

TRAINING COURSE IN GEOTECHNICAL AND FOUNDATION ENGINEERING

NHI COURSE NO. 13239 - MODULE 9

PUBLICATION NO. FHWA HI-99-014 FEBRUARY 1999

GEOTECHNICAL EARTHQUAKE ENGINEERING

STUDENT EXERCISES

NHI National Highway Institute

REPRODUCED BY: NTTS U.S. Department of Commerce National Technical Information Service Springfield, Virginia 22161

Federal Highway Administration

THIS STUDENT EXERCISE BOOK (FHWA-99-014) IS INTENDED ONLY TO BE USED AS AN INTERACTIVE TEACHING TOOL FOR NHI COURSE NO. 13239 – MODULE 9 "GEOTECHNICAL EARTHQUAKE ENGINEERING", AND IS <u>NOT</u> INTENDED TO BE USED AS AN INDIVIDUAL EXERCISE BOOK.

DETAILED DESIGN EXAMPLES ILLUSTRATING THE PRINCIPLES AND ANALYSES OF GEOTECHNICAL EARTHQUAKE ENGINEERING ARE INCLUDED IN PART II OF THE REFERENCE MANUAL (FHWA-HI-99-012) FOR THE SAME COURSE.

Technical Report Documentation Page

1. Report No. FHWA-HI-99-014	PB99-	142549	3. Recipient's Cat	alog No.
4. Title and Subtitle			5. Report Date	
GEOTECHNICAL EARTHQUAKE	E ENGINEERING		February 1999	
STUDENT EXERCISES			6. Performing Org	ganization Code
7. Author(s)			8. Performing Org	anization Report No.
Principal Investigator: George M Authors: Edward Kavazanjian Tarik Hadj-Hamou	lunfakh [*] n, Jr. [▲] , Neven Ma [▲] , and Jaw-Nan (Jo	atasović [▲] , 0e) Wang*		
9. Performing Organization Name and	Address		10. Work Unit No	o. (TRAIS)
* Parsons Brinckerhoff Quade & One Penn Plaza, New York, N	ζ Douglas, Inc. NY 10119			
In association with			11. Contract or Gr	rant No.
▲ GeoSyntec Consultants			DTFH61-94-C-	00104
2100 Main St., Suite 150, Hu	ntington Beach, C	A 92648		
12. Sponsoring Agency Name and Add	ress		13. Type of Repor	t and Period Covered
National Highway Institute				
U.S. Department of Transportation	on		14. Sponsoring Ag	ency Code
Washington, D.C.				
15. Supplementary Notes			, <u> </u>	
FHWA Technical Consultants - J FHWA Contracting Officer - J. N	.A. DiMaggio, A Mowery III; COTI	. Munoz and F R - L. Jones, N). Osborn National Highway I	Institute
16. Abstract				
This student exercise book has been of for NHI Course No. 13239 - Module as an individual exercise book. The due to the time constraint of the 2.5-of analyses of geotechnical earthquake Engineering" Reference Manual (FF	developed for use as e 9 "Geotechnical E extents and depths of lay course schedule. engineering are ind IWA-HI-99-012).	an interactive to arthquake Engi f the problems p Detailed design cluded in Part I	eaching tool and a coneering", and is not oresented in this exercise examples illustratinal of Module 9"Geoto	empanion workbook intended to be used cise book are limited g the principles and echnical Earthquake
17. Key Words		18. Distribution	n Statement	
Geotechnical earthquake engineering spectra, site response analysis, lique foundations, retaining walls	, response faction, slopes,		No restrictions.	
19. Security Classif. (of this report)	20. Security Classif	(of this page)	21. No. of Pages	22. Price
UNCLASSIFIED	UNCLASS	IFIED	162	
Form DOT F 1700.7(8-72)	Reproduction of comp	leted page author	ized	

PREFACE

This student exercise book is intended only to be used as an interactive teaching tool and a companion workbook for NHI Course No. 13239 – Module 9 "Geotechnical Earthquake Engineering", and is not intended to be used as an individual exercise book. The extents and depths of the problems presented in this exercise book are limited due to the time constraint of the 2.5-day course schedule.

Module 9 "Geotechnical Earthquake Engineering" is the ninth module in a series of twelve modules that constitute a comprehensive training course in geotechnical and foundation engineering. Sponsored by the National Highway Institute (NHI) of the Federal Highway Administration (FHWA), the training course is given at different locations in the U.S. The course is tailored to the needs of both geotechnical and structural engineers who are involved in the analysis, design, and construction of surface transportation facilities in seismic areas.

A reference manual (FHWA-HI-99-012) was developed to provide information on how to apply principles of geotechnical earthquake engineering to planning, design, and retrofit of highway facilities. Detailed design examples illustrating the principles and analyses of geotechnical earthquake engineering are included in Part II of the reference manual.

Finally, this student exercise book is developed to be used as a living document. Additional student exercises or case histories may be given separately during the training session.

PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE

Reproduced from best available copy.

NOTICE

The information in this document has been funded wholly or in part by the US Department of Transportation, Federal Highway Administration (FHWA), under Contract No. DTFH 61-94-C-00104 to Parsons Brinckerhoff Quade & Douglas, Inc. The document has been subjected to peer and administrative review by FHWA, and it has been approved for publication as a FHWA document.

In this document, certain products may have been identified by trade name. Also, photographs of these products may have been included in the document for illustration purposes. Other products which are not identified in this document may be equally viable to those identified. The mention of any trade name or photograph of a particular product does not constitute endorsement or recommendation for use by either the authors or FHWA.

CONVERSION FACTORS

Approximate Conversions to SI Units		to SI Units	Approximate Conversions from SI Units			
When you know	Multiply by	To find	When you know	Multiply by	To find	
•		(a) L	ength			
inch	25.4	millimeter	millimeter	0.039	inch	
foot	0.305	meter	meter	3.28	foot	
yard	0.914	meter	meter	1.09	yard	
mile	1.61	kilometer	kilometer	0.621	mile	
		(b) /	Area			
square inches	645.2	square millimeters	square millimeters	0.0016	square inches	
square feet	0.093	square meters	square meters	10.764	square feet	
acres	0.405	hectares	hectares	2.47	acres	
square miles	2.59	square kilometers	square kilometers	0.386	square miles	
		(c) Ve	olume			
fluid ounces	29.57	milliliters	milliliters	0.034	fluid ounces	
gallons	3.785	liters	liters	0.264	gallons	
cubic feet	0.028	cubic meters	cubic meters	35.32	cubic feet	
cubic yards	0.765	cubic meters	cubic meters	1.308	cubic yards	
		(d) I	Mass			
ounces	28.35	grams	grams	0.035	ounces	
pounds	0.454	kilograms	kilograms	2.205	pounds	
short tons (2000 lb)	0.907	megagrams (tonne)	megagrams (tonne)	1.102	short tons (2000 lb)	
		(e) H	Porce			
pound	4.448	Newton	Newton	0.2248	pound	
		(f) Pressure, Stress,	Modulus of Elasticity			
pounds per square foot	47.88	Pascals	Pascals	0.021	pounds per square foot	
pounds per square inch	6.895	kiloPascals	kiloPascals	0.145	pounds per square inch	
		(g) D	ensity			
pounds per cubic foot	16.019	kilograms per cubic meter	kilograms per cubic meter	0.0624	pounds per cubic feet	
		(h) Tem	perature			
Fahrenheit temperature(°F)	5/9(°F- 32)	Celsius temperature(°C)	Celsius temperature(°C)	9/5(°C)+ 32	Fahrenheit temperature(°F)	
Notes: 1) The primary metri 2) In a "soft" convers	ic (SI) units use sion, an English	d in civil engineering are me measurement is mathematic	ter (m), kilogram (kg), secon ally converted to its exact m	nd(s), newton (N etric equivalent.) and pascal ($Pa = N/m^2$).	

3) In a "hard" conversion, a new rounded metric number is created that is convenient to work with and remember.

-

MODULE 9 GEOTECHNICAL EARTHQUAKE ENGINEERING TABLE OF CONTENTS

STUDENT EXERCISES

Page

No. 1	Ground Motion Parameters	1-1
No. 2A	Derivation of SPT- $(N_1)_{60}$	2A-1
No. 2B	Soil Profiling Using CPT	2 B- 1
No. 3	G _{max} Derivation- Empirical Correlations	3-1
No. 4	Simplified Site Response Analysis	4-1
No. 5	SHAKE Program	5-1
No. 6	Liquefaction Potential	6-1
No. 7	Simplified Seismic Deformation Analysis	7-1
No. 8	Stiffness Matrix for Spread Footings	8-1
No. 9A	Pile Capacity Evaluation	9A-1
No. 9B	Foundation Stiffness for Pile Group	9B-1
No. 10A	Dynamic Earth Pressure- Retaining Walls	10A-1
No. 10B	Permissible Displacement Approach- Retaining Walls	10 B -1

STUDENT EXERCISE NO. 1

Derivation of Site-Specific Design Ground Motion Parameters and Response Spectra.

Objective:

Design Earthquake and Site-Specific Response Spectra for a Firm Ground Site ($V_s = 760$ m/s) and Soft Clay Site ($V_s = 120$ m/s) in Boston, Massachusetts for 2% in 50-Year Probability of Exceedance.

Source Materials:

Reference Manual Part I: Figures 3-4, 3-5, 4-17, and 4-18, Tables 4-3 and 4-5.

USGS Website Data: 2% in 50-Year Seismic Hazard Data, Deaggregated Hazard Data for Boston, Massachusetts (attached). 1. Establish Free-Field Firm Ground Peak Horizontal Ground Acceleration from USGS Hazard Map (Figure 3-5):

 $PGA_{FF} =$ _____

2. Establish T_0 and T_s for Normalized Spectra (Figure 4-18) For **Firm Ground** ($V_s = 760$ m/s)

A. Establish Z Factor From Figure 3-4:

Z = _____

B. Establish Site Class From Table 4-3

Site Class = _____

C. Establish C_v From Table 4-5:

C_v = _____

D. Establish T_s From Inset on Figure 4-18:

$$T_s = \frac{C_v}{2.5 Z} =$$

E. Establish T_o From Inset on Figure 4-18:

 $T_{o} = 0.2 T_{s} =$ _____

- 3. Plot Spectra on Attached Graph Paper
- 4. Repeat Steps 2 and 3 for **Soft Clay** Site
- 5. Plot Spectral Accelerations from USGS Website on Attached Graph
- 6. Subjectively Assess Design Earthquake Magnitude and Distance from USGS Website Data

B. D = _____

Figure 3-4: Map and Table for Evaluation of UBC Seismic Zone Factor, Z. (Reproduced from the Uniform Building Code[™], Copyright[®] 1994, with the Permission of the Publisher, the International Conference of Building Officials)

Peak Horizontal Ground Acceleration in Bedrock for Central and Eastern U.S. with a 10 Percent Probability of Exceedance in 50 Years. (Frankel, et al., 1996)

1-5

Figure 4-17: Normalized 1994 Uniform Building Code Response Spectra. (UBC, 1994, reproduced from the Uniform Building Code[™], copyright[©] 1994, with the permission of the publisher, the International Conference of Building Officials)

Figure 4-18: 1997 Uniform Building Code Design Response Spectra (UBC, 1997, reproduced from the Uniform Building Code[™], copyright[©] 1997, with the permission of the publisher, the International Conference of Building Officials)

	Site Class	Shear Wave Velocity	Other Characteristics ²
S _A	Hard Rock	>1500 m/s	
S _B	Rock	760 m/s to 1500 m/s	
S _C	Very Dense Soil and Soft Rock	360 m/s to 760 m/s	$N > 50, S_u > 100 \text{ kPa}$
S _D	Stiff Soil	180 m/s to 360 m/s	15 < N < 50 50 kPa $< S_u < 100$ kPa
S _E	Soft Soil	Less than 180 m/s	More than 3m of soil with PI > 20. $W_n > 40\%$, and $S_u < 25$ kPa
S _F	Special Soils		Collapsible, liquefiable, sensitive soils; More than 3m of peat or highly organic; More than 7.5m of clay with Pl > 75; More than 36m of soft to medium clay.

