Vehicle	3							
Registration &								
Operating								
Certification								
Vehicle systems Checks								
Sensors and Control	S							
Systems								
Actuators	5							
Continuous Built-In	5							
Test								
Roadside Non-Contact	5							
Testing								
Inspection	3							
Check-In Abort	3	3						
Enforcement	3							
Safe Sequence for	3	3						
Transfer from Manual								
to Automated Lane								
Keeping								
Vehicle Merging	3							
Traffic Flow Control	2							
Driver/Operator	4				3			
Interface								

Table 8. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-In

Oper. Req.	Performance objectives					
Check-In	Safety	Throughput	User Comfort			
Check-In	•	-Where are vehicle system	-Are tests performed on the			
(Vol.4, section 1.2.3)		checks performed? (On-	fly' or is the driver required			
		ramp transition lane)	to stop?			
Pre Check-In Inspections & Test	-Where will inspections					
(Vol.4, Chap I, Section 3.1.7)	occur?					
-						
	-What will be inspected-How					
	will results be reported?					
Pre Check-In Inspections & Test	- The status of pre check-in	- The unique vehicle				
Vehicle Identification	inspection will be conveyed	identifier will be conveyed				
(Vol.4, Chap. I)	during check-in	during check-in				
Pre Check-In Inspections & Test		-At check-in the vehicle will				
Destination Information		convey destination				
		information (if entered)				
Pre Check-In Inspections & Test	-What is the specified time					
Periodic Certifications	frame for periodic system					
(Vol.4, Chap I)	inspections?					
Pre Check-In Inspections & Test	-What vehicle systems will					
Check Vehicle Subsystems	be checked?					
(Vol.4, Chap. 1, Sec. 3.1 & 3.2)						
	-What AHS systems will be					
	checked?					
	-What systems will be					
	checked by a built in system					
	test?					
	- What systems will be					
	checked manually?					
Pre Check-In Inspections & Test	- How will the driver be					
Check Vehicle Subsystems	notified as to the results of					
Initial Self Test	the check-in inspection?					
(Vol.4, Chap. 1)						
	- In the event of					
	failure the driver should be					
	given detailed information or					
	the cause of the failure.					
Pre Check-In Inspections & Test	- Continuous Built-In tests	What actions will be taken				
Check Vehicle Subsystems	should be used to monitor the					
Continuous Built-In Test	health of the system while on					
(Vol.4, Chap 1, Sec. 1.2)	the	- Less critical malfunctions				
	AHS.					
		- Delineating factor between				
		critical and non-critical				
		malfunctions.				

Table S. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-In (Continued)

Oper. Req.	Performance objectives				
Check-In	Safety	Throughput	User Comfort		
Pre Check-In Inspections & Test	- A test should be in				
Check Vehicle Subsystems	place to assure that drivers				
Roadside Non-Contact Testing	are certified to operate on the				
(Vol.4, Chap. I Sec. 1.2)	AHS (if special AHS				
	certification is required).				
Verification of Vehicle	- A test should be in				
Registration & Operating	place to assure that vehicles				
Certification	entering the AHS are				
(Vol., 4, Chap. I)	registered.				
Vehicle systems Checks	- Which vehicle systems				
(Vol.4, Chap. 1, Sec. 3.0 - 3.2)	will be monitored				
	periodically while the vehicle				
	is on the AHS?				
	3371.1.1.1.1.1				
	- Which vehicle systems will				
	be inspected during the pre				
Vahiala Systems Chasks Sangars and	check-in inspection? - Sensors and control systems				
Vehicle Systems Checks Sensors and Control Systems	should be tested with built-in				
(Vol.4, Chap. 1, Sec. 3.2)	tests.				
(Vol.4, Chap. 1, Sec. 3.2)	tests.				
	- What approaches are				
	suggested for testing sensors				
	and control systems?				
Vehicle systems Checks Actuators	- Actuators should be tested				
(vol. 4, Chap. 1, Sec. 3.2)	with built-in tests				
	- What techniques to test and				
	verify the proper operation of				
	vehicle actuators are used?				
	777				
	- What monitoring				
Vahiala systems Chasles Continues	techniques are used? - What built-in tests will be				
Vehicle systems Checks Continuous Built-In Test	used on the pre check-in				
(Vol.4, Chap. 1, Sec. 3.0-3.2, 4.1)	inspection of vehicle				
(Vol.4, Chap. 1, Sec. 3.0-3.2, 4.1)	systems?				
	systems.				
	- Will these same tests be				
	used in continuous				
	monitoring while the vehicle				
	is on the AHS?				
Vehicle systems Checks	- All monitoring of				
Roadside Non-Contact Testing	vehicle systems should be				
(Vol.4, Chap. I)	performed by the vehicle				
	computer. The computer				
	would communicate any				
	failures or problems to the				
	roadside AHS system.				

