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EXECUTIVE SUMMARY

This report presents a comprehensive analysis of work zone safety considering multiple
factors, including crash severity, speed analysis, countermeasure analysis, and state-of-the-
practice in DOTSs.

Machine learning models were utilized to interpret the influence of various factors on work
zone crash severity. The findings underscore the capability of these models to provide insights into
the complex interplay of elements affecting crashes, laying a groundwork for future explorations
in this domain. The study analyzed the effect of different contract types on crash occurrence.
CMGC contracts exhibited a notable increase in the number of crashes as vehicles approached
work zones, indicating the importance of considering contract specifications in relation to safety
measures. Moreover, CMGC has a much higher crash rate per 100 million VMT compared to
design-build or design-bid-build contract types. This report thoroughly examines work zone safety
countermeasures, drawing from an extensive array of sources, including DOT reports, NCHRP
publications, MUTCD guidelines, and academic research, and categorized them into 5 groups,
including speed control, intrusion prevention, human-machine interaction, smart work zone, and
traditional approaches.

Furthermore, insights from a survey distributed to all DOTs, with 24 responses from 22
states, are also incorporated. The feedback from these states, which span a wide geographic area,
offers valuable perspectives on factors that influence safety and satisfaction in work zones, thus
enriching our understanding of implementing effective countermeasures. Overall, this report
provides valuable insights into work zone crash severity and offers recommendations for
enhancing safety. Future research opportunities include exploring the effectiveness of various
countermeasures, incorporating real-time data for improved prediction accuracy, and investigating
the impact of additional variables on work zone crash severity. By addressing these areas and
implementing evidence-based safety measures, we can work towards creating safer work zones,

reducing the occurrence and severity of crashes, and improving overall road safety.



1.0 INTRODUCTION

1.1 Introduction

Work zone crashes in transportation systems pose a significant threat to road users and
transportation agencies. The Federal Highway Administration (FHWA) reports an average of 794
fatalities annually in the United States between 2015 and 2020, resulting in an estimated cost of
$17.5 billion annually (Work Zone Crashes, n.d.).

Work zone Fatality Crashes
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Figure 1. Number of Work Zone Fatality Crashes Between 2015-2021

Even with reduced traffic volumes during the COVID-19 pandemic, work zone crashes in
2020 alone accounted for over 102,000 incidents, causing more than 45,000 injuries and over 850
fatalities, surpassing the previous year's records (Work Zone Crashes, n.d.). These alarming
statistics highlight the urgent need to understand and mitigate the impact of work zones on traffic
safety. To design effective mitigation and improvement strategies, it is crucial to accurately
comprehend the factors influencing work zone crash severity. Local data capturing unique
conditions such as driving behavior, regulations, geography, weather, and road conditions are
essential for maximizing the effectiveness of the strategies.

Despite the critical need for comprehensive analysis, there is currently no study
investigating the state of practice in DOTSs regarding work zones, speed analysis in work zones in
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Utah, and the effectiveness of safety countermeasures implemented by the Utah Department of
Transportation (UDOT). Previous studies have primarily relied on analytical methods to establish
relationships between work zone attributes and crash occurrence or severity. However, the
dynamic and complex nature of work zones makes mathematical models challenging to apply. As
a result, machine learning techniques have emerged as powerful tools for modeling such intricate
systems. These algorithms can learn patterns and relationships from data, making them suitable
for capturing the complexities of work zone crashes.

This study aims to address the pressing need for a more accurate and comprehensive
understanding of work zone crash severity factors to inform the development of effective safety
management strategies. By employing advanced machine learning techniques, this research
endeavors to overcome the limitations of traditional analytical models and provide insights into
the intricate relationships between work zone features and crash severity. Additionally, this study
conducted a thorough literature review on countermeasures implemented to enhance work zone
safety, exploring the state of practice in various DOTSs. Furthermore, the research investigated the
speed effect of work zones, analyzing traffic data to understand the impact of work zones on
drivers' speed behavior. Moreover, the study examined the effect of different contract types on
work zone crashes, aiming to identify potential correlations between contract specifications and
safety outcomes. Through these comprehensive analyses, this research seeks to provide valuable
insights that can guide the development of targeted and effective safety management strategies for
mitigating work zone crashes. The findings from this study can contribute to the development of
targeted and tailored interventions to mitigate work zone crashes, ultimately improving traffic

safety for all road users.

1.2 Background

Work zones play a crucial role in infrastructure development and maintenance but pose
significant safety risks for both workers and motorists. In recent years, there has been a growing
interest in utilizing statistical and machine learning models to enhance our understanding and
prediction of transportation safety outcomes in work zones. This literature review discusses the
research on work zone safety, dividing it into separate sections to discuss the findings of studies

that utilize statistical methods and machine learning approaches.
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1.2.1 Statistical Approaches

Statistical approaches have been widely used to estimate crash severity/frequency and
identify factors contributing to more severe crashes. Regression analysis is a commonly employed
statistical tool to examine the relationship between speed, traffic volume, road geometry, and crash
severity/frequency variables. Logistic and probit regression models are frequently used for
analyzing discrete outcomes, allowing the estimation of the probability of a specific outcome based
on explanatory variables. Various studies have utilized statistical methods to investigate work zone
crash severity. For example, Coburn et al. (2013) aimed to quantify injury outcomes and develop
comprehensive injury costs for work zone crashes based on the crash type and severity using a
three-step methodology and crashes in Wisconsin between 2001 and 2010. The study found that
the KABCO scale, which classifies injuries as killed, incapacitating injury, non-incapacitating
injury, possible injury, or property damage only, may need reconsideration due to discrepancies
between injury types and severities. The calculated comprehensive costs for different crash types
were significantly higher than the default values provided by FHWA. This highlights the
importance of developing crash-specific costs for more accurate benefit-cost analysis and
implementing countermeasures in work zones. In another study, Chen & Tarko (2014) examined
traffic safety in highway work zones using detailed data from a survey of project engineers and
existing datasets. Monthly clusters of observations corresponding to individual work zones are
analyzed using a two-level random parameter negative binomial model. The safety effects of
various work zone design and traffic management features, including lane shift, lane split, and
detour, are identified. The study also explores the viability of a fixed parameters negative binomial
model with random effects as an alternative. The results show that both models yield similar
marginal effects on crash frequency, suggesting the potential practicality of using fixed parameters
models in certain cases. The obtained model with random effects is found to be useful for
programming police enforcement in highway work zones in Indiana.

Osman et al. (2016) focused on investigating the factors contributing to the injury severity
of large truck crashes in work zones. Various econometric models, including multinomial logit,
nested logit, ordered logit, and generalized ordered logit, were compared to analyze the injury
severity data. The database consisted of work zone crashes involving large trucks in Minnesota

over 10 years. The empirical findings indicate that the generalized ordered logit model provided
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the best fit for the data. Elasticity analysis revealed that factors such as daytime crashes, lack of
access control, higher speed limits, and crashes on rural principal arterials increased the risk of
severe crashes in work zones. Liu et al. (2016) investigated the correlation between precrash
actions and driver injury severity in work and non-work zone crashes. Using a large-scale
statewide crash database, hierarchical models were employed to account for the injury severity of
each driver involved. The analysis reveals that intentional improper actions or violations increase
the chances of driver injury by 9.9% to 10.3% in work zone crashes, compared to 1.7% to 5.7% in
non-work zone crashes. Speeding, following too closely, and disregarding traffic regulations
were identified as significant contributing factors. These findings highlight the importance of
effective speed enforcement and traffic regulations to improve work zone safety and reduce the
risk of injuries.

Anderson & Hernandez (2017) addressed the gap in previous research by examining injury
severity factors for heavy-vehicle crashes based on roadway classification. A mixed logit modeling
framework is used, and the results indicate that roadway classifications should be considered
separately due to statistically significant differences in estimated parameters. The findings
emphasize the importance of considering roadway classification in safety analyses and suggest
the need for further research on injury severity and other safety measures within different
subpopulations of crash datasets. Osman et al. (2018) examined factors influencing injury severity
in passenger-car crashes within various work zone configurations. A Mixed Generalized Ordered
Response Probit (MGORP) model is developed using a 10-year crash database. Results indicate
that factors such as partial access control, rural roads, evening and weekend crashes, and
curved roadways contribute to higher severity outcomes. Covariate effects vary across
different work zone configurations, highlighting the importance of tailored safety measures for
specific layouts.

Ravani & Wang (2018) examined the impact of police presence on work zone safety and
speeding in highway work zones. Speed data were collected from six work zone locations in
California, and data analysis was conducted using statistical methods. Four measures of
effectiveness (MOEs) were evaluated, including average speed reduction, speed variance, 85th
percentile speed, and proportion of high-speed vehicles. The results indicate that all levels of
police presence led to statistically significant improvements in one or more of the MOEs,
highlighting the positive impact of police presence in mitigating work zone safety risks and
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reducing speeding incidents. K. Zhang & Hassan (2019a) developed a random parameter-ordered
probit model to analyze factors affecting work zone crash severity. Their study found that speeding
and foggy weather are important factors that can influence the parameters of a random parameter
model and identified weekdays and nighttime as having a higher risk of rear-end crashes in
work zones. Santos et al. (2021) employed statistical models to identify primary risk factors
causing work zone crashes. Their analysis revealed that the major contributing factors were
speeding, disregard for vertical signs, lighting, locations that include intersections, and

involvement of motorcycles and heavy vehicles.

While statistical approaches have shown promise in estimating crash severity, it is
important to consider their potential limitations, such as the oversimplification of complex
relationships and dependence on assumptions and model specifications. These factors can affect
the accuracy and reliability of the predictions. Nonetheless, these studies contribute valuable
insights into understanding work zone safety and identifying factors that can mitigate crash

severity.
Table 1. Work Zone Crash Literature and Findings

Authors Findings

(Akepati & The lane-closure work zone type had the highest percentage of crashes,

DISSTERLE, A0 followed by work on the shoulder or median type of work zone.

(Al-Bdairi, 2020) Contributing factors such as lighting, driver behavior, and age are
uniquely significant for a specific time of day period. Whereas
undeployed airbags, single-vehicle crashes and rear-end collisions tend

to have higher injury severity regardless of the time of day.

(Z. Zhang et al., 2022) | It appears that conducting work zones during the nighttime with the
current deployment strategies on Pennsylvania state roads does not
necessarily increase crash risks, but a work zone significantly increases

crash risks during daytime
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(Mokhtarimousavi et | Work on the shoulder or median, the presence of advance warning

al., 2019, 2020) areas, daytime non-peak construction, and vehicles that are not carrying

multiple passengers are more likely to decrease injury severity.

(Mokhtarimousavi et | The termination area of the work zone is most critical for both daytime

il 2021 and nighttime crashes, as this location has the highest increase in severe

injury likelihood.

(Santos et al., 2021) | Excessive speed, disregard for vertical signs, poor lighting, locations
with intersections, and motorcycle and heavy vehicle involvement as

the most significant risk factors.

(K. Zhang & Weather conditions (rain) and driver characteristics, such as gender and

S, 2001 age group, work zones with multiple lane closures and the presence of

heavy vehicles increase the crash fatality risk.

(Islam, 2022) Poor lighting and areas with older motorcyclists (50-65) are more likely

to experience higher crash severities.

1.2.2 Machine Learning Approaches

Machine learning approaches provide an alternative means to estimate crash severity and
frequency, addressing some of the limitations of statistical methods. These algorithms do not rely
on specific assumptions about variable relationships, allowing greater flexibility in handling
complex data and capturing nonlinear relationships. Several studies have utilized machine learning
techniques to analyze work zones (Mashhadi et al., n.d., 2021a, 2021b; Mashhadi & Rashidi,
2021). Effati et al. (2015) introduced a geospatial approach, using fuzzy classification and
regression tree (FCART), to predict motor vehicle crashes and their severity on two-lane, two-way
roads. The FCART model combines fuzzy logic and decision tree techniques to handle uncertain
input data and improve interpretability. The model is compared with other methods, such as CART
and SVM, and the results demonstrate that the bagged-FCART model outperforms the others in
predicting crash severity. Factors such as vehicle failure, seat belt usage, weather conditions, and

geographic features like curves and adjacent facilities were identified as significant contributors
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to crash severity. This approach highlights the importance of targeted and behaviorally informed
safety measures on regional roads.

Iranitalab & Khattak (2017) compared the performance of four methods (MNL, NNC,
SVM, RF) in predicting traffic crash severity and developed a crash costs-based approach for
evaluation. Two vehicle crashes were analyzed and split into training and validation subsets using
reported crash data from Nebraska. NNC showed the best overall prediction performance,
followed by RF and SVM, while MNL performed the weakest. Data clustering improved MNL,
NNC, and RF prediction performance but had mixed effects on NNC. The proposed crash costs-
based accuracy measure highlighted the importance of considering crash costs for accurate
prediction. Alkheder et al. (2017) developed an Artificial Neural Network (ANN) classifier to
predict crash severity in normal conditions, using a k-means algorithm for data clustering and an
ordered probit model for benchmarking. Their ANN model achieved 74.6% accuracy in predicting
crash severity. Park et al. (2017) addressed the limitations of existing proximity sensing and alert
systems in roadway work zones by developing a Bluetooth Low Energy (BLE)-based system. The
study focuses on parameter adjustment and adaptive signal processing (ASP) methods to account
for variations in equipment types, approach speeds, and dynamic conditions. Field trials
demonstrate that the system's parameter adjustment reduces inconsistency in alert distances, while
the ASP method minimizes time delays caused by high approaching speeds. Overall, the developed
system enhances construction work zone safety by better understanding spatial relationships
among equipment, operators, and workers in real time.

In addition to the studies mentioned earlier, (Jeong et al., 2018) utilized a dataset of 297,113
vehicle crashes from the Michigan Traffic Crash Facts (MTCF) to classify injury severity.
Techniques like under-sampling and over-sampling are employed to address imbalanced classes.
Five classification models are used, and bagging with decision trees and over-sampling yields the
highest performance. Mokhtarimousavi et al. (2019) employed a mixed logit model and Support
Vector Machine (SVM) to predict work zone crash severity. They also utilized metaheuristic
algorithms such as particle swarm optimization, harmony search, and the whale optimization
algorithm to enhance SVM performance. SVM outperformed the mixed logit model by 16
percentage points, highlighting its effectiveness. In a subsequent study, Mokhtarimousavi et al.
(2020) utilized mixed logit and random forest algorithms to evaluate the importance of variables
on work zone crash severity. Their findings revealed four influential factors: work on the shoulder
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or median, advance warning area, daytime nonpeak, and multi-occupant, directly affecting crash
severity.

Machine learning approaches offer flexibility in handling complex data, capturing
nonlinear relationships, and identifying patterns that traditional statistical models may overlook.
However, it is important to note that these methods may require substantial amounts of data, are
prone to overfitting, and demand significant computing power and time for processing extensive
datasets. Nonetheless, they provide valuable insights into understanding and predicting work zone

crash severity.

1.3 Objectives

The primary objective of this study is to enhance the prediction of work zone crash severity
by employing different machine learning techniques and analyzing their effectiveness when
applied to a dataset containing a wide range of work zone crash and roadway attributes.
Specifically, the objectives of this study are as follows:

1. Perform comprehensive data analysis of work zone crashes: Conduct a detailed analysis of the
work zone crash dataset to identify patterns, trends, and influencing factors associated with
crash severity. Explore the relationships between various factors such as driver behavior, work
zone characteristics, traffic flow, and environmental conditions to gain insights into their
impact on crash severity outcomes. This analysis will provide a deeper understanding of the
dynamics and interactions among these factors and their contribution to work zone crash
severity.

2. Develop and implement a comprehensive machine learning framework: Establish a framework
incorporating various machine learning algorithms to predict work zone crash severity,
including probabilistic and non-probabilistic models. This framework will enable the
comparison of different algorithms and their performance in predicting the severity of work
zone crashes.

3. Conduct a feature importance analysis: Identify and analyze the key factors influencing work
zone crash severity through a feature importance analysis. Determine the relative importance
of various work zone attributes, such as weather conditions, road geometries, traffic

characteristics, and work zone configurations, in predicting the severity of crashes.
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4. Analyzing the effects of different factors on work zone safety: Investigate the impact of various
factors on work zone safety, including contract types, traffic countermeasures, and rumble
strips.

5. State of the practice in Work Zone Countermeasures: Evaluate the current state of practice in
work zone safety countermeasures among DOTSs, including both traditional approaches and
emerging technologies. Conduct a comprehensive review of existing literature, guidelines, and
best practices related to work zone countermeasures.

By achieving these objectives, this study aims to contribute to advancing work zone safety

management by providing a more accurate and comprehensive understanding of the factors

influencing crash severity. The findings will assist transportation agencies in designing evidence-
based interventions and strategies to mitigate work zone crashes, improve traffic safety, and reduce

the economic burden of these incidents.

1.4 Outline of Report

1. Introduction
e Overview of work zone safety and the importance of studying crash severity
e Research objectives and significance
e Review of existing studies on work zone crash severity and influencing factors
e Discussion of previous research methods and findings
e Identification of research gaps and the need for the current study

e Brief description of the report structure

2. Research Methods
e Explanation of any preprocessing steps performed on the data, such as data cleaning
or feature engineering
e Explanation of the machine learning techniques employed for crash severity

prediction.

3. Data Collection

e Description of the dataset used and its characteristics
18



e Overview of the data collection process, including the sources and methods used

e Description of the work zone crash data and associated attributes

4. Results and Findings
e Presentation and interpretation of the findings
e Discussion of the feature importance analysis and the relative significance of

different variables

5. Conclusion
e Summary of the main findings and their implications

e Reflection on the research limitations and suggestions for future studies
The report will follow this structure to provide a comprehensive understanding of the

research methods, data collection process, model evaluation, and the resulting findings and

conclusions related to work zone crash severity prediction and influencing factors.
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2.0 RESEARCH METHODS

2.1 Overview

This section encompasses several key components, including data cleaning, statistical
modeling, deterministic machine learning modeling, and probabilistic machine learning modeling.
These methods were employed to analyze work zone crash data and predict crash severity based

on various influencing factors.

2.2 Data Cleaning and Preprocessing

Data cleaning and preprocessing are crucial in ensuring the quality and reliability of tabular
data used for analysis. This study conducted a comprehensive data cleaning process to prepare the
dataset for subsequent modeling. The first step involved identifying and handling missing values
in the dataset. Missing data can introduce biases and affect analysis accuracy, so various
techniques, such as imputation, were applied to fill in missing values based on statistical methods

or pattern recognition. Here are some commonly used data cleaning approaches:

2.2.1 Missing Data

Missing data is a common challenge in datasets. There are several strategies to handle missing
data, including:
e Deletion: Removing rows or columns with missing values. This approach should be
used cautiously as it may result in data loss and biased analysis.
e Imputation: Filling in missing values using statistical methods such as mean, median,

mode, or regression imputation.
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coll col2 col3 col4d col5 coll col2 col3 col4d col5

0 2 50 30 6 NaN mean() 0 20 50 30 6.0 7.0
—

1 9 NaN 9.0 0 70 1 90 110 90 00 70

2 19 17.0 NaN 9 NaN 2 190 170 6.0 90 7.0

Figure 2. Imputation Example with Column Mean Values

2.2.2 Outlier Detection and Treatment

Outliers are extreme or unusual observations that can significantly affect the analysis. Various
methods can be used to detect outliers, such as:
e Statistical methods: Identifying outliers based on z-scores, standard deviations, or
boxplot measures.

o A z-score is just the number of standard deviations away from the mean that a
certain data point is.

o A boxplot is a simple way of detecting outliers by drawing a box representing
the central 50% of the data. The line drawn in the middle shows the median
value. The lines extending from the box (whiskers) capture the range of the
remaining data outside of the middle 50% (for example, the upper 25% and the

lower 25%). Any point that falls outside the lines indicates an outlier.

Figure 3. Statistical Methods for Outlier Detection

e Visualization techniques: Plotting the data to visually identify data points that deviate
significantly from the overall pattern.
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Figure 4. Outlier Detection Using Visualization

e Winsorization or trimming: Winsorization replaces extreme values with the nearest
non-outlier value to reduce their impact, while trimming removes outliers from the data

set entirely.

2.2.3 Transformation and Encoding

Data may need to be transformed or encoded depending on the analysis requirements. Examples
include:
e Feature scaling: Scaling numerical features to a standard range (e.g., normalization or
standardization).
e Label Encoding: Assigning numeric labels to categorical variables with an inherent

order.
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Original Data Label Encoded Data

Team Points Team Points
A 25 0 25
A 12 0 12
B 15 1 15
B 14 o 1 14
B 19 ] 1 19
B 23 1 23
C 25 2 25
C 29 2 29

Figure 5. Label Encoding Technique Example

e One-Hot Encoding: machine learning algorithms require numeric input and output
variables. One-hot encoding transforms categorical data into numeric variables.

o For example, imagine a data set with a column of different basketball teams,

each with a number of points scored. One-hot encoding will create new

columns to reflect each of the unique team names in the “team name” column,

and the new columns will be filled with Os and 1s.

Original Data One-Hot Encoded Data

Team Points Team_A | Team_B | Team_C Points
A 25 1 0 0 25
A 12 1 0 12
B 15 0 1 0 15
B 14 - 0 1 0 14
B 19 . 0 1 0 19
B 23 0 1 0 23
C 25 0 0 1 25
C 29 0 0 1 29

Figure 6. One-Hot Encoding Technique Example

2.2.4 Feature Selection

Feature selection is an essential step in machine learning because it helps identify the most

important variables that influence the outcome of the target variables. The remaining features may
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be irrelevant to the target variable. Narrowing down the feature selection reduces the model's
complexity, decreases the time it takes for the model to be trained, and prevents a dumb model,
filled with inaccurate or less reliable predictions, from being created. Common approaches
include:

e Filter methods: Select features based on statistical measures like correlation or mutual
information and “filter” the remaining features out.

o Mutual information measures how much one random variable tells us about
another. In other words, it quantifies how similar or how different two variables
are.

e Wrapper methods: Selects features based on a specific machine learning algorithm that
we are trying to fit into a given data set. All of the possible combinations of the features
are considered. The combination of features that gives the optimal results for the
specific machine learning algorithm is selected.

e Embedded methods: Select features by embedding features (creating a lot of subsets
from the particular dataset) during the model building process and observing each
iteration of model training. Every subset that results in the maximum accuracy will be

selected as a subset of features, which will later be given to the dataset for training.

2.2.5 Overfitting

One of the most common challenges in machine learning is overfitting, where the model can
perform well on trained data but cannot accurately predict values on test data. Regularization is a
technique used to prevent overfitting by applying a penalty term to the loss function during
training. The penalty prevents the modeling from becoming too complex and helps control the

model’s ability to fit noise within the trained data.

2.3 Machine Learning Modeling

Machine learning modeling is a process used to train computer algorithms to make
predictions or decisions based on data. These techniques have been used and applied to different
areas of science, including safety assessments (Hassandokht Mashhadi et al., 2024; Mashhadi et

al., 2023; Mashhadi & Rashidi, 2021), condition assessments (Mohammadi, Rashidi, et al., 2023;
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Mohammadi, Sherafat, et al., 2023), and contractual issues (Erfani, Tavakolan, et al., 2021; Erfani,
Zhang, et al., 2021; Erfani & Tavakolan, 2020). It involves several key steps, starting with the
definition of a train and test set.

Train and Test Set: The first step in building a machine learning model is splitting the available
data into two subsets: the training set and the test set. Typically, this division is done with a ratio
of 70/30 or 80/20, where 70% or 80% of the data is used for training, and the remaining 30% or
20% is used for testing. The training set is used to train the model, while the test set is used to
evaluate its performance. This division helps ensure that the model's effectiveness is assessed on

unseen data, simulating how it might perform in the real world.

Model Development: The model development process begins once the data is divided. This
involves selecting an appropriate algorithm or set of algorithms based on the nature of the problem
and the type of data available. Different algorithms are suited for classification, regression, or

clustering tasks.

Training the Model: With the algorithm chosen, the model is trained using the data in the training
set. During training, the model learns the underlying patterns and relationships in the data. This
typically involves adjusting the model's parameters iteratively to minimize the difference between
its predictions and the actual outcomes in the training data.

Evaluation of Test Set: The model's performance is evaluated using the test set after training.
This involves making predictions on the test data and comparing them to the actual outcomes.
Common evaluation metrics include accuracy, precision, recall, and F1 score for classification

tasks and mean squared error or R-squared for regression tasks.

Fine-Tuning and Validation: Further adjustments may be made Depending on the model's
performance on the test set. This could involve fine-tuning hyperparameters, such as learning rate
or regularization strength, or selecting different features or algorithms. It's important to validate
the model on separate validation data to avoid overfitting, where the model performs well on the
training data but poorly on unseen data.
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Deployment and Monitoring: Once a satisfactory model is developed and validated, it can be
deployed for use in real-world applications. However, the process doesn't end there; models should
be continually monitored and updated as new data becomes available or as the underlying patterns

in the data change over time.

2.4 Evaluation Metrics

Accuracy, precision, recall, and ROC-AUC (i.e., Receiver Operating Characteristic — Area
Under the Curve) are used to evaluate the performance and effectiveness of different models. The
ROC-AUC metric is particularly valuable when dealing with imbalanced datasets, as it measures
a model's ability to differentiate between positive and negative samples. Accuracy measures the
percentage of correct predictions (Eq. 1), while precision measures the percentage of true positives
among the total predicted positives (Eq. 2), and recall measures the percentage of true positives
among the actual positives (Eg. 3). Overall, a combination of these metrics can provide a

comprehensive evaluation of a model's performance in different classification tasks.

| ~ TN + TP
Ceuracy = N+ FN +FP + TP 1)
pocioion — TP
recision = FP n TP 2)
TP

Sensitivity = Recall = TP+ FN 3)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative

values, respectively, where:

True Positive (TP):
e Definition: In a binary classification task, a true positive (TP) occurs when the model
correctly predicts a positive outcome (e.g., severe crash) for an instance that actually

belongs to the positive class.
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Example: If the model correctly predicts that a work zone crash resulted in severe

injuries, it is considered a true positive.

True Negative (TN):

Definition: A true negative (TN) occurs when the model correctly predicts a negative
outcome (e.g., non-severe crash) for an instance that actually belongs to the negative
class.

Example: If the model correctly predicts that a work zone crash did not result in severe

injuries, it is considered a true negative.

False Positive (FP):

Definition: A false positive (FP) occurs when the model incorrectly predicts a positive
outcome (e.g., severe crash) for an instance that actually belongs to the negative class.
Example: If the model incorrectly predicts that a work zone crash resulted in severe

injuries when it did not, it is considered a false positive.

False Negative (FN):

Definition: A false negative (FN) occurs when the model incorrectly predicts a
negative outcome (e.g., non-severe crash) for an instance that actually belongs to the
positive class.

Example: If the model incorrectly predicts that a work zone crash did not result in

severe injuries when it did, it is considered a false negative.
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3.0 DATA COLLECTION

3.1 Overview

In this project, two distinct datasets were utilized for comprehensive data analysis. The first
dataset consisted of crash data obtained from Numetric, a reliable source of transportation data.
The second dataset encompassed work zone data collected from Masterworks, a comprehensive
platform that manages and tracks information related to construction projects. By combining these
two datasets, a holistic view of the interactions between work zones and crashes could be achieved,
facilitating a comprehensive analysis of the factors influencing crash severity and frequency within

work zones.