TABLE 4-3 1997 UBC SITE CLASSIFICATION

Notes:

1. 2.

Average shear wave velocity for upper 30m. N = standard Penetration Test Blow Count Su = Undrained Shear Strength PI = Plasticity Index W_a = Moisture content

TABLE 4-4 SEISMIC COEFFICIENT C.

Soil Profile Type		<u>S</u>	eismic Zone Factor,	Z	
	Z = 0.075	Z = 0.15	Z = 0.2	Z = 0.3	Z = 0.4
S,	0.06	0.12	0.16	0.24	0.32N,
S _B	0.08	0.15	0.20	0.30	0.40N,
S _c	0.09	0.18	0.24	0.33	0.40N,
S _p	0.12	0.22	0.28	0.36	0.44N,
S _E	0.19	0.30	0.34	0.36	0.36N,
S _F		·	See Footnote 1		

¹ Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type S_F. Notes:

TABLE 4-5 SEISMIC COEFFICIENT C_v

SEISMIC COEFFICIENT C _y							
Soil Profile Type	Seismic Zone Factor, Z						
	Z = 0.075	Z = 0.15	Z = 0.2	Z = 0.3	Z = 0.4		
S_	0.06	0.12	0.16	0.24	0.32N _v		
S _B	0.08	0.15	0.20	0.30	0.40N _v		
Sc	0.13	0.25	0.32	0.45	0.56N _v		
Sp	0.18	0.32	0.40	0.54	0.64N _v		
S _E	0.26	0.50	0.64	0.84	0.96N _v		
S _F			See Footnote 1				

¹ Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type $S_{\rm F}$. Notes:

1-8

REVIEW MATERIAL

That Carvell Sega 1996 HAZARD MAPS

SEISMIC HAZARD

MAP INFO

(43)13:74

USGS, Central Region, Geologic Hazards Team Golden, Colorado

Welcome to the USGS Zip Code earthquake ground motion hazard look-up page. Here you will be able to enter a 5 digit integer zip code and ground motion hazard values, expressed as a percent of the acceleration of gravity, (%g), will be returned to you. The ground motion hazard values returned will be Peak Ground Acceleration, (PGA), 0.2 second period spectral acceleration, (SA), 0.3 second period (SA), and 1.0 second period (SA) for 10%, 5%, and 2% probability of exceedence, (PE), in 50 years.

(These ground motion values are calculated for 'firm rock' sites which correspond to a shear-wave velocity of 760 m/sec. in the top 30m. Different soil sites may amplify or de-amplify these values.)

- The original zip code file was a freebee download from the Census Bureau, dated approximately January 1996, and thus may not reflect the most recent Zip Codes in use today.
- It has been determined that the latitude and longitude associated with each zip code is the average of the northern and southern most latitudes and the average of the eastern and western most longitudes of the zip code area. This location is not necessarily the Post Office location nor the centroid of the zip code area.
- In this look-up program each zip code location is associated with the nearest point on a grid of points 1/10 of a degree apart on which earthquake ground motions have been calculated covering the 48 adjacent states.

To find the ground motion values enter a 5 digit zip code in each of the blank boxes in the following table. Use the TAB key to move to the next table element. You may request from 1 to 12 Zip Codes.

NO EXTENSIONS

NO ALPHA CHARACTERS

NO DECIMAL NUMBERS

1 of 2

Enter Zip Code:	Enter Zip Code:	Enter Zip Code:
02115		
Enter Zip Code:	Enter Zip Code:	Enter Zip Code:
and the second sec		
Enter Zip Code:	Enter Zip Code:	Enter Zip Code:
na an a	The case constraint and the second	anter a constante a
Enter Zip Code:	Enter Zip Code:	Enter Zip Code:
- Hicks Hickson	·	
Submit Query		

The URL of this page is http://gldage.cr.usgs.gov/eq/html/zipcode.shtml Contact: Stanley L. Hanson (hanson@usgs.gov) Updated: Thursday, 04-Sep-97 14:16:37 MDT

The input z:	ip-code is 02115.		
ZIP CODE		2115	
LOCATION		42.3419 Lat.	-71.0968 Long.
DISTANCE TO	NEAREST GRID POJ	INT 4.6581 kms	•
NEAREST GRI	D POINT	42.3 Lat.	-71.1 Long.
Probabilist:	ic ground motion	values, in %g, at	this point are:
	10%PE in 50 yr	5%PE in 50 yr	2%PE in 50 yr
PGA	4.75	8.20	15.87
0.2 sec SA	10.65	17.44	31.40
0.3 sec SA	8.12	13.02	24.45
1.0 sec SA	2.83	4.87	8.78

PROJECT INFO

a - -----

VIEW MATERIAL

Trails Carrall Name 1996 HAZARD MAPS

SEISMIC HAZARD

MAP INFO

GENERAL

NATIONAL SEISMIC HAZARD MAPPING PROJECT

USGS, Central Region, Geologic Hazards Team Golden, Colorado

At 56 cities in the Central and Eastern U.S. (CEUS) and 44 cities in the Western U.S. (WUS), the seismic hazard corresponding to a two per cent probability of exceedance in 50 years is deaggregated by magnitude (Mw, or moment magnitude) and by epicentral distance (CEUS) or hypocentral distance (WUS). Hazard with respect to magnitude is binned into intervals of width 0.5 Mw. Hazard with respect to epicentral distance is binned into intervals of 25 km width. The hazard probabililities are deaggregated for the following ground motion parameters: PGA, 1.0, 0.3 and 0.2 second PSA.

Four matrices of per cent contribution to hazard are available at this web site. The matrices are organized with magnitude intervals corresponding to columns and distance intervals corresponding to rows. The first row of numbers gives the upper endpoint of the magnitude interval. For example, the number 6 means that seismic sources with magnitudes in the interval 5.5 < Mw <= 6 are included in hazard calculations for that column. The first column of numbers gives the upper endpoint of the epicentral distance interval. For example, the number 150. means that source-to-station distances in the interval 125 < d <= 150 km are included in the hazard calculations for that row. Missing rows, or gaps in the matrix, correspond to distance ranges for which the greatest per cent contribution to hazard is less than 0.0005, yielding a row of zeros to the level of precision given in the below data.

For the CEUS, the lowest magnitude considered for hazard calculations is MbLg 5.0. This magnitude corresponds to Mw = 4.7 using the Johnston (1996) relationship between the two magnitudes. Thus, for CEUS cities, the interval width for the first column of contribution to hazard is about 0.3 Mw units, rather than 0.5 units, the usual interval width. For the WUS, the lowest magnitude considered for hazard calculations is Mw = 5.0.

<u>An example graph</u> of deaggregated seismic hazard for 1 Hz spectral acceleration for Washington, D.C., for 2% probability of exceedance in 50 years.

To obtain the four hazard matrices, go to the <u>CEUS map</u> or <u>WUS map</u> and click on the city (red dot). The entries are per cent contribution to hazard. They will sum to 100 per cent for each matrix.

> The URL of this page is http://geohazards.cr.usgs.gov/eq/html/deagg.shtml Web Contact: Nancy Dickman (dickman@usgs.gov) Last Modified: Thursday, 04-Sep-97 13:49:59 MDT

1996 HAZARD MAPS

SEISMIC HAZARD

MAP INFO

GENERAL

CEUS Cities

GAT Jan 30 09:59 Deeggregated Seismic Hazard, Prob. Exceedance 2% 50 yr.

The URL of this page is http://geohazards.cr.usgs.gov/eq/html/ceu Web Contact: Nancy Dickman (dickman@usgs.gov) Last Modified: Thursday, 04-Sep-97 13:47:33 MDT

PROJECT INFO

NATIONAL SEISMIC HAZARD MAPPING PROJECT

USGS, Central Region, Geologic Hazards Team Golden, Colorado

Please note that the image map on this page is a client-side image map. YOU WILL NEED A BROWSER WHICH SUPPORTS CLIENT-SIDE IM USE IT!!!

(such as Netscape Navigator 2.0 or Microsoft Internet Explorer 3.0 or the eq

REVIEW MATERIAL

Press Carvell Sugar

To obtain the four hazard matrices click on the city (red dot). The entries are per hazard. They will sum to 100 per cent for each matrix.

