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ABSTRACT 

Most road fatalities are caused by human error. To help mitigate this issue and enhance overall 

transportation safety, companies are turning to advanced driver assistance systems and 

autonomous vehicle development. Perception, a key module of these systems, mostly uses light 

detection and ranging (LiDAR) sensors and enables object detection and environmental mapping. 

Extensive research on the use of LiDAR for autonomous driving has been documented in the 

literature. Yet still, several researchers and practitioners have advocated continued investigation 

of LiDAR placement on autonomous vehicles. To address this research need, this thesis begins 

with a comprehensive review of sensor technologies – camera, radio detection and ranging, global 

positioning system, and inertial measurement units – and exploring their strengths and limitations. 

Next, the thesis developed a methodological multiple criteria framework and implemented it in 

LiDAR placement optimization. Given the numerous criteria and placement alternatives associated 

with LiDAR placement, multi-criteria decision analysis (MCDA) was identified as an effective 

tool for LiDAR placement. MCDA has been applied to some extent in decision making regarding 

autonomous vehicle development. However, its application in LiDAR placement optimization 

remains unexplored. In evaluating the LiDAR placement alternatives, the research first established 

the placement alternatives and then developed a diverse set of criteria – point density, blind spot 

regions, sensor cost, power consumption, sensor redundancy, ease of installation, and aesthetics. 

The data collection methods included CARLA simulator, sensor datasheets, and questionnaire 

surveys. The relative importance among the evaluation criteria was established using weighting 

approaches such as respondent-assigned weighting, equal weighting, and randomly generated 

weighting. Then, to standardize the different measurement units, scaling was carried out. Finally, 

the weighted and scaled criteria measures were amalgamated to obtain the overall evaluation score 

for each alternative LiDAR placement design. This enabled ranking of the placement designs and 

identification of the best and worst performing designs. Hence, the optimization method used is 

the enumeration technique. The findings of this study serve as a reference for future similar efforts 

that seek to optimize LiDAR placements based on select criteria. Further, it is expected that the 

thesis’s framework will contribute to enhanced understanding of the overall impact of LiDAR 

placement on autonomous vehicles, thus, enabling the cost-effective design of their placement and, 

ultimately, improving AV operational outcomes including traffic safety. 
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1.1 Study Background 

Safety is an essential aspect of any transportation system and continues to be a critical issue in 

current times. Road traffic accidents lead to significant loss of life and cause injuries to millions 

of people annually. According to a recent technical report published by the National Highway 

Traffic Safety Administration (NHTSA), the number of people killed in traffic accidents involving 

motor vehicles in 2021 was 10.5% higher than the number recorded in 2020. The vast majority of 

fatalities are caused by human error such as excessive speeding, drinking, and driving, and failing 

to wear seat belts (NHTSA, 2021). 

In addition to safety concerns, transportation systems globally face significant challenges 

related to congestion. Rapid urbanization and increasing populations have led to a surge in the 

number of vehicles on the roads, which has resulted in traffic congestion predominantly in urban 

areas (USDOT, 2022). Such congestion not only causes commuter delays and frustration but also 

contributes to increased fuel consumption and air pollution (FHWA, 2005). 

As travel amounts increase, the existing infrastructure often struggles to cope with this increase in 

demand. It is often the case that existing roads were designed to accommodate contemporaneous 

traffic volumes. This leads to insufficient capacity, which hinders efficient transportation 

operations and increases the risk of accidents (US EPA, 2022). 

Transportation is also a major contributor to greenhouse gas emissions, air pollution, and 

climate change. Fossil fuel-powered vehicles emit carbon dioxide and other harmful pollutants 

that have a significant impact on air quality and contribute to global warming. The need to reduce 

the transportation sector's environmental footprint is a pressing concern for both policymakers and 

the public (US EPA, 2015). 

Nonetheless, access to reliable and efficient transportation is crucial for socioeconomic 

development and individual well-being. However, certain populations, such as low-income 

communities and people with disabilities, often face challenges accessing transportation services. 

Lack of transportation options can limit access to education, employment, healthcare, and essential 

goods and services, thus exacerbating existing social and economic disparities (Morency et al., 

2012). 
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As a result, transportation engineers, stakeholders, and policy makers continue to seek 

solutions to persistent problems concerning road safety, congestion, environmental sustainability, 

and equity. They might also pave the way for a more inclusive and equitable transportation system, 

ensuring that all individuals, regardless of their backgrounds or abilities, have access to vital 

services and opportunities. 

1.2 Study Motivation 

The automotive industry, an important stakeholder in transportation development, has been 

working on a variety of advanced driver assistance systems (ADAS) to address transportation 

safety and mobility concerns. ADAS integrates diverse subsystems within a vehicle to facilitate 

driver assistance through the implementation of various functions. Contemporary automotive 

technology has allowed the integration of particular features (such as blind spot recognition, lane 

departure warnings, adaptive cruise control, and automatic emergency braking) into operational 

vehicles. Common sensor types used in ADAS include cameras, light detection and ranging 

(LiDAR), radar, and ultrasonic sensors. ADAS continue to advance and are expected to direct the 

eventual realization of autonomous driving. 

As defined by the Society for Automotive Engineers (SAE), vehicles that have no ADAS 

are considered level 0 vehicles, whereas vehicles that have some form of driver assistance are 

considered to be level 1 vehicles (SAE, 2021; Figure 1.1). 

2 

3 

4 

The car can drive in any situation without a driver. No 
human attention is required. 

Under some conditions, the car can drive itself. Manual 
override if necessary. 

In certain conditions, the car can drive itself and make informed 
decisions, but the driver must be ready to take over. 

One or more ADAS functions like steering, acceleration, or braking is 
available. Driver must be at alert to take control. 

The car has basic assistive functions like cruise control or lane keeping. Driver 
must be at alert to take control. 

Driver is responsible for all driving tasks at all times. 
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Automation 
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Figure 1.1: Autonomous Driving Levels according to SAE (SAE, 2021) 
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Accordingly, the progression from one level of autonomy to the next necessitates additional 

study and development in a variety of fields, including sensor technologies (Kukkala et al., 2018). 

LiDAR is an important sensor in ADAS and is crucial for the development of autonomous driving 

systems and pedestrian and passenger safety. The vehicle’s onboard computer uses data from the 

LiDAR sensor to make real-time judgments to safely navigate the roadway. Any error or 

malfunction in the LiDAR sensors could result in hazardous situations, thus, underscoring the 

importance of research that improves LiDAR technology. 

As the development of autonomous vehicles (AVs) progresses, considerable difficulties in 

the technology and regulations related to testing and deployment have yet to be overcome. Even 

though AVs have the potential to improve road safety by eliminating human driving error (Curto 

et al., 2021; Guo et al., 2021; Shetty et al., 2021), it is extremely important to ensure that they are 

thoroughly tested and validated before such vehicles are allowed on public roads. This testing also 

includes evaluating the performance of the various sensors that provide the vehicle with some level 

of autonomy. 

To this end, this thesis is motivated by the potential benefits that AVs could contribute to 

road users and society in general. First, AVs could transform transportation by drastically reducing 

the number of accidents and fatalities that occur on the roads. Combs et al. (2019) confirmed that 

AVs could minimize the number of pedestrian deaths and injuries. Human error has been identified 

as one of the leading causes of accidents (NHTSA, 2020), and AVs can remove or reduce the 

element of human error (NHTSA, 2021), thus, significantly impacting the number of traffic 

accidents. In addition to enhancing safety, AVs also reduce fuel consumption and carbon emissions 

and other environmental threats (Szűcs & Hézer, 2022). 

Furthermore, AVs could yield significant benefits for a broad spectrum of travelers and 

road users in terms of health and overall quality of life. AVs facilitate travel for people who are 

unable to drive a car for reasons such as old age or physical disability. In addition, passengers in 

AVs are also able to engage in other activities during travel, adding to the convenience and 

enjoyment of their journeys. As a result, AVs will have a beneficial impact on the overall quality 

of life of many people (Russell, 2015; Sundararajan et al., 2019). 

Equally, the value of travel time may change in the prospective era of AVs. Zhong et al. 

(2020) investigated how consumers valued their journey time when traveling in AVs and sharing 

AVs compared to traditional automobiles. According to their findings, AVs and sharing AVs 
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potentially lowered the value of commuting travel time less when compared to human-driven 

vehicles (HDVs). The impact on passengers was shown to be less substantial than the impact on 

drivers. The study also found that the effect on the value of travel time for drivers differed between 

cities, suburbs, and rural areas, with the most significant drop occurring in the suburbs. 

Finally, overall, AVs could provide significant advantages and economic benefits for the 

U.S. economy of up to approximately US$450 billion per year (Fagnant & Kockelman, 2015). 

This immense expected benefit will be attributable to a reduction in the number of accidents, a 

reduction in the amount of parking space required (Aria et al., 2016; Milakis et al., 2017; Wu et 

al., 2021), a reduction in traffic congestion, and increased passenger and freight mobility. Figure 

1.2 presents the possibilities of AVs in terms of their potential benefits to society, road users, and 

travelers. 

Safety 

Improved 
Quality of 

Life 

Reduced 
travel time 

Accessibility 

Reduced 
Traffic 

Congestion 

Economic 
Benefits 

Reduced 
Parking 
Space 

Increased 
Mobility 

Reduced 
Carbon 

emissions 

Figure 1.2: Promises of AVs 

Although AVs are expected to yield all these potential benefits, there are still many issues 

that need to be resolved before they reach full deployment. One of the most critical problems is to 

ensure that the AV sensing technology (such as LiDAR) is reliable. Other obstacles include 
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inadequate infrastructure, lack of user trust, immature or untested automated driving technology, 

uncertain demand, and lagging policy and regulations (Labi & Sinha, 2022). However, irrespective 

of these difficulties, the future of AVs appears promising. In the coming years, AV technology is 

expected to continue improving. If this improvement occurs, it may expedite the deployment of 

AVs on public roads. 

1.3 Study Objectives 

The continued development and operational success of Autonomous Vehicles (AVs) will depend 

on their ability to perform efficiently and safely. Despite significant progress in research towards 

improving various aspects of AV development, there still remain critical issues that need to be 

addressed. Therefore, further research is required to identify and tackle these issues, with the 

ultimate goal of enhancing AV performance. 

One critical component for the development of AVs is obstacle detection and mapping of 

the roadway environment. Companies use different approaches for this, including placement of 

LiDAR sensors on their AVs. However, the impact of these placements on AV perception is not 

well understood. This inadequate insight poses a significant challenge to the development of AVs 

and ultimately, impairs safe deployment of AVs on roads. 

For that reason, this research focuses on LiDAR placement optimization using a multi-

criteria decision analysis approach. As such, the objectives of this thesis consist of the following: 

1) To conduct a comprehensive review of different sensor technologies for AVs, including 

LiDAR, radar, and cameras. This review is expected to facilitate identification of the 

strengths and weaknesses of each technology and their potential for improving AV 

performance. 

2) To perform an MCDA to systematically evaluate and compare the performance of 

alternative LiDAR placement configurations. 

3) To investigate the effects of different weights on the analysis outcome. 

The findings of this study are expected to contribute to a better understanding of the impacts 

of AV LiDAR placement. This knowledge will prove invaluable in the development of more 

reliable AVs and ultimately contribute to increased road safety. 

This research will also help enhance vehicle reliability and provide engineers with the 

information needed to design more robust LiDAR systems or develop robust algorithms to ensure 
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the reliable operation and better performance of AVs. Doing so will ultimately pave the way for 

the widespread adoption of AVs, making transportation safer, more efficient, and more convenient 

for all. 

1.4 Scope of the Study 

1) Sensor type: In contrast to the array of sensors used in AVs, including cameras, radar, inertial 

measurement units (IMUs), ultrasonic sensors, and GPS. However, this thesis focuses on 

LiDAR technology. The rationale for this focus lies in the unique capabilities and advantages 

offered by LiDAR in terms of high-precision 3D mapping, environmental perception, and 

obstacle detection. 

2) Simulation environment: To facilitate the collection of pertinent data and streamline the 

evaluation process, the research leverages the Car Learning to Act (CARLA) simulation 

environment. CARLA provides a virtual platform that is invaluable for assessing LiDAR 

placement. This approach offers several advantages, including cost-effectiveness and lower 

resource demands. 

3) Placement location and number: Of all the candidate locations for LiDAR sensor placement and 

the number of sensors that can be used, this thesis focuses on the vehicle roof of the vehicle as 

a key area for the sensor deployment and a maximum number of four sensors. 
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2.1 AV Sensor Types and Characteristics 

Sensor technology enables AVs to sense and understand their surroundings, thus, enabling safe 

roadway navigation and decision-making. A variety of unique sensor types (Figure 2.1), each with 

a unique set of abilities and functions, are used by AVs. 

Figure 2.1: Camera, Ultrasonic Sensor, LiDAR, and Radar Sensor (Du, 2023) 

AVs rely on sensing technologies to acquire essential information on the driving 

environment, ensuring safe navigation, obstacle detection, and response. Sensors are devices that 

play a fundamental role in detecting events or alterations in their environment and subsequently 

translating these observations into measurable digital signals. They can be broadly categorized into 

active and passive sensors (Javaid et al., 2021). Active sensors necessitate an external power source 

for their operation, whereas passive sensors function independently without external power input 

(Patel et al., 2020). Examples of active sensors include GPS, LiDAR, sonar and radar. Passive 

sensors include thermal sensors, electric field sensors, passive infrared sensors, acoustic sensors, 

and metal detectors (Ignatious et al., 2022; Javaid et al., 2021; Vargas et al., 2021). 

Sensors can be further classified based on their underlying detection mechanisms, 

encompassing diverse fields such as electrical, biological, chemical, and radioactive detection 

methods. This categorization extends to conversion phenomena, including thermoelectrical, 

photoelectrical, electrochemical, electromagnetic, and thermo-optic processes (Sinha, 2017). 

Additionally, sensors can be categorized as exteroceptive or proprioceptive (Figure 2.2). 

Exteroceptive sensors primarily focus on environmental perception and range determination, while 

proprioceptive sensors are specifically engineered for internal measurements, such as assessing 
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forces, angular rates, and other internal dynamics (Woo et al., 2018). Essentially, exteroceptive 

sensors are analogous to the eyes and ears of a vehicle, allowing it to gather information from the 

external environment. These sensors detect various stimuli such as distance, light, sound, and 

objects such as pedestrians or other vehicles. They enable vehicles to interpret this information to 

create a comprehensive understanding of their surroundings and informing decisions based on the 

data received (Ortiz et al., 2023). 

In contrast, proprioceptive sensors more closely resemble the vehicle's internal senses. 

They actively monitor and assess changes occurring within the vehicle's internal systems, 

including motor performance, battery status, and other vital components. These sensors play a 

critical role in providing essential data for determining fluid levels and acceleration and are able 

to measure internal dynamics such as vehicle rotation, individual wheel speeds, and lateral 

acceleration. This detailed information contributes significantly to understanding the vehicle's 

movements within its environment, thereby enhancing its overall operational intelligence, which 

is crucial for the vehicle's intelligent functionality (Kelly & Sukhatme, 2014; Ortiz et al., 2023). 

Exteroceptive Sensors 

LiDAR 

Radar 

Camera 

UltraSonic 

GPS 

Proprioceptive Sensors 

Accelerometers 

IMU 

Gyroscopes 

Encoders 

Figure 2.2: Sensors used in Autonomous Driving (adapted from Woo et al., (2018)). 

2.1.1 Cameras 

Cameras play a vital role in AV sensing. They are classified as passive sensors because they do 

not emit energy actively. Rather, they rely on naturally occurring electromagnetic radiation (such 

as light) to operate. Therefore, they operate in the same spectrum as human sight, making it easy 

for the vehicle to interpret visual information in its environment that helps in making decisions 

(Yeong et al., 2021). Cameras are useful for detecting and classifying road obstacles. Cameras can 
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also be equipped with image recognition algorithms to track and identify objects such as 

pedestrians, road markings, and other obstacles (Campbell et al., 2018). 

Different types of cameras are currently being used in AV deployment. RGB cameras, 

which are commonly used for day-to-day image acquisition and videotaping, are mounted on 

vehicles to capture a 360° view of the road environment (Cazzato et al., 2020). These cameras 

provide information that can be used with information from radar and LiDAR to identify detected 

objects. Cameras also provide depth information (Gross & Webster, 2021) when they are 

strategically installed in conjunction with other cameras. Such strategies include stereo vision or 

structure from motion to obtain the distance of a vehicle relative to other objects in the scene. This 

information can be used to make informed decisions regarding the vehicle’s trajectory and obstacle 

avoidance. However, limitations exist in camera sensing efficacy in inclement weather and low-

light conditions (Y. Zhang et al., 2023). 

Other camera types, such as infrared cameras (also known as thermal cameras) have superior 

effectiveness compared to RGB cameras. They excel in low-light conditions (Parekh et al., 2022), 

as they can detect heat signatures that RGB cameras are unable to capture. Infrared cameras also 

offer several benefits including in-depth estimation, object identification, cost-effectiveness 

compared to other sensors, and optimal performance when used in conjunction with other sensor 

technologies. Hence, infrared cameras are a valuable addition to sensing systems for a wide range 

of applications, providing enhanced capabilities in scenarios characterized by low-light conditions 

and where heat detection and cost-effective performance are important. 

2.1.2 LiDAR 

2.1.2 (a) Description 

LiDAR sensors are considered active sensors. They emit energy in the form of laser light and then 

measure the time that it takes for the light to bounce back from the sensing target to the sensor 

(Nobis et al., 2019). This process helps measure the distance between the sensor and the object, 

which allows the vehicle to understand its surroundings and thus make informed operational 

decisions as it builds up a 3D detailed map of the environment (Arikumar et al., 2022). 

LiDAR is a key sensor for perceiving the environment and detecting road boundaries and 

lane markings (Khayyam et al., 2020); hence, it has been critical in autonomous driving 
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development. As previously mentioned, the price of LiDAR has depreciated over the years, which 

has opened up more opportunities for research. For example, in 2005, Velodyne, a leading LiDAR 

manufacturer, introduced its first high resolution LiDAR sensor known as the HDL-64E, which 

cost around US$75,000. In 2012, the company released another LiDAR, the HDL-32E version, 

which was smaller and lighter than the HDL-64E and cost US$30,000. In comparison to the HDL-

64E, the HDL-32E was a spinning 3D laser scanner that had fewer laser beams. It was designed 

for use in smaller vehicles. In 2016, the company released another version of the sensor, the VLP-

16, a solid-state sensor that uses a single laser emitter to generate a 360-degree view of its 

surrounding area. It was priced at approximately US$8,000, making it even more affordable. 

Currently, the VLP Puck costs approximately half the price of the 2016 model. In 2018, the LiDAR 

price fell further when Velodyne released a solid-state LiDAR According to a 2020 press release 

by Velodyne LiDAR (Velodyne Lidar, 2020), the solid-state LiDAR-Vellaray H800 costs less than 

US$500 for high volume orders.  

The LiDAR industry has experienced tremendous adjustments and advances over time. 

Many newer versions of sensors have been introduced with upgraded features and capabilities to 

suit specific applications. For example, some sensors are designed for use in specific environments 

such as urban areas, while others are intended for mapping, surveying, security purposes, and other 

related applications. With advances in technology, the sensors are becoming more compact, 

lightweight, and efficient while also becoming more affordable. 

2.1.2 (b) Specifications Criteria 

LiDAR sensors can be selected based on specifications (Figure 2.3) that depend on the application 

context. Specification criteria include point density, scan pattern and rate, accuracy and precision, 

field of view, range, and resolution. These criteria are further described in the following figure: 
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Figure 2.3: LiDAR Sensor Specifications Criteria. 

2.1.2 (b.1) Point Cloud Density 

Point cloud density refers to the number of laser points measured per unit area or volume within a 

specified region (Yoo et al., 2010). The sensor performance can be evaluated depending on the 

density of the point clouds as compared to another sensor with different specifications. The higher 

the density, the more detailed the representation of the scanned object. However, a disadvantage 

may be the large file storage requirements and the excessive processing time this method requires. 

In addition, in some applications such as aerial laser scanning, noise (due to, for example, adverse 

weather and atmospheric conditions) is introduced into the point cloud, thereby increasing the 

density (Lin et al., 2022). This noise can be removed using methods such as ground point filtering 

(Serifoglu Yilmaz & Gungor, 2018). 

