Wheel Force Transducer
CALIBRATION REPORT

MD-R-1166-03 May 1979

Contract DOT-FH-11-9437

This document may be further distributed by any holder only with specific prior approval of the Department of Transportation, Federal Highway Administration.

Prepared for:

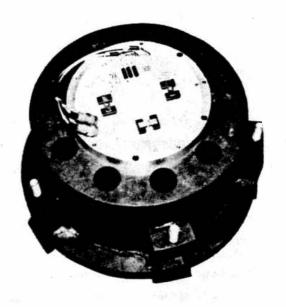
DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION Washington, D.C. 20590

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	. 1
2.0	TEST PROCEDURE	3
3.0	CALIBRATION DATA	9
	ILLUSTRATIONS	
Figure	e No.	
1	Wheel Force Transducer Photos	2
2	System Block Diagram	4
3	Weighing Equipment	5
4	Western Scale Test Report	6
5	Transverse Load Test Setup	7
6	Transverse Load Test, Loading Direction - Inboard on Tire	12
7	Shear Load Test, Both Dual Wheels Loaded	15
8	A&B Outputs at 90 & 270° Rotation; Dual Wheel Load	17
9	A&B Outputs at 0 & 180° Rotation; Dual Wheel Load	18
10	Shear Load Test, Inboard Wheel Loaded	21
11	A&B Outputs at 90 & 270°, Inboard Wheel Load	22
12	A&B Outputs at 0 & 180°, Inboard Wheel Load	23
13	Vertical Scale Factor vs Moment Arm	24
14	Dynamic Test Record, Smooth Motion	26
15	Dynamic Test Record, Starts and Stops	27
	TABLES	
Table	No.	
I	Wheel Sensor Data Sheet, Transverse Load Calibration	10
II	Wheel Sensor Data Sheet, Vertical Load Calibration, Dual Tires Loaded	13
III	Wheel Sensor Data Sheet, Vertical Load Calibration, Inboard Tire Loaded	19

Wheel Force Transducer CALIBRATION REPORT

1.0 INTRODUCTION


The Wheel Force Transducer was developed for the Federal Highway Administration under Contract DOT-FH-11-9437 for dynamic measurement of vertical, longitudinal and transverse truck wheel loads. Modification No. Two (2) to the development contract required that a limited static calibration and a functional dynamic test of the transducer be completed prior to delivery. The tests involved three setups:

- 1) The transducer was statically loaded to 3000 lb for transverse calibration in a shop setup.
- 2) The shear gages were calibrated under static loads up to 8000 lb with the transducer mounted on a loaded truck.
- 3) For the functional dynamic test, the transducer outputs were monitored on a strip chart recorder with the truck in motion over short distances.

Figure 1 includes a photo of the transducer mounted on the test truck.

It should be recognized that these calibration tests were limited in several respects:

- The available static loads did not approach the full-scale sensor capacity.
- The method of loading and force measurement allowed only limited evaluation of crosstalk effects.
- The functional dynamic test involved only low speed operation over a smooth surface.

(a) Unmounted - Tires/rims and cover assembly removed

(b) Installed on truck for functional dynamic test

Figure 1. Wheel Force Transducer Photos

2.0 TEST PROCEDURE

Two tires, rims and a spacer were assembled on the Wheel Force Transducer. The dual wheel assembly was electrically connected to the power supplies and read-out devices via the vertical and horizontal Analog Resolver as shown in Figure 2. A Western Scale Company 10,000 lb portable axle scale was used to measure the applied force. The scale description is shown in Figure 3. A copy of the scale calibration run by the manufacturer immediately before this test is shown included as Figure 4; the calibration points are all well within the +50 lb quoted accuracy.

Transverse Load Calibration

The wheel sensor and tire assembly was placed in an upright position on the tires and power applied to the system. After a one-hour warm-up period, the T amplifier output was adjusted to zero volts using potentiometer R-6. (See Operation Manual, Figure 5). The dual wheel assembly was rotated until the reference line on the cover assembly was vertical and the A amplifier output adjusted to zero volts using R-2. The wheel assembly was then rolled until the reference line was horizontal and the B amplifier output adjusted to zero volts using R-4.

The test setup for the transverse wheel load calibration is shown in Figure 5. This setup allowed the application of up to 3000 lb as an inboard loading on the tires. The scale was leveled and the weight of the assembly fixture alone was noted. This weight plus 18.7 lb (which represents the weight of the inner cylinder not measured by the transverse gages) became the tare weight and was subtracted from all scale readings to establish the net load. The Wheel Force Transducer, the load fixture, and the hydraulic jack were placed on top of the assembly fixture. The load fixture has three legs which fit on the rims and provide for clearance between the jack and the transducer cover assembly. The whole assembly was centered under a post