Deaggre	eqated S	Seismic	Hazard	PE = 2%	in 50	vears po	za 🛛	
Bostor	MA 43	222 40	N N	71 092 4		N_0 1E00)_~	
Doscor			9 M	11.005 0		A=0.15620	, A	
M<=	5.0	5.5	6.0	6.5	7.0	7.5		
d<≃ 25.	14.782	10.319	5.586	2.673	0.972	0.580		
50.	6,324	7,939	7.158	5.055	2.338	1.587		
75	0 992	2 138	3 299	3 692	2 3 9 7	2 037		
100	0.170	2.100	3.200	2 146	2.307	2.037		
100.	0.1/9	0.583	1.361	2.146	1.788	1.884		
125.	0.047	0.211	0.643	1.306	1.286	1.530		
150.	0.012	0.072	0.275	0.701	0.824	1.088		
175.	0.003	0.021	0.101	0.323	0.461	0 734		
200	0 007	0 006	0 034	0 140	0 240	0 470		
200.	0.001	0.000	0.034	0.140	0.240	0.470		
225.	0.000	0.002	0.013	0.067	0.13/	0.322		
250.	0.000	0.001	0.006	0.036	0.087	0.239		
275.	0.000	0.000	0.003	0.019	0.054	0.171		
300.	0.000	0.000	0.001	0.010	0.033	0.121		
325	0 000	0 000	0 001	0 005	0 020	0 000		
220.	0.000	0.000	0.001	0.005	0.020	0.000		
350.	0.000	0.000	0.000	0.003	0.013	0.065		
375.	0.000	0.000	0.000	0.002	0.008	0.050		
400.	0.000	0.000	0.000	0.001	0.005	0.034		
425.	0.000	0.000	0.000	0.000	0.003	0.023		
450	0 000	0 000	0 000	0 000	0 002	0 014		
475	0.000	0.000	0.000	0.000	0.002	0.014		
4/3.	0.000	0.000	0.000	0.000	0.001	0.008		
1- / 1 - /		0.000	0.000	0.000	0.000	0.004		
500.	0.000							
500.	0.000							
Deaggre	egated S	Seismic	Hazard	PE = 2%	in 50	years 1	.0 hz	(1.0 s)
Deaggre Bostor	egated S	Seismic 2.333 de	Hazard	PE = 2%	in 50 leg W SA	years 1	.0 hz	(1.0 s)
Deaggre Bostor	egated S MA 42	Seismic 2.333 de	Hazard g N	PE = 2% 71.083 d	in 50 leg W SA	years 1 = 0.08500	.0 hz) g	(1.0 s)
Deaggre Bostor M<=	egated S MA 42 5.0	Seismic 2.333 de 5.5	Hazard g N 6.0	PE = 2% /1.083 d 6.5	in 50 leg W SA 7.0	years 1 = 0.08500 7.5	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25.	egated S MA 42 5.0 0.778	Seismic 2.333 de 5.5 2.581	Hazard g N 6.0 3.391	PE = 2% 71.083 d 6.5 2.317	in 50 leg W SA 7.0 0.934	years 1 = 0.0850(7.5 0.571	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50.	egated S MA 42 5.0 0.778 0.161	Seismic 2.333 de 5.5 2.581 1.358	Hazard g N 6.0 3.391 3.656	PE = 2% 71.083 d 6.5 2.317 4.160	in 50 leg W SA 7.0 0.934 2.235	years 1 = 0.08500 7.5 0.571 1.572	.0 hz)g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75.	egated S MA 42 5.0 0.778 0.161 0.034	Seismic 2.333 de 5.5 2.581 1.358 0.518	Hazard g N 6.0 3.391 3.656 2.283	PE = 2% 71.083 d 6.5 2.317 4.160 3.881	in 50 leg W SA 7.0 0.934 2.235 2.726	years 1 = 0.08500 7.5 0.571 1.572 2.262	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100.	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223	Hazard g N 6.0 3.391 3.656 2.283 1.439	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705	years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126	Hazard 9 N 6.0 3.391 3.656 2.283 1.439 1.044	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125.	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009 0.003	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.729	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747 2.204	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.23	years 1 = 0.0850(7.5 0.571 1.572 2.262 2.527 2.493 2.222	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150.	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747 2.204	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 </pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175.	egated S 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759	<pre>years 1 = 0.0850(7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225.	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189	PE = 2% 71.083 d 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250.	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275	egated S 1 MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.145	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.555	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275.	egated S 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.501 1.449 1.449</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.501 1.449 1.390</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.501 1.449 1.390 1.355</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363	in 50 in 50 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449 1.390 1.355 1.354</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002 0.001	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449 1.390 1.355 1.354 1.387</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002 0.001 0.001	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041 0.020	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326 0.250	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449 1.390 1.355 1.355 1.355 1.387 1.261</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375. 400.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002 0.001 0.001	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041 0.030	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326 0.260	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690 0.588	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.501 1.449 1.390 1.355 1.354 1.387 1.261</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375. 400. 425.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002 0.001 0.001 0.001	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041 0.030 0.022	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326 0.260 0.208	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690 0.588 0.500	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.501 1.449 1.390 1.355 1.354 1.387 1.261 1.139</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375. 400. 425. 450.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.0000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.000	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.145 0.109 0.083 0.064 0.050 0.041 0.030 0.022 0.014	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326 0.260 0.208 0.150	in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690 0.588 0.500 0.380	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449 1.390 1.355 1.354 1.387 1.261 1.139 0.922</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375. 400. 425. 450.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.0000 0.00000 0.0000 0.0000 0.0000000 0.00000 0.00000000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.000	Hazard g N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041 0.030 0.022 0.014 0.010	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.326 0.260 0.208 0.150 0.112	<pre>in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.773 0.721 0.690 0.588 0.500 0.380 0.265</pre>	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.449 1.390 1.355 1.354 1.387 1.261 1.139 0.922 0.681</pre>	.0 hz) g	(1.0 s)
Deaggre Bostor M<= d<= 25. 50. 75. 100. 125. 150. 175. 200. 225. 250. 275. 300. 325. 350. 375. 400. 425. 450. 475. 500.	egated S MA 42 5.0 0.778 0.161 0.034 0.009 0.003 0.002 0.001 0.000	Seismic 2.333 de 5.5 2.581 1.358 0.518 0.223 0.126 0.075 0.040 0.021 0.012 0.008 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000	Hazard G N 6.0 3.391 3.656 2.283 1.439 1.044 0.739 0.466 0.281 0.189 0.145 0.109 0.083 0.064 0.050 0.041 0.030 0.022 0.014 0.010 0.007	PE = 2% 71.083 6.5 2.317 4.160 3.881 3.219 2.747 2.204 1.586 1.091 0.825 0.705 0.589 0.492 0.418 0.363 0.326 0.260 0.208 0.150 0.112 0.080	<pre>in 50 leg W SA 7.0 0.934 2.235 2.726 2.705 2.563 2.228 1.759 1.358 1.132 1.048 0.945 0.849 0.773 0.721 0.690 0.588 0.500 0.380 0.265 0.177</pre>	<pre>years 1 = 0.08500 7.5 0.571 1.572 2.262 2.527 2.493 2.222 1.945 1.650 1.501 1.501 1.449 1.390 1.355 1.355 1.355 1.355 1.387 1.261 1.139 0.922 0.681 0.482</pre>	.0 hz) g	(1.0 s)

SOLUTIONS TO EXERCISE NO. 1

For Firm Ground Site:

1. $PGA_{FF} = 0.16 \text{ g}$ 2A. Z = 0.152B. Site Class = S_B/S_C (On Boundary) 2C. $C_v = 0.20$ (Interpolate Between Site Classes S_B and S_C) 2D. $T_s = 0.53 \text{ s}$ 2E. $T_o = 0.11 \text{ s}$

For Soft Ground Site:

4A.
$$Z = 0.15$$

4B. Site Class = S_E
4C. $C_v = 0.50$
4D. $T_s = 1.33$ s
4E. $T_o = 0.27$ s

See Attached Plot of Spectra, USGS Data.

▲ 1997 UBC Soft Soil (S_{ϵ})

From Deaggregated USGS Hazard Data:

6A. M = 6.5 (Subjective) 6B. D = 75 km •

STUDENT EXERCISE NO. 2A

Computation of Standardized and Normalized SPT Blow Count Number, $(N_1)_{60}$

Objective:

Derive Normalized and Standardized SPT Blow Counts, $(N_1)_{60}$, at 6 m Below Ground Surface at a Site Shown in Figure S2A-1.

- Soil Properties and Uncorrected Field SPT-N Values Are Shown in Figure S2A-1.
- SPTs Were Performed Using a Donut Hammer with Rope and Pulley.
- Standard SPT Sampler (with Room for Liners) Was Used without Liners.
- Borehole Diameter: 100 mm

Source Materials:

Reference Manual Part I: Section 5.4.2 Equations 5-6, 5-7, 5-8, 5-10, and 5-11, and Tables 5-2 and 5-3.

End of Borehole

Figure S2A-1: Soil Profile and Field SPT-N Values

2A-2

Compute $(N_1)_{60}$

1. Use Equations 5-6 and 5-11

$$(N_1)_{60} = C_N \cdot N_{60} = C_N C_{60} N$$

2. Standardization

Use Equations 5-7 and 5-8 and Tables 5-2 and 5-3.

 $\mathbf{C}_{60} = \mathbf{C}_{\mathrm{HT}} \mathbf{C}_{\mathrm{HW}} \mathbf{C}_{\mathrm{SS}} \mathbf{C}_{\mathrm{RL}} \mathbf{C}_{\mathrm{BD}}$

C₆₀ = _____

3. Normalization

Compute Effective Overburden Pressure, σ'_{v}

$$\sigma'_{v}$$
 = _____

Compute Overburden Correction Factor Using Equation 5-10

$$C_{\rm N} = 9.79 \left(\frac{1}{\sigma_{\rm v}'}\right)^{1/2}$$

4. Compute
$$(N_1)_{60} = C_N C_{60} N$$

$$(N_1)_{60} =$$

TABLE 5-3 CORRECTION FACTORS FOR NON-STANDARD SPT PROCEDURE AND EQUIPMENT (Richardson, et al., 1995; Youd and Idriss, 1997)

Correction for	Correction Factor	Reference
Nonstandard Hammer Type (DH = doughnut hammer; ER = energy ratio)	$C_{HT} = 0.75$ for DH with rope and pully $C_{HT} = 1.33$ for DH with trip/auto & ER = 80	Seed, et al. (1985)
Nonstandard Hammer Weight or Height of Fall (H = height of fall in mm; W = hammer weight in kg)	$C_{HW} = \frac{H \cdot W}{63.5 \cdot 762}$	calculated per Seed, et al. (1985)
Nonstandard Sampler Setup (standard samples with room for liners, but used without liners)	$C_{ss} = 1.10$ for loose sand $C_{ss} = 1.20$ for dense sand	Seed, et al. (1985)
Nonstandard Sampler Setup (standard samples with room for liners, and liners are used)	$C_{ss} = 0.90$ for loose sand $C_{ss} = 0.80$ for dense sand	Skempton (1986)
Short Rod Length	$C_{RL} = 0.75 \text{ for rod length } 0.4 \text{ m}$ $C_{RL} = 0.85 \text{ for rod length } 4.6 \text{ m}$ $C_{RL} = 0.95 \text{ for rod length } 6.10 \text{ m}$ $C_{RL} = 1.0 \text{ for rod length } 10.30 \text{ m}$ $C_{RL} < 1.0 \text{ for rod length } > 30 \text{ m}$	Seed, et al. (1983); Youd and Idriss (1997)
Nonstandard Borehole Diameter	$C_{BD} = 1.05$ for 150 mm borehole diameter $C_{BD} = 1.15$ for 200 mm borehole diameter	Skempton (1986)

Notes: N = Uncorrected SPT blow count.

 $C_{60} = C_{HT} \cdot C_{HW} \cdot C_{SS} \cdot C_{RL} \cdot C_{BD}$ $N_{60} = N \cdot C_{60}$ $C_{N} = \text{Correction factor for overburden pressure.}$

 $(N_1)_{60} = C_N \cdot N_{60} = C_N \cdot C_{60} \cdot N$

SOLUTIONS TO EXERCISE NO. 2A

- 1. $(N_1)_{60} = C_N C_{60} N$
- 2. Standardization

 $C_{60} = C_{HT} C_{HW} C_{SS}^{(1)} C_{RL}^{(2)} C_{BD} \text{ (Equations 5-7 and 5-8)}$ $C_{60} = 0.75 \text{ x } 1 \text{ x } 1.1 \text{ x } 0.95 \text{ x } 1$

 $C_{60} = 0.78$

- Note: (1) For loose sand (N= 10), use C_{SS} = 1.10 (Table 5-3) (2) For rod length greater than 6 m, use C_{RL} = 0.95 (Table 5-3)
- 3. Normalization

Compute Effective Overburden Pressure, σ'_v $\sigma'_v = \gamma \times 2m + (\gamma_{sat} - \gamma_w) \times 4m$ $\sigma'_v = 16 \times 2m + (19 - 9.81) \times 4m$ $\sigma'_v = 69 \text{ kPa}$ Compute Overburden Correction Factor, C_N

$$C_{\rm N} = 9.79 \left(\frac{1}{69}\right)^{1/2}$$

 $C_{N} = 1.18$

(Equation 5-10)

4. Compute
$$(N_1)_{60} = C_N C_{60} N$$

 $(N_1)_{60} = 1.18 \ge 0.78 \ge 10$

$$(N_1)_{60} \approx \underline{9}$$

Development of Soil Profile Using CPT Data.

Objective:

Develop Soil Stratigraphy Using Cone Penetration Data Shown in Figure S2B-1. Estimate the Equivalent SPT-N Values Using CPT-SPT Correlation Charts.

Source Materials:

Reference Manual Part I: Sections 5.4.2, Figures 5-6 and 5-7.

DEVELOP SOIL PROFILE USING CPT DATA

Figure S2B-1: CPT Data Profile

2B-2

Stratum	Effective Vertical Stress (kPa)	Mean Grain Size (mm)	Cone Resistance q. (x 100 kPa)	Normalized Cone Resistance q _{c1} (x 100 kPa)	Friction Ratio FR (%)	Soil Type	Equivalent SPT-N Value
A	6 kPa	0.2 mm	35	88	0.6	Sand to Silty Sand	7
В	25 kPa	0.003 mm					
С	40 kPa	0.2 mm					
D	50 kPa	0.003 mm					
E	85 kPa	0.2 mm					

 Table S2B-1:
 Effective Vertical Stress and Mean Grain Size for Each Stratum

2B-3

For Stratum A:

- 1. Determine the normalized cone resistance q_{c1} . $q_c = 3,500 \text{ kPa} \text{ (from Figure S2B-1)}$ $\sigma'_v = 6 \text{ kPa} \text{ (form Table S2B-1)}$ (Using Figure 5-6) $q_{c1} = q_c (3.5 - 1.25 \log_{10} \sigma'_v)$ = 88 (x 100 kPa)
- 2. Determine the soil behavior type.

