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CHAPTER 1. EXECUTIVE SUMMARY 

Motor vehicle crashes remain a leading cause of death in the US and worldwide. In 2023, the US 

saw 39,508 crashes involving 61,332 motor vehicles, resulting in around 40,000 deaths and over 

3 million injuries. The National Highway Traffic Safety Administration (NHTSA) reported a slight 

decrease in traffic fatalities, with about 9,330 deaths in the first three months, down 3.3 percent 

from the previous year. Similarly, the National Safety Council (NSC) noted a 3 percent decrease 

in motor-vehicle deaths in the first half of 2023, totaling 21,130. Despite these improvements, 

motor vehicle crashes still pose a significant threat to public safety. Advanced road designs, traffic 

control measures, and intelligent transportation systems continue to be developed to enhance 

safety and reduce the high frequency of crashes, particularly at intersections. The complexity of 

intersections with their mixed traffic movements and users, contribute to a significant portion of 

crashes. However, the effectiveness of new safety countermeasures, especially in rapidly 

evolving traffic conditions, remains a topic of debate among transportation professionals. 

While traditional safety assessment methods have been helpful to better understand crash 

trends, predict crashes, and evaluate the effectiveness of countermeasures, these techniques 

depend on aggregate crash data. The primary variable in Safety Performance Functions is average 

daily traffic, an annual aggregate exposure measure. For intersection safety performance, total 

entering volumes are key, but this poses a limitation in developing intersection-specific safety 

functions. Intersections can have 15 distinct crash patterns, and not all are directly linked to 

traffic volumes of various movements. For instance, left-turn maneuvers are notably hazardous, 

yet the complexity of gathering detailed turning movement data often leads to reliance on total 

entering volumes for safety assessments. Furthermore, crash reports typically lack detail, 

omitting crucial data on crash patterns, weather conditions, road surface status, and real-time 

traffic. Essential information like speeds, specific turning movements, and exact pre-crash 

conditions is often missing from these reports, further complicating accurate safety evaluations.  

The increasing complexity at non-conventional intersections, such as roundabouts and Diverging 

Diamond Interchanges (DDIs), is often exacerbated by road users' unfamiliarity with these new 

traffic patterns. This unfamiliarity can lead to unexpected driving behaviors, raising the likelihood 

of near-crashes or actual crashes. Traditional safety assessment methods primarily rely on 
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historical data, including past crashes and traffic volumes. However, these methods typically 

require three to five years of data for a comprehensive traffic safety assessment, indicating a 

reactive rather than proactive approach. One significant limitation of this approach is its 

dependency on a substantial sample size of crash observations before safety evaluations can be 

conducted. 

Proactive safety measures, on the other hand, offer several advantages. They aim to identify and 

mitigate potential crash scenarios before they occur, utilizing traffic conflict analysis, which 

serves as an indicator of potential crashes. This approach is particularly important in 

understanding driver’s behavior, a critical factor in all traffic incidents. Furthermore, traditional 

safety studies, which depend on aggregate crash data, often fail to provide real-time or detailed 

pre-crash information, limiting their ability to convey driver behavior prior to a crash. 

With the advent of emerging technologies like Connected and Automated Vehicles (CAVs), 

traditional safety methodologies are becoming less adequate. These technologies are expected 

to significantly alter the dynamics of road safety and traffic operations. Consequently, there is a 

growing need for innovative assessment techniques that can evaluate the safety effectiveness of 

these innovative technologies. CAVs, equipped with Advanced Driver Assistance Systems (ADAS) 

such as forward collision warnings, automatic emergency braking, and pedestrian detection 

systems, have the potential to drastically reduce crash rates. 

Moreover, proactive safety techniques are versatile enough to evaluate both conventional and 

non-conventional intersections, including the interactions between driver behavior and various 

environmental, vehicular, and roadway factors. They can also assess the impact of CAVs on 

collision risks. These evolving techniques can complement historical crash data by proactively 

identifying locations with high crash or near-crash probabilities and recommending effective 

mitigation strategies in a relatively shorter time frame. This proactive approach challenges the 

ethical dilemma faced by transportation agencies of waiting for a significant number of crashes, 

including fatalities and injuries, to occur before identifying and addressing hazardous locations. 

Finally, in states like Wyoming, where crashes can be sporadic and unpredictable due to the 

remote nature of the region, traditional safety techniques may not be feasible. Innovative 

approaches, such as utilizing video recordings and conflict analysis, can help in developing long-
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term safety countermeasures and immediate interventions, enhancing road safety in both 

conventional settings and with the integration of modern technologies like CAVs. 

Expanding on this motivation, this study establishes a proof of concept for employing an 

alternative proactive technique, conflict analysis, which utilizes Artificial Intelligence (AI) to 

assess traffic safety at signalized intersections. The report follows a specific organizational 

sequence. The first chapter provides a general introduction to traffic conflict proactive 

techniques, and the utilized surrogate safety measures that identify traffic conflict occurrence. 

This is followed by the problem statement, and the study motivation and objectives. In the 

second chapter, the manual and automated procedures for identifying traffic conflicts will be 

presented. Then, the methodologies employed in detecting and tracking road users using 

surveillance cameras are detailed, encompassing both traditional and advanced techniques. 

Chapter three introduces post-processing techniques, covering output reduction through outlier 

removal, trajectory smoothing, and extraction of traffic features. Chapter four is broken into 

three main sections. The first one is an extensive background on diverse types of Surrogate 

Measures of Safety (SMoS) accompanied by a synthetic study exploring different conflict 

indicators and their applicability in identifying conflicts with varying thresholds. The second 

section provides a detailed explanation of the data collection process at the site of interest 

combined with heat maps and descriptive analyses. Moreover, different patterns of traffic 

conflicts that are commonly found at signalized intersections will be illustrated. While in the third 

section, a subset of the collected data is selected, then, the traffic conflicts identifications 

frameworks are applied to extract traffic conflicts by employing Extreme Value Theory (EVT) and 

utilizing different types of SMoS. Finally, the report concludes with chapter five, presenting 

overall conclusions and recommendations. 

In this report, the main goal of utilizing AI technology to identify traffic conflicts has been 

achieved. The research additionally resulted in benefits like the enhancement of machine vision 

algorithms, specifically by assessing their performance in relation to the varying heights at which 

cameras are mounted. Crucially, it was concluded that detecting traffic conflicts relies 

significantly on incorporating various indicators due to the complex nature of conflicts influenced 
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by factors like driver behavior, intersection design, sight distances, signal phasing and timing, and 

weather and surface conditions. 

The effectiveness of a single measurement for specific conflict types under certain conditions is 

limited. A more comprehensive framework necessitates the inclusion of multiple conflict 

measurements, influenced by road user trajectories. This approach demands varied case studies 

across different intersections and traffic conflict scenarios to overcome inherent limitations. Our 

study demonstrates this by analyzing two intersections with varying camera mounting heights, 

employing four traffic conflict indicators to develop the detection and analysis framework. While 

this provides a proof of concept, further enhancements are essential to refine and address the 

limitations of the proposed methodology. 
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CHAPTER 2. INTRODUCTION AND BACKGROUND STUDY 

While conventional methods for assessing safety have been valuable in understanding crash 

trends, predicting incidents, and assessing countermeasure effectiveness, these approaches 

primarily rely on aggregated crash data. Safety Performance Functions, for instance, hinge on 

Average Daily Traffic (ADT) as the key variable, representing an aggregate exposure measured 

annually. However, when appraising intersection safety performance, Total Entering Volumes 

(TEV) serve as the primary exposure, presenting a limitation in developing Safety Performance 

Functions for intersections. Intersections involve 15 distinct crash patterns, with TEV not 

consistently indicative of all 15 types, as some depend solely on through traffic volumes while 

others are influenced by turning movements, where left turns are deemed the most hazardous. 

Despite the complexity of collecting precise turning movement data, researchers often resort to 

using TEV. Other constraints include the lack of detailed information in crash reports, with data 

on crash patterns, weather, road conditions, and real-time traffic often missing. Moreover, 

crash reports rarely provide insights into speeds, turning movements, and specific pre-crash 

conditions. 

Traditional safety techniques are hindered by their reactive nature and face numerous critical 

limitations. These limitations comprise the subjective and inconsistent nature of crash police 

reports. The evolving crash reporting system struggles to keep pace with Intelligent 

Transportation Systems and advancements in the automotive industry. Additionally, there is 

underreporting of minor crashes. These techniques lack information on driver behavior during 

normal driving and in pre-, during-, and post-crash events. Furthermore, there is a deficiency of 

data on violations and near crashes. An incomplete understanding of interactions between 

different road users is another challenge. Finally, the necessity for crashes to occur is a 

requirement for meaningful safety analysis, as stipulated by the Highway Safety Manual, which 

recommends 3-5 years of crash data. 

Conversely, proactive safety studies are gaining traction due to their capacity to swiftly assess 

new safety measures. These studies aim to explore dynamic factors influencing crash and near-

crash probability. Modeling techniques in proactive safety studies focus on individual Critical 

Safety Events (CSE) or conflicts, along with their precursors, to predict real-time crash risks and 
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comprehend the causal effects. These techniques rely on high-resolution data such as speed, 

vehicle trajectory, conflicts, traffic, and weather. Traffic conflicts refer to incidents that could 

escalate to crashes if the involved road users persist in their movements. Proactive safety 

analyses based on traffic conflicts offer distinct advantages over crash-centric approaches. 

Traffic conflicts are more frequent and rapidly obtainable, detailed information is extractable 

from video recordings, direct collection of driver behavior occurs, associated social and 

economic costs are relatively lower, consistent data can be obtained through well-trained 

observers and machine learning algorithms, and prompt recommendations for non-

conventional countermeasures and emerging technologies can be provided to decision-makers. 

This study provides proof of concept for employing an alternative proactive technique, conflict 

analysis, utilizing Artificial Intelligence (AI) to assess traffic safety at signalized intersections. 

Conflict analysis, employing machine vision approaches, will be employed to swiftly evaluate 

the operational and safety performance of identified intersection. Video recording data are 

gathered from existing cameras at case study intersection. A comprehensive 40 hours of video 

recording data formed the conflict dataset. Moreover, several detection and tracking 

algorithms are employed to investigate their strengths and limitations. Conflict analysis 

frameworks are proposed based on the employed detection algorithm and the number of 

utilized cameras. Finally, conflict sets were identified through the applications of these 

frameworks. The following sections provide background on proactive safety assessment 

methodologies, the problem statement, objectives of the study, selected study areas, and the 

performed tasks to achieve the proposed objectives.  

2.1 Background 

In recent years with Vision Zero1, new innovative safety evaluation procedures have been 

evolved to evaluate non-conventional roadway and intersection designs, as well as new safety 

and operation countermeasures. Nontraditional approaches, such as Conflict Analysis (CA), 

have gained popularity to evaluate the safety and operations of roadways and intersections. 

Transportation researchers have extensively used machine learning and computer vision 

techniques in recent years, especially with the presence of new emerging technologies such as 

                                                 
1 Vision Zero is a multi-national set of strategies to prevent fatalities and severe injuries related to road traffic.  
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Connected and Automated Vehicles. These techniques have been used in multiple aspects to 

enable vehicles to identify the surrounding features to operate safely and efficiently, to 

recognize license plates of vehicles for means of traffic surveillance and toll collection [1–3], trip 

routing estimation [4, 5], and parking management systems [6]. Moreover, machine vision 

techniques were used to estimate Surrogate Measures of Safety (SMoS) by identifying vehicle 

trajectories where traffic conflicts could be extracted and further analyzed. The rapid 

advancement in machine vision technologies, computer processing power, and high-speed 

connectivity has opened new outlooks of opportunities in the field of transportation 

engineering to improve traffic safety and operations. The potential of machine learning 

techniques in identifying unexpected events on the roadways, as well as real-time weather and 

surface conditions have been thoroughly explored in the literature. 

2.1.1 Conflict Analysis for Safety Performance Assessment 

Due to the stochastic and scarcity nature of crashes, traffic conflict analysis has gained 

momentum in recent years. The Federal Highway Administration (FHWA) has developed 

guidelines for conflict analysis, detailing procedures for trained observers to record traffic 

conflicts using diagrams and narrations within specific timeframes [7]. Significant contributions 

in the field of traffic conflict analysis include Sayed and Zein's investigation into traffic conflict 

standards for intersections [8], the introduction of computer vision techniques for automated 

conflict data collection [9], and research focusing on pedestrian involvement in collisions [10]. 

Other researchers conducted a large-scale automated analysis of vehicle interactions and 

collisions by developing a system to identify traffic conflicts/collisions into 4 categories: head-

on, rear-end, side, and parallel near crashes. The results showed the usefulness of the system 

to study driver behaviors that might lead to a collision [11]. St-Aubin et al. presented a practical 

framework for implementing an automated, high-resolution, video-based traffic-analysis 

system by utilizing Closed-Circuit Television CCTV and regular video cameras to collect 

microscopic traffic flow data [12]. 

Various studies have employed conflict detection algorithms to expedite traffic safety analysis, 

given the higher frequency and clearer capture of conflicts compared to crashes. Safety 

performance functions for roadway facilities have been developed using traffic conflicts [13]. 
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Zhang et al. presented a conflict prediction model for left-turn conflicts in China [14], while 

Sacchi and Sayed established a relationship between conflicts and crashes using a two-phased 

process [15]. Bayesian analysis was applied by Sacchi and Sayed (2016) to develop safety 

performance functions for conflicts at signalized intersections [16]. 

Several studies utilized Extreme Value Theory (EVT) to estimate crashes from traffic conflicts 

[17–21], affirming the effectiveness of this approach. Notable studies include Zheng and Ismail's 

generalized link function for conflict severity [17], Tarko's comparison of crash prediction 

approaches [18], and a study comparing estimated crashes from traffic conflicts with observed 

crashes [19]. Wang et al. proposed a bivariate EVT framework for crash prediction using conflict 

indicators [20], and another study applied bivariate Bayesian hierarchical models for non-

stationary conflict extremes to estimate crashes [21]. These studies collectively contribute to 

the evolving field of traffic conflict analysis for improved road safety. 

2.1.2 Surrogate Measures of Safety 

The literature on SMoS in traffic conflict analysis has evolved since the 1960s [22]. SMoS offer a 

means to characterize the interactions between road users, estimating both the probability and 

severity of potential collisions [23–25]. Various indicators, including Time to Collision (TTC), 

Post-Encroachment Time (PET), and Deceleration rate (DR), have been widely used to assess 

the nearness between road users and predict potential collisions [23–25]. The analysis of SMoS 

reveals research gaps, such as the lack of uniform methods in their analysis, impacting factors 

like roadway facility, observation method, surrogate measure type, and threshold selection 

[24]. 

Recent studies focused on time-series data and explored clusters of conflicts and non-conflicts, 

considering aspects like TTC, speed, acceleration, and vehicle trajectory [26]. However, 

systematic reviews highlighted weaknesses in validation, surrogate measure selection, and 

threshold determination [23, 24, 27]. Some studies have concluded that the choice of measure 

and its threshold depends on various conditions and application contexts, so measures should 

be selected depending on their context [27, 28, 29]. Prominent SMoS encompass TTC, with 

enhancements such as Modified Time-to-Collision (MTTC) demonstrating stronger correlations 

with crashes [30, 31]. Another indicator, T2, considers the expected time for the second user to 
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reach a potential collision point, providing a more informative safety measure [32]. Challenges 

persist in selecting appropriate thresholds, with a common window of 1 to 5 seconds for TTC 

[25, 26, 33–35]. Other variations of TTC such as time-extended time-to-collision and time-

integrated time-to-collision are less commonly used in conflict studies despite their potential 

[36]. 

PET is extensively used alongside TTC, offering complementary information on conflicts after 

one user passes the collision point [37, 38]. Encroachment Time (ET) is a derivative of PET, 

measuring the duration of time offending vehicles occupy a conflict area [39–41]. Researchers 

have explored additional SMoS, such as Aggregate Severe Crash Metric (ASCM), proposed by 

Chen Wang et al., showing promise in predicting fatal or injury crashes [37]. The Aggregate 

Crash Propensity Metric, developed by Wang and Stamatiadis, incorporates time-to-collision, 

reaction time, and deceleration rate, but faces challenges related to subjective judgment of 

evasive maneuvers [42]. Microsimulation studies, like Amir Sobhani et al.'s, include kinematic 

energy difference in predicting traffic conflicts and crash severity [43]. 

Despite advancements, challenges persist in establishing uniform methods, validating SMoS, 

and defining ideal thresholds. The literature suggests the need for a systematic review and 

Meta-Analysis to determine suitable threshold selection criteria for identifying near-crash 

events [24]. 

2.2 Problem Statement and Study Motivation 

The evaluation of traffic safety performance at intersections holds significant importance for 

transportation agencies, particularly considering the shared geographical space where road 

users interact, leading to complex conflicts. Traditional safety assessment methods relying on 

historical crashes and traffic volumes face limitations in data requirements through the need of 

three to five years of data for assessment. This reactive approach, dependent on a decent 

sample size of crash observations, may be hindered by low exposures. While reactive safety is 

potent for addressing existing issues, proactive safety analysis offers advantages in diminishing 

the potential for crashes by investigating traffic conflicts before they occur, serving as crash 

indicators. 
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Driver behavior, a crucial factor influencing traffic crashes, is inadequately addressed by 

traditional safety studies relying on reactive aggregate crash data, lacking direct insights into 

behavior preceding a crash or detailed pre-crash information. Despite crashes being rare 

events, their complexity, resulting from multiple factors and failures, is not effectively captured 

by crash reports. Exposure information, including the frequency of behaviors in normal driving 

and broader contextual factors contributing to crashes and near-crashes, remains absent. 

