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Executive Summary 

This study comprehensively reviews and investigates approaches, methods, data, tools, and models for assessing 
health impacts of transportation emissions, focusing on the quantitative health impact assessment (QHIA) and 
burden of disease (BoD). It discusses the practicalities of conducting such research, including the exact methods, 
calculations, data requirements, and data sources, in the context of the health impacts of traffic-related air 
pollution (TRAP). Specifically, this study emphasizes compiling a comprehensive inventory of methods, functions, 
and sources, comparing their strengths, limitations, and data requirements, and offering an elaborate step-by-step 
procedure for integrating health outcomes into the modeling process of the full chain pathway from exposure 
assessment to health impact assessment. Additionally, it explores existing health outcome data and sources that 
can be overlaid to provide a more comprehensive perspective on the relationship between TRAP and health. This 
work serves as an exploratory effort, setting the stage for future research and modeling endeavors. The aims are 
to strengthen the linkage between air pollution epidemiology and the health impact of TRAP, leading to more 
robust QHIA or BoD studies for assessing the full chain of TRAP’s impacts on health. 

Currently, there is a lack of standards and best practices for assessing health impacts of TRAP and selecting input 
data from diverse data sources. Additionally, there is a lack of comprehensive syntheses on available datasets for 
these assessments. This study provides insights for future studies to choose the most suitable methods and data 
sources for conducting exposure to health impact assessments. Furthermore, it explores the potential integration 
of the extensive health data from CDC PLACE to improve model accuracy of health impact assessments conducted 
at the local scale. 
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Background and Introduction 
Communities in the Unites States are currently facing a critical health challenge characterized by an alarming 
increase in chronic diseases, soaring healthcare costs, and widening health disparities. Disturbingly, children are 
now being affected by illnesses that were traditionally seen in adults alone, and recent patterns indicate that 
today’s youth might be the first generation in the United States to have shorter life expectancies than their 
parents. Simultaneously, we are confronted with pressing environmental problems such as air pollution, climate 
change, natural disasters, water shortages, etc., all of which will present further health-related difficulties.  

Air pollution is a determinant risk factor for various adverse health effects in humans. Air pollution stands out as a 
crucial and extensively researched environmental exposure due to the following compelling factors [1]: 

• Ubiquitous nature: It permeates various environments, making it a pervasive concern with wide-ranging 
implications. 

• Diverse health-related effects: Air pollution influences a wide spectrum of health states and events, 
encompassing various respiratory and cardiovascular diseases, as well as other ailments. 

• Impact on all segments of the population: It affects individuals of all ages and backgrounds, posing risks 
to both vulnerable groups and the general population. 

• Significant and modifiable health burden: The health implications are substantial, but with appropriate 
interventions, the burden can be reduced and managed effectively. 

Transportation sector emissions are one of the major sources of air pollutants. Traffic-related air pollution (TRAP) 
is a strong contributor to the global burden of disease due to air pollution. TRAP is derived during the combustion 
of gasoline or diesel fuel and can also include particles from the wear and tear of other mechanical components. 
TRAP is comprised of carbon monoxide (CO), nitrogen oxides (NO2), particulate matter (PM), hydrocarbons, and 
mobile-source air toxics, and most of those pollutants can also come from other sources [2]. Quantifying exposures 
is challenging because concentrations decrease rapidly when individuals move away from roadways. Furthermore, 
it can be challenging to assess the associations between TRAP and health because there is no perfect measure of 
exposure. Because of these challenges, many researchers use different metrics of exposure to look at the impact of 
TRAP on health. In policy decision-making, it is important to understand and be able to quantify the full chain from 
air pollution sources, through pathways, to the ultimate health outcomes [3]. 

Objective 
The Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH) report 
“Development of Full-Chain Transportation Emissions, Exposure, and Health Modeling Platform” developed a  
Platform to Assess Transportation, Health, and Sustainability (PATHS) to integrate models to generate “full chain” 
assessments of the traffic emissions to the health impacts modeling chain [4]. This report aims to further 
investigate how additional health impact approaches and health-related data can be integrated into CARTEEH’s 
work in this area. The primary focus is to explore: 

• Two types of health impact approaches: Health impact assessment (HIA) and burden of disease (BoD). 
• Two different types of data:  

o Sources for adding health outcomes to model full chain pathways from air pollution exposure to 
health outcomes (e.g., concentration-response functions such as those in the Environmental Benefits 
Mapping and Analysis Program [BenMAP] developed by the U.S. Environmental Protection Agency 
[EPA]). 
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o Health data that can be overlaid to provide a more comprehensive perspective on the relationship 
between TRAP and health (e.g., Centers for Disease Control and Prevention [CDC] PLACE: Local Data 
for Better Health). 

In addition to the two health impact approaches and two distinct types of health-related data, this report 
specifically discusses the practicalities of conducting such research, including the exact methods, calculations, data 
requirements, and data sources, in the context of the health impacts of TRAP. It comprehensively reviews and 
investigates health impact approaches and corresponding methods and data to enhance CARTEEH’s PATHS 
modeling platform and informs the evolution of full chain from air pollution sources to health impacts. 

Research Gap and Significance 
TRAP and health have historically remained two separate disciplines with limited integration. The evidence of 
TRAP’s impacts on various health outcomes is not being fully recognized, and there is a lack of adequate studies 
that compare various methods to evaluate health impacts associated with TRAP. Data associated with TRAP and 
health are quite different. TRAP data are usually generated from spatially refined estimates and can be projected 
in small areas/grids. Conversely, health data are commonly gathered within broader, population-based geographic 
regions using survey or sampling methods, resulting in reduced precision and difficulty in projection. Few studies 
have comprehensively reviewed and summarized health indicators related to TRAP. Most studies examined health 
impacts of TRAP based on an accumulated indicator, such as premature or all-cause mortality (i.e., the deaths of 
individuals that occur before an expected or standard age, often before reaching the average life expectancy for a 
specific population); one specific disease, such as high blood pressure or stroke; or one category of disease, such as 
respiratory disease. 

This report is exploratory in nature, identifying and inventorying approaches, methods, tools, and data in the 
TRAP-health context with the purpose of furthering research and modeling efforts to: 

• Strengthen the linkage between air pollution epidemiology and the health impact of TRAPs. 
• Lead more robust quantitative health impact assessment (QHIA) and BoD studies for assessing the full 

chain of TRAP’s impacts on health. 

Approach 

Full Chain TRAP to Health Impacts 

CARTEEH has developed a comprehensive framework that traces the path from air pollution sources to their 
resulting health impacts, visualized in Figure 1.  
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Figure 1. Full chain from air pollution sources to health impacts. 

The full chain from air pollution sources to health impacts is comprised of the following components: 

• Traffic and Emissions: Traffic activities result in both tailpipe and non-tailpipe emissions. Non-tailpipe 
emissions constitute the pollutants produced from brake wear, tire and road surface abrasion, and the 
suspension of road dust.  

• Dispersion: The dispersion of these emissions into the ambient air hinges on a myriad of highly variable 
factors, including wind speed and direction, atmospheric stability, local and regional terrains, and the 
backdrop of air pollution from other sources like industries, agriculture, and the burning of coal and 
wood. Pollutant dispersion leads to heightened levels of air pollutants, either through primary emissions 
or via the creation of secondary pollutants like ozone. 

• Exposure: Humans are exposed to these air pollutants either in the ambient air or indoors, since outdoor 
air pollutants infiltrate indoor spaces. The level of human exposure and the inhaled doses reaching the 
target organs or tissues are determined by various dynamic factors. These include mobility patterns, 
distance from the source, elevation, physical activity, and choice of transportation mode.  

• Health Impacts: Exposure to TRAP can trigger a broad spectrum of negative health effects and impacts on 
population health. 

In Figure 1, there is an icon representing technologies and disruptors, which include upcoming transportation 
technologies like automated and electric vehicles. Such advancements can affect the levels of traffic activity and 
vehicle emissions, both tailpipe and non-tailpipe. These influences, in turn, alter the dispersion, human exposure, 
and subsequent health impacts [5]. 