 $q_{c1} = 88 (x \ 100 \ kPa)$

Friction Ration = 0.6% (from Figure S2B-1)

 \Rightarrow Stratum A is **Sand to Silty Sand** (using Figure 5-6)
3. Determine the equivalent SPT-N value.

Mean Grain Size $D_{50} = 0.2 \text{ mm}$ (from Table S2B-1) $q_C / N = 4.7$ (using Figure 5-7) $\Rightarrow N = q_C / 4.7 = 35 / 4.7 \approx 7$ (Note: q_C in bars. 1 bar = 100 kPa)

Determine Soil Behavior Types and the Equivalent SPT-N Values for Strata B, C, D, and E.

Figure 5-6: Soil Behavior Type Classification Chart Based on the CPT. (Douglas, 1984, 1981, reprinted from FHWA-SA-91-043, 1992.)

Figure 5-7: CPT-SPT Correlation Chart. (Robertson et al., 1983, reprinted from FHWA-SA-91-043, 1992.)

BASED ON ENERGY RATIO OF 60% (N60)

SOLUTIONS TO EXERCISE 2B

Stratum	Effective Vertical Stress (kPa)	Mean Grain Size (mm)	Cone Resistance ^Q c (x 100 kPa)	Normalized Cone Resistance q _{c1} (x 100 kPa)	Friction Ratio FR (%)	Soil Type	Equivalent SPT-N Value
A	6 kPa	0.2 mm	35	. 88	0.6	Sand to Silty Sand	7
В	25 kPa	0.003 mm	4	7	3.5	Silty Clay	3
С	40 kPa	0.2 mm	45	67	0.8	Sand to Silty Sand	9
D	50 kPa	0.003 mm	3.5	5	1	Sensitive Silt	2
E	85 kPa	0.2 mm	55	60	2	Silty Sand to Sandy Silt	12

2B-8

$$q_{C1} = q_C (3.5 - 1.25 \log_{10} \sigma_{v'})$$

with $\sigma_{v'}$, q_C , q_{C1} in kPa.

Figure 5-6: Soil Behavior Type Classification Chart Based on the CPT. (Douglas, 1984, 1981, reprinted from FHWA-SA-91-043, 1992.)

2B-9

Figure 5-7: CPT-SPT Correlation Chart. (Robertson et al., 1983, reprinted from FHWA-SA-91-043, 1992.)

G_{max} Derivation by Empirical Correlations.

Objective:

Evaluate Dynamic Material Properties for Sand at 25 meters with a Void Ratio of 0.5 and the Water Table at 10 m Using Empirical Correlations. Assume a Moist Unit Weight of 18 kN/m³ and a Saturated Unit Weight of 20.5 kN/m³. Assume a Friction Angle $\phi = 30^{\circ}$ for the Sand.

Source Materials:

Reference Manual Part I: Table 5-5, Figures 5-12, 5-13, 5-14, Equations 5-11, 5-12, 5-13, and 5-14.

1. Calculate Mean Effective Stress Using Equation 5-12:

 $\sigma_{\rm m}$ ' = _____

2. Assign $(K_2)_{max}$ from Figure 5-12:

3. Calculate G_{max} from Equation 5-14:

4. Assign modulus reduction and damping curves from Figures 5-12, 5-13, and 5-14:

Figure 5-12: Shear Modulus Reduction Curves for Sands. (Seed and Idriss, 1970, reprinted by permission of ASCE)

TABLE 5-5 CORRELATIONS FOR ESTIMATING INITIAL SHEAR MODULUS

Reference	Correlation	Units	Limitation
Secd, et al. (1984)	$G_{max} = 220 (K_2)_{max} (\sigma'_m)^{\frac{1}{2}}$ (K_a) $\approx 20(N_a)_{co}^{\frac{1}{3}}$	kPa	$(K_2)_{max} \approx 30$ for very loose sands and 75 for very dense sands; $\approx 80-180$ for dense well graded gravels; Limited to cohesionless soils
Imai and Tonouchi (1982)	$G_{max} = 15,560 N_{60}^{0.68}$	kPa	Limited to cohesionless soils
Hardin (1978)	$G_{max} = \frac{625}{(0.3 + 0.7 e_0^2)} (P_a \cdot \sigma'_m)^{0.5} OCR^k$	kPa ^{(1) (3)}	Limited to cohesive soils P _a = atmospheric pressure
Jamiolkowski, <i>et al</i> . (1991)	$G_{max} = \frac{625}{e_o^{1.3}} (P_a \cdot \sigma'_m)^{0.5} \text{ OCR}^k$	kPa ^{(1) (3)}	Limited to cohesive soils $P_a = atmospheric pressure$
Mayne and Rix (1993)	$G_{max} = 99.5(P_a)^{0.305}(q_c)^{0.695}/(e_o)^{1.13}$	kPa ⁽²⁾	Limited to cohesive soils P, = atmospheric pressure

⁽¹⁾ P_a and σ'_m in kPa ⁽²⁾ P_a and q_c in kPa Notes:

(3) The parameter k is related to the plasticity index, PI, as follows:

PI	k	
0	0	
20	0.18	
40	0.30	
60	0.41	
80	0.48	
>100	0.50	

Figure 5-13: Shear Modulus Reduction Curves for Sands. (Iwasaki, *et al.*, 1978, reprinted by permission of Japanese Society of Soil Mechanics and Foundation Engineering)

Figure 5-14: Shear Modulus Reduction and Damping Ratio as a Function of Shear Strain and Soil Plasticity Index. (Vucetic and Dobry, 1991, reprinted by permission of ASCE)

SOLUTIONS TO EXERCISE NO. 3

1.
$$\sigma_v = (10 \times 18) + (15 \times 10.7) = 340.5 \text{ kPa}$$

 $K_o = 0.5$ (See note 1) Use Equation 5-12 $\sigma_m' = [\frac{1+2k_o}{3}] \times \sigma_v' = 227 \text{ kPa}$

- 2. From Figure 5-12, for e = 0.5 (see note 2), (K₂)_{max} = 60
- 3. Use Equation 5-14 $G_{max} = 220(K_2)_{max}(\sigma_m')^{1/2} = 20(60)(227)^{0.5} = 198,878 \text{ kPa}$ = 200 MPa
- 4. Use either e = 0.5 curve from Figure 5-12, $\sigma_m' = 200$ kPa curve from Figure 5-13, or PI = 0 curve from Figure 5-14 for modulus reduction.

Use PI = 0 curve from Figure 5-14 for damping

- Notes: 1) K_o can be derived as $(1 \sin \phi)$
 - 2) Void ratio can be derived from unit weight using $\gamma = \frac{G_s \gamma_w}{1+e}$, where $G_s =$ Specific Gravity

Simplified Site Response Analysis.

Objective:

For Site Profile in Figure S4-1, with a Free-Field Peak Horizontal Ground Acceleration on Firm Ground Equal to 0.16 g, Evaluate:

- Free Field Peak Ground Acceleration;
- Peak Acceleration at Top of Embankment;
- Fundamental Period of Clay Deposit in Free Field;
- Fundamental Period of Embankment.

Source Materials:

Reference Manual Part I: Figures 4-19, 6-3, 6-4, and Equation 4-5.

1. Establish Free-Field Peak Ground Acceleration at Top of Clay From Figure 6-3:

 $PGA_{FF} =$ _____

EXAMPLE

Figure S4-1: Soil Profile

2. Evaluate Peak Acceleration at Top of Embankment from Figure 6-4:

 $PGA_{EMB} =$ _____

3. Evaluate Fundamental Period of Clay Layer, T_o (= 1/f_o), from Equation 4-5:

$$(T_o)_{FF} = \frac{4 H}{V_s}$$

$$(T_o)_{FF} =$$

4. Evaluate Fundamental Period of Embankment from Figure 4-19:

E.
$$(T_o)_{EMB} = \frac{a_n H}{V_s} =$$

Figure 6-3: Relationship Between PHGA on Rock and on Soft Soil Sites. (Idriss, 1990)

Figure 6-4: Comparisons of Peak Base and Crest Accelerations Recorded at Earth Dams. (Harder, 1991)

$$\lambda = \frac{h}{H} \qquad f_e = \frac{(V_s)_{avg}}{a_n H}$$

Fundamental FrequencyHeight of the Dam/Embankment

Shear Wave Velocity

coefficient

=

=

λ	a,
0.00	2.405
0.03	2.409
0.05	2.416
0.10	2.448
0.15	2.501
0.20	2.574
0.25	2.668
0.30	2.786
0.35	2.930
0.40	3.107
0.45	3.323
0.50	3.588
1.00	4.0

Note: For $0.5 \le \lambda \le 1.0$, a_n may be derived by linear interpolation from $a_n = 3.6$ for $\lambda = 0.5$ to $a_n = 4.0$ for $\lambda = 1.0$.

Figure 4-19: Fundamental Frequency of Trapezoidal Dam/Embankment

4-6

SOLUTIONS TO EXERCISE NO. 4

- 1. $PGA_{FF} = 0.26 g$ (see attached figure)
- 2. $PGA_{EMB} = 0.56 \text{ g}$ (see attached figure)

3.
$$(T_o)_{FF} = \frac{4 H}{V_o} = \frac{4 \times 12}{120} = 0.4 s$$

4A. H = 16 m

4B.
$$h = 10 m$$

4C.
$$\frac{h}{H} = \frac{10}{16} = 0.625$$

4D. $a_n = \frac{0.625 - 0.5}{1 - 0.5}(4 - 3.588) + 3.588 = 3.69$
4E. $(T_o)_{EMB} = \frac{3.69 \times 6}{200} = 0.11$ s

0.26 Figure 6-4: Comparisons of Peak Base and Crest Accelerations Recorded at Earth Dams. (Harder, 1991)

STUDENT EXERCISE NO. 5

Preparation of SHAKE Input.

Objective:

Develop Input Data for SHAKE Analysis of Soil Profile Shown in Figure S5-1 Using Soil Data Provided in Table S5-1.

Source Materials:

Reference Manual Part I: Figures 4-19, 5-12, 5-13, 5-14, Table 5-5, and Equations 5-2, 5-3, and 5-12.

Reference Manual Part II: Figures 4-3a through 4-10.

- 1. Evaluate Properties at Center of Silt
 - A. Evaluate Mean Normal Effective Stress Using Equation 5-12

EXAMPLE

Figure S5-1: Subsurface Profile

TABLE S5-1SUMMARY OF AVAILABLE INFORMATION

	Unit Weight (kN/m ³)	PI (%)	OCR	(N ₁) ₆₀	D _r (%)	eo
Embankment Fill	19.5	0			75	
Organic Silt	12.0	50	1			3
Clay	16.0	15	1			1 - 1.2
Glacial Till	20.5	5	> 10	75		
Weathered Rock	21.2					

 B. Evaluate Small Strain Shear Modulus Using Table 5-5 (Jamiolkowski, 1991):

$$G_{max} =$$

C. Evaluate Shear Wave Velocity Using Equations 5-2 and 5-3:

V_s = _____

- 2. Evaluate Properties of Clay Layer:
 - A. Evaluate Effective Stresses at Top and Bottom of Clay

B. Evaluate G_{max} at Top and Bottom of Clay

 $(G_{max})_{TOP} = (G_{max})_{BOTTOM} =$

C. Evaluate Shear Wave Velocity at Top and Bottom of Clay

 $(V_s)_{TOP} = (V_s)_{BOTTOM} =$

- 3. Evaluate Properties in Embankment 1 m from Top (Top) and 1 m Above Clay (Bottom)
 - A. Evaluate Effective Stresses

$(\sigma_v')_{TOP} =$	$(\sigma_v')_{BOTTOM} =$
$(\sigma_{\rm m}')_{\rm TOP} =$	$(\sigma_{\rm m}')_{\rm BOTTOM} =$

B. Evaluate Small Strain Modulus Using Table 5-5 (Seed, et. al, 1984) and Figure 5-12

> $(G_{max})_{TOP} =$ $(G_{max})_{BOTTOM} =$

C. Evaluate Shear Wave Velocity

 $(V_s)_{TOP} = (V_s)_{BOTTOM} =$

Evaluate Properties in Center of Till 4.