2.1.2 (b.2) Scan Pattern 

Scan patterns represent the distinctive ways in which sensors emit pulses to measure the 

surrounding area. Different LiDAR sensors have different scanning patterns, which vary 

depending on the specific application or requirement (Raj et al., 2020). For example, some LiDAR 

sensors use a rotating prism or mirror to scan the laser beams in both vertical and horizontal 

directions, creating a 3D point cloud of the environment (Choi & Kim, 2020). Other sensors may 
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use multiple fixed beams or a combination of rotating and fixed beams to create a more detailed 

3D map (Yeong et al., 2021). The scanning patterns used by LiDAR sensors vary widely depending 

on their design and intended use. LiDAR sensors can be customized to use specific scanning 

patterns to meet the needs of different applications, such as robotics, AVs, and industrial 

automation (Li et al., 2022). 

2.1.2 (b.3) Field of View (FOV) 

FOV is the maximum angular range within which the sensor can see and measure objects in its 

surroundings. In the case of 2D LiDAR, the FOV is confined to the horizontal plane alone, while 

it encompasses both the horizontal and vertical planes for 3D scanners (Raj et al., 2020). The FOV 

of a LiDAR sensor depends on the number of beams emitted and the physical design of the sensor 

(Kibii et al., 2022). For example, Velodyne LiDAR provides sensors with different numbers of 

beams, such as Velodyne 16, 32, and 128, whereby the number of beams corresponds to the 

number of laser emitters on the sensor. The higher the number of beams, the higher the resolution 

and level of detail that can be captured (Yang et al., 2023). 

2.1.2 (b.4) Accuracy and Precision 

Accuracy and precision indicate the proximity of the obtained LiDAR measurement to the ground 

truth (Kim et al., 2022). Ground truth is the actual measurements or observations of a phenomenon 

that serves as a benchmark for evaluating the accuracy of data obtained from other sources (Yan 

et al., 2018). Accuracy can be in terms of the range, the angles or in a 3D space. Precision refers 

to the closeness of repeated measurements and can be evaluated in terms of the range, angle, or 

spatial precision. 

Figure 2.4 illustrates the accuracy-precision relationship. The first circle shows tightly 

clustered points centered around the target, thus, demonstrating high accuracy and precision. 

Conversely, the second circle displays scattered points, neither close to the target nor tightly 

grouped, thereby indicating low accuracy and precision. In the third circle, tightly clustered points, 

though not centered around the target, signify high precision but low accuracy. Finally, the fourth 

circle depicts widely dispersed yet centered points, thus, portraying high accuracy despite low 

precision. 
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Figure 2.4: Accuracy and Precision 

2.1.2 (b.5) Range 

The range of a LiDAR sensor is the distance to which it can sense an object (Choi, 2016). This 

varies depending on the application of the sensor, such as for self-driving cars or mapping. LiDAR 

sensors can be classified as short-range and long-range sensors. Long-range LiDAR sensors can 

detect, locate, and identify objects as far from the vehicle as 250 meters or more (Campbell et al., 

2018). They are ideal for identifying pedestrians, emergency braking, and other situations. Short-

range LiDAR, in contrast, are better suited to monitoring the vehicle’s immediate surroundings 

(Rablau, 2019). 

2.1.2 (b.6) Resolution 

Resolution refers to the level of detail that can be perceived in the point cloud (Anderson et al., 

2006). This level can be impacted by factors such as the number of laser pulses that are emitted in 

a unit area, the wavelength of the light, or the angular FOV. The resolution of a LiDAR sensor has 

an effect on the way it measures distances to objects. A higher resolution is more reliable, as it 

produces a more detailed and finer representation of objects (Azim & Aycard, 2012; Imad et al., 

2021). There is a distinctive price difference between the price of lower resolution LiDAR and its 

higher resolution counterpart (Bai et al., 2022): the cost of a low-resolution LiDAR is 

approximately 12.5% of that of its high resolution equivalent. 

2.1.2 (b.7) Scan Rate 

The scan rate is the frequency at which the LiDAR sensor emits and receives pulses. The scan rate 

determines the angular resolution of the system (Warren, 2019). The scan rate of a LiDAR sensor 
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varies depending on the sensor's particular design and intended use. Typically, when the scan rate 

is high, the point cloud density also produces a detailed 3D representation of the target area 

(Benedek et al., 2021). A higher scan rate is an important specification for AVs because it provides 

an indication of the extent to which the sensor captures detailed information of the target area, 

such as the location and movement of other vehicles, pedestrians, and objects in real-time (Raj et 

al., 2020). This information can then be used by the AV's algorithms to make driving decisions. 

2.1.3 Radar 

Radar sensors work similarly to LiDAR in that they also emit a signal towards objects and calculate 

the distance to the object (Bilik, 2023). However, radar uses radio waves and works by emitting 

radio signals in a distinctive pattern. The time taken for the signal to bounce back from the object 

is measured and, together with the speed of light, is used to calculate distances. There is some 

similarity between radar and LiDAR, however, key differences also exist. 

Radar has a long operational range (Bilik et al., 2019) and works well even in rain, fog, or 

snow because it is an all-weather sensor. In addition, the price is significantly lower than LiDAR 

(Campbell et al., 2018; Kim et al., 2019). Radars can be classified as long, medium, and short 

range. The long-range radars operate at 77 GHz frequency, while short- to medium-range radar 

sensors operate at 24 GHZ and 76 GHz frequencies, respectively (Kocić et al., 2018). 

2.1.4 Inertial Measurement Unit 

The IMU is a key sensor for measuring and estimating an AV’s orientation, acceleration, and 

angular velocity. The IMUs provide information related to the vehicle’s position and orientation. 

They typically consist of a combination of accelerometers, magnetometers, and gyroscopes (Kim 

et al., 2021), which work together to measure aspects of the vehicle’s motion. The gyroscopes 

measure the angular velocity of the vehicle around each of its three axes, while the accelerometers 

measure the linear acceleration of the vehicle along each of its three axes (x, y, and z). The IMU 

can determine the vehicle's orientation (pitch, roll, and yaw), as well as its linear acceleration and 

angular velocity, by combining the information from the accelerometers and gyroscopes (Vavra, 

2022). 
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2.1.5 Ultrasonic Sensors 

An ultrasonic sensor uses sound waves typically in the range of 20K Hz to 40 kHz (Rosique et al., 

2019) to calculate distances to objects. It works by transmitting ultrasonic sound waves and using 

the time they take to return along with the speed of sound waves (331 m/s) to calculate the range 

to the object (Reddy Cenkeramaddi et al., 2020). Ultrasonic sensors are typically used in 

conjunction with other sensors for close-range applications, including parking assistance. 

2.1.6 Global Positioning System 

GPS is a global navigation satellite system that provides positional information. Other such 

systems include GLONASS, BeiDou, Galileo, QZSS, and NavIC. Of these, GPS is the most 

commonly used for a variety of applications (Rosique et al., 2019). 

GPS was originally developed for military purposes before it was eventually widely 

adopted for civilian use. Some of the applications include mapping, agriculture, construction, and 

autonomous driving navigation (Awange & Kiema, 2019). In AV use, GPS plays a critical role in 

providing information on the position required to navigate the vehicle to its desired destination by 

using either pre-planned route information or a modified route based on prevailing road conditions 

such as traffic. However, GPS is susceptible to poor performance in places such as tunnels or areas 

around tall buildings because the signals are blocked. This introduces errors and inaccuracies in 

the system but can be managed by merging data from other sensors. Figure 2.5 presents additional 

information on sensors and their applications in ADAS and autonomous driving (Hussain et al., 

2021). 
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Figure 2.5: Sensor Technology applications in ADAS and Autonomous Driving. 
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2.2 Improving Perception in AVs Using Sensors 

Several criteria have been considered in AV studies and AV enhancement. For example, in 

addition to sensors that enable the AV to see, one approach also allows the AV hear through an 

audio classification network based on a deep learning framework (Walden et al., 2022). The results 

of Walden et al.’s study indicate the potential their approach has to improve safety and operational 

efficiency in various scenarios. For example, their study suggests that AVs can be made capable 

of recognizing audio cues, such as the sounds of children playing or essential auditory signals such 

as horns and idling engines, to reduce the risk of accidents. 

Individual sensor types or a combination of sensor types can also be chosen in a way that 

acknowledges the limitations of specific sensor types in adverse weather conditions. For example, 

cameras and LiDAR work together very effectively in adverse weather conditions: Cameras excel 

at capturing visual features, while LiDAR provides precise depth information and excels at 

detecting speed and distance (Chen et al., 2017; Vargas et al., 2021). 

The fusion of radar and cameras also improves perception (Nobis et al., 2019), as the radar 

sensor’s ability to penetrate through fog, snow, or rain compensates for any limitations of the 

camera sensor (Pavitha et al., 2021). Furthermore, the combination of radar, camera, and LiDAR 

(Ahrabian et al., 2019) maximizes the strengths and overcomes the limitations of each individual 

sensor type. Figure 2.6 identifies where the different sensors could be placed and how they could 

complement each other. 

The red areas show the LiDAR coverage, the blue areas indicate where short-/medium-

range LiDAR have coverage, the green areas are covered by long-range radar, and the gray areas 

show the camera coverage. 

Vehicle to infrastructure (V2I) communication is another resource that is being leveraged 

as a source of supplementary data to improve AV perception. This improvement is achieved 

through the development of an environmental perception framework that relies on point voxel 

region-based convolutional neural networks to enhance the AV's perception capabilities at road 

intersections. Information from roadside sensors is transferred to the AV to support its perception 

capabilities (Duan et al., 2021). 

There has also been some progress towards improving AV perception by considering the 

influence of sensor placement on AVs. It is important that sensors are optimally placed to enable 
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the AV to achieve the best understanding and perception of its surroundings (Dybedal & Hovland, 
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Figure  2.6: Sensor coverage areas  ( redrawn from  Ng  (2021)).   

2.2.1  Perception as one of Multiple AV Modules  

In  a  manner analogous  to  human drivers, AVs are  equipped with functionalities that enable them 

to perceive,  analyze, and  execute tasks. The  AV  module  is conceptually divided into three  core  

components:  planning, perception, and control (Claussmann, 2019). The  perception component  

serves  as the sensory system of the AV, facilitating environmental awareness, self-localization,  

and object recognition.  
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The planning element corresponds to the cognitive component, where the AV processes 

information obtained from perception to formulate decisions aimed at safely guiding the vehicle 

to its intended destination while simultaneously navigating around identified obstacles. Finally, 

the control category represents the facet through which the AV translates these formulated 

intentions into actions, thus, yielding the desired operational outcomes (Pendleton et al., 2017). 

Perception constitutes a pivotal aspect for autonomous driving technology. This 

component entails the acquisition of data through environmental perception and localization, 

which represent two distinct subcategories within the field of perception. The gathered information 

is subsequently processed to enable the AV to comprehend the road conditions, interpret 

behavioral cues, and discern various obstacles in its immediate vicinity (Emzivat et al., 2018). 

Environment 

Planning (Think) 

Perception (Sense) 

Environmental Perception 

Localization 

Control (Act) 

Figure 2.7: Planning, Perception and Control Systems (modified from 

Claussmann, (2019)) 

2.2.2 Environmental Perception and Localization 

Environmental perception and localization are critical aspects of autonomous driving. 

Therefore, it is ideal that they are carried out precisely. For this reason, the strengths and limitations 

of available sensor types must be carefully considered (Pavitha et al., 2021). Environmental 

perception can be achieved using LiDAR, radar, ultrasonic sensors, cameras, or a combination. 

First, the AV perceives the environment by acquiring information about the driving scene and 

identifying the different road obstacles, which include stationary obstacles, such as traffic lights, 
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road signs, streetlights, and movable obstacles, such as pedestrians, cars, bikes, or animals. Then, 

the information on their speed and behavior is determined to make calculations to predict their 

movements (Pendleton et al., 2017) and the changing traffic conditions (Duan et al., 2021). 

Table 2.1: AV Sensor types: strengths and limitations (Vargas et al., 2021) 

Feature LiDAR RADAR Camera Ultrasonic 

Primary 

Technology 

Laser beam Radio wave Light Sound wave 

Range ~200 m (656.17 ft) ~250 m (820.21 ft) ~200m (656.17 ft) ~5m (16.40 

ft) 

Resolution Good Average Very good Poor 

Affected by 

Weather 

Conditions 

Yes Yes Yes Yes 

Affected by Light 

Conditions 

No No Yes No 

Detects speed Good Very good Poor Poor 

Detects distance Good Very good Poor Good 

Interference 

susceptibility 

Good Poor Very good Good 

Localization is another aspect of perception in which the vehicle’s location is determined 

using a global reference (Kuutti et al., 2018). For an AV to operate, it needs to know where it is in 

the real world, that is, its position and orientation (Elhousni & Huang, 2020). Furthermore, the 

localization of the AV needs to be carried out as accurately as possible since every other functional 

operation of the AV, such as planning, control, and even environmental perception, relies on the 

ability of the AV to know its location in the real world (Kuutti et al., 2018). 

The most commonly used sensor for AV localization is GPS, which is easily accessible 

and less costly compared to other sensor types. However, GPS is prone to errors such as multipath 

and low accuracy (Awange & Kiema, 2019; Kos et al., 2010). Multipath interference occurs when 

satellite signals bounce off surfaces before reaching the receiver, causing multiple signal paths and 

inaccuracies in determining the vehicle's exact position. Therefore, other sensor types such as radar, 

LiDAR, and cameras are utilized for AV localization. 

Figure 2.8 illustrates the concept of perception in AVs. Environmental perception focuses 

on what the AV senses in its surroundings, while localization pertains to the AV's awareness of its 

own position. The overlapping area (Perception) signifies the integration of environmental 

awareness and self-awareness, which is crucial for informed decision-making and safe navigation. 
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 Localization Environmental Perception 

Perception 
Where is the 
Autonomous 
Vehicle? 

What obstacles are in 
the surrounding area? 

Figure 2.8: Environmental Perception and Localization 

2.3 LiDAR Sensor Technology 

The time of flight (ToF) principle entails measuring the round-trip travel time of a laser pulse 

from the LiDAR sensor to a target. This measured time difference, denoted as Δt, is a key 

parameter for determining the distance between the LiDAR sensor and the target (Liu et al., 2018). 

This principle is applicable for generating detailed point cloud data that enables AVs to understand 

and navigate their environments. 

The ToF in LiDAR follows a precise sequence of operations to ensure the accurate 

measurement of distances. Initially, the LiDAR system aligns with the target and emits laser light 

pulses toward it. The emitted signal serves as the trigger for a counter, commencing the counting 

of clock pulses. As the target diffusely reflects the echo signal, it traverses through the atmosphere 

and enters the receiving optical system. Here, a photoelectric detector converts it into an electric 

pulse. Subsequently, an amplifier intensifies this electric pulse, which in turn functions as the gate-

closing signal for the counter, thereby halting the counting process. The number of clock pulses 

counted during the gate-opening phase is pivotal to determining the precise distance to the target 

(Maatta & Kostamovaara, 1998). 

In Figure 2.9, the underlying concept is visually depicted. It illustrates the generation of a 

reference light pulse at time (t), which triggers the clock within the timer circuit. A photosensor 

then converts the returning signal (reflected light) into an electric pulse that stops the timer from 

counting.  
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Figure 2.9: Time-of-flight LiDAR system (recreated from Liu et al., (2018)) 

The time taken for the emitted light (pulse) to reach the target and be sent back (return) to 

the source is used together with the speed of light to build a 3D representation of the surrounding 

environment (Campbell et al., 2018) through the ToF principle. 

𝑐 
𝑅 = × ∆𝑡,

2 

where 𝑅 is the distance to the object, 𝑐 is the speed of light (3 × 108 𝑚/𝑠) and ∆𝑡 is the ToF 

(Royo & Ballesta-Garcia, 2019; Vargas et al., 2021). 

The emissions from LiDAR are in the infrared range of 905 nm and 1550 nm of the 

electromagnetic spectrum. Initially, LiDAR systems at 905 nm were used for AV applications in 

the early stages of their development because that was the state of the technology at the time. 

However, there are eye safety concerns at that wavelength, which is an essential consideration for 

LiDAR’s automotive applications. These restrictions limited the object detection range to 

approximately 100 m (Vargas et al., 2021; Warren, 2019; Wojtanowski et al., 2014). The human 

eye is more resistant to wavelengths exceeding 1400 nm (Warren, 2019). Hence, to improve the 

current detection range, LiDAR sensors are designed at 1550 nm. 

Since gaining prominence in 1960, subsequent to Theodore Mainman's groundbreaking 

invention of the ruby laser, LiDAR has undergone a series of evolutionary phases. Various 

companies have seized the opportunities and potential this technology offers by investing in 

LiDAR sensors. For example, at a certain period, LiDAR sensors could record only 1000–2000 

points per second (Wang et al., 2020). Currently, LiDAR sensors categorized as long-range sensors 

can scan up to 200,000 points per second while achieving a 360º horizontal rotation with a 30º 
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vertical FOV (Yeong et al., 2021). In addition, Velodyne LiDAR has a sensor with a 40º vertical 

FOV (Velodyne Ultra Puck VLP-32C Long-Range LiDAR Sensor — Clearpath Robotics, n.d.), 

while Sense Photonics has a LiDAR with a 75º vertical FOV (Photonics, n.d.). Ouster has an ultra-

wide sensor with a 90º FOV but a limited range of up to 35 m (OS0 Ultra-Wide Field-of-View 

Lidar Sensor for Autonomous Vehicles and Robotics, n.d.). 

Currently, more startups are emerging in the manufacturing and supply of LiDAR sensors. 

Table 2.2, modified from Wang et al. (2020), presents vendors of LiDAR products that can be 

deployed in autonomous driving.  

LiDAR technology is used in various domains including forestry, geospatial mapping, 

robotics, mining, security, and smart infrastructure. However, this thesis focuses on the 

autonomous driving application. One of the compelling factors driving the selection of LiDAR as 

the primary perception sensor for AVs is its ability to provide extremely precise and rich depth 

information pertaining to the vehicle's surroundings (Zhang & Singh, 2014). Furthermore, LiDAR 

generates densely populated point clouds, which are instrumental in advancing simultaneous 

localization and mapping capabilities (Saraf et al., 2012). 

Table 2.2: Vendors with LiDAR Products for Autonomous Driving. 

Company Products Year 

founded 

Country 

Valeo Near Field LiDAR 1923 France 

Hokuyo UBG Series, URG Series, UST Series, UGM 

Series, UXM Series 

1946 Japan 

SICK LMS Series, MRS Series, LD- MRS Series 1946 Germany 

Ibeo IbeoNEXT, ibeo LUX 1998 Germany 

Velodyne LiDAR Puck, Ultra Puck, Alpha Prime, HDL-32E 2007 USA 

Luminar Technologies Luminar Iris 2012 USA 

Quanergy Systems M Series, S Series 2012 USA 

AEYE AEye 4Sight Intelligent sensing platform 2013 USA 

Hesai Panda128, QT128 2014 China 

Robosense RS Series 2014 China 

Leishen LS Series, HS Series, CX Series 2015 Austria 

Baraja Spectrum Series 2015 Australia 

Ouster OS Series 2015 USA 

Cepton Vista-P, Sora-P, Vista-X, Nova, Helius 2016 USA 

Innoviz InnovizOne, InnovizTwo, Innoviz360 2016 USA 

Neuvition Titan M1 Series, S2 Series, Titan P1 2016 USA 
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LiDAR technology continues to improve, and its adoption in AVs appears to have a 

promising future. This type of sensor varies in terms of specifications and options, including cost, 

size, scanning pattern, FOV, type, pulse rate, scan rate, and detection range (Roriz et al., 2022). 

The cost of a standard LiDAR sensor has reduced over the years, from US$75,000 (in 2005) to 

less than US$5,000 (in 2023), thereby facilitating their widespread deployment in the various 

application areas (Elhousni & Huang, 2020). 

2.4 LiDAR Placement on AVs 

The success of AV operations largely depends on their ability to accurately perceive and 

understand their surroundings. The placement of LiDAR sensors on an AV is a critical factor 

determining the FOV and the data quality. Proper LiDAR placement ensures effective detection 

of objects, obstacles, and road hazards, which is essential for safe AV operations (Cai et al., 2023; 

Kim & Park, 2020; Lucic et al., 2020). 

Companies each have their own unique LiDAR placement designs or configurations. 

However, a strategy for determining the placement of the LiDAR has yet to be established (Mou 

et al., 2018a). As such, researchers are investigating this issue (Berens et al., 2022; Hu et al., 2022; 

Jin et al., 2022; Liu et al., 2019; Lucic et al., 2020). 