3.2 Crash Data

The crash dataset used in this study comprised over 300,000 crashes from the state of Utah,
spanning from 2017 to 2021. It included an extensive set of features, more than 80 variables,
capturing various aspects of the crashes. These features encompassed a wide range of information,
including demographic details of the involved parties, road and weather conditions, crash types,
contributing factors, vehicle attributes, and injury severity levels. The dataset provided a
comprehensive and detailed representation of the crashes, enabling a comprehensive analysis of
the factors influencing crash outcomes. The extensive feature set allowed for a comprehensive
exploration of the relationships and interactions between different variables and their impact on
crash severity and frequency. Considering such a diverse range of features, this study aimed to
provide a thorough understanding of the complex dynamics associated with crashes in Utah.

Sample examples of the dataset are shown below.
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Roadway Junction Type

10911988 1/1/2017 02:19 2017 0209P 39006 8.925 Possible injury  Not Applicable/Single No Special Feature/Junctio Dark - Lighted Yes
10911991 1/1/2017 01:32 2017 2118P 9721 3.097 No injury/PDO  Parked Vehicle No Special Feature/Junctio Dark - Lighted Yes
10911995 1/1/2017 04:32 2017 576511P 0.1 Noinjury/PDO  Parked Vehicle No Special Feature/Junctio Dark - Not Lighted Yes
10911997 1/1/2017 05:10 2017 2584p 953 1.053 Noinjury/PDO _ Not Applicable/Single No Special Feature/Junctio Dark - Not Lighted Yes
10912002 1/1/2017 07:11 2017 2093P 17396 3.058 Suspected Minor Not Applicable/Single No Special Feature/Junctio Daylight No
10912003 1/1/2017 08:50 2017 2627P 2287 0.33 Noinjury/PDO  Angle 4-Leg Intersection Daylight No
10912007 1/1/2017 10:29 2017 358344P 0.1 Noinjury/PDO _ Not Applicable/Single No Special Feature/Junctio Unknown No
10912012 1/1/201711:38 2017 0068P 26152 54.399 Possible injury  Head On (front-to-fron4-Leg Intersection Daylight No
10912016 1/1/2017 08:39 2017 2218P 9953 0.906 No injury/PDO__ Not Applicable/Single T-Intersection Daylight No
10912022 1/1/2017 13:51 2017 0068P 35476 53.601 No injury/PDO__ Frontto Rear No Special Feature/Junctio Daylight No
10912028 1/1/201711:35 2017 0037P 3280 9.007 Noinjury/PDO  Not Applicable/Single 4-Leg Intersection Daylight No
10912067 1/1/2017 02:30 2017 573289P 0.1 Noinjury/PDO _ Parked Vehicle No Special Feature/Junctio Dark - Not Lighted Yes
10912069 1/1/2017 17:40 2017 0172P 34616 1.583 Possible injury  Head On (front-to-fron Farm/Residential Drive Dusk No
10912070 1/1/2017 01:29 2017 573644P 0.1 Noinjury/PDO  Parked Vehicle Farm/Residential Drive Dark - Not Lighted Yes
10912071 1/1/2017 02:48 2017 358344 0.1 Noinjury/PDO  Parked Vehicle No Special Feature/Junctio Dark - Lighted Yes
10912169 1/2/2017 00:29 2017 3311P 4733 0.011 Noinjury/PDO Mot Applicable/Single 4-Leg Intersection Dark - Lighted Yes
10912170 1/2/2017 04:15 2017 2124P 11777 0.298 Noinjury/PDO  Not Applicable/Single No Special Feature/Junctio Dark - Lighted Yes
10912171 1/2/2017 03:58 2017 0171P 31535 8.768 Noinjury/PDO__ Angle 4-Leg Intersection Dark - Lighted Yes
10912172 1/1/2017 23:38 2017 0171P 35057 7.7E|NU injury/PDO |Frunttc| Rear 4-Leg Intersection Dark - Lighted Yes
10912173 1/1/2017 11:50 2017 494432P 0.1 No injury/PDO_ Not Applicable/Single T-Intersection Daylight No
10912174 1/2/2017 02:31 2017 2240P 13723 0.01 No injury/PDO__ Angle No Special Feature/Junctio Dark - Lighted Yes
10912181 1/2/2017 06:03 2017 358344P 0.1 Noinjury/PDO  Not Applicable/Single 4-Leg Intersection Dark - Not Lighted Yes
10912182 1/2/2017 07:33 2017 0015N 59004 341.696 Noinjury/PDO_ Not Applicable/Single No Special Feature/Junctio Daylight No
10912188 1/2/2017 08:02 2017 0154P 41975 19.459 No injury/PDO Mot Applicable/Single 4-Leg Intersection Dawn No
10912189 1/2/2017 09:06 2017 435730P 0.1 Noinjury/PDO  Not Applicable/Single No Special Feature/Junctio Daylight No
10912192 1/2/2017 09:51 2017 358344P 0.1 Noinjury/PDO__ Frontto Rear T-Intersection Daylight No

Figure 7. Features of the Crash Dataset (Part I)

Roadway Surface Con

on [l Route Type [l urban/Rural

B Adverse Roadway Surf Conditi

Adverse Weathe! rﬂ

Clear Dry State Urban salt Lake N M N
Clear Dry Federal Urban Salt Lake MURRAY ["Collision With Parkec["Male","IN M N
Fog, Smog Dry Local Urban Weber  ROY ["Callision With Other Male N M Y
Clear Dry Federal Urban Summit  OUTSIDE ( Ditch Male N M N
Clear Dry. Federal Urban Salt Lake SOUTH JO Traffic Sign Support  Male N M N
Clear Dry Federal Urban Summit  OUTSIDE (["Collision With Other ["Male","IN M N
Unknown Unknown Local Urban Salt Lake WEST VAL (retired) Mailbox/Fire [Unknown N M N
Clear Dry State Urban Salt Lake WEST VAL ["Collision With Other ["Female' N M N
Cloudy Wet Federal Urban Salt Lake COTTONWFence Female Y M N
Clear Dry. State Urban Salt Lake WEST VAL ["Collision With Other ["Female' N M N
Cloudy Dry State Urban Weber  HOOPER Fence ["Female' N M N
Clear Dry Local Urban Weber WEST HA\ ["Collision With Parkec Male N M N
Cloudy Dry State Urban Salt Lake WEST VAL ["Collision With Other ["Female' N M N
Clear Dry. Local Urban Weber HOOPER ["Collision With Parkec ["Female’ N M N
Blowing Snow Snow Local Urban Salt Lake WEST VAL ["Collision With Other Male Y M A
Snowing Snow Federal Urban Weber ROY Other Non-Collision*® ["Male","I'Y M Y
Snowing Snow Federal Urban Salt Lake MURRAY Tree/Shrubbery Male Y M Y
Snowing Snow State Urban Salt Lake WEST VAL ["Collision With Other ["Female'Y M Y
Snowing Wet State Urban Salt Lake WEST VAL ["Collision With Other ["Female'Y M ¥
Clear Ice/Frost Local Urban Utah LEHI Other Post, Pole or Sug Male Y M N
Snowing Snow Federal Urban Salt Lake WEST VAL ["Collision With Other ["Male","l'Y M Y
Unknown Snow Local Urban Salt Lake WEST VAL Fence Unknown Y M N
Cloudy Snow State Urban Weber  OGDEN  Concrete Barrier Female Y M N
Cloudy Snow State Urban Salt Lake WEST VAL Other Post, Pole or Sug Female Y M N
Snowing Snow Local Urban Utah OREM Tree/Shrubbery Female Y M Y
Clear Snow Local Urban Salt Lake WEST VAL ["Collision With Other ["Female'Y M N
Clear Snow State Urban Salt Lake SALT LAKE Traffic Sign Support  ["Female"Y M N
Snowing Snow Local Urban Utah OREM ["Collision With Other ["Male","IY M Y
Snowing Snow State Urban Salt Lake MURRAY Overturn/Rollover Male Y M A

Figure 8. Features of the Crash Dataset (Part I1)

3.3 Work Zone Data

dataset was obtained from Masterworks, a database maintained by the Utah Department of
Transportation (UDOT) that stores work zone data along with other traffic-related information.

The UDOT databases are regularly updated to reflect the latest work zone configurations and
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conditions. Crashes associated with specific work zones were identified by cross-referencing the
work zone dataset with the Numetric dataset. This cross-referencing was achieved by matching
the location and date of each crash with the corresponding work zone information in the dataset.
It allowed for a comprehensive analysis of the relationship between work zones and safety
conditions, providing valuable insights into the impact of work zones on crash occurrences and
severity. It is worth noting that certain attributes deemed irrelevant to the analysis of road safety
conditions, such as the contractor, project cost, and engineering company, were excluded from
further consideration to focus on factors directly related to crash outcomes. Sample examples of

the dataset are shown below.

osJecTip Bl prosect_io[f pros_xrer_no poes_pros_noein Bl pin_pesc Bl pin_staT_co Bl pin_star_nviE msTr_pinE mstr_pin_pescl mstr_pin_Locll roap_sys_col

6361113 17596 5-R199(260)0 20545 Kay's Creek TH Scoping 8751 REGION 1 - Region 1 MASTER PIN u

6361114 17597 S-R199(361)0 20546 300 S. Bike LeH Scoping 8751 REGION 1 - Region 1 MASTER PIN 9]
6361115 17598 5-1448(1)0 20547 Sidewalk & BH Scoping 8751 REGION 1 - Region 1 MASTER PIN u
6361116 17599 S-1431(2)1 20548 10' multi use H Scoping 8751 REGION 1 - Region 1 MASTER PIN u
6361117 17600'571352{2}2 20549 Center Stree’H Scoping 8751 REGION 1- Region 1 MASTER PIN u
6361118 17601 S-3318(2)0 20550 4000 S. pede:H Scoping 8751 REGION 1- Region 1 MASTER PIN u
6361119 17602 S-R199(357) 20551 Bear Lake LegH Scoping 8751 REGION 1 - Region 1 MASTER PIN R
6361120 17603 S-R199(358) 20552 Historic Orch H Scoping 8751 REGION 1 - Region 1 MASTER PIN u
6361121 17604 S-R199(359) 20553 1200 W. Trail H Scoping 8751 REGION 1 - Region 1 MASTER PIN 9]
6361122 17605 F-R295(458) 20554 Ramps on I-2 H Scoping 19146 2024 HIGH VOLUME PAVEMENT PROGFI
6361123 17605 F-R299(458) 20554 Ramps on I-2H Scoping 19146 2024 HIGH VOLUME PAVEMENT PROGFI
6361124 17605 F-R299(458) 20554 Ramps on I-2H Scoping 19146 2024 HIGH VOLUME PAVEMENT PROGFI
6361125 17607 S-R395(430) 20556 Morth Nephi H Scoping 19727 EMERGING AREA PLANNNING R
6361126 17607 S-R399(430) 20556 North Nephi H Scoping 19727 EMERGING AREA PLANNNING R
6361127 17607 S-R399(430) 20556 North Nephi H Scoping 19727 EMERGING AREA PLANNNING R
6361128 17620 NEWPROJ(20569) 20569 SR-301 Culve T Concept Scoping 8756 REGION 3 - Region 3 CONCEPT MASTER PIN

6361129 17623 NEWPROJ([20572) 20572 SR-28; Nephi T Concept Scoping 8756 REGION 3 - Region 3 CONCEPT MASTER PIN
6361130 17624 S-2878(3)6 20573 *Triumph BivH Scoping 16962 MAG - EXCHANGE u
6361131 17627 NEWPROJ(20576) 20576 SR-140atSR-T Concept Scoping 8754 REGION 2 - Region 2 CONCEPT MASTER PIN
6361132 17627 NEWPROJ(20576) 20576 SR-140atSR-T Concept Scoping 8754 REGION 2 - Region 2 CONCEPT MASTER PIN
6361133 17629 5-0068(140)66 20578 Redwood Rd H Scoping 5599 Region One Conting R-1 Contingency FiU
6361134 6127 17632 S-2190(2)4 20585 Pedestrian B H Scoping 16616 REGION TWO; TRANSPORTATION SOLUU
6361135 6127 17632 S-2190(2)4 20585 Pedestrian B H Scoping 16616 REGION TWO; TRANSPORTATION SOLUU
6361136 6127 17632 S5-2190(2)4 20585 Pedestrian B H Scoping 16616 REGION TWO; TRANSPORTATION SOLUU

Figure 9. Features of the Work Zone Dataset (Part I)
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PROJECT_MANAGEI OT_RESIDENT_ENGINEI

NSLT_RESIDENT_ENGINEE!

DESIGN_ENGINEEI

Kay's creek tr 6000000 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
300 South Bik 165000 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
Cnty:FA-1448 2300000 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
Cnty:FA-1431 700500 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
Cnty:FA-1392 576000 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
Cnty:FA-3318 544500 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
SR-30; MP 10¢ 3200000 1 Local/MPO/Other Agency Pass-Through MNELSON, COREY D.
Historic Orch; 6000000 1 Local/MPO/Other Agency Pass-Through MNELSON, COREY D.
1200 West Tri 2400000 1 Local/MPO/Other Agency Pass-Through NELSON, COREY D.
F017605 FROM SR-68 F 1400000 2 Rehabilitation High Volume RICHENS, DILLON J
F017605 FROM SR-68 f 1400000 2 Rehabilitation High volume RICHENS, DILLONJ
F017605 FROM SR-68 F 1400000 2 Rehabilitation High Volume RICHENS, DILLONJ
SR-28; MP 42. 75000 3 Planning BUNKER, DARREN
SR-28; MP 42, 75000 3 Planning BUNKER, DARREN
SR-28; MP 42. 73000 3 Planning BUNKER, DARREN
SR-301; MP .0 200000 3 Drainage - Maint MONTOYA, LARRY
SR-28; MP 39. 1 3 Drainage BUNKER, DARREN
Cnty:FA-2878 400000 3 Deck Repair/Replacement MASON, ERIC A
SR-140; MP .3 o 2 Choke Point PALMER, BRADLEY G.
SR-140; MP .3 0 2 Choke Point PALMER, BRADLEY G.
SR-68; MP 66. 10000 1 Contingency Funding SLATER, BRETT
Cnty:FA-2130 380000 2 Contingency Funding COX, DAVID M WEDER, DEVIN Q
Cnty:FA-2190 380000 2 Contingency Funding COX, DAVID M WEDER, DEVIN Q
Cnty:FA-2190 330000 2 Contingency Funding COX, DAVID M WEDER, DEVIN Q
1-15; MP 250.( 50000 3 Study BUNKER, DARREN
1-15; MP 230.( 50000 3 Study BUNKER, DARREN
1-15; MP 250.¢ 50000 3 Study BUNKER, DARREN
1-15; MP 250.( 50000 3 Study BUNKER, DARREN

Figure 10. Features of the Work Zone Dataset (Part I1)

Among the three available resources, Incident Data, ProjectWise, and Masterworks, the
latter is the most useful one in extracting lane closure activities. Also, the results of cross-

referencing information from ePM (Electronic Program Management) and Masterworks show the

consistency of the two resources.
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US-89; Ordervle TWL F0089(534)84 170 70000 Kans County Federa 40830774400 Rley Chan Design B4 Buld
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Figure 11. Masterworks Interface, Including Project Information
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Figure 12. ePM Database, Including Projects Information

3.4 Summary

This study comprehensively analyzed road safety conditions in work zones using datasets

from the state of Utah. The crash dataset, comprising over 300,000 crashes from 2017 to 2021,

was cross-referenced with the work zone dataset obtained from Masterworks. By linking crashes

to specific work zones based on location and date, the study examined the impact of work zones

on crash occurrences and severity. Detailed information from the work zone dataset allowed for

identifying influential factors. The study aimed to uncover patterns, identify risk factors, and

inform the development of effective safety strategies for work zones through rigorous data

collection, cleaning, and analysis using statistical and machine learning models. The findings

contribute to enhancing work zone safety management and have the potential to improve road

safety outcomes.
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4.0 RESULTS AND FINDINGS

4.1 Overview

UDOT provided the research team access to incident data, ProjectWise, and Masterworks.
Before processing data, the research team conducted a comprehensive literature review to extract
the most influential factors affecting work zone safety. Based on the literature, the following
features are among the most influential factors in work zone safety:

1. Daytime/Nighttime
2. Traffic Volume
3. Closed Lane Counts
4. Speeding
5. Road Class
6. Number of Intersections
7. Portable Rumble Strips (PRS) or Rumble Strips
8. Speed Feedback Display
9. Automated Speed-Camera Enforcement
10. Live Police Presence
11. Advanced Information Availability
12. Construction Type
13. Weather (Foggy, Clear)

14. Light Condition

15. Dry/Wet Surface

16. ITS Technologies, such as variable speed limit (VSL) and dynamic message signs (DMS)
at an appropriate distance

17. Shoulder Width

18. Work-Zone Types: lane closure, work on shoulder-median

These factors are extracted from more than 20 papers published in recent years.
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4.2 Data Analysis

Some initial data analysis has been undertaken on crashes within work zone areas and those
without work zones. Figure 13 shows the distribution of work zones and regular crashes in different
months. The diagrams reveal fewer work zone crashes by the end of the year, probably due to the
limited number of projects happening around the state.
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Figure 13. Work Zone and Non-Work Zone Crashes by Month
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Figure 14 compares work zone incidents and regular crashes within rural and urban settings. The
findings indicate a slight discrepancy in the proportion of rural locations when comparing regular
crashes to those occurring in work zones.

Work zone Crashes by Location Regular Crashes by Location

Rural
A e
Urban
Urban

Figure 14. Work Zone and Non-Work Zone Crashes by Location

Additionally, when examining the DUI rates in work zone crashes versus regular crashes, the
proportions were found to be nearly identical (Figure 15).
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Figure 15. Work Zone and Non-Work Zone Crashes by DUI

When comparing the rate of collisions with fixed objects, work zone crashes, and regular crashes

exhibit almost the same frequency.

Work zone Crashes by Collision With Fixed Object Regular Crashes by Collision With Fixed Object
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Figure 16. Work Zone and Non-Work Zone Crashes by Collision with Fixed Object

Figure 17 displays the distribution of severity levels for work zones and regular crashes.

Work zone Crashes by Crash Severity Regular Crashes by Crash Severity
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__% Eatal . . Fatal . .
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17.7% 17.2%
Possible injury Possible injury

Figure 17. Work Zone and Non-Work Zone Crashes by Crash Severity
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Figure 18 compares work zone and regular crashes by weather condition, showing similar rates

across different weather conditions.
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Figure 18. Work Zone and Non-Work Zone Crashes by Weather Condition

Figure 19 illustrates the impact of lighting conditions on work zones and regular crashes.
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Figure 19. Work Zone and Non-Work Zone Crashes by Light Condition

Figure 20 depicts the influence of surface conditions on work zones and regular crashes.
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Figure 20. Work Zone and Non-Work Zone Crashes by Surface Condition

36



Figure 21 showcases the effectiveness of different traffic control approaches in work zones and

regular crash scenarios.
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Figure 21. Work Zone and Non-Work Zone Crashes by Traffic Control
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Figure 22 illustrates the manner of collision comparison, indicating that work zone crashes have a

10 percent higher rate of front-to-rear collisions attributable to sudden changes in speed.

Work zone Crashes by Manner of Collision Regular Crashes by Manner of Collision
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Figure 22. Work Zone and Non-Work Zone Crashes by Manner of Collision
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Figure 23 compares crash types in queue zones and regular crashes, revealing a similar pattern as

Figure 22.
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Figure 23. Work Zone and Non-Work Zone Crashes by Crash Type
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Figure 24 lists the roads with the highest number of work zones and regular crashes.
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Figure 24. Work Zone and Non-Work Zone Crashes by Road (000—000 refers to crashes

where the road name was not recorded)

Figure 25 displays the distribution of work zones and regular crashes along 1-15 in the positive

(northbound) direction.
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Figure 25. Work Zone and Non-Work Zone Crashes in 1-15P

Figure 26 displays the distribution of work zones and regular crash types along I-15 in the positive

(northbound) direction.
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Figure 26. Work Zone and Non-Work Zone Crashes in 1-15P
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Figure 27 displays the distribution of work zones and regular crashes along 1-15 in the negative

(southbound) direction.
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Figure 27. Work Zone and Non-Work Zone Crashes in 1-15N

Figure 28 displays the distribution of work zones and regular crash types along I-15 in the negative

(southbound) direction.
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Figure 28. Work Zone and Non-Work Zone Crashes in 1-15N

4.3 Rumble Strips Analysis

The location of existing rumble strips around the state was extracted from

https://digitaldelivery.udot.utah.gov/datasets/uplan::rumble-strips/about and integrated with the

extracted crashes dataset and Masterworks dataset. The following table summarizes the crashes at
3 miles before and after work zones. This 3-mile distance was chosen based on a comprehensive
review of the literature, where various research papers proposed different distances for analysis.
After evaluating these studies, the research team concluded that a 5-kilometer (approximately 3

miles) range serves as an optimal distance to assess the impact of work zones on crash rates,
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balancing the need for comprehensive data analysis with the practical considerations of crash data

availability and relevance to work zone safety evaluations.

Table 2. Frequency of Work Zone Crashes in the Presence of Rumble Strips

) 3 Miles | 2 Miles 1 Mile 1 Mile | 2 Miles | 3 Miles
Rumble Strips Before Before Before WZ After After After
WZ WZ WZ WZ WZ WZ
Total # Crashes
(Crashes & 100 140 212 1710 202 115 95
Masterworks)
Road Segments
in Rumble 92 125 169 1614 174 111 90
Dataset
Total # Roadway
Departure 20 21 25 241 21 21 13
Crashes
Rumble 14 4 9 111 10 4 5
Presence (70%) (19%) (36%) | (46%) (48%) (19%) (38%)
No Rumble 6 17 16 130 11 17 8
(30%) (80%) (64%) | (54%) (52%) (81%) (62%)

These figures show that the presence of rumble strips was generally associated with a lower
percentage of roadway departure crashes compared to the absence of rumble strips. Interestingly,
the table also suggests that rumble strips have less impact in work zone areas compared to areas
before and after the work zone. While most roadway departure crashes in areas before and
after awork zone occurred in areas with no rumble strips, there was almost the same number
of roadway departure crashes in areas with and without rumble strips within the work zone
itself.

4.4 Traffic Countermeasure Analysis

The traffic countermeasure strategies most commonly used by UDOT are as follows:
1. Pave or Widen Shoulder
2. Left-Turn Lane

3. Shoulder Rumble Strips
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Roundabout or Signal
Horizontal Curve Improvements
Left-Turn Phase Change

Clear Zone Improvements
Right-Turn Lane

© o N o g &

Active Transportation Improvement
10. Shoulder Barrier
11. Intersection Lighting
12. Raised Median
13. Centerline Rumble Strips
14. Median Barrier
In order to better understand the effect of each countermeasure, the number of crashes that
occurred within a 3-mile distance from and within the work zones are summarized in Table 2. The
table presents the following information:
e The table presents the cross-referenced data from the Numetric and Masterworks datasets.
e The first line indicates the number of crashes for which information was available in the
rumble Masterworks and Numetric Crashes dataset.
e The next 14 lines show the number of crashes that happened in the presence of each safety
countermeasure.

The table provides a comprehensive overview of the number of crashes within the 3 miles from

and within the work zones for each countermeasure strategy. This analytical approach of

examining crashes within specific distances from work zones, especially extending to 3 miles, is
instrumental for traffic engineers seeking to comprehend the effectiveness of various traffic control
and safety measures at different proximities to work zones. This tiered distance analysis (1, 2, and

3 miles) before and after work zones is critical for several reasons:

1. Early Warning and Driver Behavior: It helps understand how early warning signs and other
preemptive measures influence driver behavior well before the work zone. Drivers' responses
to such measures can vary significantly, and the extended analysis helps identify the optimal
placement for these warnings to enhance safety.

2. Traffic Flow and Congestion Analysis: By analyzing crash rates at varying distances,

engineers can gauge the impact of work zones on traffic flow and congestion, which often
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begins to manifest several miles before a work zone. This can inform strategies to mitigate
congestion and reduce crash risks.

Evaluating the Impact of Countermeasures Over Distance: Different countermeasures may
have varying degrees of effectiveness based on distance from the work zone. For instance,
some measures might be more effective in immediate proximity, while others have a broader
impact, reducing the likelihood of crashes due to traffic buildup or changes in traffic patterns
several miles away.

Comprehensive Safety Planning: This approach allows for a more nuanced safety analysis,
facilitating the development of tailored strategies that address both immediate and distant risks
associated with work zones. It acknowledges that the influence of a work zone on driver
behavior and safety extends beyond its physical boundaries.

The analysis demonstrates the impact of these countermeasures in reducing the number of crashes.

They are sorted based on their popularity (i.e., how frequently they are implemented). The results

reveal that the presence of countermeasures is generally associated with a lower percentage of

work zone crashes compared to their absence. However, the effect of countermeasures in reducing

the number of crashes is almost the same for areas before, after, and within the work zone.

Moreover, the analysis shows that nearly 60% of work zone crashes happened in areas without

traffic countermeasures.

Table 3. Frequency of Work Zone Crashes Considering the Traffic Safety Countermeasures

3 Miles | 2 Miles | 1 Mile 1 Mile | 2 Miles | 3 Miles

Traffic Countermeasures Before | Before | Before |WZ| After | After | After
WZ WZ WZ WZ WZ WZ

Total # crashes (cross-
referencing Numetric crashes & 100 140 21211710 202 115 95
Masterworks)
Paved or widened shoulder 11 9 14| 153 15 9 7
Left turn lane 4 4 12| 69 6 10 6
Shoulder rumble strips 11 7 14 95 9 6 5
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Roundabout or signal 0 3 5| 41 3 5 0
Horizontal curve improvements 6 5 8 87 7 4 5
Left-turn phase change 3 4 8 47 3 6 3
Clear zone improvements 6 3 9 91 10 3 10
Right-turn lane 1 5 2| 18 9 3 2
Active transportation o) 0 311 0 0 2
improvement

Shoulder barrier 0 1 3| 37 3 0 4
Intersection lighting 2 2 1 17 3 3 2
Raised median 0 0 3 19 3 2 0
Centerline rumble strips 1 1 0 12 1 1 2
Median barrier 0 1 0 8 0 0 1
No countermeasure 53 95 130[1005 130 63 46
Percentage of No 53%  68%  61%|59%|  64%|  55%| ~ 48%
Countermeasures

4.5 Contract Type Analysis

This analysis aims to understand how different contract types may influence the occurrence

of crashes. The findings of this analysis have been summarized in Table 4. Our analysis reveals

that CMGC contracts exhibit a more significant increase in the number of crashes as vehicles

approach work zones compared to other contract types, which could be related to both the sample

size and poor safety management. Also, based on normalization results (Table 5), Desing-Bid-

Build contracts are the safest ones, and CMGCs are the most dangerous ones. Moreover, based on

the results, work zones have a total crash (all 5 classes) rate of 0.63 per 100 million VMT. At the

same time, they have a fatality rate of 0.004 per 100 million VMT.