A. Evaluate Effective Stresses

σ_v' = _____

σ_m' = _____

B. **Evaluate Small Strain Modulus Using** Table 5-5 (Imai and Tonouchi, 1982)

G_{max} = _____

C. Evaluate Shear Wave Velocity

$$V_s =$$

5. Assign Modulus Reduction and Damping Curves from Figures 5-12, 5-13, and 5-14

Soil	Figure Number	Curve
Silt		
Clay		
Embankment		
Till		

6. Calculate Fundamental Period of Clay Layer Beneath the Embankment From Figure 4-19

- B. $a_n =$ _____
- C. T_o = _____

Figure 5-12: Shear Modulus Reduction Curves for Sands. (Seed and Idriss, 1970, reprinted by permission of ASCE)

Figure 5-13: Shear Modulus Reduction Curves for Sands. (Iwasaki, *et al.*, 1978, reprinted by permission of Japanese Society of Soil Mechanics and Foundation Engineering)

Figure 5-14: Shear Modulus Reduction and Damping Ratio as a Function of Shear Strain and Soil Plasticity Index. (Vucetic and Dobry, 1991, reprinted by permission of ASCE)

$$\lambda = \frac{h}{H} \qquad f_e = \frac{(V_s)_{avg}}{a_p H}$$

Fundamental Frequency Height of the Dam/Embankment Shear Wave Velocity coefficient

=

=

=

2	3
0.00	2.405
0.03	2.409
0.05	2.416
0.10	2.448
0.15	2.501
0.20	2.574
0.25	2.668
0.30	2.786
0.35	2.930
0.40	3.107
0.45	3.323
0.50	3.588
1.00	4.0

Note: For $0.5 \le \lambda \le 1.0$, a_n may be derived by linear interpolation from $a_n = 3.6$ for $\lambda = 0.5$ to $a_n = 4.0$ for $\lambda = 1.0$.

Figure 4-19: Fundamental Frequency of Trapezoidal Dam/Embankment

5-11

SOLUTIONS TO EXERCISE NO. 5

Material	Location	γ kN/m ³	σ' _v kPa	σ' _m kPa	G _{max} kPa	V _s m/s	Modulus Reduction and Damping
Embankment	1 m from top 1 m above clay	19.5	19.5 87.7	19.5 64.3	60,230 109,390	174 234	$\mathbf{PI} = 0$
Silt	Middle	12	2.2	1.5	1,820	39	PI = 50
Clay	Top Bottom Top w/ Embankment Bottom w/ Embankment	16	4.4 78.8 97.4 171.8	2.9 52.5 64.9 114.5	8,440 45,300 50,350 76,700	72 167 175 217	PI = 15
Till	Middle	20.5	110.9	N/A	293,000	375	PI = 5
Bedrock	Everywhere	21.2	N/A	N/A	N/A	760	N/A

5-12

.

6. Fundamental Period of Soil Layer Beneath Embankment:

6A.
$$(V_s)_{AVE} = \frac{175 + 217}{2} = 196 \text{ m/s}$$

6B. $a_n = 4$

6C.
$$T_o = \frac{4 H}{V_s} = \frac{48}{196} = 0.25 s$$

Figure 4-3a:

Design Ground Motions- Peak Acceleration Scaling

5-14

Figure 4-3b: Design Ground Motions- Spectral Acceleration Scaling

5-15

Figure 4-4: Free-Field Acceleration Response Spectra- Peak Acceleration Scaling

Figure 4-6: Acceleration Response Spectra- Peak Acceleration Scaling (Input vs. Free-Field for Nahanni Record).

Figure 4-7: Acceleration Response Spectra- Spectral Acceleration Scaling (Input vs. Free-Field for Nahanni Record).

Figure 4-8: Acceleration Response Spectra- SHAKE Analysis vs. Target Spectra

Figure 4-9: Maximum Shear Stresses with Depth.

Figure 4-10: Acceleration Response Spectra- Embankment vs. Free-Field for Saguenay Record.

OPTION 1 - dynamic soil properties - (max is thirteen): 8 5 5 3 #1 Nodulus for sand (PI=0) (Vucetic and Dobry, 1991) 9 3752 4096 0.0001 0.000316 0.001 0.00316 0.01 0.0316 0.1 0.316 11. 1.000 1.0 .960 0.87 0.715 0.49 0.25 0.1 4 0.02 8 0 .* 9 #1 Damping for sand (PI=0) (Vucetic and Dobry, 1991) 0.0001 0.000316 0.001 0.00316 0.01 0.0316 0.316 0.1 11. 2.0 2.0 2.0 3.0 5.5 10.5 16.0 20.0 24.0 9 10 "#2 Modulus for silt (PI=50) (Vucetic and Dobry, 1991) 2 1 0.000316 0.001 0.0001 0.00316 0.01 0.0316 0.316 0.1 11. 3.16 0.05 1.000 1.000 1.000 0.99 0.95 0.83 0.67 0.45 STOP 0.22 0.02 0 #2 Damping for sil (PI=50) (Vucetic and Dobry, 1991) 10 0.0001 0.000316 0.001 0.00316 0.01 0.0316 0.1 0.316 11. 3.16 2.0 2.0 2.0 2.0 3.0 4.1 6.0 9.3 13.2 18.0 • -9 #3 Modulus for CL (PI=15) (Vucetic and Dobry, 1991) 0.0001 0.0003 0.001 0.00316 0.01 0.0316 0.1 0.316 11. 1.000 .. 1.000 1.000 ... 0.95 0.810 0,63 0.400 0.200 0.1, #3 Damping for CL (PI=15) (Vucetic and Dobry, 1991) 0,0001 0.0003 0.001 0.00316 0.01 0.0316 0.316 0.1 11. 2.580 2.580 2.580 2.580 4.645 7.77 11.67 16.085 20.12 9 #4 Modulus for till (PI=5) (Vucetic and Dobry, 1991) 0.0001 0.0003 0.001 0.00316 0.01 0.0316 0.1 0.316 11. 1.000 1.000 0:980 0.900 0.77 0.51 0.32 0.16 0.06 #4 Damping for till not yet (PI=5) (Vucetic and Dobry, 1991) 9 0.0001 0.0003 0.001 0.00316 0.01 0.0316 0.1 0.316 1. 2,000 2.2 .. 2.6 2.0 4.6 9.0 14.0 19.5 23.8 8 #5 ATTENUATION OF. ROCK AVERAGE 0.03 .0001 0.0003. 0.001 0.003 0.01 0.1 1.0 1.000 1.000 0.9875 0.9525 0.900 0,810 0.725 0.550 5 #5 DAMPING IN ROCK ,0001 0.001 0.01 0.1 1: 0.4 0.8 1.5 3.0 4.6 5 1 2 3 4 5 OPTION 2 -- Soil Profile 2 . 1 8 **FHUA without embankment** 1 23 6.56 0.05 0.076 128 2 0.05 9.84 0.102 275 3 3 9.84 0.05 0.102 353 4 9.84 0.05 0.102 431 3 5 3 9.84 0.05 0.102 509 9.84 6 4 0.05 0.131 1230 7 4 . 9,84 0.05 0.131 1230 a-1-30.in1 Created Wed Jun 10 10:58:48 1998

0.10 0.135 2493 OPTION 3 -- input motion: .005 bo30.sar (8F9.6) 0.16 25. 28 OPTION 4 -- sublayer for input motion (within (1) or outcropping (0): OPTION 5 -- number of iterations & ratio of avg strain to max strain 0 8 0.59 OPTION 9 -- RESPONSE . 1 0 981 -- execution will stop when program encounters 0 Printed Wed Jun 10 16:41:45 1998 Page 1

OPTION	1 - dynamic	: soft prop	ert ies - (r	nox is th	irteen):		
1 1				•			
	#1 Modul	lus for en	d /01-01 /1	Aucatic a	and Dohry 1	0011	
0.0001	0.00031/	105 TOF SUN 5. 0.001	0.00316	0.01	0.0316	0.1	0.316
1.	0.000510		0100510		010010	•••	
1.000	1.0	.960	0.87	0.715	0.49	0.25	0.1
0.02	••						
9	#1 Damp	ing for sam	/) (0=19) b	/ucetic a	and Oobry, 1	991)	
0.0001	0.000316	5 0.001	0.00316	0.01	0.0316	0.1	0.316
1.							
2.0	2.0	2.0	3.0	5.5	10.5	16.0	20.0
24.0	1891 March 1	the state		11 martin	and Babau	10011	
0.0001	#2 MOOU	LUS TOP SIL	0 00316	0.01	a α α τις	0.1	0.316
1.	3.16		0.000.00	0.01	0.0510	v	
1.000	1.000	1.000	0.99	0.95	0.83	0.67	0.45
0.22	0.02	••					
10	#2 Damp	ing for sil	(P1=50)	(Vucetic	and Dobry,	1991)	
0.0001	0.000314	5 0.001	0.00316	0.01	0.0316	0.1	0.316
1.	3.16	2.0	2.0	٦ ٨	. 1	6.0	0 7
112 2	2.U 18 A	2.0	2.0	3.0	4.1	0.0	7.3
13.20	#3. Modul	us for CL	(P1=15) (V	 ucetic ar	od Dobry, 19	91)	
0.0001	0.0003	0.001	0.00316	0.01	0.0316	0.t	0.316
h.							
1.000	. 1,000	1.000 🕂	0.95	0.810	0.63	0.400	0.200
0.1.							
9	#3 Damp1	ing for CL	(P1=15) (V	Jetic ar	NO DODRY, 19	91)	0 714
0.0001	0.0003	0.001	0.00316	0.01	0.0318	0.1	V.310
2.580	2.580	2.580	2.580	6.665	7.77	11.67	16.085
20.12	21500	21700					
9	#4 Hodul	us for til	t i	(P1=5) (V	/ucetic and	Dobry, 19	91)
0.0001	0.0003	0.001	0.00316	0.01	0.0316	0.1	0.316
1.							
1.000	1.000	0.980	0.900	0.77	0.51	0.32	0.16
0.06					to a star and	A.L. 10	04 x 14
0 0004	#4 Damp	107 TIL	0 00714	(21×2) (\ A At		000FY, 19	71) 0 316
10.0001	0.0003	0.001	0.00010	0.01		V.1	0.510
2.0	2,000	7.2	2.6	4.6	9.0	14.0	19.5
23.0	2.000	-					
. 8	#S ATTEN	WATION OF .	ROCK AVE	RAGE			
.0001	0.0003	0.001	0.003	0.01	0.03	0.1	1.0
1.000	1.000	0.9875	0.9525	0.900	0.810	0.725	0.550
0001	#> DAMP1	NG IN RUCK	0.1	1			
0.4	0.001 A.D	1.5	3.0	4.6			
5	1 2	3 4	5				
OPTION	2 ·· Soil F	Profile					
2					.•		
!	10 FI	WA with	embankmen	t nor	0 13/	571	
	÷	0.20 6 56		0.05	0.124	029	
1 4	1	6.56		0.05	0.124	768	
4	3	9.84		0.05	0.102	591	
5	3	9.84		0.05	0.102	626	
6	3	9.84		0.05	0.102	660	
1	3	9.84		0.05	0.102	695	127.97.17.17.12A
b.c.30.	inl				created We	a jun 10 1	12:28:10 188

0.05 0.05 0.10 0.131 0.131 0.135 1230 1230 2493 9.84 8 4 9 4 10 5 9.84 OPTION 3 -- Input motion: 3 3752 4096 bo30.sar .005 (8f9.6) 0.16 25. 2 8 OPTION 4 -- sublayer for input motion (within (1) or outcropping (0): 4 10 0 OPTION 5 -- number of iterations & ratio of avg strain to max strain 5 0 8 0.59 OPTION 9 -- RESPONSE 9 1 1 1 0 981 0.05 STOP -- execution will stop when program encounters O 0

Printed Wed Jun 10 16:41:49 1998

.

