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FOREWORD 

The technology available on vehicles traversing our Nation’s roadways is rapidly changing in 
ways that may impact how drivers behave. To be able to plan for these vehicle types of the 
future, State and local infrastructure owners and operators (IOOs) must first be able to capture 
how these various vehicle types behave in transportation analysis, modeling, and simulation 
(AMS) tools. One current issue facing the developers and users of transportation AMS tools is a 
lack of high-resolution, naturalistic datasets that include advanced driver-assistance system 
(ADAS)- and automated driving system (ADS)-equipped vehicle operation on roadways. 

The purpose of this report is to document the collection of a large dataset collected in Central 
Ohio using conspicuous and inconspicuous SAE Level 2™ ADAS-equipped vehicles navigating 
complex driving environments.(1) These publicly available datasets will enable researchers to 
develop models that characterize human-ADAS interactions under a diverse set of naturalistic 
traffic scenarios in highway and arterial environments.(2,3) Using these data, researchers will be 
able to develop appropriate models to assess the impact of ADAS technologies and inform 
industry on methods to update current traffic microsimulation products. Results from models 
developed using these datasets will enable researchers, analysts, and IOOs to better understand 
how ADAS-equipped vehicles will affect transportation system performance. Ultimately, the 
models developed using these data can support data-informed decisionmaking that maximizes 
ADAS-equipped vehicle benefits to system performance. This final report will be of interest to 
researchers and AMS tool users who are interested in improving human-ADAS interactions in 
decision support tools. 

Carl Andersen 
Acting Director, Office of Safety and Operations 

Research and Development 
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EXECUTIVE SUMMARY 

As vehicle technology advancements accelerate, infrastructure owners and operators (IOOs) are 
making investment decisions today that will shape the transportation system of the future. Given 
the long design life of infrastructure, any changes to physical transportation infrastructure—such 
as adding lanes, installing intelligent transportation system (ITS) solutions (e.g., variable speed 
limits, ramp metering), and incorporating innovative intersection designs—will need to 
accommodate a wide variety of vehicle types, including SAE Level 0™ nonautomated vehicles, 
SAE Level 1™ and SAE Level 2™ ADAS-equipped vehicles, and SAE Level 3™, 
SAE Level 4™, and SAE Level 5™ ADS-equipped vehicles, even if these vehicle types are not 
widely available today (as in the case of the ADS-equipped vehicles).  

To plan for these future vehicle types, State and local IOOs first need to capture how these 
various vehicle types behave in transportation analysis, modeling, and simulation (AMS) tools 
(e.g., microsimulation, four-step transportation planning model, dynamic traffic assignment, 
activity-based models, scenario-planning models, etc.). One current issue facing the developers 
and users of transportation AMS tools is a lack of high-resolution, naturalistic datasets that 
include ADAS- and ADS-equipped vehicle operation on roadways. OEMs, universities, and 
vehicle technology companies are beginning to release high-resolution, high-volume datasets of 
how their ADAS- and ADS-equipped vehicles behave in real-world environments. 
Unfortunately, these datasets are often raw sensor data (e.g., camera, light detection and ranging 
(LiDAR), radar) that are not suitable for traffic simulation model development unless processed 
into trajectories, which is not a trivial task. Thus, few to no large datasets exist that contain 
processed trajectories of ADAS- and ADS-equipped vehicles and surrounding nonautomated 
vehicles (i.e., 100-percent manually operated vehicles with no automated assistance features 
(SAE Level 0)) in naturalistic traffic conditions.(1)  

In this project, the research team developed a methodology to collect and process 
ADAS-equipped vehicles’ raw onboard sensor data to extract data about the instrumented 
ADAS-equipped subject vehicle and all adjacent vehicles in the traffic stream that were 
perceived by the on-board sensors. These publicly available datasets, available on the ITS 
DataHub, will enable researchers to develop models that characterize human-ADAS interactions 
under a diverse set of naturalistic traffic scenarios in highway and arterial environments.(2,3) 
Using these data, researchers can develop appropriate models to assess the impact of ADAS 
technologies and update current driver-behavior models. Results from models developed using 
these datasets will enable researchers, analysts, and IOOs to better understand how 
ADAS-equipped vehicles will affect transportation system performance. Ultimately, the models 
developed using these data can support data-informed decisionmaking that maximizes ADAS 
benefits to the transportation system performance.  
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

Analysis, modeling, and simulation (AMS) tools are critically important to infrastructure owners 
and operators (IOOs) (e.g., State and local departments of transportation). In fact, the Fixing 
America’s Surface Transportation (FAST) Act placed increasing emphasis on the application of 
AMS tools in the planning process. Section 1430 of the act explicitly states: 

The Department should utilize, to the fullest and most economically feasible extent 
practicable, modeling and simulation technology to analyze highway and public 
transportation projects authorized by this Act to ensure that these projects— 

(1) will increase transportation capacity and safety, alleviate congestion, and reduce 
travel time and environmental impacts; and 

(2) are as cost effective as practicable. (p. 117).(4) 

AMS tools are valuable because they help IOOs understand the impact of changes to the 
transportation system (e.g., increases in demand, installation of intelligent transportation system 
(ITS) technology, new high-occupancy toll or general-purpose lanes, new signal timing plans) on 
system performance (e.g., capacity, speed, travel time). These tools help IOOs to better operate 
their existing system and to better plan their transportation system of tomorrow.  

However, the users of transportation systems are rapidly changing in ways that may have a 
significant impact on the transportation system’s performance. Specifically, the technology 
becoming available on vehicles traversing our Nation’s roadways may impact how drivers 
behave. Many OEMs are now offering SAE Level 1™ advanced driver-assistance system 
(ADAS) technology packages as standard on new vehicles purchased by consumers.(1) Common 
ADAS features include adaptive cruise control (ACC), lane-keeping assistance, and blind-spot 
monitoring. As of May 2018, at least one ADAS feature is available on 92.7 percent of new 
vehicles available in the United States.(5) Additionally, many OEMs offer technology upgrade 
packages on their ADAS-equipped vehicles that make these vehicles capable of SAE Level 2™ 
partial driving automation (e.g., simultaneous lane centering and ACC).(1) ADAS-equipped 
vehicles are rapidly gaining market penetration in the United States and abroad. 

At the time of this report’s publication, no vehicles sold commercially in the U.S. market are 
equipped with a technology package that enables SAE Level 3™, SAE Level 4™, or SAE Level 
5™ automation, which are identified as automated driving system (ADS)-equipped vehicles.(1) 
However, connected and automated vehicles (CAVs), which include connected and unconnected 
ADAS-equipped vehicles, connected and unconnected ADS-equipped vehicles, and connected 
vehicles (CVs), are driving multi-billion-dollar investments from OEMs and technology 
companies. While the exact timeframe and capabilities of these systems are a significant source 
of uncertainty, the transportation industry generally agrees that CAV adoption will occur over 
the next several decades. 
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As vehicle technology advancements continue and accelerate, IOOs are making investment 
decisions today that will shape the transportation system of the future. Given the long design life 
of infrastructure, any changes to physical transportation infrastructure (e.g., adding lanes, 
allowing hard shoulder use, incorporating innovative intersection designs) will need to 
accommodate the needs of a wide variety of vehicle types, including SAE Level 0™ 
human-driven vehicles (referred to as nonautomated vehicles in this report), SAE Level 1 and 2 
ADAS-equipped vehicles, and SAE Levels 3–5 ADS-equipped vehicles, even if these vehicle 
types do not exist today, as in the case of the ADS-equipped vehicles.(1)  

Thus, robust AMS tools are valuable to help IOOs understand the likely impacts of CAVs on 
their transportation system performance, to make better investment decisions now to ensure their 
transportation system is equipped for CAVs in the future, and to optimally operate their 
roadways once CAVs are deployed. Ultimately, having a transportation system that is better 
designed and equipped to accommodate CAVs will benefit all transportation system users.  

To plan for these future vehicle types, State and local IOOs need to capture how these various 
vehicle types behave in transportation AMS tools, including, but not limited to, microsimulation, 
four-step transportation planning models, dynamic traffic assignment, activity-based models, 
scenario-planning models. In the cornerstone U.S. Department of Transportation (USDOT) 
publication, Development of an Analysis/Modeling/Simulation Framework for Vehicle-to-
Infrastructure (V2I) and Connected/Automated Vehicle Environment, Mahmassani et al. detail a 
comprehensive methodological framework for developing CAV AMS tools.(6) As part of this 
previous research effort, the team identified existing gaps preventing the community from 
developing, calibrating, and validating tools to model CAVs and human behavior in the vicinity 
of CAVs. The research team identified one of the most significant gaps to be the availability of 
high-resolution, naturalistic CAV datasets that include connected and unconnected 
ADAS-equipped vehicles, connected and unconnected ADS-equipped vehicles, and CVs.  

OEMs, universities, and vehicle-technology companies are beginning to release high-resolution, 
high-volume datasets of how their ADAS- and ADS-equipped vehicles behave in real-world 
environments. Unfortunately, these datasets are often raw on-board sensor data (e.g., camera, 
light detection and ranging (LiDAR), radar) and are not suitable for traffic simulation model 
development unless processed into trajectories, which is not a trivial task. Thus, few to no large 
datasets exist that contain processed trajectories of ADAS- and ADS-equipped vehicles and 
surrounding nonautomated vehicles (i.e., 100 percent manually operated vehicles with no 
automated assistance features (SAE Level 0)) in naturalistic traffic conditions.(1)  

The lack of naturalistic datasets for CAV operation hinders IOOs from preparing and creating 
solutions for future roadway problems, such as traffic congestion induced by differences in CAV 
driving behavior. To appropriately characterize the behavior of CAVs and nonautomated vehicle 
responses to CAVs in naturalistic traffic environments, researchers need to collect data that 
includes following types: 
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• Vehicle-following and lane-changing behavior for a variety of CAV systems at different 
SAE automation and cooperation levels on different functional classifications of 
roadways.(7)  

• CAV operation at intersections, including gap acceptance, varying intersection control 
types, and V2I communication. 

• CAV behavior operation in the presence of bicycles, pedestrians, and vulnerable road 
users. 

This project seeks to help fill the gap of naturalistic datasets about ADAS-equipped vehicle 
behavior in naturalistic traffic on both highways and arterials.  

PROJECT OBJECTIVE 

The objective of this project was to collect a large dataset of how conspicuous and inconspicuous 
ADAS-equipped vehicles navigating complex driving environments and how nonautomated 
vehicles in the traffic stream interact with both readily identifiable (RI)- and discreet 
(D)-ADAS-equipped vehicles. Specifically, this project collected 144 h of baseline 
(nonautomated vehicle), D-ADAS, and RI-ADAS driving data in central Ohio in a variety of 
different complex driving environments, including arterials and highways. The difference 
between these two classes of ADAS-equipped vehicles is a clearly visible sensor stack that the 
traveling public would associate with an automated vehicle. Figure 1 is a picture of an 
ADAS-equipped vehicle with a visible sensor stack, an RI-ADAS. Figure 2 is an 
ADAS-equipped vehicle without a visible sensor stack, a D-ADAS (a production 
ADAS-equipped vehicle commercially available to the public). The use of the D-ADAS- and the 
RI-ADAS-equipped vehicles will enable the research team to collect data about adjacent vehicles 
(AdjVs) in traffic that determine if nonautomated vehicles are altering their driving behavior 
because of differences in the ADAS-equipped vehicle’s appearance or differences in the 
ADAS-equipped vehicle’s driving behavior (e.g., gap distance, speed, perception reaction time, 
etc.).  

 
© 2021 TRC Inc.  

Figure 1. Photo. RI-ADAS.  
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© 2021 TRC Inc.  

Figure 2. Photo. D-ADAS.  

One limitation of this dataset is that all vehicles were operated by members of the project team 
who had familiarity with the available driver-assistance technology and not by recruited drivers 
who may or may not be familiar with the technology. Thus, researchers should not use this 
dataset to assess how different drivers interact with the technology inside of the SVs. For 
example, these data are not appropriate for assessing how ADAS drivers select their ACC 
following gap because research team members (and not the general public) were operating the 
ADAS vehicles. However, the data can help evaluate how the selection of the ADAS’ ACC gap 
impacts another driver’s willingness to change lanes in front of the ADAS vehicle. The focus of 
these datasets is how drivers in AdjVs interact with the technology on the subject vehicle (SV) 
and how these interactions impact traffic flow.  

Researchers can use this study’s data to develop new and update existing driver-behavior models 
that can help assess the impact of ADAS. The diversity of vehicles, sensor configuration, and 
driving environment designed into the data collection effort will enable researchers to answer a 
number of research questions including, but not limited to, the following: 

• Are adjacent drivers altering their driving behavior (e.g., following distance, gap 
acceptance) when interacting with ADAS-equipped vehicles compared to their baseline 
behavior interacting with other manually driven vehicles in traffic? An adjacent driver is 
defined as a driver in a nonautomated vehicle in either the same or an adjacent lane 
whose behavior is passively captured through the instrumented vehicle's sensor stack. 
Examples of adjacent drivers include the vehicle leading and following the SV and 
vehicles that are passing (or being passed by) the SV in an adjacent lane.  

• Are the behavioral changes, if any, of AdjVs due to the behavior changes associated with 
the ADAS-equipped vehicle (e.g., more consistent following distance, larger headways), 
or are drivers altering their behavior due to the appearance of the ADAS-equipped 
vehicle (e.g., visibility of sensor suite)? 

• How does single ADAS-equipped vehicle operation impact traffic flow compared with a 
string of two ADAS-equipped vehicles? 
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• What is the impact of driving environment (e.g., freeway versus arterial; dry roads versus 
wet roads) on ADAS performance? 

Results from models developed using these datasets should enable researchers to better 
understand how ADAS-equipped vehicles will affect transportation system performance. 
Ultimately, the models developed using these data can support data-informed decisionmaking 
that maximizes ADAS benefits to system performance. 

REPORT TERMINOLOGY 

The following terms have been defined for this report: 

• CAV: Includes connected and unconnected ADAS-equipped vehicles, connected and 
unconnected ADS-equipped vehicles, and CVs. CAV is used broadly to speak about the 
impacts of various levels of automation and communication classes. However, 
subsequent chapters of this report are specific to the type of vehicle used to collect data.  

• ADAS-equipped vehicle: Has SAE Level 1 (driver assistance) or SAE Level 2 (partial 
driver automation) capabilities. All data collected in this project were from an 
ADAS-equipped vehicle with SAE Level 2 capabilities (except the baseline data).(1)  

• ADS-equipped vehicle: Has SAE Level 3 (conditional driving automation), SAE Level 4 
(high driving automation), or SAE Level 5 (full driving automation) capabilities.(1) 

• Nonautomated vehicle: Indicates an SAE Level 0 vehicle with no automation support 
capability that was manually driven by a human.(1)  

• D-ADAS-equipped vehicle: Indicates a commercially available ADAS-equipped vehicle 
with no visible sensors. 

• RI-ADAS-equipped vehicle: Indicates an ADAS-equipped vehicle with visible sensors 
that may visually indicate to adjacent drivers that something is different about this 
vehicle. The RI-ADAS-equipped vehicles in this study had SAE Level 2 automation 
support, but the visible sensor stack may have caused some adjacent drivers to assume 
the vehicles were capable of higher levels of automation.(1) 

• Subject vehicles SV1 and SV2: Refers to the instrumented vehicles used to collect data. 
This project collected both single-vehicle and two-vehicle datasets. For the single-vehicle 
datasets, both D-ADAS- and RI-ADAS-equipped vehicles were operated using their SAE 
Level 2 partial driving automation capabilities to collect data. For the two-vehicle 
datasets, SV1 was operated as an ADAS-equipped vehicle with partial driving 
automation capabilities congruent with SAE Level 2 partial driving automation 
capability.(1) Due to the limitation of map data, SV2 was operated in traffic without its 
automated driving capabilities. When multiple SVs were on the road, these vehicles were 
operated independently and did not share information via vehicle-to-vehicle (V2V) 
communications.(1) 
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• Adjacent vehicle (AdjV): Refers to SAE Level 0 vehicles not instrumented or operated 
by a project team member that were interacting with the SVs (e.g., vehicles that were in 
the left or right lane beside the SV, following the SV, or leading the SV). The project 
team was interested in AdjV interactions, and AdjV behavior was collected passively 
through the sensors (e.g., LiDAR, camera) available on the SVs. The AdjV trajectories 
(e.g., time series position, speed, and acceleration) were extracted by processing the SV’s 
sensor data using methods described in chapter 3.  

Chapter 2 provides additional details about the RI-ADAS and D-ADAS-equipped vehicles in this 
report. 

REPORT ORGANIZATION 

The remainder of this report contains details about data collection, processing, and management 
throughout the lifecycle of the project. The remaining chapters are organized as follows: 

• Chapter 2. Data Collection Plan: This chapter summarizes the methodology adopted for 
the collection of data and describes the vehicles’ modes of operation, route choice, 
scenarios of interest, and driving environments. In addition, the authors discuss the 
vehicle’s sensors, information collected, and software stack used for data collection.  

• Chapter 3. Data Processing Method: This chapter describes the methodology for 
converting the raw vehicle data into processed trajectory data. Additionally, this chapter 
provides details about how the data were validated.  

• Chapter 4. Data Management Plan: This chapter outlines the flow of the data after data 
acquisition was completed and describes the types of storage (e.g., local storage, 
cloud-based storage), authorization required for accessing these storage locations, and 
data flow to and from various team members. 

• Chapter 5. Key Conclusions from the Project: This section describes the key findings 
from the data collection project. 
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CHAPTER 2. DATA COLLECTION PLAN  

The team developed a data collection plan (DCP) that outlined the technical and management 
methodology adopted to collect naturalistic ADAS-equipped vehicle datasets in central Ohio. 
The DCP includes the following: 

• The data collected throughout the project. 
• The locations where data were collected. 
• The data collection methods. 
• The times and dates when data collection occurred. 

The subsections in this chapter document the project team’s decisions regarding vehicles used in 
data collection, scenarios of interest for data collection, and data collection location to ensure the 
team collected a diverse dataset of ADAS-equipped vehicle interactions with nonautomated 
vehicles in naturalistic traffic conditions.  