Table 4. Effect of Contract Types on the Frequency of Work Zone Crashes

Contract Type

3 Miles
Before WZ

2 Miles
Before WZ

1 Mile
Before WZ

WZ

1 Mile
After WZ

2 Miles
After WZ

3 Miles
After WZ
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Total # Crashes
(Cross Referencing 100 140 212| 1710 202 115 95
Numetric Crashes
& ProjectWise)
CMGC 2% 2% 7%| 4% 6% 0 1%
Design-Build 28% 31% 10%| 14% 11% 41% 34%
Design-Bid-Build 70% 67% 83%| 82% 83% 59% 65%
Table 5. Crash Rates Based on Contract Types
Contracts Count  Average Duration Average Length Total Crash Per
(Days) (Miles) 100M VMT
CMGC 71 469 1.7 5.45
Design - Build 238 830 4,92 1.02
Design, Bid, Build 1401 223 10.1 0.57
Additionally, the following table lists the number of non-work zone crashes in Utah.
Table 6. Non-Work Zone Crashes in the State of Utah
Suspected Suspected Possible No
Year VMT Fatal Serious Minor Iniur Injury/  Total
Injury Injury jury PDO
2017 | 31,510,020,465 | 236 1,167 5,678 10,404 42,608 | 60,093
2018 | 32,258,369,802 | 226 1,094 5,588 10,314 41,490 58,712
2019 | 32,933,228,764 | 205 1,055 5,711 10,660 43,254 | 60,885
2020 | 30,189,193,125 | 245 1,240 5,412 8,256 33,132 | 48,285
2021 | 33,755,013,902 | 289 1,378 6,615 9,532 41,215 | 59,029
Total | 160,645,826,058 | 1,201 5,934 29,004 49,166 201,699 | 287,004

Based on data in Table 6, Table 7 summarizes the non-work zone crashes per 100 million VMT.

Year Fatal Suspected Suspected  Minor Possible No Total
Serious Injury  Injury Injury Injury/PDO

2017 0.75 3.70 18.02 33.02 135.22 190.71

2018 0.70 3.39 17.32 31.97 128.62 182.01

2019 0.62 3.20 17.34 32.37 131.34 184.87

2020 0.81 4.11 17.93 27.35 109.75 159.94
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2021 0.86 4.08 19.60 28.24 122.10 174.87
Average | 0.75 3.69 18.05 30.61 125.56 178.66

When contrasting the crash rates between work zones and non-work zones in Utah, it's evident

that work zones exhibit significantly higher safety levels, evidenced by lower crash rates.

4.6 Potential Work Zone Crashes

Effective road safety management requires a comprehensive understanding and analysis of
crash data, particularly those occurring in work zones. In this section, we examine work zone and
non-work zone crashes, focusing on the meticulous process of identifying unmarked work zone
incidents through cross-referencing location and date data. Additionally, we address discrepancies
observed in crash data and propose further investigation methods to enhance data accuracy and
alignment. Through this analysis, we aim to shed light on the intricacies of work zone crash data
and underscore the importance of robust data management practices in ensuring road safety.

As indicated in Table 8, a significant portion of unmarked work zone crashes were
identified by cross-referencing the location and date of the incidents with known work zones. This
meticulous process allowed for the identification of crashes that occurred in close proximity to
work zones but were not explicitly labeled as ‘work zone related." For these instances, further
examination using ClearGuide data is proposed. ClearGuide data analysis could unveil additional
insights, particularly regarding incidents that occurred near work zones during periods of reduced

speed, which are commonly associated with such construction areas.
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Table 7. Potential Work Zone Crashes

Start_DAT & Substantially

2-3 Mile

1-2 Mile

0-1 Mile

Work

0-1 Mile

1-2 Mile

2-3 Mile

Complete Date

Before

Before

Before

Zone

After

After

After

el b (e 2 i 2017 2660 2846 | 11554 | 2494 2114 2018
referenced Crashes
Marked as Work Zone 119 185 255 1774 281 160 156
Involved
b LRI e LB e 1898 2475 2591 9780 | 2213 1954 1862
Involved

Severity
Fatal 8 11 12 63 8 11 13
Suspected Serious Injury 41 44 56 193 39 41 31
Suspected Minor Injury 199 246 281 928 226 244 215
Possible injury 375 517 531 2130 458 404 352
No injury/PDO 1394 1842 1966 | 8240 | 1763 1414 1407

As shown in Table 9, out of the 15,550 work-zone-involved crashes in Numetric:

e Around 5300 did not occur within the work zone activities' reported start and end mileage.

Approximately 3000 of them occurred on roads where there were no reported work zones
in Masterworks.

Approximately 3000 occurred in the reported location of work zones but not within the
reported start and end times of the work zones.

Finally, 700 were either recorded with peculiar road names (e.g., 5700000, 000-000, ...) or

had no road names provided.
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The substantial number of unreported work zone crashes highlights the serious issue of

underreported incidents that may occur within work zones.

Table 8. Reasons for Differences in Detected Work Zone Crashes

Total Number of Work Zone Crashes in the Numetric 15550
Road & Mileage Mismatching 5300

Road Mismatching (no work zone happened on the 3600
crash road)
Find and Matched 3000

Timing Mismatching (The time of crash and work 3000
zone did not match)

Weird Road names (000-000, ...) 413
No Road Names 244

4.7 Safety Countermeasures

In this section, an extensive review and analysis of work zone safety countermeasures
drawn from a comprehensive selection of sources, including DOT reports, National Cooperative
Highway Research Program (NCHRP) publications, the Manual on Uniform Traffic Control
Devices (MUTCD), and various research papers will be presented. The objective is to assess and
compare the effectiveness of these countermeasures in mitigating the risk of crashes within
construction work zones. The primary metric used for this comparison is the crash modification
factor (CMF), a parameter that quantifies the impact of safety measures on crash reduction. A
CMF is a statistical parameter used to evaluate the effectiveness of a safety intervention or
countermeasure. It quantifies the change in the expected number of crashes after implementing a
specific safety measure when compared to a baseline or control condition. CMFs are typically
calculated by analyzing historical crash data for sites with and without safety measures.

CMF = Crash Frequency After Countermeasure (12)
~ Crash Frequency Before Countermeasure
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For example, if the baseline crash frequency before implementing a new work zone safety measure
is 100 accidents per year, and after implementation, the crash frequency decreases to 80 accidents
per year, the CMF would be:

CMF = 80 =0.8
100

This CMF value of 0.8 indicates that the safety measure resulted in a 20% reduction in crashes
compared to the baseline condition. A CMF less than 1 suggests that the intervention effectively
reduces crashes, while a CMF greater than 1 indicates that it may increase crash risk. Hence, a
lower CMF indicates a more effective countermeasure.

Based on the literature review, the available work zone traffic control approaches can be
divided into 3 main groups, including 1) Speed Control Group, 2) Intrusion Prevention and
Warning Systems, and 3) Human-Machine Interaction Detection Systems. However, in order to
include all the available measures, two additional groups, 4) Smart Work Zone (Advanced
Technology) and 5) Traditional Approaches, were included in the report. Additionally, the analysis
considered various data collection techniques prevalent in the reviewed literature. These
encompassed methods such as interviews with transportation professionals and field data

collection for specific time periods within construction work zones.

4.7.1 Speed Control Group

This category primarily focuses on controlling vehicle speeds within construction work zones. The

following countermeasures are included:

e Portable changeable message signs (PCMSs) or Variable message signs (VMS): Widely
adopted by DOTSs due to their portability and adaptability.

e Dynamic speed displays: Effective in reducing speeds, although costlier to implement.

e Portable rumble strips (PRS): Offers speed reduction benefits and is relatively cost-
effective.

e Police enforcement: Traditional and known for reducing speeds but comes with a
significant cost.

e Radar speed displays or Drone Radar (iCone): These systems provide both speed reduction

and less speed variation, making them a subject of considerable research interest.
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e Variable Speed Limit (VSL) systems: Studied extensively, with a 0.9 CMF suggesting their
effectiveness in reducing crashes.

e Automated Speed Enforcement and other technologies are also explored in the literature
but might be less commonly favored by DOTSs due to various factors such as cost and public

acceptance.

Figure 29. iBarrel from iCone is Used to Provide Real-Time Information on Traffic Patterns

in a Work Zone.

4.7.2 Intrusion Prevention and Warning Systems

This category primarily aims to protect workers and prevent unauthorized access to work zones.

e Positive Protection Systems (PPS): Preferred for their significant cost savings in terms of
injury and crash costs, such as:

o Water-Filled Barriers: These barriers are made from plastic and filled with water to
provide weight. They are used to absorb impact energy during a collision, reducing
the risk of severe injuries. Water-filled barriers are often used where a lighter-
weight barrier is preferred or where rapid deployment and removal are needed.

o Crash Cushions: These are impact attenuators placed at the ends of barriers or
hazards to absorb impact energy and reduce the severity of collisions. Crash
cushions are designed to be hit and can significantly decrease the damage and

injuries resulting from a crash.

49



o Truck-Mounted Attenuators (TMAS): TMAs are mounted on the back of a truck to

protect workers and equipment from errant vehicles. They are designed to absorb

impact energy if a vehicle crashes into the truck, reducing the severity of the

collision.

Figure 30. Positive Protection in Work Zones for Protecting Workers

¢ Intrusion Alert Technologies (IAT) and the use of retroreflective devices are mentioned as

additional means to enhance intrusion prevention, such as:

@)

Infrared Sensors: Utilize infrared beams to detect motion or intrusion into
designated areas. When the beam is broken, an alert is triggered, warning the work
crew of the potential danger.

Laser Scanners: Employ laser technology to monitor predefined zones for
unauthorized intrusions. Upon detection, they can activate warning signals to alert
workers.

Wearable Alert Devices: These devices can be worn by workers and are activated
either manually or automatically in response to an intrusion alert, providing
immediate notification through vibrations, sounds, or visual cues.

Automated Flagging Assistance Devices (AFADs): While primarily used for traffic
control, some AFADs are equipped with intrusion detection capabilities to enhance

worker safety by alerting when vehicles mistakenly enter the work zone.
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4.7.3 Human-Machine Interaction Detection Systems

e Focuses on improving communication and awareness between workers and drivers.
e Proximity warning systems (PWSs) and visual-based warning systems (VWS) are

discussed as potential safety measures, though their adoption might vary.

4.7.4 Smart Work Zone (Advanced Technology)

e Involves the integration of advanced technologies to enhance work zone safety.

e Unmanned Aerial Systems (UAS) and audible warning alarm systems are highlighted as
worker safety measures. For example, using UAS, workers and equipment within the work
zone could be automatically identified and tracked using object detection algorithms
applied to aerial images captured by UAS. Another potential application of UAS is the
development of an alarm system to alert workers about an approaching upstream vehicle.

e Queue Warning Systems, ITS countermeasures, and LIDAR technology are explored as

ways to reduce crashes and improve traffic flow.

4.7.5 Traditional Approaches

These approaches include standard practices that have been used in work zone traffic control for

years.

e Increasing shoulder width, reducing lane widths, and implementing lane closures are
common practices, although their effectiveness might be situation-dependent.
e Transition areas are identified as critical and potentially dangerous zones within work

Zones.

Table 9. Summarizing the Most Common Work Zone Countermeasures and Their Effects

Category Parameter Effect CMF Implementation  Other

Speed Speed-limit signs and | - All States Drivers glanced at
Reduction . 0

Systems work zone signs 40% frequency.
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Variable Speed Limit | - 0.9 - -
(VSL)
Police enforcement 5-10 MPH 0.59 All states -
speed
reduction
Automated Speed 0.83 Photo speed
Enforcement enforcement
systems
Radar speed displays | 6%-23% - Florida, Oregon, Less variation in
or Drone Radar speed California, ... speeds
(iCone) reduction
Variable message 1-11 MPH - Most popular in
signs speed literature
Portable changeable reduction - Iowa, Oregon, ... Most common
message signs between DOTs
(PCMSs)
Dynamic speed 0.54- lowa, Indiana Cost 9.5K
displays 0.85
Portable rumble strips | 6-14 MPH 0.4-0.9 | Missouri, Georgia, | Cost 1K
(PRS) Speed Ilinois, lowa,
reduction Kansas, Minnesota,
Texas,
Washington,
Wisconsin, ...
PRS + Queue 0.59 Indiana Cost 250K
Warning System
Use of blue LED Florida

light trailers in work
zones where police
detail is not required

Intrusion
prevention and
warning
systems (IPWS)

Positive protection
systems (PPS),
including concrete
barriers, ballast-filled
barriers, shadow
vehicles, vehicle
arrestors, guardrails,
traffic control
barriers, terminal end
treatments, impact
attenuators, sand
barrel arrays, and
truck mounted and
trailer mounted
impact attenuation

Save injury cost
savings to DOTs
and contractors in
the US of up to
$1.1 million
annually and a
crash cost savings
of $196,885

Intrusion alert
technologies (IAT),
including infrared
beams, microwaves,
and pneumatic
pressured tubes as
triggering
mechanisms,
Sonablaster,
Intellicone, traffic

Oregon (Research)
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worker alert systems,
and advanced
warning and risk
evasion (AWARE)

Automated Flagger

Use of retroreflective
devices

Human-
machine-
interaction
detection
systems

Proximity warning
systems (PWSs)

Georgia (Research)

Visual-based warning
system (VWS)

Smart Work
Zone
(Advanced
Technology)

Using Unmanned
Aerial System (UAS)
for Active Safety
Monitoring

Georgia (Research)

Worker Safety

An audible warning
alarm system to alert
workers

Research

In-vehicle work zone
warning application
under the connected
vehicle (CV)
environment

Research

Queue Warning
System or End-of-
Queue Warning
System

0.3-0.5

Texas (Research)

Reduced Crashes
by 44%.

Intelligent
Transportation
Systems (ITS)
countermeasures,
including Variable
Speed Limit (VSL),
Dynamic Message
Sign (DMS)

Some states

Reduced rear-end
collision by 14%

Alarm device and
directional audio
system (DAS)

Missouri
(Research)

Reduce Vehicle
Merging Speed

Using LiDAR for
Vehicle Detection

U.S. DOT
(Research)

Traditional
Approaches

Increase Shoulder
Width

0.9-1

Cost 1K

Reduced lane widths

Shoulder closures

Lane closures

Lane shifts
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Retroreflectivity of - - - -
Pavement Markings
Provision of advance | - - - -
warning areas
Buffer spaces - - - -

Transition areas - - - Most Dangerous
Area

Tapers - - - -

Speed Humps - - - -

While multiple work zone countermeasures are available, the precise effects of certain measures
or their combinations remain unstudied. Despite the abundance of reports and literature in this
field, portable changeable message signs (PCMSs) emerge as the most frequently employed
countermeasure among DOTSs, while variable message signs hold this distinction in the literature.
Notably, the literature identifies transition areas as the most hazardous zones within work

Z0nes.

4.8 State-of-the-Practice in DOTs

In this study, a survey was distributed among all DOTSs to assess their satisfaction with any
of the listed work zone safety countermeasures. This section presents a comprehensive summary
of the findings derived from a survey that engaged the active participation of 24 responses
collected from 22 states. Each response provided valuable insights into various factors influencing
workplace safety and satisfaction. The states that responded to our survey include:

Table 10. List of Engaged States

Kansas Pennsylvania California Illinois
Vermont Maryland West Virginia Delaware
North Carolina Wisconsin Georgia Florida
South Dakota Minnesota ARDOT Missouri
Michigan Washington, DC Oklahoma

Kentucky lowa Colorado

54




4.8.1 Factor Analysis

The survey results highlight factors that significantly impact safety and satisfaction, with

satisfaction levels ranging from highest to lowest as follows:

Table 11. List of Work Zone Countermeasures and Satisfaction Levels

Factor Very Satisfied Satisfied|Neutral|Dissatisfied|Very Dissatisfied|
Portable Changeable Mess?ge Sign 21% 67% 8% 0% 0%
(PCMS) or Variable (Dynamic) Message

Lane Closures 8% 79% 4% 0% 4%
Retroreflective devices 29% 58% 8% 0% 0%
Police Enforcement 25% 54% 13% 8% 0%
Shoulder Closures 8% 71% 17% 0% 0%
Positive protection systems (PPS) 25% 38% 13% 0% 0%
Queue Warning System 25% 33% 29% 0% 0%
Portable Rumble Strips (PRS) 13% 42% 17% 4% 13%
Speed Limit and Work zone signs 4% 50% 25% 8% 4%
Automated Flagger 13% 38% 21% 4% 0%
Reduced Lane Width 0% 50% 42% 0% 0%
Radar Speed Display or Drone Radar 0% 50% 21% 0% 0%
Warning Lights (LED light trailers, ...) 4% 42% 25% 0% 0%
Dynamic Speed Display (DSD) 13% 21% 29% 4% 0%
Variable Speed Limit (VSL) 8% 13% 13%  |0% 0%

4.8.2 Other Methods

Furthermore, the survey collected responses on additional factors and their corresponding

satisfaction levels, including:

Table 12. Non-Listed Work Zone Features and Satisfaction Levels

Factors Satisfaction

Sequential flashing warning lights on merge | Very Satisfied

tapers

Work zone presence lighting Dissatisfied
Zipper Merge Satisfied

Full Closures Very Satisfied
""Obey the flagger" sign placed on the Satisfied

center line across from the **flagger
symbol™ sign
Sequential flashing warning lights Satisfied

Automated WZ Speed Enforcement Very Satisfied
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Protection Vehicle

Not mentioned

Maintenance Zone Enhanced Enforcement
Program (MAZEEP)

Not mentioned

Solar Advanced Warning Systems (SAWS)

Not mentioned

Speed Photo Enforcement

Satisfied

4.8.3 Challenges

In addition to the satisfaction ratings, the report delves into the challenges associated with

implementing these safety measures within work zones. These challenges are thoroughly

documented, providing a comprehensive overview of the current landscape and opportunities for

improvement in work zone safety and satisfaction.

1.

o 0 bk~ w

9.

Lack of agency staff and reliance on external resources do not build institutional knowledge
within the agency. Staffing issues also make implementation of new/innovative strategies very
difficult with current project workloads.

Cost, ways to introduce new devices since the traffic control methods are left to the contractor
as long as they meet state standards and the MUTCD.

Too many devices to set up/takedown each day.

Lots of worker exposure.

Hard to get contractors to install devices in accordance with standards and specifications.
Variable speed limits required legislative approval and were not initially approved but
eventually passed.

KYTC piloted some temporary rumble strip projects in 2021 and 2022, but feedback from the
Districts was not positive. Issues of the strips either sliding or breaking apart were the common
complaints. Further research into the products used and where they were installed (i.e., curves
or downhill grades) is needed to determine the cause of the issues.

Contractor and maintenance force compliance with TTC policies, regulations, and laws when
implementing TTC devices.

Evaluating the effectiveness of strategies

10. Developing guidelines and specs (measurement and payment).

11. Driver compliance
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12.

13.

14.

15.

16.
17.
18.

19.
20.

Driver distraction and inattentiveness have been a big issue this season, along with commercial
vehicles.

I find it hard to install the operation as designed due to contractor installation on a daily basis
and constant monitoring of all installations for effectiveness.

Blue lights become less effective.

Time & Availability. In some instances, getting the needed equipment to use and getting
feedback on some new devices takes time. That said, our administration and senior staff are
very supportive of cutting-edge technology.

Maintenance of devices.

Resistance to Change - Technology Integration.

Takes time to provide effective results that will influence change allowance as cost/benefit is
a difficult balance with all safety and even more challenging when the DOT is not in control
of the General Contractor for a project. The changes needed to the overall culture/behavior of
the Department, contractors, decision-makers, and the general traveling public is a dynamic
target with the many different parts of the state that Delaware has and the roadway network
that the DOT is responsible for (subdivision streets through limited-access tolled interstate
roads).

Availability of law enforcement officers (LEOS), industry resistance to some new methods
Driver behavior post-COVID continues to be a challenge with elevated speed.

4.9 Speed Effect

This section analyzes the effect of work zones on drivers' speed. The dataset used for this

analysis comprises information from over 200 work zones in Utah using Clearguide, Iteris probe

data. We first examined the distribution of work zones across different years to gain insights into
the data.
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Figure 31. Work Zone Distribution Across Different Years

Using the Clearguide API, we extracted speed information during work zones and
compared it with data from one month before implementing work zones. This comprehensive
analysis encompassed various speed metrics, including minimum, maximum, average, median,
and average travel times. After thoroughly examining these speed metrics within work zones and
comparing them to the pre-work zone data, our analysis revealed no significant evidence of an
association between work zones and speed reduction. Figure 32 shows the distribution of speed

changes in work zones.

Speed Change Distribution
120

60

0 — | _-. .—-—__

Figure 32. Distribution of Speed Changes in Work Zones
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On average, the speed reduction observed was minimal, approximately around 1%. This
finding suggests that while slight variations in speed within work zones may exist, it does not
translate into a substantial or statistically significant reduction in vehicle speeds. Upon a detailed
examination of the data utilized for this analysis, the researchers identified that the scarcity of
probe data gathered at work zone sites might account for the minimal differences observed in
speeds within work zone areas. Figure 33 displays a screenshot of the Clearguide data for a specific
date at a work zone location. The scarcity of probe data, characterized by a limited number or
absence of probe data points, has resulted in instances where the minimum and maximum speeds
recorded are identical. This uniformity in speed values can be attributed to the insufficient data
available for analysis, underscoring the challenge of accurately assessing speed variations within
work zones due to the lack of comprehensive data collection.

iteris

Figure 33. Clearguide Screenshot Showing the Minimum and Maximum Speeds at a Work

Zone Location

4.10 Feature Importance Analysis

Feature importance analysis identifies and ranks the most critical features or variables that
contribute to the performance of a predictive model. It helps determine which features have the

most significant impact on the model's output and can be used to improve the model's performance
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by discarding irrelevant or redundant features. By highlighting the relative importance of each
feature, it allows data scientists and analysts to focus on the most impactful variables, optimizing
the model by potentially discarding irrelevant or minimally influential ones. This process enhances
the model's efficiency and accuracy and provides insights into the relationships and dependencies
between the features and the target variable. In essence, feature importance ranks the attributes in
terms of their significance in predicting the outcome without necessarily specifying their exact
values or impact directions. The results of the feature importance analysis depicted that the
following features were the most influential factors in crash severity in work zones, listed in order
of decreasing importance:

e Roadway Surface Condition (Dry, Wet, Snow, ...)

e Crash Type (Roadway Departure, Rear-end, Mid-block, ...)

e Motorcycle Involved (Yes/No)

e Weather Condition (Clear, Cloudy, Rainy, ...)

e Roadway Junction Type (Crossover, Intersection, Ramp, ...)

e Type of Project (Transportation, Rehabilitation, ...)

e Drowsy Driving Involved (Yes/No)

e Domestic Animal Involved (Yes/No)

e Manner of Collision (Head On, Front to Rear, Rear to Side, ...)

e Holiday Crash (Yes/No)

e Disregard Traffic Control Device Involved (Yes/No)

4.11 Severity Prediction Models

In order to predict the severity of work zone crashes accurately, we developed two groups
of classifiers. The first group comprised traditional machine learning algorithms such as Decision
trees, Random forests, and XGBoost. These algorithms were selected for their robustness and
ability to handle complex datasets. The second group consisted of probabilistic machine learning
models such as Gaussian Naive Bayes (GNB) and Complement Naive Bayes (CNB). By
leveraging the strengths of both traditional and deep learning approaches, we aimed to achieve

comprehensive and accurate predictions of work zone crash severity.
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4.11.1 Deterministic Machine Learning Models

Three popular machine learning algorithms, namely Decision tree, Random forest, and
XGBoost, were utilized to train and assess the performance of the work zone crashes dataset. The
objective was to assess the effectiveness of these algorithms in predicting and analyzing the
severity of work zone crashes, considering five different classes of crash severity. After rigorous
training and testing procedures, the results obtained from the experiments have been meticulously
summarized in Table 14. This table presents key performance metrics for each algorithm, such as
accuracy, precision, recall, and F1-score, providing valuable insights into their predictive

capabilities for different severity levels of work zone crashes.

Table 13. Results of Deterministic Machine Learning Models

Model Classes F1-Score  Accuracy
DT Fatal 0.57 0.67 0.62
No Injury/PDO 0.91 0.88 0.89
Possible Injury 0.65 0.69 0.67
- - 83%
Suspected Minor Injury 0.65 0.69 0.67
Suspected Serious Injury | 0.69 0.75 0.72
Total 69.4% 73.5% 73.5%
RF Fatal 1 0.67 0.80
No Injury/PDO 0.89 0.97 0.93
Possible Injury 0.84 0.64 0.72
i i 89%
Suspected Minor Injury 0.92 0.78 0.84
Suspected Serious Injury | 1 0.75 0.86
Total 92.9% 76% 76%
XGBoost | Fatal 1 0.83 0.91
No Injury/PDO 0.88 0.96 0.91
Possible Injury 0.76 0.62 0.68
- - 87%
Suspected Minor Injury 0.93 0.69 0.79
Suspected Serious Injury 1 0.75 0.86
Total 91.25% 76.9% 76.9%
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4.11.2 Probabilistic Machine Learning Models

Two types of Naive Bayes classifiers have been used in this study, including Gaussian Naive
Bayes (GNB) and Complement Naive Bayes (CNB). GNB can be a good choice when dealing with
a few classes, as it assumes that each feature is normally distributed within each class. This can make
GNB less sensitive to outliers and noise in the data. Additionally, GNB can be computationally
efficient and require less training data compared to more complex algorithms (Dimitrijevic et al.,
2022). On the other hand, CNB is designed to handle class imbalance, as it estimates the probability
that a feature is absent in the other classes. Therefore, this study has chosen CNB and GNB as the
two methods to evaluate their performance on the crash dataset.

Moreover, to enhance the performance and simplify the classification process, a revision
has been made to the class labels in the system. The original class label "Suspected Minor Injury”
has been replaced with the label "Possible Injury,” resulting in a reduced number of classes from
5 to 4. This revision brings several advantages to the system. By consolidating the "Suspected
Minor Injury” class into the broader category of "Possible Injury,” the classification task becomes
more streamlined and easier to interpret. The distinction between minor and more severe injuries
can be challenging and subjective, often leading to ambiguity in classification. The revised class
label helps to alleviate this issue by providing a more inclusive category that covers a wider range
of potential injuries.

Table 14. Results of Probabilistic Machine Learning Models

Category Classes Precision | Recall F1-Score| Accuracy

Probabilistic ML GNB Fatal 0.80 0.67 |0.73
No Injury/PDO 0.94 0.71 |0.81

Possible Injury 0.55 0.90 |0.68 76%
Suspected Serious Injury |0.43 0.50 (0.46
Weighted Average 82% 76% |77%
CNB Fatal 0.21 0.67 10.32
No Injury/PDO 0.82 0.83 10.83

Possible Injury 0.62 0.52 10.56 7%
Suspected Serious Injury |0.27 0.50 (0.35
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Non-probabilistic ML [XGBoost |Fatal 1 0.67 0.80
No Injury/PDO 0.89 0.93 [0.91
Possible Injury 0.78 0.71 10.74 86%
Suspected Serious Injury [0.75 0.50 ]0.60

ROC curve (AUC-ROC=0.93)

1.0
0.8 4
z
E 0»6 -
[
=
%
o
=3
o 0.4
=
=
0.2 4 ,,’ —— Fatal (AUC=0.99)
t,’ ~—— No injury/PDO (AUC=0.91)
o —— Possible injury (AUC=0.91)
004 ¥ —— Suspected Serious Injury (AUC=0.92)
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 34. ROC Curve for Random Forest
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Figure 35. Confusion Matrix for Random Forest

4,12 Summary

The methodology employed in this study encompasses a multifaceted approach to
comprehensively analyze work zone safety. Initially, the study gathered relevant data from various
sources, including crash reports, speed analyses, and documentation from state DOTSs. The study
utilized machine learning models to predict crash severity, leveraging features such as location,
time of day, weather conditions, and work zone characteristics. The models were trained on
historical crash data and evaluated for their predictive accuracy.