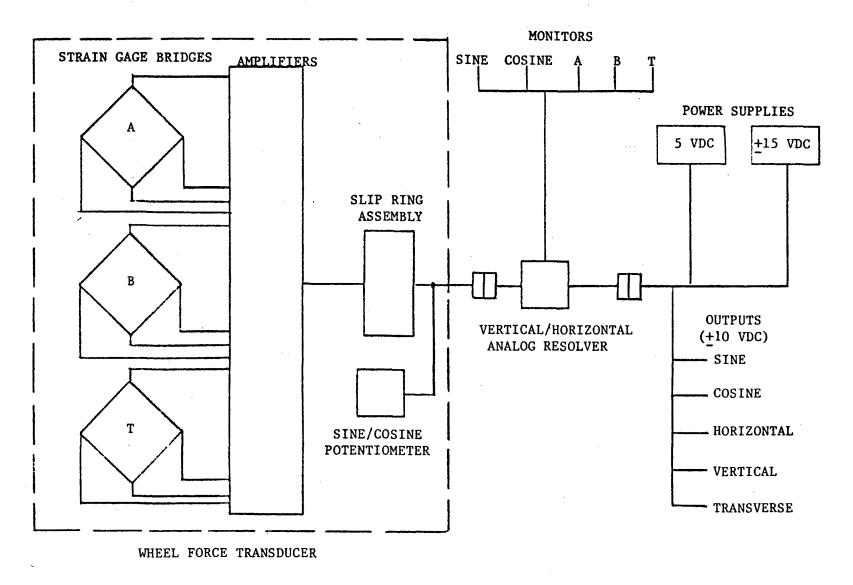
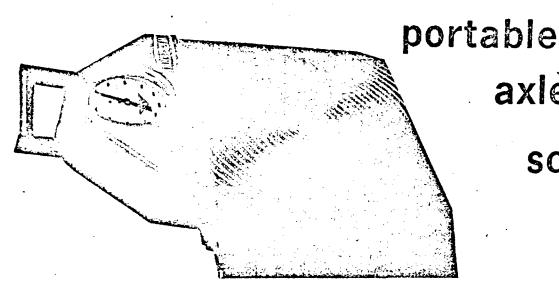



Figure 2. System Block Diagram

axle scale

A. 10,000 lb hand-portable axle scale for field weighing of loaded vehicles.

Scale Range

50 lbs to 10,000 lbs

Accuracy Weight

±50 lbs @ full scale 35 lbs

Platform Height

2 inches

Platform Size

11 x 12

Overall Size

18 x 19

A unique hydraulic totalizing scale system offering unequalled portability, reliability and ruggedness. Developed specifically for field verification that vehicle loads are within legal and safety limits.

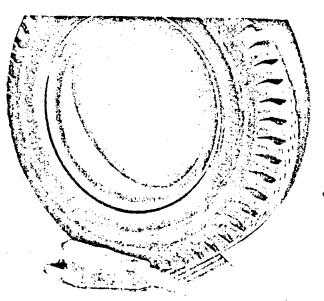


Figure 3

LOS ANGELES COUNTY **ORANGE COUNTY**

SAN DIEGO COUNTY

10320 South Santa Fe Ave., South Gate, Calif. Phone (213) 564-1876

1103 East Vermont, Anaheim, Calif. 3990 Hicock Street, San Diego, Calif. Phone (714) 772-0173

Phone (714) 291-8231

Figure 4

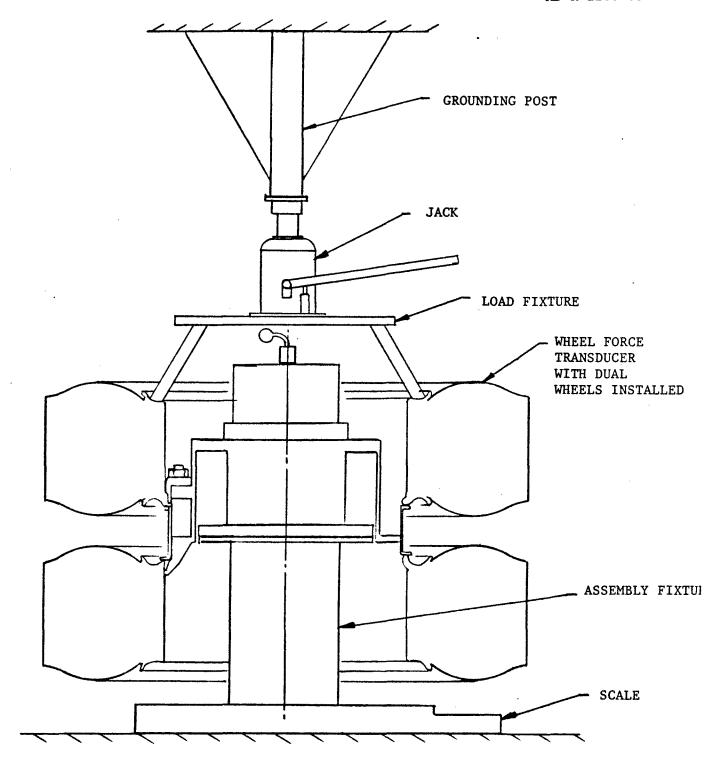


Figure 5. Transverse Load Test Setup

mounted from a ceiling beam. A net load of 3000 lb was applied and potentiometer R-5 adjusted until the output was +1.905 volts. This gain setting nominally corresponds to 15,000 lb at 10 volts full-scale. Two test series were run with the applied force being increased, decreased and increased to evaluate linearity, hysteresis, and repeatability. The data sheets and a plot of the data are included in the Section 3.0.