Table 2.3: LiDAR Placement location, count, and type of different AV driving teams 

(modified from Mou et al., (2018a)) 

Placement location & count LiDAR Type Number AV Driving Team 

2 on each side on top roof Velodyne-16 4 Ford 

2 on each side with 1 on the middle 

front on top roof 

Velodyne-16 5 Cruise 

On top center of the roof Velodyne-64 1 Uber 

1 Velodyne-16 at each side and 1 

Velodyne-64 on top roof 

Velodyne-16/64 2/1 Baidu 

6 in front and 6 on the rear of the roof Velodyne-16 12 Apple 

2 Velodyne-16 on each side and 1 

Velodyne-64 on the roof 

Velodyne-16/64 4/1 UM Perl lab 

On the center of the roof Velodyne-64 1 Stanford Driving Lab 

On the top front of the roof Ouster-64 1 Purdue CART Lab 

3 placed on top of the racing car Luminar Solid 

State LiDAR 

3 Black and Gold Autonomous racing 

Car 
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The LiDAR sensor placements described in Table 2.3 may vary depending on the specific 

AV platform and its use case. The placements listed provide a general indication of how LiDAR 

sensors are typically positioned on AVs. However, other platforms may use different 

configurations or sensor types. Furthermore, it is important to recognize that LiDAR sensors are 

just one component of the complex sensor suite that AVs use. Other components include cameras, 

radars, and other sensing technologies. 

2.4.1 Alternative Approaches for LiDAR Placement on AVs 

The strategic placement of LiDAR sensors on AVs is of the utmost importance because it 

necessitates maximizing the acquisition of driving scene data while minimizing the number of 

LiDAR sensors used. One of the earliest approaches for LiDAR placement considered the sparsity 

of the LiDAR points (Mou et al., 2018b). The sparsity of point clouds refers to the distribution and 

density of points captured by the sensor across a given environment. A sparse point cloud has 

fewer data points, meaning there are larger gaps or areas with fewer measurements. Mou and his 

research team emphasized that for LiDAR sensors to excel in their perception capabilities, they 

must possess the ability to discern even the smallest details within their FOV (Mou et al., 2018a). 

They defined a “region of interest” (ROI) to encompass the immediate neighborhood of the AV. 

The ROI is conceptualized as a cubic space defined by specific dimensions, with its x-y plane 

origin aligned with that of the AV from the top view. 

Figure 2.10: Region of Interest for an Autonomous Vehicles with 

three LiDAR sensors (Mou et al., 2018b) 

As a LiDAR sensor rotates, it generates a set of laser beams that define a conical shape. 

These individual shapes collectively represent the sensor's ROI (Figure 2.11). 
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Figure 2.11:LiDAR Beam forming Cones through a 360° Rotation (Mou et al., 2018a) 

With a similar concern for sparsity, Kim and Park (2020a) visualized the level of coverage 

produced by the LiDAR point clouds that result from multiple LiDAR sensor placements on the 

vehicle. An optimization method was proposed in which a LiDAR Occupancy Board (LOB) was 

introduced to obtain the occupancy of the LiDAR in each local zone. Occupancy in this context 

refers to the evaluation and visualization of how well the LiDAR sensor covers or occupies specific 

areas or zones within its FOV. Kim and Park (2020a) observed that the occupancy was high in 

places where the point clouds overlapped but low in places with no overlaps in coverage. In 

addition, the distribution of the points was measured using the concept of a local occupancy grid. 

The LOB was divided into grids with reference to the number of channels the LiDAR sensor 

utilized. An algorithm was developed to find a solution to the optimization problem, and this 

solution was tested using commercial 3D LiDAR sensors. The results of Kim and Park’s study 

confirmed placement is an important factor that influences LiDAR perception performance. 

Figure 2.12: LiDAR sensors placed on a Test Vehicle (Kim & Park, 2020b) 
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Deep learning algorithms have also been developed to process LiDAR data (Deng et al., 

2021; Shi et al., 2019). Hu et al. (2022a) approached the problem from the perspective of how the 

physical design of a LiDAR influences its perception of the target environment. Their approach 

also considers the area in the vicinity of the AV (which Mou et al. referred to as the ROI). To 

ensure a proper assessment of LiDAR placement, it is essential to study a consistent pattern of 

objects in various experiments, which cannot be achieved through real-world scenarios but rather 

requires simulation. 

Simulation offers numerous advantages and disadvantages. Simulation provides flexibility, 

allowing conditions to be easily modified by adjusting input parameters, thus, aiding in the 

exploration of various scenarios. Simulations also bypass the limitations of real-world experiments, 

such as complexity and risks, while ensuring uninterrupted operations during analysis. However, 

these benefits are also accompanied by limitations. The accuracy of simulation outputs relies 

heavily on the quality of the input data, meaning that erroneous or limited data lead to incorrect 

outcomes (Amaran et al., 2016; Labi, 2014; Smith, 1998). In addition, despite their advantages, 

simulation methods may not always be as efficient as analytical techniques. Nonetheless, 

simulations remain versatile tools that are particularly invaluable when closed-form analytical 

solutions for addressing complex problems are unattainable (Labi, 2014). 

For example, to test different scenarios using simulation, Hu et al. (2022a) used CARLA, 

(an open-source simulator for AVs) to test different LiDAR placements. These placements were 

motivated by those performed in studies from companies such as Toyota, ARGO AI, Cruise, Pony 

AI, and Ford. The results showed that different target types (vans, cars, box trucks, and cyclists) 

required different sensor placements. 

Additionally, the choice of LiDAR type is essential for improving AV perception. Fang et 

al. (2018) presented a LiDAR simulation framework that also considered the LiDAR type and 

placement in 3D LiDAR point cloud production. LiDAR point clouds, which were obtained based 

on traffic and scenes from the real world, were collected to serve as data for training deep neural 

networks. The point cloud data was acquired using LiDAR scanners, specifically, the Riegl 

scanner, which has a resolution of approximately 3 cm within a range of 100 m (Fang et al., 2018). 

In contrast to previous research (Hu et al., 2022a; Kini, 2020a; Mou et al., 2018a) which 

exclusively used an artificially generated virtual (simulated) world, Fang et al. (2018) used the 

Riegl scanner to generate point clouds based on real environments, thereby marking a transition 
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from simulations to real-world data. This integration of real-world data offered a more accurate 

depiction of real-world scenarios. Similarly, in their work, Feng et al. emphasized the significance 

of naturalistic data for enhancing simulations for AV testing. Their method, showcased for driving 

intelligence testing in AVs, expedites testing procedures and generates vital adversarial examples 

crucial for AV development (Feng et al., 2021). 

Acquiring data from multiple LiDAR placement scenarios in the real world requires 

significant time and effort in the form of model training, raw data collection, and deployment 

compared to utilizing artificially generated methods (Hu et al., 2022a). Therefore, it is paramount 

to find a way to evaluate the perception performance of LiDAR while minimizing cost and 

obtaining the required quantitative information. For this reason, researchers have occasionally used 

virtual environments such as CARLA (Berens et al., 2022; Hu et al., 2022; Kini, 2020). Using a 

virtual environment aids in evaluating the LiDAR placement in a more economical and less 

intensive process than physically installing LiDAR through collecting large volumes of data, 

training models, and evaluating alternative placements. 

In AV research, 2D and 3D LiDAR sensors have been used. 2D LiDAR sensors produce 

distance information while 3D LiDAR sensors produce information on height and geometry 

(Catapang & Ramos, 2016). Most researchers have focused on 2D LiDAR. Zhao et al. (2017) 

collected information on vehicle trajectory using a vehicle equipped with 2D LiDAR sensors. In 

terms of placement, four LiDAR sensors were used: Two short-range models were placed in the 

front and right bumper of the vehicle, respectively, and two long-range sensors were placed in the 

front and rear of the vehicle. In contrast to Zhao et al. (2017), who used four 2D LiDAR sensors, 

He et al. (2014) placed five 2D LiDAR sensors on the vehicle: Three sensors were mounted at 

different positions and orientations along the vehicle's front bumper, and two were mounted on top 

of the vehicle at different locations. 

The car used by Pereira et al. (2016) combined both 2D and 3D LiDAR sensors. In addition 

to the two 2D LiDAR placed on the sides of the bumper, another 3D LiDAR was installed on the 

AV. Meadows et al. (2019) used three LiDARs: two placed on different sides of the car bumper 

and the third placed on the vehicle's roof. The information obtained from all these LiDAR sensors 

is registered to provide the AV with rich 3D information and coverage of the surrounding area. 

Meadows et al. (2019) focused on determining the optimal position of the two sensors placed in 

front of the vehicle while keeping the position of the third one fixed. 
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Regarding AV design, Liu et al. (2019) stressed the importance of balancing computational 

burden with object detection performance; using fewer LiDARs could present issues related to 

object detection performance. Conversely, using more LiDARs, aside from the high cost, also 

results in a high computational burden and redundancy. Therefore, it is essential to create balance 

when determining the optimal number and LiDAR type for AV use. Liu et al.’s (2019) research 

used three types of LiDAR to evaluate performance from different perspectives. Their results can 

be used to guide AV designers in choosing LiDAR sensor types or in improving the design of 

existing LiDAR placements. 

2.5 Multi-Criteria Decision Analysis 

The exploration of LiDAR placement methodologies discussed in earlier sections has revealed a 

multifaceted landscape characterized by various approaches and strategies. Previous studies have 

delved into different facets of LiDAR deployment. This section introduces multi-criteria decision-

making (MCDM), which is used for LiDAR placement optimization in this thesis by discussing 

concepts of scaling, weighting, and the amalgamation of criteria. 

MCDA serves as a systematic approach for addressing complex decision-making that 

involves multiple criteria or factors of different units of measurement and different levels of 

importance. In MCDA, the decision-makers (DMs) assign weights to the criteria that reflect their 

respective levels of importance and establish scaling functions for each criterion. Then, they assess 

various alternatives based on the weighted and scaled criteria. This structured method provides a 

framework for comparing and ranking alternatives based on their combined outcomes across the 

multiple criteria (Bukhsh et al., 2017; Keeney & Raiffa, 1993; Sinha & Labi, 2007). 

Through questionnaire surveys, the DMs allocate relative weights to these criteria to 

signify their importance and carry out scaling to standardize the measurement units of each 

criterion. The impacts of each alternative are then amalgamated using various tools and techniques, 

thus, assisting in the identification of the most suitable option. In instances where no single 

alternative outperforms the others across all criteria, formulations are introduced to accommodate 

constraints or tradeoffs. MCDA not only provides comprehensive structuring of the decision-

making process but also enhances clarity, transparency, and defensibility, thereby facilitating 

informed choices in diverse decision contexts (Sinha & Labi, 2007). 
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2.5.1 Establishing the Alternatives 

Establishing alternatives is a foundational step in systematic decision-making processes and cuts 

across various fields. It involves outlining objectives and constraints while identifying a range of 

potential options to address a particular problem or situation. Similar to everyday decision-making 

scenarios, the process entails cataloging the costs and benefits associated with each alternative and 

setting predefined thresholds or criteria for evaluation (Labi, 2014). Through systematic analysis, 

DMs assess the feasibility, cost-effectiveness, and alignment of alternatives with defined 

objectives. This iterative process aims to pinpoint the most suitable choice by scrutinizing and 

comparing alternatives against established criteria. 

2.5.2 The Performance Criteria 

Transportation decisions often aim to incorporate a broad spectrum of performance criteria that 

align with the interests of key stakeholders. These include considering agency goals, the 

perspectives of facility users, and the broader concerns of society at large (Sinha & Labi, 2007). 

Performance criteria vary across dimensions, spanning quantitative and qualitative aspects that 

define evaluation standards. For instance, when assessing a product, factors such as reliability, 

durability, cost-effectiveness, user-friendliness, and safety are critical considerations (Barclay & 

Osei-Bryson, 2010). Similarly, in project management contexts, meeting deadlines, remaining 

within budget, and achieving project objectives represent pivotal performance metrics (Institute, 

2008). 

These criteria serve as essential frameworks for evaluation and offer stakeholders a 

structured basis for comparison, informed decision-making, and the prioritization of actions based 

on their alignment with established criteria. In the realm of optimization, performance criteria also 

play a decisive role in shaping decisions. While some optimization processes may follow a single 

objective, many entail multiple criteria or constraints across various metrics, known as multi-

attribute problems (Labi, 2014). Factors influencing the selection of criteria in these multi-attribute 

problems encompass agency policies, system or design nature, stakeholder concerns, and 

management levels. For instance, historic preservation might significantly influence highways in 

older communities, whereas isolated regions might prioritize uninterrupted accessibility (Labi, 

2014). 
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2.5.3 Weighting Methods 

The process of establishing relative weights for performance criteria in decision-making scenarios 

is fundamental to the effectiveness and credibility of the MCDM process. Various methods have 

been devised to address this challenge, each playing a pivotal role in shaping the hierarchy of 

criterion importance and streamlining the decision-making process (Ortiz-Barrios et al., 2021; 

Pamučar et al., 2018; Singh & Pant, 2021). 

These methods typically involve the use of questionnaire surveys or interviews, which are 

administered to DMs, such as agency engineers and other stakeholders. The respondents' feedback, 

collected through diverse weighting techniques, shapes the outcome of the decision process. The 

choice of an appropriate weighting method significantly affects the final outcome of the MCDM 

analysis, hence, it is an important step (Bai et al., 2022; Keeney & Raiffa, 1993; Li & Sinha, 2000). 

Some of the most commonly used weighting methods are explained in this section. 

2.5.3 (a) Equal Weighting 

The equal weighting approach is straightforward and involves assigning the same weight to all 

performance criteria. It is a common practice that is relatively simple to implement. An example 

of this approach in transportation studies is the use of equal weighting in the context of pavement 

investment decision-making through life-cycle cost analysis (Lamptey et al., 2005). In previous 

studies, both agency costs and user costs were often combined without explicitly assigning 

different weights to them. The direct addition of agency costs to user costs was a common practice, 

implying that one dollar of agency cost was considered equivalent to one dollar of user cost. This 

practice stemmed from the assumption that these two cost components held the same level of 

importance in the decision-making process (Peterson, 1985; Sinha et al., 2009; Sinha & Labi, 

2007). 

However, the equal weighting approach, while straightforward and commonly used, does 

not provide a representation of the DMs’ preferences and priorities (Li, 2003). Incorporating 

relative preferences among criteria is essential to make well-informed decisions for transportation 

systems in MCDA. 
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2.5.3 (b) Direct Weighting 

Direct weighting is a technique in MCDA that allows DMs to assign numerical weight values to 

performance criteria. This approach provides a quantitative representation of the relative 

importance of these criteria and offers some example methods, including point allocation, 

categorization, and ranking (Odu, 2019; Patidar et al., 2007). 

Point allocation (PA) involves the allocation of a total of 100 points among decision criteria 

(Bottomley et al., 2000). Each criterion receives a weight that signifies its importance. The more 

points a criterion receives, the higher its weight in the decision-making process. Point allocation 

provides a cardinal scale, expressing weights as numerical values for ease of mathematical 

operations such as addition and multiplication. Categorization, in contrast, groups decision criteria 

into different categories representing their relative importance compared to other criteria. This 

method does not assign specific numerical values but rather measures the criteria’s importance 

within predefined categories, such as “high,” “medium,” or “low.” Categorization establishes an 

ordinal scale of importance, where criteria are assigned within each importance category but lack 

specific weight values. Ranking allows DMs to assign a rank to each decision criterion based on 

its importance. Typically, the criterion considered most important is assigned the highest weight 

(Keeney & Raiffa, 1993; Labi, 2014). 

The choice of direct weighting method should be guided by the specific context of the 

decision-making process. Notably, ranking and categorization do not provide precise numerical 

weights and are categorized as ordinal scales. In contrast, point allocation offers numerical weights 

in a cardinal scale, making it the preferred choice when these weights need to be used in 

multivariate value or utility functions (Patidar et al., 2007). 

2.5.3 (c) Observer-Derived Weighting 

Observer-derived weights represent a methodology in which DMs unconsciously assign weights 

to various criteria without explicit awareness. This method estimates the relative importance of 

multiple objectives through an analysis of unaided subjective evaluations of alternatives (Hobbs 

& Meier, 2000). During this process, DMs provide scores for each objective for a set of alternatives 

and an overall score on a scale, which often ranges from 0 to 100. Subsequently, a statistical 

relationship is established by utilizing the overall score as the response variable and the scores 
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assigned to individual objectives as explanatory variables through regression analysis. The 

coefficients resulting from this analysis represent the implicit or observer-derived weights 

associated with the various objectives as perceived by the DMs. 

The methodology, as emphasized by notable researchers (Huber, 1974; Slovic & 

Lichtenstein, 1971), involves utilizing regression analysis to derive attribute weights aimed at 

minimizing deviations from actual rankings or ratings. The reliance on regression methodology is 

a distinctive advantage of this method, similar to the concept of “policy capturing,” which is 

frequently used by psychologists and pollsters to predict opinions, reflecting an attempt to optimize 

the judgment process (Hobbs, 1980; Patidar et al., 2007). 

However, MCDA aims to enhance, not merely replicate, holistic judgments. Research 

indicates that individuals often prioritize only a few attributes when making decisions involving 

numerous criteria (Edwards, 1977). This observation suggests that observer-derived weights may 

cluster on a subset of attributes. Moreover, since DMs may disregard less critical attributes when 

making holistic judgments, observer-derived weights may not be proportionate to the worth of 

each attribute. Therefore, the observer-derived weights method may not be the optimal choice, 

particularly when coping with a substantial number of criteria. In such scenarios, alternative 

weighting methods such as the analytic hierarchy process (Saaty, 1977), which involves examining 

one pair of criteria at a time, may offer a more effective approach to handling the complexity of 

the decision-making process (Patidar et al., 2007). 

2.5.3 (d) Gamble Method 

The gamble method, as outlined by Keeney and Raiffa (1993), offers a systematic approach 

to weight assignment within MCDA. It allows the DMs to assess and compare individual goals 

sequentially. The process begins by identifying the most critical goal, the one with the highest 

significance in transitioning from its least desirable state to its most desirable state. This goal takes 

precedence in the weight assignment process. Next, two scenarios are evaluated. In the “sure thing 

scenario,” the chosen goal is set to its optimal level, representing the best possible outcome, while 

all other goals remain set at their least desirable states. Conversely, the “gamble scenario” 

introduces an element of uncertainty. Probabilities are assigned, with p representing the likelihood 

of achieving the most desirable levels for all goals and (1 – p) signifying the probability of attaining 
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their worst values. The objective is to find the specific p value at which the two scenarios, “sure 

thing” and “gamble,” become equally appealing to the DM (Z. Li, 2003). 

This process is repeated iteratively for the remaining goals, with each goal's relative 

importance decreasing in each subsequent step. Weights are assigned to each goal based on the 

previously established probabilities. It is important to note that the hypothetical probabilities for 

achieving the best or worst conditions of each goal may vary among different assessors, thus, 

reflecting the subjective nature of the evaluation process. 

The gamble method is particularly valuable in scenarios involving outcome risk, where 

precise outcomes are unknown, but their probability distributions are known. This method helps 

in determining the relative importance of different performance criteria. However, it may present 

challenges in terms of comprehension and administration owing to the need to assess the relative 

desirability of uncertain outcomes (Sinha & Labi, 2007). 

2.5.3 (e) Analytical Hierarchy Process (AHP) 

The AHP, often referred to as the pairwise comparison method, is a systematic decision-making 

technique designed to assess and prioritize the relative importance of multiple decision criteria. 

AHP is grounded in the principles of decomposition, comparative judgments, and priority 

synthesis, offering a structured framework to assign weights to these criteria. It accommodates 

various factors, including qualitative and quantitative elements, and tangible and intangible aspects 

(Saaty, 1977). 

In the AHP framework, decision criteria are organized hierarchically, with each level of 

the hierarchy representing a specific aspect of the decision process (Bukhsh et al., 2017). The AHP 

process commences with pairwise comparisons of decision criteria to determine their respective 

weights, which reflect their relative significance in the decision-making process. To facilitate these 

comparisons, a structured system is used, as shown in Table 2.4, where values are assigned to 

represent the degree of importance or preference between two criteria: 
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Table 2.4: Pairwise Comparison Ratio for Weighting 

Importance Level Description Assigned Value 

Equal Importance When criteria X and Y hold the same level of importance 1 

Slightly More Important If criteria X is slightly more important than criteria Y 3 

Moderately More Important If criteria X is moderately more important than criteria Y 5 

Strongly More Important If criteria X is strongly more important than criteria Y 7 

Extremely More Important If criteria X is extremely more important than criteria Y 9 

Slightly Less Important If criteria X is slightly less important than criteria Y 1/3 

Moderately Less Important If criteria X is moderately less important than criteria Y 1/5 

Strongly Less Important If criteria X is strongly less important than criteria Y 1/7 

Extremely Less Important If criteria X is extremely less important than criteria Y 1/9 

2.5.3 (f) Value swinging 

The value swinging method (Goicoechea, 1982) offers a systematic approach to addressing 

MCDM. This method involves envisioning a scenario in which all performance criteria are at their 

lowest possible values. The goal is to identify the criterion for which it is the most advantageous 

to transition from its worst value to its best value while keeping all other criteria at their worst 

levels. This step is repeated for all criteria under consideration. 