The advent of emerging technologies like Connected and Automated Vehicles (CAV) renders 

traditional safety approaches unsuitable for promptly assessing their impacts on roadway 

safety and operations. These approaches also prove inadequate for assessing newly introduced 

non-conventional intersections due to data limitations and an unfamiliar driver population. In 

contrast, proactive innovative safety techniques possess the capability to assess conventional 

and non-conventional intersections, driver behavior, and performance interactions with various 

factors, including roadway, environmental, vehicular, and CAV impacts on collision risks. These 

evolving techniques complement historical crash data, proactively identifying hazardous 

locations and recommending mitigation strategies more efficiently. This introduces an ethical 

concern, questioning the necessity for transportation agencies to wait for a sufficient number 

of crashes, including fatalities and injuries, before identifying and mitigating hazardous 

locations. The proposed proactive safety approach provides insights into human errors leading 

to near crashes, enabling the observation of different human actions causing incidents. 

Critical for evaluating the safety effectiveness of emerging technologies like CAV, innovative 

assessment techniques are required. CAV, equipped with multiple safety technologies, 

including Advanced Driver Assistant Systems (ADAS), are anticipated to significantly reduce 

crashes. Given the remote nature of Wyoming and the stochastic rarity of crashes, traditional 

safety techniques become impractical. Utilizing video recordings, conflict analysis, 

implementing long-term safety countermeasures, and deploying instantaneous interventions 

emerge as more feasible strategies. 

2.3 Research Objectives  

This research proposes a proactive road safety assessment for signalized intersections and 

emerging technologies in Wyoming utilizing traffic conflict analysis. Furthermore, the 



7 
 

innovative assessment methodologies provide detailed observation and analysis of trajectory 

interpretation, and conflict measures. These methodologies will be based on computer vision 

applications utilizing recorded video data. The proposed methodologies were applied on Town 

Square, Jackson Hole signalized intersection within Wyoming.  The case study intersection was 

selected based on the availability of a live feed video channels that connected with three 

surveillance cameras. Also, the nature of this intersection as a recreational area offers 

additional complexity in the traffic mixture with various types of road users and higher volume. 

Moreover, the selection of the case study intersection met the recommendations from WYDOT 

Safety Office. The objectives of this research include the following:  

• Investigate several types of road users’ detection and tracking methodologies. 

• Perform a conflict analysis to provide insights about the causes that lead to 

Critical Safety Events (CSE) (i.e., crashes and near crashes).  

• Develop an automated conflict analysis system to evaluate the performance of 

roadway facilities with a focus on intersections/ interchanges.  

• Provide WYDOT with a new framework of safety assessment techniques which is 

more appropriate for evaluating emerging technologies.   

2.4 Report Organization 

The structure of this report is outlined as follows: 

Chapter 3: This section will provide an overview of both manual and emerging technologies on 

conflict detection. Various tracking methodologies for road users will be applied to the case 

study intersection, evaluating their strengths and weaknesses. The detection and tracking 

techniques encompass traditional methods involving feature tracking and background 

subtraction, along with advanced deep learning algorithms such as those used in autonomous 

vehicles, bounding boxes, and key points detection. 

Chapter 4: Post-processing techniques will be implemented in this chapter to eliminate data 

outliers, validate output data, demonstrate transformation homography, extract road users' 

trajectories, smooth them, and calculate speeds and accelerations. 

Chapter 5: The initial part will present a background on different traffic conflict indicators. 

Subsequently, a synthetic study will be conducted to assess severity levels based on various 
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thresholds. The following section will extensively explore various conflict types present at 

signalized intersections. This will be followed by the presentation of video data, manual 

extraction, and annotation of the conflict set. The distribution of extracted conflicts within the 

intersection area will be analyzed to identify the most prominent conflict types. In the 

concluding section, two conflict subsets will be scrutinized using the proposed computer vision 

algorithms and different frameworks. 

Chapter 6: Conclusions and recommendations will be provided, offering insights for future 

applications of various detection and tracking techniques. Strengths and limitations of these 

techniques will be discussed based on intersection features and camera installation positions. 

Specific recommendations will be presented, considering the monitoring of the case study 

intersection and the extracted conflict set. 
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CHAPTER 3. ROAD USERS’ DETECTION METHODOLOGIES 

In this chapter, a background on the manual and automated detection methodologies of 

analyzing traffic conflicts is provided. This is followed by the employment of different computer 

vision algorithms in road users’ detection. 

3.1 Background 

3.1.1 Manual Techniques in Conflicts Detection 

An integral first step in conflict analysis is to identify near crashes. Early studies utilized manual 

techniques by training human observers on different conflict types and selected Surrogate 

Measures of Safety (SMoS) thresholds [48, 49]. Manual observation procedures were classified 

into two categories: subjective, and objective [50]. Subjective methods are performed in two 

steps: conflicts are investigated by trained observers to classify the severity level, then criticized 

by researchers since the observers’ judgments varied from one observer to another. The 

objective methods of observation are based on the utilization of time measurements to 

determine the severity level. Therefore, a SMoS such as TTC was utilized as an essential 

measure in objective methods. In addition to TTC, several indicators were developed and 

employed to judge the severity level of traffic conflicts at different roadways conditions. These 

indicators involved; MTTC, PET, deceleration rate to avoid collision (DRAC), proportion of 

stopping distance (PSD), among other indicators [51–53]. Zheng et al. classified conflicts 

indicators into temporal and spatial proximity types according to the nature of each indicator 

[28]. While Johnsson et al. broke them into three main categories: TTC, PET, and deceleration 

rate [53]. The selection between the indicators and their specific area of application has been 

extensively studied through several research works, and it seems to differ based on various 

contexts [51, 52, 55]. Hence, recommendations for the relevant indicator types and thresholds 

have been set to detect and assess the traffic conflicts that have occurred at different roadway 

locations.  

In another study, the manual observations of numerous studies were conducted to extract the 

most fitted statistical models that could describe the relation between conflicts, traffic 

volumes, and collisions under several cases and different conditions [56–58]. While this 
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approach achieved decent results on specific sites, it had some deficiencies in covering all the 

research gaps (e.g., conflicts detection at hazardous locations, and adverse weather 

conditions). In addition to the excessive cost of hiring and training the observers, another 

limitation for this technique is the variation in judgements on traffic encounters between the 

observation teams [59, 60].  

3.1.2 Emerging Computer Vision Techniques in Conflict Detection  

Based on the rapid and incessant development in the computer vision field, researchers 

managed to develop tracking techniques for vehicles along roadway sections and intersections 

utilizing distinct types of cameras. These cameras are either installed for general traffic 

surveillance or specifically mounted for conflict analysis [61]. Upon the development of tracking 

methodologies, traffic conflicts were detected through computational algorithms [62, 63]. Five 

types of objects tracking techniques were developed: 3D model-based tracking, region-based 

tracking, contour-based tracking, feature-based tracking, and hybrid methods. [64].  Each 

approach has its pros and cons.  

In 3D model-based tracking, vehicle 3D parameters were inserted into the tracking algorithm. 

Then, vehicle recognition was achieved by matching a projected model to the image data [65]. 

Although that approach provided high accuracy in orientation detection and tracking for 

vehicles, it faced two critical drawbacks. Accuracy was achieved for small numbers of vehicles, 

and it required detailed parameters insertion for all vehicles extracted from cameras, which 

may not be available in most cases. For region-based tracking, the region for each vehicle was 

obtained through background subtraction. Then, the vehicle was tracked utilizing the extracted 

parameters from the region (size, color, shape, etc.). Many researchers [66–69] utilized Kalman 

filter to perform region-based tracking. That technique showed efficiency in computational 

processes regarding free-traffic flow. Whereas in congested traffic areas, it faced difficulties in 

vehicles recognition and separation. There is a similarity between the region and contour-based 

tracking in which the contour-based tracking technique is creating a boundary surrounding the 

vehicle, then, a trace line is extracted from the vehicle to describe its path and dynamically 

update its location. This also applied to other road users. However, contour-based tracking 

approach was found to be more accurate compared to the region-based tracking, it was 
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challenged in isolating objects at occlusions. Overcoming this issue depends on creating a 

contour for each vehicle in the system [70] while the feature-based technique determines 

specific points or lines (features) on the tracked object. Since each road user is modeled in this 

approach with a set of features belonging to it, the advantage of this technique is the ability to 

detect and separate the road users when partial occlusions take place at different times during 

the day and night. This has been achieved by calculating the geometric properties of road users 

at clear views, then, predicting them at occluded scenes. Consequently, the integration 

between Kalman filter and features tracking algorithms could be employed as a hybrid method 

in achieving more decent results for both detection and tracking accuracy [71], where Kalman 

filter was utilized efficiently in free-flow conditions to set regions for road users.   

3.1.2.1 Computer Vision Applications in Conflicts Detection  

Kalman filtering and the Kanade-Lucas-Tomasi feature tracker are two well-known developed 

techniques applied as hybrid method. Features-based tracking algorithm was utilized to detect 

vehicles’ motion on highway portions and the traffic parameters (flow rate, average speed, and 

average spatial headway) were computed [72]. A transformation homograph was performed to 

create a mapping system between perspective image and the 2D top view. The utilization of 

such homographs serves in easing the calculation of traffic stream parameters. The entrance 

and exit regions were determined through the shown homograph in Figure 1. The homograph 

illustrates the transformation between a 3D image and a 2D highway section plan. 

 
Figure 1 A Projective Transform H, is Used to Map from Image Coordinates (x, y) To World 

Coordinates (X, Y) [72] 
A simple transformation matrix was put to compute the real-time coordinates of the selected 

features from the 3D image, Eq.1. 
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                                                          (1) 

Corner points were selected, detected, and tracked as sub-features through the dynamic 

motion of vehicles. It was assumed that the road surface is flat, and the vehicle’s movement 

parallels the road plane. This assumption was put to eliminate the z-coordinate from the 3D 

image; hence, H (3, 3) was chosen to be 1. The tracking module tracked the vehicle sub-features 

through the highway portion regions (entrance and exit) to determine the sub-features 

coordinates regarding time. Kalman filter was employed to maintain the noisy measurements 

utilizing normalized correlation. Then, positions and velocities were calculated (𝑋𝑋,𝑌𝑌,𝑋𝑋,̇  �̇�𝑌). 

Real-time computations for traffic parameters (traffic flow, velocity, density, headway) were 

extracted from the algorithm for each lane separately using the proposed methodology in [73], 

then, compared to ground truth data. The approach showed a decent accuracy in the 

correlation between the computation and real traffic parameters. Additionally, the vehicle 

tracking algorithm and velocity determination model achieved good accuracy in validation with 

the ground truth data. Table 1 illustrates the error distribution for the computed traffic 

parameters. The velocity measurements were very accurate. Whereas for other parameters, 

the errors were interpreted as missing in or overcounting vehicle frequencies. Since the 

computation time duration is relatively small (5 minutes), it could affect the parameters 

calculations such that one error or two could be very significant.  
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Table 1 Error Distribution for Velocity, Flow, Density, and Headway [69] 

 

That approach was extended by Saunier, N., and T. Sayed, to include tracking vehicles at 

intersections [71]. The algorithm was adopted from [72] with a specific modification in the 

transformation homography matrix. This change is based on the geometric features of the 

intersections. Four different intersections were selected for experiment conduction. The 

utilized video sequences for the proposed intersections were gathered such that the main 

sequence was a set of collected examples used to train conflict observers. Two sequences for 

two different intersections came from the repository of the University of Karlsruhe. The last 

video sequence was collected from Vera Kettnaker’s former research webpage. Table 2 shows 

the length of each video sequence in terms of the number of frames. 

Table 2 Video Sequences for Evaluation, With Their Length (Number of Frames) [71] 
Sequences Length (Number of frames) 

1: Conflicts set 5793 
2: Karlsruhe sets 1050 
3: Cambridge set 1517 

 

The overall results were satisfying with a vehicle detection percentile equal to 88.4 percent. The 

pedestrians and two-wheeled vehicles were tracked efficiently, while the errors were 

summarized as below: 

• Computation inaccuracies in features grouping at far distances related to the camera’s 

position. 

• Errors caused by camera jitter. 

• Problems caused by trucks and buses which are often over segmented. 

• Over grouping when two or more vehicles moved together, or one feature is detected 

moving with two groups. 
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A hybrid strategy was applied to resolve appearance and disappearance, splitting, and partial 

occlusion problems [64]. This strategy was based on the interaction between objects and 

regions’ characteristics. The technique was evaluated on rigid and deformable objects, 

outdoors and indoors, and it has proven good accuracy. All algorithm components could be run 

in real-time using a standard PC except for the region segmentation stage. It could be beneficial 

for visual surveillance, video-based hyperlinking, and video manipulation. Moreover, the 

mechanism could be modified by inserting priori information about objects included in the 

scenes. 

Another study that addressed vehicle tracking at intersections was conducted by [69] to 

investigate the traffic conflicts at intersections through video monitoring. Whereas the Kalman 

filter was used in tracking vehicles and pedestrians at intersections. The technique was based 

on combining low-level image-based tracking with a high-level Kalman filter for position and 

shape estimation. First, grey scaled images were provided to the system from a stationary 

camera fixed at the intersection. Then, a mixture of the Gaussian models’ method was utilized 

for the image segmentation process, where each moving object was represented by a blob [74]. 

The features of each blob (centroid, area, elongation, and first and second moments) were 

computed in the real-time extraction process during motion from one frame to another. Upon 

the calculated features, a bounding box was put for each blob to approximately estimate its 

dimensions and rotations. Then, the tracking process was performed by determining the 

bounding box for each moving object at each frame regarding timestamp. Labels, timestamps, 

velocities, and other features were assigned to the blobs. The positions for blobs were 

estimated, after reassigning blobs as moving objects (MO), using an extended Kalman filter. 

While shape estimation was done using a standard discrete Kalman filter. Occlusions were 

investigated from the results of the shape estimator. Finally, a visualization module was created 

based on the extracted results from the tracking module. The extracted data from the visual 

module which included positions, velocities, and shapes (lengths and widths), were utilized in 

the conflicts detection module which was responsible for making predictions of possible 

collisions between vehicles. The possible collision was estimated by comparing the measured 
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distances between bounding boxes to a minimum threshold value. The developed visual 

conflicts detection module provided an easy user interface for online possible collision 

detection. Figure 2 depicted the conflicts detection interface.  

 
Figure 2 Incident (Conflict) Detection Interface [69] 

A recent study using CCTV was presented by Mohamed Abdel-Aty in 2022. The study utilized 

the videos outputs from CCTV, then applied a Mask-RCNN bounding box and occlusion-Net 

algorithm to extract the 3D - coordinates of the vehicle’s key points (e.g., right-front headlight, 

left-front headlight, right-back taillight, and left-back taillight) [75]. The 3D-coordinates are 

transformed to 2D-coodrinates using a transformation algorithm. The method efficiency was 

assessed by installing a drone video camera at the center of the intersection to provide a plan 

view (bird eye perspective) which worked as the ground truth data. The study employed PET at 

pixel level to identify traffic conflicts instances between vehicles. While the intersection was 

broken into three regions: intersection entrance area (before the stop line), within-intersection 

area (the region within the intersection that bounded by the stop lines), and intersection exit 

area (the region located after vehicle pass the within-intersection area) which was 

recommended in [76]. The utilized framework was an integrated system of algorithms where 

the first utilized framework is “Automated Roadway Conflict Identification System (ARCIS)” that 

is employed in detection and tracking vehicles from Unmanned Aerial Vehicle (UAV) images. 

Then, the undetected vehicles were located using Mask-RCNN from video images. Next, the 
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vehicles trajectories were obtained by utilizing Channel and Spatial Reliability Tracking 

algorithm (CSRT). Finally, to assure the detection efficiency, a comparison was held between 

the detection results and the tracking results using the Intersect of Union (IOU). The study was 

enriched by including a pre-trained deep neural network object detection model utilizing 

“COCO 2017” dataset that includes 12,786 cars, 61,377 trucks, and 4,141 buses to find road 

users from video images. Figure 3 illustrates the utilized vehicle detection framework and 2D 

image reconstruction. An experiment was performed to assess the effectiveness of the 

proposed framework. The results have been validated that the presented framework could 

considerably enhance the precision of localization from the 2D plan view. While PET values 

were successfully utilized in identifying traffic conflicts between vehicles. The limitation of this 

study was full dependence on the CCTV to provide usable images under adverse weather 

conditions.     
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Figure 3 Occluded Key Point Modification [75] 
The study was followed by another research work that presented an integrating detection 

system to overcome the addressed limitations by including CCTV cameras, LiDAR, sensor fusion 

for trajectory extraction, and safety evaluations [76].  The workflow was organized as follows: 

the real-time detection was performed through CCTV cameras and LiDAR simultaneously, then, 

the extracted detections were processed by the sensor fusion module to generate vehicle 

trajectories. The proposed methodology has proved its capability in real-time detection and 

tracking techniques. The provided precision rate of Camera and LiDAR are 90.32, and 97 

percent, respectively, whereas the fusion technique had correctly detected 97.38 percent of 

the vehicles. Also, the fusion had a recall of 95.32 percent while Camera and LiDAR had recalls 

of 94.27, and 74.02 percent, respectively. The limitation of this study could be considered as 

the low recall percentage for the LiDAR, and the un existence of pedestrians, and bicyclists 

which exclude conflicts that relate to vulnerable road users. 
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3.2 Detection Methodologies Employment 

Initially, the first step of setting a framework for the automated detection of the traffic conflicts 

was by determining various conflict types that required to be detected. Through an extensively 

prepared literature study, twenty types were determined including sixteen vehicle-to-vehicle 

conflicts, and four vehicle-to-pedestrian conflicts. It was found that various methodologies and 

techniques were performed by utilizing computer vision to detect moving objects (MOs) using 

several programming languages. The most commonly used language in recent years is Python 

due to its feasibility, and applicability within computer programmers’ community. Hence, 

Python has been utilized for vehicle detection from the extracted video footage using various 

approaches. The following procedures are the commonly used techniques in the detection 

process: 

• Background subtraction: This method involves subtracting the background image from 

each frame of the video and detecting the moving objects, which could be vehicles. 