Shear Load Calibration

The shear load calibration used a single-axle dump truck loaded with four yards of sand as the source of applied load. The Wheel Force Transducer with dual wheels installed was mounted on the rear axle of the test vehicle. The 10,000 lb axle scale was placed under the Wheel Force Transducer on level ground with the off-side wheels blocked up so that the rear axle was level. A hydraulic jack under the axle close to the test wheel assembly was used to control the amount of applied load. A load distribution plate was placed between the wheel assembly and the scale such that the load could be applied through either tire or both tires as desired. Load applied to both tires simulated the normal dual wheel installation whereas load applied to the inboard tire only simulated a front wheel installation. Load applied to the outboard tire provided a third set of data used to determine the shear gage sensitivity to bending moment. The Wheel Force Transducer and dual tire assembly weight is 500 lb; this tare reading was used when calculating the net applied vertical load. The A and B amplifiers were zeroed as described in the Operation Manual. The gains were nominally set for 10 volts full scale output at 25,000 1b shear load.

Static vertical loads in an increasing and decreasing direction were applied to the maximum available net load of 8000 lb. These loads were applied at wheel rotations of 0° , 90° , 180° and 270° with the inboard and outboard tires loaded independently. The dual wheel load test was performed at the above angles plus 215° . For each of the load points and rotation angles, the voltage outputs of the A, B, and T amplifiers; the sine and

cosine outputs; and the vertical and horizontal load outputs were recorded. Data sheets and plots of the data are included in Section 3.0.

Dynamic Functional Test

A dynamic functional test was performed by driving the loaded truck back and forth over a short distance (limited by cable length). The sine, cosine, vertical, horizontal and transverse voltage outputs were recorded on a stationary strip chart recorder. These outputs were monitored while moving the truck smoothly and also while performing a series of abrupt starts and stops. Copies of representative strip chart data from these tests are included in Section 3.0.

3.0 CALIBRATION DATA

Table I presents the recorded data from the transverse load calibration. The transverse output and the A and B amplifier outputs all were monitored; however, it is probable that some extraneous side loading was present which would cause shear gage output; thus only the transverse output data is considered meaningful. Figure 6 shows a plot of the data with the calculated best straight line fit and a +1% FS error band. The calculated slope of the best straight line is +.0006908 volts per 1b of transverse load applied inboard on the tires. The calibration resistor which is placed into the circuit with S-1 in Position 1 caused an output voltage change of +4.886 volts at this gain setting.

Table II lists the measured data for the dual wheel shear load calibration. In these tests the A, B, T, sine, cosine, vertical and horizontal outputs all were monitored. The transverse bridge output is not considered meaningful since there was no measurement of extraneous transverse forces which may have been present as the tires were loaded and unloaded. Figure 7 is a plot of the vertical output data taken at all rotation angles compared

TABLE I - Test #1

WHEEL SENSOR

DATA SHEET

TRANSVERSE LOAD CALIBRATION

TARE LOAD	861ь	(ASSY FIXTURE + 18.7					
		Voltage Output					
Net Load	Trans	Α	В				
3000 1ь	1.935 v	016 v	117_v				
2250	1.380		076				
1500	.840	023	037				
750	. 346	013	020				
500	.237	015	016				
500	228	016	016				
750	. 340	014	024				
1500	.844	016					
2250	1.385	009	082				
3000	1.955	009	126				
2250	1.410	009	085				
1500	854	013	050				
750	370	014	027				
500	.231	016	015				
Cal. SW O							

TABLE I - Test #2

WHEEL SENSOR

DATA SHEET

TRANSVERSE LOAD CALIBRATION

TARE LOAD 86	1b	(ASSY FIXTURE	+ <u>18.7</u> 1b)
		Voltage Output	
Net Load	Trans	Α	В
3000 1ь	<u>1.970</u> v	<u>018</u> v	<u>130</u> v
2250	1.400	015	083
1500	.845	021	040
750	.343	018	017
500	.226	020	014
750	. 360	018	020
1500	.835	022	036
2250	1.410	014	084
3000	1.975	021	·133
2250	1.405	015	083
1500	.830	023	036
750	.330	018	016
500	.220	021	013
0	073	035	+.005
Cal. SW 0 Position 1	4.813	037	+.006