Furthermore, the effectiveness of longitudinal rumble strips was assessed through a
detailed analysis of roadway departure crashes. This analysis involved comparing crash rates
within and outside work zones, shedding light on the overall impact of rumble strips on safety. In
addition, the study investigated the influence of different contract types on crash occurrence by
analyzing crash data in conjunction with contract specifications. This analysis revealed insights
into the relationship between contract mechanisms and work zone safety. Moreover, the study
conducted an extensive literature review to identify and evaluate various work zone safety

countermeasures. Sources included DOT reports, NCHRP publications, MUTCD guidelines, and
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academic research. The identified countermeasures were categorized into five groups based on
their approach to traffic control.

Additionally, the study surveyed all DOTSs to gather insights into factors influencing safety
and satisfaction within work zones. The survey responses provided valuable qualitative data,
complementing the quantitative analyses conducted in other parts of the study. Overall, this
methodology integrates quantitative analysis, machine learning techniques, literature review, and
survey research to assess work zone safety and identify effective countermeasures

comprehensively.
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5.0 CONCLUSIONS

5.1 Summary

In conclusion, this study offers valuable insights into work zone safety through a
comprehensive analysis of various factors and the effectiveness of safety countermeasures. The
utilization of machine learning models has demonstrated promising results, with 89% accuracy
using random forest in predicting crash severity, providing a basis for further research and
implementation in work zone management. The analysis of longitudinal rumble strips has revealed
their overall impact on reducing roadway departure crashes, albeit with varying effectiveness
within work zones. This highlights the need for further investigation and potential modifications
to optimize their implementation for enhanced safety. Additionally, the data analysis section
reveals that front-to-rear collisions are more common in work zones, attributed to sudden changes
in speed.

Moreover, the study has identified the influence of contract types on crash occurrence,
emphasizing the importance of considering contract specifications in relation to safety measures
within work zones. The analysis revealed that Design-Bid-Build contracts exhibit the lowest crash
rates, with 0.57 crashes per 100 million Vehicle Miles Traveled (VMT), while Construction
Manager/General Contractor (CMGC) contracts have the highest, with 5.45 crashes per 100
million VMT. This finding underscores the need for collaboration between transportation agencies
and contractors to ensure the implementation of appropriate safety measures. Moreover, given the
national fatality rate of 1.24 per 100 million Vehicle Miles Traveled (VMT), it is evident that
UDOT is performing commendably in managing safety within work zones.

The comprehensive review of safety countermeasures has provided a robust foundation for
identifying effective traffic control and intrusion prevention strategies. This study offers practical
insights for transportation agencies to enhance work zone safety by categorizing these
countermeasures and examining their state of the practice. One of the key insights from the
literature review is that transition areas are identified as the most hazardous zones within work
zones. Additionally, the survey conducted among DOTSs has enriched our understanding of factors
influencing safety and satisfaction within work zones, contributing qualitative insights to

complement the quantitative analyses conducted in the study. The findings indicate that Portable
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Changeable Message Signs, Lane Closures, Retroreflective Devices, and Police Enforcement rank
as the most effective methods for traffic control in and around work zones, according to the DOTs
surveyed.

Overall, this study underscores the importance of implementing evidence-based safety
measures and continuing research efforts to address the complex challenges associated with work
zone safety. By adopting a multi-faceted approach and leveraging emerging technologies, we can
work towards creating safer work zones, reducing the occurrence and severity of crashes, and
ultimately improving overall road safety for all users. In conclusion, our study employed various
approaches to analyze work zone safety and explore factors influencing crash occurrence. We
utilized machine learning models, such as decision trees, random forests, and extreme gradient
boosting, achieving promising accuracy levels. Additionally, we conducted a comprehensive

analysis of different aspects related to work zone safety.

5.2 Safety Suggestions

Table 16 summarizes the safety suggestions based on the results of the analysis.
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Table 15. Safety Suggestions Based on Analysis Results

Problem Strategy Effect

Contractor Safety Implementing Safety Training and Reduced Frequency and
Compliance Education, Suggesting Benefits for Severity of Crashes,
Implementing Safety Enhanced Workplace Safety
Countermeasures, inspection, and
penalty

High Number of Having temporary traffic -
Crashes at Locations countermeasures

with No

Countermeasures

Retroreflective Devices

Manual Traffic Control Integrating smart traffic control Reduces human error and
systems with real-time monitoring to  the need for manual traffic
adapt to changing conditions. control while improving the

response time to dynamic
traffic conditions
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5.3 Limitations

Despite the comprehensive analysis conducted in this study, certain limitations must be
acknowledged. One significant constraint is the lack of accurate and comprehensive data regarding
the presence and deployment of work zone countermeasures. This limitation hindered our ability
to conduct a thorough investigation and understanding of the effectiveness of these
countermeasures. Without precise information on the implementation and usage of various safety
measures within work zones, it is challenging to assess their impact accurately. Additionally, the
availability of historical crash data, while extensive, may still contain inherent biases or
inconsistencies that could influence the study's findings. Thus, future research endeavors should
prioritize the collection of precise and detailed data on the deployment and efficacy of work zone
safety countermeasures to facilitate more robust analyses and informed decision-making in
enhancing work zone safety.

In addition to the aforementioned limitations, it's crucial to acknowledge the dynamic and
ever-changing nature of work zones. These environments evolve continuously, with conditions
shifting hourly based on ongoing activities within the work zone. Consequently, collecting and
maintaining accurate information regarding work zone characteristics, such as the presence and
layout of safety countermeasures, can be challenging. The fluidity of work zone conditions
introduces complexities in data collection and analysis, as the effectiveness of safety measures
may vary throughout the day or in response to specific activities. This dynamic nature underscores
the importance of real-time data collection and monitoring to capture the transient nature of work
zone safety conditions accurately. Despite efforts to gather comprehensive data, the inherent
variability and unpredictability of work zone environments present ongoing challenges in
accurately assessing the efficacy of safety countermeasures. Future research endeavors should
explore innovative methodologies and technologies to capture and analyze real-time data, enabling
a more nuanced understanding of work zone safety dynamics and facilitating proactive safety

interventions.

5.4 Future Studies

Here are some future studies that could help better understand work zones:
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Real-Time Monitoring and Analysis: Investigate the feasibility and effectiveness of real-
time monitoring systems to continuously assess work zone safety conditions and identify
potential hazards. Utilize technologies such as 10T sensors, video analytics, and machine
learning algorithms to analyze data and provide timely insights for proactive safety measures.
Impact of Work Zone Layout and Design: Explore how different layouts and designs of
work zones influence driver behavior and crash occurrence. Conduct controlled experiments
or simulation studies to assess the effects of factors such as lane configuration, signage
placement, and traffic control devices on safety outcomes.

Behavioral Studies: Investigate driver behavior in work zones and its impact on safety. Use
methodologies such as naturalistic driving studies or driving simulators to analyze driver
responses to various work zone conditions and interventions. Explore factors such as driver
distraction, compliance with traffic control measures, and perception-reaction times.
Evaluation of Emerging Technologies: Assess the effectiveness of emerging technologies,
such as autonomous vehicles, connected vehicle systems, computer vision and machine
learning (Farhadmanesh et al., 2021a, 2021b; Hassandokht Mashhadi et al., n.d., 2024;
Mashhadi et al., 2024), and advanced driver assistance systems, in improving work zone safety.
Conduct field trials or simulation studies to evaluate the potential benefits and challenges
associated with integrating these technologies into work zone environments.

Human Factors and Work Zone Safety: Examine the role of human factors, including driver
characteristics, fatigue, workload, and situational awareness, in work zone safety. Investigate
strategies to enhance human performance and mitigate error likelihood in work zone driving

scenarios.
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7.0 Appendix |

In this section, more details about statistical and Machine Learning modeling will be
elaborated.
7.1 Statistical Modeling

These models aim to understand the relationship between various factors and the likelihood
or severity of crashes. Here are some commonly used statistical modeling approaches for crash

severity and frequency:

7.1.1 Generalized Linear Models (GLMSs)

GLM is a statistical modeling approach widely used in transportation research to analyze
crash severity and frequency. Despite what the name suggests, GLMs can model a wide range of
relationships including linear, logistic, Poisson and exponential conditions. The general form of a

GLM is expressed by the equation:

gE®X)) = Bo+ BiXy + B2 X+ .. +B: X5 1)

where g() is a link function that relates the linear predictor to the expected value of the response
variable Y (E(Y)). The response variable Y represents crash severity or frequency, and the
predictor variables X;, X,, ..., X;, correspond to various factors influencing the crash outcome. The
Bo, B1: B2, ---» By, are the estimated regression coefficients, which quantify the relationship between
the predictors and the response variable.

In the case of crash severity analysis, a GLM can be formulated using a link function which
essentially maps a nonlinear relationship to a linear one so that a linear model can be fit. A link
function that is appropriate for the outcome variable might include a logit link for binary severity
outcomes or a log link for ordinal severity categories. A logit link, also called a logistic regression,
takes a linear combination of the covariate values (which could be anything between negative and
positive infinity) and converts those to a scale of probability between 0 and 1. A log link, on the

other hand, is commonly used when the outcome variable follows a distribution with positive
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support and exhibits right-skewness. It transforms the linear combination of covariate values to a
scale that is directly related to the natural logarithm of the mean of the response variable. This is
particularly useful for modeling count data or strictly positive continuous data, where the log link
ensures that the predicted values are non-negative.

A Poisson or Negative Binomial distribution is commonly assumed for crash frequency
analysis. In crash frequency analysis, the choice of using either a Poisson or negative binomial
distribution stems from the nature of the data being analyzed. Crash frequency data often involves
counting the number of crashes that occur within a specific time period or at particular locations.
This type of data inherently follows a discrete distribution, making the Poisson and negative
binomial distributions appropriate choices. The Poisson distribution is commonly utilized due to
its ability to model the probability of a certain number of events occurring within a fixed interval,
assuming a constant rate of occurrence. However, real-world crash data often exhibits
overdispersion, where the variance exceeds the mean, violating the equidispersion assumption of
the Poisson distribution. In such cases, the negative binomial distribution provides a better fit by
allowing the variance to be larger than the mean, thus accommodating overdispersion.

GLMs offer a flexible and powerful framework for analyzing crash data, enabling
researchers to understand the relationships between predictor variables and crash severity or
frequency. These models facilitate evidence-based decision-making by identifying significant risk
factors and informing the development of targeted safety interventions and policies.

7.1.2 Ordered Probit/Logit Models

Ordered probit, a statistical modeling technique used to analyze ordered categorical
outcomes, where the categories have a natural ordering or hierarchy, and ordered logit models,
Similar to the ordered probit model, an ordered logit model is a statistical technique used to analyze
ordered categorical outcomes are commonly used statistical modeling techniques for analyzing
ordered categorical outcomes, such as crash severity levels or injury severity categories, where the
variables have natural ordering (e.g., minor, moderate, severe). In an ordered probit model, we use
the cumulative distribution function of a standard normal distribution to model the probability of

an outcome belonging to a specific category:
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P(Y <)) = 0By + b1 X1 + B2 Xo+...+Pp Xy — )’j) (2)

where Y represents the outcome variable, X, X,, ..., X, are the predictor variables, Sy, B1, B2, -
Br are the estimated coefficients, and y; represents the threshold parameter for category j. The
cumulative distribution function @() gives the probability that a normally distributed variable takes
a value less than or equal to a given threshold. For example, let's say we're using an ordered probit
model to analyze crash severity levels (Y), which are categorized as "minor,"” "moderate,” and
"severe." We have several predictor variables (X1, X, ..., Xn) such as weather conditions, road
type, and vehicle speed. The model aims to predict the probability of a crash falling into each
severity category.

P(Y < moderate) = @(By + f1X1 + B2 Xo+... +BnXn — Vmoderate)
where,

e P(Y < moderate) represents the probability of a crash being categorized as "minor"” or
"moderate."”

e (@ is the cumulative distribution function of the standard normal distribution.

e Bo, B1, B2, ..., By, are the estimated coefficients obtained from the model.

e X, X, .. X, arethe predictor variables, such as weather conditions, road type, and vehicle
speed.

®  Vmoderate 1S the threshold parameter specific to the "moderate” severity category.

In an ordered logit model, the probability of an outcome falling into a particular category

is modeled using the logistic cumulative distribution function:

P(Y =)) = exp(Bo + B1 Xy + B2 Xo+... +Bn Xy — vj)/(1 + exp(By + B1 X1
+ .82X2+- . +.8an - Vj))

The coefficients By, f1, B2, ..., Bn represent the estimated regression coefficients, while y;

represents the threshold parameter for category j. The logistic function transforms the linear
combination of predictors into a probability value between 0 and 1. By looking at the coefficient

estimates, researchers can figure out how different things affect whether a car crash or injury is
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more or less severe. This information is valuable for identifying significant risk factors and

informing interventions and policies to reduce crash severity and improve road safety.

7.2 Deterministic Machine Learning

7.2.1 Decision Tree

A decision tree is a supervised learning algorithm that uses a hierarchical structure to make
predictions or classify data based on a series of if-else conditions. It can be represented as a
flowchart-like structure where each internal node represents a test on an attribute, each branch
represents the outcome of the test, and each leaf node represents a class label or a prediction. The
decision tree algorithm builds the tree by repeatedly applying the rule over and over to successive
results to group the data based on the values of input features. The goal is to create subsets of data
that are as pure as possible regarding the target variable. The purity of a subset is typically
measured using metrics such as Gini impurity or entropy. These metrics help us understand how
well a subset of data is organized or how mixed its categories are. For example, imagine sorting a
bag of marbles by color. If each subset contains only one color, it's considered pure. But if the
colors are mixed, the subset is impure. Gini impurity and entropy give us numbers that represent
this purity or impurity, helping us make decisions in machine learning algorithms, like decision
trees.

Let’s consider the simplest decision tree: A single if-else statement. Say we want to predict
someone’s gender, given their height. We have the data for 10 people. It’s naive to do this, but
assume that’s all we have. This is our data (bold is female, italics is male, height in centimeters):
148, 157,158,162,164,168,172,176,180,184. We want to find the threshold value below which we
would predict female, or else male. Let’s focus on the group on the left. For any threshold we
choose, we want the group to be as homogeneous or as pure as possible. Let’s say we choose 170
as the threshold. Then, the group on the left would have one “impurity” (162), and the group on
the right would have none. If we choose 160 as the threshold, the left group would have no
impurities, while the group on the right would have two (164,168).

Gini impurity can be seen as a way to quantify how “good” a group is, so that we can
choose the threshold wisely. [If a group has all females or all males, the Gini impurity is zero. If

it is 50% male and 50% female, then the Gini impurity will be 0.5 (which is the highest value it
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can hold in this case), and it is the worst-case scenario. Hence, if we go by Gini impurity, a
threshold of 182 is terrible (it leads to a group of 5 females and 4 males). And so is 150 (which
leads to a group of 5 males and 4 females). So, we would choose something like 170 which
intuitively seems to result in a low proportion of impurities in both groups. So, in the bigger
picture, when you’re deciding a split in the decision tree, you want to maximize the difference
between the Gini impurity of the parent and the sum of the Gini impurities of the children nodes.

The decision tree splits the data at each internal node based on a selected feature and a
chosen splitting criterion. The splitting criterion determines how well the data is divided into
different classes or categories. For example, in a binary classification problem, the Gini impurity
is commonly used as the splitting criterion. It measures the probability of misclassifying a
randomly chosen element from the subset. The decision tree continues to split the data recursively
until a stopping criterion is met. This can be based on various conditions, such as reaching a
maximum depth, having a minimum number of samples in a leaf node, or achieving a desired level
of purity. Once the decision tree is constructed, it can be used to predict new instances by traversing
the tree from the root node to a leaf node based on the values of the input features. The class label

or prediction associated with the reached leaf node is then assigned to the instance. Figure 6 shows

Colour = Red

a decision tree for buying a car.

Colour = Yellow

No

Model > 2010

Yes

Figure 36. Decision Tree for Buying a Car
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7.2.2 Random Forest

Random forest is an ensemble learning method that combines multiple decision trees to
make predictions. It is a powerful and popular algorithm known for handling complex problems
and producing accurate results. In a random forest, a set of decision trees is trained on different
subsets of the original training data. Each decision tree is constructed using a random subset of
features at each split. This random feature selection helps reduce the correlation among the trees
and increases the diversity of the ensemble. During the training stage, multiple decision trees are
grown by repeatedly selecting a random subset of the training data with replacement (known as
bootstrapping). For each tree, a random subset of features is selected at each split. The trees are
grown until a stopping criterion is reached, such as reaching a maximum depth or having a
minimum number of samples in a leaf node.

The prediction stage involves aggregating the predictions of all the individual trees in the
forest. The most common aggregation method for classification tasks is voting, where each tree's
prediction is counted as a vote, and the class with the majority of votes is assigned as the final
prediction. The individual tree predictions are averaged for regression tasks to obtain the final
prediction. The strength of random forest lies in its ability to handle high-dimensional data, deal
with missing values, and mitigate overfitting. Combining multiple tree predictions, random forest
improves the generalization performance and provides robustness against noise and outliers in the

data. The prediction of a random forest can be mathematically represented as:
N
- 1
P== Z fi) @
1=

where Y is the predicted output, N is the number of trees in the forest, and f;(X) represents the
prediction of the i-th tree based on the input features X. Random forest has become a popular
choice in various domains, including classification, regression, feature selection, and anomaly
detection, due to its versatility, robustness, and ability to handle large datasets. An example of a

random forest structure is shown in Figure 37.
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Figure 37. Random Forest Diagram

7.2.3 Support Vector Machines (SVM)

SVM is a popular machine learning algorithm used for both classification and regression
tasks. SVM is a classifier that aims to find an optimal hyperplane that separates data points of
different classes in a high-dimensional feature space. The main idea behind SVM is to find the
hyperplane that maximizes the margin between the nearest data points of different classes. These
data points, known as support vectors, play a crucial role in defining the decision boundary. SVMs
can handle linearly separable data by using a linear kernel, but they can also handle nonlinear data
by utilizing kernel functions that map the data into a higher-dimensional space. Mathematically,

SVM can be formulated as an optimization problem:

N
1
ming,, > Iwl2 + € )y, ©)
i=1

Subject to: y;(w.x; +b) =1 —y;
Yi=0
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where w represents the weight vector, b is the bias term, N is the number of training samples, x;
denotes the feature vector of the i-th sample, y; is the corresponding class label, and y; are slack
variables that allow for a certain degree of misclassification. The parameter C controls the trade-
off between maximizing the margin and allowing some misclassifications.

SVMs are capable of handling data with complex decision boundaries and have good
generalization properties. They can effectively handle high-dimensional data and are less prone to
overfitting compared to other models. Additionally, SVMs can handle datasets with a small
number of training samples. However, SVMs can be computationally expensive and may require
careful selection of kernel functions and tuning of hyperparameters. In addition to binary
classification, SVMs can be extended to handle multi-class classification tasks using approaches
such as one-vs-one or one-vs-rest. SVMs can also be applied to regression problems by modifying

the objective function and incorporating a margin-based loss.

7.2.4 Neural Networks

Neural Networks, also known as Artificial Neural Networks (ANN), are a class of machine
learning models inspired by the structure and function of the human brain. Neural networks are
composed of interconnected nodes, called neurons, which are organized into layers. Each neuron
takes inputs, performs a computation, and produces an output. The basic building block of a neural
network is the neuron. The neuron takes a weighted sum of its inputs, applies an activation function
to the sum, and produces an output. The weights of the inputs determine the importance of each
input in the computation. The activation function introduces non-linearity into the model, enabling

the neural network to learn complex patterns and relationships in the data (Figure 38).
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Figure 38. Neuron Structure

Neural networks consist of an input layer, one or more hidden layers, and an output layer.
Information flows through the network from the input to the output layer. During training, the
network adjusts its weights using an optimization algorithm, such as gradient descent, to minimize
a loss function that measures the discrepancy between predicted and true outputs. This process is
known as backpropagation, where the error is propagated backward through the network to update
the weights. Neural networks are highly flexible and can model complex nonlinear relationships
in data. They can learn from large amounts of labeled data and generalize well to unseen examples.
However, training neural networks can be computationally intensive and requires careful tuning
of hyperparameters, such as the number of layers, number of neurons, and learning rate.
Additionally, neural networks are prone to overfitting if the model is too complex, or the training
data is limited. Overall, neural networks have revolutionized the field of machine learning and

have become a fundamental tool for solving complex problems in diverse domains.
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	EXECUTIVE SUMMARY 
	This report presents a comprehensive analysis of work zone safety considering multiple factors, including crash severity, speed analysis, countermeasure analysis, and state-of-the-practice in DOTs.  
	Machine learning models were utilized to interpret the influence of various factors on work zone crash severity. The findings underscore the capability of these models to provide insights into the complex interplay of elements affecting crashes, laying a groundwork for future explorations in this domain. The study analyzed the effect of different contract types on crash occurrence. CMGC contracts exhibited a notable increase in the number of crashes as vehicles approached work zones, indicating the importan
	Furthermore, insights from a survey distributed to all DOTs, with 24 responses from 22 states, are also incorporated. The feedback from these states, which span a wide geographic area, offers valuable perspectives on factors that influence safety and satisfaction in work zones, thus enriching our understanding of implementing effective countermeasures. Overall, this report provides valuable insights into work zone crash severity and offers recommendations for enhancing safety. Future research opportunities 
	1.0 INTRODUCTION 
	1.1 Introduction 
	Work zone crashes in transportation systems pose a significant threat to road users and transportation agencies. The Federal Highway Administration (FHWA) reports an average of 794 fatalities annually in the United States between 2015 and 2020, resulting in an estimated cost of $17.5 billion annually (Work Zone Crashes, n.d.). 
	 
	Figure
	Figure 1. Number of Work Zone Fatality Crashes Between 2015-2021 
	Even with reduced traffic volumes during the COVID-19 pandemic, work zone crashes in 2020 alone accounted for over 102,000 incidents, causing more than 45,000 injuries and over 850 fatalities, surpassing the previous year's records (Work Zone Crashes, n.d.). These alarming statistics highlight the urgent need to understand and mitigate the impact of work zones on traffic safety. To design effective mitigation and improvement strategies, it is crucial to accurately comprehend the factors influencing work zon
	Despite the critical need for comprehensive analysis, there is currently no study investigating the state of practice in DOTs regarding work zones, speed analysis in work zones in 
	Utah, and the effectiveness of safety countermeasures implemented by the Utah Department of Transportation (UDOT). Previous studies have primarily relied on analytical methods to establish relationships between work zone attributes and crash occurrence or severity. However, the dynamic and complex nature of work zones makes mathematical models challenging to apply. As a result, machine learning techniques have emerged as powerful tools for modeling such intricate systems. These algorithms can learn patterns
	This study aims to address the pressing need for a more accurate and comprehensive understanding of work zone crash severity factors to inform the development of effective safety management strategies. By employing advanced machine learning techniques, this research endeavors to overcome the limitations of traditional analytical models and provide insights into the intricate relationships between work zone features and crash severity. Additionally, this study conducted a thorough literature review on counte
	1.2 Background 
	Work zones play a crucial role in infrastructure development and maintenance but pose significant safety risks for both workers and motorists. In recent years, there has been a growing interest in utilizing statistical and machine learning models to enhance our understanding and prediction of transportation safety outcomes in work zones. This literature review discusses the research on work zone safety, dividing it into separate sections to discuss the findings of studies that utilize statistical methods an
	1.2.1 Statistical Approaches 
	Statistical approaches have been widely used to estimate crash severity/frequency and identify factors contributing to more severe crashes. Regression analysis is a commonly employed statistical tool to examine the relationship between speed, traffic volume, road geometry, and crash severity/frequency variables. Logistic and probit regression models are frequently used for analyzing discrete outcomes, allowing the estimation of the probability of a specific outcome based on explanatory variables. Various st
	Osman et al. (2016) focused on investigating the factors contributing to the injury severity of large truck crashes in work zones. Various econometric models, including multinomial logit, nested logit, ordered logit, and generalized ordered logit, were compared to analyze the injury severity data. The database consisted of work zone crashes involving large trucks in Minnesota over 10 years. The empirical findings indicate that the generalized ordered logit model provided 
	the best fit for the data. Elasticity analysis revealed that factors such as daytime crashes, lack of access control, higher speed limits, and crashes on rural principal arterials increased the risk of severe crashes in work zones. Liu et al. (2016) investigated the correlation between precrash actions and driver injury severity in work and non-work zone crashes. Using a large-scale statewide crash database, hierarchical models were employed to account for the injury severity of each driver involved. The an
	Anderson & Hernandez (2017) addressed the gap in previous research by examining injury severity factors for heavy-vehicle crashes based on roadway classification. A mixed logit modeling framework is used, and the results indicate that roadway classifications should be considered separately due to statistically significant differences in estimated parameters. The findings emphasize the importance of considering roadway classification in safety analyses and suggest the need for further research on injury seve
	Ravani & Wang (2018) examined the impact of police presence on work zone safety and speeding in highway work zones. Speed data were collected from six work zone locations in California, and data analysis was conducted using statistical methods. Four measures of effectiveness (MOEs) were evaluated, including average speed reduction, speed variance, 85th percentile speed, and proportion of high-speed vehicles. The results indicate that all levels of police presence led to statistically significant improvement
	reducing speeding incidents. K. Zhang & Hassan (2019a) developed a random parameter-ordered probit model to analyze factors affecting work zone crash severity. Their study found that speeding and foggy weather are important factors that can influence the parameters of a random parameter model and identified weekdays and nighttime as having a higher risk of rear-end crashes in work zones. Santos et al. (2021) employed statistical models to identify primary risk factors causing work zone crashes. Their analys
	While statistical approaches have shown promise in estimating crash severity, it is important to consider their potential limitations, such as the oversimplification of complex relationships and dependence on assumptions and model specifications. These factors can affect the accuracy and reliability of the predictions. Nonetheless, these studies contribute valuable insights into understanding work zone safety and identifying factors that can mitigate crash severity. 
	Table 1. Work Zone Crash Literature and Findings 
	Authors 
	Authors 
	Authors 
	Authors 
	Authors 

	Findings 
	Findings 



	(Akepati & Dissanayake, 2011) 
	(Akepati & Dissanayake, 2011) 
	(Akepati & Dissanayake, 2011) 
	(Akepati & Dissanayake, 2011) 

	The lane-closure work zone type had the highest percentage of crashes, followed by work on the shoulder or median type of work zone. 
	The lane-closure work zone type had the highest percentage of crashes, followed by work on the shoulder or median type of work zone. 


	(Al-Bdairi, 2020) 
	(Al-Bdairi, 2020) 
	(Al-Bdairi, 2020) 

	Contributing factors such as lighting, driver behavior, and age are uniquely significant for a specific time of day period.  Whereas undeployed airbags, single-vehicle crashes and rear-end collisions tend to have higher injury severity regardless of the time of day.  
	Contributing factors such as lighting, driver behavior, and age are uniquely significant for a specific time of day period.  Whereas undeployed airbags, single-vehicle crashes and rear-end collisions tend to have higher injury severity regardless of the time of day.  