To assign weights to the criteria, the most critical criterion is given the highest weight 

within a specified range (e.g., a range of 1 to 100, with 100 being the highest weight). Subsequently, 

the remaining criteria are assigned weights in proportion to their rank in importance. This 

systematic approach ensures that the most crucial criteria receive the greatest emphasis in the 

decision-making process, which means it is a valuable tool for evaluating complex scenarios with 

multiple criteria (Bai et al., 2008; Sinha & Labi, 2007). 

2.5.3 (g) Delphi Approach 

The Delphi method is a valuable approach for determining the relative importance of criteria, 

particularly in situations in which existing knowledge is limited or unavailable (Nasa et al., 2021). 

This method engages a panel of experts in a collaborative process aimed at reaching a consensus 

regarding the significance of various criteria. The Delphi approach unfolds across a series of 
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distinct phases that incorporate expert perspectives, thereby creating a structured feedback loop 

that facilitates the process of consensus-building. 

To address the necessity for building consensus and achieving a comprehensive assessment, 

the Delphi technique (Dalkey & Helmer, 1963) has proven to be suitable for group decision-

making and serves the purpose of aggregating the viewpoints of individual experts (Bendaña et al., 

2008; Cavalli‐Sforza & Ortolano, 1984; de la Cruz et al., 2008). Within the Delphi technique, the 

initial results obtained from questionnaire surveys undergo thorough analysis and summarization. 

The summary statistics obtained, which include parameters such as the average and standard 

deviation, are then conveyed to the survey participants. In response, the participants review their 

initial responses based on the summary statistics. This step provides the experts with the flexibility 

to adjust the weights they initially assigned based on the feedback received. This iterative process 

continues until no further alterations occur in the scores (Sinha & Labi, 2007) 

One significant advantage of the Delphi method is its approach to interaction management 

(Martino, 1983; Mullen, 2003). Interaction within the Delphi process is entirely anonymous 

(Sourani & Sohail, 2015), allowing participants to successively change their opinions without 

publicly disclosing such changes. This anonymity allows participants to alter their opinions 

without the need for public disclosure, fosters an environment that encourages candid input by 

focusing solely on the value of ideas, and minimizes the potential negative impacts associated with 

committee dynamics, such as group pressure, status, and dominant personalities. However, 

anonymity also has its disadvantages, including the lack of accountability for expressed views and 

potential limitations on exploratory thinking and idea generation (Mullen, 2003). 

2.5.4 Scaling Methods 

In MCDA, scaling is the step that ensures that the criteria are transformed into a common scale or 

range that makes the different criteria directly comparable. Scaling serves to standardize data and 

harmonize the measurement levels of various criteria, thereby facilitating analysis, weighting, and 

amalgamation. 

Scaling is indispensable when working with diverse criteria that may contain different units 

or measurement scales, as is frequently the case in decision-making scenarios. Two main 

categories of scaling methods include certainty and risk scenarios, each of which is suitable for 

specific contexts (Labi, 2014). 
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Figure 2.13: Scaling Categories with some existing methods (Sinha & Labi, 2007) 

2.5.4 (a) Decision-Making Under Certainty Scenarios 

Decision-making under certainty is characterized by having complete and precise knowledge of 

the consequences (in terms of the multiple criteria) associated with each alternative. In such a 

scenario, DMs can rely on methods that effectively capture, construct, or quantify their preferences 

regarding the levels of each performance criterion. These methods play a role in facilitating 

decision-making by providing a structured approach to comparing the alternatives. 

As the outcomes of each alternative are known with absolute certainty, this scenario 

ensures that the decision-making process aligns closely with the DMs’ preferences, allowing for a 

more straightforward and objective selection of the most favorable alternative based on the 

established criteria. In the certainty scenarios, value functions or deterministic scaling functions 

are used to quantify the desirability of the criteria (Bai et al., 2008). 

The scaling methods that fall under certainty scenarios draw from value theory (Keeney & 

Raiffa, 1993) and rely on the concept of value functions, which are scalar indices representing 

DMs’ preferences for various levels of a performance criterion under conditions of certainty. In 

practical terms, if a scale that ranges from 0 to 100 is considered, then the values 0 and 100 are 

associated with the worst and best levels of the criterion, respectively. The values assigned to 

intermediate levels are determined by the DMs themselves. These value functions serve as 

mathematical representations of the DMs’ preference structure and can assume linear or nonlinear 

forms. This mathematical representation captures the DMs’ preference structure, allowing for a 

systematic evaluation of alternatives. 
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The multivariate value function, denoted as v(z), is expressed as the following (Patidar et al., 2007): 

v(z) 

=v(z1 , z2 ,......, z p )

 

where z symbolizes the consequence set of an alternative in terms of evaluating criterion p. The 

consequence set encompasses the anticipated outcomes across the evaluation criteria after the 

decision is executed. Notably, the value function possesses a property (Keeney & Raiffa, 1993), 

which makes it useful for addressing tradeoffs between pairs of evaluation criteria. 

The techniques that are used to construct value functions under certainty scenarios are 

explained in this subsection. The methods include the mid-value splitting technique, direct rating, 

and statistical regression. The methods are flexible and can be adapted to different criteria and 

decision contexts (Sinha & Labi, 2007). 

2.5.4 (a.1) Direct Rating 

The direct rating method is a straightforward approach that often uses questionnaire surveys to 

generate value functions. In this method, respondents, who are typically the DMs, are asked to 

directly assign values to each level of a given performance criterion. This technique is useful when 

addressing criteria that have a relatively small number of discrete levels and when DMs can be 

questioned directly using some form of survey instrument. This method allows DMs to provide 

their direct input in the form of value assignments, facilitating the construction of value functions 

(Hobbs & Meier, 2000). Its simplicity and effectiveness make direct rating an excellent choice for 

evaluations. 

2.5.4 (a.2) Mid-Value Splitting Technique 

The mid-value splitting technique seeks information from survey respondents regarding their 

indifference towards changes in the levels of a performance criterion (Keeney & Raiffa, 1993). 

This method is well-suited for criteria with a broader domain of possible levels. It helps in 

capturing the perspectives of DMs concerning the points at which they are indifferent to changes 

in the performance criterion, thereby enabling the development of value functions that reflect these 

preferences. 

The method, executed through a questionnaire survey involving the DM, unfolds as an 

interactive conversation between the survey administrator and the respondent, who is the DM. 
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During this process, DMs are prompted to express the degree of their indifference concerning 

various levels of the performance criterion. The extent of their indifference is captured by the 

concept of “equal delight” or “zero relative desirability” between the two specified levels. 

To establish the value function of a performance criterion X, with a potential value range 

from XL to XU units, the steps are as follows: 

Step 0: Set v(X = XL) = 0 and v(X = XU) = 100 

Step 1: Establish X50 for which v(X50) = 50 

Establish X50 such that the survey respondent is equally delighted with (i) and (ii) as follows: 

(i) is an improvement of X from 0 to X50 and (ii) is an improvement of X from X50 to XU 

Step2: Establish X25 for which v(X25) = 25 

Establish X25 such that the survey respondent is equally delighted with (i) and (ii) as follows: 

(i) is an improvement of X from 0 to X25 and (ii) is an improvement of X from X25 to X50 

Step 3: Establish X75 for which v(X75) = 75 

Establish X75 such that the survey respondent is equally delighted with (i) and (ii) as follows: 

(i) is an improvement of X from X50 to X75 and (ii) is an improvement of X from X75 to 

XU 

Step 4: Consistency check 

Is the survey respondent equally delighted with (i) and (ii) as follows: 

(i) is an improvement of X from X25 to X50 and (ii) is an improvement of X from X50 to 

X75? 

Step 5: Adjustments 

If the consistency check is affirmative, the values are consistent and, if not, DMs are to revise their 

responses in steps 1–3. 

Based on these established values, the value function for the performance criterion can be 

constructed. This simple and practical mid-value splitting technique proves helpful for assessing 

value functions, especially in scenarios in which resource constraints limit the adoption of more 

complex methods. 
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2.5.4 (a.3) Statistical Regression 

Refer to Section 2.5.4 (b.3) for information regarding statistical regression. 

2.5.4 (b) Decision Making Under Risk Scenario 

Decision making under risk is when the decision problem contains significant uncertainty. Unlike 

certainty-based scenarios, in which precise outcomes are known, the risk-based approach 

introduces intricacies by associating specific probabilities with the consequences of each 

alternative regarding the decision criteria (Patidar et al., 2007). This scenario, involving 

uncertainty regarding the outcomes of decisions, is relevant in some fields such as transportation 

because organizations often face challenges in accurately predicting the specific results of their 

decisions, whether they involve a physical intervention or a policy change (Sinha & Labi, 2007). 

As such, it is useful, possibly even necessary, for agencies to incorporate risk and 

uncertainty concepts in scaling their evaluation criteria. In the risk scenario, the range and 

distribution of possible outcomes for each performance criterion are known. Risk is either 

subjective or objective. Subjective risk is based on personal perceptions, and objective risk is based 

on theory, experiment, or observation. In the uncertainty scenario, the range and distribution of 

possible outcomes for each performance criterion are unknown. 

Utility functions are used for scaling evaluation criteria when there is uncertainty or risk in 

the problem. The DM specifies a certain level of “desirability” (or “utility”) for each decision 

outcome in terms of each performance criterion, and the expected overall utility of each alternative 

decision is calculated. The best intervention is that which yields the maximum expected utility 

(Keeney & Raiffa, 1976). By providing a scale showing the DMs’ preferences for different levels 

of a performance criterion, a utility function implicitly captures the risk preferences of the DMs 

for levels of the criterion. The risk behavior of the DM can be ascertained from the utility function 

shape and parameter values (Figure 2.14). A DM inclined toward risk-taking exhibits a strictly 

convex utility function, a risk-averse DM demonstrates a strictly concave utility function, and a 

risk-neutral DM shows a linear utility function (Winston, 1999). 
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Risk Taker 

Risk Averse 

Risk Neutral 

Utility 

Criterion (X) 0 

100 

Initially Risk Averse 

but Risk Taker Later 

XWORST XBEST 

Figure 2.14: Different Risk Behaviors of Decision Makers (Sinha & Labi, 2007) 

The concepts of utility and multi-attribute utility theory prove to be valuable for addressing 

decision-making problems marked by risk and uncertainty. Utility is treated as a random variable, 

and the “expected utility” represents the mean of the random variable. DMs specify the level of 

“desirability” or “utility” for each potential outcome of an action. By assigning suitable utility 

values to these outcomes and calculating the expected utility for each alternative, it becomes 

possible to identify the optimal course of action. The alternative with the highest expected utility 

is chosen as the most preferable option (Keeney and Raiffa, 1976). 

The multi-attribute theory can be applied using the following steps (Goicoechea, 1982): 

1. Formulate suitable assumptions regarding the preferences of the DM. 

2. Determine an appropriate mathematical representation based on these assumptions. 

3. Validate the assumptions by incorporating the DM's perceptions. 

4. Develop preference rankings, also known as utility functions, for each performance 

criterion. 

5. Integrate individual criterion utility functions using the established mathematical 

representation and considering the relative weights assigned to each criterion. 

6. Establish a preference ranking for alternatives based on their expected utilities. 

A utility function is a general form of a value function. This means that a value function is a 

specific form of a utility function in which the degree of uncertainty is 0%. A multi-attribute utility 

function captures DMs’ preferences regarding the levels of each decision criterion. It extends the 

concept of a value function but also captures the DMs’ risk preferences for various levels of each 
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attribute. The expected values of the utility function serve as a basis for comparing alternatives. 

The alternative with the maximum expected utility is identified as the most preferable alternative. 

However, as noted by Patidar et al. (2007), constructing multi-attribute functions can be 

exceptionally challenging due to the multiplicity of dimensions. 

To manage this complexity, an alternative approach is often used. Instead of attempting to 

reduce dimensionality through a multi-attribute function, several single-criterion (univariate) 

utility functions are developed individually (Goicoechea, 1982; Patidar et al., 2007). 

In a risk scenario, risk can either be subjective or objective. Subjective risk is shaped by personal 

perceptions, reflecting an individual's subjective judgment of the likelihood and impact of various 

outcomes. In contrast, objective risk is grounded in more tangible sources such as established 

theories, empirical experiments, or observed data. Objective risk relies on more concrete and 

measurable foundations, which contrasts with the more personal and interpretive nature of 

subjective risk. The certainty equivalent approach and the direct questioning method fall within 

the subjective risk category and serve as indispensable tools for understanding DMs' risk-taking 

behaviors and preferences. Linear scaling, monetization, and probability distribution functions all 

fall within the objective risk category of the risk scenario. Objective risk methods are typically 

valuable in cases where the costs and benefits associated with criteria are inherently nonlinear and 

require a data-driven approach. The choice of scaling method depends on the nature of the criteria, 

the available data, and the context of the decision-making process. 

2.5.4 (b.1) Certainty Equivalent Approach 

The certainty equivalent approach is a method that enables a DM’s risk-taking behavior 

within a subjective risk situation to be identified. It establishes a connection between a DM’s 

single-criterion utility function and their risk attitude. This approach is valuable when confronting 

situations in which the exact consequences of actions are uncertain, and DMs must navigate a 

complex landscape of potential outcomes (Patidar et al., 2007). The approach provides insights 

into DMs’ attitudes toward risk and informs the decision-making process by shedding light on 

their risk preferences and willingness to embrace uncertainty. 
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2.5.4 (b.2) Direct Questioning Method 

The direct questioning method is used within the risk-based scenario to directly collect 

information from DMs regarding their risk preferences and attitudes. DMs are surveyed or 

interviewed and asked to articulate their willingness to take risks, their risk tolerance, and their 

comfort levels with uncertainty. This method directly captures the subjective risk perceptions of 

DMs and plays a large role in developing a comprehensive understanding of their risk attitudes. 

The responses gathered through direct questioning are then used to develop utility functions and 

identify risk preferences, which are indispensable for making well-informed decisions under 

conditions of uncertainty. 

The gamble method can be used in the direct questioning approach by developing a utility 

function for a performance criterion. The process begins by assigning utilities of U(XW) = 0 for 

the worst level of the criterion and U(XB) = 100 for the best level. The comparison involves two 

scenarios, a guaranteed prospect with an outcome of X = 0.5 × (XB − XW) and a risky prospect 

where an outcome of XW occurs with probability p and an outcome of XB with probability (1 – p; 

Bai et al., 2008; Labi, 2014; Sinha & Labi, 2007). The comparison is conducted by varying the 

probability parameter p until a threshold point is reached at which survey respondents’ express 

indifference between the guaranteed and risky prospects. The process is iteratively applied for all 

other levels of the criterion. 

2.5.2 (b.3) Probability Distribution Functions 

This method of scaling falls under the objective risk category. The methods in this category do not 

involve subjective preferences and are data driven. These methods focus on objective and 

quantifiable data, enabling the transformation of criteria into a standardized format. The methods 

are often used when it is challenging to collect or incorporate subjective opinions or when a more 

objective approach is required. 

Probability distribution functions do not consider the subjective opinions of the DMs and 

tend to be superior for making decisions in which the DMs input is of the utmost relevance (Bai et 

al., 2008; Patidar et al., 2007). The functions aim to transform the raw data associated with various 

criteria into a common and standardized scale, ensuring that all criteria are directly comparable. 
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Some common methods are min-max normalization, z-score normalization, decimal scaling, and 

absolute mean and zero-deviation. 

One of the simplest and most widely used objective techniques is min-max normalization, 

which is effective when the upper and lower bounds (maximum and minimum values) of decision 

model scores are known. In such cases, it is relatively straightforward to adjust the minimum and 

maximum scores to a common range between 0 and 1. It is important to note that min-max 

normalization retains the original distribution of scores while rescaling them into a common range 

(Jain et al., 2005). Z-score normalization is an effective normalization method that transforms all 

input values into a common measure, ensuring a standardized data set with an average of zero and 

a standard deviation of one (Adeyemo et al., 2019). This procedure involves calculating the mean 

and standard deviation for each attribute, followed by individual normalization using these 

calculated statistics. The method's advantage lies in its ability to mitigate the impact of outliers, 

thereby rendering it suitable for datasets with varying levels of variability and unknown data 

distributions. 

To address the limitations of traditional min-max normalization, the median absolute 

deviation normalization method is proposed. It is notable for its adaptability to data of varying 

sizes, robustness against outliers, and straightforward implementation. median absolute deviation 

normalization aligns data with a median of 0 and a median absolute deviation of 1, thus, effectively 

enhancing its suitability for analysis while minimizing issues such as multicollinearity (Kappal, 

2019). 

Decimal scaling, an alternative technique, serves as a data transformation method similar 

to conventional z-score normalization. This method adjusts the number of decimal points for each 

attribute value based on the highest number of placeholders among all columns (Sinsomboonthong, 

2022). It is beneficial for logarithmic scale data by ensuring that scores are consistently scaled for 

comparative analysis. Decimal scaling assumes logarithmic scaling, which may not always hold 

true in diverse decision-making scenarios. 

Similarly, the absolute mean and zero-deviation normalization method (Patro & Sahu, 2015) 

operates within the range of 0 to 1 and employs individual element scaling, processing each data 

point separately. Unlike some normalization techniques, absolute mean and zero-deviation is not 

dependent on data size or quantity and is exclusively applicable to integer numbers. 
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PDF-based methods provide a systematic way to make criteria directly comparable and are 

effective when coping with known and measurable criteria. However, they do have limitations. 

These limitations include their lack of adaptability to data with varying characteristics, sensitivity 

to outliers, assumptions of normality, limited customization options, challenges in handling 

missing data, and reduced flexibility in accommodating diverse decision-making scenarios. In 

situations in which decision criteria exhibit a high degree of variability or where specific 

requirements and preferences need to be considered, more flexible scaling methods may be 

preferred over these objective techniques to ensure a more accurate representation of the data. 

2.5.5 Amalgamation Methods 

Amalgamation, a crucial step in the MCDA process, serves as the point at which various decision 

alternatives undergo evaluation after individual performance criteria have been weighted and 

scaled (Bukhsh et al., 2017; Sinha & Labi, 2007). Its primary aim is to consolidate the numerous 

criteria into a unified criterion for each alternative, thereby facilitating the identification of the 

most favorable alternative or the ranking of the alternatives (Bell et al., 2003; Patidar et al., 2007). 

Several methods are available for amalgamation in MCDA. These include the 

multiplicative utility function method, the weighted sum method (WSM), the weighted product 

model (WPM) method, the AHP method, the ELECTRE method, the goal programming method, 

the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, the global 

criterion or compromise programming method, the neutral compromise solution method, and the 

lexicographic order technique. These methods offer a wide spectrum of tools and techniques for 

DMs to choose from, each with its own advantages and limitations. 

2.5.5 (a) Weighted Sum Method 

This method is a widely adopted approach for amalgamating multiple criteria into a single unified 

criterion for each alternative (Li, 2003). In this method, the determination of relative weights for 

individual criteria is a critical consideration. It is important to note that the WSM, although user-

friendly, offers only a linear approximation of the preference function. Consequently, the solution 

derived using this method may not faithfully preserve the DM's initial preferences, regardless of 

how the weights are configured (Marler & Arora, 2010). Additionally, an essential condition for 
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the validity of the WSM must be considered, that is, that the values of the criteria remain linearly 

independent. This implies that the value assigned to each criterion should remain unaffected by or 

independent of the values assigned to other criteria. Failure to meet this condition could render the 

WSM incapable of producing a valid solution (Hazelrigg, 2019). 

2.5.5 (b) Weighted Product Model 

The WPM (Bridgman, 1922; Triantaphyllou & Mann, 1989) is a widely used technique in MCDA 

(Cristóbal, 2012; Mateo, 2012) that builds upon the WSM (Goswami et al., 2020). In the WPM, 

each alternative's assessment relative to the other alternatives is achieved by multiplying ratios, 

with each corresponding to a specific decision criterion. 

This methodology first involves the distribution of weights to criteria, the normalization of 

performance values, and the subsequent calculation of preference scores by multiplying the 

normalized values with the assigned weights (AlAli et al., 2023). The effectiveness of WPM in 

addressing MCDM is well-established, with successful applications across a diverse range of 

scenarios involving various criteria (Supriyono & Sari, 2018; Triantaphyllou & Mann, 1989). 