DATA COLLECTION VEHICLES 

For this project, the team used two different types of instrumented SVs for data collection: 
D-ADAS- and RI-ADAS-equipped vehicles. The difference between the two types was the use 
of a visible sensor stack that implies a different level of technology than on a production vehicle 
available for purchase. All vehicles were operated by members of the project team who had 
familiarity with the driver-assistance technology available on the vehicles. The focus of these 
datasets is how drivers in adjacent, nonautomated vehicles interact with the technology on the 
SV, not how the SVs’ driver interacts with the technology.  

To help isolate adjacent nonautomated driver behavior in the presence of advanced-looking 
ADAS-equipped vehicles, the project team utilized RI-ADAS- and D-ADAS-equipped vehicles 
to enable researchers to study how nonautomated vehicle driver perception of the technology 
impacts their interactions. To help further isolate the difference between RI-ADAS- and 
D-ADAS-equipped vehicles, the project team utilized the same vehicle for some of the testing to 
act as a RI-ADAS for some test days and a D-ADAS for the remainder. Using the same vehicle 
helped the project team capture the differences in adjacent nonautomated vehicle driver behavior 
due to the visible sensor stack versus the differences in adjacent nonautomated vehicle driver 
behavior due to the behavior of the ADAS (e.g., more consistent driving behavior, headways, 
etc.).  

To establish baseline driving behavior, the data collection team operated both ADAS-equipped 
vehicles in manual mode (without driver-assistance technology enabled) to collect a small 
sample of data that established how central Ohio drivers interact with another nonautomated 
vehicle. The mode of operation according to type of vehicle is recorded in the “type_of_vehicle” 
column as RI, DI, or baseline. By comparing the baseline dataset to the datasets with the same 
vehicles operated with automated driving functionalities engaged, researchers can explore the 
changes in driver behavior and gain further insights into the influence of the ADAS-equipped 
vehicles’ behavior on adjacent nonautomated vehicle driver behavior. The baseline data 
consisted of 8 h of manually driven data.  
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Additional details about the D-ADAS and RI-ADAS-equipped vehicles, including the addition of 
the sensor stack, are provided in the following sections.  

RI-ADAS 

The team used two different research vehicle makes and models with SAE Level 2 partial 
driving automation capabilities as RI-ADAS-equipped vehicles during this project. Drivers of 
SV1 used its OEM ACC, lane-centering assistance, lane-change assistance, traffic and stop sign 
control, and navigate-on-autopilot features. Drivers of SV2 (from a different manufacturer) 
operated the vehicle with SAE Level 0 automation (no ADAS support) due to limitations with 
the map data.(1) 

The RI-ADAS-equipped vehicles were outfitted with several visible sensors, including radar and 
cameras, to collect additional data for monitoring and understanding the vehicles’ dynamic 
driving environment. The team performed numerous controlled-environment runs before the data 
collection phase of the project and before deployment on public roads to validate the sensor 
data’s frequency, dropouts, and transmission consistency. The sensor validation was completed 
through the data acquisition system’s (DAQ) user interface for both vehicles. Due to the 
controlled environment containing data for other confidential users, these data were not retained 
once the process was validated. Table 1 denotes the sensors that were on each RI-ADAS. 

Table 1. Summary of RI-ADAS data variables and sources. 

Data Variable  Source  Availability 
SV position GPS/GNSS/IMU unit Raw dataset 
SV speed GPS/GNSS/IMU unit Raw dataset 

SV acceleration GPS/GNSS/IMU unit Raw dataset 
SV position Output of LiDAR postprocessing Public 

dataset(2,3) 

SV speed Output of LiDAR postprocessing Public 
dataset(2,3) 

SV acceleration Output of LiDAR postprocessing Public 
dataset(2,3) 

Subject steering wheel angle Vehicle DBW or CAN recorded Raw dataset 
Subject accelerator pedal position Vehicle DBW or CAN recorded Raw dataset 

Subject brake pedal position Vehicle DBW or CAN recorded Raw dataset 
Subject driver/ADAS transition points ADAS or video recorded Raw dataset 

Subject system settings Driver recorded Raw dataset 
SV attributes Driver recorded Raw dataset 

SV LiDAR raw data Raw sensor output in rosbags(8) Raw dataset 
SV frontal video Commercial camera Raw dataset 

SV rear video Commercial camera Raw dataset 
SV driver video Commercial camera Raw dataset 

AdjVs(s) position LiDAR postprocessing output Public 
dataset(2.3) 
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Data Variable  Source  Availability 
AdjVs(s) speed LiDAR postprocessing output Public 

dataset(2.3) 
AdjVs(s) acceleration LiDAR postprocessing output Public 

dataset(2.3) 
AdjVs(s) IDS LiDAR postprocessing output Public 

dataset(2.3) 
Relative SV speed LiDAR postprocessing output Public 

dataset(2.3) 
Relative SV position LiDAR postprocessing output Public 

dataset(2.3) 
CAN = controller area network; DBW = drive by wire; GNSS = global navigation satellite system; GPS = Global 
Positioning System; ID = identification number; IMU = inertial measurement unit. 
Note: rosbag is the file format for the Robot Operating System (ROS).(8) 
Note: The raw dataset contains PII and is not publicly available.  

Both vehicles had three cameras to monitor various portions of the driving scene:  

• Front-facing camera to capture the area immediately in front of the RI-ADAS. 
• In-cabin camera to capture the SV cabin environment. 
• Rear-facing camera to capture the area immediately behind the RI-ADAS.  

The project team used a commercial camera capable of producing a video resolution of 
720 pixels at a frame rate of 30 Hz for external-facing cameras and 10 Hz for internal-facing 
cameras. These sensors streamed data into the DAQ in the RI-ADAS for storage. The DAQ’s 
software package enabled synchronization of the data streams from the three on-board cameras 
with the other sensor data.(9) 

D-ADAS 

The team also used one production D-ADAS-equipped vehicle to collect vehicle data. This 
vehicle has partial driving automation capabilities congruent with SAE Level 2 automation as 
detailed in SAE J3016™ Levels of Driving Automation™.(1) Drivers used the OEM ACC, 
lane-centering assistance, lane-change assistance, traffic and stop sign control, and automated 
navigation features. 

The purpose of driving the D-ADAS-equipped vehicle was to collect data about how drivers in 
AdjVs interact in traffic with inconspicuous vehicles while not realizing the SV is equipped with 
advanced technologies. 

Because the D-ADAS is a production vehicle and not a research vehicle, the project team 
installed additional aftermarket sensors to enable the collection of trajectories for AdjVs in 
traffic. These additional sensors are discreet in appearance, and almost all are located within the 
vehicle. One notable exception is that the team placed a LiDAR unit in a cargo roof rack to 
collect AdjV trajectories (figure 3). A summary of data sources and variables for the D-ADAS is 
shown in table 2. 
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Source: Federal Highway Administration (FHWA). 

Figure 3. Photo. D-ADAS with LiDAR installed on top of vehicle hidden discreetly to AdjV 
drivers by moving boxes. 

Table 2. Summary of D-ADAS data variables and sources. 

Data Variable  Source  Availability 
SV position GPS/GNSS/IMU unit Raw dataset 
SV speed GPS/GNSS/IMU unit Raw dataset 

SV acceleration GPS/GNSS/IMU unit Raw dataset 
SV position LiDAR postprocessing output Public dataset(2) 
SV speed LiDAR postprocessing output Public dataset(2) 

SV acceleration LiDAR postprocessing output Public dataset(2) 
Subject steering wheel angle Vehicle CAN Raw dataset 

Subject accelerator pedal position Vehicle CAN Raw dataset 
Subject brake pedal position Vehicle CAN Raw dataset 

Subject driver/ADAS transition points Video recorded Raw dataset 
Subject system settings Driver recorded Raw dataset 

SV attributes Driver recorded Raw dataset 
SV frontal video Commercial camera Raw dataset 

SV rear video Commercial camera Raw dataset 
SV driver video Commercial camera Raw dataset 

AdjVs(s) position LiDAR postprocessing output Public dataset(2) 
AdjVs(s) speed LiDAR postprocessing output Public dataset(2) 

AdjVs(s) acceleration LiDAR postprocessing output Public dataset(2) 
AdjVs(s) IDs LiDAR postprocessing output Public dataset(2) 

Relative SV speed LiDAR postprocessing output Public dataset(2) 
Relative SV position LiDAR postprocessing output Public dataset(2) 

Figure 3 shows the installed LiDAR sensor atop packing boxes on a commercially available 
luggage rack. The boxes mask the installation of the LiDAR sensor so as not to affect AdjV 
driver’s behavior.  
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DATA COLLECTION SCENARIOS 

This section discusses the scenarios of interest and driving environments in detail: 

• Scenarios of interest: Includes intentional interactions between the instrumented SV and 
AdjVs in traffic (described in more detail in the Scenarios of Interest subsection). The 
project team targeted three types of scenarios of interest: vehicle following, lane change, 
and intersection approach and departure. 

• Driving environment: Comprises two roadway functional classification and three levels 
of congestion experienced during data collection (described in more detail in the Driving 
Environments subsection): 

o Roadway functional classifications: Arterial, freeway. 
o Level of congestion: Light, moderate, heavy.  

Scenarios of Interest 

The project team identified three generalized test scenarios as the most valuable for the intended 
research goals of this project. The three scenarios were collected with both RI-ADAS and 
D-ADAS vehicles and during both single-vehicle and two-vehicle data collection. The three 
scenarios of interest are: 

• Vehicle following on freeways and arterial roadways. 
• Lane change on freeways and arterial roadways. 
• Intersection approach and departure at signalized intersections.  

Table 3 shows the parameters used for data collection on roadway.  

Table 3. General scenario information. 

Variables Notes 
SV speed >20 mph* 
Weather Clear conditions or light rain 

Road conditions Dry or wet roadway 

Lane information Two or more lanes (total); bidirectional travel or 
divided highway 

Average traffic density Light, moderate, heavy 
*ACC and lane-centering assistance can only be engaged above 20 mph, but data was still collected, 
and automation stayed engaged if traffic brought the vehicle to a lower speed. 

Vehicle Following 

The first generalized scenario of interest focused on ADAS-equipped vehicle operation within a 
specific lane on divided freeways and high-capacity arterial roads. The different runs of the 
vehicles following this scenario of interest included baseline, single ADAS-equipped vehicle 
operations, and two-vehicle operations: 
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• Baseline: In the baseline scenario (SV manually operated as an SAE Level 0 vehicle), the 
safety driver controlled the vehicle’s longitudinal speed and steering.  

• ADAS single-vehicle data collection: In both the D- and RI-ADAS-equipped vehicles, 
the safety driver utilized ACC with lane-centering assistance to control SV1’s speed and 
location within the lane. The driver monitored the vehicle’s actions to ensure they were 
appropriate and was ready to take over if anything deviated from an expected action.  

• ADAS two-vehicle data collection: The safety driver in SV1 utilized ACC with 
lane-centering assistance to control the vehicle’s speed and location within the lane. The 
driver monitored the actions of the vehicle to ensure they were appropriate and was ready 
to take over vehicle operation if anything deviated from an expected action. While SV2 
was also RI-ADAS equipped, the driver did not use automation and instead mimicked the 
behavior of SV1. 

This generalized testing scenario involved an instrumented SV operating within a single lane. 
The team collected data during different levels of congestion and, for each run, SV1’s 
aggressiveness and following distance setting was set to be the same. Within each scenario of 
interest, the team hoped to produce specific interactions of interest (IoIs). The IoIs for the 
vehicle-following scenario involved AdjVs interactions with the SV(s), including: 

• Human driver in adjacent nonautomated vehicle overtakes SV(s). 
• Human driver in adjacent nonautomated vehicle cuts in ahead of SV(s). 
• Human driver in adjacent nonautomated vehicle slows down behind SV(s). 

For a vehicle-following scenario, the safety driver executed the following steps in sequential 
order: 

1. The driver positioned the vehicle in the center of a lane of the public road route from a 
specified starting location and direction of travel.  

2. The driver followed the specified route to the target destination for baseline runs. For 
D-ADAS and RI-ADAS single-vehicle runs using SV1, the driver engaged ACC and 
lane-centering assistance to follow the route to target destination with driver supervision. 
In the other cases (baseline and SV2 operation during the two-vehicle data collection 
runs), the driver was in full control. 

3. The driver approached a lead vehicle in the specified lane and maintained a constant 
distance using ACC. 

4. Each trial ended when the SV successfully traversed the route. Once reaching the desired 
destination, the driver disengaged the ACC feature. 

Figure 4 is an example vehicle-following scenario for single-vehicle operation.  
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© 2023 ClaimsMS GmbH.  

Figure 4. Illustration. Example of a vehicle-following scenario of interest.(10) 

Lane Change 

The second scenario was lane changing on a highway or divided arterial roadway during data 
collection with a single ADAS-equipped vehicle and two ADAS-equipped vehicles. The IoI of 
this testing scenario was to collect data for SV overtaking of nonautomated AdjVs. However, the 
team also documented lane changes in scenarios when the SV was not necessarily overtaking 
another vehicle, such as interstate exit and lane closures at work zones. If the AdjV was in 
proximity, the lane-change assist feature on SV1 did not permit the lane-change maneuver. In 
such cases, the lane change was initiated prior to approaching the AdjV. The role of the 
ADAS-equipped vehicle and the role of the safety driver varied between the baseline scenario, 
the single-vehicle data collection, and the two-vehicle data collection: 

• Baseline: In the baseline scenario (SV manually operated as an SAE Level 0 vehicle), the 
safety driver controlled the longitudinal speed and steering of the vehicle.  

• ADAS single-vehicle data collection: In the D- and RI-ADAS-equipped vehicles, the 
driver used ACC with lane-centering assistance to control the speed and position of the 
vehicle. Additionally, the driver used lane-change assist by engaging the turn signal, 
which initiated the ADAS-equipped vehicle to complete the lane change. When the 
lane-change assist feature was activated, the safety driver monitored the vehicle’s actions 
to ensure they were appropriate and was ready to take over vehicle operation if anything 
deviated from an expected action. Team members collected data during different levels of 
congestion and included a focus on when the lane-change request occurred in relationship 
to other vehicles.  

• ADAS two-vehicle data collection (both vehicles RI-ADAS): In the two-vehicle data 
collection, the safety driver operated SV1 identically to the single-vehicle data collection 
(i.e., the vehicle performed the lane-change maneuver after the driver activated the 
lane-change assist feature). For SV2, the driver performed the lane change by mimicking 
the behavior of SV1.  

During baseline data collection and for SV2 operation during the two-vehicle data collection 
runs, the safety driver maintained manual control of the vehicle at all times and executed the 
following steps in sequential order: 
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1. The driver positioned the vehicle in the center of a lane of the public road route from a 
specified starting location and direction of travel. The driver controlled the longitudinal 
speed of the vehicle.  

2. The driver maintained a safe separation distance from other vehicles and performed a 
lane change as needed until the vehicle reached its final destination. 

During the single-vehicle data collection runs and for SV1 operation during the two-vehicle data 
collection runs, the safety driver engaged ACC, lane centering, and lane-change assist. For a 
lane-changing scenario, the safety driver executed the following steps in sequential order: 

1. The safety driver positioned the vehicle in the center of a lane of the public road route 
from a specified starting location and direction of travel. The safety driver adjusted the 
set speed of the SV ahead of the speed of an AdjV to encourage a desired interaction. 

2. Using ACC and lane-centering assistance features, the vehicle maintained a desired safe 
distance from other vehicles in its lane. The safety driver requested a lane change using 
the turn signal. The lane-change assist feature began the lane change once requested by 
the driver and after the vehicle determined that completing the maneuver was safe.  

3. The safety driver monitored the vehicle as it followed the specified route to the given 
target destination. 

4. At the end of the route, the safety operator disengaged the ADAS features. 

5. Each scenario ended when the SV successfully changed lanes while merging with the 
traffic in the target lane or when the safety driver intervened. 

Figure 5 shows an example test scenario for a single-vehicle lane change on a divided highway. 
The rate of lane change was adjustable. SV1 determined the presence of AdjVs and made the 
lane change when the action was safe. 

 
© 2023 ClaimsMS GmbH.  

Figure 5. Image. Example of a lane-change scenario of interest.(10) 
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Intersection Approach and Departure 

The last generalized test scenario of interest was intersection approach and departure. The role of 
the ADAS-equipped vehicle and the role of the safety driver varied between the baseline 
scenario, the single vehicle data collection, and the two-vehicle data collection: 

• Baseline: In the baseline scenario (when the SV was manually operated as an SAE 
Level 0 vehicle), the safety driver controlled the longitudinal speed and lateral movement 
of the vehicle.(1)  

• ADAS Single Vehicle Data Collection: In the D- and RI-ADAS-equipped vehicle, the 
safety driver utilized ACC with lane centering assistance to control the speed of the 
vehicle. This vehicle had limited traffic light and stop sign detection that was used to 
slow the vehicle to a stop. Human intervention was necessary for reengaging the vehicle 
when the light changed to green from red. 

• ADAS Two Vehicle Data Collection: Both vehicles were RI-ADAS. In the two-vehicle 
data collection, SV1 was operated identically to how the vehicle was operated in the 
single vehicle data collection (i.e., ACC with lane centering assistance and traffic 
light/stop sign detection). SV2 was driven manually by the safety driver, following the 
same behavior as SV1.  

Automated driver behavior at intersections is still an evolving area, so instead of specific IoIs, 
the intent here was to better understand ADAS operations at intersections. Figure 6 shows an 
example scenario for this generalized test.  

 

 
© 2023 ClaimsMS GmbH.  

Figure 6. Illustration. Example of four-way intersection navigation.(10) 

For the intersection scenario using the RI- and D-ADAS-equipped vehicles, the safety driver 
executed the following steps in sequential order: 
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1. The safety driver positioned the SV in the center of the rightmost lane of the public road 
route approaching an intersection from a specified starting location and direction of 
travel.  

2. For SV1, the driver engaged ACC, lane-centering assistance, and traffic light and stop 
sign control behind a lead vehicle so that the SV would remain in the correct path of 
travel as it traversed the route until it exited the intersection.  

3. Each scenario ended when the SV successfully maneuvered the intersection or when the 
safety driver intervened. 

4. At the end of the route, the safety operator disengaged the automated features. 

Unfortunately, the research team was unable to collect CV data exchanging messages via V2V or 
V2I communications.  

Driving Environments 

The team selected candidate data collection sites based on the testing criteria needed for each 
generalized testing scenario. The vehicle-following and lane-change scenarios were executed on 
highway and arterial roadways that experience low, moderate, and high traffic density that vary 
by time and date. Drivers executed the intersection approach and departure scenario at signalized 
intersections. 