	(Z. Zhang et al., 2022) 
	(Z. Zhang et al., 2022) 
	(Z. Zhang et al., 2022) 

	It appears that conducting work zones during the nighttime with the current deployment strategies on Pennsylvania state roads does not necessarily increase crash risks, but a work zone significantly increases crash risks during daytime 
	It appears that conducting work zones during the nighttime with the current deployment strategies on Pennsylvania state roads does not necessarily increase crash risks, but a work zone significantly increases crash risks during daytime 




	(Mokhtarimousavi et al., 2019, 2020) 
	(Mokhtarimousavi et al., 2019, 2020) 
	(Mokhtarimousavi et al., 2019, 2020) 
	(Mokhtarimousavi et al., 2019, 2020) 
	(Mokhtarimousavi et al., 2019, 2020) 

	Work on the shoulder or median, the presence of advance warning areas, daytime non-peak construction, and vehicles that are not carrying multiple passengers are more likely to decrease injury severity. 
	Work on the shoulder or median, the presence of advance warning areas, daytime non-peak construction, and vehicles that are not carrying multiple passengers are more likely to decrease injury severity. 


	(Mokhtarimousavi et al., 2021) 
	(Mokhtarimousavi et al., 2021) 
	(Mokhtarimousavi et al., 2021) 

	The termination area of the work zone is most critical for both daytime and nighttime crashes, as this location has the highest increase in severe injury likelihood. 
	The termination area of the work zone is most critical for both daytime and nighttime crashes, as this location has the highest increase in severe injury likelihood. 


	(Santos et al., 2021) 
	(Santos et al., 2021) 
	(Santos et al., 2021) 

	Excessive speed, disregard for vertical signs, poor lighting, locations with intersections, and motorcycle and heavy vehicle involvement as the most significant risk factors. 
	Excessive speed, disregard for vertical signs, poor lighting, locations with intersections, and motorcycle and heavy vehicle involvement as the most significant risk factors. 


	(K. Zhang & Hassan, 2019b) 
	(K. Zhang & Hassan, 2019b) 
	(K. Zhang & Hassan, 2019b) 

	Weather conditions (rain) and driver characteristics, such as gender and age group, work zones with multiple lane closures and the presence of heavy vehicles increase the crash fatality risk.  
	Weather conditions (rain) and driver characteristics, such as gender and age group, work zones with multiple lane closures and the presence of heavy vehicles increase the crash fatality risk.  


	(Islam, 2022) 
	(Islam, 2022) 
	(Islam, 2022) 

	Poor lighting and areas with older motorcyclists (50-65) are more likely to experience higher crash severities.   
	Poor lighting and areas with older motorcyclists (50-65) are more likely to experience higher crash severities.   




	 
	1.2.2 Machine Learning Approaches 
	Machine learning approaches provide an alternative means to estimate crash severity and frequency, addressing some of the limitations of statistical methods. These algorithms do not rely on specific assumptions about variable relationships, allowing greater flexibility in handling complex data and capturing nonlinear relationships. Several studies have utilized machine learning techniques to analyze work zones (Mashhadi et al., n.d., 2021a, 2021b; Mashhadi & Rashidi, 2021). Effati et al. (2015) introduced a
	to crash severity. This approach highlights the importance of targeted and behaviorally informed safety measures on regional roads. 
	Iranitalab & Khattak (2017) compared the performance of four methods (MNL, NNC, SVM, RF) in predicting traffic crash severity and developed a crash costs-based approach for evaluation. Two vehicle crashes were analyzed and split into training and validation subsets using reported crash data from Nebraska. NNC showed the best overall prediction performance, followed by RF and SVM, while MNL performed the weakest. Data clustering improved MNL, NNC, and RF prediction performance but had mixed effects on NNC. T
	In addition to the studies mentioned earlier, (Jeong et al., 2018) utilized a dataset of 297,113 vehicle crashes from the Michigan Traffic Crash Facts (MTCF) to classify injury severity. Techniques like under-sampling and over-sampling are employed to address imbalanced classes. Five classification models are used, and bagging with decision trees and over-sampling yields the highest performance. Mokhtarimousavi et al. (2019) employed a mixed logit model and Support Vector Machine (SVM) to predict work zone 
	or median, advance warning area, daytime nonpeak, and multi-occupant, directly affecting crash severity.  
	Machine learning approaches offer flexibility in handling complex data, capturing nonlinear relationships, and identifying patterns that traditional statistical models may overlook. However, it is important to note that these methods may require substantial amounts of data, are prone to overfitting, and demand significant computing power and time for processing extensive datasets. Nonetheless, they provide valuable insights into understanding and predicting work zone crash severity. 
	1.3 Objectives 
	The primary objective of this study is to enhance the prediction of work zone crash severity by employing different machine learning techniques and analyzing their effectiveness when applied to a dataset containing a wide range of work zone crash and roadway attributes. Specifically, the objectives of this study are as follows: 
	1. Perform comprehensive data analysis of work zone crashes: Conduct a detailed analysis of the work zone crash dataset to identify patterns, trends, and influencing factors associated with crash severity. Explore the relationships between various factors such as driver behavior, work zone characteristics, traffic flow, and environmental conditions to gain insights into their impact on crash severity outcomes. This analysis will provide a deeper understanding of the dynamics and interactions among these fac
	1. Perform comprehensive data analysis of work zone crashes: Conduct a detailed analysis of the work zone crash dataset to identify patterns, trends, and influencing factors associated with crash severity. Explore the relationships between various factors such as driver behavior, work zone characteristics, traffic flow, and environmental conditions to gain insights into their impact on crash severity outcomes. This analysis will provide a deeper understanding of the dynamics and interactions among these fac
	1. Perform comprehensive data analysis of work zone crashes: Conduct a detailed analysis of the work zone crash dataset to identify patterns, trends, and influencing factors associated with crash severity. Explore the relationships between various factors such as driver behavior, work zone characteristics, traffic flow, and environmental conditions to gain insights into their impact on crash severity outcomes. This analysis will provide a deeper understanding of the dynamics and interactions among these fac

	2. Develop and implement a comprehensive machine learning framework: Establish a framework incorporating various machine learning algorithms to predict work zone crash severity, including probabilistic and non-probabilistic models. This framework will enable the comparison of different algorithms and their performance in predicting the severity of work zone crashes. 
	2. Develop and implement a comprehensive machine learning framework: Establish a framework incorporating various machine learning algorithms to predict work zone crash severity, including probabilistic and non-probabilistic models. This framework will enable the comparison of different algorithms and their performance in predicting the severity of work zone crashes. 

	3. Conduct a feature importance analysis: Identify and analyze the key factors influencing work zone crash severity through a feature importance analysis. Determine the relative importance of various work zone attributes, such as weather conditions, road geometries, traffic characteristics, and work zone configurations, in predicting the severity of crashes. 
	3. Conduct a feature importance analysis: Identify and analyze the key factors influencing work zone crash severity through a feature importance analysis. Determine the relative importance of various work zone attributes, such as weather conditions, road geometries, traffic characteristics, and work zone configurations, in predicting the severity of crashes. 


	4. Analyzing the effects of different factors on work zone safety: Investigate the impact of various factors on work zone safety, including contract types, traffic countermeasures, and rumble strips. 
	4. Analyzing the effects of different factors on work zone safety: Investigate the impact of various factors on work zone safety, including contract types, traffic countermeasures, and rumble strips. 
	4. Analyzing the effects of different factors on work zone safety: Investigate the impact of various factors on work zone safety, including contract types, traffic countermeasures, and rumble strips. 

	5. State of the practice in Work Zone Countermeasures: Evaluate the current state of practice in work zone safety countermeasures among DOTs, including both traditional approaches and emerging technologies. Conduct a comprehensive review of existing literature, guidelines, and best practices related to work zone countermeasures. 
	5. State of the practice in Work Zone Countermeasures: Evaluate the current state of practice in work zone safety countermeasures among DOTs, including both traditional approaches and emerging technologies. Conduct a comprehensive review of existing literature, guidelines, and best practices related to work zone countermeasures. 


	By achieving these objectives, this study aims to contribute to advancing work zone safety management by providing a more accurate and comprehensive understanding of the factors influencing crash severity. The findings will assist transportation agencies in designing evidence-based interventions and strategies to mitigate work zone crashes, improve traffic safety, and reduce the economic burden of these incidents. 
	1.4 Outline of Report  
	1. Introduction 
	1. Introduction 
	1. Introduction 

	• Overview of work zone safety and the importance of studying crash severity 
	• Overview of work zone safety and the importance of studying crash severity 

	• Research objectives and significance 
	• Research objectives and significance 

	• Review of existing studies on work zone crash severity and influencing factors 
	• Review of existing studies on work zone crash severity and influencing factors 

	• Discussion of previous research methods and findings 
	• Discussion of previous research methods and findings 

	• Identification of research gaps and the need for the current study 
	• Identification of research gaps and the need for the current study 

	• Brief description of the report structure 
	• Brief description of the report structure 


	 
	2. Research Methods 
	2. Research Methods 
	2. Research Methods 
	2. Research Methods 
	• Explanation of any preprocessing steps performed on the data, such as data cleaning or feature engineering 
	• Explanation of any preprocessing steps performed on the data, such as data cleaning or feature engineering 
	• Explanation of any preprocessing steps performed on the data, such as data cleaning or feature engineering 




	• Explanation of the machine learning techniques employed for crash severity prediction. 
	• Explanation of the machine learning techniques employed for crash severity prediction. 


	 
	3. Data Collection 
	3. Data Collection 
	3. Data Collection 

	• Description of the dataset used and its characteristics 
	• Description of the dataset used and its characteristics 


	• Overview of the data collection process, including the sources and methods used 
	• Overview of the data collection process, including the sources and methods used 
	• Overview of the data collection process, including the sources and methods used 

	• Description of the work zone crash data and associated attributes 
	• Description of the work zone crash data and associated attributes 


	 
	4. Results and Findings 
	4. Results and Findings 
	4. Results and Findings 

	• Presentation and interpretation of the findings 
	• Presentation and interpretation of the findings 

	• Discussion of the feature importance analysis and the relative significance of different variables 
	• Discussion of the feature importance analysis and the relative significance of different variables 


	 
	5. Conclusion 
	5. Conclusion 
	5. Conclusion 

	• Summary of the main findings and their implications 
	• Summary of the main findings and their implications 

	• Reflection on the research limitations and suggestions for future studies 
	• Reflection on the research limitations and suggestions for future studies 


	 
	The report will follow this structure to provide a comprehensive understanding of the research methods, data collection process, model evaluation, and the resulting findings and conclusions related to work zone crash severity prediction and influencing factors. 
	 
	2.0 RESEARCH METHODS 
	2.1 Overview 
	This section encompasses several key components, including data cleaning, statistical modeling, deterministic machine learning modeling, and probabilistic machine learning modeling. These methods were employed to analyze work zone crash data and predict crash severity based on various influencing factors. 
	2.2 Data Cleaning and Preprocessing 
	Data cleaning and preprocessing are crucial in ensuring the quality and reliability of tabular data used for analysis. This study conducted a comprehensive data cleaning process to prepare the dataset for subsequent modeling. The first step involved identifying and handling missing values in the dataset. Missing data can introduce biases and affect analysis accuracy, so various techniques, such as imputation, were applied to fill in missing values based on statistical methods or pattern recognition. Here ar
	 
	2.2.1 Missing Data  
	Missing data is a common challenge in datasets. There are several strategies to handle missing data, including: 
	• Deletion: Removing rows or columns with missing values. This approach should be used cautiously as it may result in data loss and biased analysis. 
	• Deletion: Removing rows or columns with missing values. This approach should be used cautiously as it may result in data loss and biased analysis. 
	• Deletion: Removing rows or columns with missing values. This approach should be used cautiously as it may result in data loss and biased analysis. 

	• Imputation: Filling in missing values using statistical methods such as mean, median, mode, or regression imputation. 
	• Imputation: Filling in missing values using statistical methods such as mean, median, mode, or regression imputation. 


	 
	Figure
	Figure 2. Imputation Example with Column Mean Values 
	 
	2.2.2 Outlier Detection and Treatment  
	Outliers are extreme or unusual observations that can significantly affect the analysis. Various methods can be used to detect outliers, such as: 
	• Statistical methods: Identifying outliers based on z-scores, standard deviations, or boxplot measures.   
	• Statistical methods: Identifying outliers based on z-scores, standard deviations, or boxplot measures.   
	• Statistical methods: Identifying outliers based on z-scores, standard deviations, or boxplot measures.   
	• Statistical methods: Identifying outliers based on z-scores, standard deviations, or boxplot measures.   
	o A z-score is just the number of standard deviations away from the mean that a certain data point is.  
	o A z-score is just the number of standard deviations away from the mean that a certain data point is.  
	o A z-score is just the number of standard deviations away from the mean that a certain data point is.  

	o A boxplot is a simple way of detecting outliers by drawing a box representing the central 50% of the data.  The line drawn in the middle shows the median value.  The lines extending from the box (whiskers) capture the range of the remaining data outside of the middle 50% (for example, the upper 25% and the lower 25%).  Any point that falls outside the lines indicates an outlier. 
	o A boxplot is a simple way of detecting outliers by drawing a box representing the central 50% of the data.  The line drawn in the middle shows the median value.  The lines extending from the box (whiskers) capture the range of the remaining data outside of the middle 50% (for example, the upper 25% and the lower 25%).  Any point that falls outside the lines indicates an outlier. 





	 
	Figure
	Figure 3. Statistical Methods for Outlier Detection 
	 
	• Visualization techniques: Plotting the data to visually identify data points that deviate significantly from the overall pattern. 
	• Visualization techniques: Plotting the data to visually identify data points that deviate significantly from the overall pattern. 
	• Visualization techniques: Plotting the data to visually identify data points that deviate significantly from the overall pattern. 


	  
	Figure
	Figure 4. Outlier Detection Using Visualization 
	 
	• Winsorization or trimming: Winsorization replaces extreme values with the nearest non-outlier value to reduce their impact, while trimming removes outliers from the data set entirely.   
	• Winsorization or trimming: Winsorization replaces extreme values with the nearest non-outlier value to reduce their impact, while trimming removes outliers from the data set entirely.   
	• Winsorization or trimming: Winsorization replaces extreme values with the nearest non-outlier value to reduce their impact, while trimming removes outliers from the data set entirely.   


	 
	2.2.3 Transformation and Encoding  
	Data may need to be transformed or encoded depending on the analysis requirements. Examples include: 
	• Feature scaling: Scaling numerical features to a standard range (e.g., normalization or standardization). 
	• Feature scaling: Scaling numerical features to a standard range (e.g., normalization or standardization). 
	• Feature scaling: Scaling numerical features to a standard range (e.g., normalization or standardization). 

	• Label Encoding: Assigning numeric labels to categorical variables with an inherent order. 
	• Label Encoding: Assigning numeric labels to categorical variables with an inherent order. 


	 
	Figure
	Figure 5. Label Encoding Technique Example 
	• One-Hot Encoding: machine learning algorithms require numeric input and output variables.  One-hot encoding transforms categorical data into numeric variables.   
	• One-Hot Encoding: machine learning algorithms require numeric input and output variables.  One-hot encoding transforms categorical data into numeric variables.   
	• One-Hot Encoding: machine learning algorithms require numeric input and output variables.  One-hot encoding transforms categorical data into numeric variables.   
	• One-Hot Encoding: machine learning algorithms require numeric input and output variables.  One-hot encoding transforms categorical data into numeric variables.   
	o For example, imagine a data set with a column of different basketball teams, each with a number of points scored.  One-hot encoding will create new columns to reflect each of the unique team names in the “team name” column, and the new columns will be filled with 0s and 1s.   
	o For example, imagine a data set with a column of different basketball teams, each with a number of points scored.  One-hot encoding will create new columns to reflect each of the unique team names in the “team name” column, and the new columns will be filled with 0s and 1s.   
	o For example, imagine a data set with a column of different basketball teams, each with a number of points scored.  One-hot encoding will create new columns to reflect each of the unique team names in the “team name” column, and the new columns will be filled with 0s and 1s.   





	 
	Figure
	Figure 6. One-Hot Encoding Technique Example 
	2.2.4 Feature Selection  
	Feature selection is an essential step in machine learning because it helps identify the most important variables that influence the outcome of the target variables. The remaining features may 
	be irrelevant to the target variable.  Narrowing down the feature selection reduces the model's complexity, decreases the time it takes for the model to be trained, and prevents a dumb model, filled with inaccurate or less reliable predictions, from being created.  Common approaches include: 
	• Filter methods: Select features based on statistical measures like correlation or mutual information and “filter” the remaining features out.   
	• Filter methods: Select features based on statistical measures like correlation or mutual information and “filter” the remaining features out.   
	• Filter methods: Select features based on statistical measures like correlation or mutual information and “filter” the remaining features out.   
	• Filter methods: Select features based on statistical measures like correlation or mutual information and “filter” the remaining features out.   
	o Mutual information measures how much one random variable tells us about another.  In other words, it quantifies how similar or how different two variables are. 
	o Mutual information measures how much one random variable tells us about another.  In other words, it quantifies how similar or how different two variables are. 
	o Mutual information measures how much one random variable tells us about another.  In other words, it quantifies how similar or how different two variables are. 




	• Wrapper methods: Selects features based on a specific machine learning algorithm that we are trying to fit into a given data set.  All of the possible combinations of the features are considered.  The combination of features that gives the optimal results for the specific machine learning algorithm is selected.  
	• Wrapper methods: Selects features based on a specific machine learning algorithm that we are trying to fit into a given data set.  All of the possible combinations of the features are considered.  The combination of features that gives the optimal results for the specific machine learning algorithm is selected.  

	• Embedded methods: Select features by embedding features (creating a lot of subsets from the particular dataset) during the model building process and observing each iteration of model training. Every subset that results in the maximum accuracy will be selected as a subset of features, which will later be given to the dataset for training.   
	• Embedded methods: Select features by embedding features (creating a lot of subsets from the particular dataset) during the model building process and observing each iteration of model training. Every subset that results in the maximum accuracy will be selected as a subset of features, which will later be given to the dataset for training.   


	2.2.5 Overfitting  
	One of the most common challenges in machine learning is overfitting, where the model can perform well on trained data but cannot accurately predict values on test data.  Regularization is a technique used to prevent overfitting by applying a penalty term to the loss function during training.  The penalty prevents the modeling from becoming too complex and helps control the model’s ability to fit noise within the trained data. 
	2.3 Machine Learning Modeling 
	 Machine learning modeling is a process used to train computer algorithms to make predictions or decisions based on data. These techniques have been used and applied to different areas of science, including safety assessments (Hassandokht Mashhadi et al., 2024; Mashhadi et al., 2023; Mashhadi & Rashidi, 2021), condition assessments (Mohammadi, Rashidi, et al., 2023; 
	Mohammadi, Sherafat, et al., 2023), and contractual issues (Erfani, Tavakolan, et al., 2021; Erfani, Zhang, et al., 2021; Erfani & Tavakolan, 2020). It involves several key steps, starting with the definition of a train and test set. 
	 
	Train and Test Set: The first step in building a machine learning model is splitting the available data into two subsets: the training set and the test set. Typically, this division is done with a ratio of 70/30 or 80/20, where 70% or 80% of the data is used for training, and the remaining 30% or 20% is used for testing. The training set is used to train the model, while the test set is used to evaluate its performance. This division helps ensure that the model's effectiveness is assessed on unseen data, si
	 
	Model Development: The model development process begins once the data is divided. This involves selecting an appropriate algorithm or set of algorithms based on the nature of the problem and the type of data available. Different algorithms are suited for classification, regression, or clustering tasks. 
	 
	Training the Model: With the algorithm chosen, the model is trained using the data in the training set. During training, the model learns the underlying patterns and relationships in the data. This typically involves adjusting the model's parameters iteratively to minimize the difference between its predictions and the actual outcomes in the training data. 
	 
	Evaluation of Test Set: The model's performance is evaluated using the test set after training. This involves making predictions on the test data and comparing them to the actual outcomes. Common evaluation metrics include accuracy, precision, recall, and F1 score for classification tasks and mean squared error or R-squared for regression tasks. 
	 
	Fine-Tuning and Validation: Further adjustments may be made Depending on the model's performance on the test set. This could involve fine-tuning hyperparameters, such as learning rate or regularization strength, or selecting different features or algorithms. It's important to validate the model on separate validation data to avoid overfitting, where the model performs well on the training data but poorly on unseen data. 
	 
	Deployment and Monitoring: Once a satisfactory model is developed and validated, it can be deployed for use in real-world applications. However, the process doesn't end there; models should be continually monitored and updated as new data becomes available or as the underlying patterns in the data change over time. 
	2.4 Evaluation Metrics 
	Accuracy, precision, recall, and ROC-AUC (i.e., Receiver Operating Characteristic – Area Under the Curve) are used to evaluate the performance and effectiveness of different models. The ROC-AUC metric is particularly valuable when dealing with imbalanced datasets, as it measures a model's ability to differentiate between positive and negative samples. Accuracy measures the percentage of correct predictions (Eq. 1), while precision measures the percentage of true positives among the total predicted positives
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	where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative values, respectively, where: 
	 
	True Positive (TP): 
	• Definition: In a binary classification task, a true positive (TP) occurs when the model correctly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the positive class. 
	• Definition: In a binary classification task, a true positive (TP) occurs when the model correctly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the positive class. 
	• Definition: In a binary classification task, a true positive (TP) occurs when the model correctly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the positive class. 


	• Example: If the model correctly predicts that a work zone crash resulted in severe injuries, it is considered a true positive. 
	• Example: If the model correctly predicts that a work zone crash resulted in severe injuries, it is considered a true positive. 
	• Example: If the model correctly predicts that a work zone crash resulted in severe injuries, it is considered a true positive. 


	 
	True Negative (TN): 
	• Definition: A true negative (TN) occurs when the model correctly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the negative class. 
	• Definition: A true negative (TN) occurs when the model correctly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the negative class. 
	• Definition: A true negative (TN) occurs when the model correctly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the negative class. 

	• Example: If the model correctly predicts that a work zone crash did not result in severe injuries, it is considered a true negative. 
	• Example: If the model correctly predicts that a work zone crash did not result in severe injuries, it is considered a true negative. 


	 
	False Positive (FP): 
	• Definition: A false positive (FP) occurs when the model incorrectly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the negative class. 
	• Definition: A false positive (FP) occurs when the model incorrectly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the negative class. 
	• Definition: A false positive (FP) occurs when the model incorrectly predicts a positive outcome (e.g., severe crash) for an instance that actually belongs to the negative class. 

	• Example: If the model incorrectly predicts that a work zone crash resulted in severe injuries when it did not, it is considered a false positive. 
	• Example: If the model incorrectly predicts that a work zone crash resulted in severe injuries when it did not, it is considered a false positive. 


	 
	False Negative (FN): 
	• Definition: A false negative (FN) occurs when the model incorrectly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the positive class. 
	• Definition: A false negative (FN) occurs when the model incorrectly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the positive class. 
	• Definition: A false negative (FN) occurs when the model incorrectly predicts a negative outcome (e.g., non-severe crash) for an instance that actually belongs to the positive class. 

	• Example: If the model incorrectly predicts that a work zone crash did not result in severe injuries when it did, it is considered a false negative. 
	• Example: If the model incorrectly predicts that a work zone crash did not result in severe injuries when it did, it is considered a false negative. 


	 
	 
	3.0 DATA COLLECTION 
	3.1 Overview 
	In this project, two distinct datasets were utilized for comprehensive data analysis. The first dataset consisted of crash data obtained from Numetric, a reliable source of transportation data. The second dataset encompassed work zone data collected from Masterworks, a comprehensive platform that manages and tracks information related to construction projects. By combining these two datasets, a holistic view of the interactions between work zones and crashes could be achieved, facilitating a comprehensive a
	3.2 Crash Data 
	The crash dataset used in this study comprised over 300,000 crashes from the state of Utah, spanning from 2017 to 2021. It included an extensive set of features, more than 80 variables, capturing various aspects of the crashes. These features encompassed a wide range of information, including demographic details of the involved parties, road and weather conditions, crash types, contributing factors, vehicle attributes, and injury severity levels. The dataset provided a comprehensive and detailed representat
	 
	Figure
	Figure 7. Features of the Crash Dataset (Part I) 
	 
	 
	Figure
	Figure 8. Features of the Crash Dataset (Part II) 
	3.3 Work Zone Data 
	This study utilized work zone data from the state of Utah spanning from 2017 to 2021. The dataset was obtained from Masterworks, a database maintained by the Utah Department of Transportation (UDOT) that stores work zone data along with other traffic-related information. The UDOT databases are regularly updated to reflect the latest work zone configurations and 
	conditions. Crashes associated with specific work zones were identified by cross-referencing the work zone dataset with the Numetric dataset. This cross-referencing was achieved by matching the location and date of each crash with the corresponding work zone information in the dataset. It allowed for a comprehensive analysis of the relationship between work zones and safety conditions, providing valuable insights into the impact of work zones on crash occurrences and severity. It is worth noting that certai
	 
	 
	Figure
	Figure 9. Features of the Work Zone Dataset (Part I) 
	 
	 
	Figure
	Figure 10. Features of the Work Zone Dataset (Part II) 
	Among the three available resources, Incident Data, ProjectWise, and Masterworks, the latter is the most useful one in extracting lane closure activities. Also, the results of cross-referencing information from ePM (Electronic Program Management) and Masterworks show the consistency of the two resources.  
	 
	Figure
	Figure 11. Masterworks Interface, Including Project Information 
	 
	 
	Figure
	Figure 12. ePM Database, Including Projects Information 
	3.4 Summary 
	This study comprehensively analyzed road safety conditions in work zones using datasets from the state of Utah. The crash dataset, comprising over 300,000 crashes from 2017 to 2021, was cross-referenced with the work zone dataset obtained from Masterworks. By linking crashes to specific work zones based on location and date, the study examined the impact of work zones on crash occurrences and severity. Detailed information from the work zone dataset allowed for identifying influential factors. The study aim
	 
	4.0 RESULTS AND FINDINGS 
	4.1 Overview 
	UDOT provided the research team access to incident data, ProjectWise, and Masterworks. Before processing data, the research team conducted a comprehensive literature review to extract the most influential factors affecting work zone safety. Based on the literature, the following features are among the most influential factors in work zone safety: 
	1. Daytime/Nighttime 
	1. Daytime/Nighttime 
	1. Daytime/Nighttime 

	2. Traffic Volume 
	2. Traffic Volume 

	3. Closed Lane Counts 
	3. Closed Lane Counts 

	4. Speeding 
	4. Speeding 

	5. Road Class 
	5. Road Class 

	6. Number of Intersections 
	6. Number of Intersections 

	7. Portable Rumble Strips (PRS) or Rumble Strips 
	7. Portable Rumble Strips (PRS) or Rumble Strips 

	8. Speed Feedback Display 
	8. Speed Feedback Display 

	9. Automated Speed-Camera Enforcement 
	9. Automated Speed-Camera Enforcement 

	10. Live Police Presence 
	10. Live Police Presence 

	11. Advanced Information Availability 
	11. Advanced Information Availability 

	12. Construction Type 
	12. Construction Type 

	13. Weather (Foggy, Clear) 
	13. Weather (Foggy, Clear) 

	14. Light Condition 
	14. Light Condition 

	15. Dry/Wet Surface 
	15. Dry/Wet Surface 

	16. ITS Technologies, such as variable speed limit (VSL) and dynamic message signs (DMS) at an appropriate distance 
	16. ITS Technologies, such as variable speed limit (VSL) and dynamic message signs (DMS) at an appropriate distance 

	17. Shoulder Width 
	17. Shoulder Width 

	18. Work-Zone Types: lane closure, work on shoulder-median 
	18. Work-Zone Types: lane closure, work on shoulder-median 


	 
	These factors are extracted from more than 20 papers published in recent years. 
	4.2 Data Analysis 
	Some initial data analysis has been undertaken on crashes within work zone areas and those without work zones. Figure 13 shows the distribution of work zones and regular crashes in different months. The diagrams reveal fewer work zone crashes by the end of the year, probably due to the limited number of projects happening around the state. 
	 