Table 8. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Check-In (Continued)

Oper. Req.	Performance objectives					
Check-In	Safety	Throughput	User Comfort			
Vehicle Systems Checks Inspection (Vol.4, Chap. I)	Vehicle inspections need not he done while the vehicle is					
	on the AHS. - Inspections should he					
	performed periodically based on time and mileage.					
Check-In Abort	- Vehicles that fail the	- Vehicles that fail the check-				
(Vol. 4, Chap. 1, Sec 34 1 t4 3)	check-in inspection should	in inspection should be				
	not he allowed to engage tile	directed to return to ~e				
	AHS.	manual lanes.				
Enforcement	- Rouge vehicles should be					
(Vol.4, Chap I)	detected by the system wich					
	would notify enforcement					
	vehicles.					
Safe Sequence for Transfer from	- Open loop testing of the	- Once tile vehicle has passed				
Manual to Automated Lane	control loop should he made					
Keeping	to verify the proper	AHS would assume control				
(Vol.4, Chap. I, Sec. 3.2)	functioning of sensors and	of the vehicle and move it				
	actuators.	into a platoon.				
Vehicle Merging	- How is space made for					
(Vol.4, Chap. 1)	vehicles merging into AHS					
	lanes? (Communication					
	between vehicles, roadway					
	infrastructure)					
Traffic Flow Control	- What configurations are to					
(Vol. 4, Chap. 1, Sec. 3.1)	be used to control vehicles					
	on the AHS during lane					
	changing and merging?					
	(Vehicle communication,					
	system control)					
Driver/Operator Interface	The check-in interface		- Tests should be			
(Vol., 4, Chap. I)	should be obvious to use,		meaningful, unintrusive and			
	compatible with the driving		provide the driver with			
	task and acceptable to		understandable information			
	drivers.		regarding,' check-in failures.			

3.3 Malfunction Management

Malfunction Management will have a large impact on <u>safety</u>, <u>throughput</u>, <u>affordability</u> and <u>improved user comfort and convenience</u>. The largest impact is on safety. Failure to safely and quickly handle a system malfunction or accident could result in many deaths and injuries due to the projected high speeds and small headways in the AHS lanes. In order to be accepted by society the MIS should be extremely reliable with any problems that do occur being handled safely and expediently. Failure of malfunction management will impact throughput either in the slowing or rerouting of vehicles, or in the case of a severe emergency, by shutting down the entire system. Slowing or shutting down MIS lanes would inconvenience the user by increasing the amount of time to get to their destination or forcing them to manually control the vehicle. On the other hand there must be a trade-off between the necessary reliability and convenience, and the affordability of the system. Table 9 shows the relative sensitivity of the evaluations categories to the major malfunction management design components.

Much of the information on the impact of Malfunction Management on the Performance objectives was taken from Calspan's Precursor System Analysis of Automated Highway Systems reports: Volume I, Chapter 1, Malfunction Management and Analysis; and Volume I, Chapter 2, MIS Safety Issues. Information was also drawn from Cal span's work on the IVHS System Architecture Program which was documented in a report titled "System Architecture for a Nationwide Intelligent Vehicle-Highway System; Initial Performance and Benefits Summary Report".