Health Impact Assessment 

HIAs are well-developed and structured processes that use scientific data, professional expertise, and stakeholder 
input to identify and evaluate the public health consequences of proposals and suggests pragmatic actions that can 
be taken to minimize adverse impacts and optimize beneficial health impacts [6]. HIAs view health from a broad 
perspective. They look systematically across the entire spectrum of factors that drive community health and 
consider a wide range of environmental factors, such as housing conditions, roadway safety, employment, 
environmental conditions, and social factors that lead to health outcomes. A general HIA process includes 
screening, scoping, assessing, recommending, reporting, monitoring, and evaluating [7]. There is no specific 
methodology for implementing HIA; the selection of methods depends on the scope of projects being evaluated, 
as well as the most relevant methods for the assessment step and how stakeholders are engaged. The most 
commonly used methods include a literature review, secondary data analysis, primary data collection via survey, 
focus group and interview, and participatory approaches for stakeholder engagement [6]. 
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In the United States, from 2004–2013, 73 transportation projects using HIA were completed by various local and 
state transportation agencies, county and city councils and planning agencies, park departments, and other state 
agencies. The projects, policies, or interventions that were addressed include bridge replacements, new transit 
stations, bus rapid transit, bicycle and pedestrian facilities, corridor redevelopment, greenways and walking trails, 
port expansions, road pricing, speed limits, and complete streets. The health impacts assessed include physical 
activity, transportation-related injury, air and water quality, noise, social capital, mental health, social cohesion, 
crime, access to goods and services, affordable housing, discretionary time, etc. [8] A limited number of studies did 
evidence-based HIA associated with TRAP, and there is a lack of empirical studies that quantify TRAP-related HIA. 
This study specifically focuses on the two quantitative approaches to quantify the health impact of TRAP: QHIA and 
BoD. 

QHIA and BoD Related to TRAP 

The QHIA and BoD of TRAP studies have seen an increase recently, especially in academic literature.  

QHIA: Is a systematic and analytical process used in public health and environmental science to assess and 
quantify the potential effects of various factors, such as environmental exposures, policies, interventions, or other 
determinants, on the health of a population. This assessment involves the use of quantitative methods, data 
analysis, and mathematical models to estimate the magnitude, distribution, and probability of health outcomes 
associated with specific exposures or interventions. QHIA aims to provide numerical estimates and measurements 
of health impacts, allowing policymakers, researchers, and public health professionals to make informed decisions 
and prioritize interventions to improve public health [9-13]. 

BoD: Is a comprehensive and systematic approach used in public health and epidemiology to assess the overall 
impact of diseases, injuries, and risk factors on a population's health. BoD involves quantifying and evaluating the 
morbidity (illness) and mortality (death) associated with specific health conditions and their associated risk factors 
within a defined population over a specific period [9–13]. 

In brief, within the context of the TRAP field, QHIA assesses changes of a policy, program, or project (e.g., 
transportation-related intervention) impact on the health of a population, while BoD assesses the contribution of a 
risk factor (e.g., levels of air pollution) to the fraction of disease or death in the population without an intervention 
or scenario design. The difference between QHIA and BoD is whether scenarios comparing different exposures 
(changes) are investigated. QHIA and BoD provide methods for quantifying the positive and/or negative health 
impacts of baseline conditions (i.e., burden of disease assessments) and public policies, projects, and programs 
(i.e., health impact assessments), and the distribution of these impacts [9–13]. 

Conducting a QHIA or BoD study can be combined into five steps [7, 14]: 

• Step 1: Exposure assessment: Defining exposures of interest, exposure measurements, and ranges. Refer 
to Table 1 and Table 2 for details on exposure assessment steps, method comparisons, and study 
examples. 

• Step 2: Health outcome: Defining health outcomes of interest associated with exposures and their 
frequency (incidence) among the exposed population. Refer to Table 3 for examples of health outcome 
categories/variables and exsiting studies.  

• Step 3: Exposure-response functions: Selecting exposure-response functions (risk estimates) to quantify 
strength of association between selected exposures and selected health outcomes. Those are risk 
estimates reported by general epidemiological studies, including prevalence or incidence of disease, 
relative risk, odds ratios, or population attributable risks. 
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• Step 4: Quantifying attributable cases: Combining exposures data with population data and exposure-
response functions to quantify attributable proportional health burden of the health outcome of interest. 
Results from study examples can be found in Table 3. 

• Step 5: Quantifying uncertainty: Quantifying uncertainty (e.g. 95 percent confidence intervals [CIs]) in 
estimated health burden (range of potential effects). 

The methodology of QHIAs and BoDs that look to quantify the impacts of TRAP varies from traditional HIA because 
TRAP requires specific assessment of traffic-related components of air pollution and therefore requires different 
methods such as a full chain HIA or source apportionment methods for exposure assessments. In addition, these 
specific methods require different input data sets and models, which would be more resourceful and time 
consuming. The following sections discuss the methodology and data required for evaluating a QHIA or BoD study 
for TRAP. 

Methodology 

Methods for QHIA and BoD 

The following sections discuss the five steps to conduct a QHIA or BoD study, including methodologies, functions, 
data and data processing, and sources. 

Exposure Assessment 

Exposure assessment is the first step for conducting a QHIA or BoD study through defining exposure of TRAP, 
exposure measures, and ranges. The exposure is assessed at a level where population data can be obtained, 
allowing the exposure estimate to be attributed to the population residing in each geographical catchment area. 
Typically, an average exposure estimate at that geographical level is assigned to all individuals living in that area, 
often using available census data, such as the census block or tract in the United States [15]. Long-term, annual, 
average air pollution exposures (e.g., population weighted annual average PM2.5 in census tract level) are 
commonly calculated for this purpose. Exposure assessment involves two steps: 

• Generating Spatial Profiles of TRAP: different methodologies used for producing spatial profiles of air 
pollution. 

• Linking Pollutant Concentrations to Population: techniques used to link these spatial concentration 
profiles with populations for the purpose of assessing health impacts.  

Generating Spatial Profiles of TRAP 

The initial phase of the exposure assessment process involves creating spatial concentration profiles of TRAP at the 
desired resolution. Various techniques are used to achieve this including air-monitoring, land-use regression 
models, exposure surrogates, exposure to traffic proxies, dispersion models, geostatistical interpolation models, 
and satellites/remote sensing [16].  

Air-Monitoring 

Air-monitoring is a direct measurement of TRAP exposure, including stationary, and mobile monitoring. In the 
United States, the State and Local Air Monitoring Stations network is designed to monitor ambient air pollution 
concentrations and provide air pollution data to the public in a timely manner. EPA and other regulatory agencies 
routinely monitor air quality, but only at a small number of locations. Mobile monitors often are small, portable, 
and battery-operated devices that can be carried on by a person to measure personal exposures and have 
potential to better capture local-scale TRAP than stationary air monitors. Studies found that exposure of TRAP 
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taken on roadways revealed significantly higher concentrations compared to ambient levels measured at air-
monitoring stations [17]. Air-monitoring of TRAP is critically important for validating emissions models. 

Land-Use Regression (LUR) Models 

LUR models treat the pollutant of interest as the dependent variable and the proximate land-use, traffic, and 
physical environmental variables as independent predictors. They predict pollution concentrations at a given site 
based on surrounding land use and traffic characteristics. Each characteristic is assumed to be linearly related to 
pollutant concentrations. Validation of these models has shown that they generally perform as well as dispersion 
models [18].  

The formula of LUR is shown in Equation 1, where Z is the pollution concentration of monitoring locations as the 
response variable, and X is the proximate land-use, traffic, and physical environmental variables as the predictor 
variables [18]. 

𝑍𝑍𝑗𝑗 = 𝛽𝛽𝑜𝑜 + ∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑗𝑗 (1) 

The major limitation of LUR models is that they typically reflect only the predictors used in the model. Though the 
models include traffic-related variables, they cannot comprehensively model the traffic exposures and often miss 
important confounding factors due to study limitation and/or data unavailability, resulting in misleading bias 
and/or misinterpretation of the results [19]. 