	Figure
	Figure 13. Work Zone and Non-Work Zone Crashes by Month 
	 
	Figure 14 compares work zone incidents and regular crashes within rural and urban settings. The findings indicate a slight discrepancy in the proportion of rural locations when comparing regular crashes to those occurring in work zones. 
	 
	Figure
	Figure 14. Work Zone and Non-Work Zone Crashes by Location 
	 
	Additionally, when examining the DUI rates in work zone crashes versus regular crashes, the proportions were found to be nearly identical (Figure 15). 
	 
	Figure
	Figure 15. Work Zone and Non-Work Zone Crashes by DUI 
	 
	When comparing the rate of collisions with fixed objects, work zone crashes, and regular crashes exhibit almost the same frequency. 
	 
	Figure
	Figure 16. Work Zone and Non-Work Zone Crashes by Collision with Fixed Object 
	 
	Figure 17 displays the distribution of severity levels for work zones and regular crashes. 
	 
	Figure
	Figure 17. Work Zone and Non-Work Zone Crashes by Crash Severity 
	Figure 18 compares work zone and regular crashes by weather condition, showing similar rates across different weather conditions. 
	 
	Figure
	Figure 18. Work Zone and Non-Work Zone Crashes by Weather Condition 
	 
	Figure 19 illustrates the impact of lighting conditions on work zones and regular crashes. 
	 
	Figure
	Figure 19. Work Zone and Non-Work Zone Crashes by Light Condition 
	 
	Figure 20 depicts the influence of surface conditions on work zones and regular crashes. 
	 
	Figure
	Figure 20. Work Zone and Non-Work Zone Crashes by Surface Condition 
	Figure 21 showcases the effectiveness of different traffic control approaches in work zones and regular crash scenarios. 
	 
	Figure
	Figure 21. Work Zone and Non-Work Zone Crashes by Traffic Control 
	 
	Figure 22 illustrates the manner of collision comparison, indicating that work zone crashes have a 10 percent higher rate of front-to-rear collisions attributable to sudden changes in speed. 
	 
	Figure
	Figure 22. Work Zone and Non-Work Zone Crashes by Manner of Collision 
	Figure 23 compares crash types in queue zones and regular crashes, revealing a similar pattern as Figure 22. 
	 
	Figure
	Figure 23. Work Zone and Non-Work Zone Crashes by Crash Type 
	Figure 24 lists the roads with the highest number of work zones and regular crashes. 
	 
	Figure
	Figure 24. Work Zone and Non-Work Zone Crashes by Road (000—000 refers to crashes where the road name was not recorded) 
	 
	Figure 25 displays the distribution of work zones and regular crashes along I-15 in the positive (northbound) direction. 
	 
	Figure
	Figure 25. Work Zone and Non-Work Zone Crashes in I-15P 
	 
	Figure 26 displays the distribution of work zones and regular crash types along I-15 in the positive (northbound) direction. 
	 
	Figure
	Figure 26. Work Zone and Non-Work Zone Crashes in I-15P 
	Figure 27 displays the distribution of work zones and regular crashes along I-15 in the negative (southbound) direction. 
	 
	Figure
	Figure 27. Work Zone and Non-Work Zone Crashes in I-15N 
	 
	Figure 28 displays the distribution of work zones and regular crash types along I-15 in the negative (southbound) direction. 
	 
	Figure
	Figure 28. Work Zone and Non-Work Zone Crashes in I-15N 
	4.3 Rumble Strips Analysis 
	The location of existing rumble strips around the state was extracted from 
	The location of existing rumble strips around the state was extracted from 
	https://digitaldelivery.udot.utah.gov/datasets/uplan::rumble-strips/about
	https://digitaldelivery.udot.utah.gov/datasets/uplan::rumble-strips/about

	 and integrated with the extracted crashes dataset and Masterworks dataset. The following table summarizes the crashes at 3 miles before and after work zones. This 3-mile distance was chosen based on a comprehensive review of the literature, where various research papers proposed different distances for analysis. After evaluating these studies, the research team concluded that a 5-kilometer (approximately 3 miles) range serves as an optimal distance to assess the impact of work zones on crash rates, 

	balancing the need for comprehensive data analysis with the practical considerations of crash data availability and relevance to work zone safety evaluations. 
	Table 2. Frequency of Work Zone Crashes in the Presence of Rumble Strips 
	Rumble Strips 
	Rumble Strips 
	Rumble Strips 
	Rumble Strips 
	Rumble Strips 

	3 Miles Before WZ 
	3 Miles Before WZ 

	2 Miles Before WZ 
	2 Miles Before WZ 

	1 Mile Before WZ 
	1 Mile Before WZ 

	WZ 
	WZ 

	1 Mile After WZ 
	1 Mile After WZ 

	2 Miles After WZ 
	2 Miles After WZ 

	3 Miles After WZ 
	3 Miles After WZ 



	Total # Crashes 
	Total # Crashes 
	Total # Crashes 
	Total # Crashes 
	(Crashes & Masterworks) 

	100 
	100 

	140 
	140 

	212 
	212 

	1710 
	1710 

	202 
	202 

	115 
	115 

	95 
	95 


	Road Segments in Rumble Dataset 
	Road Segments in Rumble Dataset 
	Road Segments in Rumble Dataset 

	92 
	92 

	125 
	125 

	169 
	169 

	1614 
	1614 

	174 
	174 

	111 
	111 

	90 
	90 


	Total # Roadway Departure Crashes 
	Total # Roadway Departure Crashes 
	Total # Roadway Departure Crashes 

	20 
	20 

	21 
	21 

	25 
	25 

	241 
	241 

	21 
	21 

	21 
	21 

	13 
	13 


	Rumble Presence 
	Rumble Presence 
	Rumble Presence 

	14 (70%) 
	14 (70%) 

	4 
	4 
	4 
	 

	(19%) 

	9 
	9 
	9 
	 

	(36%) 

	111 (46%) 
	111 (46%) 

	10 (48%) 
	10 (48%) 

	4 
	4 
	4 
	 

	(19%) 

	5 
	5 
	5 
	 

	(38%) 


	No Rumble 
	No Rumble 
	No Rumble 

	TD
	P
	Span
	6 
	 

	(30%) 

	17 (80%) 
	17 (80%) 

	16 (64%) 
	16 (64%) 

	130 (54%) 
	130 (54%) 

	11 (52%) 
	11 (52%) 

	17 (81%) 
	17 (81%) 

	TD
	P
	Span
	8 
	 

	(62%) 




	 
	These figures show that the presence of rumble strips was generally associated with a lower percentage of roadway departure crashes compared to the absence of rumble strips. Interestingly, the table also suggests that rumble strips have less impact in work zone areas compared to areas before and after the work zone. While most roadway departure crashes in areas before and after a work zone occurred in areas with no rumble strips, there was almost the same number of roadway departure crashes in areas with an
	4.4 Traffic Countermeasure Analysis 
	The traffic countermeasure strategies most commonly used by UDOT are as follows: 
	1. Pave or Widen Shoulder 
	1. Pave or Widen Shoulder 
	1. Pave or Widen Shoulder 

	2. Left-Turn Lane 
	2. Left-Turn Lane 

	3. Shoulder Rumble Strips 
	3. Shoulder Rumble Strips 


	4. Roundabout or Signal 
	4. Roundabout or Signal 
	4. Roundabout or Signal 

	5. Horizontal Curve Improvements 
	5. Horizontal Curve Improvements 

	6. Left-Turn Phase Change 
	6. Left-Turn Phase Change 

	7. Clear Zone Improvements 
	7. Clear Zone Improvements 

	8. Right-Turn Lane 
	8. Right-Turn Lane 

	9. Active Transportation Improvement 
	9. Active Transportation Improvement 

	10. Shoulder Barrier 
	10. Shoulder Barrier 

	11. Intersection Lighting 
	11. Intersection Lighting 

	12. Raised Median 
	12. Raised Median 

	13. Centerline Rumble Strips 
	13. Centerline Rumble Strips 

	14. Median Barrier 
	14. Median Barrier 


	In order to better understand the effect of each countermeasure, the number of crashes that occurred within a 3-mile distance from and within the work zones are summarized in Table 2. The table presents the following information: 
	• The table presents the cross-referenced data from the Numetric and Masterworks datasets. 
	• The table presents the cross-referenced data from the Numetric and Masterworks datasets. 
	• The table presents the cross-referenced data from the Numetric and Masterworks datasets. 

	• The first line indicates the number of crashes for which information was available in the rumble Masterworks and Numetric Crashes dataset.  
	• The first line indicates the number of crashes for which information was available in the rumble Masterworks and Numetric Crashes dataset.  

	• The next 14 lines show the number of crashes that happened in the presence of each safety countermeasure. 
	• The next 14 lines show the number of crashes that happened in the presence of each safety countermeasure. 


	The table provides a comprehensive overview of the number of crashes within the 3 miles from and within the work zones for each countermeasure strategy. This analytical approach of examining crashes within specific distances from work zones, especially extending to 3 miles, is instrumental for traffic engineers seeking to comprehend the effectiveness of various traffic control and safety measures at different proximities to work zones. This tiered distance analysis (1, 2, and 3 miles) before and after work 
	1. Early Warning and Driver Behavior: It helps understand how early warning signs and other preemptive measures influence driver behavior well before the work zone. Drivers' responses to such measures can vary significantly, and the extended analysis helps identify the optimal placement for these warnings to enhance safety. 
	1. Early Warning and Driver Behavior: It helps understand how early warning signs and other preemptive measures influence driver behavior well before the work zone. Drivers' responses to such measures can vary significantly, and the extended analysis helps identify the optimal placement for these warnings to enhance safety. 
	1. Early Warning and Driver Behavior: It helps understand how early warning signs and other preemptive measures influence driver behavior well before the work zone. Drivers' responses to such measures can vary significantly, and the extended analysis helps identify the optimal placement for these warnings to enhance safety. 

	2. Traffic Flow and Congestion Analysis: By analyzing crash rates at varying distances, engineers can gauge the impact of work zones on traffic flow and congestion, which often 
	2. Traffic Flow and Congestion Analysis: By analyzing crash rates at varying distances, engineers can gauge the impact of work zones on traffic flow and congestion, which often 


	begins to manifest several miles before a work zone. This can inform strategies to mitigate congestion and reduce crash risks. 
	begins to manifest several miles before a work zone. This can inform strategies to mitigate congestion and reduce crash risks. 
	begins to manifest several miles before a work zone. This can inform strategies to mitigate congestion and reduce crash risks. 

	3. Evaluating the Impact of Countermeasures Over Distance: Different countermeasures may have varying degrees of effectiveness based on distance from the work zone. For instance, some measures might be more effective in immediate proximity, while others have a broader impact, reducing the likelihood of crashes due to traffic buildup or changes in traffic patterns several miles away. 
	3. Evaluating the Impact of Countermeasures Over Distance: Different countermeasures may have varying degrees of effectiveness based on distance from the work zone. For instance, some measures might be more effective in immediate proximity, while others have a broader impact, reducing the likelihood of crashes due to traffic buildup or changes in traffic patterns several miles away. 

	4. Comprehensive Safety Planning: This approach allows for a more nuanced safety analysis, facilitating the development of tailored strategies that address both immediate and distant risks associated with work zones. It acknowledges that the influence of a work zone on driver behavior and safety extends beyond its physical boundaries. 
	4. Comprehensive Safety Planning: This approach allows for a more nuanced safety analysis, facilitating the development of tailored strategies that address both immediate and distant risks associated with work zones. It acknowledges that the influence of a work zone on driver behavior and safety extends beyond its physical boundaries. 


	The analysis demonstrates the impact of these countermeasures in reducing the number of crashes. They are sorted based on their popularity (i.e., how frequently they are implemented). The results reveal that the presence of countermeasures is generally associated with a lower percentage of work zone crashes compared to their absence. However, the effect of countermeasures in reducing the number of crashes is almost the same for areas before, after, and within the work zone. Moreover, the analysis shows that
	 
	 
	 
	Table 3. Frequency of Work Zone Crashes Considering the Traffic Safety Countermeasures 
	Traffic Countermeasures 
	Traffic Countermeasures 
	Traffic Countermeasures 
	Traffic Countermeasures 
	Traffic Countermeasures 

	3 Miles Before WZ 
	3 Miles Before WZ 

	2 Miles Before WZ 
	2 Miles Before WZ 

	1 Mile Before WZ 
	1 Mile Before WZ 

	WZ 
	WZ 

	1 Mile After WZ 
	1 Mile After WZ 

	2 Miles After WZ 
	2 Miles After WZ 

	3 Miles After WZ 
	3 Miles After WZ 


	Total # crashes (cross-referencing Numetric crashes & Masterworks) 
	Total # crashes (cross-referencing Numetric crashes & Masterworks) 
	Total # crashes (cross-referencing Numetric crashes & Masterworks) 

	100 
	100 

	140 
	140 

	212 
	212 

	1710 
	1710 

	202 
	202 

	115 
	115 

	95 
	95 


	Paved or widened shoulder 
	Paved or widened shoulder 
	Paved or widened shoulder 

	11 
	11 

	9 
	9 

	14 
	14 

	153 
	153 

	15 
	15 

	9 
	9 

	7 
	7 


	Left turn lane 
	Left turn lane 
	Left turn lane 

	4 
	4 

	4 
	4 

	12 
	12 

	69 
	69 

	6 
	6 

	10 
	10 

	6 
	6 


	Shoulder rumble strips 
	Shoulder rumble strips 
	Shoulder rumble strips 

	11 
	11 

	7 
	7 

	14 
	14 

	95 
	95 

	9 
	9 

	6 
	6 

	5 
	5 




	Roundabout or signal 
	Roundabout or signal 
	Roundabout or signal 
	Roundabout or signal 
	Roundabout or signal 

	0 
	0 

	3 
	3 

	5 
	5 

	41 
	41 

	3 
	3 

	5 
	5 

	0 
	0 


	Horizontal curve improvements 
	Horizontal curve improvements 
	Horizontal curve improvements 

	6 
	6 

	5 
	5 

	8 
	8 

	87 
	87 

	7 
	7 

	4 
	4 

	5 
	5 


	Left-turn phase change 
	Left-turn phase change 
	Left-turn phase change 

	3 
	3 

	4 
	4 

	8 
	8 

	47 
	47 

	3 
	3 

	6 
	6 

	3 
	3 


	Clear zone improvements 
	Clear zone improvements 
	Clear zone improvements 

	6 
	6 

	3 
	3 

	9 
	9 

	91 
	91 

	10 
	10 

	3 
	3 

	10 
	10 


	Right-turn lane 
	Right-turn lane 
	Right-turn lane 

	1 
	1 

	5 
	5 

	2 
	2 

	18 
	18 

	9 
	9 

	3 
	3 

	2 
	2 


	Active transportation improvement 
	Active transportation improvement 
	Active transportation improvement 

	2 
	2 

	0 
	0 

	3 
	3 

	11 
	11 

	0 
	0 

	0 
	0 

	2 
	2 


	Shoulder barrier 
	Shoulder barrier 
	Shoulder barrier 

	0 
	0 

	1 
	1 

	3 
	3 

	37 
	37 

	3 
	3 

	0 
	0 

	4 
	4 


	Intersection lighting 
	Intersection lighting 
	Intersection lighting 

	2 
	2 

	2 
	2 

	1 
	1 

	17 
	17 

	3 
	3 

	3 
	3 

	2 
	2 


	Raised median 
	Raised median 
	Raised median 

	0 
	0 

	0 
	0 

	3 
	3 

	19 
	19 

	3 
	3 

	2 
	2 

	0 
	0 


	Centerline rumble strips 
	Centerline rumble strips 
	Centerline rumble strips 

	1 
	1 

	1 
	1 

	0 
	0 

	12 
	12 

	1 
	1 

	1 
	1 

	2 
	2 


	Median barrier 
	Median barrier 
	Median barrier 

	0 
	0 

	1 
	1 

	0 
	0 

	8 
	8 

	0 
	0 

	0 
	0 

	1 
	1 


	No countermeasure 
	No countermeasure 
	No countermeasure 

	53 
	53 

	95 
	95 

	130 
	130 

	1005 
	1005 

	130 
	130 

	63 
	63 

	46 
	46 


	Percentage of No Countermeasures 
	Percentage of No Countermeasures 
	Percentage of No Countermeasures 

	53% 
	53% 

	68% 
	68% 

	61% 
	61% 

	59% 
	59% 

	64% 
	64% 

	55% 
	55% 

	48% 
	48% 




	4.5 Contract Type Analysis 
	This analysis aims to understand how different contract types may influence the occurrence of crashes. The findings of this analysis have been summarized in Table 4.  Our analysis reveals that CMGC contracts exhibit a more significant increase in the number of crashes as vehicles approach work zones compared to other contract types, which could be related to both the sample size and poor safety management. Also, based on normalization results (Table 5), Desing-Bid-Build contracts are the safest ones, and CM
	Table 4. Effect of Contract Types on the Frequency of Work Zone Crashes 
	Contract Type 
	Contract Type 
	Contract Type 
	Contract Type 
	Contract Type 

	3 Miles Before WZ 
	3 Miles Before WZ 

	2 Miles Before WZ 
	2 Miles Before WZ 

	1 Mile Before WZ 
	1 Mile Before WZ 

	WZ 
	WZ 

	1 Mile After WZ 
	1 Mile After WZ 

	2 Miles After WZ 
	2 Miles After WZ 

	3 Miles After WZ 
	3 Miles After WZ 




	Total # Crashes (Cross Referencing Numetric Crashes & ProjectWise) 
	Total # Crashes (Cross Referencing Numetric Crashes & ProjectWise) 
	Total # Crashes (Cross Referencing Numetric Crashes & ProjectWise) 
	Total # Crashes (Cross Referencing Numetric Crashes & ProjectWise) 
	Total # Crashes (Cross Referencing Numetric Crashes & ProjectWise) 

	100 
	100 

	140 
	140 

	212 
	212 

	1710 
	1710 

	202 
	202 

	115 
	115 

	95 
	95 


	CMGC 
	CMGC 
	CMGC 

	2% 
	2% 

	2% 
	2% 

	7% 
	7% 

	4% 
	4% 

	6% 
	6% 

	0 
	0 

	1% 
	1% 


	Design-Build 
	Design-Build 
	Design-Build 

	28% 
	28% 

	31% 
	31% 

	10% 
	10% 

	14% 
	14% 

	11% 
	11% 

	41% 
	41% 

	34% 
	34% 


	Design-Bid-Build 
	Design-Bid-Build 
	Design-Bid-Build 

	70% 
	70% 

	67% 
	67% 

	83% 
	83% 

	82% 
	82% 

	83% 
	83% 

	59% 
	59% 

	65% 
	65% 




	 
	Table 5. Crash Rates Based on Contract Types 
	Contracts 
	Contracts 
	Contracts 
	Contracts 
	Contracts 

	Count 
	Count 

	Average Duration (Days) 
	Average Duration (Days) 

	Average Length (Miles) 
	Average Length (Miles) 

	Total Crash Per 100M VMT 
	Total Crash Per 100M VMT 



	CMGC 
	CMGC 
	CMGC 
	CMGC 

	71 
	71 

	469 
	469 

	1.7 
	1.7 

	5.45 
	5.45 


	Design - Build 
	Design - Build 
	Design - Build 

	238 
	238 

	830 
	830 

	4.92 
	4.92 

	1.02 
	1.02 


	Design, Bid, Build 
	Design, Bid, Build 
	Design, Bid, Build 

	1401 
	1401 

	223 
	223 

	10.1 
	10.1 

	0.57 
	0.57 




	 
	Additionally, the following table lists the number of non-work zone crashes in Utah. 
	 
	 
	 
	Table 6. Non-Work Zone Crashes in the State of Utah 
	Year 
	Year 
	Year 
	Year 
	Year 

	VMT 
	VMT 

	Fatal 
	Fatal 

	Suspected Serious Injury 
	Suspected Serious Injury 

	Suspected Minor Injury 
	Suspected Minor Injury 

	Possible Injury 
	Possible Injury 

	No Injury/PDO 
	No Injury/PDO 

	Total 
	Total 



	2017 
	2017 
	2017 
	2017 

	31,510,020,465 
	31,510,020,465 

	236 
	236 

	1,167 
	1,167 

	5,678 
	5,678 

	10,404 
	10,404 

	42,608 
	42,608 

	60,093 
	60,093 


	2018 
	2018 
	2018 

	32,258,369,802 
	32,258,369,802 

	226 
	226 

	1,094 
	1,094 

	5,588 
	5,588 

	10,314 
	10,314 

	41,490 
	41,490 

	58,712 
	58,712 


	2019 
	2019 
	2019 

	32,933,228,764 
	32,933,228,764 

	205 
	205 

	1,055 
	1,055 

	5,711 
	5,711 

	10,660 
	10,660 

	43,254 
	43,254 

	60,885 
	60,885 


	2020 
	2020 
	2020 

	30,189,193,125 
	30,189,193,125 

	245 
	245 

	1,240 
	1,240 

	5,412 
	5,412 

	8,256 
	8,256 

	33,132 
	33,132 

	48,285 
	48,285 


	2021 
	2021 
	2021 

	33,755,013,902 
	33,755,013,902 

	289 
	289 

	1,378 
	1,378 

	6,615 
	6,615 

	9,532 
	9,532 

	41,215 
	41,215 

	59,029 
	59,029 


	Total 
	Total 
	Total 

	160,645,826,058 
	160,645,826,058 

	1,201 
	1,201 

	5,934 
	5,934 

	29,004 
	29,004 

	49,166 
	49,166 

	201,699 
	201,699 

	287,004 
	287,004 




	 
	Based on data in Table 6, Table 7 summarizes the non-work zone crashes per 100 million VMT. 
	Year 
	Year 
	Year 
	Year 
	Year 

	Fatal 
	Fatal 

	Suspected Serious Injury 
	Suspected Serious Injury 

	Suspected Minor Injury 
	Suspected Minor Injury 

	Possible Injury 
	Possible Injury 

	No Injury/PDO 
	No Injury/PDO 

	Total 
	Total 



	2017 
	2017 
	2017 
	2017 

	0.75 
	0.75 

	3.70 
	3.70 

	18.02 
	18.02 

	33.02 
	33.02 

	135.22 
	135.22 

	190.71 
	190.71 


	2018 
	2018 
	2018 

	0.70 
	0.70 

	3.39 
	3.39 

	17.32 
	17.32 

	31.97 
	31.97 

	128.62 
	128.62 

	182.01 
	182.01 


	2019 
	2019 
	2019 

	0.62 
	0.62 

	3.20 
	3.20 

	17.34 
	17.34 

	32.37 
	32.37 

	131.34 
	131.34 

	184.87 
	184.87 


	2020 
	2020 
	2020 

	0.81 
	0.81 

	4.11 
	4.11 

	17.93 
	17.93 

	27.35 
	27.35 

	109.75 
	109.75 

	159.94 
	159.94 




	2021 
	2021 
	2021 
	2021 
	2021 

	0.86 
	0.86 

	4.08 
	4.08 

	19.60 
	19.60 

	28.24 
	28.24 

	122.10 
	122.10 

	174.87 
	174.87 


	Average 
	Average 
	Average 

	0.75 
	0.75 

	3.69 
	3.69 

	18.05 
	18.05 

	30.61 
	30.61 

	125.56 
	125.56 

	178.66 
	178.66 




	 
	When contrasting the crash rates between work zones and non-work zones in Utah, it's evident that work zones exhibit significantly higher safety levels, evidenced by lower crash rates. 
	4.6 Potential Work Zone Crashes 
	Effective road safety management requires a comprehensive understanding and analysis of crash data, particularly those occurring in work zones. In this section, we examine work zone and non-work zone crashes, focusing on the meticulous process of identifying unmarked work zone incidents through cross-referencing location and date data. Additionally, we address discrepancies observed in crash data and propose further investigation methods to enhance data accuracy and alignment. Through this analysis, we aim 
	As indicated in Table 8, a significant portion of unmarked work zone crashes were identified by cross-referencing the location and date of the incidents with known work zones. This meticulous process allowed for the identification of crashes that occurred in close proximity to work zones but were not explicitly labeled as 'work zone related.' For these instances, further examination using ClearGuide data is proposed. ClearGuide data analysis could unveil additional insights, particularly regarding incidents
	Table 7. Potential Work Zone Crashes 
	 
	Figure
	 
	As shown in Table 9, out of the 15,550 work-zone-involved crashes in Numetric: 
	• Around 5300 did not occur within the work zone activities' reported start and end mileage. 
	• Around 5300 did not occur within the work zone activities' reported start and end mileage. 
	• Around 5300 did not occur within the work zone activities' reported start and end mileage. 

	• Approximately 3000 of them occurred on roads where there were no reported work zones in Masterworks. 
	• Approximately 3000 of them occurred on roads where there were no reported work zones in Masterworks. 

	• Approximately 3000 occurred in the reported location of work zones but not within the reported start and end times of the work zones. 
	• Approximately 3000 occurred in the reported location of work zones but not within the reported start and end times of the work zones. 

	• Finally, 700 were either recorded with peculiar road names (e.g., 5700000, 000-000, ...) or had no road names provided. 
	• Finally, 700 were either recorded with peculiar road names (e.g., 5700000, 000-000, ...) or had no road names provided. 


	The substantial number of unreported work zone crashes highlights the serious issue of underreported incidents that may occur within work zones. 
	Table 8. Reasons for Differences in Detected Work Zone Crashes 
	 
	Figure
	4.7 Safety Countermeasures 
	In this section, an extensive review and analysis of work zone safety countermeasures drawn from a comprehensive selection of sources, including DOT reports, National Cooperative Highway Research Program (NCHRP) publications, the Manual on Uniform Traffic Control Devices (MUTCD), and various research papers will be presented. The objective is to assess and compare the effectiveness of these countermeasures in mitigating the risk of crashes within construction work zones. The primary metric used for this com
	 
	 
	 
	 
	 

	 
	 



	𝐶𝑀𝐹= 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐴𝑓𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 
	𝐶𝑀𝐹= 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐴𝑓𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 
	𝐶𝑀𝐹= 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐴𝑓𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 
	𝐶𝑀𝐹= 𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐴𝑓𝑡𝑒𝑟 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑟𝑎𝑠ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

	(12) 
	(12) 


	 
	 
	 

	 
	 




	For example, if the baseline crash frequency before implementing a new work zone safety measure is 100 accidents per year, and after implementation, the crash frequency decreases to 80 accidents per year, the CMF would be: 𝐶𝑀𝐹= 80100=0.8 
	This CMF value of 0.8 indicates that the safety measure resulted in a 20% reduction in crashes compared to the baseline condition. A CMF less than 1 suggests that the intervention effectively reduces crashes, while a CMF greater than 1 indicates that it may increase crash risk. Hence, a lower CMF indicates a more effective countermeasure. 
	Based on the literature review, the available work zone traffic control approaches can be divided into 3 main groups, including 1) Speed Control Group, 2) Intrusion Prevention and Warning Systems, and 3) Human-Machine Interaction Detection Systems. However, in order to include all the available measures, two additional groups, 4) Smart Work Zone (Advanced Technology) and 5) Traditional Approaches, were included in the report. Additionally, the analysis considered various data collection techniques prevalent
	 
	4.7.1 Speed Control Group 
	This category primarily focuses on controlling vehicle speeds within construction work zones. The following countermeasures are included: 
	• Portable changeable message signs (PCMSs) or Variable message signs (VMS): Widely adopted by DOTs due to their portability and adaptability. 
	• Portable changeable message signs (PCMSs) or Variable message signs (VMS): Widely adopted by DOTs due to their portability and adaptability. 
	• Portable changeable message signs (PCMSs) or Variable message signs (VMS): Widely adopted by DOTs due to their portability and adaptability. 