12

VERTICAL LOAD CALIBRATION

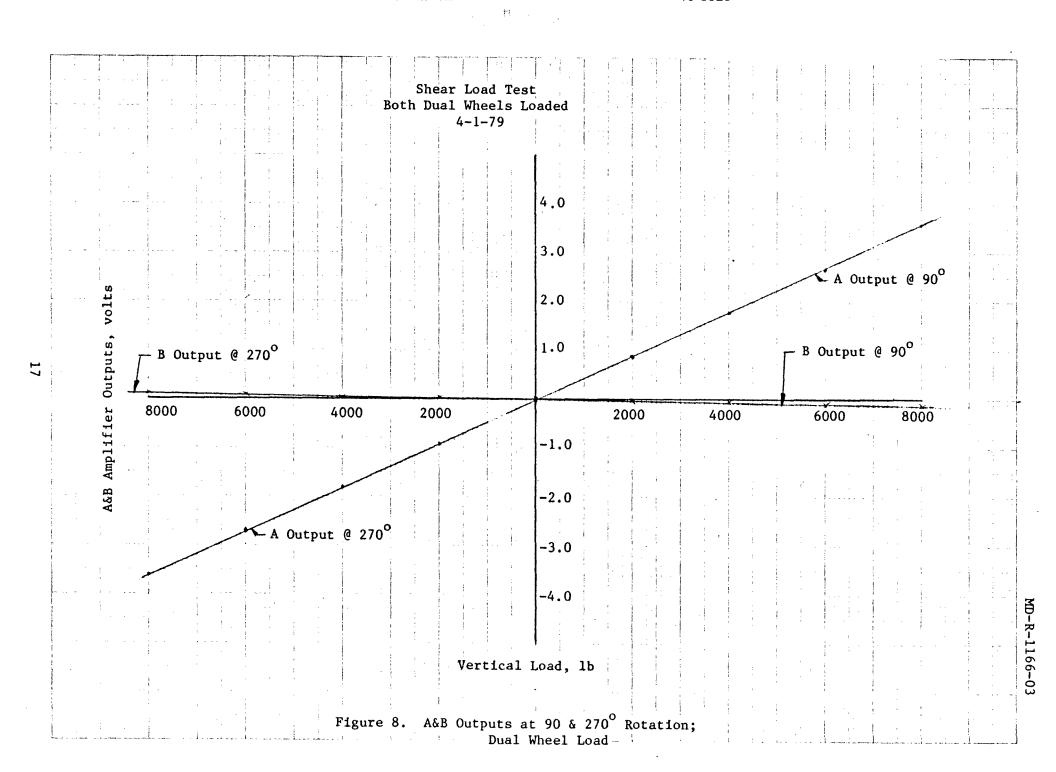
Dual Tires Loaded

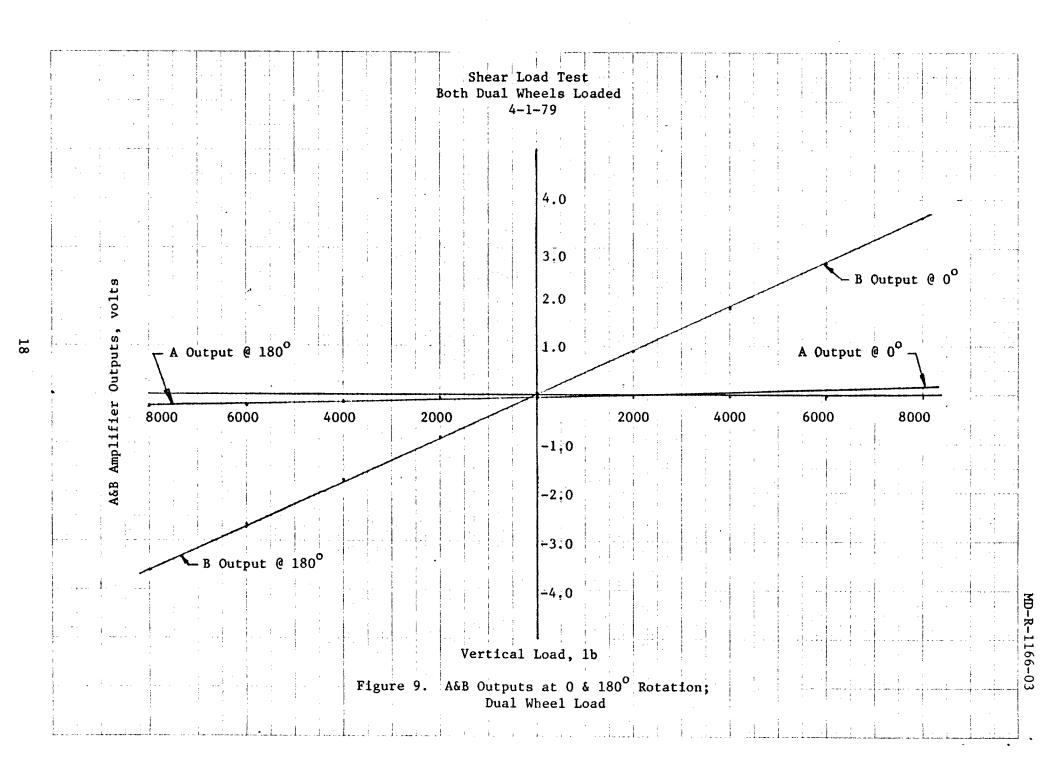
					Voltage	Output	•		
	Net Load	<u>α</u>	A	<u>B</u>	<u>T</u>	<u>Sin</u>	Cos	Vert.	Horz.
0%		45°	····						
25%								***************************************	
50%									
75%									
100%			-						
75%			-						
50%						·			
25%							·		
0%		1							
0%	0	90°	+.020	+.009	+.000	-9.959	018	024	+.904
25%	2000		+.883	031	+.082	-9.959	017	855	039
50%	4000		+1.786	068	+.124			-1.750	078
75%	6000		+2.685	109	+.126			-2.625	116
100%	8000		+3.596	153	+.134			-3.551	169
75%	6000		+2.681	114	+.106			-2.668	120
50%	4000		+1.787	073	+.078			-1.787	081
25%	2000		+.849	027	+.052			856	038
0%	0		+.008	+.007	019	-9.958	013	029	+.001
Cal. SW	0	\downarrow	1.704						
Position 3									
0%	0	180 ⁰	+.006	012	016	319	+9.964	020	007
25%	2000		035	<u>887</u>	+.011	321	+9.963	873	076
50%	4000		071	-1.786	013			-1.766	130
75%	6000		107	-2.711	029			-2.683	194
100%	8000		140	<u>-3.603</u>	054			-3.580	246
75%	6000		112	-2.679	024			-2.678	189
50%	4000		076	-1.786	+.015			-1.790	137
25%	2000		047	883	+.082	<u> </u>	<u> </u>	900	083
0%	0	1	019	+.013	+.078	281	+9.963	009	031

VERTICAL LOAD CALIBRATION - Cont'd.