Exposure Surrogates 

A widely used approach to characterize traffic pollution is to utilize individual pollutants as surrogates to represent 
exposure to all TRAP. The most used traffic-pollutant surrogates include CO, NO2, elemental carbon (EC) or black 
carbon (BC), PM, benzene, and ultrafine particles. EC has been used as a surrogate for diesel exhaust. A surrogate 
for traffic emissions should (a) have traffic as the dominant source of atmospheric emissions, (b) vary with other 
constituents of motor-vehicle exhaust over time, (c) be measurable at ambient concentrations using reasonably 
inexpensive and accurate methods, and (d) not have independently adverse health effects associated with it at 
concentrations encountered in various environments. In addition, the goal in most epidemiologic studies is to 
relate individual exposures to some health-related outcome, so a surrogate measure should reasonably 
approximate personal exposure to traffic emissions [2]. 

Exposure to Traffic Proxies 

Rather than directly measuring the concentration of pollutants, a number of studies assessed exposure levels using 
direct measures of traffic proxies. Traffic proxies include vehicle mix (e.g., diesel and gasoline-fueled vehicle 
volumes), traffic density or volume (e.g., the daily number of vehicles), traffic density within buffers, distance to 
roadways, street segments, and self-reported traffic exposures. The most basic exposure assessment methods are 
proximity-based models, which assume that the distance to roadways (or traffic) from place of residence serves as 
a surrogate for exposure to TRAP. While these models could prove useful, they overlook the compounded 
influence on residences that might be affected by multiple roadways with varying traffic levels. Additionally, they 
fail to account for potential meteorological influences [18]. 

Moreover, several other studies established connections between traffic density and TRAP concentrations near 
roadways or homes. These studies suggested that variations in total traffic and traffic composition (i.e., the mix of 
cars and trucks) can influence the levels of TRAP in near roadways. However, each study was conducted in a 
unique area and may not be easily applicable to other geographic regions. This discrepancy arises because these 
studies utilized different measures of traffic density or vehicle volume; varied in traffic composition, specific 
vehicle conditions, and characteristics; collected data at different distances from roadways under varying 
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meteorological conditions in diverse geographical areas; and often did not account for background concentrations. 
Additionally, they employed variable sampling periods and averaging times, further adding to the complexity of 
comparing and generalizing the findings [20–25]. 

Dispersion Models  

Air pollution dispersion models have been used for decades to estimate ambient concentrations from emission 
sources. They are a mathematical simulation of how air pollutants disperse in the ambient atmosphere. The 
Gaussian dispersion approach is the most applicable one and derives models such as AERMOD, CALINE, and ADMS. 
The Gaussian dispersion approach considers emissions coming from a point in space (source) that is adding 
additional pollutants above a fixed background concentration. If the emissions continue over time, a series of air 
parcels containing these emissions will be produced (plume). If these polluted air parcels are warmer than the 
surrounding air (e.g., a smokestack or tailpipe), then the air parcel will be buoyant and tend to rise until it is in 
equilibrium with the background air (plume rise). The plume will also move downstream with the wind flow 
resulting in dilution and will begin to disperse due to the presence of turbulence. The degree of turbulence dictates 
the rate of spread of the plume and the mixing of pollutants both vertically and cross-wind, although the degree of 
spreading will normally be different in each direction, and vertical spread is partially constrained by contact with 
the surface of the Earth [26]. 

Dispersion models combine motor vehicle emissions and air-quality data and incorporate meteorological data and 
population data. This combination has allowed information from empirical monitoring systems and data on 
population distribution in the study area to be analyzed together, but they must be calibrated correctly to realize 
their advantages [18]. 

Chemical Transport Models 

Chemical transport models (CTMs) are computational tools used in atmospheric science and environmental 
research to simulate and study the transport, dispersion, and chemical reactions of various pollutants in the 
Earth’s atmosphere. These models help researchers and policymakers understand how pollutants, such as gases, 
aerosols, and particulate matter, move and interact in the atmosphere, which is crucial for assessing air quality, 
pollutant sources, and the impact of emissions on human health and the environment. CTMs incorporate data on 
atmospheric conditions, emissions, chemical reactions, and other relevant factors to provide insights into air 
pollution, climate change, and related phenomena. Some of the commonly used chemical transport models 
include CMAQ, CAMx, EMEP, Chimere, and Lotos-Euros [27, 28]. 

Geostatistical Interpolation Models 

Geostatistical interpolation models utilize geostatistical properties to create pollution “surface,” an attribute that 
varies continuously over space within a specific study domain. These models estimate pollution levels at 
unsampled locations based on spatial correlations and relationships with known sample points [2]. There are four 
commonly used interpolation models for air-pollution exposure assessments: (1) spatial averaging, (2) nearest 
monitor, (3) inverse distance weighting, and (4) kriging. The most advanced form of spatial interpolation is kriging, 
which produces the best linear unbiased estimate and allows for mapping of error variances [29]. Geostatistical 
interpolation models for air pollution are best implemented in conjunction with dense, well-distributed monitoring 
networks. However, the size of the network and the number of measurements is needed over time to estimate the 
spatial distribution of pollution surrogates accurately [18]. 

Remote Sensing 

Remote sensing has emerged as an important resource for air pollution exposure assessment. Remote sensing 
involves the capture, retrieval, analysis, and display of information on surface and atmospheric conditions. These 
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data are gathered using satellite, aircraft, or other specialized technologies capable of sensing energy, light, or 
optical properties from a distance. The potential applications of remote sensing in studying exposures to TRAP can 
be grouped into three categories: (1) Estimating pollutant concentrations—remote sensing can be utilized to 
estimate the concentrations of specific pollutants; (2) Direct data input for pollution prediction models—remote 
sensing data can serve as direct inputs for models used to predict air pollution based on land use, traffic patterns, 
or other ground-level information; and (3) Cross-validation of ground or atmospheric data—remote sensing can be 
used to cross-validate data captured by ground-based or traditional meteorological devices, enhancing the 
accuracy and reliability of the information gathered. The emergence of satellite imagery-based remote sensing 
technologies improved refinement of the data inputs. However, direct estimates of ground-level pollution from 
remote sensing data typically have coarser scales compared to near-source impacts. Further research is required 
to integrate the rich data available from remote sensing into ground-based estimates [2]. 

Summary Table of Methods for Generating Spatial Profiles of TRAP 

Table 1 summarizes the comparison among methods for generating spatial profiles of TRAP as the first step of 
exposure assessment. Samples of studies employing each method for generating spatial profiles of TRAP are cited 
in the method column.  

Table 1. Comparison of Methods for Generating Spatial Profiles of TRAP 
Method Description Strengths Limitations Data/Computational 

Requirements 
Air Monitoring 
[30, 31] 

Direct measurement 
of TRAP exposures 

Accurate when using 
regulatory grade 
sensors; can validate 
emission models 

Limited locations; does 
not capture local-scale 
TRAP well 

Needs air quality 
monitoring equipment; 
moderate computational 
requirements 

Land-Use 
Regression 
(LUR) Models 
[32-35] 

Predicts pollutant 
concentrations based 
on surrounding land 
use and traffic 
characteristics 

Accurate and validated 
against dispersion 
models 

Cannot quantify specific 
contribution of traffic to 
exposure 

Requires geographical, 
land use, and traffic data; 
high computational 
requirements 

Exposure 
Surrogates 
[32-36] 

Uses individual 
pollutants as 
surrogates to 
represent exposures 
to all TRAPs 

Practical for 
characterizing traffic 
pollution 

Difficult to capture full 
range of TRAPs 

Requires data on 
surrogate pollutants; 
moderate computational 
requirements 

Exposure to 
Traffic Proxies 
[37-39] 

Uses direct measures 
of traffic proxies to 
assess exposure 
levels 

Simple and direct Overlooks compounded 
influence from multiple 
roadways 

Requires traffic data; low 
to moderate 
computational 
requirements 

Dispersion 
Models [40-
42] 

Estimates ambient 
concentrations from 
emission sources 

Incorporates emissions, 
air-quality, 
meteorological, and 
population data 

Must be accurately 
calibrated 

Requires emissions, 
meteorological, and 
population data; high 
computational 
requirements 

Chemical 
Transport 
Models [43, 
44] 