5-24

Page 1

STUDENT EXERCISE NO. 6

Evaluation of Liquefaction Potential

Objective:

Evaluate the Liquefaction Potential at 6 m Below Ground Surface at a Site Shown in Figure S6-1.

- Soil Properties and SPT- N Values are Shown in Figure S6-1. (Same as in Exercise 2A)
- SPT- N Values and Sampling Procedure are the Same as in Exercise 2A.
- Design Earthquake Magnitude M = 6.0
- Peak Ground Acceleration = 0.18 g

Source Materials:

Reference Manual Part I: Section 8.3.2, Figures 8-2, 8-3, 8-4, 8-5, and 8-6 and Equations 8-1, 8-3a, 8-4 and 8-5. Student Exercise No. 2A

End of Borehole

Figure S6-1: Soil Profile

- Step 1: Develop Subsurface Profile (Boring with SPT-N Values Given)
- Step 2: Compute Effective Overburden Pressure, σ'_{v}

 $\sigma'_v = 69 \text{ kPa}$ (From Student Exercise No. 2A)

Compute Total Overburden Pressure, σ_v

Evaluate Intitial Shear Stress, τ_{ho}

 $\tau_{ho} =$ _____

Step 3: Evaluate Stress Reduction Factor, r_d (Equation 8-1 or Figure 8-2)

Step 4: Calculate Cyclic Stress Ratio Induced by Earthquake, CSR_{EQ} (Equation 8-3a)

$$CSR_{EQ} = 0.65 \left(\frac{a_{max}}{g}\right) r_{d} \left(\frac{\sigma_{v}}{\sigma_{v}'}\right)$$

$$CSR_{EO} =$$

Step 5: Standardized SPT N Value

 $C_{60} = 0.78$ (From Student Exercise No. 2A)

Step 6: Normalized SPT N Vlaue

 $C_N = 1.18$ (From Student Exercise No. 2A) $(N_1)_{60} = C_N C_{60} N$ $(N_1)_{60} = 1.18 \times 0.78 \times 10$ $(N_1)_{60} \approx 9$ (From Student Exercise No. 2A)

Step 7: Determine Soil Resistance to Liquefaction in Terms of Cyclic Stress Ratio (Use Figure 8-3)

Step 8: Correct CSR for Earthquake Magnitude, Initial Shear Stress and Effective Overburden Pressure

> $CSR_{L} = CSR_{M=7.5} k_{M} k_{\alpha} k_{\sigma}$ (Use Figures 8-4,8-5 and 8-6)

Step 9: Calculate Factor of Safety (Equation 8-5)

$$FS_{L} = \frac{CSR_{L}}{CSR_{EO}}$$

CORRECTED SPT BLOW COUNT, $(N_1)_{60}$

Figure 8-3: Relationship Between Cyclic Stress Ratio Causing Liquefaction and SPT $(N_1)_{60}$ Values for Sands for M = 7.5 Earthquakes (modified From Seed et al., 1985)

EARTHQUAKE MAGNITUDE, M_w

Figure 8-4: Magnitude Scaling Factors Derived by Various Investigators (After Youd and Idriss, 1997)

Figure 8-5: Recommended Correction Factor k_{σ} . (After Youd and Idriss, 1997)

SOLUTIONS TO STUDENT EXERCISE NO. 6

- Step 1: Develop Subsurface Profile (Boring with SPT-N Values Given)
- Step 2: Compute Effective Overburden Pressure, σ'_{v}

 σ'_{v} = 69 kPa (From Student Exercise No. 2A)

Compute Total Overburden Pressure, σ_{v}

$$\sigma_{v} = \gamma \times 2m + \gamma_{sat} \times 4m$$

$$\sigma_{\rm w} = 16 \times 2m + 19 \times 4m$$

 $\sigma_v = 108 \text{ kPa}$

Evaluate Intitial Shear Stress, τ_{ho}

 $\tau_{ho} = \underline{0}$ (Level Ground)

Step 3: Evaluate Stress Reduction Factor, r_d (Equation 8-1 or Figure 8-2)

$$r_d = 1 - 0.00765 \cdot z = 1 - 0.00765 \times 6$$

= _____0.95 (For z = 6 m)

Step 4: Calculate Cyclic Stress Ratio Induced by Earthquake, CSR_{EO} (Equation 8-3a)

$$CSR_{EQ} = 0.65 \left(\frac{a_{max}}{g}\right) r_{d} \left(\frac{\sigma_{v}}{\sigma_{v}'}\right)$$
$$CSR_{EQ} = 0.65 (0.18) 0.95 \left(\frac{108}{69}\right)$$

 $CSR_{EQ} = 0.174$

Step 5: Standardized SPT N Value

 $C_{60} = 0.78$ (From Student Exercise No. 2A)

Step 6: Normalized SPT N Value

$$C_N = 1.18$$
 (From Student Exercise No. 2A)
 $(N_1)_{60} = C_N C_{60} N$
 $(N_1)_{60} = 1.18 \times 0.78 \times 10$
 $(N_1)_{60} \approx 9$ (From Student Exercise No. 2A)

Step 7: Determine Soil Resistance to Liquefaction in Terms of Cyclic Stress Ratio (Use Figure 8-3)

$$CSR_{M=7.5} = 0.14$$
 (Based on $(N_1)_{60} = 9$ and
Fines Content = 15%)

Step 8: Correct CSR for Earthquake Magnitude, Initial Shear Stress and Effective Overburden Pressure

$$CSR_{L} = CSR_{M=7.5} k_{M} k_{\alpha} k_{\sigma}$$

$$k_{M} = 1.75$$
 (for M=6.0, Figure 8-4)

 $k_{\alpha} = 1.0$ (for Level Ground)

CORRECTED SPT BLOW COUNT, (N1)60

Figure 8-3: Relationship Between Cyclic Stress Ratio Causing Liquefaction and SPT $(N_1)_{60}$ Values for Sands for M = 7.5 Earthquakes (modified From Seed et al., 1985)

EARTHQUAKE MAGNITUDE, M_w

 $k_{\alpha} = 1.0$ (No Correction for $\sigma'_{m} < 100$ kPa) (Figure 8-5)

$$CSR_{L} = 0.14 \times 1.75 \times 1.0 \times 1.0$$

 $CSR_{L} = 0.245$

Step 9: Calculate Factor of Safety

$$FS_{L} = \frac{CSR_{L}}{CSR_{EQ}}$$

$$FS_{L} = \frac{0.245}{0.174}$$

$$FS_{L} = \underline{1.4}$$

STUDENT EXERCISE NO. 7

Simplified Seismic Deformation Analysis.

Objective:

Use Newmark Analysis Design Charts to Estimate Permanent Seismic Deformations for Three Potential Failure Surfaces Shown in Figure S7-1 for a M 6.5 Earthquake with Free-Field, Firm Ground Peak Ground Acceleration = 0.16 g.

Source Materials:

Reference Manual Part I: Figures 6-2, 6-3, 6-4, 6-5, 7-4, 7-9, and 8-2.

1. Evaluate Peak Ground Acceleration at Top of Embankment Using Figures 6-3, and 6-4

 $(PGA)_{EMB} =$ _____

Exercise 7 - Figure S7-1

- 2. Evaluate PAA for Failure Surface 1, 2, and 3
 - A. Evaluate Z/H for Use in Figure 6-5

Failure Surface 1: Z/H = _____ Failure Surface 2: Z/H = _____ Failure Surface 3: Not Applicable

B. Find PAA/PGA Using Figures 6-5, and 8-2 Failure Surface 1: $\left(\frac{PAA}{PGA}\right) =$ _____

Failure Surface 2: $\left(\frac{PAA}{PGA}\right)_2 =$ _____

Failure Surface 3: $\left(\frac{PAA}{PGA}\right)_{3} =$ _____

C. Find PAA for Each Failure Surface

 $(PAA)_1 = _$ _____

 $(PAA)_3 = _$ _____

3. Evaluate k_y/PAA for Each Failure Surface

4. Calculate Permanent Seismic Deformation, PSD, Using Figure 7-4

 $PSD_1 =$ _____

 $PSD_2 =$ _____

 $PSD_3 =$

5. Calculate Permanent Seismic Deformation, PSD, Using Figure 7-9

Exercise 7 - Figure S7-2

Figure 6-3: Relationship Between PHGA on Rock and on Soft Soil Sites. (Idriss, 1990)

Figure 6-4: Comparisons of Peak Base and Crest Accelerations Recorded at Earth Dams. (Harder, 1991)

Figure 6-5: Variation of Peak Average Acceleration Ratio with Depth of Sliding Mass. (Makdisi and Seed, 1978, reprinted by permission of ASCE)

Figure 8-2: Stress Reduction Factor, r_d, Versus Depth Curves Developed by Seed and Idriss (1971) with Added Mean Value Lines from Equation 8-1.

Figure 7-4: Permanent Seismic Deformation Chart. (Hynes and Franklin, 1984, reprinted by permission of U.S. Army Engineer Waterways Experiment Station)

Figure 7-9: Permanent Displacement Versus Normalized Yield Acceleration for Embankments. (After Makdisi and Seed, 1978, reprinted by permission of ASCE).

SOLUTIONS TO EXERCISE 7

- 1. From Figure 6-4, PGA = 0.56
- 2. A. $(Z/H)_1 = 2/10 = 0.2$ $(Z/H)_2 = 10/10 = 1.0$
 - B. From Figure 6-5, $(PAA)_1 = 0.56 (0.85) = 0.48 g$

From Figure 6-5, $(PAA)_2 = 0.56 (0.40) = 0.22 g$

From Equation 8-1, $(PAA)_3 = 0.56 (0.64) = 0.36 g$

3.
$$\left(\frac{k_y}{PAA}\right)_1 = \left(\frac{0.2}{0.48}\right) = 0.42$$

 $\left(\frac{k_y}{PAA}\right)_2 = \left(\frac{0.06}{0.22}\right) = 0.27$
 $\left(\frac{k_y}{PAA}\right)_3 = \left(\frac{0.12}{0.36}\right) = 0.33$

4. $PSD_1 = < 10 \text{ cm}$ $PSD_2 = 10 \text{ cm}$ $PSD_3 = < 10 \text{ cm}$ 5. $PSD_1 = 10 \text{ cm}$ $PSD_2 = 20 \text{ cm}$ $PSD_3 = 15 \text{ cm}$

1

Figure 6-5: Variation of Peak Average Acceleration Ratio with Depth of Sliding Mass. (Makdisi and Seed, 1978, reprinted by permission of ASCE)

1 . .
STUDENT EXERCISE NO. 8

Stiffness Matrix for Spread Footings.

Objective:

Evaluate the Stiffness Matrix for the Center Pier of the Bridge Shown in Figure S8-1. The Pier Footing is 25 m in Length, 4.25 m Wide, and 1 m Thick. The Soil Profile at the Site is Shown in Figure S8-2. The Design Earthquake is a Moderate Magnitude $(M_w = 6.5)$ Event.

Source Materials:

Reference Manual Part I: Figures 5-12, 5-13, 5-14, 9-7 9-8 and 9-9, Tables 5-5 and 9-2, and Equations 9-11 and 9-12a through 9-12d.

- 1. Evaluate Equivalent Circular Radius Using Equations in Table 9-2
 - A. Translational Modes

R_z = _____

Figure S8-2: Corrected SPT Results for Example No. 8 Test Borings.