Various Python libraries like OpenCV and scikit-image provide functions for background 

subtraction. 

• Feature-based detection: This method involves detecting specific features or patterns 

that are indicative of vehicles, such as edges, corners, or blob-like structures. These 

features can be extracted using various techniques such as the Hough Transform, SIFT, 

or SURF. OpenCV and scikit-image provide functions for feature detection and 

extraction. 

• Deep learning-based detection: This method involves training a deep neural network to 

recognize vehicles in videos. Popular deep learning frameworks in Python like 

TensorFlow and PyTorch can be used for this purpose. While other popular object 

detection algorithms like YOLO (You Only Look Once) and Faster R-CNN (Region-based 

Convolutional Neural Networks) can be used for vehicle detection. 

• Optical flow-based detection: This method involves analyzing the motion of objects in 

consecutive frames of a video and detecting moving objects, which could be vehicles. 

Various Python libraries like OpenCV provide functions for optical flow-based detection. 



19 
 

3.2.1 Traditional Techniques in Detection of Road Users 

Based on the stated procedures, the analysis of video footage was performed. Initially, the 

execution of the detection and tracking algorithm was performed using Python 3.11 as the 

programming language, and PyCharm as the Integrated Development Environment (IDE) for 

Python. The basic concept for the detection was adopted by integrating features-based, and 

background subtraction algorithms together. Accordingly, features clustering for each moving 

vehicle (frame-by-frame) was performed, then, applying a background subtraction technique to 

determine the surrounding boundary for each moving object (MO). Finally, creating a bounding 

box with a unique identification (ID) for each vehicle to attain its trajectory as well. Figure 4 

illustrates features sorting process. A set of features including object size, shape, color 

saturation, texture, and motion intensity were selected within a set of limits to achieve a 

decent detection accuracy. However, the features clustering and matching process showed a 

promising result, it faced a number of limitations. These limitations could be interpreted as a 

result of over segmentation of the vehicles that move in close proximity to each other’s with 

association to the camera’s angle of view and with almost the same speed. 

 
Figure 4 Features Clustering of The Moving Vehicles 

The code was performed to detect, track, and count the vehicles that cross an imaginary set of 

lines which are selected at the stop lines of each approach. The determination of these 

imaginary lines is associated with the classification and counting of each turning movement 

volume. Although the algorithm succeeded in detecting vehicles and pedestrians, it faced two 

critical problems. These problems are the multiple detection of the same vehicle as well as over 
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segmenting the vehicles that move in the same boundary with almost the same speed. It should 

be noted as well that the code was examined at Four Corners Camera downtown intersection, 

city of Cold water, Michigan, to assess the detection and tracking process. Furthermore, a 2D-

tranformation matrix was utilized to project the perspective view into a top view plan.  

Figure 5 shows the utilized transformation matrix on the provided video footage of Michigan 

intersection. It is worth mentioning that the transformation to 2D top view aimed to ease the 

calculation of traffic stream parameters, as well as the traffic conflicts analysis. Additionally, by 

analyzing the traffic movements from the top view, the occurred distortion resulting from the 

perspective view is partially eliminated. Furthermore, the mapping results will provide a general 

aspect that could be utilized widely and followed without taking into consideration the 

camera’s fixation location within the intersection.   

 
Figure 5 3D-2D Image Transformation 

The limitations are summarized in the following bullet points: 

• Repeated vehicles IDs.  

• Overcounts for the crossing vehicles, Figure 6 . 

• Over segmentation for the nearby vehicles associated with the provided angle of view, 

Figure 7. 

• Miss detection of vehicles of specific color codes, Figure 8. 

a) Image Perspective b) Projected view 
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Figure 6 Over Count of Detected Vehicles 

 

 
Figure 7 Over Segmentation of Detected Vehicles 

 

Figure 8 Miss Detection of Vehicles of Specific Color Codes 
The extracted gaps could be addressed by fine tuning the inserted detection features options. 

However, the enhanced overall detection accuracy will not meet the requirements of the 

proposed traffic conflicts detection framework. 

Based on the extracted conclusions from the utilizations of features clustering in the detection 

process, it was required to follow another approach to acquire higher levels of detection 

accuracy to serve in the traffic conflicts analysis efficiently. Consequently, a literature review 

was conducted to follow the recent research work in the object’s detection, categorization, and 

labeling algorithms by utilizing deep learning approaches. Then, a comparison was set to select 
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the most appropriate algorithm to achieve a decent accuracy accompanied with a reasonable 

time frame for near real-time video analysis process. 

3.2.2 Deep Learning Techniques in Detection 

Vehicle detection using deep learning techniques was found to be an active area of research in 

recent years. Hence, various algorithms and architectures have been proposed for this task. The 

commonly used deep learning approaches for vehicle detection are YOLO (You Only Look 

Once), SSD (Single Shot Detector), and Faster R-CNN (Region-based Convolutional Neural 

Networks). 

• YOLO: YOLO is a real-time object detection algorithm that can detect multiple objects, 

including vehicles, in a single pass through the network. It uses a single neural network 

to predict the bounding boxes and class probabilities for the detected objects. YOLO is 

known for its high accuracy and fast inference speed, making it a popular choice for real-

time vehicle detection applications [78]. 

• SSD: SSD is another real-time object detection algorithm that can detect multiple 

objects, including vehicles, in a single pass through the network. Like YOLO, it uses a 

single neural network to predict the bounding boxes and class probabilities for the 

detected objects. SSD is known for its simplicity, speed, and high accuracy, especially for 

small objects like vehicles [79]. 

• Faster R-CNN (Region-based Convolutional Neural Networks): Faster R-CNN is a two-

stage object detection algorithm that involves first generating a set of object proposals 

using a separate region proposal network (RPN), and then classifying and refining the 

proposals using a second-stage network. Faster R-CNN is known for its high accuracy, 

especially for complex objects and scenes, but it is also slower than YOLO and SSD [80, 

81]. 

Generally, the choice of deep learning approach for vehicle detection depends on the specific 

requirements and constraints of the application. YOLO and SSD are suitable for real-time 

applications that prioritize speed and efficiency, while Faster R-CNN is suitable for applications 

that prioritize accuracy. Further research and development in deep learning-based vehicle 
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detection algorithms are expected to improve their accuracy, efficiency, and suitability for a 

wide range of applications [82, 83]. 

However, YOLO and SSD were found to be the most common algorithms in vehicle detection 

that will achieve the required overall detection accuracy within the time frame, it was found 

that YOLO is outperforming SSD in popularity and applicability within the programming 

community. Consequently, YOLO was chosen as the proposed detection technique at this level 

of analysis. 

At the time of analysis, YOLOv7 was published and was pre-trained on various imagery 

datasets. However, a summarized overview will be provided for the development of different 

YOLO algorithms as follows, Table 3: 

Table 3 Comparison Between YOLO Algorithm Versions 
YOLO version Utilized Neural Network 

and Architect formation 

Training Procedure Training Data set Overall 

Accuracy 

YOLOv1 [75] 

 

Darknet-19, which is a 

19-layer convolutional 

neural network with 

max pooling, batch 

normalization, and leaky 

ReLU activation. 

The model is trained on a 

dataset of labeled images using 

backpropagation and 

stochastic gradient descent 

(SGD). The loss function used is 

a combination of localization 

loss (which penalizes errors in 

bounding box location and 

size) and confidence loss 

(which penalizes errors in 

objectless prediction). During 

training, the input images are 

divided into a grid of cells, and 

each cell predicts a fixed 

number of bounding boxes and 

Combination of 

PASCAL Visual 

Object Class (VOC) 

2007 and PASCAL 

VOC 2012 

63.4 

percent 

mean 

Average 

Precision 

(mAP) on 

the VOC 

2012 test 

set. 
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YOLO version Utilized Neural Network 

and Architect formation 

Training Procedure Training Data set Overall 

Accuracy 

corresponding class 

probabilities. 

YOLOv2 [84] Darknet-19, similar to 

YOLOv1, but with some 

additional layers and a 

skip connection. 

The training procedure is 

similar to YOLOv1, but with 

some improvements. The loss 

function now includes a term 

for classification loss, which 

penalizes errors in class 

prediction. Additionally, the 

model is trained on multiple 

scales of the input image, 

which helps improve detection 

accuracy for objects at 

different sizes. 

Combination of 

PASCAL VOC 

2007, PASCAL 

VOC 2012, and 

MS COCO for the 

testing, which 

consists of over 

330,000 labeled 

images of 80 

object categories.  

78.6 

percent 

mAP on the 

MS COCO 

test-dev set 

with a 

Darknet-19 

network. 

YOLOv3 [85] Darknet-53, which is a 

53-layer convolutional 

neural network that 

includes residual 

connections and feature 

pyramid networks. 

The model is trained on a 

large-scale dataset (such as 

COCO) using the Darknet 

framework. The training 

procedure includes data 

augmentation techniques (such 

as random scaling, cropping, 

and flipping) to increase the 

diversity of training examples. 

The loss function includes 

terms for localization loss, 

confidence loss, and 

classification loss, and is 

MS COCO dataset 

for the testing. 

57.9 

percent 

mAP on the 

MS COCO 

test-dev set 

with a 

YOLOv3-608 

model. 
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YOLO version Utilized Neural Network 

and Architect formation 

Training Procedure Training Data set Overall 

Accuracy 

optimized using the Adam 

optimizer. During training, the 

model uses feature pyramid 

networks to perform object 

detection at multiple scales. 

YOLOv4 [86] CSPDarknet-53, which is 

a variant of Darknet-53 

that uses cross-stage 

partial connections to 

improve information 

flow and reduce 

computation. 

The training procedure is 

similar to YOLOv3, but with 

some improvements. The 

model is trained on a larger 

dataset and with more data 

augmentation techniques (such 

as mosaic data augmentation). 

Additionally, the loss function 

is modified to include a term 

for focal loss, which helps the 

model focus on hard examples 

during training. The training 

procedure also includes 

techniques such as self-

adversarial training and label 

smoothing. 

Combination of 

MS COCO, WIDER 

FACE, and Open 

Images datasets. 

43.5 

percent 

mAP on the 

MS COCO 

test-dev set 

with a 

YOLOv4-416 

model. 

YOLOv5 [87, 88] A variant of Cross-Stage 

Partial Network 

(CSPNet) that includes a 

modified backbone 

network and detection 

head. 

The model is trained on a 

dataset of labeled images using 

the same training procedure as 

YOLOv4. However, the 

architecture of YOLOv5 is 

designed to be more 

A variety of 

datasets were 

used including MS 

COCO, PASCAL 

VOC, and Crowd 

Human. 

51.3 

percent 

mAP on the 

MS COCO 

test-dev set 

with a 
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YOLO version Utilized Neural Network 

and Architect formation 

Training Procedure Training Data set Overall 

Accuracy 

lightweight and efficient, which 

allows for faster training and 

inference times. 

YOLOv5s 

model, and 

up to 57.1 

percent 

with larger 

models. 

YOLOv7 [89] YOLOv7 Backbone, 

which is a novel 

backbone network that 

combines the features 

of EfficientNet and 

Squeeze-and-Excitation 

modules, along with a 

detection head like 

YOLOv5. 

The model is trained on a 

dataset of labeled images using 

backpropagation and a similar 

loss function as YOLOv5, with 

the addition of some novel 

techniques for data 

augmentation and 

regularization. 

A large-scale 

dataset with over 

20 million images 

for pre-training 

and fine-tuned on 

COCO and other 

datasets. 

51.2 

percent 

mAP on the 

MS COCO 

test-dev set 

with a 

YOLOv7 

model. 

 

The overall conclusions of the comparison between YOLO versions could be stated as follows: 

• Training Procedures: The training procedures for YOLO have evolved with each 

version, with YOLOv4 and YOLOv7 using similar training procedures that involve 

data augmentation and multi-scale training. YOLOv5 introduced a novel 

approach called "Mosaic Data Augmentation" that improved the accuracy of 

small object detection. 

• Number of Convolutional Layers and Networks: The number of convolutional 

layers and networks in YOLO have also evolved with each version, with YOLOv4 

and YOLOv7 having more convolutional layers and advanced backbone networks 

that improve accuracy. YOLOv5 introduced a new network architecture called 

"CSPNet" that improved accuracy while reducing computational requirements. 
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• Accuracy: Overall, the accuracy of YOLO in vehicle detection has improved with 

each version, with YOLOv7 achieving the highest accuracy among all versions 

evaluated. However, it should be noted that accuracy may vary depending on 

the dataset and specific application. 

• Speed and Computational Requirements: YOLO has consistently maintained real-

time speed and low computational requirements throughout its evolution, with 

each version introducing new optimizations and network architectures that 

further improve performance. 

Based on the comparison, it was concluded that YOLOv7 was the most convenient algorithm to 

be utilized in the study of traffic conflicts analysis. Figure 9 shows the comparison between 

YOLOv7 performance and other YOLO versions used in real-time detection algorithms. 

 
Figure 9 Comparison Yolov7 to Other Real-Time Object Detectors [89] 

3.2.2.1 YOLOv7 Employment in Road Users’ Detection 

YOLOv7 detection and tracking algorithm was utilized in running the analysis of the extracted 

set of video footages for two of the cases of study intersections (e.g., Jackson Hole Town Square 

in Wyoming, and Four Corner Camera intersection in Cold Water city, Downtown of Michigan). 
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For the initial trials, 20 second. video was analyzed to estimate the time frame and the 

computational power of the utilized device (Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz   3.40 

GHz, 16.0 GB installed RAM, 1 GB NVIDIA Quadro K620). It was found that the analysis took 205 

second., and 650 second. by in charging the GPU, and CPU to perform the video analytic 

process, respectively. Based on this conclusion, it was required to either enhance the analysis 

computational power of the utilized personal computer (PC) or utilize an external graphic 

processing unit (GPU) for performing the analysis. Hence, Google external GPU was used 

through Google Collaboratory system to upload and run the video analysis. It should be 

mentioned that Google Collaboratory, also known as Google Collab, is a cloud-based 

development environment provided by Google for machine learning education and research. It 

allows users to write and execute Python codes in a web browser without requiring any setup 

or installation. For the 20 second. video, the elapsed time of the analysis performed on Google 

Collaboratory was 41 second. Consequently, Google Collaboratory environment was selected in 

running the analysis process. Figure 10 and Figure 11 show samples of video analysis for 

Jackson Hole Town Square, and Four Corner Camera intersection in Cold-Water Downtown in 

Michigan intersections using YOLOv7 detect and track algorithm. 

 
Figure 10 Video Analysis of Jackson Hole Intersection Using YOLOv7 
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However, the extracted results for the detection showed a decent accuracy, the algorithm 

faced one drawback by inaccurately classifying some of the 4-wheel drive passenger cars as 

trucks. While for the tracking and labeling objectives, the vehicles that are located on the far 

side of the camera position fail to be tracked in some frames within the video footage which 

resulted in taking different label associated with different trajectory. These limitations could be 

addressed by fine tuning the detection options and narrowing the scope of the detection to 

include the near side approaches to the camera’s view and excluding the far side approaches.   

 
Figure 11 Video Analysis of 4 Corner Camera, Cold-Water City, Michigan Using YOLOv7 

Another critical limitation faced the transformation of the centroid and bounding boxes corners 

coordinates from the 3D view to 2D plan view. This limitation is restricted to the camera’s 

mounting elevation. Since the followed procedure in performing the 3D-2D transformation 

homograph depends on a set of selected points on the ground level, the output grid is to be 

constructed on ground level. Hence, any point that does not belong to the ground level will be 

distorted after projection. The lower the camera was fixed; the more distortion will be resulted 

after the transformation is conducted. However, this distortion could be neglected for the high-

level fixation points of cameras. Assuming that the centroids of the Moving Objects (MOs) are 

located on the same height from the ground, the amount of distortion will be similar for both 
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projected objects. Consequently, the utilized measurements will not be critically affected by the 

distorted projection for the higher elevations of camera’s fixation points.  To clarify this 

limitation the transformation of two different frames were performed; the first frame was 

associated with Jackson Hole intersection (low elevation of camera fixation point), and the 

second frame was cropped from Cold Water intersection (high elevation of camera fixation 

point). Figure 12, and Figure 13 illustrate the initiated limitation for the transformation of the 

videos that are taken from lower cameras mounting elevations. 

 
Figure 12 Detection and Tracking for Low Elevations of Camera Mounting Point Using YOLOv7 

 
Figure 13 Detection and Tracking for High Elevation of Camera Fixation Point Using YOLOv7 

Based on the extracted results from the provided transformations, it was found that for the 

lower-level fixation cameras points (10-15 ft), YOLOv7 will not be able to serve in the conflict 

analysis framework unless the selected points for the transformation grid fall on the same 
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height of the majority of road users’ centroid. This required further data acquirement from the 

field of study itself for the purpose of initiating a unique grid at a special level. However, this 

could not be applicable for all similar intersections while looking for generalizing the procedure. 

Hence, YOLOv7 detection and tracking algorithm is to be applied on the intersections of high-

elevation fixation points (40-45 ft) for webcams by assuming that the centroids of all road users 

are located at the same height. While for the lower-elevation fixation points, another approach 

should be followed. 

3.2.2.2 CenterTrack Algorithm Employment in Road Users’ Detection 

At this stage, the research was directed to study the trajectory level algorithms that were 

designed for autonomous vehicles. Since these algorithms were developed originally for in-

vehicle cameras application, they may accommodate the required vehicle detection and 

tracking using low-level fixed cameras similar to the one at Jackson Hole Town Square.      