Table 9. Relative Sensitivity of Malfunction Management Performance Objectives to Malfunction Management Operational Requirements

Oper. Req.		Performance Objectives						
		Through	All	Enhanced	User	Fuel &	Afford-	Evolv-
Malfunction Mgmt.	Safety	-put	Weather	Mobility	Comfort	Emissions	ability	ability
Subsystem Failure	5	4					2	
Hazard Management								
Man-Made Hazards	5	4			2	1	3	
Natural Hazards	5	4			2	1	3	
Emergency Abort	5	4			2			

Table 10. Summary of AHS Design Issues within the Matrix; of NAHSC Performance Objectives by Operational Requirements for Malfunction Management

Oper. Req.	Performance Objectives						
Mal. Mgmt	Safety	Throughput	Afrordability	User Comfort			
Subsystem Failure	-System sensors with the ability to detect mid identify failures within a required time must be verified. (Architecture.section 4.6.S.1) -Validate fact that system software has capability to react faster and with greater precision than human operators when there is danger of a potential accident. (Malfunction Management. section 3.3.1) -Specific communication devices must be resistant to interference and tampering to ensure that communications only occur between valid AHS sources. (Malfunction Management. section 3.3.3)	- Transition from automated to manual control without dynamic disturbance to the AHS lanes must occur within a the period that will allow the system to check vehicle components, evaluate driver readiness to resume control, exit the vehicle from the AHS lanes, allow the driver to re-take control and still give the driver time to egress at the desired point from the freeway. (Safety, section 3.1.3) Provide messages 10 drivers or take automated action within 4 minutes of notification to the system of an accident or problem. This will help to prevent bottlenecks or other accidents that might otherwise further reduce throughput. (Architecture, section 4.6.S. 1) Assign unique identifiers to vehicles as they enter the system to prevent emergency or change commands from being sent to the wrong vehicles. (Malfunction Management, section 3.3.3)	Sensitive, reliable sensors wilt add cost to the system. A tradeoff will have to ~ made between available technology and affordability. (Malfunction A Management, section 3.4.3.1) Technologies used for subsystems should not exceed more than 5(1% of the vehicle cost. (Malfunction Management, section, '4.1)	- Redundancy 0'. Sensors will help to improve the failure rate of AHS vehicles to 1100 to 1800 per iii million vehicle hours. (Malfunction Management section 4.1) Quick notification of problems caused by malfunctions will allow drivers or the system to take alternative action and prevent traffic stoppages or slowdowns 01) the AHS lanes. (Malfunction Management, section 3.3.1)			

Table 10. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Malfunction Management

Oper. Req.	Performance Objectives						
Mal. Mgmt	Safety	Throughput	Aflordability	User Comfort			
Subsystem Failure	-Use at least 2 dissimilar technologies	- Provide at least one breakdown lane to					
(Continued)	for redundancy in critical vehicle	remove malfunctioning vehicles from					
	subsystems and AHS components. In	AHS lanes.					
	the case of an AHS component failure	(Malfunction Management, section 3.5)					
	this will allow the AHS to continue to						
	operate safely and continuously until	Note that without a breakdown lane					
		approx. 500 to 750 lane-blocking					
		incidents per million vehicle miles					
	allow the vehicle to safely pull over in						
		(Malfunction Management, section,, 3.5)					
	operation or continue to tile next						
	available exit. (Malfunction						
	Management, section 3.4.3.2)						
Hazard Management	- Provide barriers between AHS &	- Provide maintenance vehicles that can	 Cost of barriers or fences 				
Man-Made Hazards	manual lanes to keep other vehicles	perform maintenance to the AHS lanes		could result in traffic slowdowns			
		or remove foreign objects without	investment, effect on highway land				
from Malfunction	Size, location and type need to be	disturbing AHS lane flow.	needs, cost of 24 hour maintenance				
Management, section	determined.		vehicles.	increase travel tine and driver			
3.5.2, unless otherwise				stress.			
noted.)	- Consider interlocks that		- Cost in time and driver				
	nullify the effect of inappropriate		annoyance when they fail the				
	button presses or switch actions by the		check-out process and are forced to				
	driver. (Malfunction Management,		go on to the next exit or go to an				
	section 3.2.4)		auxiliary lane to try exiting again				
			(Malfunction Management, section				
			3.2.4)				