Simulates the 
transport, dispersion, 
and chemical 
reactions of 
pollutants in the 
Earth’s atmosphere 

Capable of dealing with 
chemical reactions 

Requires large and high-
resolution data inputs 
and computational 
resources; chemical 
complexity and 
interaction 

Requires large emissions 
and meteorological data; 
high computational 
requirements 

Geostatistical 
Interpolation 

Uses spatial 
correlations to 

Allows for mapping of 
error variances 

Needs well-distributed 
monitoring networks 

Requires monitoring 
network data; high 
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Models [36, 
45] 

estimate pollution 
levels at unsampled 
locations 

computational 
requirements 

Remote 
Sensing [46] 

Uses satellite or 
aircraft technologies 
to capture 
information on 
surface and 
atmospheric 
conditions 

Allows estimation of 
specific pollutant 
concentrations; useful 
for cross-validation 

Direct estimates have 
coarser scales than 
near-source impacts 

Requires remote sensing 
data and equipment; high 
computational 
requirements 

Linking Pollutant Concentrations to Population 

Once spatial concentration profiles are generated, the subsequent step in exposure assessment is to assign 
pollutant concentrations to a population. The assignment process should be performed at a scale where health 
effects can be examined and understood. Techniques including population-weighted average concentration and 
dynamic exposure assessment can be utilized. 

Population-Weighted Average Method 

The population-weighted average (PWA) method is a valuable approach to estimate exposure concentrations in a 
study area. It considers both the spatial distribution of air pollution and the population distribution. This method 
provides an estimate of the average exposure of the population to a certain pollutant. The basic principle behind 
the PWA method is to assign more weight to the air pollution concentrations in areas where more people live, thus 
reflecting the fact that a higher population in a polluted area would lead to a higher collective exposure [47]. 

To calculate a population-weighted average concentration, typically the grid is overlaid on the study area, then for 
each grid cell, the concentration of the pollutant in that cell is multiplied by the number of people living in that cell. 
The sum of these products is then divided by the total population of the study area. In mathematical terms, if Ci is 
the pollutant concentration and Pi is the population in grid cell I, the population-weighted average concentration 
(Cpwa) can be calculated as Equation 2 [47]: 

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝  =  Σ ((𝐶𝐶𝑖𝑖  ∗  𝑃𝑃𝑖𝑖))/ Σ 𝑃𝑃𝑖𝑖   (2) 

The PWA method is advantageous because it takes into account both where people live and the levels of pollution 
they are exposed to. It is a particularly useful tool when investigating health impacts at a population level since it 
aligns the exposure estimation more closely with where people reside. However, like other methods, it also has its 
limitations. The PWA method relies on the availability and accuracy of population and pollutant distribution data. 
Also, it does not account for individual behavior patterns (e.g., time spent indoors vs. outdoors, use of air 
conditioning), individual susceptibility, or variations in exposure within a day or between different days. In 
conclusion, while the PWA method offers a useful tool for estimating population-level exposure, it is also valuable 
to complement this method with other exposure assessment methods to account for individual-level variability 
and other influencing factors [47]. 

Dynamic Exposure Assessment Methods 

Dynamic exposure assessment methods are a set of innovative approaches to evaluate individuals’ exposure to air 
pollution. These methods consider people’s movements, behaviors, and specific microenvironments they 
encounter during their daily activities. These methods are designed to capture the temporal and spatial variability 
of pollutant exposure, recognizing that people are not stationary and that their exposure levels can significantly 
change based on where they are, what they’re doing, and the time of day [48]. 
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There are several types of dynamic exposure assessment methods, including [48]: 

• Personal Monitoring: As previously discussed, personal monitoring involves the use of portable devices 
carried by individuals to measure their exposure levels in real time. This method captures the dynamic 
nature of an individual’s exposure to air pollution as they move across different environments. 

• GPS Tracking Combined with Modeling: This approach involves tracking an individual’s location over time 
using GPS and then using these data to estimate their exposure levels by combining it with air pollution 
concentration data from models or monitoring stations. The integration of individual mobility data and air 
pollution data provides a more detailed and accurate picture of a person’s exposure over time and space. 

• Time-Activity Diaries: Time-activity diaries are self-reported records where individuals log their activities 
and locations throughout the day. These data can then be used in combination with pollutant 
concentration data from models or monitoring stations to estimate exposure. 

• Wearable Sensors: Wearable sensors are increasingly being used in exposure assessment studies. These 
devices can monitor both environmental parameters (e.g., air pollution levels) and physiological 
parameters (e.g., heart rate), providing a dynamic assessment of both exposure and health response. 

Dynamic exposure assessment methods are more complex and data-intensive than traditional static methods. 
However, they offer a more realistic assessment of exposure by capturing the complexity of real-world situations. 
These methods have been enabled by advances in technology, including improvements in portable monitoring 
devices, the widespread use of smartphones with built-in GPS, and the growth of machine learning techniques for 
data analysis. Despite the complexity and potential challenges in data collection and analysis, dynamic exposure 
assessment methods are increasingly being recognized as a critical tool in the field of environmental health [48]. 

Summary Table of Methods for Linking Pollutant Concentrations to Population 

Table 2 compares the two methods for linking pollutant concentrations to population. Samples of studies 
employing each method for linking pollutant concentrations to population are cited in the method column. 

Table 2. Comparison of Methods for Linking Pollutant Concentrations to Population 
Method Description Strengths Limitations Data/Computational 

Requirements 
Population 
Weighted 
Average [47, 
49, 50] 

Allocates pollutant 
concentrations based on 
population density 

Simple to implement; 
provides a single 
representative 
concentration for entire 
population 

Might not reflect 
high-exposure 
hotspots 

Requires population density 
data and pollution 
concentration data; moderate 
computational requirements 

Dynamic 
Exposure 
Assessment 
[48] 

Incorporates temporal 
and spatial variability in 
both pollution 
concentrations and 
population activities 

Reflects real-world 
variability; can capture 
high-exposure events 

More data-intensive; 
requires detailed 
data on population 
movement and 
activity patterns 

Requires detailed temporal and 
spatial data on population and 
pollution; high computational 
requirements 

Defining Health Outcomes 

This step involves establishing health outcomes linked to the exposures and their frequency (incidence) within the 
exposed population. In this context, the exposures are air pollution and specifically TRAP, and the health outcomes 
can be any that have been associated with TRAP in epidemiological studies. 

Health outcomes from air pollution epidemiology can be grouped into three categories [1, 51]:  
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• Accumulated indicators: In air pollution epidemiology, the widely used accumulated indicators are 
premature mortality, all-cause mortality, and life expectancy. Refer to Table 3 for examples of studies 
using accumulated indicators as health outcomes. 

• Category of diseases: This term refers to the practice of grouping or categorizing diseases based on 
certain common characteristics, symptoms, or related factors. In the field of air pollution epidemiology, 
common disease categories include respiratory diseases, cardiovascular and heart diseases, cancer, and 
obesity. Refer to Table 5 for the CDC PLACE dataset and specific studies associated with each disease 
category. 

• Specific diseases: Specific diseases refer to well-defined and distinct illnesses or health conditions that 
have specific sets of symptoms, causes, and treatments. These diseases are characterized by their unique 
features and diagnostic criteria, such as childhood asthma, lung cancer, and stroke. Refer to Table 3 and 
Table 5 for a collection of specific diseases linked to the field of air pollution epidemiology. 

Conceptually, QHIA studies assess the changes of TRAP on health outcomes of interest among the exposed 
population, therefore QHIA studies require longitudinal health outcomes (e.g., baseline and follow-up phases). 
BoD studies evaluate the contribution of a risk factor to the fraction of disease or death within the exposed 
population, hence health outcomes are often accumulated indicators and could be either cross-sectional or 
longitudinal. However, there is no distinct usage of health outcomes between QHIA and BoD in current studies, 
and they often overlap.  

Studies found that TRAP impacts many health outcomes, including all-cause mortality, cardiovascular morbidity, 
stroke risk, respiratory disease, deteriorated symptoms among adults, increased prevalence of asthma in children, 
changes in lung function among asthmatic children, cardiovascular and cardiopulmonary mortality, cancer, stress, 
and more [51]. Table 3 shows a list of selected QHIA or BoD studies quantifying impacts of TRAP on various health 
outcomes. 