The research on trajectory level detection algorithms led to the most recent dataset named 

“nuScenes” that is used for the training process for convolutional neural networks in the field of 

vehicle detection algorithms related to autonomous vehicles. nuScenes is a large-scale dataset 

for autonomous driving developed by nuTonomy, which contains high-resolution sensor data 

collected from a variety of sensors including LiDAR, radar, and cameras. The dataset includes 

over 1,000 scenes captured in urban environments, with each scene consisting of 20 seconds of 

data captured at 20 frames per second. 

The nuScenes dataset provides a benchmark for evaluating algorithms for object detection, 

tracking, and prediction in complex urban environments. It includes annotations for a variety of 

road users including cars, trucks, pedestrians, cyclists, and scooters. The annotations provide 

information about the object's class, bounding box, and orientation, as well as additional 

information such as the object's velocity, acceleration, and heading angle. 

In addition to the dataset, nuScenes also provides a set of baseline models for object detection, 

tracking, and prediction. These models are based on state-of-the-art deep learning algorithms 

such as CenterNet and PointPillars and have been trained on the nuScenes dataset to achieve 

high accuracy in object detection and tracking. The baseline models can be used as a starting 

point for developing more advanced algorithms for autonomous driving. 
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The research result led to the utilization of CenterTrack algorithm. This algorithm was 

presented through the original research paper "Objects as Points" by Zhou et al.  that provided 

a comprehensive explanation of the CenterTrack algorithm and its implementation [90]. 

Additionally, the official GitHub repository for the CenterTrack algorithm contains the source 

code and a detailed description of the algorithm and its components. The paper proposed a 

new methodology by representing each object as a single point, then, used it to predict the 

object's bounding box and its class. This approach differs from traditional object detection 

methods that use bounding boxes to localize objects. 

The method is based on a key observation that most bounding boxes of objects have a similar 

aspect ratio, which makes it possible to use a single point to represent the center of the object 

and its size. The paper showed that this approach is not only more accurate but also faster than 

existing state-of-the-art object detection methods such as Faster R-CNN and RetinaNet. 

Additionally, it introduced a new training strategy that simplifies the process of training object 

detectors. Instead of using traditional object-level annotations that require drawing a bounding 

box around the object, the paper proposed using point-level annotations that only require 

marking the center point of the object. This approach reduced the annotation effort required 

and enabled the use of larger datasets for training. 

CenterTrack proposed an end-to-end solution for monocular 3D object detection and tracking 

by exploiting the complementary nature of 2D object detection and 3D object localization. 

Instead of using bounding boxes to localize 3D objects, it formulates 3D object detection as a 

keypoint estimation problem, where the location of the object is represented by a set of center 

points. 

The authors of "Objects as Points" argued that this keypoint-based representation was more 

efficient and effective than traditional bounding boxes, as it allowed for better localization and 

orientation estimation of 3D objects, especially under challenging occlusion scenarios. 

The proposed method consisted of two stages. The first stage was a modified version of the 

YOLOv3 network, prediction of the center point, height, width, and orientation of the object. 

The second stage used a simple 2D-to-3D lifting module to obtain the 3D location of the object 

from its 2D center point. Moreover, the authors introduced a new concept called "associating 
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the unassociated " which refers to the ability of the model to detect and track objects that were 

not previously associated with any existing tracks. This is achieved by introducing a new 

association metric that combines the appearance similarity and motion similarity between 

object detections. Experiments on the KITTI and nuScenes datasets showed that CenterTrack 

achieved state-of-the-art performance in both 3D object detection and tracking, surpassing 

previous methods that use either 2D or 3D information alone. Furthermore, the proposed 

method is computationally efficient, with a processing speed of over 25 frames per second, 

making it suitable for real-time applications. 

Overall, CenterTrack is a state-of-the-art algorithm for multi-object tracking in complex scenes. 

Its real-time performance and ability to track multiple object types make it well-suited for 

applications such as autonomous driving, surveillance, and robotics. 

Based on these results, CenterTrack was selected for the analysis of intersections of low-level 

webcams fixation points, whereas YOLOv7 was utilized for webcams with higher fixation points. 

Figure 14 shows the video analysis for Jackson Hole intersection using CenterTrack algorithm. It 

should be noted that the video analysis was run on Google Collab to provide a reasonable time 

frame for the computational analysis.  
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Figure 14 Detection and Tracking for Low Elevation Camera Fixation Point Using CenterTrack 
According to the video analysis outputs, CenterTrack has achieved decent accuracy at low-level 

fixation points for webcams (10-15 ft). Additionally, it provided a well fitted occupation cuboids 

for road users even at complexes situation and at occlusions. The next step was the 

identification of the coordinates of the 4 points located on the ground level for each road user 

and track them frame-by-frame.  

The extraction of the coordinates of the four points that were located on the ground level 

required some modifications to the original code. Consequently, a deep assessment of the code 

was performed to acquire the coordinates of the cuboid associated with the detected MOs in 

each frame of the video footage. The IDs of these points were located as 4, 5, 6, and 7. 

Additionally, the study of the main code resulted in the main concept behind the design of the 

algorithm. It should be noted that CenterTrack algorithm is setting constraints about the 

rotation of each (MO) around its center point. It was assumed that the (MO) is rotating about 

its vertical axis (y-axis) only, while no rotation was permitted around other axes (x, and z). For 

future studies, several modifications could be performed for generalizing the code for various 

mounting heights of the cameras. 

The base points coordinates were extracted from the code in pixels units, then, the analysis was 

performed based on this acquirement. Figure 27 illustrates the bounding cuboid corners IDs. 
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Figure 15 Monocular 3D Bounding Cuboid Corners IDs 
3.2.2.2.1 Limitations of CenterTrack Utilization 

The limitation of utilizing CenterTrack in the conflict analysis could be summarized as follows: 

• Large deformation for the cuboids including road users when approaching near to the 

camera’s location (empirical condition embedded in the original code). 

• Suitable for video footage from low-height webcams only. 

• Some misclassifications for the far objects from the webcam lens (e.g., pedestrian with 

trash cans). 

• Misclassification between 4WD, and SUV vehicles with trucks. 

For the first and second limitations, it is concluded that an essential modification should be 

applied to the algorithm for addressing these limitations. While the last two limitations could 

be addressed in the analysis process. For the misclassifications between the far objects, it could 

be set as a condition if the object is moving in different frames, it could be selected as 

pedestrian, elsewise, it may be excluded from the analysis. For the misclassification between 

SUVs and trucks, since the bounding cuboid has the same coordinates and dimensions, the 

vehicle could be re-classified based on its extracted dimensions. In the following chapter, 

further analysis of the extracted outputs will be performed to remove the biased data, extract 

trajectories, and smooth them. 

3.2.2.3 OpenPifPaf Algorithm for Vehicles Key Points Detection 

The CenterTrack algorithm provided accurate detection for vehicles and pedestrians that are 

located within the intersection areas. However, it faced a limitation to provide accurate 

dimensions for each road user since the cuboids are based on average vehicles and human 

dimensions and their depth in the image perspective. Hence, another two algorithms were 

examined for extraction of more accurate detection results. The first one is vehicle key points 

detection algorithm, “Open Pose in Full Pose Articulation Framework” (OpenPifPaf). While the 

other one is for pedestrian key points detection, YOLOv7_human_pose_estimation.  

The original algorithm by Sven Kreiss et. al. presented a new bottom-up methodology for 

multiple detections of human poses [91]. Accordingly, the study was followed by several 

plugins’ implementation for the algorithm on different classes (e.g., vehicles, and animals) [92]. 
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For the vehicles key points detection, ApolloCar3D Dataset was utilized for the training process. 

The Dataset included 5,277 driving images involving more than 60,000 cars in their captions 

with a resolution of 4K. The prediction of vehicles key points utilized the pretrained model 

“Shuffle Net”. 

Through this study, the vehicles key points detection was performed by applying OpenPifPaf 

standard command “predict” and a flag “--checkpoint=shufflenetv2k16-apollo-24” that 

represent the vehicle with 24 key points. Since this research work is investigating the 

integration of multiple cameras by utilizing the top-down view as the method of 

representation, the key points of interest will be that they are located at/near to the ground 

level. Figure 16 demonstrates vehicle’s structure and the 24 key point distributions utilizing the 

employed flag. The IDs of the 8 key points that are located at/near to the ground level are 

illustrated in the figure. 

However, the algorithm achieved decent accuracy in the detection of vehicles key points, it 

faced one drawback in the detection of the occluded points. Figure 17 presents an analyzed 

video frame using OpenPifPaf. 

 

 
Figure 16 Vehicle Key Points Identification At/Near to Ground Level 
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Figure 17 Detected Key Points Using a Single Camera  

Based on this drawback, it was decided to integrate the utilized surveillance cameras at the 

intersection to employ OpenPifPaf to depict the detected vehicles by accumulating the 

detected key points from various cameras. Consequently, employing OpenPifPaf in a conflict 

analysis framework. The integration was done by utilizing YOLOv7 and OpenPifPaf and 

leveraging the multiple cameras that are located at the intersection. Figure 18 illustrates the 

detection framework for a single vehicle. 
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Figure 18 Detection Framework Utilizing OpenPifPaf 

In the Figure, the average coordinates of the detected key points with more than one camera 

were calculated while the undetected points were assumed based on the average distances 

between the key points. However, the proposed method was put to improve the detection 

accuracy and provide more accurate projections for vehicle outlines by matching the projected 

key points on plan view, it faced a transformation problem which was resulted from the 

distorted images of cameras. Figure 19 shows the projected key points after transformation. 

Based on the projections output, it was decided to assume the average vehicle dimensions, 

Figure 21, on plan view by clustering the projected points, Figure 20. An extensive study was 

performed to restore accurate positions from the linearly and curvilinearly distorted images 

which will be explained with the application of pedestrian key points detection. 
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Figure 19 Extracted Key Points from Multiple Cameras. 

 

 
Figure 20 Key Points Clustering   
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Figure 21 Projected Vehicles Shapes Based on Average Vehicle Dimensions.                

3.2.2.4 YOLOv7 Human-Pose-Estimation Algorithm 

The human pose estimation algorithm is published on the GitHub repository of Rizwan 

Munawar, YOLOv7-pose-estimation. The algorithm provides a bounding box for each detected 

person, and 17 key points distributed between human joints, and face structure. Figure 22 

illustrates the key points IDs using the pretrained model “yolov7-w6-pose.pth”.  
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https://github.com/RizwanMunawar/yolov7-pose-estimation/commits?author=RizwanMunawar
https://github.com/RizwanMunawar/yolov7-pose-estimation/commits?author=RizwanMunawar
https://github.com/RizwanMunawar/yolov7-pose-estimation
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Figure 22 Human Key Points Distribution [93] 
The main goal of this section is to extract pedestrian trajectories at crosswalks by accurately 

detecting their feet key points and tracking them through video recordings. Furthermore, the 

proposed method utilizes the three surveillance cameras mounted at Town Square intersection, 

Jackson Hole to improve the accuracy of trajectory extraction at the bounds of each camera. 

Additionally, a correction strategy was adopted from linear and curvilinear perspective 

principles to relieve the distortions in cameras outputs resulting in maximizing the feature 

points and providing more accurate positioning. 

The initial steps were organized as follows: 

• Examine the field of view for each camera and set the intersected areas between them, 

Figure 23. 

• Set the areas of interest, crosswalks, and set the coverage area of each camera 

beneficially, Figure 24. 
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Figure 23 Cameras Coverage and Intersected Fields of Views 

 
Figure 24 Cameras Positions and Crosswalks determination at Site of Interest 

The next step is to improve the transformation accuracy by performing image processing 

correction methodology based on the linear and curvilinear perspective properties and set a 

unified grid for each crosswalk between multiple cameras.  
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3.2.2.5 Linear perspective 

In linear perspective each couple of horizontal parallel lines meet at a single point called 

vanishing point. The group of vanishing points are located at a horizontal line called the horizon 

line. This line is positioned at the same height of fixation of the camera that provides the 

linearly distorted image. Figure 25 illustrates the followed technique in creating the grid points 

for the crosswalks from camera 1-output images.  

 

Figure 25 Gridlines Formation on Camera 1 Image Perspective 
Where, H.L refers to horizon. V1-CW1, CW3: is the first vanishing point for crosswalks 1, and 3, 

while V1-CW2: is the first vanishing point for crosswalk 3.  

3.2.2.6 Curvilinear perspective 

Both horizonal and vertical lines are represented in curvilinear perspective as arc sections. The 

arc type, whether it is elliptical or circular arc depends on the shape of cameras lens. If the lens 

is spherical or semi-sphere, the arcs will be circular. If the camera has paraboloidal lens the arc 

will be elliptical. For practical use, most curvilinear surface cameras are manufactured as semi-

sphere.   

In the semi-spherical cameras’ outputs, each couple of horizontal lines curves will meet at two 

vanishing points at each end. The line joining the vanishing points of horizontal lines arcs is a 

horizontal line. Similarly, each couple of vertical lines arcs will meet at two points that are 

locate on a vertical line. Figure 26 illustrates the extraction of the bounding lines of crosswalks 

and their grid points. The extracted grid points from the multiple cameras are matched through 

the plan view to unify the output coordinates of pedestrians. Hence, the integration between 

cameras outputs is performed to extract accurate pedestrians’ trajectories. Figure 27 shows the 
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grid points on plan view. Consequently, a code was developed to utilize the outputs from 

multiple cameras and calculate the corrected trajectories by combining the coordinates and 

remove the biased data, Figure 28. 

 

 Figure 26 Gridlines Formation on Camera 2 Curvilinear Perspective 

 
Figure 27 Gridlines of Crosswalks on Plan-View 
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Figure 28 Detection and Tracking of Pedestrian Using the Proposed Framework 

The combined trajectory extraction by employing multiple cameras could correct the mis 

tracking that occurred by a single camera. This could be illustrated from the plotted trajectory 

from camera1. The red rectangle refers to false tracking of pedestrian at the exit of the covered 

area by camera 1. By employing and combining the data from camera 2, the corrected data 

could be produced to improve the accuracy in the trajectory plotting. 

In the next chapter, the utilized post processing techniques to clean the extracted outputs and 

provide smoothed trajectories from CenterTrack and OpenPifPaf algorithms will be presented.  

CHAPTER 4. POST PROCESSING OF ALGORITHMS OUTPUTS 

In this chapter, the post processing steps that are applied to extract smoothed trajectories from 

both CenterTrack and OpenPifPaf algorithms will be presented. 

Camera 1: Pedestrian detection and tracking at crosswalk 1 

 

Camera 2: Pedestrian detection and tracking at crosswalk 1 

Trajectory plot: Camera 1             Trajectory plot: Camera 2          Trajectory plot: Combined               
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4.1 Post Processing Steps Utilizing CenterTrack as Detection Algorithm 

To address the needed post processing steps, a general framework for conflicts detection was 

proposed, Figure 29. 

 
Figure 29 Traffic Conflicts Detection and Analysis Framework 

 

The demonstrated conflict detection framework is utilized in the analysis of a conflict set that 

will be presented throughout chapter 4.  

4.1.1 Output Data Validation Process 

According to the nature of the extracted outputs from CenterTrack algorithm, it was required to 

perform an additional step to assign the extracted coordinates from the TXT file to their 



47 
 

associated road users in JSON file. Also, some road users were double detected (e.g., some 

vehicles were labeled as cars, and trucks). Accordingly, the resulted redundancy from the 

multiple detection was handled through this step. MATLAB 2022 was utilized for the alignment 

process. A MATLAB code was created such that the extracted data from JSON file was 

organized, then, the number of the detected road users is found. Accordingly, the number of 

rows from TXT file associated with these road users were selected to be in the same frame (e.g., 

eight rows for each road user). Then, a polygon was drawn between the lower four points for 

each cuboid to assess the selection and annotation process visually. This procedure was 

followed frame-by-frame with a simplification in the MATLAB code such that it was selected 

from the TXT file the number of detected road users in JSON file in each frame, respectively, 

without the need of rows calculation. Finally, the doubled coordinates related to the over 

detected objects were deleted through an enhancement in the code. Figure 30 shows the visual 

validation of video output utilizing CenterTrack algorithm.  

 
Figure 30 Data Validation Process Using MATLAB Code Applied on CenterTrack Video Output 

Referring to Figure 30, the red quadrilateral shapes were drawn using the extracted coordinates 

from TXT file. A visual revision was set to verify the alignment of these shapes with the existing 

road users and their location within the image plane at a specific chosen frame. The verification 

process was done for conflict set 1 by following this procedure frame by frame. It should be 

noted that data verification process is considered the most time-consuming process throughout 

the whole analysis duration.  



48 
 

For the YOLOv7 algorithm, since the extracted outputs are decently organized and well 

separated, data validation process was exclusively included the doubled detection handling. 

After achieving data validation, it was required to apply the transformation homograph from 

the image plane to the 2D top view to obtain the traffic stream characteristics and draw road 

users’ trajectories. 

4.1.2 Transformation Homography 

The transformation homography is the mapping matrix that is required to re-organize the 

extracted coordinates from the image plane into the 2D top view. As illustrated earlier, this 

transformation is needed to put all the extracted points on a common grid. Consequently, this 

will ease the calculation of traffic stream characteristics, as well as the future contributions to 

the research work without considering the utilized camera’s position and properties. 

The initial step for homography creation is to select a set of features (e.g., lines, points) that are 

located in the camera’s view (image) and determine their association on the 2D top view. The 

required number of features should be greater than or equal to four geometrical elements. 

Obviously, these elements should be found on both images and utilized 2D view. It is favorable 

for these elements to be long lasting fixed structures since the moving objects are not optimal 

for locating the feature points. 

For the analysis of Town Square intersection’s video set, the crosswalk markings were selected 

as the geometrical features from camera’s view for performing the transformation process. 

Since not all the markings could be viewed thoroughly, it was required to reconstruct an image 

with neither road users nor snow covering the crosswalks. Therefore, a short period of the 

video from YouTube channel (https://www.youtube.com/watch?v=1EiC9bvVGnk) was selected 

for performing such process. By taking the median value of the entire video, all road users and 

unfavorable surface conditions were removed. Hence, an image showing the clean road surface 

was reconstructed. Figure 31 shows the reconstructed image that was utilized in 

transformation homograph. 