2.5.5 (c) Multiplicative Utility Function Method 

In the foundational work on multi-criteria or multi-attribute utility theory (MAUT), Keeney and 

Raiffa (1976), presented a framework that leverages the concept of independence among attributes, 

leading to the development of the multiplicative multi-attribute utility function denoted as uM(z), 

which is given by the following: 

In this expression, z = (z1, ..., zn) represents evaluations, zi signifies attribute evaluations, ki 

represents the weight assigned to the ith criterion, and k is a scaling constant. 

To effectively apply the multiplicative model, it is essential to ensure mutual utility 

independence. This means that subsets of criteria should be independent of their complements. 

(Dombi, 2009). The multiplicative MAUT model is a versatile tool, proficient in representing 

complex preference structures, embracing nonlinearities, and accounting for attribute interactions 

62 



 

 

 

     

    

     

     

     

  

    

    

  

    

  

    

    

 

   

   

   

  

       

 

  

 

   

       

   

 

  

   

  

  

without reliance on unrealistic behavioral assumptions (Keeney & Raiffa, 1976). The optimal 

choice is determined by selecting the alternative with the highest overall utility, aligning with the 

utility-based approach, thereby yielding the best decision outcome (Labi, 2014). 

2.5.5 (d) ELimination Et Choix Traduisant la REalité (ELECTRE) Method 

The use of traditional aggregation methods in MCDA can yield results that are sensitive to score 

variations and the construction of individual indicators. In some cases, different composite 

indicators may favor one alternative over another (Josselin & Le Maux, 2017). To address this 

sensitivity and the need for a more rigorous approach, non-compensatory analysis has gained 

prominence. This methodology relies on pairwise comparisons of alternatives based on individual 

indicators, which has proved effective in sorting problems. While discussions have occurred that 

categorize ELECTRE as partially compensatory, it has been positioned within the non-

compensatory subgroup, highlighting its distinctiveness within MCDA (Taherdoost & 

Madanchian, 2023). This distinctive feature makes ELECTRE a valuable alternative in MCDA, as 

it offers a departure from traditional compensatory methods. 

Within the domain of non-compensatory models, the outranking methods category is 

designed to establish relationships of outranking among different alternatives based on a set of 

varying criteria. Among these methods, ELECTRE-based methods are known for their 

effectiveness. ELECTRE aims to determine the hierarchy among alternatives through a structured 

procedure, where one alternative is deemed superior to another only if it meets specific conditions 

(Li, 2003). 

The primary condition relates to the concordance index, which is the sum of normalized 

weights favoring the first alternative. To meet this condition, the concordance index must surpass 

a predefined threshold value. The second condition pertains to the discordance index, signifying 

the number of attributes in which the second alternative outperforms the first by an amount 

exceeding a specified threshold value. To meet this condition, the discordance index should be 

zero (Josselin & Le Maux, 2017; Li, 2003). 

ELECTRE excels in complex decision-making scenarios with a substantial number of 

criteria, often exceeding the typical threshold of five and extending to as many as 12 or 13 criteria. 

It effectively addresses the intricacies of these settings, managing challenges with which 

conventional compensatory methods may struggle. For example, ELECTRE is extremely effective 
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when actions are evaluated using ordinal scales for at least one criterion. The use of ordinal scales 

poses challenges in establishing meaningful coding for preference differences. ELECTRE's non-

compensatory nature makes it suitable for addressing these situations (Martel et al., 1988). 

Furthermore, ELECTRE proves to be effective in situations that are characterized by 

significant heterogeneity among the scales associated with the criteria. These criteria often span a 

wide range of measurement scales, making it impractical to establish a uniform and common scale 

for comparison (Figueira et al., 2016; Taherdoost & Madanchian, 2023). For DMs averse to 

accepting tradeoffs between criteria, ELECTRE's non-compensatory aggregation procedures are 

indispensable (Taherdoost & Madanchian, 2023). 

2.5.3 (e) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) Method 

The TOPSIS method has garnered significant attention within the field of MCDM, thereby proving 

its versatility and effectiveness (Behzadian et al., 2012; S.-J. Chen & Hwang, 1992; Hwang & 

Yoon, 1981). This method aims to identify the most favorable alternative by assessing its 

proximity to the ideal solution and its divergence from the worst solution, ultimately leading to a 

comprehensive evaluation of each alternative (Papathanasiou & Ploskas, 2018). 

TOPSIS operates under the assumption that each criterion's preference structure follows 

either a monotonically decreasing or increasing pattern, signifying “the more, the better” or “the 

fewer, the better,” respectively. This fundamental characteristic equips TOPSIS to handle a wide 

range of decision-making scenarios in which criteria exhibit diverse and contrasting preferences, 

making it an invaluable tool in MCDA (Labi, 2014). 

Over time, the TOPSIS methodology has undergone extensive experimentation and 

refinement, particularly in areas such as normalization procedures, the accurate determination of 

ideal and anti-ideal solutions, and the selection of appropriate metrics for calculating distances 

from these solutions (Papathanasiou & Ploskas, 2018). These refinements have further enhanced 

the applicability and robustness of the TOPSIS method in various practical settings. 

2.5.3 (f) Global Criterion (Compromise Programming) Method 

The global criterion or compromise programming method (Yu, 1973) offers a unique perspective 

on MCDM. It focuses on the identification of the optimal solution that minimizes its distance from 

64 



 

 

 

    

      

 

    

 

     

  

 

       

     

  

  

      

 

 

   

   

    

   

     

 

    

    

         

   

    

   

the global reference point (GRP), which embodies the global optimal values of all decision criteria 

(Miettinen, 1998). The GRP serves as a comprehensive reference point for assessing the feasibility 

of alternative solutions. 

This distinctive approach has gained significance in MCDM by enabling the prioritization 

and selection of alternatives based on their proximity to the GRP. As a result, it facilitates effective 

decision-making in complex scenarios (Cochrane & Zeleny, 1973; Miettinen, 1998; Yu, 1973). 

The method not only aids in selecting the most suitable alternative but also promotes a balanced 

consideration of all relevant criteria, thus, contributing to well-rounded and robust decision 

outcomes. 

By following this unique approach, DMs can systematically assess a wide range of decision 

alternatives, considering the importance of each criterion and striving to strike a balance among 

these considerations. With decisions becoming increasingly complex and involving multiple, and 

often conflicting, objectives, the global criterion or compromise programming method offers an 

effective way to navigate the complexities of decision-making, making it a valuable tool in MCDM 

(Cochrane & Zeleny, 1973; Miettinen, 1998). 

2.5.5 (g) Neutral Compromise Solution Method 

The neutral compromise solution method (Gal et al., 2013) is similar to the global criterion method 

but differs in its underlying assumption regarding the ideal solution. In this approach, it is assumed 

that the optimal performance target or ideal solution is positioned at the midpoint within the range 

of possible values for each performance objective (Setämaa-Kärkkäinen et al., 2006). 

Consequently, the objective is to find the alternative that minimizes the maximum deviation from 

this midpoint for each performance objective, subject to the constraint that the alternative falls 

within the decision space. 

The simplicity of this method is one of its key advantages, providing DMs with a 

straightforward approach to optimize decision alternatives. However, it is important to recognize 

that the assumption of the ideal performance level at the midpoint can be overly restrictive or 

impractical in real decision scenarios. Nonetheless, this method offers a structured approach that 

can prove valuable in decision-making, particularly when the midpoint ideal solution assumption 

holds (Branke, 2008). 
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2.5.5 (h) Lexicographic Order Technique 

In the lexicographic order method (Fishburn, 1974), DMs exercise control over objective functions 

according to their absolute interests. This approach involves a systematic optimization process in 

which each objective is addressed in a predetermined order of importance. Initially, the highest-

priority objective is optimized, and the method checks whether it yields a unique solution. If a 

unique solution emerges, it is considered optimal. However, if multiple solutions arise, the process 

proceeds to the second objective, along with new constraints derived from the outcome of the first 

objective. This sequential process continues until all objectives are considered, enabling DMs to 

make well-structured choices based on their hierarchical objective preferences (Gunantara, 2018). 

The method offers a systematic approach for MCDM without using complex mathematical 

models. It begins by assigning weights to each decision criterion. The first step involves 

identifying the most significant criterion and determining the value for each alternative with 

respect to this primary criterion. The alternatives are compared with reference to the primary 

criterion to identify the optimal alternatives. If a single alternative obviously has the best value for 

the primary criterion, it is selected as the optimal solution. However, if multiple alternatives share 

the same optimal value for the primary criterion, their performance is further assessed based on 

the second most important criterion. This iterative process continues until only one solution 

remains or all the criteria have been considered (Fishburn, 1974). 

Despite its simplicity and user-friendliness, the lexicographic order method presents two 

notable limitations (Branke et al., 2008). Firstly, assigning ranks and importance to decision 

criteria can prove to be a challenging task for DMs. Secondly, the method may prematurely 

conclude without a comprehensive evaluation of other criteria apart from the most important one. 

In situations where a single alternative excels in terms of the primary criterion, the evaluation of 

other alternatives may cease, even if the chosen solution performs poorly in most of the other 

decision criteria (Labi, 2014). To use the lexicographic method effectively, DMs must define 

preferences to establish the lexicographic order of the objectives. However, determining these 

preferences can be a challenging task (Castro-Gutierrez et al., 2010). 
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2.6 Summary of the Literature Review 

Table 2.5 summarizes the literature closely related to this thesis’s subject matter and study 

objective, and Table 2.6 summarizes the MCDM methods. 

Table 2.5: Summary of LiDAR placement approaches 

Reference Subject Matter Study Objective 
(Mou et al., Optimal LiDAR The Sparsity and discreteness of LiDAR was considered in 
2018b) Placement defining an ROI. The ROI was further subdivided into smaller 

conical subspaces and presented as a non-linear optimization 
issue. 

(T.-H. Kim & Placement Optimization In order to maximize the point cloud density and minimize the 

Park, 2020) of Multiple LiDAR 
sensors or AV 

dead zone, a Probability Occupancy Grid was introduced. A 
genetic algorithm was developed to carry out experiments. The 

results show that placement improves perception performance in 
AV. 

(Hu et al., Investigating Multi- The ROI of the LiDAR was modelled as a cuboid similar to 
2022) LiDAR Placement on 

Object detection 
performance in AV 

(Mou et al., 2018b). The cuboid was further subdivided into 
voxels. The LiDAR placement was evaluated by using proposing 
a Probability Occupancy Grid. The experiments were conducted 
using CARLA. 

(Kini, 2020) Sensor Position 
Optimization for 
Multiple LiDARs in AVs 

The point cloud density i.e., LiDAR Occupancy is maximized 
and used as an objective function to minimize the dead zone 
(blind spots). The environment used for the experiment is 

CARLA using some algorithms from Point Cloud Library (PCL) 
and the ROI is defined using LiDAR occupancy boards (LOB). 

(Dybedal & Optimal Placement of A mixed integer linear programming framework was used to 
Hovland, 3D Sensors considering address the challenge of determining the best placement for 3D 

2017) Range and Field of view sensors. The space covered by each sensor is represented as a 
cone, considering limitations in both field of view and range. 
This cone model is subsequently divided into smaller cubes, and 
constraints are established to resolve the optimization problem. 

(Domínguez et LiDAR Based Different obstacles are perceived and tracked based on real world 
al., 2011) Perception Solution for 

AVs 
acquired photos and LiDAR point clouds. The task is classified 
into four phases. i.e., Segmentation, fragmentation detection, 
clustering, and tracking. 

(Berens et al., 
2022) 

Genetic Algorithm for 
the Optimal LiDAR 
sensor configuration on a 

vehicle. 

This paper considers redundancy and the shape of the car to 
propose a genetic algorithm that finds the optimal position of 
multiple sensors concurrently. The environment used for the 

experiment is CARLA by setting up the Region of Interest as a 
cylinder with the height and radius depending on what the car is 
applicable for. 
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Table 2.6: Summary of MCDA methods 

Method Summary 
AHP (Analytic Hierarchy 
Process) 

Hierarchical decision-making method using pairwise comparisons to derive 

priority scales, facilitating complex decisions by breaking them down into 
simpler pairwise comparisons. 

ELECTRE (ELimination 
Et Choix Traduisant la 
REalité) 

Outranking method that assesses alternatives based on criteria and assigns 
ranks using concordance and discordance indices, allowing for the 

identification of preference relations. 
TOPSIS (Technique for 
Order Preference by 
Similarity to Ideal 

Solution) 

Compares alternatives based on their distance to the ideal and anti-ideal 

solutions, ranking them by their proximity to the best solution and farthest from 
the worst solution. 

MAUT (Multi-Attribute 

Utility Theory) 
It assesses alternatives by analyzing their utility functions for each criterion. 
This allows for comparing alternatives using utility values obtained from 
individual preferences. 

Weighted Sum Model Aggregates scores by multiplying criterion scores by respective weights and 
summing them to rank alternatives based on their total weighted scores. 

WPM (Weighted Product 

Model) 
Ranks alternatives by multiplying the ratings of each alternative across criteria 

by their respective weights and aggregating these products to determine the 

best alternative. 
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METHODS AND EXPERIMENTAL SET UP 

3.1 Multi-Criteria Decision Framework 

Figure 3.1 presents the steps of the multi-criteria decision framework. The first step is to establish 

the relevant alternatives for the LiDAR sensor placement. The next step is criteria identification. 

The criteria considered in this thesis consist of the point density, blind spot area, sensor cost, power 

consumption, ease of installation, sensor redundancy, and aesthetics. The next step is the weighting, 

whereby the relative levels of importance across the criteria are established. A direct weighting 

approach, executed through a questionnaire, is utilized to provide a clear understanding of the 

significance of each criterion in the decision-making process. 

Subsequently, the different criteria are scaled using value functions. This process 

harmonizes diverse metrics and criteria, thus, transforming performance evaluations into a unified 

scale. This standardization facilitates meaningful comparisons among alternatives, particularly 

given the different measurement associated with each criterion. Following that, the amalgamation 

step integrates criteria weighting with the scaled performance evaluations. This process computes 

overall scores or rankings for each alternative, thereby delivering a clear assessment of their 

suitability. Finally, a decision is made based on the obtained results, which represent the top-

performing LiDAR placement designs. 
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Figure 3.1: Multi-Criteria Decision Framework 

3.1.1 Establishing Alternatives 

This is the first phase of the methodology in which the alternatives are identified. A 

systematic approach was used to identify the different LiDAR placement alternatives to optimize 

the LiDAR placement for AVs. The initial step involved identifying key variables: LiDAR 

positions on the AV roof (Front left, front right, rear left, rear right, center, front, back, side left, 

side right), channel counts (16, 32, 64), sensor numbers (1, 2, 3, 4), and elevation (High – 20 inches, 

Low – 10 inches). 

Figure 3.2 provides a visualization of the car's coordinate system, outlining the X, Y, and Z 

axes, which play an important role in understanding the LiDAR sensor placement on the roof of 

the AV. In this context, the four corners of the vehicle’s roof are marked to designate the front left, 
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front right, rear left and rear right positions on the vehicle. The center point is the center of the 

roof. Additionally, the top front location is situated between the front left and front right corners 

and the side left, and side right is between the front left and rear left and front right and rear right, 

respectively. These precise location references are used for the placement of the LiDAR sensors 

during each experiment within the experimental environment. Figure 3.2's delineation of the car's 

spatial dimensions and key reference points facilitated consistent and accurate sensor placement, 

ensuring that data collection and evaluation aligned with the naming convention for the alternatives. 

Figure 3.2: LiDAR placement Scenario for Roof of the Car 

𝑧 𝑦 

𝑥 

Figure 3.3: 3D representation of LiDAR placement Scenario for Roof of the Car 

The LiDAR placement alternatives were developed through combining all the variables. This 

approach ensured the consideration of a broad range of placement scenarios. This was obtained by 

running a code that combines the different factors under consideration while retaining only unique 
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LiDAR Placement Positions 

1-LiDAR 

Front Roof of Vehicle 

Center of Roof of Vehicle 

2-LiDARs 
Front and Rear of Roof of 

Vehicle 

3-LiDARs 

Front Left, Front Right and 
Center of Roof of Vehicle 

Front, Side Left and Side 
Right of Roof of Vehicle 

4-LiDARs 

Front Left, Front Right, Rear 
Left and Rear Right of Roof 

of Vehicle 

Front, Side Left, Side Right 
and Rear of Roof of Vehicle 

Figure 3.4: LiDAR Placement positions 

placements. For example, for a single LiDAR sensor, reasonable placement positions included the 

front or center of the roof. With two sensors, suitable placements were at the front and back. Three 

LiDAR sensors could be positioned at the front, side left, and side right or front left, front right, 

and rear. For four sensors, options entailed front, rear, side left, and side right placements or front 

left, front right, rear left, and rear right (Figures 3.3 – 3.5). 
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a. 1-LiDAR: Front Roof of vehicle 
b. 1-LiDAR: Center of Roof of vehicle 

d. 3-LiDAR: Front Left, Front Right and 

Center of Roof of Vehicle 

c. 2-LiDAR: Front and Rear of Roof 

of vehicle 

e. 3-LiDAR: Front, Side Left, and Side Right 

of Roof of Vehicle 
f. 4-LiDAR: Front Left, Front Right, 

Rear Left and Rear Right of Roof 

g. 4-LiDAR: Front, Side Left, Side Right and 

Rear of the Roof of Vehicle 

 

    Figure 3.5: 3D models of LiDAR (yellow color) placement options 
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Furthermore, channel counts were considered when additional sensors were positioned at 

the back. For example, in the three LiDAR sensor placement, all three sensors could have the same 

channel, (e.g., 32, 32, 32), or a scenario could exist in which the two sensors at the front had a 

higher channel, while the sensor at the back had a lower channel (e.g., 64, 64, 16). This 

consideration allowed for a reasonable approach to sensor configuration, ensuring compatibility 

and optimizing LiDAR placement. Placing a lower channel LiDAR at the front and a higher 

channel LiDAR at the back was deemed unreasonable, as objects ahead are of greater importance. 

These varying conditions played a role in refining the placements to include unique yet sensible 

alternatives. In total, the LiDAR placement alternatives were streamlined to 72 options, consisting 

of 12 one-LiDAR placements, 12 two-sensor placements, 24 three-sensor placements, and 24 four-

sensor placements (Table 3.1). 
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Table 3.1: LiDAR Placement Alternatives 

ID LiDAR 
Number 

Location on Roof of Vehicle Elevation Corresponding LiDAR 
Channels 

1-LiDAR Center High 16 

1-LiDAR Center High 32 

1-LiDAR Center High 64 

1-LiDAR Center Low 16 

1-LiDAR Center Low 32 

1-LiDAR Center Low 64 

1-LiDAR Front High 16 

1-LiDAR Front High 32 

1-LiDAR Front High 64 

1-LiDAR Front Low 16 

1-LiDAR Front Low 32 

1-LiDAR Front Low 64 

2-LiDARs Front, Rear High 16-16 

2-LiDARs Front, Rear High 32-32 

2-LiDARs Front, Rear High 64-64 

2-LiDARs Front, Rear Low 16-16 

2-LiDARs Front, Rear Low 32-32 

2-LiDARs Front, Rear Low 64-64 

2-LiDARs Front, Rear High 32-16 

2-LiDARs Front, Rear High 64-32 

2-LiDARs Front, Rear Low 32-16 

2-LiDARs Front, Rear Low 64-32 

2-LiDARs Front, Rear High 64-16 

2-LiDARs Front, Rear Low 64-16 

3-LiDARs Front Left, Front Right, Rear High 16-16-16 

3-LiDARs Front Left, Front Right, Rear High 32-32-16 

3-LiDARs Front Left, Front Right, Rear High 32-32-32 

3-LiDARs Front Left, Front Right, Rear High 64-64-16 

3-LiDARs Front Left, Front Right, Rear High 64-64-32 

3-LiDARs Front Left, Front Right, Rear High 64-64-64 

3-LiDARs Front Left, Front Right, Rear Low 16-16-16 

3-LiDARs Front Left, Front Right, Rear Low 32-32-16 

3-LiDARs Front Left, Front Right, Rear Low 32-32-32 

3-LiDARs Front Left, Front Right, Rear Low 64-64-16 

3-LiDARs Front Left, Front Right, Rear Low 64-64-32 

3-LiDARs Front Left, Front Right, Rear Low 64-64-64 

3-LiDARs Front, Side Left, Side Right High 16-16-16 

3-LiDARs Front, Side Left, Side Right High 32-16-16 

3-LiDARs Front, Side Left, Side Right High 32-32-32 

3-LiDARs Front, Side Left, Side Right High 64-16-16 
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Table 3.1 continued 

41 3-LiDARs Front, Side Left, Side Right High 64-32-32 

42 3-LiDARs Front, Side Left, Side Right High 64-64-64 

43 3-LiDARs Front, Side Left, Side Right Low 16-16-16 

44 3-LiDARs Front, Side Left, Side Right Low 32-16-16 

45 3-LiDARs Front, Side Left, Side Right Low 32-32-32 

46 3-LiDARs Front, Side Left, Side Right Low 64-16-16 

47 3-LiDARs Front, Side Left, Side Right Low 64-32-32 

48 3-LiDARs Front, Side Left, Side Right Low 64-64-64 

49 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 16-16-16-16 

50 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 32-32-16-16 

51 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 32-32-32-32 

52 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 64-64-16-16 

53 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 64-64-32-32 

54 4-LiDARs Front Left, Front Right, Rear Left, Rear Right High 64-64-64-64 

55 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 16-16-16-16 

56 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 32-32-16-16 

57 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 32-32-32-32 

58 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 64-64-16-16 

59 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 64-64-32-32 

60 4-LiDARs Front Left, Front Right, Rear Left, Rear Right Low 64-64-64-64 

61 4-LiDARs Front, Side Left, Side Right, Rear High 16-16-16-16 

62 4-LiDARs Front, Side Left, Side Right, Rear High 32-16-16-16 

63 4-LiDARs Front, Side Left, Side Right, Rear High 32-32-32-32 

64 4-LiDARs Front, Side Left, Side Right, Rear High 64-16-16-16 

65 4-LiDARs Front, Side Left, Side Right, Rear High 64-32-32-16 

66 4-LiDARs Front, Side Left, Side Right, Rear High 64-64-64-64 

67 4-LiDARs Front, Side Left, Side Right, Rear Low 16-16-16-16 

68 4-LiDARs Front, Side Left, Side Right, Rear Low 32-16-16-16 

69 4-LiDARs Front, Side Left, Side Right, Rear Low 32-32-32-32 

70 4-LiDARs Front, Side Left, Side Right, Rear Low 64-16-16-16 

71 4-LiDARs Front, Side Left, Side Right, Rear Low 64-32-32-16 

72 4-LiDARs Front, Side Left, Side Right, Rear Low 64-64-64-64 

To develop an effective naming convention, which is used in the remainder of the thesis, 

Table 3.1 was used to develop a name for each of the LiDAR placement alternatives. The position 

on the roof of the vehicle, the elevation, and the channel configuration of the LiDAR sensors were 

utilized. 