Table 10. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Malfunction Management

Oper. Req.	Performance Objectives					
Mal Mgmt	Safety	Throughput	Affordability	User Comfort		
Hazard Management	- Consider barriers to keep animals	-Provide maintenance vehicles to pick up	- Cost of initial investment and	Natural hazards in AT l~ I m~',		
Natural Hazards	mid other naturally occurring hazards	or remove natural hazards such as tree In	upkeep of barriers, fences or	could result in traffic slowdowns',		
(All comments derived	out of the AHS lanes. Size, location	limbs, dead animals, or snow without	maintenance vehicles.	or stoppage or in ',extreme ~ cases		
from Malfunction	and type need to be determined.	disturbing AHS lane flow.		greatly increasing drive times and		
Management, section	- Consider alternate operating			driver', stress.		
3.5.2, unless otherwise no	procedures involving slower speeds					
ted.)	and backup communications for					
	environmental hazards such as side					
	wind gusts which saturate lateral					
	control or lightning which knocks out					
	roadside communication computers.					
	(Malfunction Management,					
	section 3.2.3)					
Emergency Abort	Manual backup may be totally	- Traffic delays and/or slowdown will				
	impractical in managing a malfunction	result. (Safety, section: 3.1.3)				
	in high speed, small gap distance					
	situations where reaction time is short	 Serious emergencies may 				
	and speeds are high. The system	require AHS system shutdown (Safety,				
	should gracefully degrade to safer	section 3.1.3)				
	situations for manual control or in					
	cases where the malfunction is					
	extreme, bring the AHS lanes to a					
	halt. (Safety, section: 3.1.3)					

3.4 Training

Training will have a large impact on the <u>safety</u> of the system. With training, vehicle operators will have a better understanding of how the different Systems in the car function and will use them properly and with more comfort and trust. Control center and vehicle maintenance personnel will have to be highly trained in their prospective areas of the AHS in order to assure the safety of the users and high functionality of the AHS. Table ~ I shows the relative sensitivity of each evaluation category to the major training design components.

Much of the information on the impact of training on the Performance objectives was taken from Calspan's Precursor System Analysis of Automated Highway Systems reports:

Volume 4, Chapter 5 Vehicle Operational Issues; and Calspan's Precursor Systems Analyses of Automated Highway Systems Interim Report, Task K-Roadway Operational Analysis.

Table 11. Relative Sensitivity of Training Performance Objectives to Training Operational Requirements

Oper. Req.	Performance Objectives						
Training	Safety	Through -put	All Weather	Enhanced Mobility		Fuel & Emissions	Evolvabili ty'.
Vehicle Operator	2	2			2		
Control Center Operator	3	2					
Vehicle Maintenance Personnel	3	2					

Table 12. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Training

Oper. Req.	Performance objectives				
Training	Safety				
Vehicle Operator	-Vehicle operators must have a sufficient mental model of the AHS components in their vehicle to obtain a certain degree of self-diagnostics. This knowledge will enable the driver to understand the problem and take appropriate action if needed. (Vehicle Poerational Issues, section 2.2)				
Control Center Operator	- Areas of needed expertise for operation and management of an AHS must be defined. The introduction of a completely new technology will require significant modification to existing practices at operating agencies in the areas of management, and operations of the AHS. Staff will need to be highly specialized and skilled in the areas of information management, communications technology, control software algorithms, and electrical and systems engineering. (Roadway Operational Analysis. section K. 2.1)				
Vehicle Maintenance Personnel	- Considering ~e increasing number of safety-critical systems appearing in vehicles and the increase in vehicular electronics it will be necessary,' to ensure functional reliability. AHS vehicles will have to be subjected to periodic routine inspections and testing to ensure proper functionality when operating on the AHS. Maintenance personnel will need to be trained in ~e different analysis and possible failure modes of the AHS components in addition to the validation and verification of the software required for component operation. (Vehicle Operational Issues. section 2.2) - Maintenance staff will have to be highly trained in the use of automated ~d robotics maintenance equipment. (Roadway' Operational Analysis section, A 2.1)				