Dual Tires Loaded

Voltage Output


٠	Net Load	<u>α</u>	A	B	T	<u>Sin</u>	Cos	Vert.	Horz.
0%	0	215 ⁰	024	021	+.118	+6.987	+6.931	039	013
25%	2000		675	601	+.122	+6.987	+6.931	885	059
50%	4000		-1.363	-1.211	+.063			-1.778	102
75%	6000		-2.046	<u>-1.817</u>	+.013			-2.662	140
100%	8000		-2.711	-2.414	017			-3.560	193
75%	6000		-2.027	<u>-1.809</u>	+.011			-2.683	139
50%	4000		-1.339	1196	+.044			-1.778	098
25%	2000		661	<u>592</u>	+.119		<u> </u>	892	057
0%	0	↓	019	020	+.144	+7.008	+6.906	058	018
					•				
0%	0	270°	057	018	+.169	+9.976	+.082	075	+.005
25%	2000		932	+.013	+.240	+9.976	+.094	918	031
50%	4000		-1.824	+.045	+.212			-1.806	068
75%	6000		-2.722	+.075	+.191			<u>-2.682</u>	106
100%	8000		-3.607	+.112	+.180			-3.584	146
75%	6000		-2.696	+.081	+.189			-2.693	108
50%	4000		-1.815	+.048	+.207			-1.833	071
25%	2000		912	+.020	+.253			944	037
0%	0	Ţ	030	005	+.227	+9.976	+.081	061	005
0%	0	00	047	+.014	+.227	+.087	-9.956	030	+.045
2 5%	2000		033	+.884	+.319	+.087	-9.957	885	+.024
50%	4000		021	+1.781	+.332			-1.770	+.003
75%	6000		013	+2.698	+.331			-2.675	011
100%	8000		+.003	+3.620	+.351			-3.607	021
75%	6000		018	+2.698	+.321			-2.696	001
50%	4000		031	+1.791	+.283			-1.802	+.018
25%	2000		042	+.868	+.240			886	+.035
0%	00		058	+.019	+.156	+.063	<u>-9.95</u> 6	042	+.053
Cal. SW	0	\downarrow		1.710					
Position 2									


			[
		Test Date: 4-1-79		
	Vertic	al Load, lb (Upward on 1	Cires)	
0	2000	4000	6000	8000
0				
-1.0				
01ts				
ā −2.0				
ical				
-3.0				
				+1% FS
-4.0				
		3 01		
	Fig	ure 7. Shear Load Test Both Dual Wheels	Loaded	and the second of the second of the expension of the second of the secon

with the calculated best straight line and a ±1% FS error band. The calculated slope of the best straight line fit for the dual wheel test data is -.0004428 volts per 1b applied load. The A bridge calibration resistor placed into the circuit by S-1 Position 3 caused an output voltage change of +1.696 volts. The B bridge calibration resistor placed into the circuit by S-1 Position 2 caused an output voltage change of +1.691 volts. These voltage changes can be used to readjust the amplifier gains to the as-calibrated gain. Figure 8 presents plots of the A and B amplifier output voltages at 90° and 270° rotation where the A bridge "sees" the full vertical load and the B bridge is on an insensitive axis. The vertical load is plotted positive on both sides of the y-axis in order to better illustrate the ± voltage linearity of the bridges. Figure 9 plots the A and B amplifier output voltages at 0° and 180° rotation where the B bridge sees the full vertical load and the A bridge is on an insensitive axis. Figures 8 and 9 indicate a low level of cross axis sensitivity between the active and inactive gages.

Table III lists the recorded data for the shear calibration with the inner wheel only loaded. This condition is equivalent to a front wheel installation of the sensor. Again, all outputs were monitored and recorded. Figure 10 is a plot of the vertical output data at all rotation angles compared with the calculated best straight line fit and a +1% FS error band. The calculated slope of the best straight line fit for inner wheel loading is -.0005147 volts per 1b of applied load. Figure 11 plots the A and B amplifier output voltages at the 90° and 270° rotation and Figure 12 plots the A and B amplifier output voltages at the 0° and 180° rotation.