B. Rotational Modes

2. Evaluate Maximum Shear Modulus Using Imai and Tonouchi Equation from Table 5-5

G_{max} = _____ (From Table 5-5)

3. Reduce Maximum Shear Modulus For Strain Softening Using Figures 5-12 and/or 5-13

Moderate Magnitude Event - Assume $\gamma = 0.02\%$

$$\left(\frac{G}{G_{max}}\right) =$$

G = _____

 Calculate Stiffness Coefficients for Equivalent Circular Footing Using Equations 9-12a through 9-12d

5. Calculate Rectangular Footing Stiffness Using Equation 9-11, Figures 9-7 and 9-8

TABLE 5-5 CORRELATIONS FOR ESTIMATING INITIAL SHEAR MODULUS

Reference	Correlation	Units	Limitation
Sced, et al. (1984)	$G_{max} = 220 (K_2)_{max} (\sigma'_m)^{1/3}$ $(K_2)_{max} \approx 20(N_1)_{60}^{1/3}$	kPa	$(K_2)_{max} \approx 30$ for very loose sands and 75 for very dense sands; $\approx 80-180$ for dense well graded gravels; Limited to cohesionless soils
Imai and Tonouchi (1982)	$G_{max} = 15,560 N_{60}^{0.68}$	kPa	Limited to cohesionless soils
Hardin (1978)	$G_{max} = \frac{625}{(0.3 + 0.7 e_o^2)} (P_a \cdot \sigma'_m)^{0.5} OCR^k$	kPa ^{(1) (3)}	Limited to cohesive soils $P_x = atmospheric pressure$
Jamiołkowski, <i>et al.</i> (1991)	$G_{max} = \frac{625}{e_{o}^{1.3}} (P_{a} \cdot \sigma'_{m})^{0.5} \text{ OCR }^{k}$	kPa ^{(1) (3)}	Limited to cohesive soils $P_a = atmospheric pressure$
Mayne and Rix (1993)	$G_{max} = 99.5(P_a)^{0.305}(q_c)^{0.695}/(e_o)^{1.13}$	kPa ⁽²⁾	Limited to cohesive soils P ₄ = atmospheric pressure

⁽¹⁾ P_a and σ'_m in kPa ⁽²⁾ P_a and q_c in kPa Notes:

on The parameter k is related to the plasticity index, Pl, as follows:

<u>P1</u>	<u>k</u>			
0	0			
-20	0.18			
40	0.30			
60	0.41			
80	0.48			
> 100	0.50			

 TABLE 9-2

 EQUIVALENT DAMPING RATIOS FOR RIGID CIRCULAR FOOTINGS

 (After Richart, et al., 1970)

Mode of Vibration	Mass (or Inertia) Ratio	Damping Coefficient	Damping Ratio	Equivalent Radius
Vertical Translation	$B_{z} = \frac{(1-v)}{4} \frac{m}{\rho r_{o}^{3}}$	$c_{z} = \frac{3.4 r_{o}^{2}}{1 - v} \sqrt{\rho G}$	$D_z = \frac{0.425}{\sqrt{B_z}}$	$r_o = R_z = \sqrt{BL/\pi}$
Horizontal Translation (Sliding)	$B_{x} = \frac{(7-8v)}{32(1-v)} \frac{m}{\rho r_{o}^{3}}$	$c_x = \frac{4.6 r_o^2}{2 - v} \sqrt{\rho G}$	$D_{x} = \frac{0.288}{\sqrt{B_{x}}}$	$r_0 = R_x = \sqrt{BL/\pi}$
X- and Y-axis Rocking	$B_{\psi} = \frac{3(1-v)}{8} \frac{I_{\psi}}{\rho r_o^5}$	$c_{\psi} = \frac{0.8 r_{o}^{4} \sqrt{\rho G}}{(1 - v) (1 + B_{\psi})}$	$D_{\psi} = \frac{0.15}{(1+B_{\psi})\sqrt{B_{\psi}}}$	$r_{o} = R_{\psi_{x}} = \left[\frac{16(B)(L)^{3}}{3\pi}\right]^{4}$
				$r_{o} = R_{\psi_{y}} = \left[\frac{16(B)^{3}(L)}{3\pi}\right]^{4}$
Z-axis Rotation (Torsion)	$B_0 = \frac{I_0}{\rho r_0^5}$	$c_{\theta} = \frac{4 \sqrt{B_{\theta} \cdot \rho G}}{1 + 2 B_{\theta}}$	$D_{\theta} = \frac{0.5}{1+2B_{\theta}}$	$r_{o} = R_{\psi_{e}} = \left[\frac{16BL(B^{2} + L^{2})}{6\pi}\right]^{4}$
Notes: $m = mass of the foundation$ $c = damping coefficient (c_t, c_x, c_y, c_0)$ $I = moment of inertia of the foundation \rho = mass density of foundation soilr_u = equivalent radius (R_x, R_x, R_y)B = width of the foundation (along axis of rotation for rocking)L = length of the foundation (in the plane of rotation for rocking)G = shear modulus of the soilv = Poisson's ratio of the soilD = damping ratio (D_t, D_x, D_y, D_0)$				

Figure 5-12: Shear Modulus Reduction Curves for Sands. (Seed and Idriss, 1970, reprinted by permission of ASCE)

Figure 5-13: Shear Modulus Reduction Curves for Sands. (Iwasaki, et al., 1978, reprinted by permission of Japanese Society of Soil Mechanics and Foundation Engineering)

Figure 5-14: Shear Modulus Reduction and Damping Ratio as a Function of Shear Strain and Soil Plasticity Index. (Vucetic and Dobry, 1991, reprinted by permission of ASCE)

Figure 9-7: Shape Factor α for Rectangular Footings. (Lam and Martin, 1986)

Figure 9-8: Embedment Factors for Footings with D/R < 0.5. (Lam and Martin, 1986)

SOLUTIONS TO EXERCISE NO. 8

1. Equivalent Radius

$$R_{z} = R_{y} = R_{x} = \sqrt{\frac{BL}{\pi}} = 5.82 \text{ m}$$

$$R_{\psi X} = \left[\frac{16(B)(L)^{3}}{3\pi}\right]^{1/4} = 18.32 \text{ m}$$

$$R_{\psi Y} = \left[\frac{16(B)^{3}L}{3\pi}\right]^{1/4} = 7.56 \text{ m}$$

$$R_{\psi Z} = \left[\frac{16BL(B^{2} + L^{2})}{6\pi}\right]^{1/4} = 15.52 \text{ m}$$

2. Small Strain Shear Modulus

 $(N_{60}) = 28$ $G_{max} = 15,560 N_{60}^{0.68} = 150,000 \text{ kPa}$

3. Modulus Reduction $\left(\frac{G}{G_{max}}\right) = 0.6$ G = 90 MPa 4. Stiffness Coefficients for Equivalent Circle

MODE	Equivalent Circular Stiffness Mpa - m	α	β	Stiffness Mpa - m
Vertical	3,260	1.13	1.09	4,015
Translation (X-Direction)	2,568	1.17	1.26	3,785
Translation (Y-Direction)	2,568	1.07	1.26	3,430
Rocking (X-Axis)	2,295,478	1.18	1.1	2,980,000
Rocking (Y-Axis)	161,310	1.16	1.2	225,000
Torsion	1,814,326	1.17	1.3	2,760,000

Figure 9-7: Shape Factor α for Rectangular Footings. (Lam and Martin, 1986)

Geotechnical Pile Capacity Evaluation Under Seismic Loading.

Objective:

Evaluate the Effects of Seismic Loading on the Geotechnical Capacity of a Pile Group Foundation, as Shown in Figure S9A-1.

Source Materials:

Reference Manual Part II: Step 3 in Section 3.4

$$p = \frac{Q}{n} \pm \frac{M \cdot d_i}{\sum_{i=1}^n d_i^2}$$

p =vertical load on pile;

Q = static vertical load on pile cap;

n =number of piles in group (3 for this example);

 d_i =distance from center of gravity of pile group to pile i; M = design moment.

Figure S9A-1: Pile Group Foundation

9A-2

Static Case

Q = 1,500 kN, M = 0

Maximum Vertical Load on Pile = $\frac{1,500 \text{kN}}{3}$ = 500 kN

(Compression)

 $F.S._{(compression)} = \frac{1,000 \text{ kN}}{500 \text{ kN}} = 2.0$

Pile No.	Compression (kN)	Uplift (kN)	FS
1	500		2.0
2	500	-	2.0
3	500	-	2.0

Seismic Load Case 1

Q = 1,500 kN, M = 3,000 m-kN

Pile No.	Compression (kN)	Uplift (kN)	FS
1			
2			
3			

Seismic Load Case 2

Q=300 kN, M=3,000 m-kN

Pile No.	Compression (kN)	Uplift (kN)	FS
1			
2	· ·		
3			

SOLUTIONS TO EXERCISE NO. 9A

Seismic Load Case 1

Q = 1,500 kN, M = 3,000 m-kN

• Seismic Load on Piles 1, 2 and 3

$$P_{1} = \frac{1,500}{3} + \frac{3,000 \times 2}{2^{2} + 2^{2}} = 500 + 750 = 1,250 \text{ kN}$$

$$P_{2} = \frac{1,500}{3} + 0 = 500 \text{ kN}$$

$$P_{3} = \frac{1,500}{3} - \frac{3,000 \times 2}{2^{2} + 2^{2}} = 500 - 750 = -250 \text{ kN}$$

Pile No.	Compression (kN)	Uplift (kN)	FS
1	1,250	-	$\frac{1,000}{1,250} = 0.8$
2	500	-	$\frac{1,000}{500} = 2.0$
3	-	-250	$\frac{500}{250} = 2.0$

• Pile 1: Compression Failure (FS < 1.0)

Seismic Load Case 2

Q=300 kN, M=3,000 m-kN

$$P_{1} = \frac{300}{3} + \frac{3,000 \times 2}{2^{2} + 2^{2}} = 100 + 750 = 850 \text{ kN}$$

$$P_{2} = \frac{300}{3} + 0 = 100 \text{ kN}$$

$$P_{3} = \frac{300}{3} - \frac{3,000 \times 2}{2^{2} + 2^{2}} = 100 - 750 = -650 \text{ kN}$$

Pile No.	Compression (kN)	Uplift (kN)	FS
1	850	-	$\frac{1,000}{850} = 1.18$
2	100	-	$\frac{1,000}{100} = 10$
3	-	-650	$\frac{500}{650} = 0.77$

• Pile 3: Uplift Failure (FS < 1.0)

Derivation of Foundation Stiffness for Pile Group

Objective:

Evaluate the Foundation Stiffness for a Pile Group Shown in Figure S9B-1 Using Simplified Design Charts. The Piles Are End Bearing Piles on a Hard Stratum. The Soil Overburden at the Site Consists of 30 ft (9.15 m) of Medium Stiff Clay.

Source Materials:

Reference Manual Part I: Section 9.3.6, Table 9-5, Figures 9-20, 9-21 and 9-22.

Figure S9B-1: Pile Group Foundation

Step 1: Solve for the stiffness of a single pile under lateral loading.

First, determine pile head boundary condition. Assume pile head has a hinged end condition due to small pile head embedment into the pile cap (i.e., a free-headed pile analysis).

A. Determine the coefficient of variation of subgrade modulus for clay using Figure 9-20:

f =____

B. Consider the pile group effect. Estimate the overall stiffness reduction factor (i.e., p-multiplier) using Table 9-5:

Pile Spacing in Longitudinal Direction = 3d Pile Spacing in Transverse Direction = 5d (Note: d is the diameter of the pile.)

(p-multiplier)_{ave} in Longitudinal Direction = ______ (p-multiplier)_{ave} in Transverse Direction = ______ C. Determine effective coefficient of subgrade modulus $f_{eff} = (p-multiplier)_{ave} \cdot f$:

Longitudinal: $f_{eff, L} =$ _____ Transverse: $f_{eff, T} =$ _____

D. Calculate the Bending Stiffness of the Pile

EI = _____

E. Derive lateral stiffness for free-head condition using Figure 9-21:

 $k'_{\delta,L} =$ ______ (Longitudinal) $k'_{\delta,T} =$ ______ (Transverse) Step 2: Solve for the stiffness of a single pile under axial loading.