Table 3.2 provides the breakdown of the naming convention, offering clear meanings for 

each nomenclature. These descriptions enable an understanding of the placement and 
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configuration of LiDAR sensors on the vehicle for each of the placement alternatives. By 

deciphering the naming convention, the location, elevation, and channel configuration of the 

LiDAR sensors are identified. 

Table 3.2: Naming Convention for the LiDAR Alternatives 

Alternatives Location on AV 

CHigh16 Center of the car roof elevated high with a 16-channel LiDAR sensor 

FLow64 Front of the car roof elevated low with a 64-channel LiDAR sensor 

FBHigh16-16 Front and back of the car roof elevated high, each equipped with a 16-

channel LiDAR sensor 

FLFRBHigh16-16-16 Front left, front right, and back of the car roof elevated high, each 

using a 16-channel LiDAR sensor 

FSLSRHigh32-16-16 Front, side left, and side right of the car roof elevated high, with 

sensors of 32, 16, and 16 channels, respectively 

FLFRRLRRHigh16-16-16-16 Front left, front right, rear left, and rear right of the car roof elevated 

high, each with a 16-channel LiDAR sensor 

FSLSRBLow64-32-32-16 Front, side left, side right, and back of the car roof elevated low, 

equipped with 64, 32, 32, and 16 channel LiDAR sensors, respectively 

3.1.2 Identification of Evaluation Criteria 

Table 3.3 presents the criteria used in this thesis and their descriptions. An in-depth 

explanation of each criterion is presented in this section. 
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Table 3.3: Identified Criteria, Definition, and Importance 

Criterion Explanation Importance 

Point Density The number of LiDAR points collected per unit area 

or volume. Higher point density provides more 

detailed and accurate data for detecting small or 

distant objects. 

Assesses the level of detail and 

accuracy required for object detection. 

Cost of Sensor This is the financial cost associated with acquiring 

the LiDAR sensor(s). 

Considers the budget constraints and 

the cost-effectiveness of the sensor(s) 

in relation to the benefits they provide. 

Power 

Consumption 

This measures the amount of electrical power (in 

watts) that the LiDAR sensor(s) consume during 

operation. 

Evaluates the importance of 

conserving power in autonomous 

vehicles where energy efficiency can 

affect range and operating costs. 

Blind Spot 

Area 

This criterion focuses on the area around the vehicle 

that is not covered or is poorly covered by the 

LiDAR sensor(s). 

Evaluates the significance of 

minimizing blind spots to enhance 

safety. 

Sensor 

Redundancy 

The number of LiDAR sensors used on the 

autonomous vehicle. More sensors can provide 

redundancy, increase coverage, and enhance the 

robustness of the perception system. 

Assesses the importance of including 

redundancy in the LiDAR setup and 

whether multiple sensors are needed 

for safety and reliability. 

Aesthetics Aesthetics considers the visual appearance of the 

LiDAR sensor(s) and how well they integrate with 

the vehicle's design. 

Aesthetics may be relevant in 

consumer markets in which appearance 

matters. 

Ease of 

Installation 

Ease of installation assesses how straightforward 

and efficient it is to install and set up the LiDAR 

sensor(s) on the vehicle. Factors may include the 

time, complexity, and expertise required. 

Ease of installation can impact the 

deployment timeline and cost, making 

it important for practical 

considerations. 

3.1.2 (a) Point Density 

This metric is assessed by quantifying the number of LiDAR points per unit volume of object. 

The data for the metric is collected using the CARLA simulator (previously explained in this 

chapter). The numbers of points of spawned objects at intervals to the ego vehicle (the AV 

equipped with sensors and systems for self-navigation) we recollected and used to calculate the 

point density per unit volume of the object. The average point density is used as a metric for 

decision-making. Segmentation techniques were used to isolate the objects of interest and to 

enclose them within bounding boxes. Subsequently, the point density per volume of each object 

was determined based on the LiDAR points captured within the corresponding bounding box. This 

metric was used to evaluate the level of detail for each object. 

𝑁𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 
𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑉𝑜𝑙𝑢𝑚𝑒 
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where Nr of points represents the total number of LiDAR points acquired for the specific 

object under consideration. The Object Volume is determined based on the object’s dimensions, 

including its length, width, and height, obtained from the bounding box surrounding the object. 

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 (points/m3) 

Figure 3.6 presents a high-density and low-density sample of acquired point clouds, and 

Figure 3.7 presents a pedestrian point cloud at varying distances from the ego vehicle in a 

bounding box. 

(a) Low Density Point Cloud                             (b) High Density Point Cloud 

Figure 3.6: Point Clouds 

Figure 3.7: Pedestrian point cloud illustrated in a bounding box at 10m and 90m respectively, 

from the ego vehicle 
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3.1.2 (b) Cost of Sensor 

Selecting the most suitable LiDAR sensor involves finding a balance between cost and 

performance. While high-cost sensors may necessitate a larger initial investment, they are often 

equipped with advanced features that significantly enhance operational efficiency or offer higher 

accuracy (Ortiz Arteaga et al., 2019). These advanced capabilities translate into the acquisition of 

more precise and reliable data, which is paramount for the safe and effective operation of AVs. 

One of the factors driving the cost of LiDAR systems is the high precision their lasers 

require. These lasers must emit light at precise wavelengths, thus, demanding costly and intricate 

manufacturing processes. Moreover, the optics responsible for directing and focusing the laser 

beams contribute substantially to the overall cost, with their complexity further raising expenses 

(Hassan, 2023). Nonetheless, the past two decades have witnessed significant strides in industrial 

laser technology, which has led to cost reductions in LiDAR systems and their operational 

deployment (Wang & Menenti, 2021). 

In evaluating the cost of LiDAR sensors for optimal placement, it is important to carefully 

assess specific requirements and strike the right balance with operational objectives. Achieving 

this equilibrium ensures that the chosen LiDAR sensor seamlessly aligns with the operational goals 

of the AVs. On average, LiDAR sensor costs vary based on their specifications. A 16-channel 

LiDAR sensor typically falls within the range of US$4,000 and $5,000, while a 32-channel LiDAR 

sensor is priced between US$9,000 and $14,000. In comparison, a 64-channel LiDAR sensor 

usually ranges from US$10,000 to $15,000. These cost considerations play a significant role in 

determining the most cost-effective and performance-driven LiDAR sensor placement for AVs. 

3.1.2 (c) Power Consumption 

Power consumption is considered a metric for optimizing the LiDAR sensor placement because 

efficiency and reliability are of paramount importance. As automakers and new mobility 

companies assess LiDAR technology, the power consumption implications are important. The 

difference in power consumption between LiDAR sensors can have a significant impact on the 

overall performance and efficiency of an AV system. Power consumption is not merely a technical 

detail but carries tangible consequences for various aspects of AV operations and sustainability 

(Maynard, 2021). 
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Consequently, the choice of LiDAR sensor technology can have far-reaching implications for 

energy efficiency, operational costs, and environmental impact, hence, power consumption is a 

pivotal consideration for automakers and companies involved in advancing AV technology. The 

decision to opt for LiDAR sensors that consume less power not only contributes to sustainability 

but also enhances the overall performance and economic feasibility of AV systems. A 16-channel 

LiDAR sensor consumes approximately 8 watts, a 32-channel LiDAR sensor requires around 10 

watts, and a 64-channel LiDAR sensor typically consumes approximately 20 watts. 

3.1.2 (d) Blind Spot Regions 

The blind spot region is another metric that can be obtained from the LiDAR point clouds. Blind 

spot regions are areas around the vehicle that are not visible to the LiDAR sensor (see Figure 3.8 

for typical LiDAR sensor coverage and blind spot regions). These areas can pose a significant risk 

for collisions with objects, pedestrians, or other vehicles. Therefore, evaluating these regions is 

necessary to ensure the safety of passengers, pedestrians, and other drivers on the road, and to 

make reliable decisions for vehicle navigation. 
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(a) Front View 

(b) Side View 

(c) Top view 

LEGEND 
Sensor Coverage Blind Spot 

 

 

 

  

       

    

   

        

       

     

 

 

Figure 3.8: Sensor Coverage and Blind Spot Regions of LiDAR Sensor 

Estimating the blind spot regions for the purpose of this research involved processing distinct 

point cloud data outputs from the simulator. In this way, variations in coverage in areas proximate 

to the vehicle across different placement alternatives were identified. This information served as 

the basis for rating the alternatives derived from the blind spot regions by assigning a higher value 

to the highest blind spot region and a lower value to smaller blind spot regions. The blind spot 

regions varied across placement alternatives (Figure 3.9). Figure 3.9 shows regions around the ego 

vehicle for two different LiDAR placement alternatives. 
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    a. FLFRRLRRL64-64-64-64 b. CH16 

(a) Blindspot region sample1 (b) Blindspot region sample 2 

Figure 3.9: Blindspot Region Coverage 

3.1.2 (e) Sensor Redundancy 

Sensor redundancy pertains to the utilization of multiple LiDAR sensors, either of the same type 

or different types, providing overlapping or complementary data. This redundancy serves as an 

additional layer of safety and reliability in the context of AVs. In the event of sensor failure, 

discrepancies, or adverse environmental conditions, these redundant LiDAR sensors can 

seamlessly assume control to ensure the continued accuracy and safety of the system. This not 

only ensures the protection of passengers and pedestrians but also reinforces the reliability of AV 

technology. 

3.1.2 (f) Aesthetics 

The visual appeal of AVs is relevant in shaping public perceptions. While the fundamental 

performance is essential and the most important factor of AVs, people also place significant 

emphasis on design and aesthetics. If the sensor on the AV is relatively large or too high, the form 

may not be accepted by the public (Chen et al., 2021). 

In this thesis, the aesthetic consideration is associated with the number (count) and 

elevation of the LiDAR sensors in the AV. Aesthetic judgments in this context are entirely 

subjective and have the potential to exert some influence on design decisions in AV development 
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based on the weight assigned to the aesthetics criteria. The number of sensors could significantly 

impact the aesthetic appeal of an AV's external design, which primarily relies on users' perceptual 

judgments. An excessive number of sensors could potentially create a less appealing appearance. 

Conversely, a better arrangement of sensors could contribute to a modern visual design. The 

strategic incorporation of multiple sensors could convey a distinct impression of cutting-edge 

technology. 

The elevation of the sensors, particularly their integration within the vehicle's structure, is 

equally important for overall aesthetics. Sensors situated at specific elevations must be seamlessly 

integrated to ensure a visually pleasing vehicle exterior. While aesthetic considerations may not 

outweigh concerns about vehicle safety and robustness for participants, they remain an important 

factor. Striking the right balance is imperative to fostering confidence in AV technology and 

ensuring that AVs are both safe and appealing to passengers and the general public. Well-designed 

sensor placement not only enhances the vehicle's aesthetics but also displays a commitment to 

safety and innovation. 

3.1.2 (g) Ease of Installation 

The ease of installation describes how complex or demanding the installation process is. It directly 

affects the efficiency and cost-effectiveness of sensor installation and its integration with other 

sensors. In this research, the factor revolves around the assumption that as the number of sensors 

increases, the installation process becomes progressively more complex and demanding. 

With a single sensor configuration, the installation process is characterized by relative 

simplicity. This configuration typically demands less physical and structural alterations to the 

vehicle, making it a convenient and cost-effective choice for manufacturers. The ease of 

installation can streamline the production process and reduce associated costs. As the number of 

sensors in a configuration increases, so does the complexity of the installation process. Multiple 

sensors necessitate a more extensive network of wiring, mounting points, and calibration 

procedures. Consequently, the installation process becomes more labor-intensive and time-

consuming. 
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3.1.3 Weighting Method 

The significance of each criterion in the LiDAR placement optimization framework was 

determined using three different sources: equal weighting, sensitivity analysis, and responses from 

questionnaire surveys. These sources were used to allocate weights to each criterion, ensuring that 

the sum of all allocated weights equaled 100. A higher weight indicates a greater degree of 

importance in the decision-making process. Table 3.4 presents the weights allocation table used 

for all instances. The results for the weights in each category are presented in Chapter 4. 

Table 3.4: Direct weighting table 

Criteria Weight 
Point Density 
Cost of Sensor 
Power Consumption 
Blindspot Area 
Sensor Redundancy 
Aesthetics 
Ease of Installation 
Total 100 

3.1.4 Scaling Method 

The primary objective of scaling is to establish a consistent scale across the criteria to allow 

comparative analysis. Given that the performance criteria have diverse measurement units, for 

example, cost in dollars and power consumption in watts, this process involves the use of a value 

function to standardize the various performance criterion levels to a unified scale ranging from 0 

to 100. In this scale, a rating of 100 denotes the most favorable level of performance, while lower 

values signify progressively less desirable outcomes. 

Value functions and utility functions serve as indispensable tools in different decision-

making scenarios. The value function approach is used when decisions unfold in a scenario of 

certainty, allowing DMs to confidently assess and compare attribute levels. Conversely, the utility 

function approach applies when decision-making occurs in conditions of risk and uncertainty (Bai 

et al., 2008; Sinha & Labi, 2007). In scenarios in which outcomes are subject to probabilistic 

elements and not guaranteed, utility functions are invaluable. 

Value scaling offers a systematic framework for transforming attributes into quantifiable 

indicators of worth and desirability. The value function embodies the DM's preferences concerning 
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diverse attribute levels when certainty prevails. Within this framework, the most favored outcome 

is assigned a value of 1 or 100%, symbolizing the most desirable level of attainment, while the 

least favorable outcome receives a value of zero, denoting the least desirable. Utility functions 

represent a more specialized form of value function because they represent not only the intrinsic 

value associated with various attribute levels but also the DM's stance on risk. In other words, they 

account for the DM’s attitude toward risk – from risk-prone to risk-neutral and risk-averse (Li & 

Sinha, 2004). 

To derive the value scaling functions in this thesis, a questionnaire using the mid-value 

splitting technique was dispensed to respondents. In this technique, the respondent (DM) assigns 

specific values to each level of the criterion (Figure 3.8) to assign values to various criteria. 

The value function establishes a connection between different levels of the performance 

criterion X and values ranging from 0 to 100, where 100 signifies the most favorable level. The 

development of a value function involves determining the values for specific points within the 

function. These points play a critical role in assessing the desirability of different levels of a 

performance criterion (X). The objective is to establish the value associated with three intermediate 

points (X25, X50, and X75) with appropriate values that are within the range of 0 to 100. 

The process begins by defining reference values for the worst (most unfavorable) and best 

(most favorable) levels. The worst level is assigned a value of 0, indicating the lowest desirability. 

In contrast, the best level is assigned a value of 100, representing the highest desirability. The 

following steps then ensue: 

• Identify X50: X50 is the point within the value function where equal satisfaction is derived 

from these two conditions: (a) performance improvement from the worst level to X50 and 

(b) performance improvement from X50 to the best level. 

• Determine X25: X25 is identified as the point at which an equal level of satisfaction is 

achieved regarding performance improvement from the worst level to X25 and performance 

improvement from X25 to X50. 

• Determine X75: X75 is the point where an equal level of satisfaction is derived from 

performance improvement from X50 to X75 and performance improvement from X75 to the 

best level. 

• Finally, a consistency check is carried out to validate the values assigned to X25, X50, and 

X75. This check involves ensuring that the perceived improvements from X25 to X50 and 
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from X50 to X75 display an equal level of satisfaction. If the response to this consistency 

check is affirmative, indicating consistent values, the evaluation proceeds. If not, 

reevaluation and adjustment is performed. 

Figure 3.10: A conceptual Value Function 

The value function establishes a connection between different levels of the performance 

criterion X and values ranging from 0 to 100, where 100 signifies the most favorable level. The 

development of a value function involves determining the values for specific points within the 

function. These points play an important role in assessing the desirability of distinct levels of a 

performance criterion (X). The objective is to establish the value associated with three intermediate 

points (X25, X50, and X75) to appropriate values that are within the range from 0 to 100. 

The process begins by defining reference values for the worst (most unfavorable) and best 

(most favorable) levels. The worst level is assigned a value of 0, indicating the lowest desirability. 

In contrast, the best level is assigned a value of 100, representing the highest desirability. The 

following steps are then followed: 

• Identify X50: X50 is the point within the value function where equal satisfaction is derived 

from these two conditions: (a) performance improvement from the worst level to X50 and 

(b) performance improvement from X50 to the best level. 
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• Determine X25: X25 is identified as the point at which an equal level of satisfaction is 

achieved regarding performance improvement from the worst level to X25 and performance 

improvement from X25 to X50. 

• Determine X75: X75 is the point where an equal level of satisfaction is derived from 

performance improvement from X50 to X75 and performance improvement from X75 to the 

best level. 

• Finally, a consistency check is carried out to validate the values assigned to X25, X50, and 

X75. This check involves ensuring that the perceived improvements from X25 to X50 and 

from X50 to X75 display an equal level of satisfaction. If the response to this consistency 

check is affirmative, indicating consistent values, the evaluation proceeds. If not, 

reevaluation and adjustment is done. 

An example of the implementation of the value function used to collect data is shown in Figure 

3.11. 

100 

50 

25 

0 

75 

Cost ($) 
≥50,000 ≤4,500 

Value 

(V) 

COST OF SENSOR 

Figure 3.11: Value Function example for Sensor Cost 

3.1.5 Amalgamation 

This is the step that combines the weighted and scaled levels of all the performance criteria for 

each LiDAR placement alternative. In this thesis, the amalgamation technique used is the weighted 
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sum method. This is presented below. For j alternatives and I criteria, the weighted sum of all the 

criteria for each alternative j, is: 

𝑚 

𝑊𝑆𝑗 = ∑ 𝑤𝑖 × 𝑆𝑖𝑗 
𝑖=1 

where: 

• 𝑖 = 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, 𝑖 = 1,2, … . . 𝐼 

• 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒, 𝑗 = 1,2, … . 𝐽 

• 𝑊𝑆𝑗 is the weighted sum for alternative j. 

• 𝑊𝑖 denotes the weight allocated to criterion i. 

• 𝑆𝑖𝑗 is the performance of alternative j on criterion i. 

• I is the total number of criteria. 

• J is the total number of alternative LiDAR placement designs 

The result of the amalgamation stage is a score, or value assigned to each LiDAR placement 

design alternative. These scores facilitate a straightforward ranking of the alternatives, with higher 

scores generally signifying superior overall. 