Table 3. Selected QHIA and BoD Studies Quantifying Health Impacts of TRAP 
Method Exposure 

Source 
Exposure 
Assessment 

Health 
Outcomes 

Findings 

QHIA Traffic-related 
NO2 and NOx 

Dispersion 
model 

All asthma 
cases 

Found that 128 (7%) and 219 (12%) of all asthma 
cases may be attributable to traffic related NO2 and 
NOx, respectively, in Bradford, England [40]. 

QHIA Traffic-related 
NO2 

Geostatistical 
interpolation 
model 

Premature 
deaths 

Found that NO2 can be reduced from 47.18 μg/m3 to 
35.72 μg/m3, resulting in 291 preventable premature 
deaths in Barcelona, Spain [45]. 

QHIA Traffic-related 
PM2.5 

Geostatistical 
interpolation 
model, 
exposure 
surrogate 

All-cause 
mortality 

Found that the annual average urban PM2.5 
concentration would decline by 0.1 µg/m³ and 
mortality would decrease by 608 deaths per year in 
the Midwestern United States [36]. 

QHIA Traffic-related 
PM2.5 

Land-use 
regression 
model, 
exposure 
surrogate 

Premature 
deaths 

A larger number of deaths (i.e., 253 and 145, 
respectively) could be prevented by reducing air and 
noise pollution levels well below the guidelines in 
Bradford, United Kingdom [32]. 

QHIA Traffic-related 
NO2, NO, and 
BC 

Remote sensing Cardiovascular 
events 

Found a one standard deviation increase in NO2, NO, 
and BC was associated with a change in risk of a 
cardiovascular event of 3%, 3%, and −1%, 
respectively. Among the elderly (≥ 65 years), an 
increased risk of a cardiovascular event of 12% for 
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NO2, 12% for NO, and 7% for BC per one SD increase 
[46]. 

QHIA Traffic-related 

NOx 

Land-use 
regression 
model, 
exposure 
surrogate 

Cancer 
incidence 

Found a 10-ppb increase in mean NOx exposure was 
associated with hazard ratios of 1.07 for all-site 
cancer and 1.16 for cancers previously linked to TRAP 
(i.e., lung, breast, prostate, kidney, and bladder). A 
stronger association was observed for breast cancer 
[33]. 

BoD Traffic-related 
PM2.5 and 
ozone 

Chemical 
transport 
modeling 

Premature 
deaths 

Found that traffic-related PM2.5 and ozone were 
associated with 361,000 deaths in 2010 and 385,000 
deaths in 2015, which translated into 11.7% of total 
global ambient PM2.5 and ozone deaths in 2010 and 
11.4% in 2015 [43]. 

BoD Long-term 
exposure to 
TRAP 

Exposure to 
traffic proxies 

Arterial blood 
pressure (BP) 

Traffic load on major roads within 100 m of the 
residence was associated with increased systolic and 
diastolic BP in nonmedicated participants 
(0.35 mmHg and 0.22 mmHg per 4,000,000 vehicles × 
m/day, respectively) [37]. 

BoD Traffic-related 
PM2.5 

Land-use 
regression 
model, 
exposure 
surrogate 

Annual 
preventable 
morbidity and 
disability-
adjusted life-
years (DALYs) 

Found air pollution, noise, heat, and access to green 
spaces was estimated to generate a large morbidity 
burden and resulted in 52,001 DALYs in Barcelona 
each year (13% of all annual DALYs) [34]. 

BoD Traffic-related 
NO2 

Land-use 
regression 
model, 
exposure 
surrogate 

Childhood 
asthma 

Using the state-specific incidence rates, researchers 
estimated a total of 134,166 childhood asthma 
incident cases attributable to NO2, accounting for 
17.6% of all childhood asthma incident cases. Using 
the national-level incidence rate, researchers 
estimated a total of 141,931 incident cases 
attributable to NO2, accounting for 17.9% of all 
childhood asthma incident cases [35]. 

Exposure-Response Functions 

The third step is to select exposure-response functions (i.e., risk estimates) to measure the degree of association 
between the exposure and health outcome of interest. Ideally, using exposure-response functions derived from 
the specific population under study are preferred. This would more accurately reflect the level of risk studies, the 
population characteristics, and their particular response to exposure. The selection of the pollutant for analysis is 
also important to consider and should be based on the available epidemiological evidence. However, such localized 
data or epidemiological evidence may often be unavailable or based on limited sample sizes, leading to imprecise 
estimates with wide confidence intervals [52, 53]. 

In the absence of specific local exposure-response functions, using pooled exposure-response functions from 
meta-analyses is a preferable alternative. This approach is more generalizable and offers more statistical power 
due to the pooling of larger human population data. Nonetheless, they may introduce higher and unexplained 
heterogeneity due to the variation in methodologies and underlaying populations across the studies included in 
the meta-analysis, thereby causing bias and poor estimates [13].  

Risk estimates from the exposure-response functions reported by most epidemiological studies are prevalence or 
incidence of disease, relative risk, odds ratios, or population attributable risks. The following step introduces a 
general protocol of exposure-response function calculation for quantifying attributable cases. 
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Quantifying Attributable Cases 

The fourth step is to combine exposures data with population data and exposure-response functions to quantify 
the attributable proportional health burden of the health outcomes. The selected exposure-response function 
needs to be scaled to represent the difference in exposure levels between the baseline exposure and the 
counterfactual exposure, which is commonly conducted at the geographical level of analysis. Equation 3 shows the 
calculation for the relative risk (RR) of the health outcome of interest [13, 54]. 

𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑒𝑒�
ln(𝑅𝑅𝑅𝑅𝐸𝐸)

𝐸𝐸  × 𝐸𝐸𝐸𝐸𝑖𝑖� (3) 

Where i is an element of the set i ∈ {1,…,n}, n is the number of exposures at the geographical level of analysis (e.g., 
census tracts/block groups, neighborhoods, districts), 𝑅𝑅𝑅𝑅𝐸𝐸  is the relative risk obtained from the exposure-response 
function, 𝐸𝐸 is the exposure unit that corresponds to the 𝑅𝑅𝑅𝑅𝐸𝐸  obtained from the exposure-response function, and 
𝐸𝐸𝐸𝐸𝑖𝑖  is the exposure level difference, which is the difference in the exposure level resulting from the comparison of 
the baseline exposure level with the counterfactual exposure level [13, 54]. 

The next step is to calculate the population attributable fraction (PAF). PAF defines the proportional health burden 
of the health outcome that is attributable to the difference in exposure level 𝐸𝐸𝐸𝐸𝑖𝑖  and is calculated as shown in 
Equation 4, where 𝑃𝑃𝑖𝑖  is the proportion of exposed population, and 𝑅𝑅𝑅𝑅𝑖𝑖  is the previously scaled relative risk [13, 
54]:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  = 𝑃𝑃𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑖𝑖 – 1
𝑃𝑃𝑖𝑖 × 𝑅𝑅𝑅𝑅𝑖𝑖

  (4) 

Finally, the total attributable burden (AB) is calculated. The attributable burden describes the total burden of the 
health outcome that is attributable to the difference in exposure level 𝐸𝐸𝐸𝐸𝑖𝑖  and is calculated as shown in 
Equation 5, where 𝑇𝑇𝑇𝑇𝑖𝑖  is the total burden of the health outcome, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  is the previously calculated 
proportional health burden of the health outcome that is attributable to the difference in exposure level 𝐸𝐸𝐸𝐸𝑖𝑖  [13]: 

𝑃𝑃𝑇𝑇 = ∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1  ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖   (5) 

Furthermore, with RR, health impact function can also be evaluated. Health impact function is widely used in air 
pollution epidemiology studies to assess the impacts of air pollution exposure on health outcome of interest. It is 
the core function that BenMAP applied to model health impacts of air pollution-related outcomes. The function 
explores a log-linear relationship between exposure and RR, as shown in Equation 6, where ∆𝑌𝑌 is the change in the 
health outcome of interest, 𝑌𝑌0 is the baseline disease incidence rate, 𝑅𝑅𝑅𝑅 is relative risk associated with a change in 
exposure, 𝐸𝐸𝐸𝐸 is the difference (change) in exposure level, and Pop is the exposed population [54–57].  