To ensure a diverse set of data were collected, the team targeted a variety of roadway types that 
were known to produce low, medium, and high annual average daily traffic (AADT) as well as 
low, medium, and high speeds.  

AADT is the total yearly volume of vehicles on a road divided by 365 d and was used to help the 
team identify data collection sites with a variety of traffic loads. AADT can be classified into 
three categories: high (AADT >50,000 vehicles/d), medium (400 vehicles/d ≤ AADT ≤ 50,000 
vehicles/d) and low (AADT <400 vehicles/d) density.(11,12) Approximately 60 percent of the data 
were collected on high AADT roads and the remaining 40 percent on medium AADT roads.(13) 
No data were collected on low AADT roadways to avoid scenarios with insufficient vehicles 
with which to interact. Localized congestion level immediately surrounding the SV was not 
measured based on the SV’s video data. 

Roadway types were categorized as limited access freeway, nondivided arterial road, and divided 
arterial road. Limited access freeway route type includes U.S. and State numbered freeways and 
expressways and interstate routes where access to and from the facility is limited to interchanges 
with grade separations. Opposing directions of travel are separated by a median on these 
high-speed routes, which typically have posted speed limits ranging from 88.5 km/h (55 mph) in 
urban areas to 112.7 km/h (70 mph) for the roads selected. An arterial street through a 
predominately residential area primarily caters to through traffic. Posted speed limits generally 
range from 40.2 km/h (25 mph) to 72.4 km/h (45 mph). The pavement widths permit full-time 
operation of bidirectional traffic.(14) For this project, the team collected 40 percent of the data on 
limited access freeways, 35 percent on nondivided arterial roads, and 25 percent on divided 
arterial roads.  
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By selecting different roadway types that experience a wide range of AADT, the project team 
was able to collect data at a wide range of travel speeds: low (<62.8 km/h (39 mph)), medium 
(62.8 km/h (39 mph) to <96.5 km/h (60 mph)) and high (≥96.5 km/h ) 60 mph)). For the scope of 
this project, the goal was to collect 20 percent low-speed data, and the remaining data divided 
into medium speed and high speed. Low-speed data were purposely minimized because, during 
the initial runs, this category produced the fewest IoIs. 

Based on these considerations, the research team chose eight different routes in central Ohio for 
data collection (see figure 7): 

• U.S. 33 from 1501 West 5th Street, Marysville, OH, to 10152 U.S. 42, Marysville, OH. 

• U.S. 33 from 4555 West Granville Road, Dublin, OH, to 1093 Dublin Road, Columbus, 
OH. 

• I–270 from 700 East North Broadway, Columbus, OH, to 4024 Morse Road, 
Columbus, OH. 

• U.S. 23 from 2381 U.S. Hwy 23 North, Delaware, OH, to 262 North Marion Street, 
Waldo, OH. 

• U.S. 315 from 4555 West Dublin Granville Road, Dublin, OH, to 1090 Dublin Road, 
Columbus, OH. 

• I–750 from 8870 Columbus Pike, Lewis Center, OH, to 3760 Main Street, Hilliard, OH. 

• U.S. 33 from 2500 Summit Street, Columbus, OH, to 3760 Main Street, Hilliard, OH.  

• U.S. 23 from 2500 Summit Street, Columbus, OH, to 2520 Summit Street, 
Columbus, OH.  
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Original map: © 2022 Google® Earth™. Modifications by FHWA 
(see Acknowledgments section).  

Figure 7. Map. Routes for deployments.(15) 

The data-type details for a single day’s runs were recorded in a run-summary file specific to each 
day. The run summary also contains the information regarding route start and end, Google™ 
Map route, number of passes made by the ADAS vehicle and other AdjVs(s), testing scenario 
type, and any other interesting scenarios.(15) Table 4 and table 5 show a sample run-summary file 
containing information for two runs. Table 4 shows the route and weather information, while 
table 5 shows the run-specific information. These summary files were converted into additional 
columns (table 10 and table 15) to make this rich metadata available for each instance of the 
collected data. 
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Table 4. Route information sample file. 

Route 
Starting 

Point 

Route 
Ending 
Point Distance 

Map (Route 
Start to Route 

End) North 
Loop 

(RS→RE) 

Map (Route 
End to Route 
Start) South 

Loop (RE→RS) AADT 
Roadway 

Type 

Route 
Speed 
(mph) 

Temp. 
(℉) 

Humidity 
(%) 

Precip. 
(inches) 

Road 
Condition 

700 E N 
Broadway, 
Columbus, 
OH 43214 

Parking lot, 
New Bond 

St, 
Columbus, 
OH 43219 

13 mi 
https://goo.gl/m
aps/QDf5zb3Bu

ydkaFpSA 

https://goo.gl/ma
ps/fdS6V3J8RaC

L8LAe9 
1,081 Limited 

access 65 

High: 
75.7; 
Low: 
45.3; 
Avg: 
59.2 

High: 99; 
Low: 38; 
Avg: 72 

0 Dry 

RS = route start; RE = route end; Temp. = temperature; Precip. = precipitation. 

Table 5. Run information sample file.  

Run 
Numbe

r Direction  

Run Type 
(Baseline/

RI/D) 

Dewesoft/ 
Video 

Filenames 

ROS 
LiDAR 

Filename Processed Data 

No. of 
Passes of 

Other 
Vehicles 
Made by 
Vehicle 

No. of 
Passes 

Made by 
Other 

Vehicle 

Did 
You 

Follow 
a Car? 
(Y/N) 

Did You Go 
Through an 

Intersection? 
(Y/N) 

Any 
Other 

Scenarios 
of Interest 

(Y/N) 

1 North loop 
clockwise RI 

{Vehicle}_CA
V_2021_11_1
8_102352.dxd 

data_cav_2
021-11-18-

10-23-
37.bag 

{Vehicle}_CAV_2021-11-18-10-23-
37_115_135_processed.csv, 

Tesla_CAV_2021-11-18-10-23-
37_260_145_processed.csv, 

Tesla_CAV_2021-11-18-10-23-
37_410_120_processed.csv, 

Tesla_CAV_2021-11-18-10-23-
37_530_120_processed.csv, 

Tesla_CAV_2021-11-18-10-23-
37_655_140_processed.csv 

Not 
recorded 

due to 
heavy 
traffic 

Not 
recorded 

due to 
heavy 
traffic 

N N N 

Y= yes; N= no. 

https://goo.gl/maps/QDf5zb3BuydkaFpSA
https://goo.gl/maps/QDf5zb3BuydkaFpSA
https://goo.gl/maps/QDf5zb3BuydkaFpSA
https://goo.gl/maps/fdS6V3J8RaCL8LAe9
https://goo.gl/maps/fdS6V3J8RaCL8LAe9
https://goo.gl/maps/fdS6V3J8RaCL8LAe9
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DATA COLLECTION SCHEDULE 

The project team collected data over two different deployments—from September through 
November 2021 and from January through March 2022. The deployments had a monthlong gap 
between them to accommodate system readiness for two-vehicle deployment and to assess and 
validate the data collected during the first deployment. The team categorized the collected data 
for the first deployment into buckets (speed, road type, and AADT), as mentioned in the Driving 
Environments section. The team planned the second deployment to collect the remaining number 
of hours for each of these buckets.  

Table 6 contains the total number of hours budgeted on project for each deployment vehicle. 
Data collection hours were spread throughout the first and second deployment. The team 
collected a total of 144 h. For the first deployment, baseline, RI-ADAS, and D-ADAS data were 
collected. During the second deployment, data were collected using the D-ADAS and the 
RI-ADAS-equipped vehicles. Additionally, the two-vehicle data were only collected during the 
second deployment.  

Table 6. Deployment schedule. 

Vehicle 
Data 
(h) 

Data Sample: 
July 2021 

First Deployment: 
Sept. 2021–Nov. 2021 

Second Deployment: 
Jan. 2022–March 2022 

SV1 120 Validation 
only 

Baseline: 8 h 
D-ADAS: 30 h 
RI-ADAS: 58 h 

D-ADAS 16 h 
RI-ADAS: 8 h 

SV1 and SV2 24 — — 2-RI-ADAS: 24 h 
— No data. 

In total, the team collected 8 h of data using a manually driven vehicle (i.e., the vehicle was 
operated as a nonautomated, SAE Level 0 vehicle). The team used the D-ADAS-equipped 
vehicle for 46 h of data collection. Finally, the team used the RI-ADAS-equipped vehicles to 
collect 90 h of data; of this 90 h, 66 h was collected using a single RI-ADAS-equipped vehicle 
(SV1), and 24 h of data were collected using multiple RI-ADAS-equipped vehicles (SV1 and 
SV2) concurrently.  

SUMMARY 

This chapter summarizes the development of the project’s DCP, which answers the following 
questions about the collected data: 

What data were collected throughout the project?  

The team collected raw sensor data from the instrumented RI-ADAS-equipped SV and 
D-ADAS-equipped SV. Both SVs are ADAS-equipped vehicles with SAE Level 2 partial 
driving automation capabilities (e.g., ACC, lane centering, lane assist, limited sign and signal 
detection). The vehicle sensor suites are described in more detail in chapter 3.  



 

23 

After the data were collected, the project team processed the sensor data to obtain trajectories for 
the AdjV operating near the SV (detected by the on-board sensors of the SVs); this process and 
the specific variables collected for the SVs and the AdjVs are described in chapter 3.  

Where were data collected?  

The project team collected data in central Ohio on routes shown in figure 7. 

How were the data collected?  

The project team designed the DCP for three scenarios of interest: vehicle following, lane 
changing, and signalized intersection approach and departure. Each of these scenarios of interest 
have specific IoIs. The research team operated the SVs to encourage the occurrence of these IoIs. 

When were the data collected?  

The data were collected between July 2021 and March 2022. 
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CHAPTER 3. DATA PROCESSING METHOD 

This chapter introduces the data processing methods for datasets from a single ADAS-equipped 
vehicle and from two ADAS-equipped vehicles operating concurrently.  

OUTPUT DATA FRAMES 

This first section discusses the frames of reference that present the variables in the processed, 
publicly available comma separate values (CSVs) (see figure 8). Presenting the information of 
the SV and AdjVs in different frames allows future users to apply the datasets in different 
applications. The frames include vehicle frame (v), Frenet frame (f), map frame (m), and 
Earth-centered, earth-fixed (ECEF) frame. Table 7 through table 15 include a column that notes 
to which reference frame the data belongs. These definitions are described in the following 
subsections. 

 

 
Source: FHWA. 
o = origin.  

Figure 8. Illustration. Frame definition.  

Vehicle Frame 

The vehicle frame is attached to the center of the SV’s rear axle and rotated with the vehicle as 
the SV moves through space. The vehicle frame moves as the vehicle moves and the road 
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orientation changes. Figure 8 shows that the xv, yv, and zv of the vehicle frame are toward the 
front, left, and upward directions, respectively. The origin ov is at the center of the rear axle. The 
unit of the coordinates in this frame is meters. Information such as the bounding box of an AdjV 
is presented in the vehicle frame. The vehicle frame is useful for providing the relative position 
between the detected AdjVs and the SV as well as the size of the AdjV at the SV view.  

Frenet Frame 

The Frenet frame is attached to the center of the road, and its orientation will change as the road 
direction changes. As shown in figure 8, the xf and yf are the axes of Frenet frame. The 
longitudinal forward and lateral right directions of the road are the positive directions of xf and 
yf, respectively. The unit of the coordinate in this frame is meters. The start point of the SV’s 
route is picked as the origin of the map frame (of).  

The Frenet coordinates can be used to analyze the car-following and lane-changing behavior. 
The Frenet frame is particularly useful for understanding the relationship between vehicles on 
the roadway. For example: 

• When the AdjV is ahead of the SV, the closest longitudinal distance is the distance from 
the SV’s front bumper to the AdjV’s rear bumper in the Frenet frame. 

• When the AdjV is behind the SV, the closest longitudinal distance is the distance from 
the SV’s rear bumper to the AdjV’s front bumper in the Frenet frame.  

• When the AdjV is on the right side of the SV, the closest lateral distance is the distance 
from the SV’s right doors to the AdjV’s left doors in the Frenet frame. 

• When the AdjV is on the left side of SV, the closest lateral distance is the distance from 
the SV’s left doors to the AdjV’s right doors in the Frenet frame. 

Map Frame 

The map frame is a fixed frame attached to a certain selected point. Positive values for xm, ym, 
and zm are toward east, north, and upward directions, respectively, as shown in figure 8. Note that 
the start point of SV’s route is selected as the origin of the map frame (om). The unit of the 
coordinate in this frame is meters.  

The x and y positions of the AdjVs along with the SV in the map frame can be used for 
researching the physical model of the vehicles in real traffic because the physical model of the 
vehicles is usually defined in a map frame. 

ECEF Frame 

The ECEF frame is a fixed frame attached to the center of mass of the earth. The coordinates in 
ECEF frame are described by longitude, latitude, and altitude. The longitude and latitude are in 
degrees and altitude is in meters.  

The ECEF used for the GPS is the World Geodetic System (WGS) 84.(16) 
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DATA COLLECTION SENSORS  

This section discusses the data collection sensor configuration and raw data format. This project 
used two retrofitted vehicles to collect sensor data. Figure 9 shows the equipped commercial 
vehicle, referred to from here on as SV1 (note that both D-ADAS- and RI-ADAS-equipped 
vehicles were used as SV1). The team used SV1 exclusively in the single-vehicle data collection 
effort and during the two-vehicle data collection effort. To collect the raw sensory data, SV1 was 
equipped with a 32-line LiDAR, four monocameras (near the front bumper to monitor the area 
immediately in front of the ADAS-equipped vehicle; in front of the driver seat inside the SV 
cabin; in front of the passenger seat inside the SV cabin, and near the rear bumper to monitor the 
area immediately behind the ADAS-equipped vehicle), and a GNSS/IMU integration system 
with realtime kinematic (RTK) correction. The computer on the vehicle stored the sensory data 
collected by the vehicle sensors. The format of the raw data varied cross the different sensors: 

• Raw LiDAR sensor data were collected in rosbag, which is a file format in ROS (Robot 
Operating System) for storing ROS message data.(8)  

• Raw camera data were saved in videos. 

• Raw GNSS/IMU integration system data were saved in comma separated value (CSV) 
files.  

In addition to SV1, the team used a retrofitted DBW vehicle, referred to as SV2, during the 
second deployment to collect data. This vehicle is shown in figure 10. The project team only 
used a RI-ADAS as SV2; however, SV2 was operated as an SAE Level 0 vehicle with no ADAS 
features due to limitations with the map data in the study area. SV2 was equipped with a 32-line 
LiDAR, two mono-cameras (located near the front and rear bumpers to monitor the area 
immediately in front and behind of the ADAS-equipped vehicle), and a GNSS/IMU integration 
system. The computer on the vehicle collected all data from the SV2 sensors and stored the data 
in rosbags.(8) 

The remainder of this chapter discusses the data processing pipeline developed for the 
one-vehicle (SV1) and two-vehicle (SV1 and SV2) datasets to convert raw sensor data into 
trajectories for the SV(s) and AdjVs in traffic.  
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Source: FHWA. 

Figure 9. Illustration. Equipped SV1. 

 
Source: FHWA. 

Figure 10. Illustration. Equipped SV2. 

DATA-PROCESSING PIPELINE FOR ONE-VEHICLE DATASETS 

The data-processing pipeline for the one-vehicle dataset (figure 11) contains six steps: data 
preprocessing, object detection, multiobject tracking, point cloud map generation, vector map 
generation, and World Model creation.(17,18) This section details how the GNSS/IMU and LiDAR 
data were processed to produce trajectories for all AdjVs detected by the SV sensors.  

Camera 1

Camera 2

LiDAR

GNSS/IMU



 

29 

 
Source: FHWA.  
NDT = normal distribution transformation; CNN = convolutional neural network.  

Figure 11. Illustration. Data-processing pipeline for one-vehicle dataset.  
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Step 1: Data Preprocessing for SV1 

The project team used ROS(8) to program the data-processing method. However, the raw data 
collected on the equipped SV1 includes CSV files, videos, and rosbags. The team used the 
data-processing rosbag application programming interface (API) to convert sensor data collected 
in CSV files to the rosbag format and ensured all sensor data were synchronized to the correct 
timestep.(19) For the SV1 datasets, the CSVs included the sensor information from the 
timestamped GNSS/IMU integration system and the ROS time on the computer used to collect 
LiDAR data. As shown in step 1 of figure 11, the data-processing software synchronized the 
timestamped GNSS/IMU data based on the ROS timestamps in the CSVs.(38) The 
time-synchronized GNSS/IMU data were then added to the rosbags containing the LiDAR data 
for further processing in step 2.  

Steps 2 and 3: Object Detection and Tracking  

After preprocessing the SV1 datasets (i.e., the raw data were converted to rosbags), the 
data-processing pipeline, shown in figure 11, processed the LiDAR and GNSS/IMU module data 
to extract the information of the AdjVs near the SV (step 2 in figure 11). The inputs to step 2 
were the rosbags produced in step 1. In step 2, AdjVs within the LiDAR sensing range were 
detected and tracked. In figure 12, the circle surrounding the SV represents the detection range of 
SV1’s LiDAR sensor (around 40–60 m on the actual data collection vehicle). Step 2 produces 
bounding boxes for all AdjVs that can be detected by SV1’s LiDAR. Step 3 estimates trajectories 
of all vehicles (i.e., position, speed, acceleration, orientation, and ID number) within the 
detection range of the SV1’s LiDAR. In figure 12, trajectories for AdjVs 1, 2, 4, and 7 can be 
estimated because they are in the detection range of SV1’s sensors, while data about AdjVs 3, 5, 
6, 8, 9, and 10 cannot be estimated because they are outside of the detection range of the LiDAR 
sensor.  

 

 

Source: FHWA. 

Figure 12. Illustration. AdjV detection for one-vehicle datasets.  
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Step 2: Object Detection 

In step 2, the data-processing pipeline uses Apollo CNN segmentation, an open-source 
object-detection package based on three-dimensional (3D) LiDAR data, to segment out the 
vehicles of interest in the LiDAR point cloud frame.(20) Apollo CNN segmentation accepts point 
clouds as input and segments out the objects detected in the point cloud. For this application, 
Apollo CNN detected AdjVs from the vehicle sensor data. The segmentation consists of three 
main steps: 

• Step 2.1: Channel feature extraction. Divides the bird’s-eye view (BEV) projection of the 
point cloud into cells and calculates the static measurements of each cell. The channel 
feature contains statistical measurements of the point cloud, such as height and intensity. 