3.1.6 Decision 

This is the final stage of the MCDA process. During this phase, the most preferred 

alternative is chosen based on the results of the amalgamation step. Typically, the alternative that 

ranks highest or scores the best across the established criteria is selected after conducting a 

sensitivity analysis. Before arriving at the final decision, a sensitivity analysis is conducted to 

evaluate how adjustments in the criteria weights could influence the ultimate choice. If the DM 

deems it necessary, the weight and value functions may be fine-tuned using a Delphi process, and 

the alternatives re-evaluated. Doing so could provide a deeper understanding of the robustness of 

the chosen alternative. In this thesis, the sensitivity analysis was carried out using only the weights. 

3.2 Questionnaire Survey Method 

To conduct the questionnaire, the initial step involved designing a questionnaire following the 

guidelines outlined by the Institutional Review Board protocols at Purdue University, West 
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Lafayette, Indiana. The survey questionnaire was granted an exemption category under #IRB-

2023-1570 and refrained from collecting any personally identifiable information. 

The questionnaire was administered to capture participants' preferences regarding the 

relative importance of various criteria. To ensure that the respondents could offer valuable insights 

into the research, individuals with expertise in the subject matter were selectively recruited. All 

recruitment and associated procedures strictly adhered to the protocols set forth by the Institutional 

Review Board at Purdue University. 

3.1 Experimental Setup 

For the subsequent data collection (Chapter 4) to assess the various LiDAR placement 

alternatives, an experimental setup involving CARLA was used. CARLA is an open-source 

driving simulator that supports the training and validation of different aspects of AV driving, such 

as perception and control. In this thesis, the CARLA platform provided the tools and resources 

needed for the LiDAR data collection and experimentation within a controlled virtual environment. 

The simulation environment is built on the Unreal Engine, a high-performance game engine that 

provides realistic graphics and physics simulation (Dosovitskiy et al., 2017). In CARLA, the 

sensors include LiDAR, camera, radar, and GPS. CARLA also includes a vehicle dynamics model 

that allows researchers to simulate different types of vehicles with realistic driving behavior, as 

well as digital information such as urban layouts, automobiles, buildings, pedestrians, traffic lights, 

and street signs. 

One significant advantage of CARLA is its flexibility (Gómez-Huélamo et al., 2021), 

which allows for the modification of the simulation environment to create custom scenarios for 

testing and evaluation. Labi (2014) underscores how simulation tools offer unparalleled flexibility 

by seamlessly allowing specific input parameters to be adjusted. This flexibility fosters an 

adaptable experimental environment, crucial for testing diverse scenarios, including those 

pertinent to this thesis. Specifically, in this study, the flexibility of CARLA facilitated the 

simulation of scenarios essential to the research objectives. To interact with the simulator, a set of 

Python APIs was used that enable users to develop custom codes for their experiments (Malik et 

al., 2022). Figure 3.12 presents the simulation environment. 

90 



 

 

 

 

  

 

      

  

     

    

  

     

   

 

  

     

  

      

 

       

 

Figure 3.12: Experimental Setup 

The Python API in CARLA enables users to interact with the CARLA simulator using the 

Python programming language through a set of tools and libraries. With the use of the API, users 

can create and control vehicles, access different sensors, and test their algorithms. This helps 

reduce the complexity and cost of physical experiments. The Python API also provides code 

examples demonstrating how to interact with the simulator, which serves as a starting point for 

users to develop custom scripts depending on their demands. Additionally, the CARLA 

documentation provides extensive information on the API functions and parameters. Figure 3.13 

presents the CARLA software architecture (obtained from open-source CARLA documentation). 

Some terminologies used in connecting to the simulator are explained below:  

• A Client object is created to establish a connection with the CARLA simulator running on 

the local machine at the default port 2000. 

• The get_world() method is used to obtain a reference to the current simulation world object, 

which represents the virtual environment of the simulator. 

• The set_timeout() method is used to set the timeout for network requests between the client 

and the simulator to 2000 milliseconds. 
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• The get_blueprint_library() method is used to retrieve the blueprint library, which contains 

all the possible actors that can be spawned in the simulation, such as vehicles, props, and 

pedestrians. 

• The get_map() method is used to obtain the current map, which in this case, is Town 03 

where the experiments are conducted. 

• The get_spawn_points() method is used to obtain a list of available spawn points on the 

map. These spawn points represent different locations where actors can be placed in the 

simulation. For this thesis, the experiments were conducted using the same spawn point. 

• The filter () method is used to filter the actor list to only include vehicles in specific cases. 

Figure 3.13: CARLA software architecture (obtained from open-source CARLA documentation) 

The vehicles available in CARLA’s menu are based on real-world vehicles and include 

models such as Audi, Citroen, Chevrolet Impala, Tesla, and Lincoln MKZ. However, there could 

be some minor differences in the vehicle dimensions due to the limitations of the simulation 

environment (as shown in Table 3.5 and 3.6). The Audi A2 was used in this thesis. The Audi A2 

was selected due to its unique physical design and engineering features. This vehicle strikes a 

balance between advanced technology and practical urban mobility, making it a good choice for 

LiDAR placement testing within the simulation. The dimensions of the car (Tables 3.5 and 3.6) 

were important to determining the different positions and elevation in which to place the LiDAR. 

Tables 3.5 and 3.6 are important because the dimensions are taken into consideration to specify 

the exact placement points of the LiDAR sensors. 
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Table 3.5: Real-World Dimensions of Audi a2 Vehicle 

Dimensions (inches) Dimensions (meters) 
Height 61.1 1.553 
Width (without mirrors) 65.9 1.673 
Length 150.6 3.826 

Table 3.6: CARLA Dimensions of Audi a2 Vehicle 

Dimensions (inches) Dimensions (meters) 
Height 61.0 1.549 
Width (without mirrors) 67.1 1.790 
Length 145.9 3.705 

3.2 Summary of Chapter 3 

Chapter 3 discusses the study methods and experimental setup, establishing the foundation for the 

MCDM framework applied in the thesis. The chapter commences by outlining the steps involved 

in establishing LiDAR placement design alternatives, which serves as a fundamental phase in the 

decision-making process. This involves meticulous identification and enumeration of various 

evaluation criteria, providing a comprehensive spectrum for assessment. These criteria encompass 

diverse aspects such as point density, sensor cost, power consumption, blind spot regions, sensor 

redundancy, aesthetics, and ease of installation. 

The chapter further explores the methodologies used in the decision framework. It explains 

the approach used to assign weights to these criteria, thereby recognizing their relative significance 

in the decision-making process. Additionally, the chapter addresses the scaling method used to 

standardize the diverse metrics into a unified measurement system. The process of amalgamation, 

in which the disparate measurements are combined into an overall assessment, is also detailed, 

leading up to the decision-making phase. 

The significance of the questionnaire survey is also highlighted, underscoring the value of 

garnering empirical insights from DMs. This particular methodology aids in validating and 

refining the evaluation criteria and methodologies inherent in the decision framework. Finally, the 

chapter concludes by explaining the experimental setup and presenting the simulation environment 

used in conducting the experiments. 
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DATA COLLECTION 

4.1 Introduction 

The data collection methodology in this thesis encompasses a multifaceted approach involving 

diverse sources to ensure the comprehensive acquisition of information. First, simulator data was 

gathered using CARLA, an open-source driving simulator. This simulator provided data in the 

form of LiDAR point clouds, which were subsequently processed to derive insights from the data. 

Then, data was compiled from the datasheets of LiDAR sensor manufacturers. This inclusion was 

pivotal because it supplies technical details directly from manufacturers, providing information on 

sensor specifications, capabilities, and performance benchmarks. Finally, the data collection 

process involved questionnaire surveys, adding a human element by gathering perspectives and 

feedback from respondents. 

Regarding the weighting data categories, the thesis employs three distinct approaches: 

equal weighting, respondent-assigned weighting, and randomly assigned weights. Equal weighting 

ensures the balanced importance of all data points by assigning equal significance to each criterion. 

In contrast, respondent-assigned weighting involves assigning weights based on the relevance of 

the criteria perceived by the respondents, thereby integrating a subjective yet informed perspective 

into the dataset. Randomly assigned weights introduce a stochastic element, allowing the impact 

of variability to be explored in the overall analysis. 

4.1.1 Data Collected From CARLA 

Experiments were conducted in CARLA using the Python API to interface with the simulator via 

custom-written code. From the simulator, data on the point density and blind spot regions was 

obtained. Table 4.1 presents the data extracted from the simulator. The average vehicle point 

density (PDV), average pedestrian point density (PDP), and blind spot region ratings (BR) were 

all obtained from the experiments. The values for PDV and PDP were all derived from the number 

of LiDAR points for each vehicle and pedestrian generated over a 100-meter distance. The blind 

spot region rankings were established by evaluating the extent of the blind spot regions 

surrounding the ego vehicle in each point cloud obtained for all alternatives. The ratings range 
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from 10 (indicating the least blind spot regions) to 120 (representing the alternative with the 

highest degree of blind spot regions). 

Table 4.1: Criteria data Collected from the simulation experiments 

Alternatives PDP 

(pts/m3) 

PDP 

(pts/m3) 

BR 

(Rating) 

CHigh16 54 55 70 

CHigh32 84 95 70 

CHigh64 104 115 70 

CLow16 96 100 60 

CLow32 116 115 60 

CLow64 145 193 60 

FHigh16 94 89 50 

FHigh32 153 196 50 

FHigh64 145 79 50 

FLow16 93 104 40 

FLow32 128 164 40 

FLow64 158 236 40 

FBHigh16-16 189 174 120 

FBHigh32-32 311 400 120 

FBHigh64-64 311 394 120 

FBLow16-16 197 210 30 

FBLow32-32 317 239 30 

FBLow64-64 302 438 30 

FBHigh32-16 256 315 120 

FBHigh64-32 310 390 120 

FBLow32-16 256 332 30 

FBLow64-32 325 423 30 

FBHigh64-16 269 327 120 

FBLow64-16 261 358 30 

FLFRBHigh16-16-16 220 205 90 

FLFRBHigh32-32-16 300 382 90 

FLFRBHigh32-32-32 334 424 90 

FLFRBHigh64-64-16 301 386 90 

FLFRBHigh64-64-32 346 451 90 

FLFRBHigh64-64-64 346 448 90 

FLFRBLow16-16-16 217 235 20 

FLFRBLow32-32-16 292 392 20 

FLFRBLow32-32-32 340 470 20 

FLFRBLow64-64-16 297 404 20 

FLFRBLow64-64-32 333 449 20 
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Table 4.1 continued 

FLFRBLow64-64-64 337 453 20 

FSLSRHigh16-16-16 309 279 90 

FSLSRHigh32-16-16 348 381 90 

FSLSRHigh32-32-32 438 578 90 

FSLSRHigh64-16-16 367 411 90 

FSLSRHigh64-32-32 466 604 90 

FSLSRHigh64-64-64 472 592 90 

FSLSRLow16-16-16 294 317 80 

FSLSRLow32-16-16 344 432 80 

FSLSRLow32-32-32 450 628 80 

FSLSRLow64-16-16 349 440 80 

FSLSRLow64-32-32 461 659 80 

FSLSRLow64-64-64 475 670 80 

FLFRRLRRHigh16-16-16-16 404 372 110 

FLFRRLRRHigh32-32-16-16 524 648 110 

FLFRRLRRHigh32-32-32-32 617 799 110 

FLFRRLRRHigh64-64-16-16 565 684 110 

FLFRRLRRHigh64-64-32-32 606 779 110 

FLFRRLRRHigh64-64-64-64 617 780 110 

FLFRRLRRLow16-16-16-16 397 410 10 

FLFRRLRRLow32-32-16-16 514 662 10 

FLFRRLRRLow32-32-32-32 621 804 10 

FLFRRLRRLow64-64-16-16 571 749 10 

FLFRRLRRLow64-64-32-32 605 791 10 

FLFRRLRRLow64-64-64-64 617 803 10 

FSLSRBHigh16-16-16-16 387 355 110 

FSLSRBHigh32-16-16-16 452 493 110 

FSLSRBHigh32-32-32-32 571 730 110 

FSLSRBHigh64-16-16-16 437 464 110 

FSLSRBHigh64-32-32-16 606 745 110 

FSLSRBHigh64-64-64-64 591 737 110 

FSLSRBLow16-16-16-16 398 415 100 

FSLSRBLow32-16-16-16 436 532 100 

FSLSRBLow32-32-32-32 581 788 100 

FSLSRBLow64-16-16-16 457 581 100 

FSLSRBLow64-32-32-16 546 731 100 

FSLSRBLow64-64-64-64 594 775 100 

FSLSRBLow32-32-32-32 581 788 100 

FSLSRBLow64-16-16-16 457 581 100 

FSLSRBLow64-32-32-16 546 731 100 

FSLSRBLow64-64-64-64 594 775 100 
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4.1.2 Data Collected From Other Sources 

Of the seven criteria used in this study, some, including average sensor cost, power consumption, 

sensor redundancy, and ease of installation, were not obtained from the CARLA simulator. 

The data for average sensor cost was collected from online datasheets provided by LiDAR 

sensor vendors and through direct communication with sellers. To calculate the average sensor 

cost, the average between the lower and upper cost range was determined. Power consumption 

information was extracted from the datasheets of the LiDAR sensors. Sensor redundancy within 

this thesis denotes the level of backup or failover capability inherent in the sensor setup. It 

quantifies the system's resilience to sensor malfunction or failure by considering the number of 

additional sensors beyond a singular unit. This approach aims to mitigate the risk of data loss or 

system impairment by providing backup sensors: A greater number of sensors used translates into 

higher redundancy percentage, thereby enhancing the system's reliability and operational 

robustness against potential sensor failures. The percentages were assigned based on the number 

of sensors used relative to the highest number considered in this study, which was four. One sensor 

was defined as having no redundancy, hence, it was assigned a value of 0%. Two sensors were 

considered to have 50% redundancy, three sensors had 66.67% redundancy, and the maximum of 

four sensors was considered to have 75% redundancy. This information was obtained in the 

following way: 

𝑁𝑟 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 − 1 
× 100 

𝑁𝑟 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 

Ease of installation was assessed using an ordinal ranking from 1 to 4, where 1 indicates 

the easiest installation and 4 the most difficult. The ranking is based on the number of sensors to 

be installed, with one sensor receiving a raw value of 1, and four sensors assigned a value of 4. 

The assumption of assessing ease of installation based on an ordinal ranking is based on the 

assumption of a logical correlation between complexity and quantity. 

Table 4.2 presents the relevant data. 
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Table 4.2: Criteria data collected from other sources 

Alternatives SC 
(Dollars) 

PC 
(Watts) 

SR 
(Rating) 

AES 
(Rating) 

EOI 
(Rating) 

CHigh16 4,500 8 0.00 2 1 

CHigh32 11,500 10 0.00 2 1 

CHigh64 12,500 20 0.00 2 1 

CLow16 4,500 8 0.00 4 1 

CLow32 11,500 10 0.00 4 1 

CLow64 12,500 20 0.00 4 1 

FHigh16 4,500 8 0.00 4 1 

FHigh32 11,500 10 0.00 2 1 

FHigh64 12,500 20 0.00 2 1 

FLow16 4,500 8 0.00 4 1 

FLow32 11,500 10 0.00 4 1 

FLow64 12,500 20 0.00 4 1 

FBHigh16-16 9,000 16 50.00 2 2 

FBHigh32-32 23,000 20 50.00 2 2 

FBHigh64-64 25,000 40 50.00 2 2 

FBLow16-16 9,000 16 50.00 4 2 

FBLow32-32 23,000 20 50.00 4 2 

FBLow64-64 25,000 40 50.00 4 2 

FBHigh32-16 16,000 18 50.00 2 2 

FBHigh64-32 24,000 30 50.00 2 2 

FBLow32-16 16,000 18 50.00 4 2 

FBLow64-32 24,000 30 50.00 4 2 

FBHigh64-16 17,000 28 50.00 2 2 

FBLow64-16 17,000 28 50.00 4 2 

FLFRBHigh16-16-16 13,500 24 66.67 1 3 

FLFRBHigh32-32-16 27,500 28 66.67 1 3 

FLFRBHigh32-32-32 34,500 30 66.67 1 3 

FLFRBHigh64-64-16 29,500 48 66.67 1 3 

FLFRBHigh64-64-32 36,500 50 66.67 1 3 

FLFRBHigh64-64-64 37,500 60 66.67 1 3 

FLFRBLow16-16-16 13,500 24 66.67 3 3 

FLFRBLow32-32-16 27,500 28 66.67 3 3 

FLFRBLow32-32-32 34,500 30 66.67 3 3 

FLFRBLow64-64-16 29,500 48 66.67 3 3 

FLFRBLow64-64-32 36,500 50 66.67 3 3 

FLFRBLow64-64-64 37,500 60 66.67 3 3 

FSLSRHigh16-16-16 13,500 24 66.67 1 3 

FSLSRHigh32-16-16 20,500 26 66.67 1 3 

FSLSRHigh32-32-32 34,500 30 66.67 1 3 

FSLSRHigh64-16-16 21,500 36 66.67 1 3 
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Table 4.2 continued 

FSLSRHigh64-32-32 35,500 40 66.67 1 3 

FSLSRHigh64-64-64 37,500 60 66.67 1 3 

FSLSRLow16-16-16 13,500 24 66.67 3 3 

FSLSRLow32-16-16 20,500 26 66.67 3 3 

FSLSRLow32-32-32 34,500 30 66.67 3 3 

FSLSRLow64-16-16 21,500 36 66.67 3 3 

FSLSRLow64-32-32 35,500 40 66.67 3 3 

FSLSRLow64-64-64 37,500 60 66.67 3 3 

FLFRRLRRHigh16-16-16-16 18,000 32 75.00 1 4 

FLFRRLRRHigh32-32-16-16 32,000 36 75.00 1 4 

FLFRRLRRHigh32-32-32-32 46,000 40 75.00 1 4 

FLFRRLRRHigh64-64-16-16 34,000 56 75.00 1 4 

FLFRRLRRHigh64-64-32-32 48,000 60 75.00 1 4 

FLFRRLRRHigh64-64-64-64 50,000 80 75.00 1 4 

FLFRRLRRLow16-16-16-16 18,000 32 75.00 3 4 

FLFRRLRRLow32-32-16-16 32,000 36 75.00 3 4 

FLFRRLRRLow32-32-32-32 46,000 40 75.00 3 4 

FLFRRLRRLow64-64-16-16 34,000 56 75.00 3 4 

FLFRRLRRLow64-64-32-32 48,000 60 75.00 3 4 

FLFRRLRRLow64-64-64-64 50,000 80 75.00 3 4 

FSLSRBHigh16-16-16-16 18,000 32 75.00 1 4 

FSLSRBHigh32-16-16-16 25,000 34 75.00 1 4 

FSLSRBHigh32-32-32-32 46,000 40 75.00 1 4 

FSLSRBHigh64-16-16-16 26,000 44 75.00 1 4 

FSLSRBHigh64-32-32-16 40,000 48 75.00 1 4 

FSLSRBHigh64-64-64-64 50,000 80 75.00 1 4 

FSLSRBLow16-16-16-16 18,000 32 75.00 3 4 

FSLSRBLow32-16-16-16 25,000 34 75.00 3 4 

FSLSRBLow32-32-32-32 46,000 40 75.00 3 4 

FSLSRBLow64-16-16-16 26,000 44 75.00 3 4 

FSLSRBLow64-32-32-16 40,000 48 75.00 3 4 

FSLSRBLow64-64-64-64 50,000 80 75.00 3 4 

4.1.3 Weighting and Scaling Data Collected Using the Questionnaire 

The data obtained through the questionnaire include the weighting data and the scaling data (used 

to derive the value functions). 
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4.1.3 (a) Weighting Data 

A total of 20 responses were collected to assign weights to each criterion. Table 4.3 presents the 

weighting results. In Chapter 5, this data is used in the amalgamation phase of the analysis. 