∆𝑌𝑌 = 𝑌𝑌0 (1 − 𝑒𝑒−𝑅𝑅𝑅𝑅 ∗ 𝐸𝐸𝐸𝐸) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 (6) 

Quantifying Uncertainty 

The final step is to quantify the uncertainty from the estimated health burden. This could be achieved through 
various methods that consider the ranges of input data used in the assessments, including: (1) incorporating the 
ranges of the exposure estimates, (2) considering the ranges of incidence rate for the health outcome of interest, 
(3) using the ranges for the exposure-assessment functions, and (4) using a combination of the above. The 
uncertainty is often presented as 95 percent CIs [13]. 

Currently, there is a lack of specific guidance, standards, and best practices on how to quantify and present 
uncertainty in BoD and QHIA. One approach for presenting the range of uncertainty is using the most conservative 
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estimate obtained from all the lower ranges of the input data as the lower 95 percent CI and using the most 
extreme estimate from all the upper ranges of the input data as the upper 95 percent CI. This way results in the 
widest possible 95 percent CI around the central estimate, but it requires running the analysis for multiple 
combinations of data, making it impractical and often not performed in practice [15]. 

Programs 

There are programs that aim to automate part or full chain modeling processes of health impacts caused by air 
pollution, including the Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE), 
Intervention Model for Air Pollution (InMAP), AirQ+, and Airviro. None of these programs can offer one-step 
solutions, and each requires specific data input and preprocessing. Among these programs, InMAP excels in 
modeling the full chain, encompassing pollutant emissions, dispersion, exposure, and health impact assessments. 
In contrast, BenMAP-CE and AirQ+ are primarily focused on modeling exposure to health impacts, with AirQ+ 
having fewer capabilities for modeling concentration-response relationships and health impact outcomes. Lastly, 
Airviro is specialized for emission-dispersion modeling, with a more limited scope compared to the others. Table 4 
summarizes the comparison among these programs for modeling health impacts of air pollution. 

BenMAP-CE 

BenMAP is an EPA open-source computer program that calculates the number and economic value of air pollution-
related deaths and illnesses. The software incorporates a database that includes many of the concentration-
response relationships, population files, and health and economic data needed to quantify these impacts. The 
program can enable users to load their own data or use pre-loaded datasets for the United States and China, 
including air quality data, demographic data, economic values, and concentration-response relationships. 
BenMAP-CE estimates health impacts using health impact functions that are constructed using information from 
the published epidemiology literature. Most of the functions have been discussed in the previous sections. 
BenMAP-CE is available for downloading from https://www.epa.gov/benmap [58]. 

InMAP 

InMAP is a recently developed model that offers a new approach to estimate the human health impacts caused by 
air pollutant emissions and how those impacts are distributed among different groups of people. InMAP offers an 
alternative to comprehensive air quality models for estimating the air pollution health impacts of emission 
reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary 
PM2.5 concentrations. InMAP leverages pre-processed physical and chemical information from the output of a 
state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform 
simulations that are several orders of magnitude less computationally intensive than comprehensive model 
simulations. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of 
potential shifts in emissions for annual-average PM2.5 [59]. InMap is available for downloading from 
http://spatialmodel.com/inmap [59]. 

AirQ+ 

AirQ+ is a software tool for quantifying the health burden and impact of air pollution. It estimates the effects of 
short-term changes in air pollution (based on risk estimates from time-series studies) and long-term exposures 
(using life-tables approach and based on risk estimates from cohort studies). It is developed by the World Health 
Organization (WHO) and is mainly used in Europe. AirQ+ is available from https://www.who.int/tools/airq [60]. 

https://www.epa.gov/benmap
http://spatialmodel.com/inmap/
https://www.who.int/tools/airq
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Airviro 

Airviro is a web-based system for air quality management co-developed by the Swedish Meteorological and 
Hydrological Institute and Apertum IT AB. It serves as an integrated platform for managing time series data, 
emission inventories, and dispersion modeling. With its inception in 1990, Airviro has been under continuous 
development and has garnered a global user base. Airviro has been co-developed in collaboration with regional 
authorities and air quality consultants. Engagements have been noted with entities like SLB Analys in Stockholm, 
EERC in Estonia, Sweco and IVL in Gothenburg, and the Ministerio de Medio Ambiente in Santiago, Chile. Airviro is 
a more complicated setup, which can be set up based on the application with availability of different emission and 
dispersion models. Once deployed, it can be set up as a web-based application with ease of use for the end user. 
Airviro is available from http://www.airviro.com [61].  

Table 4. Comparison of Programs for Quantifying the Impacts of Air Pollution  
Method Modeling Pathway Strengths Limitations Data/Computational 

Requirements 
BenMAP-
CE [58, 
62] 

Air pollution exposure 
(air quality changes) 
to health effects 

Can also calculate the 
economic value of air 
quality change using both 
“cost of illness” and 
“willingness to pay” 
metrics 

Cannot be used to conduct 
source specific analyses 
without inputs from other 
modeling programs; 
expertise required to 
conduct an analysis 

Source-specific input data 
for air quality changes in 
integer, text, and csv. 
format 

InMAP 
[59] 

Full chain modeling: 
emissions, 
concentrations, 
exposure, health 
impacts, economic 
damage, 
environmental justice 

The only full chain 
modeling program 
researchers could find; 
better performance for 
population-weighted 
metrics 

The performance for area-
weighted metrics is lower; 
prediction/accuracy for 
certain pollutant 
concentrations are low; 
does not predict 
concentrations of ground-
level ozone 

User-specified input 
required is a shapefile or 
set of shapefiles 
containing locations of 
changes in annual total 

emissions of VOCs, SOx, 

NOx, NH3, and PM2.5 (e.g., 
polygon, line, or point 
entities) 

AirQ+ 
[60, 63] 

Air pollution exposure 
to health effects 

Quantify both short-term 
and long-term health 
burden and impact of air 
pollution 

Preprocessing air pollution 
and health data are 
required; only annual 
results are generatable; 
pollutants limited to PM10 
and PM2.5, the interaction 
between pollutants cannot 
be studied 

Air pollution 
concentration input data, 
mortality incidence rate, 
and other health outcome 
data in csv. format 

Airviro 
[61, 64] 

Monitoring, emission 
inventories, and 
dispersion modelling 

State-of-the-art and most 
extensive air quality 
management system on 
the international market; 
easy to access and use 
with exceptional 
performance and stability; 
offer hosting of servers  

No health impact function; 
Not free. 

Local topography, 
emissions, and 
meteorological data 

Other Statistical Modeling 

There are other studies that have attempted to model the association between traffic-related environmental 
factors (i.e., exposure to traffic proxies such as traffic density, noise, perceived air pollution) and health outcomes 
(e.g., obesity, depression, traffic-related mortality) using statistical modeling such as multiple linear regression, 

http://www.airviro.com/
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logistic regression, mixed regression, cox hazard model, and negative binomial models [65, 66]. These studies 
usually are survey-based or community-based studies using localized data. The findings are mixed and often have 
generalizable problems. There is a growing trend to use machine learning and data mining in air pollution 
epidemiology for prediction of exposure impacts, generation of hypotheses, and source appointment. The 
potential to support air pollution epidemiology continues to growth with advancements in data mining and deep 
learning technologies related to geo-spatial and temporal data mining as well as wealth and better quality of 
data [67].  

Data 
Health data are an essential element in quantifying health impacts of TRAP. However, obtaining local health data is 
often challenging due to issues like data unavailability or the prohibitive cost and time required for data collection 
within the study area. As a result, many studies end up utilizing disease incidence rates data from larger 
geographical regions, such as counties, regions, or national levels, and then scaling down these estimates to match 
the local study population based on population counts. Very few studies investigated the localized health impacts 
on QHIA or BoD estimates. There is evidence found that using local versus national incidence rates for evaluating 
childhood asthma in BoD assessment made a difference to the final estimates between city and state health data, 
especially when variations of interest among cities and states are large [35, 68]. 