• Step 2.2: Encoder-decoder network. Takes the measurements and predicts the necessary 
attributes for each cell. 

• Step 2.3: Cell clustering algorithm. Finds the candidate clusters and uses a postprocessing 
method to filter out some candidate clusters.  

During channel feature extraction, Apollo CNN segments the LiDAR point cloud objects and 
applies a two-dimension (2D) convolutions architecture.(20) First, the algorithm converts the 
LiDAR point cloud into 2D BEV grid space and represents the point cloud by statistical 
measurements. Specifically, each cell in grid space computes eight different measurements of the 
point clouds, as follows: 

• Maximum height of points in the cell. 
• Intensity of the highest point in the cell. 
• Mean height of points in the cell. 
• Mean intensity of points in the cell. 
• Number of points in the cell. 
• Angle of the cell’s center with respect to the origin. 
• Distance between the cell’s center and the origin. 
• Binary value indicating whether the cell is empty or occupied.  

The whole measurement A∈RW×H×8 is used as the network input, where the W and H represent 
the number of rows and columns of the grid, and 8 is the statistical measurement of the point 
clouds for each cell. The deep network used by Apollo CNN consists of an encoder and decoder.  

In step 2.2, the network takes the channel feature measurement A as input and predicts five 
cellwise attributes, as follows: 
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• Center offset (vector): Points to the center of objects. 

• Object: Indicates whether a cell contains objects. 

• Positiveness and object height: Filters out the background cluster and removes the points 
that are too high. 

• Class probability: Classifies each cluster. 

The encoder maps the computed channel feature A to an abstract feature map, whereas the 
decoder takes the feature map as input, processes it, and produces the attributes Y∈RWxHx5. 

In step 2.3, after obtaining the network output attributes (step 2.2), Apollo CNN segmentation 
clusters cells based on their center offset.(20) The algorithm first judges whether the current cell 
contains objects and then clusters the adjacent cells pointed to by the current cell's center offset. 
After Apollo CNN segmentation iterates all the cells, it generates a number of candidate clusters, 
which include several cells. Based on these cells, Apollo CNN segmentation removes some 
candidate clusters having a small number of points or a low confidence score. Apollo CNN 
publishes the remaining clusters and classifies them into different categories such as vehicles. 
The point cloud in these clusters is used to fit bounding boxes as their envelope. These output 
bounding boxes are defined as D = [x, y, z, l, h, w, φ], where x, y, and z are coordinates of the 
bounding box; l, h, and w are the length, height, and width of the bounding box, respectively; and 
φ is the heading angle. These bounding boxes (D = [x, y, z, l, h, w, φ]) for each detected object 
(AdjV) are the output of step 2 and input to step 3: the multiobject tracking algorithm. 

The open-source algorithm used in step 2 for object detection is available through GitHub.(20) 

Step 3: Multiobject tracking 

The multiobject tracking pipeline (step 3 in figure 11) uses the bounding boxes from the object-
detection algorithm (i.e., Apollo CNN) as inputs to track the objects and outputs estimations of 
the position, speed, orientation, and unique ID of the corresponding object (i.e., the AdjVs).(21,22) 
Taking the 3D bounding boxes (D = [x, y, z, l, h, w, φ]) as input, the tracking algorithm’s 
objective is to associate the detected 3D bounding boxes with tracks and obtain the tracking state 
(x, y, z, l, h, w, φ, vx, vy, vz, ID) for each vehicle, where vx, vy, and vz are the velocities in 3D 
space, and ID is the unique ID number of each vehicle.  

The object tracking algorithm has three steps:  

• Step 3.1: Object state prediction and estimation using Kalman filter.(23) 

• Step 3.2: Object association using Hungarian algorithm.(22) 

• Step 3.3 Object management using a threshold-and-logic-based method as deduced by the 
research team.  

The Kalman filter has two steps to estimate the states, also known as the pose, of the 
corresponding object: state prediction and state estimation.(23) Then, the Hungarian algorithm is 
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used for object association.(22) This step associates the current detection results with existing 
objects. The object-association algorithm calculates the distance between the predicted position 
of the tracked objects and the current detection results. Finally, the object management algorithm 
adds new objects and deletes old objects. The algorithm adds new objects if detected objects 
cannot be associated to any existing objects. Similarly, the object is deleted if it is not associated 
with any detected objects after a period of time. A unique ID number is assigned to the newly 
added objects and correspondingly for the object management purpose. 

The Kalman filter used by the object tracking algorithm estimates the object’s velocity in 3D 
space (vx, vy, and vz). As the vehicle moves in the horizontal direction, the total speed v of the 
object is obtained by v=(vx2+vy2)1/2.  

The open-source algorithm used in step 3 for multiobject tracking is available through 
GitHub.(21) 

Steps 4–6: Map Generation and World Model(17) 

The result of the multiobject tracking algorithm step is that all objects near the SV are detected 
and tracked, and the states of the objects are estimated by the Kalman filter in a Cartesian 
coordinate system (i.e., the map frame described in the Output Data Frames section).(23) The map 
coordinates produced by the multiobject tracking algorithm are fixed frames in which the x-, y-, 
and z- axes are to the east, north and upward directions, respectively. However, Frenet 
coordinates are a method for representing positions in a structured environment (e.g., a road) in a 
more intuitive way than map/Cartesian coordinates.(24) Thus, having the information in Frenet 
coordinates is desired for vehicle interaction analyses, such as car-following behavior. To 
provide the information in Frenet coordinates, high-definition (HD) maps providing road 
information for the specific runs during the tests are required. This section introduces the process 
to generate the HD maps based on the collected sensor data.  

Steps 4 and 5 in figure 11 show the HD map generation pipeline including the generation of the 
point cloud and vector maps.(25) First, the algorithm uses the point cloud map to infer the lanes of 
the road. However, dynamic objects (i.e., AdjVs) will block the lanes and prevent the algorithm 
from correctly inferring the lanes. Thus, the software first preprocesses the point cloud from the 
LiDAR to remove the point cloud belonging to dynamic objects such as AdjVs; in this step, the 
algorithm also compensates for the distortion due to the movement of the SV in the creation of 
the corrected point cloud of the lane lines. Next, an NDT scan matching algorithm is applied to 
compute the relative transformation between two consecutive LiDAR frames.(26) LiDAR 
odometry is constructed to provide the pose of the LiDAR; then the LiDAR pose is fused with 
the pose from an RTK-aided GNSS module within a Kalman filter.(23) Based on the fused pose, 
the algorithm in step 4 transforms the point clouds into map coordinates to generate the point 
cloud map. In addition, this point cloud map is imported into RoadRunner and is used to provide 
lane information of the road to generate the OpenDRIVE map, which is converted to a vector 
map through an OpenDRIVE to lanelet2 map converter.(27,28,29) 



 

34 

Step 4: Point Cloud Map Generation  

First, a preprocessor adjusts the raw point cloud in the LiDAR frame before generating a map 
from the LiDAR point cloud. The preprocessing of the LiDAR point cloud includes 
compensating for the distortion due to the movement of the SV and removing the dynamic 
vehicles (AdjVs and other dynamic objects) on the roads. The Apollo CNN segmentation 
object-detection method is used to detect dynamic vehicles. Once the dynamic vehicles are 
detected, the vehicles’ point clouds are removed from the current LiDAR frame. Then, the point 
cloud preprocessing algorithm compensates for the distortion in the point cloud without dynamic 
vehicles by combining the velocity information and angular rate information. Using the 
preprocessed point cloud as input, an NDT scan matching algorithm is applied to associate the 
two consecutive LiDAR frames and compute the relative transformation between them.(26) The 
basic principle of NDT scan matching is shown by equations 1–6. The current LiDAR points 
residing within a cell are transformed into a normal distribution. For cell k in the total n cells, the 
mean vector q of the points and the covariance matrix C are computed by equation 1 and 
equation 2. 

 

(1) 

 

(2)  

Where: 
xk = the points and k means the kth number in total cells. 
T = the transpose mathematical operator when in the superscript position. 

Based on a certain transformation in equation 3, for points in the current LiDAR frame L, the 
coordinates of the transformed points in the previous LiDAR frame coordinates L′ are  

 

(3) 

Where: 
X = a vector containing the coordinates of the points in the current LiDAR frame. 
X′ = from the previous frame of X. 
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𝐑𝐑L
L′= the rotation matrix defined by equation 4. 

𝐭𝐭LL
′= the translation vector defined by equation 5. 

prime (′) indicates data is from previous frame.  

 

(4) 

Where: 
φ, θ, and ϕ = the roll, pitch, and heading angles, respectively, between the LiDAR frame 

coordinate and the map coordinate and are denoted by the asterisk in the shorthand that 
follows. 

c* = cos(*). 
s* = sin(*).  

 

(5) 

Where tx, ty and tz are the translation in the x, y, and z directions of the map frame, respectively. 

The NDT scan matching algorithm searches for the best transformation (RLL′, tLL′) in the 
transformation function for the points in the current LiDAR frame to match the points in the 
previous LiDAR frame. The cost function, J, for the parameters in the transformation function is 
defined as:  

 

(6) 

Where: 
q′ = the corresponding mean vector in the previous LiDAR frame. 
C′ = the covariance matrix of the point cloud in the previous LiDAR frame. 
xk’ = the points residing in cell k collected in the previous time stamp.  
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Newton’s algorithm is used to iteratively solve the optimization problem to find the best 
transformation TL′L between the current LiDAR coordinates L and the previous LiDAR frame 
coordinates, L′.(30) Taking the transformation in equation 7, 

 

(7) 

the LiDAR odometry from LiDAR frame 0 to LiDAR frame k can be constructed as 
TL(k)L(0)′ =TL(k)L(k−1)′, … TL(2)L(1)′,TL(1)L(0)′: 

Where: 
TL(k)L(0)′ = the transformation from L(0)′ to L(k).  
TL(k)L(k−1)′ = the transformation from L(k−1)′ to L(k). 
TL(2)L(1)′ = the transformation from L(1)′ to L(2). 
TL(1)L(0)′ = the transformation from L(0)′ to L(1). 

However, due to the noise contained in the LiDAR frame, TLL′ has errors which will be 
accumulated in the transformation TL(k)L(0)′. To compensate for these errors, the translation and 
heading information provided in an RTK-aided GNSS module is used to provide the 
measurements for the transformation from the LiDAR odometry because the information from 
the GNSS module is free of accumulated errors. To fuse the LiDAR odometry pose and the 
GNSS module pose, a Kalman filter is applied.(23) Then, using the fused pose from the Kalman 
filter, all the points in the LiDAR frames are transformed to the map coordinates for generating 
the map. The transformation function for generating the point cloud map is defined as  

 

(8) 

Where: 
α = [x, y, z]T denotes the coordinates of the points in a LiDAR frame of the 3D LiDAR. 
CmL = the rotation matrix between LiDAR coordinates and map coordinates. 
t = [tx, ty, tz]T is the translation vector. 

The LiDAR frames from time t0 to tk are aggregated to the LiDAR point cloud map using the 
point cloud in the map frame. Note that in real-time application, the range of the LiDAR sensor 
is large, so aggregating all the LiDAR frames is not necessary to generate maps. Involving all the 
point cloud frames in the map is too large, and this large point cloud map consumes too much 
hard drive space and computational resources. Therefore, to reduce the size of the point cloud 
map, after the SV travels a certain distance (i.e., 16.4 ft is the threshold in this application), 
adding a LiDAR frame into the point cloud map is sufficient for real-world application. 

The result of step 4 is a point cloud map of the road surface.  



 

37 

Figure 13 presents a visualization of a point cloud map created by the LiDAR unit installed on 
the SV as collected during a freeway scenario. This point cloud map is the product of step 4 of 
the One-Vehicle Data Processing Pipeline (figure 11). This point cloud corresponds with the 
OpenDRIVE map in figure 14-A and the vector map in figure 14-B.(29)  

 
Source: FHWA. 

Figure 13. Illustration. Sample visualization of the point cloud map (input to 
RoadRunner).(27) 

The color gradation of the points is indicative of their respective intensity information. The lane 
lines are illustrated in a lighter hue and are also annotated on the figure. This color distinction 
signifies intensity differentiation and can be leveraged to generate a vector map. 

Step 5: Vector Map Generation 

This section discusses the vector map generation method. To create the vector map, the 
generated point cloud map from the point cloud generation step (an example is shown in figure 
13) is imported to RoadRunner 2021.(27) In the point cloud map, elements with a different color 
on the road surface have different intensity information. A project team member manually drew 
the road based on the exact lane position, which can be inferred by the intensity information in 
the point cloud map as the lane information can be visualized in RoadRunner.(27) A project team 
member generated the maps for all areas where data were collected.  

Because the vector map (lanelet2 map) cannot be directly generated in RoadRunner, the output 
of this process is the OpenDRIVE (xodr) format map, which can be exported directly from 
RoadRunner. Next, the team member uses the lanelet2 map converter to convert the 
OpenDRIVE map to a lanelet2 map.(28,29) The lanelet2 map is used for two purposes. First, the 
lanelet map can provide the constraints to filter out off-road objects for object-detection and 
tracking modules (these off-road objects are not of interest because they have no interaction with 
the SV or AdjV). Second, the lanelet2 map provides the lane information of the road. By 
definition, a lanelet is an atomic interconnected drivable road segment. (Atomic means that 
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currently valid traffic rules do not change within a lanelet and that the topological relationships 
with other lanelets do not change.) Note that in this report, the researchers will use the terms 
lanelet2 map and vector map interchangeably as vector map is a general term and lanelet2 map is 
specific to the applications in this project.  

Figure 14 provides a visualization of the OpenDRIVE map (figure 14-A), constructed using 
RoadRunner software, and the lanelet2 map (figure 14-B), produced by the lanelet2 map 
converter.(27,28,29) Both maps cover the area depicted in the point cloud map shown in figure 13. 
The primary roadway is composed of four lanes, and the adjoining ramp consists of two lanes.  

 
Source: FHWA. 

A. Visualization of OpenDRIVE map (output of RoadRunner; input of lanetlet2 map converter). 
(27,28,29) 

 
Source: FHWA. 

B. Visualization of lanelet2 map (output of lanelet2 map converter; input to World Model).(29,17) 
Figure 14. Illustration. Visualization of the vector map.  

Together, steps 4 and 5 comprise the HD map-generation pipeline. The HD map-generation 
pipeline was generated by the research team for a previously completed project. The code for the 
HD map generation project is not open source, but documentation on the previous project are 
available for reference.(25) 

The World Model, described in the next section, applies the road’s lanelet information to provide 
the coordinates of the objects in the Frenet frame.(17) 
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Step 6: World Model 

Step 6 of the one-vehicle data-processing pipeline (figure 11) is mostly about generating 
different perspectives of the data (e.g., map coordinates, Frenet coordinates). The data processing 
pipeline uses World Model, developed in CARMA platform, to determine if the objects are on 
the road.(17) World Model is an interface that provides the supported access functions for 
working with the lanelet map and object route, such as computing downtrack and crosstrack 
distances (Frenet coordinates). World Model is tightly coupled to the lanelet2 library and relies 
on lanelet2 primitives for functionality.(31) If the objects are on the road, the World Model 
obtains the coordinates of the objects as Frenet coordinates. The lanelet information and the lane 
information of the objects are also output from the World Model.(18)  

As shown in figure 15, the downtrack distance is the x in Frenet coordinates along the 
longitudinal direction of the road. The crosstrack distance is the y in Frenet coordinate along the 
lateral direction of the road. The downtrack and crosstrack information of the objects can be used 
to analyze the car-following behavior and lane-change behavior of the objects (AdjVs). For 
example, in figure 15, SV2 is leading the AdjV and is located in the positive downtrack direction 
away from the AdjV, while SV1 is following the AdjV and in the left lane (so SV2 is located in 
the negative downtrack and crosstrack directions from the AdjV).  

 
Source: FHWA. 

Figure 15. Illustration. Relationship between SVs and an AdjV in Frenet frame. 

For the AdjV, given its speed v (from object tracking) and the x-coordinate of the AdjV in Frenet 
coordinates (longitudinal direction), the project team takes the first order of the derivative of the 
speed to calculate the acceleration. The estimation of acceleration remains a significant challenge 
in research. 

Due to the noise in the estimated speed from the object tracking algorithm, the project team used 
a discrete finite impulse response (FIR) filter to smooth the acceleration.(32) The window size in 
the FIR filter directly influences the smoothness of the acceleration. A larger window size results 
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in smoother acceleration but introduces a temporal delay. Conversely, a smaller window size 
leads to a quicker response time but an increase in noise within the acceleration.  

While the team provides the estimated acceleration in the CSV files using specific FIR filter 
settings, this might not necessarily yield the most accurate estimation due to varying 
requirements for acceleration in different scenarios. Therefore, the team encourages users of the 
CSV files to adjust the parameters in the FIR filter according to different scenarios to enhance 
the estimation of acceleration, as AdjVs may exhibit varied dynamics. As an alternative, the 
Kalman filter is also a good solution to estimate the acceleration of the adjacent object. The 
details of the implementation of the Kalman filter can be found in Xiong et al.(33) Note that, like 
the FIR filter, the measurement covariance and system state covariance for the Kalman filter can 
be tuned to reflect differing dynamics under various scenarios (e.g., city roads versus highways). 
A smaller measurement covariance can lead to a faster response (but increase noise in the 
acceleration estimates), whereas a larger measurement covariance can provide a smoother 
estimation of acceleration at the cost of a larger temporal delay. 

For the SV, the ground-truth position information from the GNSS/IMU system from the original 
CSVs are converted to the x-coordinate in the Frenet coordinates. The speed is acquired directly 
from the GNSS/IMU system. Both pieces of information are reliable and stored in the CSV files. 
Researchers can use this information to estimate the acceleration of the SV using either the 
aforementioned approaches or other advanced estimation techniques developed by the users of 
the CSV files.  