For end bearing piles (ignore skin friction), calculate the axial stiffness.

$$k_{v} = \frac{AE}{L} =$$

- Step 3: Calculate pile group stiffness by combining the stiffness contribution of each individual pile.
 - A. Lateral Stiffness

$$K_{L} = \mathbf{n} \cdot \mathbf{k'}_{\delta, L} = \underline{\qquad}$$
$$K_{T} = \mathbf{n} \cdot \mathbf{k'}_{\delta, T} = \underline{\qquad}$$

Note: n is the total number of piles.

B. Axial Stiffness

$$K_v = \mathbf{n} \cdot \mathbf{k}_v =$$

C. Torsional Stiffness

$$K_{TOR} = \sum_{i=1}^{n} k'_{\delta,L} \cdot y_{i}^{2} + \sum_{i=1}^{n} k'_{\delta,T} \cdot x_{i}^{2}$$

D. Rocking Rotational Stiffness about Transverse Axis.

$$K_{RT} = k_V \cdot \sum_{i=1}^{n} x_i^2$$

E. Rocking Rotational Stiffness about Longitudinal Axis.

$$K_{RL} = k_V \cdot \sum_{i=1}^{n} y_i^2$$

Figure 9-20: Coefficient of Variation of Subgrade Modulus for Clay.

9B-8

Recommended p-Multiplier For Group Effects

Row Spacing	Front Row	2nd Row	3rd & More Rows
3D	0.8	0.45	0.35
4D ·	0.9	0.65	0.55
5D	1.0	0.85	0.75

Figure 9-21: Lateral Stiffness of Free-Headed Piles.

9B-10

SOLUTIONS TO EXERCISE NO. 9B

Step 1: Solve for the stiffness of a single pile under lateral loading.

First, determine Pile Head Boundary Condition. Assume pile head has a hinged end condition due to small pile head embedment into the pile cap (i.e., a free-headed pile analysis).

A. Determine the coefficient of variation of subgrade modulus for clay using Figure 9-20:

 $f = 16 lbs/in^3$

B. Consider the pile group effect. Estimate the overall stiffness reduction factor (i.e., p-multiplier) using Table 9-5:

 $(p-multiplier)_{ave}$ in Longitudinal Direction = (0.8 + 0.45 + 0.35) / 3 = 0.53

 $(p-multiplier)_{ave}$ in Transverse Direction = (1.0 + 0.85 + 0.75) / 3 = 0.87

30 2 4 8 15 Û **VERY STIFF** STIFF HARD MED. 100 27.2 -SOFT COEFF. OF VARIATION IN SUBGRADE STIFFNESS, f (bMn^3) VERY SOFT SUBGRADE COEFFICIENT, f, (\times 10³ kN/m³) 21.8 8 777 DEF ERION 16.3 YOLAY OF 8 E PILES FOR I NON E_{S} ATION FOR FINE SPAINED SOILS 12-INCH DIAMETER 10.9 \$ F.O2 RECOMMENT 5.4 20 AMET 16 NAV-DW 0 Ĩ 3 COHESION (ksf) 1 2 5 0 4 10 50 100 250 150 200 COHESION (kPa)

BLOWCOUNT (BLOWS/FT)

9B-12
C. Determine the Effective Coefficient of subgrade modulus $f_{eff} = (p-multiplier)_{ave} \cdot f$:

Longitudinal: $f_{eff, L} = 0.53 \times 16 = 8.5 \text{ lb/in}^3$ Transverse: $f_{eff, T} = 0.87 \times 16 = 13.9 \text{ lb/in}^3$

D. Calculate the Bending Stiffness of the Pile

EI = $3,600,000 \times 1885 = 6.8 \times 10^9 \text{ lb-in}^2$

E. Derive lateral stiffness for free-head condition using Figure 9-21:

 $k'_{\delta,L} = \underline{1.2 \times 10^4 \text{ lb/in}}$ (Longitudinal) $k'_{\delta,T} = \underline{1.7 \times 10^4 \text{ lb/in}}$ (Transverse)

Figure 9-21: Lateral Stiffness of Free-Headed Piles.

9B-14

Step 2: Solve for the stiffness of a single pile under axial loading.

For end bearing piles (ignore skin friction), calculate the axial stiffness.

$$k_v = \frac{AE}{L} = \frac{154 \times 3,600,000}{30 \times 12"} = \frac{1,540,000 \text{ lb/in}}{1,540,000 \text{ lb/in}}$$

- Step 3: Calaculate pile group stiffness by combining the stiffness contribution of each individual pile.
 - A. Lateral Stiffness

$$K_{L} = \mathbf{n} \cdot \mathbf{k}'_{\delta,L} = 9 \times (1.2 \times 10^{4})$$

= 1.1 x 10⁵ lb/in (Longitudinal)
$$K_{T} = \mathbf{n} \cdot \mathbf{k}'_{\delta,T} = 9 \times (1.7 \times 10^{4})$$

= 1.53 x 10⁵ lb/in (Transverse)

B. Axial Stiffness

$$K_V = \mathbf{n} \cdot \mathbf{k}_V = 9 \ge 1,540,000 = 1.39 \ge 10^6 \text{ lb/in}$$

C. Torsional Stiffness

D. Rocking Rotational Stiffness about Transverse Axis.

$$K_{RT} = k_V \cdot \sum_{i=1}^{n} |\mathbf{x}|_i^2$$

T 🖣

 $= 1.540,000 \ge 6 \ge (42)^2 = 1.6 \ge 10^{10} \text{ lb-in/rad}$

E. Rocking Rotational Stiffness about Longitudinal Axis.

$$K_{RL} = k_V \cdot \sum_{i=1}^{n} y_i^2$$

 $= 1,540,000 \ge 6 \ge (70)^2 = 4.5 \ge 10^{10} \text{ lb-in/rad}$

Figure 9-22: Lateral Stiffness of Fixed Head Piles.

9B-18

Dynamic Earth Pressure Approach for Seismic Design of Retaining Walls.

Objective:

Derive the Dynamic Earth Pressure for a Cantilever Wall Retaining a Highway Enbankment in Collinsville, IL. The Wall Geometry, Soil Properties behind the Wall and other Assumptions are Presented in Figure S10A-1.

Source Materials:

Reference Manual Part I: Section 9.4.2, Equations 9-13a and 9-13b, and Figure 9-28.

- Location: Collinsville, IL
- Peak Acceleration on Firm Ground (or Rock) $A_{cc} = 0.15g$ (per current AASHTO)
- Site is Underlain by Soft Soil
- Soil Amplification Factor = 1.5
- Assume the Wall Can Yield Sufficiently to Mobilize Active Soil Wedge, But Permanent Sliding Displacement is Not Allowed.
- Other Relevant Parameters Are Given in the Sketch Below.

Figure S10A-1: Retaining Wall Geometry and Assumptions

- 1. Total Wall Height, H = _____
- 2. $\delta = \phi =$ _____
- 3. k_h = Amplified Peak Ground Acceleration/g = 1.5 x 0.15 = _____

Ignore Vertical Ground Motion $k_v = 0$

4.
$$\psi$$
 = arc tan $[k_h/(1-k_v)]$ = _____

5. Compute Active Earth Pressure Coefficient (Eq.9-13b)

$$K_{ae} = \frac{\cos^{2}(\phi - \psi - \theta)}{\cos\psi \cos^{2}\theta \cos(\delta + \theta + \psi) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \psi - \beta)}{\cos(\delta + \theta + \psi) \cos(\beta - \theta)}}\right]^{2}}$$

K_{ae} = _____

6. Total Dynamic Active Earth Force (Eq. 9-13a)

$$P_{ae} = \frac{1}{2} K_{ae} \gamma H^2 = \underline{\qquad}$$

7. Uniformly Distributed Dynamic Earth Pressure

 $p_{ae} = P_{ae}/H =$

SOLUTION TO EXERCISE NO. 10A

1. Total Wall Height, H = 5 + 0.7 = 5.7 m

2. $\delta = \phi = 32^{\circ}$

3. k_h = Amplified Peak Ground Acceleration/g = 1.5 x 0.15 = 0.225

Ignore Vertical Ground Motion $k_v = 0$

4.
$$\psi$$
 = arc tan $[k_h/(1-k_v)] = 12.7^{\circ}$

5. Compute Active Earth Pressure Coefficient (Eq.9-13b)

$$K_{ae} = \frac{\cos^{2}(\phi - \psi - \theta)}{\cos\psi \cos^{2}\theta \cos(\delta + \theta + \psi) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \sin(\phi - \psi - \beta)}{\cos(\delta + \theta + \psi) \cos(\beta - \theta)}}\right]^{2}}$$

$$K_{ae} = \frac{\cos^{2}(32^{\circ} - 12.7^{\circ} - 0^{\circ})}{\cos 12.7^{\circ} \cos^{2}0^{\circ} \cos (32^{\circ} + 0^{\circ} + 12.7^{\circ}) \left[1 + \sqrt{\frac{\sin(32^{\circ} + 32^{\circ}) \sin(32^{\circ} - 12.7^{\circ} - 0^{\circ})}{\cos(32^{\circ} + 0^{\circ} + 12.7^{\circ}) \cos(0^{\circ} - 0^{\circ})}}\right]^{2}}$$
$$K_{ae} = 0.47$$

6. Total Dynamic Active Earth Force (Eq. 9-13a)

$$P_{ae} = \frac{1}{2}K_{ae}\gamma H^{2} = \frac{1}{2} \times 0.47 \times 19 \times 5.7^{2} = \frac{145 \text{ kN/m}}{2}$$

7. Uniformly Distributed Dynamic Earth Pressure

 $p_{ae} = P_{ae}/H = 145/5.7 = 25.4 \text{ kPa}$

For External Stability Analysis

Permissible Displacement Approach for Seismic Design of Retaining Walls.

Objective:

Derive the Reduced Seismic Coefficient, K_h , Using the Permissible Displacement Approach for the Same Retaining Wall in Student Exercise NO. 10A. Wall is Allowed to Displace by 50 mm. A Peak Ground Velocity of 250 mm/sec was Obtained from a Site Response Analysis.

Source Materials:

Reference Manual Part II: Section 9.4.2, Equation 9-14.

- 1. d_R = Allowable Displacement = _____
- 2. Peak Ground Acceleration Coefficient, A = _____
- 3. Peak Ground Velocity, V =_____
- 4. Use Eq. 9-14:

$$\mathbf{d}_{\mathrm{R}} = 0.087 \left(\frac{\mathrm{V}^2}{\mathrm{A.g}}\right) \cdot \left(\frac{\mathrm{N}}{\mathrm{A}}\right)^{-4}$$

 \Rightarrow N = K_h = _____ (Transmittable Acceleration Coefficient)

SOLUTIONS TO EXERCISE NO. 10B

- 1. d_R = Allowable Displacement = 50 mm
- 2. Peak Ground Acceleration Coefficient, A = 0.225
- 3. Peak Ground Velocity, V = 250 mm/sec
- 4. Use Eq. 9-14:

$$d_{R} = 0.087 \left(\frac{V^{2}}{A.g}\right) \cdot \left(\frac{N}{A}\right)^{-4}$$

$$\Rightarrow 50 = 0.087 \left(\frac{250^{2}}{0.225 \times 9,810}\right) \cdot \left(\frac{N}{0.225}\right)^{-4}$$

 \Rightarrow N = K_h = 0.106 (Transmittable Acceleration Coefficient)

5. Use $k_h = 0.106$ and $k_v = 0$ for External Stability Analysis of the Wall

· · · ·