	• Dynamic speed displays: Effective in reducing speeds, although costlier to implement. 
	• Dynamic speed displays: Effective in reducing speeds, although costlier to implement. 

	• Portable rumble strips (PRS): Offers speed reduction benefits and is relatively cost-effective. 
	• Portable rumble strips (PRS): Offers speed reduction benefits and is relatively cost-effective. 

	• Police enforcement: Traditional and known for reducing speeds but comes with a significant cost. 
	• Police enforcement: Traditional and known for reducing speeds but comes with a significant cost. 

	• Radar speed displays or Drone Radar (iCone): These systems provide both speed reduction and less speed variation, making them a subject of considerable research interest. 
	• Radar speed displays or Drone Radar (iCone): These systems provide both speed reduction and less speed variation, making them a subject of considerable research interest. 


	• Variable Speed Limit (VSL) systems: Studied extensively, with a 0.9 CMF suggesting their effectiveness in reducing crashes. 
	• Variable Speed Limit (VSL) systems: Studied extensively, with a 0.9 CMF suggesting their effectiveness in reducing crashes. 
	• Variable Speed Limit (VSL) systems: Studied extensively, with a 0.9 CMF suggesting their effectiveness in reducing crashes. 

	• Automated Speed Enforcement and other technologies are also explored in the literature but might be less commonly favored by DOTs due to various factors such as cost and public acceptance. 
	• Automated Speed Enforcement and other technologies are also explored in the literature but might be less commonly favored by DOTs due to various factors such as cost and public acceptance. 


	 
	Figure
	Figure 29. iBarrel from iCone is Used to Provide Real-Time Information on Traffic Patterns in a Work Zone.   
	 
	4.7.2 Intrusion Prevention and Warning Systems 
	This category primarily aims to protect workers and prevent unauthorized access to work zones. 
	• Positive Protection Systems (PPS): Preferred for their significant cost savings in terms of injury and crash costs, such as: 
	• Positive Protection Systems (PPS): Preferred for their significant cost savings in terms of injury and crash costs, such as: 
	• Positive Protection Systems (PPS): Preferred for their significant cost savings in terms of injury and crash costs, such as: 
	• Positive Protection Systems (PPS): Preferred for their significant cost savings in terms of injury and crash costs, such as: 
	o Water-Filled Barriers: These barriers are made from plastic and filled with water to provide weight. They are used to absorb impact energy during a collision, reducing the risk of severe injuries. Water-filled barriers are often used where a lighter-weight barrier is preferred or where rapid deployment and removal are needed. 
	o Water-Filled Barriers: These barriers are made from plastic and filled with water to provide weight. They are used to absorb impact energy during a collision, reducing the risk of severe injuries. Water-filled barriers are often used where a lighter-weight barrier is preferred or where rapid deployment and removal are needed. 
	o Water-Filled Barriers: These barriers are made from plastic and filled with water to provide weight. They are used to absorb impact energy during a collision, reducing the risk of severe injuries. Water-filled barriers are often used where a lighter-weight barrier is preferred or where rapid deployment and removal are needed. 

	o Crash Cushions: These are impact attenuators placed at the ends of barriers or hazards to absorb impact energy and reduce the severity of collisions. Crash cushions are designed to be hit and can significantly decrease the damage and injuries resulting from a crash. 
	o Crash Cushions: These are impact attenuators placed at the ends of barriers or hazards to absorb impact energy and reduce the severity of collisions. Crash cushions are designed to be hit and can significantly decrease the damage and injuries resulting from a crash. 

	o Truck-Mounted Attenuators (TMAs): TMAs are mounted on the back of a truck to protect workers and equipment from errant vehicles. They are designed to absorb impact energy if a vehicle crashes into the truck, reducing the severity of the collision. 
	o Truck-Mounted Attenuators (TMAs): TMAs are mounted on the back of a truck to protect workers and equipment from errant vehicles. They are designed to absorb impact energy if a vehicle crashes into the truck, reducing the severity of the collision. 





	 
	 
	Figure
	Figure 30. Positive Protection in Work Zones for Protecting Workers 
	• Intrusion Alert Technologies (IAT) and the use of retroreflective devices are mentioned as additional means to enhance intrusion prevention, such as: 
	• Intrusion Alert Technologies (IAT) and the use of retroreflective devices are mentioned as additional means to enhance intrusion prevention, such as: 
	• Intrusion Alert Technologies (IAT) and the use of retroreflective devices are mentioned as additional means to enhance intrusion prevention, such as: 
	• Intrusion Alert Technologies (IAT) and the use of retroreflective devices are mentioned as additional means to enhance intrusion prevention, such as: 
	o Infrared Sensors: Utilize infrared beams to detect motion or intrusion into designated areas. When the beam is broken, an alert is triggered, warning the work crew of the potential danger. 
	o Infrared Sensors: Utilize infrared beams to detect motion or intrusion into designated areas. When the beam is broken, an alert is triggered, warning the work crew of the potential danger. 
	o Infrared Sensors: Utilize infrared beams to detect motion or intrusion into designated areas. When the beam is broken, an alert is triggered, warning the work crew of the potential danger. 

	o Laser Scanners: Employ laser technology to monitor predefined zones for unauthorized intrusions. Upon detection, they can activate warning signals to alert workers. 
	o Laser Scanners: Employ laser technology to monitor predefined zones for unauthorized intrusions. Upon detection, they can activate warning signals to alert workers. 

	o Wearable Alert Devices: These devices can be worn by workers and are activated either manually or automatically in response to an intrusion alert, providing immediate notification through vibrations, sounds, or visual cues. 
	o Wearable Alert Devices: These devices can be worn by workers and are activated either manually or automatically in response to an intrusion alert, providing immediate notification through vibrations, sounds, or visual cues. 

	o Automated Flagging Assistance Devices (AFADs): While primarily used for traffic control, some AFADs are equipped with intrusion detection capabilities to enhance worker safety by alerting when vehicles mistakenly enter the work zone. 
	o Automated Flagging Assistance Devices (AFADs): While primarily used for traffic control, some AFADs are equipped with intrusion detection capabilities to enhance worker safety by alerting when vehicles mistakenly enter the work zone. 





	4.7.3 Human-Machine Interaction Detection Systems 
	• Focuses on improving communication and awareness between workers and drivers. 
	• Focuses on improving communication and awareness between workers and drivers. 
	• Focuses on improving communication and awareness between workers and drivers. 

	• Proximity warning systems (PWSs) and visual-based warning systems (VWS) are discussed as potential safety measures, though their adoption might vary. 
	• Proximity warning systems (PWSs) and visual-based warning systems (VWS) are discussed as potential safety measures, though their adoption might vary. 


	 
	4.7.4 Smart Work Zone (Advanced Technology) 
	• Involves the integration of advanced technologies to enhance work zone safety. 
	• Involves the integration of advanced technologies to enhance work zone safety. 
	• Involves the integration of advanced technologies to enhance work zone safety. 

	• Unmanned Aerial Systems (UAS) and audible warning alarm systems are highlighted as worker safety measures. For example, using UAS, workers and equipment within the work zone could be automatically identified and tracked using object detection algorithms applied to aerial images captured by UAS. Another potential application of UAS is the development of an alarm system to alert workers about an approaching upstream vehicle. 
	• Unmanned Aerial Systems (UAS) and audible warning alarm systems are highlighted as worker safety measures. For example, using UAS, workers and equipment within the work zone could be automatically identified and tracked using object detection algorithms applied to aerial images captured by UAS. Another potential application of UAS is the development of an alarm system to alert workers about an approaching upstream vehicle. 

	• Queue Warning Systems, ITS countermeasures, and LiDAR technology are explored as ways to reduce crashes and improve traffic flow. 
	• Queue Warning Systems, ITS countermeasures, and LiDAR technology are explored as ways to reduce crashes and improve traffic flow. 


	 
	4.7.5 Traditional Approaches 
	These approaches include standard practices that have been used in work zone traffic control for years. 
	• Increasing shoulder width, reducing lane widths, and implementing lane closures are common practices, although their effectiveness might be situation-dependent. 
	• Increasing shoulder width, reducing lane widths, and implementing lane closures are common practices, although their effectiveness might be situation-dependent. 
	• Increasing shoulder width, reducing lane widths, and implementing lane closures are common practices, although their effectiveness might be situation-dependent. 

	• Transition areas are identified as critical and potentially dangerous zones within work zones. 
	• Transition areas are identified as critical and potentially dangerous zones within work zones. 


	 
	Table 9. Summarizing the Most Common Work Zone Countermeasures and Their Effects 
	Category 
	Category 
	Category 
	Category 
	Category 

	Parameter 
	Parameter 

	Effect 
	Effect 

	CMF 
	CMF 

	Implementation 
	Implementation 

	Other 
	Other 



	Speed Reduction Systems 
	Speed Reduction Systems 
	Speed Reduction Systems 
	Speed Reduction Systems 

	Speed-limit signs and work zone signs 
	Speed-limit signs and work zone signs 

	- 
	- 

	 
	 

	All States 
	All States 

	Drivers glanced at 40% frequency. 
	Drivers glanced at 40% frequency. 




	Table
	TBody
	TR
	Variable Speed Limit (VSL) 
	Variable Speed Limit (VSL) 

	- 
	- 

	0.9 
	0.9 

	- 
	- 

	- 
	- 


	TR
	Police enforcement 
	Police enforcement 

	5-10 MPH speed reduction 
	5-10 MPH speed reduction 

	0.59 
	0.59 

	All states 
	All states 

	- 
	- 


	TR
	Automated Speed Enforcement 
	Automated Speed Enforcement 

	 
	 

	0.83 
	0.83 

	 
	 

	Photo speed enforcement systems 
	Photo speed enforcement systems 


	TR
	Radar speed displays or Drone Radar (iCone) 
	Radar speed displays or Drone Radar (iCone) 

	6%-23% speed reduction 
	6%-23% speed reduction 

	- 
	- 

	Florida, Oregon, California, … 
	Florida, Oregon, California, … 

	Less variation in speeds 
	Less variation in speeds 


	TR
	Variable message signs 
	Variable message signs 

	1-11 MPH speed reduction 
	1-11 MPH speed reduction 

	- 
	- 

	 
	 

	Most popular in literature 
	Most popular in literature 


	TR
	Portable changeable message signs (PCMSs) 
	Portable changeable message signs (PCMSs) 

	- 
	- 

	Iowa, Oregon, … 
	Iowa, Oregon, … 

	Most common between DOTs 
	Most common between DOTs 


	TR
	Dynamic speed displays 
	Dynamic speed displays 

	0.54-0.85 
	0.54-0.85 

	Iowa, Indiana 
	Iowa, Indiana 

	Cost 9.5K 
	Cost 9.5K 


	TR
	Portable rumble strips (PRS) 
	Portable rumble strips (PRS) 

	6-14 MPH Speed reduction 
	6-14 MPH Speed reduction 

	0.4-0.9 
	0.4-0.9 

	Missouri, Georgia, Illinois, Iowa, Kansas, Minnesota, Texas, Washington, Wisconsin, … 
	Missouri, Georgia, Illinois, Iowa, Kansas, Minnesota, Texas, Washington, Wisconsin, … 

	Cost 1K 
	Cost 1K 


	TR
	PRS + Queue Warning System 
	PRS + Queue Warning System 

	0.59 
	0.59 

	Indiana 
	Indiana 

	Cost 250K 
	Cost 250K 


	TR
	Use of blue LED light trailers in work zones where police detail is not required 
	Use of blue LED light trailers in work zones where police detail is not required 

	 
	 

	Florida 
	Florida 

	 
	 


	Intrusion prevention and warning systems (IPWS) 
	Intrusion prevention and warning systems (IPWS) 
	Intrusion prevention and warning systems (IPWS) 

	Positive protection systems (PPS), including concrete barriers, ballast-filled barriers, shadow vehicles, vehicle arrestors, guardrails, traffic control barriers, terminal end treatments, impact attenuators, sand barrel arrays, and truck mounted and trailer mounted impact attenuation 
	Positive protection systems (PPS), including concrete barriers, ballast-filled barriers, shadow vehicles, vehicle arrestors, guardrails, traffic control barriers, terminal end treatments, impact attenuators, sand barrel arrays, and truck mounted and trailer mounted impact attenuation 

	- 
	- 

	- 
	- 

	- 
	- 

	Save injury cost savings to DOTs and contractors in the US of up to $1.1 million annually and a crash cost savings of $196,885 
	Save injury cost savings to DOTs and contractors in the US of up to $1.1 million annually and a crash cost savings of $196,885 


	TR
	Intrusion alert technologies (IAT), including infrared beams, microwaves, and pneumatic pressured tubes as triggering mechanisms, Sonoblaster, Intellicone, traffic 
	Intrusion alert technologies (IAT), including infrared beams, microwaves, and pneumatic pressured tubes as triggering mechanisms, Sonoblaster, Intellicone, traffic 

	- 
	- 

	- 
	- 

	Oregon (Research) 
	Oregon (Research) 

	- 
	- 




	Table
	TBody
	TR
	worker alert systems, and advanced warning and risk evasion (AWARE) 
	worker alert systems, and advanced warning and risk evasion (AWARE) 


	TR
	Automated Flagger 
	Automated Flagger 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Use of retroreflective devices 
	Use of retroreflective devices 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	Human-machine-interaction detection systems 
	Human-machine-interaction detection systems 
	Human-machine-interaction detection systems 

	Proximity warning systems (PWSs) 
	Proximity warning systems (PWSs) 

	- 
	- 

	- 
	- 

	Georgia (Research) 
	Georgia (Research) 

	- 
	- 


	TR
	Visual-based warning system (VWS) 
	Visual-based warning system (VWS) 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	Smart Work Zone (Advanced Technology) 
	Smart Work Zone (Advanced Technology) 
	Smart Work Zone (Advanced Technology) 

	Using Unmanned Aerial System (UAS) for Active Safety Monitoring 
	Using Unmanned Aerial System (UAS) for Active Safety Monitoring 

	- 
	- 

	- 
	- 

	Georgia (Research) 
	Georgia (Research) 

	Worker Safety 
	Worker Safety 


	TR
	An audible warning alarm system to alert workers 
	An audible warning alarm system to alert workers 

	- 
	- 

	- 
	- 

	Research 
	Research 

	- 
	- 


	TR
	In-vehicle work zone warning application under the connected vehicle (CV) environment 
	In-vehicle work zone warning application under the connected vehicle (CV) environment 

	- 
	- 

	- 
	- 

	Research 
	Research 

	- 
	- 


	TR
	Queue Warning System or End-of-Queue Warning System 
	Queue Warning System or End-of-Queue Warning System 

	- 
	- 

	0.3-0.5 
	0.3-0.5 

	Texas (Research) 
	Texas (Research) 

	Reduced Crashes by 44%. 
	Reduced Crashes by 44%. 


	TR
	Intelligent Transportation Systems (ITS) countermeasures, including Variable Speed Limit (VSL), Dynamic Message Sign (DMS) 
	Intelligent Transportation Systems (ITS) countermeasures, including Variable Speed Limit (VSL), Dynamic Message Sign (DMS) 

	- 
	- 

	- 
	- 

	Some states 
	Some states 

	Reduced rear-end collision by 14% 
	Reduced rear-end collision by 14% 


	TR
	Alarm device and directional audio system (DAS) 
	Alarm device and directional audio system (DAS) 

	- 
	- 

	- 
	- 

	Missouri (Research) 
	Missouri (Research) 

	Reduce Vehicle Merging Speed 
	Reduce Vehicle Merging Speed 


	TR
	Using LiDAR for Vehicle Detection 
	Using LiDAR for Vehicle Detection 

	- 
	- 

	- 
	- 

	U.S. DOT (Research) 
	U.S. DOT (Research) 

	- 
	- 


	Traditional Approaches 
	Traditional Approaches 
	Traditional Approaches 

	Increase Shoulder Width 
	Increase Shoulder Width 

	- 
	- 

	0.9-1 
	0.9-1 

	- 
	- 

	Cost 1K 
	Cost 1K 


	TR
	Reduced lane widths 
	Reduced lane widths 

	- 
	- 

	1 
	1 

	- 
	- 

	- 
	- 


	TR
	Shoulder closures 
	Shoulder closures 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Lane closures 
	Lane closures 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Lane shifts 
	Lane shifts 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 




	Table
	TBody
	TR
	Retroreflectivity of Pavement Markings 
	Retroreflectivity of Pavement Markings 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Provision of advance warning areas 
	Provision of advance warning areas 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Buffer spaces 
	Buffer spaces 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Transition areas 
	Transition areas 

	- 
	- 

	- 
	- 

	- 
	- 

	Most Dangerous Area 
	Most Dangerous Area 


	TR
	Tapers 
	Tapers 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 


	TR
	Speed Humps 
	Speed Humps 

	- 
	- 

	- 
	- 

	- 
	- 

	- 
	- 




	 
	While multiple work zone countermeasures are available, the precise effects of certain measures or their combinations remain unstudied. Despite the abundance of reports and literature in this field, portable changeable message signs (PCMSs) emerge as the most frequently employed countermeasure among DOTs, while variable message signs hold this distinction in the literature. Notably, the literature identifies transition areas as the most hazardous zones within work zones. 
	4.8 State-of-the-Practice in DOTs 
	In this study, a survey was distributed among all DOTs to assess their satisfaction with any of the listed work zone safety countermeasures. This section presents a comprehensive summary of the findings derived from a survey that engaged the active participation of 24 responses collected from 22 states. Each response provided valuable insights into various factors influencing workplace safety and satisfaction. The states that responded to our survey include: 
	Table 10. List of Engaged States 
	Kansas 
	Kansas 
	Kansas 
	Kansas 
	Kansas 

	Pennsylvania 
	Pennsylvania 

	California  
	California  

	Illinois 
	Illinois 



	Vermont 
	Vermont 
	Vermont 
	Vermont 

	Maryland 
	Maryland 

	West Virginia 
	West Virginia 

	Delaware 
	Delaware 


	North Carolina 
	North Carolina 
	North Carolina 

	Wisconsin 
	Wisconsin 

	Georgia 
	Georgia 

	Florida 
	Florida 


	South Dakota 
	South Dakota 
	South Dakota 

	Minnesota 
	Minnesota 

	ARDOT 
	ARDOT 

	Missouri 
	Missouri 


	Michigan 
	Michigan 
	Michigan 

	Washington, DC 
	Washington, DC 

	Oklahoma 
	Oklahoma 

	 
	 


	Kentucky 
	Kentucky 
	Kentucky 

	Iowa 
	Iowa 

	Colorado 
	Colorado 

	 
	 




	 
	 
	4.8.1 Factor Analysis 
	The survey results highlight factors that significantly impact safety and satisfaction, with satisfaction levels ranging from highest to lowest as follows: 
	Table 11. List of Work Zone Countermeasures and Satisfaction Levels 
	 
	Figure
	  
	4.8.2 Other Methods 
	Furthermore, the survey collected responses on additional factors and their corresponding satisfaction levels, including: 
	Table 12. Non-Listed Work Zone Features and Satisfaction Levels 
	Factors 
	Factors 
	Factors 
	Factors 
	Factors 

	Satisfaction 
	Satisfaction 



	Sequential flashing warning lights on merge tapers 
	Sequential flashing warning lights on merge tapers 
	Sequential flashing warning lights on merge tapers 
	Sequential flashing warning lights on merge tapers 

	Very Satisfied 
	Very Satisfied 


	Work zone presence lighting 
	Work zone presence lighting 
	Work zone presence lighting 

	Dissatisfied 
	Dissatisfied 


	Zipper Merge 
	Zipper Merge 
	Zipper Merge 

	Satisfied 
	Satisfied 


	Full Closures 
	Full Closures 
	Full Closures 

	Very Satisfied 
	Very Satisfied 


	"Obey the flagger" sign placed on the center line across from the "flagger symbol" sign 
	"Obey the flagger" sign placed on the center line across from the "flagger symbol" sign 
	"Obey the flagger" sign placed on the center line across from the "flagger symbol" sign 

	Satisfied 
	Satisfied 


	Sequential flashing warning lights 
	Sequential flashing warning lights 
	Sequential flashing warning lights 

	Satisfied 
	Satisfied 


	Automated WZ Speed Enforcement 
	Automated WZ Speed Enforcement 
	Automated WZ Speed Enforcement 

	Very Satisfied 
	Very Satisfied 




	Protection Vehicle 
	Protection Vehicle 
	Protection Vehicle 
	Protection Vehicle 
	Protection Vehicle 

	Not mentioned 
	Not mentioned 


	Maintenance Zone Enhanced Enforcement Program (MAZEEP) 
	Maintenance Zone Enhanced Enforcement Program (MAZEEP) 
	Maintenance Zone Enhanced Enforcement Program (MAZEEP) 

	Not mentioned 
	Not mentioned 


	Solar Advanced Warning Systems (SAWS) 
	Solar Advanced Warning Systems (SAWS) 
	Solar Advanced Warning Systems (SAWS) 

	Not mentioned 
	Not mentioned 


	Speed Photo Enforcement 
	Speed Photo Enforcement 
	Speed Photo Enforcement 

	Satisfied 
	Satisfied 




	 
	4.8.3 Challenges 
	In addition to the satisfaction ratings, the report delves into the challenges associated with implementing these safety measures within work zones. These challenges are thoroughly documented, providing a comprehensive overview of the current landscape and opportunities for improvement in work zone safety and satisfaction. 
	1. Lack of agency staff and reliance on external resources do not build institutional knowledge within the agency. Staffing issues also make implementation of new/innovative strategies very difficult with current project workloads. 
	1. Lack of agency staff and reliance on external resources do not build institutional knowledge within the agency. Staffing issues also make implementation of new/innovative strategies very difficult with current project workloads. 
	1. Lack of agency staff and reliance on external resources do not build institutional knowledge within the agency. Staffing issues also make implementation of new/innovative strategies very difficult with current project workloads. 

	2. Cost, ways to introduce new devices since the traffic control methods are left to the contractor as long as they meet state standards and the MUTCD. 
	2. Cost, ways to introduce new devices since the traffic control methods are left to the contractor as long as they meet state standards and the MUTCD. 

	3. Too many devices to set up/takedown each day.  
	3. Too many devices to set up/takedown each day.  

	4. Lots of worker exposure.  
	4. Lots of worker exposure.  

	5. Hard to get contractors to install devices in accordance with standards and specifications.  
	5. Hard to get contractors to install devices in accordance with standards and specifications.  

	6. Variable speed limits required legislative approval and were not initially approved but eventually passed. 
	6. Variable speed limits required legislative approval and were not initially approved but eventually passed. 

	7. KYTC piloted some temporary rumble strip projects in 2021 and 2022, but feedback from the Districts was not positive. Issues of the strips either sliding or breaking apart were the common complaints. Further research into the products used and where they were installed (i.e., curves or downhill grades) is needed to determine the cause of the issues.    
	7. KYTC piloted some temporary rumble strip projects in 2021 and 2022, but feedback from the Districts was not positive. Issues of the strips either sliding or breaking apart were the common complaints. Further research into the products used and where they were installed (i.e., curves or downhill grades) is needed to determine the cause of the issues.    

	8. Contractor and maintenance force compliance with TTC policies, regulations, and laws when implementing TTC devices. 
	8. Contractor and maintenance force compliance with TTC policies, regulations, and laws when implementing TTC devices. 

	9. Evaluating the effectiveness of strategies  
	9. Evaluating the effectiveness of strategies  

	10. Developing guidelines and specs (measurement and payment). 
	10. Developing guidelines and specs (measurement and payment). 

	11. Driver compliance 
	11. Driver compliance 


	12. Driver distraction and inattentiveness have been a big issue this season, along with commercial vehicles. 
	12. Driver distraction and inattentiveness have been a big issue this season, along with commercial vehicles. 
	12. Driver distraction and inattentiveness have been a big issue this season, along with commercial vehicles. 

	13. I find it hard to install the operation as designed due to contractor installation on a daily basis and constant monitoring of all installations for effectiveness. 
	13. I find it hard to install the operation as designed due to contractor installation on a daily basis and constant monitoring of all installations for effectiveness. 

	14. Blue lights become less effective. 
	14. Blue lights become less effective. 

	15. Time & Availability. In some instances, getting the needed equipment to use and getting feedback on some new devices takes time. That said, our administration and senior staff are very supportive of cutting-edge technology. 
	15. Time & Availability. In some instances, getting the needed equipment to use and getting feedback on some new devices takes time. That said, our administration and senior staff are very supportive of cutting-edge technology. 

	16. Maintenance of devices. 
	16. Maintenance of devices. 

	17. Resistance to Change - Technology Integration. 
	17. Resistance to Change - Technology Integration. 

	18. Takes time to provide effective results that will influence change allowance as cost/benefit is a difficult balance with all safety and even more challenging when the DOT is not in control of the General Contractor for a project. The changes needed to the overall culture/behavior of the Department, contractors, decision-makers, and the general traveling public is a dynamic target with the many different parts of the state that Delaware has and the roadway network that the DOT is responsible for (subdivi
	18. Takes time to provide effective results that will influence change allowance as cost/benefit is a difficult balance with all safety and even more challenging when the DOT is not in control of the General Contractor for a project. The changes needed to the overall culture/behavior of the Department, contractors, decision-makers, and the general traveling public is a dynamic target with the many different parts of the state that Delaware has and the roadway network that the DOT is responsible for (subdivi

	19. Availability of law enforcement officers (LEOS), industry resistance to some new methods 
	19. Availability of law enforcement officers (LEOS), industry resistance to some new methods 

	20. Driver behavior post-COVID continues to be a challenge with elevated speed. 
	20. Driver behavior post-COVID continues to be a challenge with elevated speed. 


	4.9 Speed Effect 
	This section analyzes the effect of work zones on drivers' speed. The dataset used for this analysis comprises information from over 200 work zones in Utah using Clearguide, Iteris probe data. We first examined the distribution of work zones across different years to gain insights into the data. 
	 