49 
 

 
Figure 31 Jackson Hole Intersection Reconstructed Image for Features Extraction 

The feature points were selected from the shown image in Figure 31. Google Earth was used to 

locate and match the selected feature points on the 2D top view. Figure 32 illustrates the 

selected points in the image plane (red points) and their associated points from the top view 

(green points). 

 
Figure 32 Selected Feature Points and Their Associated Points on Top View 

The transformation was performed with respect to the selected feature points and their 

associated points. It should be mentioned that due to the selection of features points within 

the intersection area the accurate outcomes for transformation will be associated to this area. 
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It was challenging to explore more points that fall out of this area due to the poor road 

infrastructure outside the intersection as well as the image decaying in the far side from the 

camera’s view. The transformation was applied on the reconstructed image to illustrate the 

occurred distortion outside the intersection area, Figure 33. Accordingly, the resulting 

distortion will affect the coordinates transforming accuracy for road users that located further 

from the selected features points (intersection area). 

 
Figure 33 Transformed Image of Jackson Hole Intersection 

The transformed road users’ coordinates from camera’s view were plotted on the Google Earth 

top view image. Figure 34 shows the projected road users in a single frame. The image shows 

the accurate plotted rectangles for the road users fall near to the selected features points and 

the distorted rectangles for the far road users from the intersection area. The following step is 

to draw the road users’ trajectories, and to extract positions, orientations, speeds, and 

acceleration and deceleration rates. By attaining these characteristics, conflict analysis is to be 

done. 
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Figure 34 Projected Vehicles Coordinates in Google Earth Image 

4.1.3 Road Users’ Trajectories Extractions 

The tracking process for the road users is organized in the following steps: 

1. Start from the first or another specific frame that the tracking process needs to be 

initiated. Then, select the vehicle ID that is required to be tracked from JSON file. 

2. By utilizing MATLAB code for the data validation process, the required vehicle’s data is 

matched from TXT and JSON files.  

3. Project the ground coordinates to the top view (red quadrilateral shapes). The 

background image is from Google Earth. 

4. The road user trajectory is drawn by following the center point of the projected 

quadrilateral frame by frame.  

Figure 35 shows the constructed trajectory for one selected vehicle. The red points are the 

initial coordinates of the vehicle, the green points are the center points, and the blue spline is 

the detected vehicle trajectory. 
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Figure 35 The Detected Coordinates and Trajectories 

4.1.3.1 Trajectories reconstruction 

However, each tracked vehicle should have four coordinates located on ground level, some 

duplicates occurred because of the multiple detections of same vehicle, and mis detections 

(objects categorized as different class in frame or more within the output video). Two errors 

were defined as the error with previous frame data and error with next frame data. Therefore, 

an algorithm of coordinates recognition is proposed based on the defined errors. The following 

two equations illustrate the calculation of these errors such that Eq.2. calculates the error in 

the previous frame, and Eq.3. calculates the error in the next frame. 

                                (2) 

                                    (3) 

 

A correction process was conducted in two steps by setting the following two conditions:   

1. Calculate the minimum value from previous, and next frame Eq.2., and Eq.3. 
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                                                            (4) 

2. Calculate the difference between the errors in the previous and next frame. 

                                                          (5) 

The "error difference" refers to the time difference between the current error and the previous 

error, as well as the time difference between the current error and the next error in a time-

series dataset. Minimizing this error difference helps to maintain data consistency and prevent 

sudden outliers in the trajectory data. If the error difference exceeds a certain threshold, it will 

be flagged as an outlier or a miss-tracking event. 

The road users’ coordinates of each frame that matched above equations will be recognized as 

same vehicles. The outliers are removed from trajectories. Therefore, gaps will exist in some 

frames. For the gap/missing tracked data, using interpolation to fix the missing data. Figure 36 

shows the corrected trajectories for two vehicles traveling through the north bound, and east 

bound after correction was conducted. 

 
Figure 36 Using Ground Coordinates to Reconstruct Vehicle Trajectories 

Finally, the vehicle trajectories were created for the road users travelling through the 

intersection as shown in Figure 37.  
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Figure 37 Corrected Vehicle Trajectories 

4.1.4 Velocity, Acceleration/Deceleration, and Orientation Calculation  

In this subsection the vehicles velocities, their acceleration/deceleration, and orientations are 

to be calculated. These properties acquisition will serve in the detection and analysis of traffic 

conflicts. 

4.1.4.1 Speed and Acceleration 

At current stage, kernel smooth is used to smooth the trajectories, and the speed is calculated 

by the differential of the position, and acceleration is calculated by the differential of the speed. 

Both speed and acceleration are separated into two directions, longitudinal and lateral 

direction. Figure 38 shows the example of vehicle speed and acceleration in both directions. 

This vehicle a sudden break.  
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Figure 38  Example of Vehicle Speed and Acceleration That has a Sudden Brake 

4.1.4.2 Vehicles’ Orientations/Directions 

It was chosen to define vehicles orientations by using the polar coordinates system (r, θ). The 

following equations represent the magnitude of the traveled distance (r) by a specific object 

between two successive frames in unit time (t), and its inclination angle (θ) with y-axis, Eq.6., 

and Eq.7. While Figure 39 describes the distance cut by a single vehicle (r), and the orientation 

(θ) within a specific period (t). 

                             (6) 

                                                        (7) 

 
Figure 39 Polar Coordinates System Description 

The outputs of traffic conflicts indicators will be presented as a curvilinear relationship between 

the indicators values versus timeframe. Hence, it was required to remove the outliers from the 
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output raw data and perform a cleansing process to smooth the curves. Accordingly, a MATLAB 

code was created to perform this task. The presented code was responsible for smoothening 

and cleansing the curves by removing the outliers from the raw data.  

While processing the raw data, the first step was to add a moving median window to recognize 

the outliers such that the current step data is always bounded by the median value of a 

previous window. 

 (8) 

Where 𝑘𝑘 is length of moving window, 𝑝𝑝 is the coefficient for outliers. In our processing, we re-

strict the coefficient as  0 < 𝑝𝑝 < 0.2 

If the current step data is out of the bound range, it will be marked as outliers, and will not be 

used for further data smooth. The smooth method is similar to the presented methods in [105, 

106]. Figure 40 shows an example for the smoothed curve that extracted from the output raw 

data. 

 
Figure 40 Smoothing and Cleansing Algorithm Output 

At this point, the requirements of setting a traffic conflicts detection and analysis framework 

utilizing CenterTrack algorithm were satisfied. Consequently, in the following chapter the 

framework will be applied on a conflict set to examine its strengths and weak points. 

200 300 400 500 600 700
300

400

500

600

700

800

900

1000

1100

1200

1300
Update Smooth algorithm Example

Raw Data

New Clean Data



57 
 

4.2 Post Processing Steps Utilizing OPenPifPaf as Detection Algorithm 

Similar to CenterTrack, a vehicle-vehicle conflict detection framework is proposed utilizing 

OpenPifPaf to examine the needed post processing steps, Figure 41. 

 
Figure 41 Traffic Conflicts Identification Framework 

4.2.1 Detection Error of OpenPifPaf 

OpenPifPaf algorithm proves its superiority in tracking vehicles with an unobstructed view, but 

its performance is notably challenged in urban intersections characterized by heavy traffic. In 

such congested areas, vehicles may obscure each other, posing a substantial hurdle to tracking 

accuracy. To assess the algorithm's robustness, we selected traffic videos featuring conflicts, 
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revealing common tracking errors during post-tracking analysis, as depicted in Figure 42. In this 

figure, the front detected key points are denoted in red, while the rear points are marked in 

green. 

Figure 42 (a) illustrates a tracking discrepancy where the rear bumper of a black sedan (type 1) 

should have been identified as two rear points. Unfortunately, one of the points is erroneously 

labeled as being at the front. Figure 42 (b) showcases a prevalent mis-tracking issue, where a 

vehicle is not tracked at all due to its location being distant from the camera. In Figure 42 (c), an 

instance of incorrect tracking involves a vehicle with an irregular shape, where key points may 

be mistakenly recognized as a different part of the vehicle, rather than the front or rear 

bumper. These tracking errors are visibly evident in the presented results and can significantly 

impact data extraction from the tracking algorithm. Hence, the development of appropriate 

solutions is imperative. 

 
Figure 42 Detection Error of OpenPifPaf 

4.2.2 Key Points Projection Utilizing a Universal Coordinate System 

To rectify the aforementioned errors, the establishment of a universal coordinate system is 

imperative to represent the detected key points captured by two distinct cameras. Given that 

the initial perspectives from the rooftop-mounted cameras are inadequate for such a 

coordinate system, we employ an image of the same intersection area sourced from Google 

Earth as a reference for the road layout. In projective geometry, a homography transformation 

serves as a bijection that maps lines to lines. By correlating the feature points from the camera 

view with those in the reference image, we facilitate the calculation of the homography 

between the camera view and the reference road. Figure 43 (a) and Figure 43 (b) present the 

chosen feature points, while Figure 43 (c) underscores their corresponding points on the 
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reference road. This process allows for the computation of homographies H1 and H2 for the 

two cameras. Subsequently, by leveraging both homographies, we can project the perspectives 

of roads captured by Camera 1 and Camera 2 onto the viewpoint of the reference road. Figure 

43 (d) and Figure 43 (e) illustrate the roads post-projection, with the central portions closely 

resembling the reference road when viewed from a similar bird's eye perspective. 

 
Figure 43 Feature points Matching Between two cameras view into Google Earth Image 

 
4.2.3 Vehicles Key Points Clustering 

The default output of the OpenPifPaf algorithm is hampered by a notable limitation. Although it 

successfully detects the coordinates of all key points, it fails to assign unique vehicle IDs. As a 

result, in each frame, it becomes challenging to discern which vehicle is being tracked, impeding 

the association of these points over time to construct comprehensive vehicle trajectories. This 
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section delves into the methodology for overcoming this limitation by associating key points 

originating from the same vehicle. 

There are two criteria for key point association: (1) Key points originating from the same vehicle 

must fall within a range that does not exceed the standard dimensions of a typical vehicle. (2) 

The front key points should exclusively associate with the rear key points. Subsequently, we 

introduce the error metric as defined in Equation 9. In this equation, the Euclidean distance 

between front and rear key points is computed. Minimizing this error is crucial for key points 

originating from the same vehicle. Figure 44 illustrates three examples of key points 

associations. In this figure, vehicle 1 possesses key points on both sides of its front, while 

vehicle 3 exhibits key points on both sides of its rear. Consequently, these two vehicles can 

accurately determine their ground dimensions and locate their central points. In contrast, 

vehicle 2 features key points on only one side, hindering its ability to ascertain its true position 

within this frame. For such situations, the central point is approximated as the midpoint of all 

detected points on the available side. 

                              (9) 

4.2.1 Trajectories Extraction and Smoothing 

Having established the central points in the previous section, we have successfully identified 

the central point of each tracked vehicle across all frames. The subsequent step involves 

extracting the trajectories of the vehicles based on these central points. This process is 

automated through Eq.10., which defines the error between the current frame data and 

subsequent frame data. Minimizing this error is crucial to associating a central point in the 

current frame with a corresponding point in the subsequent frame. Since tracking in the 2D 

map involves both the X and Y directions in the Google Earth image plane, it is imperative to 

satisfy this condition for both dimensions. In instances where there is a tracking error in one 

frame, the minimized error should be smaller than a predetermined threshold to prevent 

association with the wrong position.  

                              (10) 
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Figure 44 Examples of Key Points Association. Vehicle 1 Has Two Sides of Front Points, Vehicle 
3 Has Two Sides of Rear Points, While Vehicle 2 Only Has One Side of Key Points 
This approach ensures robust trajectory extraction by considering the continuity and coherence 

of vehicle movement across frames, thereby enhancing the reliability of the tracking results. Up 

to this point, we have generated raw trajectories that are prone to errors. To further enhance 

the accuracy of the trajectories, this research applies a robust locally weighted regression and 

smoothing procedure. This robust regression technique is designed to protect against aberrant 

points distorting the smoothed trajectory. The weighting is determined by the bi-square 

function as per Eq.11. In this equation, ri represents the residual of the ith data point resulting 

from the regression smoothing procedure. The MAD (median absolute deviation) is the median 

value of the absolute residuals, defined as MAD = median(|r|). 
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Following the smoothing process, it is advisable to implement a Savitzky-Golay filter to further 

eliminate any remaining errors. This refined trajectory is essential for accurate speed and 

acceleration estimation in the next section. Figure 45 provides a comparison between the raw 

and smooth trajectories, clearly demonstrating a significant improvement in the smooth 

trajectory compared to the raw one. 

                                          (11) 

 
Figure 45 Smoothed Trajectories Extraction 

4.2.2 Speed and Acceleration Smoothing 

The smoothed trajectory derived from the previous section serves as the basis for speed 

estimation. Speed is estimated by calculating the position differences between successive 

frames in both the X and Y directions. It is crucial to recognize that, despite the smoothing 

process, the trajectory may still contain errors. The differential process can potentially amplify 

these errors, thereby compromising the quality of the final data if not properly address. 

Therefore, a weighted moving median filter is developed to compute the speed while 

simultaneously eliminating errors. 

The process begins by separately calculating the time series speed for each vehicle, using a 

range of time steps as defined by Eq.12. In this equation, i represents the current frame, n is 

the time-step, and x(i+n) is the vehicle's position in frame i+n. Thus, 𝑣𝑣�𝑛𝑛(i) represents the 

estimated average speed at the current frame with an interval of 2⋅n frames. Subsequently, the 



63 
 

overall average speed is calculated by incrementally increasing the time step (n). Speeds 

derived from different n steps, ranging from 1 to a specified integer, provide a comprehensive 

set of speed measurements. The vehicle speed is then determined by taking the median value 

of all these n step speeds. 

To further mitigate noise, a Savitzky-Golay filter is applied to the median speed. It's important 

to note that this process is applied to speed measurements in both the X and Y directions. This 

comprehensive approach ensures robust and accurate speed estimation while addressing 

potential errors in the trajectory.  

                                                     (12) 

Acceleration estimation follows a process similar to that of speed estimation. Building on the 

cleaned speed data obtained from the previous section, the acceleration for each vehicle is 

calculated using an equation similar to the one used for speed calculation, Eq.13. The key 

distinction lies in setting n to 1, thereby determining acceleration as the median value within a 

time interval of 2T. Subsequently, a Savitzky-Golay filter is applied to achieve the final smooth 

acceleration. Figure 46 and Figure 47 provide comparisons between the raw and smooth 

speeds and accelerations, demonstrating the effectiveness of the applied estimation process. 

                                                 (13) 

Based on the extracted results, the conflict detection identification framework employing 

OpenPifPaf will be examined in the next chapter. 

 
Figure 46 Raw and Smoothed Speeds Extraction 

 



64 
 

 

 
Figure 47 Raw and Smoothed Accelerations Extraction 
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CHAPTER 5. TRAFFIC CONFLICT ANALYSIS 

5.1 Background 

The analysis of traffic conflicts has been introduced since 1960 and is ever evolving [22]. By 

using Surrogate Measures of Safety (SMoS), the interaction between road users can be 

characterized, and depending on the measure both the probability and severity of a potential 

collision could be estimated [23–25]. Generally, these SMoS indicate the nearness between 

road users (or their vehicles) and the proposed collision point.  

The analysis in this chapter will firstly provide the preliminary information that will be 

employed in the proposed detection framework by providing the following subjects: 

- Presentation of the extracted conflict types from the literature study. 

- The linkage between traffic conflicts and their associated crash types. 

- Illustration of the regions diagram and region-conflict relation. 

- Presentation of the utilized traffic conflicts indicators, and their preferences in conflicts 

detection. 

Furthermore, the applied procedure in the traffic conflicts detection framework will be 

presented through the analysis two sets of traffic conflicts that were captured by fixed CCTVs at 

two signalized intersections (Town Square intersection at Jackson Hole, and Four Corners 

Camera intersection at Cold Water). 

5.2 Literature Review 

Traffic conflicts indicators are considered the detection and assessment tools for the traffic 

conflicts on various roadway types. Many authors have employed various types of traffic 

conflicts indicators to identify conflicts and their severity levels at different roadway sections 

[81, 83, 140]. Furthermore, several comparative analyses have been held to extract the 

outperforming indicator for each specific type of conflict, and road section [97–101]. Zheng et 

al. classified traffic conflicts measures under temporal and spatial proximity families [28]. While 

Johnsson et al. broke them into three categories related to time to collision (TTC), post 

encroachment time (PET), and deceleration rates [54]. A recent systematic review study 

identified six categories of traffic conflicts measures that are used to assess the safety at 

intersections including Temporal proximity measures, Spatial proximity measures, Kinematic 
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measures, Mixed measures, Combination of measures, and crash severity measures [51]. Many 

of these indicators have a different application and definition and the conflict analysis 

performed is not found to be uniform amongst researchers. Recent studies have explored 

Surrogate Measures of Safety by keeping their focus on time-series data of interaction and 

analyzing it for the clusters of conflicts and non-conflicts by looking at different aspects 

involved in a conflict, such as time to collision (TTC), speed, acceleration, and vehicle trajectory 

[26]. They found this method to be more reliable as it uses both proximity and evasive action-

based surrogate measures to find traffic conflicts. Some systematic literature reviews have also 

been performed on traffic conflict-based safety measures, and they indicate the usage of 

different conflict indicators with varying thresholds for conflict detection [23, 24, 27]. Some 

studies have concluded that the choice of measure and its threshold depends on various 

conditions and application contexts, so measures should be selected depending on their 

context [27, 28]. 