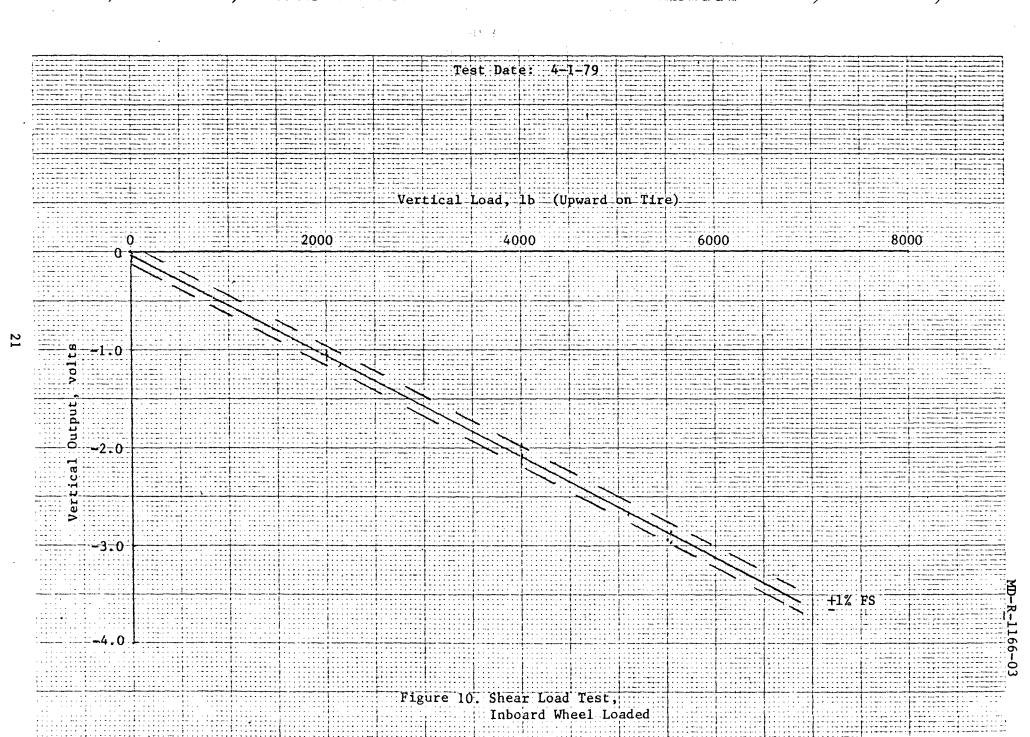
A third set of shear load tests were conducted with only the outer wheel loaded. These tests established a best-fit slope of -.0003783 volts per lb of applied load. Figure 13 is a plot of these three scale factors versus the moment arm of the applied load measured from the plane of the