The section aimed to compile and inventory health data and sources that could be linked with air pollution 
epidemiology, especially for local scale (e.g., neighborhood level), to strengthen the linkage between air pollution 
epidemiology and the health impact of TRAP. This section discusses the available health data that can be measured 
as health outcomes in QHIA and BoD studies for quantifying health impacts of TRAP. It focuses on introducing 
health data related to TRAP in the CDC PLACES database and providing additional health data sources. 

CDC PLACES 

PLACES is a collaboration between CDC, the Robert Wood Johnson Foundation, and the CDC Foundation. PLACES 
provides health data for small areas across the country. This allows local health departments and jurisdictions, 
regardless of population size and rurality, to better understand the burden and geographic distribution of health 
measures in their areas and assist them in planning public health interventions. PLACES provides model-based, 
population-level analysis and community estimates of health measures to all counties, places (incorporated and 
census designated places), census tracts, and ZIP Code Tabulation Areas (ZCTAs) across the United States. 

Table 5 shows a list of selected health outcomes from CDC PLACES local data for better health in the census tract 
data 2023 release. Based on previous literature and authors’ knowledge, 16 out of 30 health indicators related to 
TRAP were selected and grouped into five categories: respiratory disease (two health outcomes), cardiovascular 
and heart disease (five health outcomes), cancer (one health outcome), physical activity and obesity (two health 
outcomes), and other health conditions (six health outcomes), with corresponding health outcome indicators [51]. 
All health outcome indicators were normalized by sampling in population percentage, and health impact findings 
were summarized with citations. 

Table 5. Health Outcomes Related to TRAP from CDC PLACES 
Category Variable 

Name 
Variable Description & Measurement 
(Sampling in population %) 

Related Studies 

Respiratory 
Disease 

casthma_cr Current asthma among adults aged ≥ 18 years [51, 69, 70] 
copd_crude Chronic obstructive pulmonary disease among adults aged 

≥ 18 years 
[38, 51, 71] 

Cardiovascular 
and Heart 
Disease 

bphigh_cru High blood pressure among adults aged ≥ 18 years [37, 51, 72] 
chd_crudep Coronary heart disease among adults aged ≥ 18 years [51, 73, 74] 
highchol_c High cholesterol among adults aged ≥ 18 years [51, 75, 76] 
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kidney_cru Chronic kidney disease among adults aged ≥ 18 years [51, 77, 78] 
stroke_cru Stroke among adults aged ≥ 18 years [51, 79, 80] 

Cancer cancer_cru Cancer (excluding skin cancer) among adults aged ≥ 18 
years 

[33, 51, 81] 

Physical Activity 
and Obesity 

obesity_cr Obesity among adults aged ≥ 18 years [82] 
lpa_crudep No leisure-time physical activity among adults aged ≥ 18 

years 
[83] 

Other Health 
Conditions 

depression Depression among adults aged ≥ 18 years [51, 84, 85] 
diabetes_c Diagnosed diabetes among adults aged ≥ 18 years [51, 86, 87] 
ghlth_crud Fair or poor self-rated health status among adults aged ≥ 18 

years 
[88, 89] 

mhlth_crud Mental health not good for ≥ 14 days among adults aged 
≥ 18 years 

[51, 90, 91] 

phlth_crud Physical health not good for ≥ 14 days among adults aged 
≥ 18 years 

[88, 89] 

checkup_cr Visits to doctor for routine checkup within the past year 
among adults aged ≥ 18 years 

[92] 

Data Source 

Table 6 lists a collection of available data sources for health outcomes and cohort (epidemiological) studies in the 
Unites States, United Kingdom, and worldwide. This is not a full list, and more publicly available sources can be 
found online on researchers’ expertise and study areas. 

Table 6. Data Source of Health Outcomes and Cohort Studies 
Sources Area Description Link 

CDC PLACE U.S. PLACES provides health data for small areas across the 
country. 

https://www.cdc.gov/places/in
dex.html 

CDC EPHT U.S. The National Environmental Public Health Tracking Network 
brings together health data and environmental data from 
national, state, and city sources. 

https://ephtracking.cdc.gov/ 

Environmental 
Justice Index 

U.S. The Environmental Justice Index ranks each census tract on 
36 environmental, social, and health factors and groups 
them into 3 overarching modules and 10 different domains. 

https://www.atsdr.cdc.gov/pla
ceandhealth/eji/index.html 

CDC WONDER U.S. WONDER online databases utilize a rich ad-hoc query system 
for the analysis of public health data. 

https://wonder.cdc.gov/ 

CDC Behavioral 
Risk Factor 
Surveillance 
System (BRFSS) 

U.S. BRFSS is the nation’s premier system of health-related 
telephone surveys that collect state data about U.S. 
residents regarding their health-related risk behaviors, 
chronic health conditions, and use of preventive services. 

https://www.cdc.gov/brfss/ind
ex.html 

CDC Asthma 
Call-back Survey 
(ACBS) 

U.S. The ACBS is conducted approximately two weeks after 
BRFSS. BRFSS respondents who report ever being diagnosed 
with asthma are eligible for the asthma call-back. 

https://www.cdc.gov/asthma/
acbs.htm 

CDC U.S. Small-
Area Life 
Expectancy 
Estimates 
Project 
(USALEEP) 

U.S. USALEEP produced estimates of life expectancy at birth—the 
average number of years a person can expect to live—for 
most of the census tracts in the United States for the period 
2010–2015. 

https://www.cdc.gov/nchs/nvs
s/usaleep/usaleep.html 

The Cohort 
Directory 

UK The Cohort Directory is a collection of UK population 
cohorts. 

https://www.ukri.org/councils/
mrc/facilities-and-
resources/find-an-mrc-facility-
or-resource/cohort-directory/ 

Dementias 
Platform 

UK Dementias Platform provides a list of cohorts representing a 
wide range of studies from across the United Kingdom. 

https://portal.dementiasplatfo
rm.uk/CohortDirectory 

https://www.cdc.gov/places/index.html
https://www.cdc.gov/places/index.html
https://ephtracking.cdc.gov/
https://www.atsdr.cdc.gov/placeandhealth/eji/index.html
https://www.atsdr.cdc.gov/placeandhealth/eji/index.html
https://wonder.cdc.gov/
https://www.cdc.gov/brfss/index.html
https://www.cdc.gov/brfss/index.html
https://www.cdc.gov/asthma/acbs.htm
https://www.cdc.gov/asthma/acbs.htm
https://www.cdc.gov/nchs/nvss/usaleep/usaleep.html
https://www.cdc.gov/nchs/nvss/usaleep/usaleep.html
https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/cohort-directory/
https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/cohort-directory/
https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/cohort-directory/
https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/cohort-directory/
https://portal.dementiasplatform.uk/CohortDirectory
https://portal.dementiasplatform.uk/CohortDirectory
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Global Burden 
of Disease 
(GBD) database 

World GBD database provides sources of national data on the 
incidence of various health outcomes. 

http://ghdx.healthdata.org/gb
d-results-tool 

Birthcohorts.net World Birthcohorts.net provides inventory of birth cohorts. https://www.birthcohorts.net/ 
Epidemiology 
Resources web 
tool 

World The Epidemiology Resources web tool was created to 
organize and share information about National Institute of 
Environmental Health Sciences–funded environmental 
epidemiology studies. 

https://tools.niehs.nih.gov/coh
orts/ 

Global Cohort 
Portal 

World The EU Join Programme—Neurodegenerative Disease 
Research Global Cohort Portal is a searchable catalogue of 
cohort studies that covers both disease-focused and general 
population studies. 

https://www.neurodegenerati
onresearch.eu/jpnd-global-
cohort-portal/ 

Gateway to 
Global Aging 
Data 

World Gateway to Global Aging Data is a platform for population 
survey data on aging around the world 

https://g2aging.org/ 

Discussion 
QHIA and BoD are important tools to integrate health evidence into policy decision-making processes and 
introduce and implement Health in All Policies. The findings from these assessments offer valuable guidance to 
policymakers, emphasizing the significance of prioritizing outcomes that can be quantified and measured. 
Moreover, the outcomes can raise public awareness and advocacy regarding the health consequences and 
implications of existing and proposed public policy scenarios and influence decision-making processes [13]. 