The performance of speed and acceleration estimation is elaborated upon in the Validation of 
AdjV Speed and Acceleration section. The team used the FIR filter method to generate 
acceleration in the CSV files due to its marginally superior performance (in terms of the standard 
deviation error) over the Kalman filter method.(23,32,33) 

OUTPUT OF ONE-VEHICLE DATASETS 

This section discusses both the data produced by the one-vehicle data-processing pipeline and 
provides sample graphics that demonstrate how well the data processing pipeline can detect and 
track objects (i.e., AdjVs).  

Output Description 

The data processing pipeline outputs include the position, velocity, acceleration, and orientation 
of objects of interest in different reference frames. These data are all stored in an easily sharable 
format (CSVs). The contents of the CSVs produced by the data processing pipeline shown in 
figure 11 are described in the following subsections.  

Variables for AdjVs  

The variables for the AdjVs are described in table 7. The variables are presented in different 
frames shown in figure 8. Figure 16 and figure 17 provide the definitions for 
closest_distance_longitudinal, closest_distance_lateral, distance_adjv, lanelet_ID_adjv, and 
lane_ID_adjv.
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Table 7. Variables for the AdjVs (one vehicle dataset). 

Variable Description 
Column 
in CSV Unit Frame 

Access 
Method 

ID 
Identification number of the AdjV (ascending by time of 
entry into the sensor range of the SV) A n/a  n/a Calculated 

Time 

Timestamp (ascending by start time) of the 
corresponding row in CSV. Time is the ROS time 
converted into a more user-friendly format(8) B s n/a Calculated 

distance_adjv (headway)1 Distance between the center of the AdjV and the SV C m n/a Calculated 
pos_x_adjv_f AdjV x position D m Frenet Calculated 
pos_y_adjv_f AdjV y position E m Frenet Calculated 
pos_x_adjv_m AdjV x position F m Map Calculated 
pos_y_adjv_m AdjV y position G m Map Calculated 
heading_adjv_m AdjV heading angle (orientation of vehicle) H degree Map Calculated 
dim_x_adjv2 AdjV length I m Vehicle Calculated 
dim_y_adjv2 AdjV width J m Vehicle Calculated 
dim_z_adjv2 AdjV height K m Vehicle Calculated 
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Variable Description 
Column 
in CSV Unit Frame 

Access 
Method 

speed_adjv AdjV speed L m/s 
Frenet/ 
map Calculated 

acc_adjv AdjV acceleration M 
m/s2 

Frenet Calculated 
closest_distance_longitudinal 
(gap)1,3 

The closest distance between AdjV and SV in the 
longitudinal direction X m Frenet Calculated 

closest_distance_lateral4 The closest distance between AdjV and SV in the 
longitudinal direction Y m Frenet Calculated 

lanelet_id_adjv5 Lanelet ID of the AdjV’s center point AG n/a n/a Calculated 
lane_id_adjv5 Lane ID of the AdjV’s center point AH n/a n/a Calculated 
total_lanes Total lanes at the current position AK n/a n/a Calculated 

f = Frenet; m = map; v = vehicle; n/a = not applicable. 
1As shown in figure 16, the headway between two vehicles (measured between the same point on the leader-follower pair) is the distance_adjv. The 
distance_adjv is measured from the centroid of the leading vehicle to the centroid of the following vehicle. The gap between vehicles (measured between the rear 
bumper of the leading vehicle and the front bumper of the following vehicle) is recorded as the closest_longitudinal_gap. 
2The research team set fixed values of the bounding boxes to prevent the variation of the bounding box for the same object over different frames. 
3As shown in figure 16, when the AdjV is ahead of the SV, the closest longitudinal distance is the distance from the front bumper of the SV to the rear bumper of 
the AdjV in the Frenet frame. When the AdjV is behind the SV, the closest longitudinal distance is the distance from the rear bumper of the SV to the front 
bumper of the AdjV in the Frenet frame. 
4As shown in figure 16, when the AdjV is on the right side of the SV, the closest lateral distance is the distance from the right doors of the SV to the left doors of 
the AdjV in the Frenet frame. When the AdjV is on the left side of SV, the closest lateral distance is the distance from the left doors of the SV to the right doors 
of the AdjV in the Frenet frame. 
5As shown in figure 17, in Frenet coordinates, the road with four lanes is divided into lanelets from lanelet 1 to lanelet 12. The lanelet ID shows the exact ID 
where the vehicle is. The lane ID shows which lane the vehicle is. The lanelet ID and lane ID are based on the vector map information. The lane ID starts from 
the right side of the road and increases to the left side of the road. For instance, the lanelet ID for the SV is 1 and the lanelet ID for the AdjV is 6. For SV, its lane 
ID is 4 and the total number of lanes is 4. The lane ID for the AdjV is 3. 
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Source: FHWA. 

Figure 16. Illustration. Relationship between distance_adjv, closest_longitudinal_distance, 
and closest_lateral_distance.  

 
Source: FHWA. 

Figure 17. Illustration. Demonstration of lanelet and lane information.  
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Variables for SVs  

The variables for the SVs are described in table 8. Because the primary purpose of these datasets 
is to evaluate the interaction between the SV and any AdjVs, information regarding both the SV 
and AdjVs is recorded and stored together as a pair within the CSV files. Essentially, the SV's 
data is only necessary when an AdjV is present, indicating an interaction. If no AdjV is present, 
implying a lack of interaction, recording and storing the SV’s data is not necessary (e.g., without 
a leading AdjV, the SV is free to drive at its desired speed). 
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Table 8. Variables for the SVs. 

Variable Description Column 
in CSV Unit Frame Access Method 

Time 

Timestamp (ascending 
by start time) of the 

corresponding row in 
CSV 

B s n/a Calculated 

pos_x_sv_f2,3 SV x position N m Frenet Calculated 

pos_y_sv_f2,3 SV y position O m Frenet Calculated 

pos_x_sv_m SV x position P m Map Measured 

pos_y_sv_m SV y position Q m Map Measured 

heading_sv SV heading R degree Map Measured 

dim_x_sv SV length S m Vehicle Measured 

dim_y_sv SV width T m Vehicle Measured 

dim_z_sv SV height U m Vehicle Measured 

speed_sv2,3 SV speed V m/s Frenet/ 
map Measured 

acc_sv2,3 SV acceleration W m/s2 Frenet Calculated 

lanelet_id_sv1 Lanelet ID of the SV’s 
center point AI n/a n/a Calculated 

lane_id_sv1 Lane ID of the SV’s 
center point AJ n/a n/a Calculated 

1As shown in figure 17, in Frenet coordinates, the road with four lanes is divided into lanelets from lanelet 1 to 
lanelet 12. The lanelet ID shows the exact ID where the vehicle is. The lane ID shows which lane the vehicle is. The 
lanelet ID and lane ID are based on the vector map information. The lane ID starts from the right side of the road 
and increases to the left side of the road. For instance, the lanelet ID for the SV is 1 and the lanelet ID for the AdjV 
is 6. For SV, its lane ID is 4 and the total number of lanes is 4. The lane ID for the AdjV is 3. 
2A result of interpolating data and running it through the processing method detailed in chapter 3 is that multiple SV 
positions, velocities, and accelerations may exist for the same timestamp when the SV encounters multiple AdjVs. 
The SV’s position (Frenet), velocity, and acceleration are all outputs of the processing method, and this can cause 
very minimal differences in these variables. 
3If a future user of the data plots the SV’s processed trajectories, these trajectories will appear discontinuous. This 
discontinuity is not because missing data is missing but is due to the SV’s position only being provided if an AdjV is 
detected. This decision was made to simplify how data was stored (every row is an instance where an AdjV is 
detected near the SV). If an AdjV is not detected, one can assume that the SV will continue to operate at its desired 
speed until a new AdjV is detected and impedes the SV’s path. 
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Variables for Origins of the Map and Road  

The variables for the road and maps are described in table 9. 

Table 9. Information of map origin and road origin (one vehicle dataset). 

Variable Description Column in CSV Unit Frame 
map_origin_x Map origin longitude Z degree ECEF 
map_origin_y Map origin latitude AA degree ECEF 
map_origin_z Map origin altitude AB degree ECEF 

road_origin_x_m Map origin x position AC m Map 
road_origin_y_m Map origin y position AD m Map 

road_origin_x_ecef Road origin longitude AE degree ECEF 
road_origin_y_ecef Road origin latitude AF degree ECEF 

The variables for metadata are represented in table 10. 

Table 10. Included metadata information (one vehicle dataset). 

Variable Description Column in 
CSV Unit 

Total lanes Number of lanes on one side of the road AK n/a 
Run number Number from the set of processed runs AL n/a 

Sub run number Number of sub run for respective run number 
from processed dataset AM n/a 

Date Date of data collection AN n/a 
Time of day Time stamp of data collection AO n/a 

Sub run start time Start time from the original run from where data 
was processed AP n/a 

Route starting 
point(rs) Google map start point(15) AQ n/a 

Route ending 
point(re) Google map end point(15) AR n/a 

fdistance Distance of the route AS miles 
maplink Google maps link of the route(15) AT n/a 

Annual traffic 
density AADT for the route AU n/a 

Roadway type Type of roadway: limited 
access/divided/nondivided arterial AV n/a 

Speed limits Speed limits along the route AW mph 

Road condition Condition of surface of road: wet/dry AX n/a 

Type of vehicle Appearance/operation of vehicle: RI/DI/baseline AY n/a 
Aggressiveness Aggressiveness setting for SV1 AZ n/a 

Following distance Following distance setting for SV1 BA n/a 
Special notes Any interesting observations BB n/a 
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Output Visualization  

Figure 18 shows the object-detection and tracking results of a freeway scenario during the 
one-vehicle dataset data collection. The forward-facing camera data, rear-facing camera data, 
and LiDAR point cloud data are visible in figure 18. All three of the SV’s sensors properly detect 
that SV1 is following AdjV1, while AdjV2 is following SV1. Further visualizations are shared in 
the Data Validation section.  

 
Source: FHWA. 

Figure 18. Screenshot. Visualization of front and rear video data, vector map, and LiDAR 
point cloud for one-vehicle datasets in freeway scenario. 

DATA-PROCESSING PIPELINE FOR TWO-VEHICLE DATASETS 

This section discusses how the team adapted the data-processing pipeline for one-vehicle 
datasets to process the 24 h of data collected using two SVs simultaneously.  

Figure 19 shows the data-processing pipeline for the two-vehicle datasets. This process is similar 
to the data processing pipeline for one-vehicle datasets (shown in figure 11). The primary 
differences are step 1 (Data Preprocessing for SV1 and SV2) and step 3 (Late Fusion of Object 
Detection). The reader is referred to the Data Processing Pipeline for One-Vehicle Datasets 
section for technical details on step 2 and steps 4–7 of the Data Processing Pipeline for 
Two-Vehicle Datasets.  
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Source: FHWA.  

Figure 19. Flowchart: Data-processing pipeline for two-vehicle datasets. 
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Step 1: Data Preprocessing for Two SVs Datasets 

For the two-vehicle datasets, the project team collected both the sensor data from SV1 and SV2. 
Thus, step 1—data preprocessing for the two-SV datasets—is slightly different than the process 
used to preprocess the one-vehicle datasets. During the experiment, the project team used two 
separate computers on SV1 and SV2 to run the sensors and collect the sensor data. Because the 
computers run on different vehicles, clock synchronization errors can occur, even if the project 
team synchronizes the data before it is used for processing. Therefore, the project team used the 
timestamp of the GNSS/IMU integration systems on each vehicle, which are set to coordinated 
universal time (UTC), to synchronize the datasets from the two vehicles.  

As shown in figure 20, the project team first synchronized the computers on each vehicle to one 
another based on the timestamps of the GNSS/IMU modules. The LiDAR data from each vehicle 
were also synchronized to the GNSS/IMU module on the same vehicle. In this way, all the data 
were synchronized with the GNSS/IMU timestamp (UTC). After processing the LiDAR point 
cloud data (PCD) from each vehicle, the team used the timestamp of the LiDAR frame to match 
the LiDAR frames from the two sensors at the same time to address the time delay due to the 
data processing.  

 
Source: FHWA.  

Figure 20. Flowchart. Two-vehicle deployment data preprocessing. 

Step 2 of the two-vehicle data-processing pipeline—object detection—is identical to the 
methodology applied in the one-vehicle data-processing pipeline. However, for the two-vehicle 
data-processing pipeline (figure 20), the project team collected the sensor data from both SV1 
and SV2. This enabled fusion of the data from the two vehicles to perform cooperative 
perception to detect the objects. This not only extends the sensing range of each SV but also 
addresses the occlusion problem illustrated in figure 21. SV1 can perceive AdjV1, AdjV3, 
AdjV4, AdjV6, AdjV7, and AdjV9 because these vehicles are located within the sensor detection 
range of SV1. SV2 can perceive AdjV2, AdjV4, AdjV5, AdjV8, and AdjV10 because these 
vehicles are located within the sensor detection range of SV2. AdjV4 can be perceived by both 
vehicles because it is in the sensor detection range of both vehicles. All detected vehicles are 
included in the output CSVs. However, because some vehicles are detected by both SVs, an 
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additional step is required in the Data Processing Pipeline: step 3—late fusion of the objects 
detected by both SVs.  

 
Source: FHWA.  

Figure 21. Illustration. Data processing overview for two-vehicle datasets.  

Step 3: Late Fusion Strategy 

The use of both SVs complicates the data-processing pipeline because objects may be detected 
by one or both SVs. Thus, after step 2 (in which the object-detection algorithm also uses the 
Apollo CNN segmentation and object tracking of the SV processing pipeline), the bounding 
boxes must be fused for consistency.(20,21) The late fusion of object detection includes two parts: 
projecting objects onto one common coordinate system and applying the late fusion strategy.(34) 

Step 3.1: Projecting Objects into One Common Coordinate 

In step 2, the Apollo CNN segmentation algorithm is applied to produce bounding boxes for all 
objects detected by each of the two SVs. If an object is detected by both SVs, the bounding 
boxes must be fused together. To fuse the detected objects, first, all bounding boxes created 
using the LiDAR data collected by each vehicle were temporarily synchronized according to the 
timestamp of the LiDAR frames and then projected onto a common coordinate system. The 
selected coordinate system is the map coordinate system, where the x, y, and z are in the east, 
north and upward directions, respectively. The project team chose the LiDAR on SV2 as the 
reference data. However, no difference exists if one selects either the coordinate in SV1 or SV2 
as the common coordinate.  

The projection from SV1 to SV2 can be computed through (equation 9).(34) 

 

(9) 
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Where:  
TmSV1 = the transformation from the SV1 coordinate to the map coordinate.  
TSV2SV1 = the transformation from SV1 to SV2. 
TmSV2 = the transformation from the SV2 coordinate to the map coordinate defined in 

equation 10.  

 

(10) 

Where: 
m = the map coordinate. 
SV2 = the SV2 coordinate. 
RmSV2 = the rotation matrix between SV2 and map coordinates, R is defined in equation 4.  
tmSV2 = translation vector defined in equation 11.  

 

(11) 

tx, ty and tz are the translation in the x, y, and z directions, respectively. The angles including yaw, 
pitch, and roll in the rotation matrix can be accessed from the GNSS/IMU integration system on 
the vehicle. The translation vector tmSV2 is obtained by converting the longitude, latitude, and 
altitude from the GNSS/IMU integration system into x, y, and z in a Universal Transverse 
Mercator (UTM) coordinate.  

Step 3.2: Late Fusion Strategy 

When the two SVs are near each other, an intersection area exists where the detected objects’ 
bounding boxes are predicted by the object-detection algorithms (step 2) using the LiDAR data 
collected by both SVs. An example of this is shown in figure 21, where AdjV4 is detected by 
both SVs. 

In step 3.2, the bounding boxes from the object-detection algorithms applied to the data collected 
by SV1 and SV2 are fused together. To fuse the bounding boxes, first, the intersection of unit 
(IoU) between each bounding box and other bounding boxes is computed. The IoU is defined as 
the overlap area of the area of union.(35) In the late fusion strategy, if the IoU is below a 
threshold, nothing happens (indicating an object is only detected by SV1 or SV2) and the 
bounding box from step 2 is maintained. However, if the IoU is above a threshold, the 
confidence level (predicted by the object-detection algorithm) of the bounding boxes is 
compared between the object-detection algorithms applied to the data collected by SV1 and SV2. 
The bounding box with the higher confidence level is maintained for further processing. This 
effort used 0.1 as the IoU threshold.  
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This process produces fused bounding boxes, which are passed to step 4 of the data processing 
pipeline for two-vehicle datasets. The remaining steps of the data processing pipeline are 
identical to the one-vehicle data-processing pipeline.  

OUTPUT OF TWO-VEHICLE DATASETS 

This section discusses both the format of the data produced by the two-vehicle data processing 
pipeline and provides some sample graphics that demonstrate how well the pipeline can detect 
and track objects (i.e., AdjVs).  

Output Description 

Data-processing pipeline outputs include the position, velocity, acceleration, and orientation of 
objects of interest in difference reference frames. These data are all stored in CSV files. The 
contents of the CSVs produced by the data-processing pipeline in figure 19 are described in the 
following subsections.  

Variables for AdjVs  

The variables for the AdjVs are described in table 11. The variables are presented in different 
frames as shown in figure 8. 
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Table 11. Variables for the AdjVs (two-vehicle dataset). 