5.2.1 Time to Collision (TTC) 

Time to collision (TTC) is one of the most commonly used SMoS to determine the time to 

collision, which is defined as the time remaining until a potential collision if the interacting road 

users remain at the same speed and direction [29]. As a measure of temporal proximity, TTC 

indicates how close conflicting road users are to one another. Time-to-collision measures the 

proximity of conflicting road users to a collision point, assuming that both users will arrive at 

the same time. This surrogate measure of safety can be calculated as long as road users are on 

a collision course and therefore there is a time series for the TTC values. Thus, the lowest value, 

which is generally termed as TTCmin is the most commonly used indicator.  

The following equation provides the calculation of TTC, Eq.14. 

                                (14) 

Where 𝑥𝑥𝐿𝐿,𝑡𝑡 and 𝑥𝑥𝐹𝐹,𝑡𝑡 are the positions of leading and following road users at time t, 𝐷𝐷𝐿𝐿 is the 

length of the leading road user, and 𝑣𝑣𝐿𝐿,𝑡𝑡 and 𝑣𝑣𝐹𝐹,𝑡𝑡 are the speeds of leading and following road 

users, respectively. 
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There are multiple variants of TTC that have been developed as an improvement on the 

traditional time-to-collision. The modified time to collision (MTTC), which incorporates 

acceleration data to provide more accurate estimation was found to be more strongly 

correlated with crashes as compared to traditional time to collision measure. [30, 31]. The 

MTTC was developed by Ozbay et al. to release the speed constraint that was assumed by TTC. 

The calculation method of TTC proposed that the two colliding road users had constant speed 

at collision time [102]. While MTTC considered the vehicles acceleration at collision in its 

calculation, Eq.15. 

                                  (15) 

Where 𝛥𝛥𝑣𝑣𝑡𝑡, and 𝛥𝛥𝑎𝑎𝑡𝑡 are the difference in speeds and accelerations between the two colliding 

road users, respectively.  

Although TTC is the most widely used surrogate measure, little is known about how to select 

the appropriate threshold. The window is generally between 1 and 5 seconds, with 1.5 seconds 

being the most common value [25, 26, 33–35]. Although other variations of time-to-collision, 

such as time-extended time-to-collision and time-integrated time-to-collision, quantify a traffic 

conflict by considering the duration of time-to-collision values below a certain threshold and 

the degree to which these values fall below the threshold, respectively, they have also been 

utilized less frequently in conflict studies [36]. 

5.2.2 Post-Encroachment Time (PET) 

In the SMoS analyses, other methods such as the Post-Encroachment Time (PET) are also found 

to have been used extensively [37, 38]. PET is a well-known indicator, which is defined as the 

time difference between the passing out of the offending vehicle from the collision area and 

the arrival time of the conflicting vehicle to this area or collision point [103]. Additionally, 

researchers have used Encroachment Time (ET), which is a derivative of PET that measures the 

duration of time in which offending road vehicles occupy a conflict area, and it can be used 

when oncoming major road vehicles are traveling at constant speeds. 
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It should be noted that the analysis of rear-end-crashes using PET required a determination of 

an imaginary line that proposed as an alternative to the collision area for other (crossing) crash 

types. The following equation is used to calculate PET, Eq.16. 

                                                           (16) 

Where 𝑡𝑡𝐿𝐿,𝑡𝑡 and 𝑡𝑡𝐹𝐹,𝑡𝑡 are the departure time of the offending vehicle, and the arrival time of the 

conflicting vehicle. 

TTC alongside PET are the two most common measures of conflict analysis. The reason for their 

widespread use is that they provide complementary information and capture different aspects 

of conflicts. Although both measures are typically used to identify different types of conflicts, 

time-to-collision is typically used for rear-ending conflicts, while post-encroachment time is 

used as an additional measure when road users' paths cross [39–41]. 

5.2.3 Deceleration Rate to Avoid Collision (DRAC) 

In addition to TTC and PET, some researchers have attempted to identify near crash events 

using other SMoS. An indicator called Deceleration Rate to Avoid Collision (DRAC) was 

developed as a representation of the Kinematic measures for the conflicting vehicles. This 

preliminary measure could detect the sudden drop in vehicles kinematics (Speeds and 

accelerations) by detecting the hard brakes which activated before entering the collision area. It 

is the deceleration rate that should be applied by the following vehicle to avoid crash 

occurrence with the leading vehicle. The following equation illustrates the calculation of DRAC, 

Eq.17. [104] 

                                         (17) 

As illustrated, usually DRAC is used as a guiding kinematic measurement that could assess the 

severity of traffic conflicts when the crossing movements are not completing by employing hard 

brakes. A comparative analysis was performed by Zheng et al. to find the superior traffic 

conflicts indicator from TTC, MTTC, PET, and DRAC by comparing crashes estimated from 

conflict measures with the observed crashes [53]. It was concluded that MTTC was the most 

accurate indicator that managed to estimate the crashes frequencies closer to the observed 
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one, followed by TTC and then PET. While DRAC achieved the highest number of crash 

estimations compared to the observed crashes. 

5.2.4 Mixed Conflict Measures by Severity  

Furthermore, Chen Wang et. al proposed a new surrogate measure “Aggregate Severe Crash 

metric” that was found to be a better indicator than TTC in determining the crash severity and 

the paper presents many challenges that come with applying TTC as a final measure of crash 

severity [37]. This paper develops the new metric ASCM (Aggregate Severe Crash Metric) based 

on delta-V i.e., change in kinematic energy. This study tested the new metric for twelve 

different intersections and found it to be particularly good at predicting fatal or injury crashes. 

Furthermore, Wang and Stamatiadis have developed a mixed conflict measure called 

“Aggregate Crash Propensity Metric,” that comprised time-to-collision, reaction time and 

deceleration rate etc. in its formulation [42]. Despite showing promising results in comparison 

to studies that solely rely on temporal proximity measures, this methodology has been 

underutilized. This may be due to the fact that evaluating evasive maneuvers, such as 

deceleration and acceleration by conflicting road users, is based on subjective judgment rather 

than objective criteria, and there is no widely accepted means of quantifying the intensity of 

such actions. Amir Sobhani et al. conducted micro simulation including driver characteristics 

[43]. They used two models for identifying traffic conflicts and one of them involves kinematic 

energy difference. This model predicts the traffic conflicts and crash severity if that conflict 

turned into a crash.  

5.3 Identification of Study Surrogate Measures of Safety 

Firstly, a systematic literature review and a meta-analysis were performed on research studies 

utilizing SMoS for conflict detection in order to aid with the selection of appropriate conflict 

indicator alongside its optimal threshold. Secondly, a framework for selecting conflict types and 

their associated collision type was established. Then the regions of probable conflicts were 

identified and then the conflict detection and analysis were performed.  

All these topics have been explored in the subsequent sections below starting with systematic 

review and meta-analysis followed by framework establishment and conflict region 
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identification which is later followed by conflict detection and its analysis and then the chapter 

ends with a discussion section. 

5.4 Conflict Indicator and Optimal Threshold Selection 

A systematic review of literature was performed using Preferred Reporting Items for Systematic 

Reviews and Meta-Analyzes (PRISMA) guidelines [44]. In order to formulate relevant and 

precise eligibility criteria, we followed the Population, Intervention, Comparator, Outcome, 

Study Design (PICOS) approach. Limited resources and time can be dealt with ease using this 

method and it is suitable for qualitative research [45]. The population of study considered in 

this study involved all kinds of road users and included all peer-reviewed journals till 2023 

dealing with traffic conflict analysis at intersections, freeways or crossing etc. The aim was to 

get the most up to date data and to understand the change in trend over time. The study 

design considered all the studies conducted using Computer Vision on traffic video data. The 

literature search was conducted to identify relevant papers on several databases including 

Google Scholar, PubMed, ScienceDirect, Scopus, JSTOR, TRID (Transportation Research 

Integrated Database), Web of Science and Compendex. A PRISMA flow diagram is shown in 

Figure 48, illustrating the number of studies included at each stage of the review process. 

Studies were judged based on title and abstract and those found relevant were included in the 

full-text screening process. Many studies were out of our context and the results were not 

sufficiently detailed, these papers whose sufficient information could not be gathered had to be 

removed from the analysis.  
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Figure 48 PRISMA Flowchart for Conducting Systematic Review and Meta-Analysis
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After full text screening 19 different studies were selected to conduct Meta-Analysis. However, 

conducting Meta-Analysis of SMoS thresholds has several limitations that are not encountered 

in Meta-Analyses of studies evaluating road safety. To begin with, for conducting Meta-

Analysis, selected studies should follow a basic framework and outcomes need to be 

conceptually comparable [55]. It should be noted, however, that in SMoS studies, multiple 

surrogate measures have been used in multiple studies, and there has been a lack of 

consistency in the methods employed and the reporting of the study outcomes. The absence of 

comparable outcomes is a key limitation in threshold selection in SMoS studies, which is a vital 

aspect for conducting meta-analyses. The selected studies didn’t follow a comparable 

framework and the outcomes they provided were diverse in nature. As a result of the different 

types of outcomes as well as missing values like standard error and sample size, it is impossible 

to establish a single SMoS threshold based on Meta-Analysis. 

While the attempt to conduct a Meta-Analysis was unsuccessful, a systematic review was 

performed to determine the suitable conflict and their optimal threshold that can be used in 

this study. The reviewed studies have shown that the major weaknesses in most of the SMoS 

studies performed have been the lack of validation, selection of SMoS, and problems with 

threshold selection [24]. In addition, there is a lack of description regarding how the threshold 

is determined as well as the selection of proper surrogate measures. From review of papers and 

sample analysis of most prominently used SMoS’s (PET and TTC), it can be seen that PET is 

generally favored and used for pedestrian related conflicts as well as turning vehicle conflicts. 

Also, TTC is mostly used for rear end conflicts as compared to PET. Both TTC and PET (with their 

respective variations) are the most used surrogate measures of safety. In general, the PET 

thresholds mostly used in the studies are 1.5, 3 and 5 s and most of them are based on findings 

of other studies and out of these, 3 s is found to be used the most to account for severe 

conflicts. Similar is the case with TTC where most studies are found to be using threshold values 

in the range of 1.5 to 3 s. In recent studies, in order to account for threshold and determine 

severity, Extreme Value Theory Analysis method with either Peak Over threshold or Block 

Maxima Approach have been found to be used extensively. Another method of using CDF plots 

utilizing wide range of thresholds (generally 1 to 5s) with a certain increment (generally 0.5s) 
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has been used and 15th, 50th and 85th percentile values have been used to account for various 

severity levels of conflicts. It was also found that alongside TTC and PET, MTTC and DRAC are 

also being extensively used for conflict analysis.  

Based on the systematic review, this study employs four traffic indicators (TTC, MTTC, PET, and 

DRAC) whenever possible to detect the various traffic conflict types. 

5.5 Traffic Conflict Data Collection and Preliminarily Analysis 

In this section the video data collected, and the manual extraction of conflicts will be 

demonstrated. Consequently, the conflicts distribution within the case study intersection is 

provided based on spatial and temporal metrics. Moreover, a binary logit model is utilized to 

examine the relationship between traffic conflict types and other factors that may influence 

conflicts, in order to investigate the correlation. 

 As prementioned, the section of the case study intersection is done based on three main 

advantages on other sites; the intersection includes three surveillance cameras that could 

provide better field of view for different approaches, each camera is provided with a real-time 

YouTube channel, and the intersection location in recreational area that high traffic volume with 

various types of road users. 

5.5.1 Conflict Data Collection at Site of Interest 

Traffic conflicts were observed in the Jackson Hole intersection through live video data available 

on YouTube. A total of 39 hours of video footage were reviewed, covering both weekdays and 

weekends. The details of the video footage used were provided below, Table 4. 

Table 4 Video Data Utilized for The Study 

 
The initial step was established by performing extensive literature review to consider the most 

frequent types of conflicts that occur at signalized intersections. The extraction process of traffic 

conflict types was mainly based on the “Traffic Conflict Techniques for Safety and Operations-

Date  Day  Time period (hours)  
12/9/2022  Friday  9.5  

12/10/2022  Saturday  9.5  
12/11/2022  Sunday  9.5  
12/20/2022  Tuesday  5.5  
12/21/2022  Wednesday  5  

  Total 39  
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Observers Manual” in addition to the study provided by Ezra Hauer for traffic movements at 

intersections. Based on these studies, a list consisting of twenty types of traffic conflicts was 

prepared including four types of pedestrian-involved conflicts [94]. The following two figures 

illustrate the extracted conflict types, Figure 49 and Figure 50 such that each conflict was given a 

unique ID. The identification of these types was done in the manual monitoring of the 

intersection, then, the conflicts data were collected into two sheets, Figure 51 and Figure 52. 

While for acquiring more details on each collected conflict, each conflict was mapped, and 

additional details were noted, Figure 53. The first two forms were used to collect a list of conflicts 

and their timestamps. And the second form was used to collect details for each conflict and 

includes all relevant information.  
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Figure 49 Vehicle-Vehicle Conflict Types 

 
Figure 50 Vehicle-Pedestrian Conflict Types 
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Figure 51 Conflict Data Main Sheet (Vehicle – Vehicle) 

  
Figure 52 Conflict data main sheet (vehicle - pedestrian) 

  
Figure 53 Conflict data detail sheet 

Additionally, two more conflict types (20, 21) related to parked vehicles were identified. These 

conflicts were included because parked vehicles were found to cause several rear end conflicts 

at Jackson Hole intersection. The details for each conflict were manually recorded with TTC value 
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as the utilized indicator. Table 5 presents the distribution of the detected conflicts at different 

TTC values. 

Table 5 Conflict Frequency Distribution with TTC Threshold 

 

From the table, it was observed that the most common conflicts were of Type-3, with 20 

instances, followed by Type-17. Type-3 conflicts were rear end collisions that occurred due to 

slow-moving vehicles, while Type-20 conflicts were also rear end collisions that happened when 

parked vehicles are exiting inclined parking lots. These two types of conflicts, which involved 

vehicles colliding with each other, accounted for the majority of the total number of conflicts at 

the Jackson hole intersection. 

Type-17, on the other hand, was considered the most severe among all the conflicts as it involved 

left-turning vehicles and pedestrians. These types of conflicts had the potential to result in 

serious injuries or even fatalities, and out of all the pedestrian conflicts, this conflict was the most 

common. 
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To gain a better understanding, the conflict locations were transferred from the sheet to geo-

coordinates, and heatmaps were developed using Arc-GIS, Figure 54 and Figure 55. 

 
Figure 54 Region Selected for Conflicts 

 
Figure 55 Heatmap of Conflicts 

 

The 85th percentile of the collected conflicts has a TTC alternative value of 3 seconds, Figure 56. 

While, in order to capture the progression of conflicts at various TTC thresholds, heatmaps were 

plotted for each threshold ranging from 1.5 seconds to 4 seconds with an increment of 1 second, 

Figure 57. 
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Figure 56 Cumulative Distribution of Conflicts with TTC Threshold 

 
Figure 57 Heat Map Generation with Different TTC Thresholds: a)1.5 seconds, b)2 seconds, c)3 

seconds , d)4 seconds 
 

5.5.2 Observations  

At Jackson Hole intersection, rear end conflicts were observed at the center of the intersection, 

as well as most of the occurred crashes were rear end collisions. As the heatmaps were developed 
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for different TTC values, a significant increase in intensity was observed as the TTC threshold 

increased from 1.5 seconds to 4 seconds. This increase was due to a greater number of conflicts 

being included. 

It was also observed that as the TTC threshold increases, the conflicts frequencies at eastbound 

approach became more significant, indicating that the rear end conflicts had higher TTC values.  

The traffic conflict analysis identified both rear end and left turning pedestrian conflicts as the 

most severe conflicts at the Jackson Hole intersection.  

At the intersection, the first conflict observed was rear end conflicts, and the majority of them 

occurred in the eastbound approach. Parked vehicles were involved in a considerable number of 

these conflicts. During peak hours, due to high traffic, there were large cases of congestion and 

queuing at this approach, and there was only one lane provided at this approach as other space 

was occupied by parked vehicles. 

The second most common type of conflict observed at this intersection was pedestrian conflicts 

with left turning vehicles. One reason for this was the high volume of left-turning vehicles and 

high volume of pedestrians crossing the street at peak hours. Since this was a recreation place, 

pedestrian violation was observed at night. 

The above observations from the video observation led to a further investigation of the 

relationship between the turning conflicting movements of vehicles and other explanatory 

variables with the outcomes, i.e., conflicts. 

Initially, a count model was proposed, but it did not perform well due to a lack of data. After 

narrowing the conflicts down to rear end conflicts and pedestrian conflicts, less than 40 conflicts 

were left for the pedestrian-left turning vehicle interaction. This limitation resulted in changing 

the model from a count to a case-by-case study model. In the case study model, the explanatory 

variables that were responsible for the conflict occurrence were considered, and a logit model 

was used for the analysis. 

5.5.2.1 Analysis of Rear End Conflicts 

Most conflicts were observed in the east bound approach, so the total east bound through 

volume was calculated and the case of parked vehicles was studied. A 4-minute interval was 

chosen for volume calculation after conducting a study with 1-minute, 2-minute, and 8-minute 
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intervals. It was found that the 4-minute interval was optimal for capturing the conditions of 

conflict occurrence. Shorter data chunks with 1-minute or 2-minute intervals did not perform 

well because the cycle length at this intersection varies from 1:15 seconds to 1:50 seconds and 

these shorter chunks did not capture the entire cycle length in certain situations. On the other 

hand, the 8-minute interval was able to capture the circumstances of the conflict, but it did not 

perform well because the cycles vary from each other and the total number of 8-minute data 

chunks is only half of that for the 4-minute interval. Ultimately, the 4-minute interval was chosen 

as it was able to show a better relationship between turning volumes and the number of conflicts 

during the peak hour compared to other intervals. The explanatory variables for this study were 

rear end conflicts, east bound through volume, and parked vehicle interaction. Other variables, 

such as time of day and road condition, were also included in the model. 