Furthermore, QHIA and BoD are tools that can be implemented proactively to provide outlooks for expected 
health consequences and forecasting, and therefore plan appropriate mitigation strategies accordingly—before 
health problems occur. The tools allow the comparison of alternative counterfactual or policy scenarios and 
provide insights for evaluating proposed interventions, policies, or programs (e.g., TRAP mitigation) from a health 
perspective or beyond (e.g., health economics). They can directly or indirectly inform associated health benefits 
and risks and cost-benefit analyses as well as appraisal schemes for proposed transportation projects or 
investments [13]. In addition, these tools are context specific and sensitive to contextual variables, health 
parameters, and underlying population. Hence, they can help identify the sub-population that would 
disproportionally be affected or disadvantaged by the interventions, policies, or programs, which could be utilized 
to evaluate health disparity in disadvantaged communities and environmental justice research.  

The QHIA and BoD studies mentioned above relied on modeling methods and tools primarily limited to research, 
but they have potential to be more widely applied in practice if further developed and improved. Due to a 
communication gap between different sectors, while researchers possess the expertise to develop and apply QHIA 
models, they often lack practical background and experience to determine whether their counterfactual scenarios 
are realistic and plausible for practice. Additionally, the developed models and tools are often not user-friendly. On 
the other hand, practitioners, policy, and decision-makers lack the motivation, knowledge, methods, and resources 
to routinely conduct health impact modeling projects to inform their decision-making process [3, 13, 93]. 

Several limitations exist in the modeling processes of QHIA and BoD that need to be acknowledged. Firstly, QHIA 
and BoD differ fundamentally from evaluation studies or pre-post intervention studies. They rely on assumptions 
and extrapolations, and there remains uncertainty regarding whether health impacts will truly occur as estimated. 
Consequently, the outputs can only be interpreted as an indication of the expected magnitude of health impacts 
under the counterfactual scenario. Second, the scope and impact of QHIA and BoD approaches are constrained by 
the lack of epidemiological evidence (dose- or exposure-response functions). Only those relationships that are 
supported by existing causal epidemiology can be quantified. As a result, these approaches are applicable only to 
exposure-response functions that have been validated through high-quality cohort studies, time-series analyses, or 
meta-analyses. Thirdly, uncertainties and errors arise when incorporating input data with varying quality and scale 

http://ghdx.healthdata.org/gbd-results-tool
http://ghdx.healthdata.org/gbd-results-tool
https://www.birthcohorts.net/
https://tools.niehs.nih.gov/cohorts/
https://tools.niehs.nih.gov/cohorts/
https://www.neurodegenerationresearch.eu/jpnd-global-cohort-portal/
https://www.neurodegenerationresearch.eu/jpnd-global-cohort-portal/
https://www.neurodegenerationresearch.eu/jpnd-global-cohort-portal/
https://g2aging.org/
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during the modeling processes. Any step involving the assessment of exposure proxies, exposure-response 
functions, resolution of exposure estimates, baseline health conditions, accuracy of population parameters, or risk 
estimates for that population can introduce errors and uncertainties in the estimation of health impacts. Fourthly, 
while there is robust epidemiological evidence linking TRAP to specific health outcomes, this evidence (e.g., RR, 
PAF) often applies only to certain populations, such as adults or children. Therefore, when applying this 
epidemiological evidence in QHIA and BoD, the health impacts captured will be limited to those specific 
populations for which the evidence is applicable. Lastly, in most cases, QHIA and BoD utilize counterfactual 
scenarios that describe ideal situations. However, these ideal scenarios tend to be overly optimistic, leading to a 
partial quantification of reality. As a result, the outcomes from QHIA and BoD may not fully reflect the complexities 
and challenges present in real-world conditions [3, 13, 94]. 

Conclusion 
Currently, there is a lack of standards and best practices of assessing health impacts of TRAP and selecting input 
data from diverse data sources. Additionally, there is a lack of comprehensive syntheses on available datasets for 
these assessments. Future studies should address the aforementioned research gaps and limitations by focusing 
on the following areas [3, 13, 94]:  

1. Develop participatory integrated full chain BoD and QHIA models in collaboration with stakeholders to 
assess plausible real-world scenarios or counterfactual exposures relevant to cities and local authorities.  

2. Account for multiple exposures, interdependencies, and uncertainties present in the real world to create 
more comprehensive and robust assessments. 

3. Establish and synthesize models alongside high-quality datasets tailored for policy purposes, including 
developing a comprehensive strategy for searching for quality input data and validating the models.  

4. Develop sub-population exposure-response functions based on ethnicity, sex, socioeconomic class, etc. 
These functions should reflect baseline health conditions at a smaller geographical level, such as the 
neighborhood level, to improve model accuracy of health impact estimates for local-scale assessments, 
thus providing more nuanced insights for decision-makers. 

This study comprehensively reviews and investigates approaches, methods, data, tools, and models for assessing 
health impacts of transportation emissions, focusing on QHIA and BoD. It discusses the practicalities of conducting 
such research, including the exact methods and calculations, data requirements, and data sources, in the context 
of the health impacts of TRAP. Specifically, this study emphasizes compiling a comprehensive inventory of 
methods, functions, and sources, comparing their strengths, limitations, and data requirements, and offering an 
elaborate step-by-step procedure for integrating health outcomes into modeling processes of the full chain 
pathway from exposure assessment to health impact assessment. Additionally, it explores existing health outcome 
data and sources that can be overlaid to provide a more comprehensive perspective on the relationship between 
TRAP and health. This work serves as an exploratory effort, setting the stage for future research and modeling 
endeavors. The aims are to strengthen the linkage between air pollution epidemiology and the health impact of 
TRAP, leading to more robust QHIA or BoD studies for assessing the full chain of TRAP’s impacts on health. 

Here are the key takeaways and actionable improvements: 

• Significance of QHIA and BoD: These tools are instrumental in integrating health evidence into policy-
making. Their outcomes not only guide policymakers but also elevate public awareness about the health 
implications of policy scenarios. 



 

20 

• Proactive Implementation: QHIA and BoD can be used to forecast health consequences, allowing for the 
planning of mitigation strategies in advance. They facilitate the comparison of alternative scenarios and 
provide insights for evaluating interventions. 

• Context-Specific Tools: These tools are sensitive to specific contexts and populations. They can identify 
sub-populations that might be disproportionately affected by certain policies. 

• Potential for Wider Application: While QHIA and BoD studies have been primarily research-focused, 
there’s potential for broader practical application. Bridging the communication gap between researchers 
and practitioners can lead to more realistic and actionable models. 

The following are improvements for the modeling pipeline: 

• Integration with Full Chain Modeling: The findings from this study can be directly incorporated into the 
full chain modeling work. This includes refining exposure-response functions, leveraging extensive health 
data, and integrating feedback from real-world applications. 

• Enhanced Collaboration: Engaging stakeholders, including policymakers, public health experts, and 
communities, can lead to more holistic and relevant models. This collaborative approach ensures that 
models are both scientifically rigorous and practically applicable. 

• Refining Models with Real-World Data: The study highlights the importance of using real-world data, 
such as the CDC PLACE data, to enhance model accuracy. Future modeling efforts should prioritize the 
integration of such datasets. 

• Addressing Identified Limitations: The study outlines several limitations in current QHIA and BoD 
approaches. Addressing these, especially in terms of assumptions, extrapolations, and the scope of 
epidemiological evidence, will significantly improve the modeling pipeline. 

• Incorporating Advanced Technologies: Leveraging advancements in data science, artificial intelligence, 
and machine learning can enhance the accuracy and efficiency of health impact assessments. 

In essence, the findings of this study offer a roadmap for refining the modeling pipeline. By addressing the 
identified challenges and leveraging the insights provided, there’s a significant opportunity to enhance the full 
chain modeling work and ensure its relevance and effectiveness in real-world applications. 
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