	 
	Figure
	Figure 31. Work Zone Distribution Across Different Years 
	Using the Clearguide API, we extracted speed information during work zones and compared it with data from one month before implementing work zones. This comprehensive analysis encompassed various speed metrics, including minimum, maximum, average, median, and average travel times. After thoroughly examining these speed metrics within work zones and comparing them to the pre-work zone data, our analysis revealed no significant evidence of an association between work zones and speed reduction. Figure 32 shows
	 
	 
	Figure
	Figure 32. Distribution of Speed Changes in Work Zones 
	 
	On average, the speed reduction observed was minimal, approximately around 1%. This finding suggests that while slight variations in speed within work zones may exist, it does not translate into a substantial or statistically significant reduction in vehicle speeds. Upon a detailed examination of the data utilized for this analysis, the researchers identified that the scarcity of probe data gathered at work zone sites might account for the minimal differences observed in speeds within work zone areas. Figur
	 
	 
	Figure
	Figure 33. Clearguide Screenshot Showing the Minimum and Maximum Speeds at a Work Zone Location 
	4.10 Feature Importance Analysis 
	Feature importance analysis identifies and ranks the most critical features or variables that contribute to the performance of a predictive model. It helps determine which features have the most significant impact on the model's output and can be used to improve the model's performance 
	by discarding irrelevant or redundant features. By highlighting the relative importance of each feature, it allows data scientists and analysts to focus on the most impactful variables, optimizing the model by potentially discarding irrelevant or minimally influential ones. This process enhances the model's efficiency and accuracy and provides insights into the relationships and dependencies between the features and the target variable. In essence, feature importance ranks the attributes in terms of their s
	• Roadway Surface Condition (Dry, Wet, Snow, …) 
	• Roadway Surface Condition (Dry, Wet, Snow, …) 
	• Roadway Surface Condition (Dry, Wet, Snow, …) 

	• Crash Type (Roadway Departure, Rear-end, Mid-block, …) 
	• Crash Type (Roadway Departure, Rear-end, Mid-block, …) 

	• Motorcycle Involved (Yes/No) 
	• Motorcycle Involved (Yes/No) 

	• Weather Condition (Clear, Cloudy, Rainy, …) 
	• Weather Condition (Clear, Cloudy, Rainy, …) 

	• Roadway Junction Type (Crossover, Intersection, Ramp, …) 
	• Roadway Junction Type (Crossover, Intersection, Ramp, …) 

	• Type of Project (Transportation, Rehabilitation, …) 
	• Type of Project (Transportation, Rehabilitation, …) 

	• Drowsy Driving Involved (Yes/No) 
	• Drowsy Driving Involved (Yes/No) 

	• Domestic Animal Involved (Yes/No) 
	• Domestic Animal Involved (Yes/No) 

	• Manner of Collision (Head On, Front to Rear, Rear to Side, …) 
	• Manner of Collision (Head On, Front to Rear, Rear to Side, …) 

	• Holiday Crash (Yes/No) 
	• Holiday Crash (Yes/No) 

	• Disregard Traffic Control Device Involved (Yes/No) 
	• Disregard Traffic Control Device Involved (Yes/No) 


	4.11 Severity Prediction Models 
	In order to predict the severity of work zone crashes accurately, we developed two groups of classifiers. The first group comprised traditional machine learning algorithms such as Decision trees, Random forests, and XGBoost. These algorithms were selected for their robustness and ability to handle complex datasets. The second group consisted of probabilistic machine learning models such as Gaussian Naive Bayes (GNB) and Complement Naive Bayes (CNB). By leveraging the strengths of both traditional and deep l
	4.11.1 Deterministic Machine Learning Models 
	Three popular machine learning algorithms, namely Decision tree, Random forest, and XGBoost, were utilized to train and assess the performance of the work zone crashes dataset. The objective was to assess the effectiveness of these algorithms in predicting and analyzing the severity of work zone crashes, considering five different classes of crash severity. After rigorous training and testing procedures, the results obtained from the experiments have been meticulously summarized in Table 14. This table pres
	 
	Table 13. Results of Deterministic Machine Learning Models 
	Model 
	Model 
	Model 
	Model 
	Model 

	Classes 
	Classes 

	Precision 
	Precision 

	Recall 
	Recall 

	F1-Score 
	F1-Score 

	Accuracy 
	Accuracy 



	DT 
	DT 
	DT 
	DT 

	Fatal 
	Fatal 

	0.57 
	0.57 

	0.67 
	0.67 

	0.62 
	0.62 

	83% 
	83% 


	TR
	No Injury/PDO 
	No Injury/PDO 

	0.91 
	0.91 

	0.88 
	0.88 

	0.89 
	0.89 


	TR
	Possible Injury 
	Possible Injury 

	0.65 
	0.65 

	0.69 
	0.69 

	0.67 
	0.67 


	TR
	Suspected Minor Injury 
	Suspected Minor Injury 

	0.65 
	0.65 

	0.69 
	0.69 

	0.67 
	0.67 


	TR
	Suspected Serious Injury 
	Suspected Serious Injury 

	0.69 
	0.69 

	0.75 
	0.75 

	0.72 
	0.72 


	TR
	Total 
	Total 

	69.4% 
	69.4% 

	73.5% 
	73.5% 

	73.5% 
	73.5% 


	RF 
	RF 
	RF 

	Fatal 
	Fatal 

	1 
	1 

	0.67 
	0.67 

	0.80 
	0.80 

	89% 
	89% 


	TR
	No Injury/PDO 
	No Injury/PDO 

	0.89 
	0.89 

	0.97 
	0.97 

	0.93 
	0.93 


	TR
	Possible Injury 
	Possible Injury 

	0.84 
	0.84 

	0.64 
	0.64 

	0.72 
	0.72 


	TR
	Suspected Minor Injury 
	Suspected Minor Injury 

	0.92 
	0.92 

	0.78 
	0.78 

	0.84 
	0.84 


	TR
	Suspected Serious Injury 
	Suspected Serious Injury 

	1 
	1 

	0.75 
	0.75 

	0.86 
	0.86 


	TR
	Total 
	Total 

	92.9% 
	92.9% 

	76% 
	76% 

	76% 
	76% 


	XGBoost 
	XGBoost 
	XGBoost 

	Fatal 
	Fatal 

	1 
	1 

	0.83 
	0.83 

	0.91 
	0.91 

	87% 
	87% 


	TR
	No Injury/PDO 
	No Injury/PDO 

	0.88 
	0.88 

	0.96 
	0.96 

	0.91 
	0.91 


	TR
	Possible Injury 
	Possible Injury 

	0.76 
	0.76 

	0.62 
	0.62 

	0.68 
	0.68 


	TR
	Suspected Minor Injury 
	Suspected Minor Injury 

	0.93 
	0.93 

	0.69 
	0.69 

	0.79 
	0.79 


	TR
	Suspected Serious Injury 
	Suspected Serious Injury 

	1 
	1 

	0.75 
	0.75 

	0.86 
	0.86 


	TR
	Total 
	Total 

	91.25% 
	91.25% 

	76.9% 
	76.9% 

	76.9% 
	76.9% 




	 
	4.11.2 Probabilistic Machine Learning Models 
	Two types of Naïve Bayes classifiers have been used in this study, including Gaussian Naive Bayes (GNB) and Complement Naive Bayes (CNB). GNB can be a good choice when dealing with a few classes, as it assumes that each feature is normally distributed within each class. This can make GNB less sensitive to outliers and noise in the data. Additionally, GNB can be computationally efficient and require less training data compared to more complex algorithms (Dimitrijevic et al., 2022). On the other hand, CNB is 
	Moreover, to enhance the performance and simplify the classification process, a revision has been made to the class labels in the system. The original class label "Suspected Minor Injury" has been replaced with the label "Possible Injury," resulting in a reduced number of classes from 5 to 4. This revision brings several advantages to the system. By consolidating the "Suspected Minor Injury" class into the broader category of "Possible Injury," the classification task becomes more streamlined and easier to 
	Table 14. Results of Probabilistic Machine Learning Models 
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	Fatal
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	Figure
	Figure 34. ROC Curve for Random Forest 
	 
	 
	Figure
	Figure 35. Confusion Matrix for Random Forest 
	4.12 Summary 
	The methodology employed in this study encompasses a multifaceted approach to comprehensively analyze work zone safety. Initially, the study gathered relevant data from various sources, including crash reports, speed analyses, and documentation from state DOTs. The study utilized machine learning models to predict crash severity, leveraging features such as location, time of day, weather conditions, and work zone characteristics. The models were trained on historical crash data and evaluated for their predi
	Furthermore, the effectiveness of longitudinal rumble strips was assessed through a detailed analysis of roadway departure crashes. This analysis involved comparing crash rates within and outside work zones, shedding light on the overall impact of rumble strips on safety. In addition, the study investigated the influence of different contract types on crash occurrence by analyzing crash data in conjunction with contract specifications. This analysis revealed insights into the relationship between contract m
	academic research. The identified countermeasures were categorized into five groups based on their approach to traffic control. 
	Additionally, the study surveyed all DOTs to gather insights into factors influencing safety and satisfaction within work zones. The survey responses provided valuable qualitative data, complementing the quantitative analyses conducted in other parts of the study. Overall, this methodology integrates quantitative analysis, machine learning techniques, literature review, and survey research to assess work zone safety and identify effective countermeasures comprehensively. 
	 
	5.0 CONCLUSIONS 
	5.1 Summary 
	In conclusion, this study offers valuable insights into work zone safety through a comprehensive analysis of various factors and the effectiveness of safety countermeasures. The utilization of machine learning models has demonstrated promising results, with 89% accuracy using random forest in predicting crash severity, providing a basis for further research and implementation in work zone management. The analysis of longitudinal rumble strips has revealed their overall impact on reducing roadway departure c
	Moreover, the study has identified the influence of contract types on crash occurrence, emphasizing the importance of considering contract specifications in relation to safety measures within work zones. The analysis revealed that Design-Bid-Build contracts exhibit the lowest crash rates, with 0.57 crashes per 100 million Vehicle Miles Traveled (VMT), while Construction Manager/General Contractor (CMGC) contracts have the highest, with 5.45 crashes per 100 million VMT. This finding underscores the need for 
	The comprehensive review of safety countermeasures has provided a robust foundation for identifying effective traffic control and intrusion prevention strategies. This study offers practical insights for transportation agencies to enhance work zone safety by categorizing these countermeasures and examining their state of the practice. One of the key insights from the literature review is that transition areas are identified as the most hazardous zones within work zones. Additionally, the survey conducted am
	Changeable Message Signs, Lane Closures, Retroreflective Devices, and Police Enforcement rank as the most effective methods for traffic control in and around work zones, according to the DOTs surveyed.  
	Overall, this study underscores the importance of implementing evidence-based safety measures and continuing research efforts to address the complex challenges associated with work zone safety. By adopting a multi-faceted approach and leveraging emerging technologies, we can work towards creating safer work zones, reducing the occurrence and severity of crashes, and ultimately improving overall road safety for all users. In conclusion, our study employed various approaches to analyze work zone safety and ex
	5.2 Safety Suggestions 
	Table 16 summarizes the safety suggestions based on the results of the analysis. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 15. Safety Suggestions Based on Analysis Results 
	Problem 
	Problem 
	Problem 
	Problem 
	Problem 

	Strategy 
	Strategy 

	Effect 
	Effect 



	Work Zone Crash Documentation in Police Officer’s Report 
	Work Zone Crash Documentation in Police Officer’s Report 
	Work Zone Crash Documentation in Police Officer’s Report 
	Work Zone Crash Documentation in Police Officer’s Report 

	Adding Work Zone Section to Police Reports 
	Adding Work Zone Section to Police Reports 

	Recording more detailed information about work zones and crashes 
	Recording more detailed information about work zones and crashes 


	Contractor Safety Compliance 
	Contractor Safety Compliance 
	Contractor Safety Compliance 

	Implementing Safety Training and Education, Suggesting Benefits for Implementing Safety Countermeasures, inspection, and penalty 
	Implementing Safety Training and Education, Suggesting Benefits for Implementing Safety Countermeasures, inspection, and penalty 

	Reduced Frequency and Severity of Crashes, Enhanced Workplace Safety 
	Reduced Frequency and Severity of Crashes, Enhanced Workplace Safety 


	High Incidence of Rear-End Collisions 
	High Incidence of Rear-End Collisions 
	High Incidence of Rear-End Collisions 

	Variable Message Signs (VMS) with real-time updates to prepare drivers for changes in traffic patterns and slow-downs ahead. 
	Variable Message Signs (VMS) with real-time updates to prepare drivers for changes in traffic patterns and slow-downs ahead. 

	Expected to reduce sudden braking and rear-end collisions by providing timely information 
	Expected to reduce sudden braking and rear-end collisions by providing timely information 


	High Number of Crashes at Locations with No Countermeasures 
	High Number of Crashes at Locations with No Countermeasures 
	High Number of Crashes at Locations with No Countermeasures 

	Having temporary traffic countermeasures 
	Having temporary traffic countermeasures 

	- 
	- 


	TR
	TD
	P
	Span
	Speeding
	 


	TD
	P
	Span
	PCMS
	 


	TD
	P
	Span
	Lowering Speed
	 



	TR
	TD
	P
	Span
	Retroreflective Devices
	 



	TR
	TD
	P
	Span
	Police Presence
	 



	TR
	TD
	P
	Span
	Manual Traffic Control
	 


	TD
	P
	Span
	Integrating smart traffic control systems with real-time monitoring to adapt to changing conditions.
	 


	TD
	P
	Span
	Reduces human error and the need for manual traffic control while improving the response time to dynamic traffic conditions
	 



	TR
	TD
	P
	Span
	Inadequate Hazard Identification for Motorists
	 


	TD
	P
	Span
	Utilization of advanced hazard detection systems coupled with automated warning messages to approaching drivers, such as in-vehicle alerts linked to GPS and traffic apps.
	 


	TD
	P
	Span
	Improve motorists' situational awareness and reduce the likelihood of accidents caused by sudden or unexpected work zone conditions
	 





	 
	5.3 Limitations 
	Despite the comprehensive analysis conducted in this study, certain limitations must be acknowledged. One significant constraint is the lack of accurate and comprehensive data regarding the presence and deployment of work zone countermeasures. This limitation hindered our ability to conduct a thorough investigation and understanding of the effectiveness of these countermeasures. Without precise information on the implementation and usage of various safety measures within work zones, it is challenging to ass
	In addition to the aforementioned limitations, it's crucial to acknowledge the dynamic and ever-changing nature of work zones. These environments evolve continuously, with conditions shifting hourly based on ongoing activities within the work zone. Consequently, collecting and maintaining accurate information regarding work zone characteristics, such as the presence and layout of safety countermeasures, can be challenging. The fluidity of work zone conditions introduces complexities in data collection and a
	5.4 Future Studies 
	Here are some future studies that could help better understand work zones: 
	1. Real-Time Monitoring and Analysis: Investigate the feasibility and effectiveness of real-time monitoring systems to continuously assess work zone safety conditions and identify potential hazards. Utilize technologies such as IoT sensors, video analytics, and machine learning algorithms to analyze data and provide timely insights for proactive safety measures. 
	1. Real-Time Monitoring and Analysis: Investigate the feasibility and effectiveness of real-time monitoring systems to continuously assess work zone safety conditions and identify potential hazards. Utilize technologies such as IoT sensors, video analytics, and machine learning algorithms to analyze data and provide timely insights for proactive safety measures. 
	1. Real-Time Monitoring and Analysis: Investigate the feasibility and effectiveness of real-time monitoring systems to continuously assess work zone safety conditions and identify potential hazards. Utilize technologies such as IoT sensors, video analytics, and machine learning algorithms to analyze data and provide timely insights for proactive safety measures. 

	2. Impact of Work Zone Layout and Design: Explore how different layouts and designs of work zones influence driver behavior and crash occurrence. Conduct controlled experiments or simulation studies to assess the effects of factors such as lane configuration, signage placement, and traffic control devices on safety outcomes. 
	2. Impact of Work Zone Layout and Design: Explore how different layouts and designs of work zones influence driver behavior and crash occurrence. Conduct controlled experiments or simulation studies to assess the effects of factors such as lane configuration, signage placement, and traffic control devices on safety outcomes. 

	3. Behavioral Studies: Investigate driver behavior in work zones and its impact on safety. Use methodologies such as naturalistic driving studies or driving simulators to analyze driver responses to various work zone conditions and interventions. Explore factors such as driver distraction, compliance with traffic control measures, and perception-reaction times. 
	3. Behavioral Studies: Investigate driver behavior in work zones and its impact on safety. Use methodologies such as naturalistic driving studies or driving simulators to analyze driver responses to various work zone conditions and interventions. Explore factors such as driver distraction, compliance with traffic control measures, and perception-reaction times. 

	4. Evaluation of Emerging Technologies: Assess the effectiveness of emerging technologies, such as autonomous vehicles, connected vehicle systems, computer vision and machine learning (Farhadmanesh et al., 2021a, 2021b; Hassandokht Mashhadi et al., n.d., 2024; Mashhadi et al., 2024), and advanced driver assistance systems, in improving work zone safety. Conduct field trials or simulation studies to evaluate the potential benefits and challenges associated with integrating these technologies into work zone e
	4. Evaluation of Emerging Technologies: Assess the effectiveness of emerging technologies, such as autonomous vehicles, connected vehicle systems, computer vision and machine learning (Farhadmanesh et al., 2021a, 2021b; Hassandokht Mashhadi et al., n.d., 2024; Mashhadi et al., 2024), and advanced driver assistance systems, in improving work zone safety. Conduct field trials or simulation studies to evaluate the potential benefits and challenges associated with integrating these technologies into work zone e

	5. Human Factors and Work Zone Safety: Examine the role of human factors, including driver characteristics, fatigue, workload, and situational awareness, in work zone safety. Investigate strategies to enhance human performance and mitigate error likelihood in work zone driving scenarios. 
	5. Human Factors and Work Zone Safety: Examine the role of human factors, including driver characteristics, fatigue, workload, and situational awareness, in work zone safety. Investigate strategies to enhance human performance and mitigate error likelihood in work zone driving scenarios. 
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	7.0 Appendix I 
	In this section, more details about statistical and Machine Learning modeling will be elaborated. 
	7.1 Statistical Modeling 
	These models aim to understand the relationship between various factors and the likelihood or severity of crashes. Here are some commonly used statistical modeling approaches for crash severity and frequency: 
	 
	7.1.1 Generalized Linear Models (GLMs) 
	GLM is a statistical modeling approach widely used in transportation research to analyze crash severity and frequency. Despite what the name suggests, GLMs can model a wide range of relationships including linear, logistic, Poisson and exponential conditions.  The general form of a GLM is expressed by the equation: 
	 
	 
	 
	 
	 

	 
	 



	𝑔(𝐸(𝑌)) = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑛𝑋𝑛 
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	𝑔(𝐸(𝑌)) = 𝛽0+𝛽1𝑋1+𝛽2𝑋2+...+𝛽𝑛𝑋𝑛 
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	where 𝑔() is a link function that relates the linear predictor to the expected value of the response variable 𝑌 (𝐸(𝑌)). The response variable 𝑌 represents crash severity or frequency, and the predictor variables 𝑋1, 𝑋2, ..., 𝑋𝑛 correspond to various factors influencing the crash outcome. The 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 are the estimated regression coefficients, which quantify the relationship between the predictors and the response variable. 
	In the case of crash severity analysis, a GLM can be formulated using a link function which essentially maps a nonlinear relationship to a linear one so that a linear model can be fit.  A link function that is appropriate for the outcome variable might include a logit link for binary severity outcomes or a log link for ordinal severity categories. A logit link, also called a logistic regression, takes a linear combination of the covariate values (which could be anything between negative and positive infinit
	support and exhibits right-skewness. It transforms the linear combination of covariate values to a scale that is directly related to the natural logarithm of the mean of the response variable. This is particularly useful for modeling count data or strictly positive continuous data, where the log link ensures that the predicted values are non-negative. 
	A Poisson or Negative Binomial distribution is commonly assumed for crash frequency analysis. In crash frequency analysis, the choice of using either a Poisson or negative binomial distribution stems from the nature of the data being analyzed. Crash frequency data often involves counting the number of crashes that occur within a specific time period or at particular locations. This type of data inherently follows a discrete distribution, making the Poisson and negative binomial distributions appropriate cho
	GLMs offer a flexible and powerful framework for analyzing crash data, enabling researchers to understand the relationships between predictor variables and crash severity or frequency. These models facilitate evidence-based decision-making by identifying significant risk factors and informing the development of targeted safety interventions and policies. 
	 
	7.1.2 Ordered Probit/Logit Models 
	Ordered probit, a statistical modeling technique used to analyze ordered categorical outcomes, where the categories have a natural ordering or hierarchy, and ordered logit models, Similar to the ordered probit model, an ordered logit model is a statistical technique used to analyze ordered categorical outcomes are commonly used statistical modeling techniques for analyzing ordered categorical outcomes, such as crash severity levels or injury severity categories, where the variables have natural ordering (e.
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	where 𝑌 represents the outcome variable, 𝑋1, 𝑋2, ..., 𝑋𝑛 are the predictor variables, 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 are the estimated coefficients, and 𝛾𝑗 represents the threshold parameter for category 𝑗. The cumulative distribution function ∅() gives the probability that a normally distributed variable takes a value less than or equal to a given threshold. For example, let's say we're using an ordered probit model to analyze crash severity levels (𝑌), which are categorized as "minor," "moderate," and 
	where,  
	• 𝑃(𝑌≤𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) represents the probability of a crash being categorized as "minor" or "moderate." 
	• 𝑃(𝑌≤𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) represents the probability of a crash being categorized as "minor" or "moderate." 
	• 𝑃(𝑌≤𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) represents the probability of a crash being categorized as "minor" or "moderate." 

	• ∅ is the cumulative distribution function of the standard normal distribution. 
	• ∅ is the cumulative distribution function of the standard normal distribution. 

	• 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 are the estimated coefficients obtained from the model. 
	• 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 are the estimated coefficients obtained from the model. 

	• 𝑋1, 𝑋2, ..., 𝑋𝑛  are the predictor variables, such as weather conditions, road type, and vehicle speed. 
	• 𝑋1, 𝑋2, ..., 𝑋𝑛  are the predictor variables, such as weather conditions, road type, and vehicle speed. 

	• 𝛾𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 is the threshold parameter specific to the "moderate" severity category. 
	• 𝛾𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 is the threshold parameter specific to the "moderate" severity category. 


	 
	In an ordered logit model, the probability of an outcome falling into a particular category is modeled using the logistic cumulative distribution function: 
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	The coefficients 𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑛 represent the estimated regression coefficients, while 𝛾𝑗 represents the threshold parameter for category 𝑗. The logistic function transforms the linear combination of predictors into a probability value between 0 and 1. By looking at the coefficient estimates, researchers can figure out how different things affect whether a car crash or injury is 
	more or less severe. This information is valuable for identifying significant risk factors and informing interventions and policies to reduce crash severity and improve road safety. 
	7.2 Deterministic Machine Learning 
	7.2.1 Decision Tree 
	A decision tree is a supervised learning algorithm that uses a hierarchical structure to make predictions or classify data based on a series of if-else conditions. It can be represented as a flowchart-like structure where each internal node represents a test on an attribute, each branch represents the outcome of the test, and each leaf node represents a class label or a prediction. The decision tree algorithm builds the tree by repeatedly applying the rule over and over to successive results to group the da
	Let’s consider the simplest decision tree: A single if-else statement.  Say we want to predict someone’s gender, given their height.  We have the data for 10 people.  It’s naïve to do this, but assume that’s all we have.  This is our data (bold is female, italics is male, height in centimeters): 148, 157,158,162,164,168,172,176,180,184.  We want to find the threshold value below which we would predict female, or else male.  Let’s focus on the group on the left.  For any threshold we choose, we want the grou
	Gini impurity can be seen as a way to quantify how “good” a group is, so that we can choose the threshold wisely.  If a group has all females or all males, the Gini impurity is zero.  If it is 50% male and 50% female, then the Gini impurity will be 0.5 (which is the highest value it 
	can hold in this case), and it is the worst-case scenario. Hence, if we go by Gini impurity, a threshold of 182 is terrible (it leads to a group of 5 females and 4 males).  And so is 150 (which leads to a group of 5 males and 4 females).  So, we would choose something like 170 which intuitively seems to result in a low proportion of impurities in both groups.  So, in the bigger picture, when you’re deciding a split in the decision tree, you want to maximize the difference between the Gini impurity of the pa
	The decision tree splits the data at each internal node based on a selected feature and a chosen splitting criterion. The splitting criterion determines how well the data is divided into different classes or categories. For example, in a binary classification problem, the Gini impurity is commonly used as the splitting criterion. It measures the probability of misclassifying a randomly chosen element from the subset. The decision tree continues to split the data recursively until a stopping criterion is met
	 
	Figure
	Figure 36. Decision Tree for Buying a Car 
	7.2.2 Random Forest 
	Random forest is an ensemble learning method that combines multiple decision trees to make predictions. It is a powerful and popular algorithm known for handling complex problems and producing accurate results. In a random forest, a set of decision trees is trained on different subsets of the original training data. Each decision tree is constructed using a random subset of features at each split. This random feature selection helps reduce the correlation among the trees and increases the diversity of the e
	The prediction stage involves aggregating the predictions of all the individual trees in the forest. The most common aggregation method for classification tasks is voting, where each tree's prediction is counted as a vote, and the class with the majority of votes is assigned as the final prediction. The individual tree predictions are averaged for regression tasks to obtain the final prediction. The strength of random forest lies in its ability to handle high-dimensional data, deal with missing values, and 
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	where 𝑌̂ is the predicted output, N is the number of trees in the forest, and 𝑓𝑖(𝑋) represents the prediction of the i-th tree based on the input features X. Random forest has become a popular choice in various domains, including classification, regression, feature selection, and anomaly detection, due to its versatility, robustness, and ability to handle large datasets. An example of a random forest structure is shown in Figure 37. 
	 
	Figure
	Figure 37. Random Forest Diagram 
	 
	7.2.3 Support Vector Machines (SVM) 
	SVM is a popular machine learning algorithm used for both classification and regression tasks. SVM is a classifier that aims to find an optimal hyperplane that separates data points of different classes in a high-dimensional feature space. The main idea behind SVM is to find the hyperplane that maximizes the margin between the nearest data points of different classes. These data points, known as support vectors, play a crucial role in defining the decision boundary. SVMs can handle linearly separable data b
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	where w represents the weight vector, b is the bias term, N is the number of training samples, 𝑥𝑖 denotes the feature vector of the i-th sample, 𝑦𝑖 is the corresponding class label, and 𝛾𝑖 are slack variables that allow for a certain degree of misclassification. The parameter C controls the trade-off between maximizing the margin and allowing some misclassifications. 
	SVMs are capable of handling data with complex decision boundaries and have good generalization properties. They can effectively handle high-dimensional data and are less prone to overfitting compared to other models. Additionally, SVMs can handle datasets with a small number of training samples. However, SVMs can be computationally expensive and may require careful selection of kernel functions and tuning of hyperparameters. In addition to binary classification, SVMs can be extended to handle multi-class c
	 
	7.2.4 Neural Networks 
	Neural Networks, also known as Artificial Neural Networks (ANN), are a class of machine learning models inspired by the structure and function of the human brain. Neural networks are composed of interconnected nodes, called neurons, which are organized into layers. Each neuron takes inputs, performs a computation, and produces an output. The basic building block of a neural network is the neuron. The neuron takes a weighted sum of its inputs, applies an activation function to the sum, and produces an output
	 
	Figure
	Figure 38. Neuron Structure 
	Neural networks consist of an input layer, one or more hidden layers, and an output layer. Information flows through the network from the input to the output layer. During training, the network adjusts its weights using an optimization algorithm, such as gradient descent, to minimize a loss function that measures the discrepancy between predicted and true outputs. This process is known as backpropagation, where the error is propagated backward through the network to update the weights. Neural networks are h
	. 
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