3.5 Reliability

Reliability will have a large impact *on* <u>safety</u>, and <u>affordability</u>. The biggest impact is on Safety. The failure of a main system component, such as gap regulation or lane tracking, could in severe cases result in many deaths and injuries due to the projected high speeds and small headways on the MIS or to a less extreme results if the complete stoppage of the MIS lanes were to result. Tolerance for such risks or inconveniences would limited and the AHS success would be threatened.

Although safety is very important there must be a trade-off between reliability and the affordability of the system. A system with many redundant system components would be highly reliable, but also extremely expensive. Table 13 shows the relative sensitivity of each evaluation category to reliability.

Much of the information on the impact of Reliability on the Performance objectives was taken from Calspan's Precursor System Analysis of Automated Highway Systems reports:

Volume 1, Chapter 1 Malfunction Management and Analysis.

Table 13. Relative Sensitivity of Reliability Performance Objectives to Reliability O)Operational Requirements

	Safety	Through- put	All Weather	Enhanced Mobility	User Comfort	Fuel & Emissions	Afford- ability	Evol- ability
Reliabilit	5	3			2		4	2
\mathbf{y}								

Table 14. Summary of AHS Design Issues within the Matrix of NAHSC Performance Objectives by Operational Requirements for Training

Oper. Req.	Performance objectives					
	Safety	Affordability				
Reliability	-Automation failure rate of <= I per 2000 vehicle hours (section,, 1.4)	-Out of 1000 <i>FPMH</i> , the automated mode must account for no more than 500 (section 3.4.2)				
	-Speed & Gap Control 2 redundant, dissimilar technologies with a total FPM}~I of <=300 (section,? 3~4.3. 2)					
	- Lane Control - 3 redundant, dissimilar technologies with a total FPMH <=390 (section 3.4.3.2)					
	-Status & Operations - subsystem with a total FPMH <=50 (section,? 3.4.3.2)					
	- Malfunction Management - subsystem with a tota FPMH <=140 (section,? 3.4.3.2)					
	- Vehicle-Vehicle Data Link subsystem with a total FPMH <50 (section 3.4.3.2)					
	- Remote-Vehicle Data Link - subsystem with a FPMH <=50 (section 3.4.3.2)					

FPMH{ - Failures Per Million Hours

Appendix A

AHS Throughput Measure of Effectiveness (MOE)

• Prepared by Dunn Engineering Associates

A.1 INTRODUCTION

The MOEs described below are for a facility consisting of an AHS and freeway sharing the same right-of-way. They are intended to be used as a group. Taken together they represent throughput, or the capability of the facility to provide a quantity of transportation service (vehicle miles) in a time period at a reasonable speed (level of service). The relationships among these MOEs are best depicted in the graphical forms which are discussed after the MOE themselves are described.

A.1.1 Facility Vehicle Miles per Hour

Symbol: FVMPH

Definition: Total vehicle miles on the network MIS and general lanes. Hour to be specified by user will hours.

Purpose and Intent: Provide a measure of the provided in a given period of time.

A.1.2 Facility Vehicle Hours per Hour

Symbol: **FVHPH**

Definition: Total vehicle hours on the network above. (mainlines and ramps) for both the typically include peak and off-peak

quantity of transportation service

Purpose and Intent: Provide a measure of the total user travel time (or delay when used in a comparative sense) for the service quantity provided above.

^{*}The results presented in this Appendix are from work performed by Dunn Engineering Associates.

A.1.3 Facility Speed

Symbol: **FS**

Definition: The space mean speed of the vehicles occupying the facility described in above. Space mean speed is the arithmetic mean of the speeds of vehicles occupying a given length of highway (the facility). This is the speed associated with the fundamental traffic relationship.

$$\mathbf{speed} = \frac{\text{volume}}{\mathbf{density}} \tag{I}$$

Purpose and Intent: Use as a measure of the quality of service for the facility Which the motorist experiences.