Variable Description Column 
in CSV Unit Frame Access 

method 

ID Identification number of the AdjVs (ascending by time of 
entry into the sensor range of the SV) A n/a n/a Calculated 

Time Timestamp (ascending by start time) of the 
corresponding row in CSV B s n/a Calculated 

distance_adjv 
(headway)1 Distance between the center of the AdjV and SV C m n/a Calculated 

pos_x_adjv_f AdjV x position D m Frenet Calculated 
pos_y_adjv_f AdjV y position E m Frenet Calculated 
pos_x_adjv_m AdjV x position F m Map Calculated 
pos_y_adjv_m AdjV y position G m Map Calculated 

heading_adjv_m AdjV heading angle H degree Map Calculated 
dim_x_adjv2 AdjV length I m Vehicle Calculated 
dim_y_adjv2 AdjV width J m Vehicle Calculated 
dim_z_adjv2 AdjV height K m Vehicle Calculated 
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Variable Description Column 
in CSV Unit Frame Access 

method 

speed_adjv AdjV speed L m/s Frenet/ 
map Calculated 

acc_adjv AdjV acceleration M m/s2 Frenet Calculated 
Closest_distance

_longitudinal 
(gap)1,3 

The closest distance between AdjV and SV1 in the 
longitudinal direction AH m Frenet Calculated 

Closest_distance
_lateral4 

The closest distance between AdjV and SV1 in the 
longitudinal direction AI m Frenet Calculated 

lanelet_id_adjv5 Lanelet ID of the AdjV’s center point AQ n/a n/a Calculated 
lane_id_adjv5 Lane ID of the AdjV’s center point AR n/a n/a Calculated 

total_lanes Total lanes at the current position AW n/a n/a Calculated 
1As shown in figure 16, the headway between two vehicles (measured between the same point on the leader-follower pair) is the distance_adjv. The 
distance_adjv is measured from the centroid of the leading vehicle to the centroid of the following vehicle. The gap between vehicles (measured between the rear 
bumper of the leading vehicle and the front bumper of the following vehicle) is recorded as the closest_longitudinal_gap. 
2The research team set fixed values of the bounding boxes to prevent the variation of the bounding box for the same object over different frames. 
3As shown in figure 16, when the AdjV is ahead of the SV, the closest longitudinal distance is the distance from the front bumper of the SV to the rear bumper of 
the AdjV in the Frenet frame. When the AdjV is behind the SV, the closest longitudinal distance is the distance from the rear bumper of the SV to the front 
bumper of the AdjV in the Frenet frame. 
4As shown in figure 16, when the AdjV is on the right side of the SV, the closest lateral distance is the distance from the right doors of the SV to the left doors of 
the AdjV in the Frenet frame. When the AdjV is on the left side of SV, the closest lateral distance is the distance from the left doors of the SV to the right doors 
of the AdjV in the Frenet frame. 
5As shown in figure 17, in Frenet coordinates, the road with four lanes is divided into lanelets from lanelet 1 to lanelet 12. The lanelet ID shows the exact ID 
where the vehicle is. The lane ID shows which lane the vehicle is. The lanelet ID and lane ID are based on the vector map information. The lane ID starts from 
the right side of the road and increases to the left side of the road. For instance, the lanelet ID for the SV is 1 and the lanelet ID for the AdjV is 6. For SV, its lane 
ID is 4 and the total number of lanes is 4. The lane ID for the AdjV is 3. 
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Variables for SVs  

The variables for SV1 are described in table 12, and the variables for SV2 are described in table 
13.  

Table 12. Variables for SV1. 

Variable Description Column in 
CSV Unit Frame Access 

method 

Time 

Timestamp 
(ascending by start 

time) of the 
corresponding row in 

CSV 

B s n/a Measured 

pos_x_sv1_f2,3 SV1 x position N m Frenet Calculated 
pos_y_sv1_f2,3 SV1 y position O m Frenet Calculated 
pos_x_sv1_m SV1 x position P m Map Measured 
pos_y_sv1_m SV1 y position Q m Map Measured 
heading_sv1 SV1 heading angle R degree Map Measured 
dim_x_sv1 SV1 length S m Vehicle Measured 
dim_y_sv1 SV1 width T m Vehicle Measured 
dim_z_sv1 SV1 height U m Vehicle Measured 

speed_sv12,3 SV1 speed V m/s Frenet/map Measured 
acc_sv12,3 SV1 acceleration W m/s2 Frenet Calculated 

lanelet_id_sv11 Lanelet ID of the 
SV1’s center point AS n/a n/a Calculated 

lane_id_sv11 Lane ID of the SV1’s 
center point AT n/a n/a Calculated 

1As shown in figure 17, in Frenet coordinates, the road with four lanes is divided into lanelets from lanelet 1 to 
lanelet 12. The lanelet ID shows the exact ID where the vehicle is. The lane ID shows which lane the vehicle is. The 
lanelet ID and lane ID are based on the vector map information. The lane ID starts from the right side of the road 
and increases to the left side of the road. For instance, the lanelet ID for the SV is 1 and the lanelet ID for the AdjV 
is 6. For SV, its lane ID is 4 and the total number of lanes is 4. The lane ID for the AdjV is 3. 
2A result of interpolating data and running it through the processing method detailed in chapter 3 is that multiple SV 
positions, velocities, and accelerations may exist for the same timestamp when the SV encounters multiple AdjVs, 
The SV’s position (Frenet), velocity, and acceleration are all outputs of the processing method, and this can cause 
very minimal differences in these variables. 
3If a future user of the data plots the SV’s processed trajectories, these trajectories will appear discontinuous. This 
discontinuity is not because missing data is missing but is due to the SV’s position only being provided if an AdjV is 
detected. This decision was made to simplify how data was stored (every row is an instance where an AdjV is 
detected near the SV). If an AdjV is not detected, one can assume that the SV will continue to operate at its desired 
speed until a new AdjV is detected and impedes the SV’s path. 
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Table 13. Variables for SV2. 

Variable4 Description Column 
in CSV Unit Frame Access 

method 

Time 

Timestamp (ascending 
by start time) of the 

corresponding row in 
CSV 

B s n/a Measured 

po_x_sv2_f2,3 SV2 x position X m Frenet Calculated 
pos_y_sv2_f2,3 SV2 y position Y m Frenet Calculated 
pos_x_sv2_m SV2 x position Z m Map Measured 
pos_y_sv2_m SV2 y position AA m Map Measured 
heading_sv2 SV2 heading angle AB degree Map Measured 
dim_x_sv2 SV2 length AC m Vehicle Measured 
dim_y_sv2 SV2 width AD m Vehicle Measured 
dim_z_sv2 SV2 height AE m Vehicle Measured 

speed_sv22,3 SV2 speed AF m/s Frenet/ 
map Measured 

acc_sv22,3 SV2 acceleration AG m/s2 Frenet Calculated 

lanelet_id_sv21 Lanelet ID of the 
SV2’s center point AU n/a n/a Calculated 

lane_id_sv21 Lane ID of the SV2’s 
center point AV n/a n/a Calculated 

1As shown in figure 17, in Frenet coordinates, the road with four lanes is divided into lanelets from lanelet 1 to 
lanelet 12. The lanelet ID shows the exact ID where the vehicle is. The lane ID shows which lane the vehicle is. The 
lanelet ID and lane ID are based on the vector map information. The lane ID starts from the right side of the road 
and increases to the left side of the road. For instance, the lanelet ID for the SV is 1 and the lanelet ID for the AdjV 
is 6. For SV, its lane ID is 4 and the total number of lanes is 4. The lane ID for the AdjV is 3. 
2A result of interpolating data and running it through the processing method detailed in chapter 3 is that multiple SV 
positions, velocities, and accelerations may exist for the same timestamp when the SV encounters multiple AdjVs, 
The SV’s position (Frenet), velocity, and acceleration are all outputs of the processing method, and this can cause 
very minimal differences in these variables. 
3If a future user of the data plots the SV’s processed trajectories, these trajectories will appear discontinuous. This 
discontinuity is not because missing data is missing but is due to the SV’s position only being provided if an AdjV is 
detected. This decision was made to simplify how data was stored (every row is an instance where an AdjV is 
detected near the SV). If an AdjV is not detected, one can assume that the SV will continue to operate at its desired 
speed until a new AdjV is detected and impedes the SV’s path. 
4SV2 was an RI-ADAS-equipped vehicle but was operated as a level 0 nonautomated vehicle during data collection. 
Thus, although SV2 data is not considered reflective of ADAS-equipped vehicle behavior, it is reflective of a 
human-driven nonautomated vehicle. AdjVs interacting with SV2 may still exhibit behavioral changes due to the 
visibility of the sensor stack on the RI-ADAS. 

Variables for Origins of the Map and Road  

The variables for the road and maps are described in table 14. 
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Table 14. Information of map origin and road origin (two-vehicle dataset). 

Variable Description Column 
in CSV Unit Frame 

map_origin_x map origin longitude AJ degree ECEF 
map_origin_y map origin latitude AK degree ECEF 
map_origin_z map origin altitude AL degree ECEF 

road_origin_x_m map origin x position AM m Map 
road_origin_y_m map origin y position AN m Map 

road_origin_x_ecef road origin longitude AO degree ECEF 
road_origin_y_ecef road origin latitude AP degree ECEF 

The variables for metadata are represented in table 15. 

Table 15. Included metadata information (two-vehicle dataset). 

Variable Description Column 
in CSV Unit 

Run number Number from the set of processed runs AX n/a 

Sub run number Number of sub run for respective run 
number from processed dataset AY n/a 

Date Date of data collection AZ n/a 
Time of day Time stamp of data collection BA n/a 

Sub run start time Start time from the original run from where 
data was processed BB n/a 

Route starting point (rs) Google map start point(15) BC n/a 
Route ending point (re) Google map end point(15) BD n/a 

Distance Distance of the route BE miles 
Maplink Google maps link of the route(15) BF n/a 

Annual traffic density AADT for the route BG n/a 

Roadway type Type of roadway: limited 
access/divided/nondivided arterial BH n/a 

Road condition Condition of surface of road: wet/dry BI n/a 
Speed limits Speed limits along the route BJ mph 

Type of vehicle Mode of operation: RI/DI/baseline BK n/a 
Aggressiveness Aggressiveness setting for SV1 BL n/a 

Following distance Following distance setting for SV1 BM n/a 
Special notes Any interesting observations BN n/a 

Gap level Intended gap between SV1 and SV2 
1: (30–60 m) or 2: (60–80 m) BO n/a 

Output Visualization 

Figure 22 shows a sample of data collected using the two SVs on a freeway. Figure 22-A is the 
view of Google Earth to visualize the freeway scenario, where the operation speed is 
approximately 112 km/h; the line overlaid on figure 22-A shows the trajectory of the SV, while 
the arrow shows the direction of travel.(15) Figure 22-B visualizes the vector map created during 
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step 6 of the data-processing pipeline (as shown in figure 19). As can be seen in figure 22-B, four 
lane lines (three lanes) exist in this freeway scenario.  

Figure 22-C provides the visualization of the object detection and tracking results created in step 
4 of the data-processing pipeline in figure 19. As labeled on figure 22-C, the red point cloud is 
from SV1’s LiDAR sensor, and the white point cloud is from SV2’s LiDAR sensor. The AdjV 
bounding boxes are blue in figure 22-C and are labeled AdjV1, AdjV2, and AdjV3. SV1 (red) 
and SV2 (green) are both labeled. In figure 22-C, AdjV3 can only be sensed by SV2 vehicle 
sensors; AdjV2 can only be sensed by SV1 vehicle sensors; and AdjV1 can be sensed by both 
vehicles’ sensors. By fusing the point clouds from the two SVs using the late fusion strategy 
(step 3 of the pipeline shown in figure 19), each SV’s detection range can be extended; this 
process is also known as cooperative perception.  

In the area where both SVs can detect AdjVs, AdjV1 is detected by both SVs, the 
object-detection results are fused, and only one bounding box is output, which validates the 
functionality of our late fusion strategy in terms of the object detection and tracking. The objects 
can be detected and tracked by the data-processing framework. Thanks to this cooperative 
perception, each SV’s sensing area has been expanded, and more AdjVs can be detected for an 
individual SV.  

The output of the data-processing framework provides the potential to analyze complex 
interactions between one SV and multiple AdjVs. For instance, in the lane where SV1 is located, 
SV1, AdjV1, and AdjV3 can be used to investigate the car-following behavior of both SV1 and 
AdjV1. If only using the LiDAR on SV1, AdjV3 cannot be detected as it is too far from SV1, 
and the sparsity issue of point cloud leads to failure of detection. Leveraging the LiDAR on SV2 
provides the possibility to detect AdjV3 for SV1.  
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Original map: © Google® Earth™. 
Modifications by FHWA (see 
Acknowledgments section). 

A. Google Earth view of freeway (route map).(15) 

 
Source: FHWA. 

B. Vector map. 
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Source: FHWA. 

C. Point cloud map developed for object detection and tracking of LiDAR data. 
Figure 22. Map. Visualization of test scenario, vector map, and object detection and 

tracking for a sample of the two-vehicle datasets in freeway scenario.  

Figure 23 shows a sample of data collected using the two SVs in a city environment. Figure 23-A 
is the view of Google Earth to visualize the city road scenario; the line overlaid on figure 23-A 
shows the trajectory of the SV, while an arrow shows the direction of travel. Figure 23-B 
visualizes the vector map created for the city road scenario, which has two lanes in the direction 
of travel, created in step 6 of the data-processing pipeline shown in figure 19.(15) Figure 23-C 
visualizes the object-detection results created during step 4 of the data-processing pipeline for 
the city road scenario with two lanes. In figure 23-C, one can see that the data-processing 
pipeline can perceive the AdjVs around SV1 and SV2. In figure 23-C, SV2 (green) does not have 
any vehicles in its sensor detection range, while SV1 (red) is able to detect four AdjVs (blue). 
These AdjVs and SVs in two lanes can be used to analyze the car-following behavior and 
lane-change behavior. 
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Original map: © 2022 Google® Earth™. Modifications by FHWA (see 
Acknowledgments section). 

A. Google Earth view of intersection (route view).(15) 

 
Source: FHWA. 

B. Vector map. 
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Source: FHWA. 

C. Point cloud map developed for object detection and tracking of LiDAR data. 
Figure 23. Map. Visualization of test scenario, vector map, and object detection and 

tracking created for a sample of the two-vehicle datasets in city road scenario.  

DATA VALIDATION 

The primary outputs of the data-processing pipeline include the detection of an object 
(i.e., AdjV), the relative distance between the object and the SV, the speed that the object is 
moving, and the acceleration of the object. This section discusses how the project team validated 
the outputs of the data-processing pipeline.  

Validation of Detection of an AdjV 

First, the project team evaluated the processed data for consistency with the collected raw 
dataset. The team completed the validation by finding the location of the SV, number of AdjVs, 
and the AdjVs’ relative position from the SV from the processed dataset. The ground truth of the 
data was established from the LiDAR point cloud obtained from the raw data. Front and rear 
camera data were used to visually confirm the number of surrounding vehicles and their position. 

Figure 24 graphs the lateral and longitudinal position of the AdjVs relative to the SVs by 
applying the data-processing pipeline to the raw data. The SV is represented in the plot by a 
square located at 0,0. AdjVs are represented on the plot by circles and labeled with the vehicle 
IDs. The plot provides information about the relative location of the AdjVs with respect to the 
SV. Figure 24 shows that four vehicles are within 55 m of the front of the SV and one vehicle 
within 10 m behind the SV.  
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Source: FHWA.  

Figure 24. Graph. AdjV positions. 

Figure 24 through figure 27 show how the position of the AdjVs relative to the SV can be 
validated using the forward-facing camera, rear-facing camera, and LiDAR point cloud, 
respectively.  

 
Source: FHWA.  

Figure 25. Photo. Front camera view. 
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Source: FHWA.  

Figure 26. Photo. Rear camera view. 

 
Source: FHWA.  

Figure 27. Illustration. Point cloud top view. 

As shown in figure 25, figure 26, and figure 27, the object-detection module of the data 
processing pipeline can properly identify the vehicles in the camera data. These results indicate 
that the object-detection algorithm can properly identify AdjVs in traffic using the SV’s LiDAR 
data.  
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Validation of AdjV Position 

In sensor validation testing completed under previous projects, the project team demonstrated 
that the LiDAR model installed on both SVs has good performance, meaning that the objects 
around the SV can be detected properly when the distance between the LiDAR and objects is 
smaller than 35–45 m.(36) When the distance between the LiDAR and detected objects is larger 
than 45 m, the quality of the data degrades due to the sparsity of the LiDAR point cloud (i.e., 
properly identifying objects in the sparse PCD is more difficult). This section seeks to 
demonstrate that the data-processing pipeline performs well when using data collected by the 
LiDAR unit when the distance between the AdjVs and SVs is at or below 45 m (approximately 
six to eight car lengths away).  

To verify the accuracy of the AdjV position produced by the data-processing pipeline, the project 
team conducted an experiment with SV1 and an AdjV under sunny weather conditions. The 
project team selected a case where one AdjV is following SV1 in a straight-line driving scenario 
at a gap of approximately 40 m. The project team selected this gap between the two vehicles as a 
worst-case scenario to validate the data-processing pipeline. The team was concerned that the 
sparse LiDAR PCD at large relative distances may lead to unstable bounding boxes and result in 
position error in the processed data. This experiment sought to demonstrate if the data-processing 
pipeline can successfully complete object detection with a sparse point cloud. The experimental 
design is shown in figure 28.  

 
Source: FHWA. 

Figure 28. Illustration. Trajectory verification scenario.  

In the experiment, one of the AdjVs is equipped with the same sensors as SV1. The GNSS/IMU 
system on this AdjV is RTK-corrected, which provides the ground truth pose information. 
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One can use the ground truth data collected using the GNSS/IMU systems to calculate the closest 
distance information. This distance can be directly compared to the 
“closest_distance_longitudinal” variable (gap between vehicles) from table 7 and table 11 
calculated with the data-processing pipeline. When calculating the gap between the AdjV and 
SV1 to analyze the car-following behavior, the error in the objects' position will be transferred to 
the vehicle gap and accordingly affect the behavior analysis. In other words, the accuracy of the 
vehicle gap also reflects the accuracy of the SV's trajectory.  

Figure 29 shows the results of the vehicle gap calculated using the data-processing pipeline 
between SV and AdjV1. In figure 29-A, the ground truth of the gap between the two vehicles is 
calculated from the RTK-aided GNSS/IMU system in both vehicles. This distance is represented 
by the dashed red line (ground truth) in figure 29-A. The vehicle gap computed by the position 
derived directly from the object tracking algorithm is shown in the solid blue line (Estimated) 
with small jumps. In figure 29-A, the car-following distance remains at around 40 m and the 
relative distance estimated by the data-processing pipeline follows the ground truth data 
reference well. Figure 29-B shows the relative distance error. Figure 29-B also shows that for 
most of the experiment, the error is within 1 m and the maximum vehicle gap error of the 
experiment is within 2 m. The results in figure 29 prove the effectiveness of the data-processing 
pipeline shown in figure 11 and figure 19.  

 
Source: FHWA. 