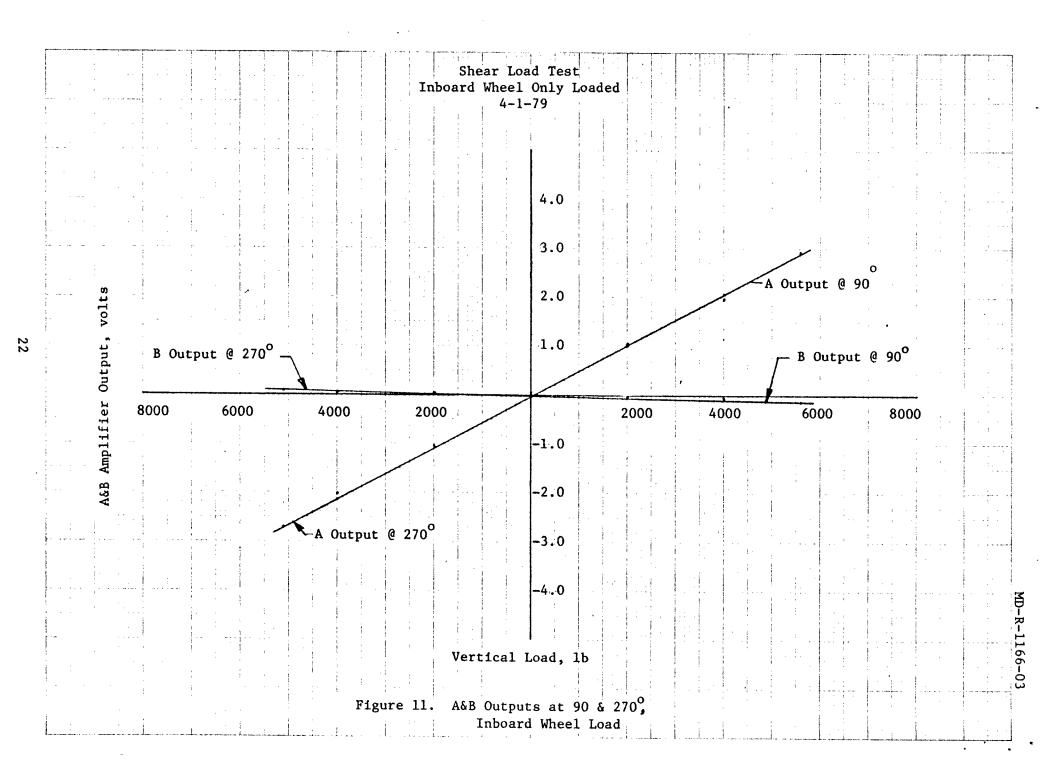
Page 1 of 2

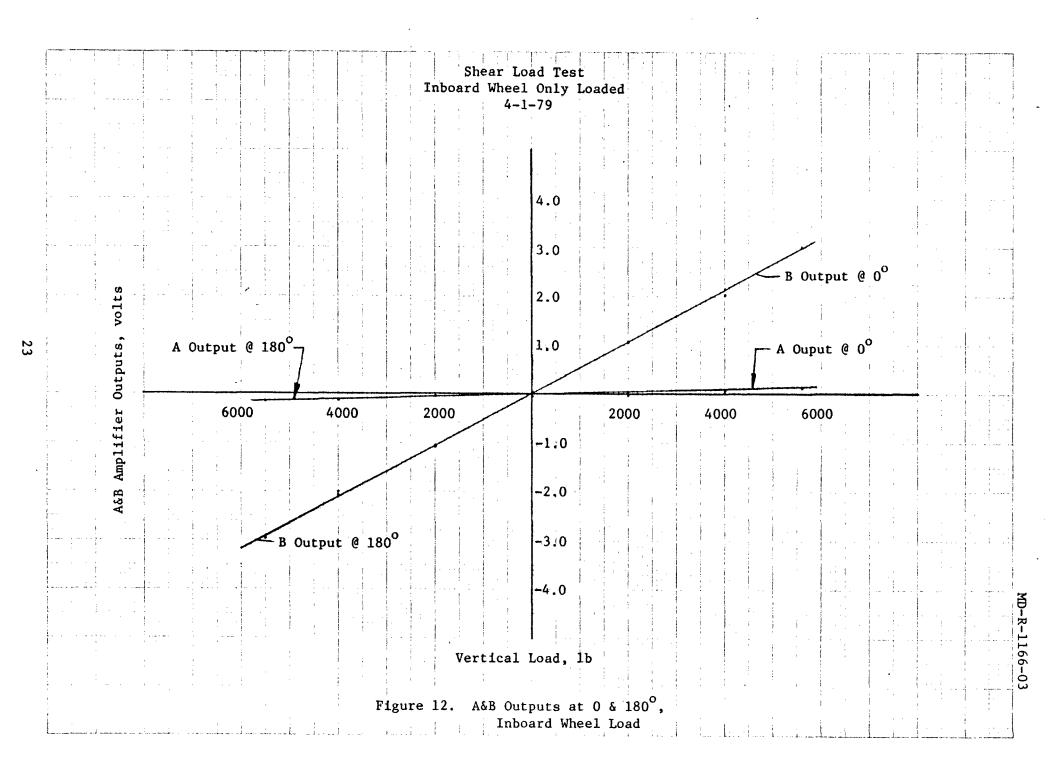
VERTICAL LOAD CALIBRATION

Inboard Tire Loaded

				Voltage	Output			
Net Load	_ α	A	B	T	Sin	Cos	Vert.	Horz.
	45°							
								
		*			•			
		-,						
		-				-		***************************************
	. 1							
•	90°		. 007		0.060	176	011	
0	90	+.003	+.007	+.087		176	011	+.006
2000		+1.027	023	+.101	<u>-9.96</u> 0	<u>139</u>	-1.005	042
4000	<u> </u>	+2.075	086	<u>+.177</u> rance lin		_	-2.046	120
FF2F					"		-2.885	169
<u>5525</u> 4000		+2.925	130	+.174				083
2000		+1.951	055	+.116	+			044
0		+1.050	024	+.073	-9.960	180	041	001
		+.030	+.003	7.047		100	041	001
	1							
	Ψ			**************************************		7		
0	180 ⁰	+.014	035	+.011	226	+9.966	046	004
2000		055	-1.049	009	200	+9.966	-1.042	086
4000		119	-2.091	012			-2.070	163
5500		169	-2.968	+.009			-2.950	217
4000		117	-2.006	+.020			-2.007	160
2000		058	-1.071	+.079		<u></u>	-1.077	086
0		016	047	+.122	196	+9.965	065	026


Page 2 of 2


VERTICAL LOAD CALIBRATION - Cont'd.


Inboard Tire Loaded

Voltage Output

Net Load	<u>α</u>	A	<u>B</u>	<u> </u>	Sin	Cos	Vert.	Horz.
	215°					-		
								
-	1							
		-						

:								
	•							
	0							
0	270 ⁰	060	035	+.159	+9.978	+.038	077	+.026
2000		-1.041	+.007	+.174	+9.978	+.032	-1.034	017
4000		<u>-2.158</u>	+.069	+.280	<u></u>		-2.130	077
5100		-2.710	+.091	+.320			-2.696	098
		0u	t <u>er tire</u>	about to	contact so	c <u>ale face</u>		
4000		-2.023	+.040	+.282			-2.037	047
2000		-1.092	+.001	+.273			-1.113	009
0		067	025	+.267	+9.978	+.030	094	+.021
	\downarrow							
O ·	0°	054	+.040	+.160	+.040	-9.958	047	+.044
2000		+.010	+1.057	+.309	+.025	-9.959	-1.046	017
4000		+.047	+2.180	+.539			-2.193	058
5525		+.112	+3.004	+.634			-2.992	104
		Out	er tire a	bout to	ontact sca	ale face		
4000		+.021	+2.017	+.489			-2.024	021
2000		022	+1.072	+.315			-1.080	+.022
0		059	001	+.179	+.012	-9.959	021	+.054
								·
	\downarrow							
	•							-

											MD-R-	1166-0	3
5													
ad Tes	7												
ear Lo													
4	9	a participation of the control of th											
	0.												Arm
	x a												Moment
													or vs
Inches	•												. Н В С
Arm,													1 Sca1
Moment													ertica
		Д											
		INBOAR											i gure
										1			
									/				
		OUTBOARD											
			Filling:										
	7) 	<u> </u>						0.9		
			,0T		τ , νολι	Facto.	9 [83 S	μαμης	[EJI]	 4Λ			

gages. The best-fit straight line using the three scale-factor points indicates a shear gage moment sensitivity of +1.0104 x 10⁻⁵ volts per in-lb of moment where the + sign is applicable for moments which tend to roll the bottom of the tire inboard. When significant transverse forces are present a vertical force correction can be calculated based on the measured transverse force; corrections should be added to or subtracted from the measured vertical force as appropriate. The dual wheel and single wheel calibration curves (Figures 7 and 10)incorporate the moment effect of the vertical loading plane. A sample application of the suggested bending moment correction is included in the Operation Manual. A discussion of the probable source of this sensitivity is also included, with recommendations for possible reduction or elimination of the effect.