 
Figure 58 Summary of Results for Rear End Conflicts 

 

The odds ratio for eastbound through vehicle volume was 1.32, and the odds ratio for parked 

vehicle involvement was 2.58. The odds ratio was 1.485 when the road condition was snowy. 

Additionally, the odds ratio for peak time influence was 1.26. 
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In this analysis, the ratio of cases to controls was exactly 1:1. Cases represented conflict 

occurrence, while controls represented 'no conflict' under the same conditions. Cases and 

controls were chosen from both on-peak and off-peak hours to account for variation. The 

eastbound through vehicle volume and parked vehicle interaction were both significant with a p-

value less than 0.05. The road condition was also significant (p < 0.2), which was supported by 

the crash analysis, indicating a higher chance of rear end conflicts when the road condition was 

“snowy/wet.” 

Finally, the peak time (10 – 12 AM, 4-6 PM) showed no significance because there were always 

cases of congestion in day hours other than those time intervals, where a lot of congestion was 

observed at the intersection. 

5.5.2.2 Analysis of Pedestrian and Left Turning Vehicles Conflict 

The Type-17 conflict from the Bayesian conflict types table was identified as more severe than 

right turning vehicle and pedestrian conflicts due to the higher speed of left-turning vehicles, 

which turn with more speed because of the higher radius compared to right turns. In some cases, 

left-turning vehicles were observed to be in a hurry to turn before the opposing vehicles reached 

the intersection, resulting in conflict. 

During the data analysis, a large number of cases were observed where pedestrians were in a 

rush to cross the crosswalk at night, resulting in conflicts. These incidents were only observed 

during the night, even on weekdays. In contrast, during the daytime, pedestrians were more 

cautious, resulting in fewer violations. 

Based on these observations, two explanatory variables were added to the model: night peak 

hour and pedestrian violation, in addition to both left-turning vehicle volumes and pedestrian 

volumes. 



83 
 

 
Figure 59 Results for Pedestrian Type-17 Conflict Analysis 

The odds ratio for conflicting pedestrian volume was 1.32, while the odds ratio for left turning 

vehicle volume was 1.25. Additionally, the odds ratio for pedestrian violation (running or in a 

hurry) was 2.97, and the odds ratio for the night peak (7:00 PM – 10:00 PM) was 1.73. 

Based on the above results, it can be concluded that pedestrian behavior during night-time hours 

can increase the conflict risk by three times. Moreover, both pedestrian volume and eastbound 

left volumes have a significant impact on increasing the conflict risk. 

It is also worth noting that there is a higher occurrence of conflicts during the night peak, which 

is linked to pedestrian behavior during this time. This is further supported by the fact that the 

total left turning vehicular volume decreases at night. 

5.6  Traffic Conflict Framework Establishment 

In this section, the analysis of two sets of traffic conflicts that were captured by fixed CCTVs at 

two signalized intersections (Town Square intersection at Jackson Hole, and Four Corners 

Camera intersection at Cold Water). The first set consisted of 8 conflicts captured from a low 

elevation camera (10-15 ft height above ground level). While the second set includes 2 conflicts 

that captured from high elevation fixation point (40-45 ft height above ground level). The 

utilization of the second intersection was to illustrate the strength of YOLOv7 algorithm with 
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higher elevation cameras. The following table illustrates the characteristics of the video footage 

for the two conflict sets, Table 6.  

Table 6 Traffic Conflicts Sets Characteristics 
Traffic 
conflict 

set 

Conflict 
number 

Associated 
crash type 

Number 
of 

frames 

Video 
resolution 

Video 
extension 

Notes 

 1 Angle-crash 481 1920 x 1080 mp4  
 2 Rear-end crash 434 1920 x 1080 mp4  
 3 Rear-end crash 494 1920 x 1080 mp4  

1 4 Angle-crash 327 1920 x 1080 mp4  
 5 Rear-end crash 369 1920 x 1080 mp4  
 6 Right-angle 

crash 
632 854 x 470 mp4  

 7 Head-on crash 418 854 x 470 mp4  
 8 Rear-end crash 710 854 x 470 mp4 Excluded 

2 1 Rear-end crash 397 2560 x 1440 mp4  
 2 Rear-end crash 323 1920 x 1080 mp4  

The video analysis was done for the 10 conflicts by utilizing CenterTrack algorithm for the first 

conflict set. While for the second set, YOLOv7 algorithm was used for their analysis. 

Accordingly, the bounding cuboids coordinates were extracted for the first 8 conflicts and the 

bounding boxes coordinates were extracted for the remaining 2 conflicts. For conflict number 8 

in conflict set 1, it was excluded from the analysis since the algorithm could not identify one of 

the conflicting vehicles (Snow removal 3 wheeled truck). The data validation was done, then, 

the conflict detection and analysis process were performed. Finally, the results were extracted 

and analyzed at the end of this chapter.  

5.6.1 Traffic Conflict Types and Their Associated Types of Collision 

Based on the illustrated conflicts IDs in the previous section, a table was created to link the 

proposed conflict types with their associated type of collision, Table 7. 

Table 7 Conflict Types and Their Associated Crash Types 
Traffic conflicts ID Crash type 

1, 2, 3 and 4 Rear-end crash  
5, 6, 7, 10, 12, 13 and 16 Angle crash 

8, and 9 Right-angle crash 
11, 14, and 15 Head-on crash 

17, 18, 19, and 20 Pedestrian crash 
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5.6.2 Regions Identification  

The following step was to divide the intersection into several regions such that each traffic 

conflict is supposed to fall within one or more regions. Hence, a proposed regions diagram is 

drawn to estimate the most common regions in the intersection that are expected to contain 

specific types of traffic conflicts. By considering N-S approaches as the analysis directions, and 

with respect to conflicts points chart extracted from the traffic movements at signalized 

intersection (FHWA), seven proposed expected collision regions were selected. Figure 60 shows 

the set of conflicting points initiated by different traffic movements at signalized intersections. 

While Figure 62 shows the proposed regions diagram. The alignment process between the 

conflict types and their predicted including regions was done by setting approximate areas of 

occurrence for each conflict within the intersection. Then, these areas were annotated such 

that each area belongs to one or more regions. The region-conflict relation was summarized in 

Table 8.  

 
Figure 60 Conflict Points at Four Leg Signalized Intersection [95] 
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Figure 61 Proposed N-S Approaches Regions Diagram 
 

Table 8 Region-Conflict Relation 
Region ID Predicted conflict type Notes 

1 3, 4 and 12 The regions could be inverted to expect traffic 
movements from the opposite direction 

2 12, 17, and 18 NA 
3 7, 8, 10, 12, 13, 14, 15, and 16 NA 
4 1, 2, 5, 6, 9, 11, 14, 15, and 16 NA 
5 1, 2, and 11 NA 
6 15 NA 
7 15 NA 

Based on Table 7 and Figure 61, it could be noticed that conflict with ID 15 is considered the 

most critical conflict type since the collision type associated with this conflict is a head-on crash. 

Additionally, the occurrence of this conflict will be in regions 3, 4, 6, and 7 that increases the 

probability of the occurrence of secondary conflict in the middle of the intersection. The 

conflicts 3 and 4 could occupy any section of region 1 and any other sub region of it. That may 

happen due to the nature of the large number of conflict points at signalized intersection since 

the vehicles occupying region 1 must pass through 8 conflict points or more. Additionally, with 
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respect to the analysis approach, the most critical regions are 3 and 4 since each of them could 

include 8 types out of the 20 conflict types. However, regions 2, and 5 could include severe 

injuries or fatalities crashes and 3 conflict types are expected with their areas considered to be 

the minimum within the whole intersection. Regions 2 and 5 could be interpreted as the only 

regions that include pedestrians’ conflicts. 

Based on the studied conflict types, and their distribution on the different regions within the 

signalized intersection, it was required to follow the literature on the assessment tools for the 

conflict types and their severity level. 

5.6.3 Traffic Conflicts Detection and Analysis Framework 

This section illustrates the traffic conflicts detection and analysis framework in detail by 

employing two sets of pre-determined conflicts. The first conflict set consists of 8 videos that 

were captured using CCTV camera fixed at low elevation point (10-15 ft height above ground 

level) at Town Square intersection, Jackson Hole. The last 3 videos were taken from YouTube 

channel with video dating to February 2018. Selection of conflict 6, and 7 is done since they 

include a right-angle conflict, and head-on conflict, respectively.  Conflict 8 was chosen to 

investigate whether the CenterTrack algorithm can identify unique types of vehicles or not. The 

remaining 5 conflicts were chosen from a list that was extracted by the research team. This list 

was created through an extensive study of traffic conflicts where two trained observers were 

employed to extract traffic conflicts from 39 hours of recorded videos from the real-time 

streaming YouTube channel for Town Square intersection. In addition to providing the 

observers with the required set of manuals for observation techniques, observers learnt 

conflicts extraction process through conducting introductory lectures followed by several group 

meetings [94]. Additionally, a collection form was created to gather the observed conflicts 

characteristics (time stamp, conflict type, road user at fault, motion description, weather, and 

surface condition, ...etc.) and then the data was collected in an ECXEL sheet. Furthermore, a 

cross-check was performed between the two observers as a revising procedure for achieving 

more accurate judgements.  

The second conflict set included 2 videos that were captured at Four Corners Camera 

intersection at Cold Water city where the CCTV camera is fixed at a high elevation (40-45 ft 
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height over ground level). Similar to the first intersection, the conflicts were chosen from a list 

of manually observed conflicts that were extracted from real-time video feeds. The observation 

process was held on 12 hours of real-time videos that were captured from YouTube channel of 

Four Corners Camera intersection. The collected conflict sets were utilized as case studies for 

verifying the proposed framework for conflict detection and analysis. 

5.6.3.1 Video Analytics of Conflicts 

Following the videos selection process, the next step involved manually selecting the associated 

algorithm that is relevant to the video analysis process, refer to chapters 5 and 6. For the first 

conflict set, CenterTrack algorithm was utilized to analyze the videos, then the extracted data 

were saved for each conflict individually (video output, JSON file, TXT file). The video output 

displayed the occupying cuboids for each road user while following them frame by frame. While 

JSON file presented road user IDs, the coordinates of center points of bounding boxes, and 

dimensions of bounding cuboids. The TXT file was added to the algorithm code, and it gave the 

eight-point coordinates of the bounding cuboids of each road user in each frame cumulatively. 

Thus, cuboids coordinates needed to be integrated into the JSON file and aligned manually to 

assign cuboids coordinates to their associated road users in each individual frame. The data 

verification process illustrates the utilized procedure to assign the extracted coordinates for 

cuboids and road users. 

For the second conflict set, the YOLOv7 algorithm was utilized in analyzing the conflicts. Video 

outputs, and data label TXT files were extracted from the video analytics process using YOLOv7. 

The data labels TXT files are individual files where each file is titled with the associated frame 

number and contain the labels for all road users included in the analyzed frame, the tracking id, 

and bounding box and center point coordinates. Following this is, the outputs were manually 

checked, road users’ detection accuracy was verified, and the redundancy in the double 

detected objects were removed. 

Furthermore, OpenPifPaf was examined on one conflict by employing TTC and vehicle speeds in 

identifying the conflict occurrence. 
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5.6.3.1.1 Traffic Conflicts Framework: Cases of Study 

In this sub section, the framework of traffic conflicts detection and analysis was applied on the 

two conflict sets. Seven general steps were proposed and followed throughout the application 

of the framework. These steps are stated as follows:  

• Define the target crash type from the analysis, and the requested approach for the 

analysis process within the intersection. 

• Select the regions that are expected to include the targeted crash type (using region 

distribution diagram, conflict type-crash type table, and region-conflict type table). 

• Exclude any road users’ data that falls outside the selected regions. 

• Extract road users’ characteristics that fall in the selected regions. 

• Calculate the traffic conflicts indicators that are associated with the selected crash type 

for the road users that fall within the selected regions. 

• Determine the critical incidents based on the calculated indicators (conflict detection). 

• Analyze the trajectories of these incidents to detect the conflict types associated with 

these incidents. 

5.6.3.1.1.1 First Conflict Set 

By referring to Table 6, the first conflict set was chosen to start the analysis. From the manual 

observations the conflict types are determined as illustrated in Table 9.  

Table 9 First Conflict Set Characteristics 
Traffic 

conflict set 
Conflict 
number 

Associated crash 
type 

Conflict 
type 

Regions 
expecting the 

crash 

Notes 

 1 Angle-crash 12 2, and 3 SB 
 2 Rear-end crash 3 1  

 3 Rear-end crash 2 1  
1 4 Angle-crash 12 2, and 3 SB 
 5 Rear-end crash 1 1 SB/Veh. Order 

changed 
 6 Right-angle crash 9 3, and 4  
 7 Head-on crash 15 3, 4, 6, and 7  
 8 Rear-end crash 4 4 Excluded 
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Conflict 1 (Angle-crash/Side-swipe conflict):  

The proposed procedure was followed by selecting regions 2, and 3 for the analysis of angle 

crashes’ conflicts with respect to the south bound approach. Data of road users located in these 

regions were selected and analyzed, then, traffic conflicts indicators were calculated. It is worth 

mentioning that PET could not be calculated since one of the conflicting vehicles stopped 

before passing through the point of collision. Figure 62 illustrates the two conflicting vehicles. 

The grey vehicle (ID: 60) was turning left and had the right of way since the green arrow was 

turned on while the red vehicle (ID: 16) was about to complete the right turn and stopped after 

recognition of the coming vehicle.  

 
Figure 62 Video Analysis Output for Conflict 1 Utilizing CenterTrack Algorithm 

The calculation of the traffic conflicts indicators showed a steep change in the TTC values for 

the two conflicting vehicles. While for MTTC, it could not detect a noticeable change since the 

values were fluctuating through different time series. For DRAC curve, it could detect a gradual 

decrease in the curve within the time of conflict occurrence. Figure 63 illustrates the three 

traffic conflicts indicators curves for the two conflicting vehicles. Each chart represents 3 

curves: the calculation in x-direction, y-direction and the magnitude. That was proposed since 

the original equation assumed the analysis was in one direction. Finally, the trajectories for the 

conflicting vehicles were reconstructed to determine the conflict ID.  
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Figure 63 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 1, 

Conflict Set 1 
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Conflict 2 (Rear-end conflict):  

Following the proposed framework, rear-end conflicts occupying region 1 with respect to the 

movement in north bound approach were selected and the road users’ data were analyzed 

within region’s boundary. Accordingly, the traffic conflicts indicators were calculated. As for 

PET, the whole region could be considered as a collision course, thus it was essential to set a 

specific line as a point of collision to compare PET values for all the vehicles passing this line. 

The value of PET was 3 seconds between the two conflicting vehicles (e.g., silver vehicle (ID: 

17), and black vehicle (ID: 47)) which is not considered as a good indicator for conflict 

occurrence. The interpretation of occurrence of such action is that the following vehicle, the 

black vehicle (ID: 47), decelerated before reaching the collision point. Which is another reason 

for not considering PET as a relevant indicator for such cases. The whole scene could be 

explained as follows; the black van (ID: 23) was getting out of the inclined parking lot that 

reserved the right lane. Consequently, the approaching vehicle’s driver, silver vehicle (ID: 17), 

applied the brakes to avoid collision with the reversing vehicle, first conflict. Finally, the 

following vehicle, black vehicle (ID: 47), decelerated to avoid a rear-end crash with silver vehicle 

(ID: 17), secondary conflict. Figure 64 illustrates the explained scene. For the traffic conflict 

indicators curves, only the TTC curves detected the decrease that indicated a potential conflict 

occurrence, Figure 66. 

 
Figure 64 Video Analysis Output for Conflict 2 Utilizing CenterTrack Algorithm 
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Figure 65 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 2, 

Conflict Set 1 
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Conflict 3 (Rear-end conflict):  

Similar to Conflict 2, the inclined parking that reserved the right lane is found to be a common 

factor for occurrence of rear-end conflicts as well as secondary conflicts and traffic congestions 

at this specific area of Jackson Hole intersection. In conflict 3, a parked vehicle, silver vehicle 

(ID: 45), was getting out of the parking lot when a fire truck (ID:  66) was travelling through the 

intersection. The fire truck had to maneuver to avoid being involved in a rear-end crash with 

the reversed vehicle. Figure 66 illustrates the vehicles’ trajectories.  

 

 
Figure 66 Video Analysis Output for Conflict 3 Utilizing CenterTrack Algorithm 

For the traffic conflicts measurements, it was found that TTC, MTTC, and DRAC could detect the 

conflict occurrence while PET was not able to identify the conflicts since neither of the 

conflicting vehicles passed the proposed point of collision. Figure 67 shows the TTC, MTTC, and 

DRAC curves for silver vehicle (ID: 45), and fire truck (ID: 66). TTC, MTTC, and DRAC curves 

showed a steep fluctuation at the time of conflict occurrence. 
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Figure 67 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 3, 
Conflict Set 1 
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Conflict 4 (Angle-crash/Side-swipe conflict):  

This conflict is typically similar to conflict 1. The only difference was that conflict 4 occurred in 

daytime unlike conflict 1 that occurred in nighttime. It should be mentioned that this area 

within the intersection and with respect to camera’s viewpoint included several side swipes 

conflicts at the snowy weather conditions. This could be interpreted as a result of the usage of 

the right lane as a parking lot while the remaining part of the lane is covered by snow. This 

forces the right turning traffic to initiate the right turn from the middle lane. Consequently, side 

swipes conflicts occurred with the intersecting volumes. Figure 68 describes the scene. The grey 

SUV (ID: 32) was turning right from the middle lane while the grey Jeep (ID: 2) was taking a 

protected left turn as illustrated from the traffic signal. The driver of the grey SUV (ID: 32) felt 

that it will not be possible to end the right turn safely before the arrival of the grey Jeep (ID: 2). 