A. Vehicle gap between SV1 and AdjV1. 
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Source: FHWA. 

B. Vehicle gap error. 
Figure 29. Graphs. Relative distance between SV and AdjV and its error. 

Note that when the vehicles are more than 45 m away from the SV, the position error may be 
more significant due to limitations with the LiDAR sensor detection range (only a few point 
clouds from the LiDAR sensor fall on the objects, and this may lead to the bounding boxes error) 
based on the project team’s experience. However, the ultimate planned use of this dataset is to 
study the interactions between an ADAS-equipped SV and nonautomated AdjVs in traffic. Thus, 
AdjVs that are not sufficiently close to the SV (e.g., defined in this project as gaps between the 
subject and following vehicle more than 40 m, or six to eight car lengths away) are not 
necessarily of interest in car-following and lane-changing behavior analysis.  

When the objects are near the SV (defined as located within 40 m), figure 29 confirms that the 
estimated vehicle gap (“closest_distance_longitudinal”) error is smaller than 1 m. This meets the 
requirement of analyzing car-following or lane-change behavior and calibrating corresponding 
models. Thus, figure 29 validates the AdjV position and relative position data produced by the 
data-processing pipeline.  

Validation of AdjV Speed and Acceleration  

To rigorously validate the accuracy of the AdjV speed and acceleration, the project team 
conducted validation exercises based on a sample of two-vehicle datasets in both city road and 
highway conditions. In these scenarios, the ground truth data—including the distance headway 
(distance_adjv) between the SV and the AdjV and the speed and acceleration of the AdjV—were 
sourced from the RTK-aided GNSS/IMU systems installed on both SVs.  

In this validation exercise, the research team deliberately chose instances where one SV was near 
the other SV. This arrangement allowed one SV to detect and track the other SV. In essence, the 
project team utilized one of the SVs as an AdjV that can be detected by its counterpart. This 
method enabled the team to acquire ground truth data for one AdjV (collected with the other SV) 
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for validation purposes on real roads, differentiating this validation from the results in figure 29, 
obtained under proving-ground scenarios.  

The results from city road and highway scenarios are graphically represented in figure 30 and 
figure 31, respectively. The mean error and standard deviation of headway, speed, and 
acceleration can be found in table 16 and table 17.  

 
Source: FHWA. 
Note: This distance goes negative because the vehicles are in different lanes and used the distance_adjv. 

A. Distance headway between SV1 and SV2 (the instrumented AdjV that can be detected by 
SV1’s sensors). 

 
Source: FHWA. 

B. Distance headway error. 
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Source: FHWA. 

C. Speed of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 

 
Source: FHWA. 

D. Speed error of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 
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Source: FHWA. 

E. Acceleration of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 

 
Source: FHWA. 

F. Acceleration error of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 
Figure 30. Graphs. Results of distance headway, speed, and acceleration between SV1 and 

SV2 (instrumented AdjV). 
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Source: FHWA. 

A. Headway between SV1 and SV2 (the instrumented AdjV that can be detected by SV1’s 
sensors). 

 
Source: FHWA. 

B. Headway error. 
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Source: FHWA. 

C. Speed of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 

 
Source: FHWA. 

D. Speed error of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 

 
Source: FHWA. 
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E. Acceleration of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 

 
Source: FHWA. 

F. Acceleration error of SV2 (the instrumented AdjV that can be detected by SV1’s sensors). 
Figure 31. Graphs. Results of headway, speed, and acceleration between SV1 and the AdjV 

(SV2). 

City Road Scenario 

Figure 30-A was created by graphing the processed and ground truth distance headway 
(distance_adjv) between SV1 (operated as the SV) and SV2 (operated as the AdjV) data. The 
solid blue line is the distance headway between the two vehicles estimated by the 
data-processing algorithm, and the red dashed line is the ground truth headway data calculated 
by comparing the position of SV1 (obtained from the GNSS/IMU unit installed on SV1) and the 
position of SV2 (obtained from the GNSS/IMU unit installed on SV2). In this data sample, the 
headway between the two vehicles ranges between −1 and 60 m. Note that minus headway does 
not mean a collision but that the two vehicles are in different lanes (this distance goes negative 
because the vehicles are in different lanes and used the distance_adjv). Figure 30-A shows that 
the processed and ground truth headway data are very similar. Figure 30-B confirms that the 
error between the processed and ground truth headway data is mostly between ±1 m for the full 
data sample.  

Figure 30-C was created by graphing the processed and ground truth speed data for the AdjV 
(SV2). The solid blue line is the estimated speed data calculated by the data-processing 
algorithm and the red dashed line is the ground truth AdjV speed data obtained from the 
GNSS/IMU unit installed on SV2. In this data sample, the AdjV’s speed ranges between 0 and 
20 m/s. Figure 30-C shows that the processed and ground truth speed data for the AdjV are very 
similar. Figure 30-D confirms that the error between the processed and ground truth speed data is 
mostly between ±1 m/s for the full data sample. 

Finally, figure 30-E shows the processed AdjV acceleration data, derived using the ground truth 
velocity data (green dashed dotted line) and data-processing pipeline’s estimated velocity data 
smoothed with either the Kalman filter (solid blue line) or the FIR filter (dashed red line). Figure 
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30-E demonstrates that the ground truth data collected using sensors on SV2 is sufficiently 
similar to the acceleration data estimated using the data processing pipeline. Figure 30-F 
confirms the error between the ground truth and processed acceleration data is small, within 
±2 m/s2. 

Table 16. Mean error and standard deviation of headway, speed, and acceleration error 
(city scenario).  

Metric Mean Error Standard Deviation 
Distance headway error (m) 0.27 0.52 

Speed error (m/s) 0.03 0.28 
Acceleration FIR filter (m/s2) −0.06 0.45 

Acceleration Kalman filter (m/s2) −0.05 0.50 

These observations are further corroborated by the mean and standard deviation of headway, 
speed, and acceleration errors shown in table 16, which confirm the small error bounds described 
previously. 

Highway Scenario 

Figure 31-A was created by graphing the processed and ground truth distance headway between 
SV1 (operated as the SV) and SV2 (operated as the AdjV) data. The solid blue line is the 
distance headway between the two vehicles estimated by the data-processing algorithm, and the 
red dashed line is the ground truth headway data calculated by comparing the position of SV1 
(obtained from the GNSS/IMU unit installed on SV1) and the position of SV2 (obtained from the 
GNSS/IMU unit installed on SV2). In this sample, the headway between the two vehicles ranges 
between 0 and 60 m. Figure 31-A shows that the processed and ground truth headway data are 
very similar. Figure 31-B confirms that the error between the processed and ground truth 
headway data is mostly between ±2 m for the full data sample.  

Figure 31-C was created by graphing the processed and ground truth speed data for the AdjV 
(SV2). The solid blue line is the estimated speed data calculated by the data-processing 
algorithm, and the red dashed line is the ground truth AdjV speed data obtained from the 
GNSS/IMU unit installed on SV2. In this data sample, the speed of the AdjV ranges between 0 
and 25 m/s. Figure 31-C shows that the processed and ground truth speed data for the AdjV are 
very similar. Figure 31-D confirms that the error between the processed and ground truth speed 
data is mostly between ±1 m/s for the full data sample. 

Finally, figure 31-E shows the processed AdjV acceleration data, derived using the ground truth 
velocity data (green dashed dotted line) and data processing pipeline’s estimated velocity data 
smoothed with either the Kalman filter (solid blue line) or the FIR filter (dashed red line). Figure 
31-E demonstrates that the ground truth data collected using sensors on SV2 is sufficiently 
similar to the acceleration data estimated using the data processing pipeline. Figure 31-F 
confirms the error between the ground truth and processed acceleration data is small, within 
±2 m/s2. 
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Table 17. Mean error and standard deviation of headway, speed, and acceleration error 
(highway scenario).  

Metric Mean error Standard deviation 
Distance headway error (m) −0.06 0.79 

Speed error (m/s) −0.03 0.32 
Acceleration FIR filter (m/s2) 0.02 0.61 

Acceleration Kalman filter (m/s2) 0.02 0.65 

The mean and standard deviation of headway, speed, and acceleration errors, displayed in table 
17, further affirm the above error bounds. 

Key Takeaways from Data Validation Experiments  

Based on the results presented in figure 30 and figure 31, the estimated speed and acceleration 
have been validated under both city road and highway scenarios, provided the headway ranges 
between 0–60 m, and the speed fluctuates between 0–23 m/s. The FIR filter demonstrates 
marginally superior performance than the Kalman filter, as evidenced by a smaller standard 
deviation error. 

Despite figure 30 and figure 31 indicating that the AdjV can still be detected when the headway 
exceeds 45 m, the project team’s experience suggests that detection and tracking can be impacted 
by minor occlusions due to the sparsity of objects. Consequently, the project team recommends 
that users primarily use datasets where the headway remains within 45 m for information 
reliability. Beyond this range, users should exercise caution regarding the accuracy of the vehicle 
detection (which impacts the AdjV position, speed, and acceleration data—all calculated using 
the data processing pipeline).  

Important Notes About the Processed Data 

This subsection attempts to address questions that have been raised by project teams working 
with the datasets before they were made publicly available.  

• As discussed in step 6, the FIR filter used to filter the acceleration information requires 
proper initialization. In this case, if a high-speed AdjV is tracked by the SV, initializing 
the FIR filter properly is difficult, which will cause anomalies in the acceleration 
information. The project team did not artificially smooth these anomalies and suggests 
that future users pay attention to the anomalies and apply appropriate methods to process 
the acceleration or generate the acceleration based on the position and speed information 
provided in the processed CSVs.  

• The data collected through this project is posted online as two separate datasets: 
single-vehicle and two-vehicle deployments. These datasets were separated because the 
two datasets have a different number of columns (the team could collect more data types 
using multiple vehicles).(2,3)  
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• If a future user of the data plots the processed trajectories, the trajectories will appear to 
be discontinuous due to missing data. However, the SV’s position is only provided if an 
AdjV is detected. This decision was made to simplify how data was stored (every row is 
an instance where an AdjV is detected near the SV). If an AdjV is not detected, one can 
assume that the SV will continue to operate at its desired speed until a new AdjV is 
detected and impedes the SV’s path.  

• Explainable discrepancies exist from the distance, velocity, and acceleration in the 
processed dataset. 

o The distance_adjv and closest_distance_longitudinal in the processed dataset use 
slightly different references (vehicle centroids versus front to rear bumper, 
respectively). Please see table 7 and table 11. The use of different references will lead 
to a roughly fixed offset if comparing these two values. 

o Multiple velocities and accelerations can occur at the same time, the result of 
interpolating data from multiple AdjVs and running the data through the processing 
method detailed previously in the data processing pipeline section in this chapter. 
Because the SV’s position, velocity, and acceleration are all outputs of the processing 
method, very minimal differences in these variables can occur. These differences can 
be considered negligible when using the data, or the average can be taken of the 
variables.  
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CHAPTER 4. DATA MANAGEMENT PLAN 

This chapter outlines the project team’s data management plan (DMP) for the project. The DMP 
outlines the technical and management approaches, including the following:  

• Policies, technology, and mechanisms for capture, transmittal, storage, and archiving of
data collected for the duration of the project.

• Appropriate organizations, tools, and mechanisms for preserving the integrity of collected
datasets.

DATA FLOW 

Figure 32 is graphical representation of the data flow overview that the project team used from 
data generation to final archiving. This process ensured that all appropriate data generators and 
recipients were able to access data in a timely and secure manner. 

Source: FHWA.  
CP = check point; DS = data source; OC = operating condition; PL = project lead; Proc. PCs = processing 
computers; PSC = project subcontractor; SFTP = secure file transfer protocol. 

Figure 32. Flowchart: Data flow overviews. 

From the data flow perspective, data sources and collection methods are generalized and 
technologically agnostic. Data flow started at data generation when a data source (DS) was 
captured through a DAQ device during a testing activity for any operating condition (OC); the 
DAQ devices and the testing activities during specified operating conditions are described in 
chapter 2. An in-field data check was performed to ensure that data was appropriately captured. 
This initial data checkpoint was an in-field data verification to ensure that data collection devices 
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were appropriately recording information and that data sources appeared reasonable in 
magnitude, frequency, and expected behavior.  

Once data was captured through the appropriate DAQ device, the project team completed 
Transmit-1. Transmit-1 is the transfer of data from any DAQ device to the project lead’s (PL) 
storage servers. Once on the PL storage servers, the information was downloaded (Download-1) 
onto PL’s processing computers, where the data was checked to ensure consistency and initial 
exporting of the data to CSV began. The validation check, along with human spot check 
verification, was an automated data verification process to ensure that data was appropriately 
captured during any testing activity. When initial export activities were completed, the data in 
the form of raw CSVs and rosbags were uploaded back to the PL storage servers through 
Upload-1.  

From the PL storage servers, data were transferred through Transmit-2 to the PL cloud storage. 
Once raw data was uploaded to the PL cloud storage, the raw data was transferred through 
Transmit-3 to the project subcontractor (PSC) storage server.  

From this server, the PSC downloaded data (Download-2) for postprocessing according to the 
data-processing pipeline described in chapter 3. Once completed, postprocessed trajectory data 
was uploaded to the PSC storage servers (Upload-2), transferred back to the PL cloud storage 
through Transmit-3, and transferred from the PL cloud storage through Transmit-2 to the PL 
storage servers. At this point, PL completed the data validation checks described in chapter 3 and 
finalized data through checkpoint 1.  

With the data finalized, information was transferred through Transmit-4 and Transmit-5. 
Transmit-4 is the transfer of data from PL to the Federal Highway Administration (FHWA) 
through a cloud storage service for interim data use during the project. Transmit-5 is the end of 
project transmission from PL to the final data archiving sites. Transmit-5 includes the 
transmission of the final processed data to the ITS Joint Program Office’s ITS DataHub and 
transferring the raw and final processed data to the Office of Safety and Operation Research and 
Development’s Multidisciplinary Data Management System (MDMS) for internal use by 
FHWA.(37) 

The Data Transmission, Storage, and Backup section provides a technical description of the data 
transmission paths from data generation to final archiving. Additionally, this section covers the 
expected size of data generation efforts.  

DATA MANAGEMENT APPROACH 

The data management approach provides a high-level overview of how data was handled 
throughout the course of this project, including details of data standards and control policies that 
applied to data generated for this project. Furthermore, this section details the specific 
transmission paths and technical details of the data storage mediums planned throughout the 
project. Finally, the data management approach talks about retention policies both during and at 
the conclusion of the project. 
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Data Description 

The primary outcome of this project is the development of raw sensor data, processed trajectory 
data, and appropriate metadata that enables researchers to better understand the impacts of 
ADAS-equipped vehicles on transportation system performance.  

The published datasets contain processed vehicle trajectory information for both the data 
collection SV(s) (see table 8, table 12, and table 13) and surrounding AdjVs (see table 7 and 
table 11) as the primary DS. This primary DS is supplemented with additional information such 
as infrastructure conditions or environmental sensors (see table 9 and table 14) to further 
describe the operating conditions in which the raw data used to extract processed trajectories 
were collected. In addition, extra details on each run have been captured in metadata variables 
for the each of the two deployments (see table 10 and table 15). 

There is a noted lack of standards that dictate the format of CAV trajectory datasets and 
variables. To inform this decision, the project team completed a review of selected publicly 
available datasets. The objective was to identify best practices and relevant standards for data 
variables within similar datasets. The project team reviewed the standards and segregated the 
data into two levels: the run-level information and day-level information. The run-level 
information contained direction of travel, run number, scenarios of interest, and following 
distance. The day-level information contained start and end point of the route, distance traveled, 
road condition, and speed limit. As part of this analysis, the project team also looked at past 
USDOT-published open-source data such as the Next-Generation Simulation (NGSIM) dataset 
to understand the nature (format, interoperability) of published data variables.(38) 

Data Transmission, Storage, and Backup 

This section provides a technical description of the data transmission paths from data generation 
to final archiving. Along the transmission paths, technical descriptions of the data storage 
mechanisms are presented, as well as data resiliency measures. As an inherent part of data 
storage considerations, the expected size of data generation efforts is also discussed.  

As shown in figure 32, data transmission started at the beginning of the data flow process with 
the generation of data during a testing activity. Several data sources might flow to necessary 
DAQ devices. Once captured by the appropriate DAQ device, the first data checkpoint is 
reached. This initial data checkpoint was an in-field data verification to ensure that data 
collection devices were appropriately recording information and that data sources appeared 
reasonable in magnitude, frequency, and expected behavior. This data check is the lowest level 
check to ensure that data collection methods are meeting the DCP needs. 

After completion of a testing activity, all collected data resided on local storage mediums that 
were deployed in-field. The storage medium will depend on the collection method; however, in 
nearly all cases, the mediums were either nonvolatile microsecure digital cards (720 Mbps) or a 
solid-state drive (SSD) with NOR-AND (NAND) flash nonvolatile memory (6 Gbps). Upon 
completion of a testing activity, data were transferred through Transmit-1 from the local storage 
medium to a combination of the PL’s onsite storage servers and cloud storage servers. The 
transfer occurred onsite at the PL’s facility. Transmit-1 occurred via one or a combination of 
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three transmission paths: Ethernet®/fiber (1 Gbps), USB 3.0 (5 Gbps), or SATA dII (6 Gbps). 
The transmission path was dependent on the storage medium. As a result of Transmit-1, data was 
transferred from local storage to the PL’s local storage servers. The PL’s local storage servers 
utilize three data storage rack-mounted server devices connected via 1-Gbps Ethernet 
connections. The data storage servers are a hybrid combination of SSDs and hard disk drives. In 
this manner, the storage arrays are designed to handle both primary and secondary flash 
workloads. The data storage server’s storage devices are controlled by load-balancing software 
and load-balanced across the three blades to ensure even loading.  

The local servers are located in a secured location with restricted access, thus providing physical 
security. Virtual access is controlled through permissions and right policies defined by the PL’s 
information technology (IT) department. The servers feature end-point protection and change 
management notifications to provide additional data protection. The local storage server’s 
operating system (OS) supports a Triple+ parity Redundant Array of Independent Disks (RAID) 
schema that tolerates three simultaneous drive failures per bank, thus achieving data resiliency 
through RAID in the face of potential storage medium failure. The data are also backed up to a 
cloud storage location daily with hourly incremental backups. Should any single drive fail, RAID 
and cloud storage backups ensure that data is not lost. Ethernet/fiber (1 Gbps) was used to 
support transmission to offsite cloud storage locations. The cloud storage servers have multiple 
backup methods that occur on data storage change with multiple server centers located 
throughout the United States. Cloud server centers are physically secured sites, and a security 
information and event management (SIEM) tool monitors the offsite storage to provide virtual 
access security. 