Figures 14 and 15 are copies of representative strip recorder data from the functional dynamic load test. Figure 14 shows the outputs for sine, cosine, vertical, horizontal and transverse load while smoothly moving the truck. Figure 15 shows the same outputs while moving the truck in a series of sharp starts and stops. This very limited test demonstrates the functional dynamic capability of the sensor as well as a number of interesting features of truck dynamic wheel loads, including a clear vertical plane motion resonance.

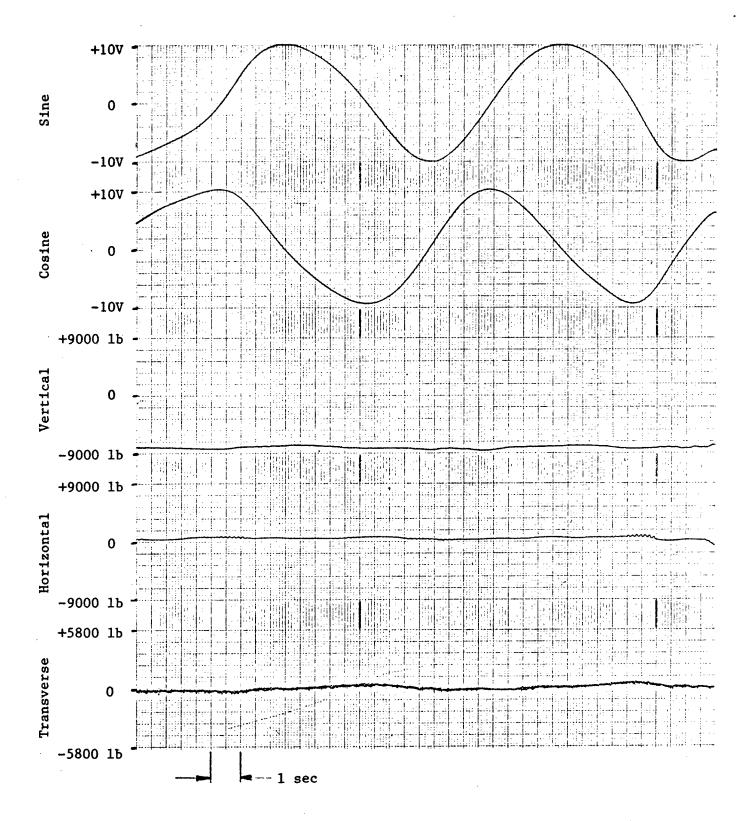


Figure 14. Dynamic Test Record, Smooth Motion

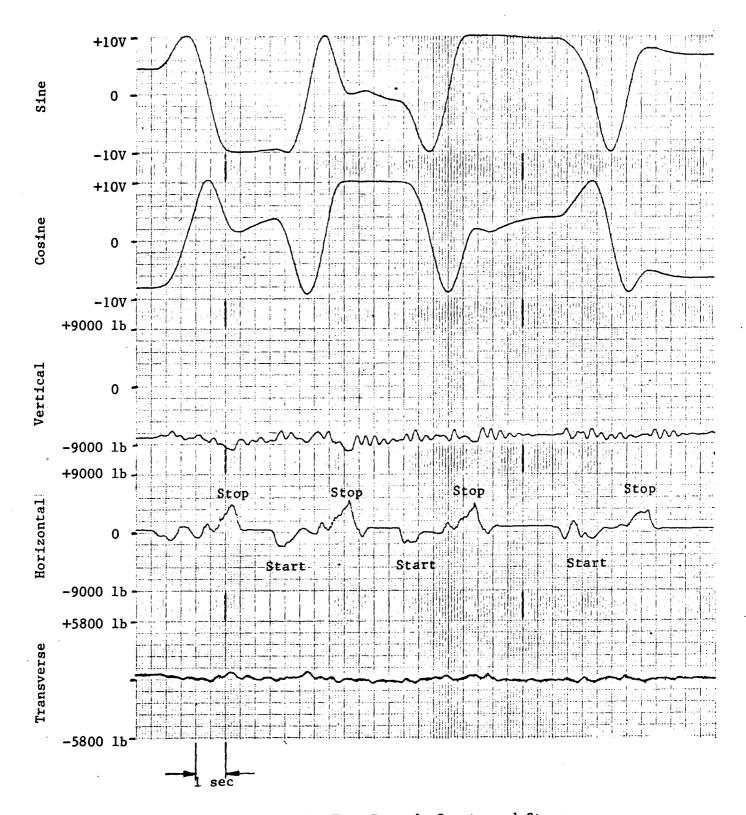


Figure 15. Dynamic Test Record, Starts and Stops

3		
•		