Relationship:

FS = FVMPH/FVHPH

A.2 CONDITIONS FOR USE OF THROUGHPUT MOE (2)

These MOEs are intended for comparison among planning alternatives, including the no-build alternative.

Comparisons may be performed in the following ways:

- For simulation studies, the facility demand (facility entry volumes) may be kept constant.
- For real-world traffic **evaluations**, comparisons may be made (for example for a before-and-after study) by comparison of FVHPH and FS for equal values of

FVMPH.

These types of comparisons are illustrated below.

3.0 **RELATIONSHIPS FOR THROUGHPUT MOE**

Figure **us** a modification of figure 2-20 in Volume III of Cal span PSA Final Report. It shows data from a simulation case study of an MIS on a freeway facility, modified to include MIS lanes as well as retaining several general purpose lanes.

The 100 percent points for the existing facility (point A) and the modified facility (point B) represent the performance for the current AM peak hour entry ramp volume.

The percentage values below 100 percent represent the performance of the roadways when the ramp volumes are reduced from peak period volumes to the indicated percentage. The same percentage of traffic from each origin to each destination was retained. It is seen that as the volumes are reduced, the performance of the roadways tends to coincide

Percentage values above 100 percent represents the performance of the roadways when the ramp volumes are increased from peak period volumes. This can be used to test the facilities' capability to service potential increased future demands. It is seen that the existing facility cannot handle more demand, increased demand simply causes congestion and queuing. The MIS-based facility can handle additional demands to 120 percent of current peak volume. At this point, additional demand results in no further increase in FVMPH, but queuing causes an increase in FVHPH (represented by line DG).

Line AC is a horizontal line at the existing facility's peak hour performance point. Line BC, a perpendicular to line AC, represents the peak hour improvement in FVMPH, while line AC represents the improvement in FVHPH. Line DA represents the future potential increase in FVMPH provided by the new facility.

The slope of a line connecting the origin to any point on the curve (e.g., AF in the figure), is a measure of the speed at that point.

This type of figure provides a convenient process for evaluating the performance of facilities. While it is not possible to control the ramp demands as for a simulation, as the demand varies with time of day, the entire curve may be plotted. When this is done for both the existing and MIS facility, the measurement of the difference in FVHPH for fixed values of FVMPH provides a basis for measurement of improvement.

Page 33

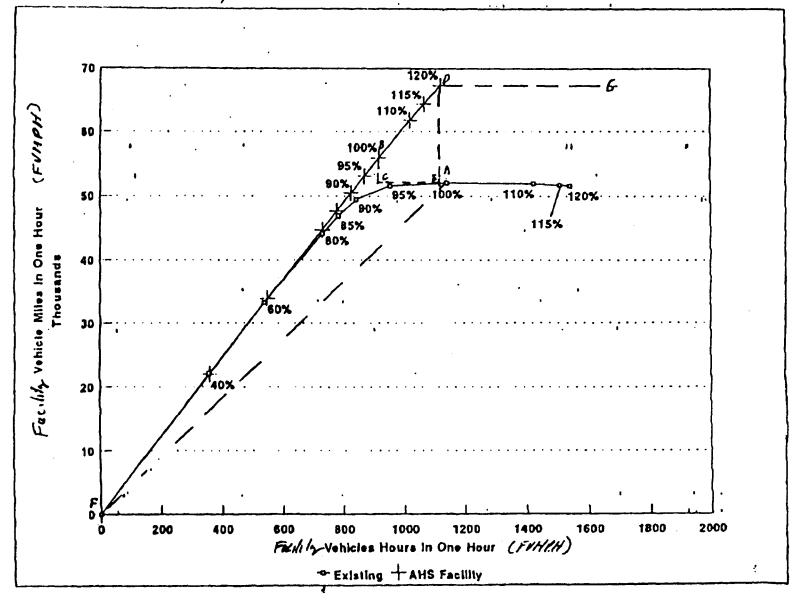


Figure A1. Throughput for Boston I-93 (Southeast Expressway NB)