Subsequently, he applied brakes before completing the turn. While for the grey Jeep (ID: 2), the 

driver decelerated while taking the left turn to avoid the occurrence of a potential crash.  

 
Figure 68  Video Analysis Output for Conflict 4 Utilizing CenterTrack Algorithm 

 

The TTC and MTTC traffic conflicts indicators curves identified the conflict occurrence while 

DRAC could not detect the conflict occurrence since both conflicting vehicles did not use their 

brakes violently. Figure 69 illustrates the output curves. 
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Figure 69 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 4, 

Conflict Set 1 
 

Conflict 5 (Rear-end conflict): 

This conflict occurred between a left turn vehicle, the grey truck (ID: 51), that was travelling 

toward the northbound from the eastbound and a reversed vehicle, black van (ID:  15), which 
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was getting out of the inclined parking lot located on the northbound. The view of grey truck 

driver (ID: 51) was blocked by the through SB traffic that stopped at the entrance of the 

intersection at the red-light phase. Hence, grey truck driver (ID: 51) could not recognize the 

reserved black van (ID:  15) until his vehicle passed the blocking volume. Once, the reversing 

vehicle was recognized by grey truck driver (ID: 51), he decelerated to avoid the rear end 

collision. The framework with followed by selecting region 1 and excluding the remaining 

regions. The included vehicles in region 1 were studied, then, their characteristics were 

extracted, and conflicts indicators curves were drawn. Figure 71 describes the scene. While the 

extracted measurements were shown in Figure 72. 

 
Figure 70 Video Analysis Output for Conflict 5 Utilizing CenterTrack Algorithm 

The extracted traffic conflicts indicator curves for TTC, and MTTC identified the conflict 

occurrence. While, DRAC curve had a gradual change in the curve at the time of conflict. Also, 

PET could not be utilized in this case since both conflicting vehicles did not pass the potential 

collision point. The selected traffic conflicts indicators were able to clearly identify the traffic 

conflict occurrence since the utilization of DRAC is excluded on giving guidance measurements 

only.  
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Figure 71 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 5, 

Conflict Set 1. 
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Conflict 6 (Right-angle conflict):  

Based on the proposed procedure, right- angle crash was selected. Hence, regions 3, and 4 

were chosen while other regions were excluded from the analysis. The following figure shows a 

captured frame from the output video of conflict 6, Figure 70. The video is captured at 

nighttime where all flashing red phase was set. This phase is usually applied at low traffic 

volume intersections whereas all vehicles that approach the intersection are required to fully 

stop to check the crossing traffic before travelling through the intersection. The figure shows 

that the red SUV (ID: 5) had the right of the way since the predicted crash will affect the 

vehicle’s driver side.  

The vehicle trajectories were drawn. The performed video analytics showed that both vehicles; 

grey SUV (ID: 1) and red SUV (ID: 5) applied their brakes to avoid collision. Hence, PET could not 

be applied to detect the traffic conflict since there was no crossing movement. Consequently, 

other indicators were calculated for the extracted data for vehicles located in regions 3, and 4. 

 
Figure 72 Video Analysis Output for Conflict 6 Utilizing CenterTrack Algorithm 

It is concluded that by calculating the TTC, MTTC, and DRAC for the vehicles traversing regions 

3, and 4 that the curves have rapid fluctuation for the calculated indicators between grey SUV 

(ID: 1), and red SUV (ID: 5). Figure 73 illustrates the drops in these curves within the time series 

including the occurred conflict. 
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Figure 73 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 6, 

Conflict Set 1. 
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It should be mentioned that DRAC provided a gradual decrease in its value which could be 

utilized as a guidance for the potential conflict occurrence. While for TTC and MTTC provided a 

steep change in their values. Additionally, the calculation equations provided a one-

dimensional analysis depending on the movement of vehicles occurs in one directional collision 

course (e.g., rear-end conflict). Consequently, the values were calculated once in x-direction, y-

direction, and their magnitude. All of the calculated values for the three curves representing 

the 3 components could detect the steep change in movement. Finally, returning to the 

vehicles data, trajectories were drawn, and conflict type was found from the proposed list. 

Conflict 7 (Head-on conflict):  

For conflict 7, the associated regions with the crash type are 3, 4, 6, and 7. These regions were 

selected while other data that do not belong to them were excluded from the analysis process. 

Similar to the applied procedure in conflict 6, the traffic conflicts indicators were calculated for 

the road users occupying the mentioned regions. Accordingly, the curves were checked for the 

road users to detect sudden fluctuations. Figure 74 illustrates the video analytics of conflict 7. 

The black SUV (ID: 15) was taking a left turn at the yellow light after the end of permitted left 

turn phase. While the silver SUV (ID: 11) had the right of the way since the black SUV (ID: 15) 

should not make the turn unless a relevant gap is provided. Both vehicles applied sudden 

brakes to avoid the occurrence of a head on collision. Figure 75 shows the calculated values for 

TTC, MTTC, and DRAC. For PET, similar to conflict 6, both vehicles applied sudden brakes to 

avoid collision occurrence. Hence, PET could not be calculated for this conflict. 

 
Figure 74 Video Analysis Output for Conflict 7 Utilizing CenterTrack Algorithm 
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Figure 75 Traffic Conflicts Indicators Extracted Values Versus Time Frame for Conflict 7, 

Conflict Set 1 
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However, TTC could detect a steep change in the values for the two conflicting vehicles, MTTC 

could not detect the occurred conflict. It may be interpreted as the crash type was head-on 

crash, the different signs for acceleration values that resulted from the different directions 

could not identify the change in movement. Another issue could occur with the higher volumes 

traversing the intersection for this type of crash since it associated with four regions, and for 

the ordinary directional movements that travelling through, false detections could occur. 

Hence, it is recommended for that type of crash to narrow the selected scope and depend on 

the integration between two or more measures for more accurate detection.  

5.6.3.1.1.2 Second Conflict Set 

For the second dataset, YOLOv7 was utilized for the video analytics of traffic conflicts. Table 10 

illustrates the characteristics of the second conflict set. The proposed framework for detection 

and analysis of traffic conflicts was applied to extract the conflicts and identify their types based 

on the road users’ trajectories. 

Table 10 Second Conflict Set Characteristics 
Traffic 
conflict 

set 

Conflict 
number 

Associated 
crash type 

Conflict 
type 

Regions 
expecting the 

crash 

Notes 

2 1 Rear-end crash 12 1 SB 
 2 Rear-end crash 3 1  

 

Conflict 1 and 2 (Angle-crash/Side-swipe conflict):  

For conflict set 2, the two conflicts were chosen to justify the proposed algorithm selection for 

the captured videos from the mounted cameras at high elevations. Conflicts were recorded 

from the real-time channel of 4 corner camera at Cold Water city, Downtown Michigan. By 

using manual observations, the conflicts were extracted. It should be mentioned that the 

number of observed hours required to extract these two conflicts exceeded 10 hours. This 

could be resulted from the near ideal geometric design, satisfying the required drivers sight 

distances, and relevant signal timings at this intersection. For conflict 1, the silver SUV (ID: 42) 

was taking a left turn through a permissible phase while at the same instance another vehicle, 

red SUV (ID: 62), was taking a right turn from the opposite approach. However, the silver SUV is 

the vehicle at fault, the red SUV while taking the right turn movement deviated from the right 
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lane in uninterpretable behavior to block the lane on the silver SUV’s way. The silver vehicle 

had to decelerate to almost full stop while entering the opposite direction lane. Figure 76 

illustrates the occurred scene.  

 
Figure 76 Video Analysis Output for Conflict 1 Utilizing Yolov7 Algorithm 

Traffic conflicts indicators curves were extracted as shown in Figure 77. TTC and MTTC curves 

could detect fluctuations in their curves at the time of conflict occurrence. While the DRAC 

curve could not identify the conflict occurrence. To calculate PET, an estimated collision point 

was set then the arrival time of each vehicle is calculated. Consequently, PET was found to be 

less than one second. The PET value indicates that the occurred conflict is a severe one.  
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Figure 77 Traffic Conflicts Indicators Extracted Values versus Time Frame for Conflict 1, 

Conflict Set 2 
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Another conflict was analyzed by using OpenPifPaf algorithm. The outputs from two cameras 

were utilized to detect the vehicles positions, then, creating polygons representing vehicles by 

their average dimensions, Figure 78. The utilized indicator in the conflict detection was TTC. 

Figure 79 demonstrates the increase in vehicle 3 speed when approaching the intersection to 

turn right. This action led to a possible collision occurrence that was detected by the TTC when 

its value falls under 2.0 seconds.  

 
Figure 78 Sideswipe/Angle Traffic Conflict  

  

Figure 79 TTC and Conflicting vehicles Plots to Identify Side Swipe Conflict Occurrence 

 

 

3

10
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5.7 Integration of YOLOv7_human_pose_estimation Algorithm and OpenPifPaf 

The integration between human and vehicles key points detection algorithms is investigated by 

analyzing the movement of pedestrians using YOLOv7_human_pose_estimation algorithm. 

Then, analyzing the video output using OpenPifPaf algorithm to extract vehicle key points. The 

integration between the outputs will serve in the traffic conflicts detection by calculating the 

road users’ trajectories and apply either of the followed procedures in identifying conflicts 

occurrences. The dependence on key points detection algorithms provides more accurate 

localization of the road users which leads to minimizing the false identifications for traffic 

conflicts. Figure 80 shows an analyzed video frame using of both 

YOLOv7_human_pose_estimation and OpenPifPaf algorithms. 

 

 
Figure 80 Integration of Human and Vehicles Key Points Detection Algorithms 

5.8 Discussions 

From the presented work throughout this chapter, the main concept of utilizing AI technology 

in identifying traffic conflicts occurrence has been proven. Furthermore, other gains were 

attained such as the manipulation between algorithms to assign the superiority of each one 

with respect to the camera’s mounting elevation. Additionally, it was concluded that based on 
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the nature of occurrence of traffic conflicts and it dependance on several factors (e.g., drivers’ 

behaviors, geometric design of intersections, sight distances, signal timings, weather, and 

surface conditions, etc.), the implementation of a detection system relies heavily on the 

integration between traffic conflicts indicators. The utilization of a single measurement could 

be superior for a single crash type under a specific condition. While for the sake of constructing 

a general framework that can provide solid interpretations and descriptions for the whole 

scene, an implementation of number of conflicts measurements should be done with the 

guidance of the road users’ trajectories. This will require various case studies of intersections 

and traffic conflicts to cover most of the surroundings and address the limitations. For the 

presented study through this research work two intersections were included as examples for 

the low and high elevations of the mounting points of traffic surveillance cameras. Also, four 

traffic conflicts indicators were employed as a base for the proposed framework of detection 

and analysis of traffic conflicts. The proof of concept was achieved. While further modifications 

need to be performed to address the limitations in the proposed procedure. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

The study addresses the prevalent practice of employing surrogate measures for identifying 

traffic conflicts with often arbitrarily determined threshold values. Current thresholds, typically 

chosen without clear justification, lack a standardized approach. While some researchers 

attempt to establish optimal threshold values through empirical methods, the present study 

employs systematic review and Meta-Analysis techniques to synthesize findings across various 

case studies, locations, and data configurations. However, Meta-Analysis proved to be 

challenging due to the diverse methods and frameworks used in reporting research outputs, 

compounded by insufficient studies with similar outputs and a lack of essential information, 

such as standard error and sample size. The study also quantitatively assessed the quality of 

selected papers, identifying empirical methods as potentially the most effective for determining 

surrogate measures of safety (SMoS) thresholds based on location characteristics and available 

data. It suggests that future research should focus on refining existing empirical and 

mathematical methods to enhance threshold value identification in the context of traffic safety 

studies. 

The investigations of traffic conflicts and crashes at a specific intersection, employing heat 

maps for both data types and conducting a visual comparison. Notably, crashes were 

concentrated at the intersection's center, while conflicts were observed predominantly on the 

right side. This disparity resulted from the camera's westbound focus, skewing conflict data. 

Manual observation, despite limitations, captured all visible conflicts but displayed 

inconsistencies in quantitative variables like Time-to-Collision (TTC). 

Despite manual observation's qualitative advantage in incident breakdown, computer vision 

excelled in precisely detecting quantitative factors such as speed, deceleration, and TTC—

essential for conflict severity assessment. The study advocates a combined approach leveraging 

the strengths of both methods for more accurate conflict analysis, with recommendations to 

address camera limitations through increased height and distance. 

Further analysis highlighted rear-end conflicts and those involving left-turning vehicles and 

pedestrians as most severe. Parking orientation in the eastbound approach, particularly angular 
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or side-by-side parking, contributed significantly to severe rear-end conflicts. The study 

recommends adopting parallel parking in this approach to align with established traffic 

guidelines, emphasizing the need for additional research to solidify the correlation between 

parking orientation and conflict occurrence. The study underscores the value of integrating 

manual observation and computer vision to devise effective strategies for reducing crashes and 

conflicts at intersections. While advocating a combined approach, the study acknowledges 

challenges in capturing all conflicts when the camera's scope is limited, proposing camera 

height and distance adjustments as potential solutions. 

The study initiates a comprehensive exploration of vehicle tracking methodologies, spanning 

traditional approaches like GPS and RFID tracking to more advanced techniques incorporating 

AI and deep learning, such as YOLO and OpenPifPaf. Through an extensive literature review, a 

common limitation is identified: many existing tracking techniques prioritize tracking itself, 

often overlooking adaptability and effectiveness in diverse traffic scenarios. This gap leads to 

notable tracking errors, particularly in complex and varied traffic conditions. 

In response to this identified limitation, our research introduces a tailored post-processing 

procedure aimed at enhancing tracking accuracy and adaptability. Taking OpenPifPaf as an 

example, common tracking errors are analyzed, resulting in the development of a novel 

algorithm proficient in extracting accurate feature points from raw data and constructing 

refined vehicle trajectories. Augmented by a uniquely developed filter for trajectory smoothing, 

this innovative approach facilitates precise estimations of speed and acceleration, significantly 

improving the reliability and accuracy of vehicle tracking in challenging scenarios. 

In conclusion, this research not only highlights the shortcomings of existing methodologies but 

also pioneers a multifaceted approach that addresses these challenges. The post-processing 

improvement enhances tracking algorithm accuracy, opening new avenues for continued 

investigation and refinement in the dynamic domain of vehicle tracking technology. This 

contribution is significant in advancing the broader discourse on intelligent transportation 

systems. 

Throughout this report, the primary concept of employing AI technology for identifying traffic 

conflicts has been substantiated. The study also achieved additional benefits, including 
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optimizing algorithms to discern their superiority based on the camera's mounting elevation. 

Importantly, it was deduced that the detection of traffic conflicts relies heavily on integrating 

various indicators due to the multifaceted nature of conflicts influenced by factors like driver 

behavior, geometric intersection design, sight distances, signal timings, weather, and surface 

conditions. 

While a single measurement may excel for a specific crash type under particular conditions, 

constructing a comprehensive framework necessitates the implementation of multiple conflict 

measurements guided by road users' trajectories. This entails conducting diverse case studies 

to encompass different intersections and traffic conflict scenarios, addressing inherent 

limitations. The current study exemplified this with two intersections representing low and high 

camera mounting elevations, utilizing four traffic conflicts indicators as a foundation for the 

proposed detection and analysis framework. The proof of concept has been established, but 

further refinements are required to overcome limitations in the proposed procedure. 

Based on the findings and analysis presented in this report, the following recommendations are 

made: 

• Utilize CenterTrack algorithm in low-elevation camera fixation point: The results showed 

that CenterTrack algorithm performed better in detecting traffic conflicts at Town 

Square intersection, which had a low-elevation camera mounting point. Therefore, we 

recommend that this algorithm be used by applying some modifications to the original 

code, then, to be utilized at locations where the camera is closer to the ground. 

• Utilize YOLOv7 algorithm in high-elevation camera fixation point: The analysis revealed 

that YOLOv7 algorithm outperformed CenterTrack algorithm in detecting traffic conflicts 

at Four Cameras square intersection, which had a high-elevation camera fixation point. 

Therefore, we recommend that this algorithm be used in similar settings where the 

camera is mounted at a higher elevation. 

• Utilize OpenPifPaf algorithm at the intersections that have multiple cameras with 

intersected fields of view. The application of this algorithm will improve the detection 

accuracy resulting in accurate safety assessments by detecting vehicles key points.  
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• Cameras positions and orientations: The analysis results at both intersections revealed 

that the installed cameras should be covering the whole approaches of the intersection 

for better detection of the road users as well as achieving more accuracy in the 

transformation of the coordinates from image plane to the top view plan of the 

intersection. 

• It is recommended that future research endeavors focus on the continuous refinement 

and development of post-processing techniques, extending beyond the presented 

methodology. Exploring alternative algorithms and filters, as well as conducting 

comparative analyses with different tracking systems, could provide valuable insights 

into optimizing the overall performance of vehicle tracking in various dynamic traffic 

environments. This iterative approach to advancing post-processing methodologies 

would contribute to the evolution of intelligent transportation systems and ensure their 

effectiveness across a broad spectrum of scenarios. 

• Expand testing to include diverse weather conditions and explore day and night 

detection capabilities. Given that most featured case studies were conducted in clear 

weather, validating algorithm robustness requires additional testing in varying 

conditions like rain, fog, or snow. 

Despite limitations encountered during the implementation of several types of algorithms in 

traffic conflict detection, the research team has proactively addressed these issues. The 

identified limitations included miss detections, multiple detections, missing coordinates, and an 

incorrect number of tracked objects. Proposed solutions include refining the training dataset, 

fine-tuning algorithm parameters, and implementing modifications to rectify output 

discrepancies. The results from this study leveraging computer vision techniques underscores 

the viability of effectively tracking road users, analyzing traffic conflicts, and assessing the 

efficacy of countermeasures in a more rapid and cost-effective manner. 
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