Once data were securely on the onsite servers, project team members onsite or with remote-
access privileges could access those servers to perform a second data validation check and begin 
data postprocessing. The validation check, along with human spot check verification, was an 
automated process of data verification to ensure that data was appropriately captured during any 
testing activity. The project team developed automated validation checks. The validation method 
used was dependent on the data stream being validated. This validation took on several methods 
to be both efficient and thorough. The data for SV1 were collected using a DAQ system and for 
SV2 using ROS node. The DAQ’s diagnostic tools were used to check data as it was coming in 
to ensure that sensors were active and collecting at the expected frequency. When the data were 
exported from the DAQ, the project team inspected the size of the files to ensure the expected 
volume of data were received. Once on the processing computers, data were further validated by 
manually ensuring all sensor data came in at the expected rate and that all the sensor data were 
synchronized within the vehicle.  

After validation, appropriate datasets were transferred to the PL’s cloud storage site. Dataset 
transmission to the PL’s cloud storage site is Transmit-2 in figure 32. Due to the large nature of 
this data collection effort and the dataset sizes, cloud storage was the most appropriate method of 
data transfer for Transmit-2. The PL hosted the cloud storage site. The server hosting the cloud 
storage site was a rack-mounted storage device with the same properties and protection 
enumerated previous in this section for the PL’s storage servers (where the data was held after 
Transmit-1). Cloud storage access was controlled by the same IT control policies previously 
enumerated. Access was limited to PL approved parties, which required users to set up a 
controlled-access account through the IT department. This required users to submit a valid email 
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address/username for verification and required users to create a password. User read/write 
policies are controlled by the PL. Account information was stored onsite on the PL’s storage 
server. Cloud storage access was enabled through a 1-Gbps Ethernet connection.  

With the raw datasets on the cloud storage, the PSC could access data through Transmit-3. The 
PSC downloaded information onto one of its servers, which feature 1-Gpbs Ethernet 
connections. The PSC’s servers currently utilize a RAID 0 construction with data redundancy 
through a backup to a cloud location. The backup process is automated and occurs daily. The 
PSC servers are physically onsite in a secured location with restricted access. Virtual access is 
controlled through the PSC’s IT department that dictates controlled permissions and read/write 
access policies. The servers also feature end-point protection providing additional data security. 
With the raw datasets secured onto the PSC’s storage servers, the PSC started postprocessing 
data according to the data-processing pipeline described in chapter 3. Once the data was 
postprocessed, the information was uploaded to the cloud storage through Transmit-3. 

Next, the PL downloaded postprocessed data from the cloud storage onto the PL’s storage 
servers through Transmit-2. Once the raw and processed datasets were on the PL’s storage 
servers, the PL performed final postprocessing and validation checks. These checks were aimed 
at validating the processed data against the raw data and ensuring that consistent information was 
represented in both the datasets, as discussed in the data validation section of chapter 3.  

With these checks completed, the team provided the information to FHWA and approved parties 
on an interim basis during the course of the project and final dataset transfer. Transmit-4 was the 
transmission path for FHWA’s interim data access and was achieved via a secured web portal. A 
secured web portal is a cloud server offered commercially with appropriate data redundancies 
and data governance. The PL’s IT department set up a restricted secured web portal that is 
limited to 100 Gb of storage and no more than 30,000 files. The PL has a SIEM tool for internet 
security, a next-generation firewall, server end-point protection, and server change management 
notifications.  

Transmit-5 is the end of project transmission where raw and processed datasets were archived. 
Two transmissions occurred through Transmit-5: 

• The first data transfer through Transmit-5 contained all raw and processed data.
Descriptive metadata with title, keywords, and context about the raw and final processed
datasets was uploaded with each dataset. These datasets contain personally identifiable
information (PII) and require the appropriate protections of data containing sensitive
information. These data are being stored as part of the MDMS in the Office of Safety and
Operations Research and Development at the Turner-Fairbank Highway Research Center
for internal use.

• The second transfer of data was from the PL’s storage servers to the ITS DataHub.(37)

This second transmission contained metadata and the processed datasets. This does not
contain raw datasets nor any information containing PII. Providing these data allows the
easiest and widest access of data to all potential users.

The final checkpoint verifies successful data transmission to the ITS DataHub and MDMS.(37) 
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Data Rights and Controlled Access 

This section describes the project team’s policies for ownership, rights, and controlled access of 
data collected during the project. Providing appropriate data access to safeguard data is a key 
aspect of data stewardship. In accordance with the OPEN Government Data Act, datasets must 
be made publicly accessible unless specific concerns require the data to have controlled 
access.(39) 

Creative Commons Zero License for Published Datasets 

The project team assigned an open license to datasets collected under this Intelligent 
Transportation Systems Joint Program Office (ITS/JPO)-funded data collection effort. The open 
license encourages reuse of datasets in the public domain without any restrictions concerning 
their reuse, attribution, or copyrights. All final published datasets uploaded to ITS/JPO Public 
Repository are governed under the Creative Commons Zero (CC0) license.(40) 

By using a CC0 License, the project team and the USDOT/ITS/JPO/FHWA organization choose 
to opt out of any copyright and related or neighboring rights over these datasets. This choice 
enables the project team to explicitly declare our “No Rights Reserved” stance over these 
datasets. This approach allows the creators of the database to waive all copyright and related 
rights for these databases to the fullest extent allowed by law.(40) 

Controlled Access and Ownership of Data and Datasets 

Controlled access is defined as restricting access to certain groups of persons due to data 
containing PII, information that threatens the privacy of an individual or group, information that 
threatens the confidentiality of a person or group, or information that contains confidential 
business information. Data containing PII must be handled securely. Because video data was 
recorded outside of the vehicle, no guarantee exists that PII was not collected and therefore raw 
data with the video is considered PII.  

The project team, in collaboration with FHWA, determined controlled-access policies applicable 
to the data acquired during this project. Table 18 outlines the ownership of data, 
controlled-access policies, and reasons for controlled-access restrictions on data at various stages 
of the lifecycle.  

Table 18. Data controlled access and ownership overview. 

Step Storage 
Location Type of Data Access Controlled 

Access 

Reasons for 
Controlled 

Access 
1 DAQ Raw data Project lead Yes Raw data, PII 

2 Storage 
server Raw data Project lead Yes Raw data, PII 

3 Processing 
PC 

Sanity check 
routines, raw 

data 
Project lead Yes Raw data, PII 
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Step Storage 
Location Type of Data Access Controlled 

Access 

Reasons for 
Controlled 

Access 

4 Storage 
server Raw data Project lead Yes Raw data, PII 

5 Cloud storage Validated raw 
data 

Project team, 
FHWA, FHWA-
approved auditor 

Yes Raw data, PII 

6 Subcontractor 
storage server 

Validated raw 
data 

Project 
subcontractor Yes Raw data, PII 

7 
Subcontractor 

processing 
PC 

Validated raw 
and processed 

data 
Project lead Yes Shared space 

with raw data 

8 Cloud storage Processed Data 
for Review 

PL, FHWA, 
FHWA-approved 

auditor 
Yes Shared space 

with raw data 

9 ITS DataHub 
Processed 

Datasets with no 
PII 

FHWA No — 

10 

Turner-
Fairbank 
Highway 
Research 

Center 

Processed Data 
Raw Data with 

PII 

FHWA-approved 
users Yes PII 

— No data. 

FHWA/ITS/JPO Public Storage Solution 

The project team and FHWA decided to archive the final processed data on the ITS DataHub. 
Data published on the ITS DataHub do not contain sensitive information. The raw data, which 
contains sensitive information, will be stored as part of the MDMS in the Office of Safety and 
Operations Research and Development at the Turner-Fairbank Highway Research Center. This 
secondary storage location will contain the entirety of datasets generated during this project, 
including both raw and processed data. The authorized access to the cloud storage was granted 
based on request from FHWA to different organizations.  

Data Size 

Table 19 shows data size by the data collection rate. Modification to use LiDAR on both vehicles 
means that the data collected per hour is nearly the same between SV1 and SV2. A total of 
around 10 TB of data was collected. 
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Table 19. Hourly data capture rate. 

Data Capture Unit Recorded Data 
Rate 

Data collection vehicle 
Vehicle location/orientation, motion, control input, 

and other parameters 
kB/s 380 MB/h 

Three video feeds at 720 p 10 Hz, H.264 
compression GB/h 21 GB/h 

LiDAR point cloud GB/h 48 GB/h 
Total data/h GB/h 69.38 GB/h 

At project completion, the team uploaded two CSV files to the ITS/JPO DataHub containing the 
final processed datasets available for public use in accordance with Creative Commons 
Zero:(37,40) 

• Single-SV operation:(2) 
o CSV size: 3.3 GB. 
o Number of instances (rows): 4,169,447 
o Number of data collection runs: 215. 
o Number of hours of collected data: 120.  

• Two-SV operation:(3) 
o CSV size: 2.2 GB. 
o Number of instances (rows): 2,530,154. 
o Number of data collection runs: 68. 
o Number of hours of collected data: 24.  

Note that an instance is an observation of an SV and an AdjV at a specific time step. 

Data Retention, Archiving, and Maintenance 

Data retention, maintenance, and archiving strategy is divided into two distinct periods: during 
the project and after the project concluded. 

For the duration of the project, data existed in numerous places at once depending on the current 
stage of the project (see figure 32); however, the PL maintains copies of the original raw data 
stored and backed up on the onsite servers. This ensures that data will always be available should 
any storage medium fail along the defined transmission paths. After the project concluded, data 
was transferred to the final data storage locations depending on whether it is protected or 
publicly available data.  

The onsite data storage servers have data resiliency features that attempt to minimize data loss. 
The data storage servers’ data resiliency features are specified in the Data Transmission, Storage, 
and Backup section of this report. In addition to the built-in features of the data storage servers, 
the PL utilized cloud services to back up data daily with incremental hourly backups.  
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CHAPTER 5: KEY CONCLUSIONS FROM THE PROJECT 

This project successfully collected data on ADAS-equipped vehicles with SAE Level 2 partial 
driving automation capabilities in naturalistic traffic. The project’s goal was to create a dataset 
containing trajectories for an instrumented ADAS-equipped vehicle with SAE Level 2 partial 
driving automation capabilities (SV) and all AdjVs that were perceived by the sensors on the 
ADAS-equipped vehicles in naturalistic traffic. This data collection effort used both a discreet 
production ADAS-equipped vehicle and readily identifiable ADAS-equipped vehicles where the 
sensor stack is visible to AdjVs. The team collected the dataset under diverse road and traffic 
conditions with a broad spectrum of roadway types, roadway conditions, traffic densities, and 
speed limits at locations around Columbus, OH. The project team hopes that this dataset will 
enable researchers to characterize and model the interaction between ADAS-equipped vehicles 
and their driving environment, which includes other road users. Ultimately, this effort will 
support an improved understanding of how ADAS-equipped vehicles and how driver perception 
of a sensor stack can impact transportation system performance.  

Lessons Learned 

Several lessons were learned over the course of the project that could enable improved data 
collection and processing on future projects.  

Data Collection Lessons 

First, the research team knew that challenges would exist for detecting and tracking objects more 
than 45 m away from the LiDAR unit, given the sparseness of the LiDAR point cloud produced 
for those objects. The team did not anticipate that adding a second data collection vehicle 
(originally part of the test plan to evaluate how drivers responded to two ADAS-equipped 
vehicles instead of just a single vehicle in the traffic stream) would significantly improve the 
data quality and AdjV detection range by providing a denser PCD. In addition to the improved 
range, knowing the precise location of a second vehicle provided a straightforward method for 
validating the processed data against ground truth, raw data. Thus, in future data collection 
efforts, research teams may wish to consider multiple vehicle deployments to increase the 
amount of data they are collecting for processing. 

Second, the research team collected forward- and rear-facing camera footage but found the 
footage was not a reliable data source due to the poor quality of some of the video data, 
particularly overexposed video data. The team adjusted the camera after the initial data sample 
was collected to improve the quality of the data produced. However, the research team ultimately 
decided to develop a data-processing pipeline that did not use the camera data as an input 
because of the challenges in working with the over exposure of the video data. In addition, the 
team needed to frequently extrinsically calibrate cameras and other sensors, such as LiDAR, 
when the orientation of the camera changed, which is another challenge when collecting real-
world camera data and fusing it with other sensors. Thus, processing any data collected during 
rain events was challenging. The team found that the LiDAR point cloud data was significantly 
impacted by the rain, making the collected data virtually impossible to process and forced the 
team to abandon efforts to process any raw collected during inclement weather. Choosing a 
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combination of sensors that perform well under all the conditions in data collection, such as 
under different lighting and weather conditions, would improve future collected dataset.  

Finally, the research team used two video file formats for the data collection. This decision 
required the team to take additional time to convert the raw data files to a consistent format with 
further processing to acquire the required parameters. The team was able to modify the settings 
in one of the DAQ systems to eventually collect all video data in the same format, saving a lot of 
time. Therefore, ensuring the data recoding file formats are consistent throughout the 
deployments enables more efficiency.  

Data Processing Lessons  

Exposure-related data collection issues aside, another way the camera data could have been more 
useful is if more were known about its characteristics, specifically in relation to the LiDAR at the 
start of the project, enabling sensor fusion algorithms to be available. More thorough 
documentation of the relationship between sensors (i.e., extrinsic and intrinsic sensor calibration) 
would have enabled the team to apply more diverse algorithms to the data. Some of these data 
were collected partway through the project to enable the postprocessing described in chapter 3. 
The project team recommends both calibrating each sensor and documenting the sensor extrinsic 
and intrinsic characteristics and the sensor’s relationship to the entire sensor stack (even if the 
information is not initially anticipated to be used in the algorithm), particularly at the start of the 
project. This documentation will enable more fluid changes to the processing pipeline once data 
starts coming in and a more algorithm agnostic dataset that can enable more research in the 
future.  

Beta Users of the Data 

To increase the usability of the data, a few internal teams accessed this dataset before it was 
posted online to help document potential pain points in understanding the processed data, which 
significantly improved the data’s documentation.(2,3) This section summarizes some ongoing and 
recently completed research efforts using the central Ohio ADAS datasets. 

The methodology developed for data collection and processing has been used in two projects by 
the data collection and processing team. First, the lessons learned by this project improved future 
data collection efforts on an ADS grant project, funded by the Federal Motor Carrier Safety 
Administration. In earlier stages of that project, the project team was able to build on the 
principles of this project by enabling SV2 to use HD maps in conjunction with the automation 
software installed on the vehicle to fully navigate on the road (with safety driver supervision). 
This project aided in providing a better upfront collection of sensor characterization and 
calibration from a system level and DCP. The success of the multiple vehicle deployment has led 
to the team prioritizing using multiple (two or more) vehicles on the road at the same time to 
enable improved data analysis and verification (a lesson learned from this project).  

Second, the project team has taken the raw data from this project and annotated the LiDAR data 
with different types of road users such as vehicles, pedestrians, and lane markings for 
machine learning model training. The team also benchmarked several cooperative LiDAR-based 
object-detection algorithms from early fusion to late fusion.(41) 
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Additionally, a separate FHWA project team used the data collected by this project to develop a 
multivariate piecewise linear model (MPL) to capture the ADAS-equipped vehicle’s ACC 
behaviors. The project team compared the performance of the MPL model with a traditional 
linear model and a nonlinear model. The velocity profiles of the real SV and simulation data 
indicate that the MPL model has the best performance, particularly in the crest and trough 
regions.(42) 

Future Uses of the Data 

Researchers can use the data generated in this study in numerous ways including, but not limited 
to, the following ideas proposed in chapter 1: 

• Are adjacent drivers (i.e., drivers that are interacting with the instrumented 
ADAS-equipped vehicles whose behavior is captured through the instrumented vehicle's 
sensor stack) altering their driving behavior (e.g., following distance, gap acceptance) 
when interacting with ADAS-equipped vehicle compared to their baseline behavior 
interacting with other manually driven vehicles in traffic? The database file contains 
trajectories for both the SVs and AdjVs (e.g., time series position, speed, and acceleration 
data). Thus, researchers can use these data to study the effect of the ADAS-equipped SV 
on the driving behavior of the nonautomated AdjVs.  

• Are the behavioral changes of nonautomated AdjVs due to the behavior changes 
associated with the ADAS-equipped vehicle behavior (e.g., more consistent following 
distance; larger headways), or are drivers altering their behavior due to the appearance of 
the ADAS-equipped vehicle (e.g., visibility of sensor suite)? The type_of_vehicle 
metadata column records whether the SV in a specific row is being operated as a 
D-ADAS or an RI-ADAS-equipped vehicle. Thus, future users of this dataset can 
compare how traffic flow is affected when drivers may perceive that they are near 
vehicles with advanced capabilities.  

• How does SV operation impact traffic flow differently than multivehicle strings? The 
data are stored in separate single- and two-vehicle data collection files, enabling future 
research into how multiple vehicles with conspicuous sensor stacks may affect traffic 
flow. Please remember that although SV2 was an RI-ADAS, it was operated as an SAE 
Level 0 vehicle with no ADAS features used for driving assistance due to limitations with 
the map data.  

• What is the impact of driving environment (e.g., freeway versus arterial; clear roads 
versus wet roads) on ADAS performance? The data were collected on both dry and wet 
roadways, allowing for analysis of traffic patterns based on environmental conditions. As 
discussed in the lessons learned section, the only adverse weather conditions that could 
be processed were wet pavements (after rain had ceased) due to challenges with 
processing LiDAR data during rain events. The metadata columns collected for each 
instance of the data should enable researchers to filter the data according to their specific 
research questions regarding the impact of driving environment on ADAS-equipped 
vehicle performance and AdjV behavior.  
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Future Research 

This study’s conclusion leaves several areas to be further explored. First, this study was limited 
by the technology available at the time of data collection, which is why the project team 
collected all data with SAE Level 2 ADAS-equipped vehicles. With advancing technology, data 
collection efforts in the future may be performed using ADS (SAE Levels 3–5).(1) 

In addition, this project was unable to successfully capture data using CVs, despite efforts by the 
team to collect data in central Ohio, which has an increased penetration rate of CV and 
infrastructure technology.(43,44) In future data collection efforts, teams should consider designing 
data collection efforts to capture the impact of CV, connected ADAS-equipped vehicles, and 
connected ADS-equipped vehicles on traffic flow and AdjV behavior.
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