Table 4.3: Weighting data generated from the survey results 

Respondents 

ID 

PD COS PC BR SR AES EOI 

1 38 8 8 8 15 8 15 

2 27 11 13 17 16 7 9 

3 25 6 13 25 19 3 10 

4 0 45 0 27 27 0 0 

5 33 13 7 20 20 3 4 

6 20 20 13 7 20 7 13 

7 30 19 3 20 6 10 13 

8 26 18 11 14 13 8 11 

9 33 17 11 11 11 7 11 

10 25 15 6 18 13 15 9 

11 20 13 20 13 13 7 13 

12 29 7 14 21 14 7 7 

13 29 14 14 14 7 7 14 

14 25 19 19 19 13 0 6 

15 29 18 6 24 18 0 6 

16 50 13 13 17 3 3 2 

17 13 25 13 25 13 0 13 

18 20 20 20 18 7 4 12 

19 27 27 7 20 13 0 7 

20 31 31 8 15 8 0 8 

Average: 26.46 17.88 10.84 17.63 13.36 4.68 9.14 

4.1.3 (b) Scaling Data 

Table 4.4 presents the data obtained from the mid-value splitting questionnaire results. In Table 

4.4, the criteria values corresponding to values of 25, 50, and 75 were assigned by respondents and 

the criteria values corresponding to 0 and 100 were provided to them. 
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Table 4.4: Scaling data generated from the survey results (mid-value splitting) 

Value PD COS PC BR SR AES EOI 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

0 40 50,000 80 120 0 0 4.00 

25 200 35,000 40 30 75 1 3.00 

25 190 40,000 40 50 60 1 3.00 

25 180 40,000 65 80 70 1 3.00 

25 75 15,000 60 70 10 1 3.00 

25 150 40,000 72 62 60 1 3.00 

25 50 10,000 25 70 15 1 3.00 

25 90 30,000 50 74 2 1 3.00 

25 100 25,000 60 80 25 1 3.00 

25 90 25,000 30 80 40 1 2.00 

25 60 40,000 70 95 25 1 3.80 

25 50 35,000 60 95 15 1 3.00 

25 120 30,000 75 50 50 1 3.50 

25 50 10,000 40 60 70 1 2.00 

25 55 30,000 40 50 25 1 3.00 

25 50 7,100 55 80 35 1 3.50 

25 200 30,000 40 50 25 1 3.00 

25 70 12,000 40 40 25 1 2.00 

25 100 12,000 60 60 55 1 2.50 

25 55 20,000 50 60 50 1 3.50 

25 60 15,000 50 55 55 1 3.00 
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Table 4.4 continued 

50 240 30,000 30 20 80 2 2.00 

50 200 30,000 30 40 70 2 2.00 

50 200 35,000 55 60 80 2 2.00 

50 100 10,000 40 45 35 2 2.00 

50 200 20,000 65 50 75 2 2.00 

50 180 8,000 15 45 50 2 2.00 

50 200 8,500 35 51 11 2 2.00 

50 200 10,000 40 50 50 2 2.00 

50 150 15,000 15 40 70 2 1.50 

50 100 25,000 50 70 50 2 2.50 

50 70 25,000 40 60 45 2 2.50 

50 200 20,000 60 25 75 2 3.00 

50 200 7,500 20 40 80 2 1.50 

50 90 20,000 20 20 50 2 2.00 

50 200 6,800 40 60 65 2 3.00 

50 300 20,000 20 20 50 2 2.50 

50 100 8,500 35 30 50 2 1.70 

50 120 10,000 50 40 75 2 2.00 

50 100 15,000 45 45 75 2 2.00 

50 110 10,000 35 40 65 2 2.00 

75 150 10,000 10 15 75 3 1.00 

75 150 5,200 20 30 80 3 2.00 

75 500 10,000 10 15 75 3 1.00 

75 150 7,500 25 20 85 3 1.50 

75 135 7,000 30 25 90 3 1.50 

75 200 10,000 35 30 85 3 1.50 

75 125 8,500 20 20 90 3 1.50 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 
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Table 4.4 continued 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

100 800 4,500 8 10 100 4 1.00 

Table 4.5 presents the direct rating assigned to aesthetics by respondents. The LiDAR 

placement alternatives were categorized based on the number and elevation of the sensors. 

Respondents were asked to assign values of 0, 25, 50, 75, and 100 to the different categories with 

0 being their least favorable and 100 being their most preferred option. The categories are no 

sensors, 1–2 sensors at high elevations, 1–2 sensors at low elevations, 3–4 sensors at high 

elevations, and 3–4 sensors at low elevations. 

Table 4.5: Scaling data for the Aesthetics Criterion (Survey Results) 

Respondents 

ID 

No-sensors 1-2 Sensors-Low 1-2 Sensors-

High 

3-4 Sensors-Low 3-4 Sensors-High 

1 0 25 50 75 100 

2 100 75 25 50 0 

3 100 75 50 25 0 

4 100 75 50 25 0 

5 100 75 50 25 0 

6 100 75 50 25 0 

7 0 100 75 50 25 

8 100 75 50 25 0 

9 0 50 75 25 25 

10 0 50 25 100 75 

11 0 75 50 100 25 

12 0 25 50 75 100 

13 0 75 25 100 50 

14 0 50 25 100 75 

15 0 25 50 50 100 

16 100 75 25 50 0 

17 100 75 25 50 0 

18 100 75 25 50 0 

19 100 75 25 50 0 

20 100 75 25 50 0 

Average: 55 65 41.25 55 28.75 
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4.1.4 Sensitivity Analysis of the Weighting Data 

A sensitivity analysis was carried out using randomly generated data to introduce diverse 

weights for each criterion. This approach helped to assess the impact of varying criteria on the 

overall rankings of the alternatives. Ten scenarios of criteria weights were generated and 

subsequently used (Chapter 5) to obtain an overall ranking for the LiDAR placement alternatives. 

Table 4.6 presents the randomly generated weight data. It is important to note that these weights 

were generated in such a way that there was no bias against any criterion. 

Table 4.6: Criterion Weights for the Sensitivity Analysis 

PD SC PC BR SR AES EOI Total 

Scenario 1 19 21 14 12 14 13 7 100 

Scenario 2 27 14 22 6 25 3 2 100 

Scenario 3 17 19 16 21 1 9 17 100 

Scenario 4 6 15 22 14 18 6 19 100 

Scenario 5 8 17 14 17 18 17 10 100 

Scenario 6 19 20 6 3 11 22 19 100 

Scenario 7 21 19 17 14 1 23 6 100 

Scenario 8 1 9 21 23 7 9 30 100 

Scenario 9 26 18 5 9 23 6 12 100 

Scenario 10 12 21 5 21 24 10 7 100 

4.2 Summary of Chapter 4 

Chapter 4 examines the data collection methods used throughout the thesis, beginning with an 

overview of the diverse sources from which information was gathered. These sources encompass 

data obtained from CARLA, the primary simulation platform, alongside additional datasets 

procured from various external sources. This compilation of data includes crucial information 

pivotal to evaluating performance criteria within the decision-making process. The chapter further 

details the methodologies used to collect data from these sources, emphasizing their individual 

significance within the broader context of the thesis. 

The chapter also explores the intricacies of the weighting and scaling processes applied to 

the collected data. The different categories of weights utilized in the thesis were discussed, 
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including respondent-assigned weights, randomly generated weights, and equal weights, with each 

contributing distinctively to the decision-making model. 

Overall, Chapter 4 presents the methodologies used for data collection, emphasizing the 

importance of diverse data sources, the processes of weighting and scaling, and the impact of 

sensitivity analysis. These elements collectively played a fundamental role in the subsequent 

phases of the decision-making process within the thesis. 
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RESULTS AND DISCUSSION 

This chapter presents the findings of the thesis concerning the LiDAR placement optimization 

using a multi-criteria decision framework. Initially, respondent-assigned weights were used to 

obtain an overall ranking for the alternatives. Subsequently, equal weights and randomly generated 

weights were used to get an overall ranking of the alternative LiDAR placement designs. The equal 

weighting involved assigning each criterion a weight of 14.29, thus, assuming an equal level of 

importance for all criteria in the decision-making process. However, this method does not 

accurately reflect the true significance of each criterion within the research context. To address 

this, a sensitivity analysis was conducted using randomly generated weights to observe how 

changes in criteria weights influenced the ranking of the alternatives. This analysis helped to assess 

the impact of varying criteria weights on the ranking of the alternatives. 

5.1 Results Based on Respondent-Assigned Weights 

5.1.1 Summary of Weighting Results 

In the evaluation of the decision criteria, 20 responses were considered to determine the average 

values, collectively reflecting the overall decision-making regarding the assignment of weights. 

Figure 5.1: Weighting Results (Respondent-assigned) 
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The weighting results reveal the collective perspective of the respondents and their 

expertise in the subject matter. Notably, the criterion with the highest average weight is the point 

density (PD), which received an average value of 26.46. This high rating displays the overall 

importance attributed to the detection of objects, which is a safety component in the decision-

making process. This result suggests a shared view that the precision and efficiency of detection 

capabilities significantly influence the performance of the AV. 

Conversely, aesthetics (AES) and ease of installation (EOI) received lower average weights 

of 4.68 and 9.14, respectively. These comparatively lower weights indicate a consensus among the 

respondents that, while aesthetics and ease of installation are considerations, they are deemed less 

important than other criteria. This prioritization of technical and functional aspects over aesthetic 

appeal and ease of installation can be attributed to the main purpose of AVs; hence, performance 

and functionality are the primary concerns. 

Furthermore, the variability within each criterion is highlighted by the standard deviations: 

PD (9.44), COS (8.62), PC (5.13), BR (5.29), SR (5.46), AES (3.92), and EOI (4.01). This 

variability showcases varying levels of consistency within the dataset. Higher standard deviations 

indicate greater diversity among data points, while lower deviations signify a more uniform trend 

across the criteria. This gradient in variability underscores the diverse ranges of values and 

dispersion around the mean, offering insights into the heterogeneity and consistency present within 

the evaluated criteria. 

5.1.2 Summary of Scaling Results 

To obtain the value functions used for the scaling process, a regression analysis was carried out to 

establish a function that represents the collective preferences of the data obtained from the 

respondents. To do so, a regression line was fitted to the data and the best-fit line was determined 

based on which option had the least deviation from the collected responses. This approach 

provided a holistic understanding of the respondents’ preferences and aided in identifying the 

overall trend within the dataset. 

Figure 5.2 illustrates the resulting value function charts. The regression line, representing 

the best fit for the data, was selected in the form of logarithmic, linear, or exponential functions, 

based on its alignment with the observed patterns in the dataset. The regression equations were 

then used to scale the data for amalgamation and to obtain results. 
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a. Point Density Index b. Average Sensor Cost index 
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c. Power Consumption index 
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Figure 5.2: Value Functions of the Decision Criteria 
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Figure 5.2 continued 
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The value functions were used to obtain the scaling results. Using the sensor redundancy 

index as an example, if the raw data (𝑋) is 60, the value function (Y) = 0.0084𝑋2 - 0.0121𝑋 + 

2.2483 is applied by replacing 𝑋 in the equation 𝑌 = 0.0084(60)2 − 0.0121(60) + 2.2483 to 

get the Scaled Value (𝑌) = 31.7633. This process is repeated for all the criteria. 

5.1.3 Amalgamation Results 

This section presents the outcomes derived from the application of the WSM explained in Chapter 

3. The utilization of this method in the amalgamation process involves the weighting and scaling 

of the raw values for each criterion. This culminates in the determination of the outcomes for each 

alternative. The methodology considers the “contributions” of each criterion, reflecting their 

respectively assigned weights. Based on the amalgamation results, the LiDAR placement 

alternatives were then ranked using their overall scores. This hierarchy streamlined the choice of 

the best design and also facilitates meaningful comparison. 

5.2 Amalgamation Results Based on Respondent-Assigned Weights 

In Tables 5.1 and 5.2, the results are presented by utilizing weights derived from the questionnaire. 

As detailed in previous chapters, the respondents provided their preferences, thereby contributing 

to the determination of criterion weights. Tables 5.1 and 5.2 offer insights into the outcomes 

achieved by incorporating these questionnaire-based weights into the evaluation process. 
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Table 5.1: Amalgamation Results: Sensing target–Vehicle, based on respondent-assigned 

weights of the criteria 

Criteria 

Weight 

Alternatives 

PDV SC PC BR SR AES EOI 

Amalgamation 

Results Rank 
26.46 17.88 10.84 17.63 13.36 4.68 9.14 

CHigh16 14.6 85.3 88.2 26.3 6.3 50 89.6 4469.8 67 

CHigh32 32.2 57.3 85.8 26.3 6.3 50 89.6 4408.6 69 

CHigh64 41.1 54.8 73.6 26.3 6.3 50 89.6 4466.6 68 

CLow16 37.6 85.3 88.2 32.1 6.3 100 89.6 5414.7 25 

CLow32 45.2 57.3 85.8 32.1 6.3 100 89.6 5086.9 37 

CLow64 54.0 54.8 73.6 32.1 6.3 100 89.6 5143.9 36 

FHigh16 36.9 85.3 88.2 39.0 6.3 100 89.6 5515.7 21 

FHigh32 56.2 57.3 85.8 39.0 6.3 50 89.6 5266.1 31 

FHigh64 54.0 54.8 73.6 39.0 6.3 50 89.6 5029.9 45 

FLow16 36.6 85.3 88.2 47.4 6.3 100 89.6 5658.1 18 

FLow32 49.1 57.3 85.8 47.4 6.3 100 89.6 5459.4 23 

FLow64 57.4 54.8 73.6 47.4 6.3 100 89.6 5502.1 22 

FBHigh16-16 64.5 64.6 78.5 6.0 38.2 50 54.0 5057.3 40 

FBHigh32-32 84.3 36.5 73.6 6.0 38.2 50 54.0 5027.1 46 

FBHigh64-64 84.3 34.1 49.3 6.0 38.2 50 54.0 4719.3 61 

FBLow16-16 66.3 64.6 78.5 58.2 38.2 100 54.0 6259.5 6 

FBLow32-32 85.1 36.5 73.6 58.2 38.2 100 54.0 6202.5 7 

FBLow64-64 83.2 34.1 49.3 58.2 38.2 100 54.0 5843.7 15 

FBHigh32-16 76.5 47.4 76.1 6.0 38.2 50 54.0 5041.4 43 

FBHigh64-32 84.2 35.3 61.5 6.0 38.2 50 54.0 4869.8 54 

FBLow32-16 76.5 47.4 76.1 58.2 38.2 100 54.0 6195.9 8 

FBLow64-32 86.1 35.3 61.5 58.2 38.2 100 54.0 6073.8 11 

FBHigh64-16 78.5 45.6 63.9 6.0 38.2 50 54.0 4930.8 51 

FBLow64-16 77.3 45.6 63.9 58.2 38.2 100 54.0 6052.9 12 

FLFRBHigh16-16-16 70.5 52.5 68.8 16.9 54.2 25 25.1 4917.9 52 

FLFRBHigh32-32-16 82.9 31.2 63.9 16.9 54.2 25 25.1 4812.4 57 

FLFRBHigh32-32-32 87.1 24.4 61.5 16.9 54.2 25 25.1 4776.8 59 

FLFRBHigh64-64-16 83.0 29.1 39.6 16.9 54.2 25 25.1 4515.0 66 

FLFRBHigh64-64-32 88.5 22.7 37.2 16.9 54.2 25 25.1 4519.5 65 

FLFRBHigh64-64-64 88.6 21.9 25.0 16.9 54.2 25 25.1 4374.4 70 

FLFRBLow16-16-16 70.1 52.5 68.8 73.5 54.2 75 25.1 6139.7 10 

FLFRBLow32-32-16 81.7 31.2 63.9 73.5 54.2 75 25.1 6014.0 14 

FLFRBLow32-32-32 87.8 24.4 61.5 73.5 54.2 75 25.1 6027.9 13 

FLFRBLow64-64-16 82.4 29.1 39.6 73.5 54.2 75 25.1 5731.6 16 

FLFRBLow64-64-32 87.0 22.7 37.2 73.5 54.2 75 25.1 5711.8 17 

FLFRBLow64-64-64 87.4 21.9 25.0 73.5 54.2 75 25.1 5577.1 19 

FSLSRHigh16-16-16 84.0 52.5 68.8 16.9 54.2 25 25.1 5273.6 30 

FSLSRHigh32-16-16 88.7 40.0 66.3 16.9 54.2 25 25.1 5149.1 35 
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Table 5.1 continued 

FSLSRHigh32-32-32 97.9 24.4 61.5 16.9 54.2 25 25.1 5060.4 39 

FSLSRHigh64-16-16 90.8 38.6 54.2 16.9 54.2 25 25.1 5047.7 42 

FSLSRHigh64-32-32 100.3 23.6 49.3 16.9 54.2 25 25.1 4978.4 50 

FSLSRHigh64-64-64 100.8 21.9 25.0 16.9 54.2 25 25.1 4697.7 62 

FSLSRLow16-16-16 82.1 52.5 68.8 21.3 54.2 75 25.1 5535.3 20 

FSLSRLow32-16-16 88.3 40.0 66.3 21.3 54.2 75 25.1 5450.1 24 

FSLSRLow32-32-32 98.9 24.4 61.5 21.3 54.2 75 25.1 5399.9 26 

FSLSRLow64-16-16 88.9 38.6 54.2 21.3 54.2 75 25.1 5308.8 28 

FSLSRLow64-32-32 99.8 23.6 49.3 21.3 54.2 75 25.1 5277.8 29 

FSLSRLow64-64-64 101.0 21.9 25.0 21.3 54.2 75 25.1 5016.9 47 

FLFRRLRRHigh16-16-16-16 94.6 43.9 59.0 9.3 63.2 25 2.9 5079.9 38 

FLFRRLRRHigh32-32-16-16 105.0 26.7 54.2 9.3 63.2 25 2.9 4993.2 49 

FLFRRLRRHigh32-32-32-32 111.4 15.8 49.3 9.3 63.2 25 2.9 4916.8 53 

FLFRRLRRHigh64-64-16-16 107.9 24.9 29.9 9.3 63.2 25 2.9 4775.7 60 

FLFRRLRRHigh64-64-32-32 110.7 14.6 25.0 9.3 63.2 25 2.9 4611.7 63 

FLFRRLRRHigh64-64-64-64 111.4 13.3 0.7 9.3 63.2 25 2.9 4345.9 71 

FLFRRLRRLow16-16-16-16 93.9 43.9 59.0 99.6 63.2 75 2.9 6887.6 1 

FLFRRLRRLow32-32-16-16 104.2 26.7 54.2 99.6 63.2 75 2.9 6799.1 2 

FLFRRLRRLow32-32-32-32 111.7 15.8 49.3 99.6 63.2 75 2.9 6749.7 3 

FLFRRLRRLow64-64-16-16 108.3 24.9 29.9 99.6 63.2 75 2.9 6611.9 4 

FLFRRLRRLow64-64-32-32 110.6 14.6 25.0 99.6 63.2 75 2.9 6436.8 5 

FLFRRLRRLow64-64-64-64 111.4 13.3 0.7 99.6 63.2 75 2.9 6172.1 9 

FSLSRBHigh16-16-16-16 93.0 43.9 59.0 9.3 63.2 25 2.9 5036.1 44 

FSLSRBHigh32-16-16-16 99.0 34.1 56.6 9.3 63.2 25 2.9 4995.0 48 

FSLSRBHigh32-32-32-32 108.4 15.8 49.3 9.3 63.2 25 2.9 4836.8 56 

FSLSRBHigh64-16-16-16 97.8 32.9 44.5 9.3 63.2 25 2.9 4808.7 58 

FSLSRBHigh64-32-32-16 110.7 20.0 39.6 9.3 63.2 25 2.9 4868.0 55 

FSLSRBHigh64-64-64-64 109.7 13.3 0.7 9.3 63.2 25 2.9 4299.7 72 

FSLSRBLow16-16-16-16 94.1 43.9 59.0 12.9 63.2 75 2.9 5362.5 27 

FSLSRBLow32-16-16-16 97.7 34.1 56.6 12.9 63.2 75 2.9 5256.4 32 

FSLSRBLow32-32-32-32 109.0 15.8 49.3 12.9 63.2 75 2.9 5150.8 34 

FSLSRBLow64-16-16-16 99.5 32.9 44.5 12.9 63.2 75 2.9 5151.7 33 

FSLSRBLow64-32-32-16 106.6 20.0 39.6 12.9 63.2 75 2.9 5056.4 41 

FSLSRBLow64-64-64-64 109.9 13.3 0.7 12.9 63.2 75 2.9 4602.0 64 
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Table 5.2: Amalgamation Results: Sensing target–Pedestrian, based on respondent-assigned 

weights of the criteria 

Criteria 

Weight 

Alternatives 

PDV SC PC BR SR AES EOI 

Amalgamation 

Results Rank 
26.46 17.88 10.84 17.63 13.36 4.68 9.14 

CHigh16 15.5 85.3 88.2 26.3 6.3 50 89.6 4493.4 71 

CHigh32 37.4 57.3 85.8 26.3 6.3 50 89.6 4545.6 69 

CHigh64 45.0 54.8 73.6 26.3 6.3 50 89.6 4570.4 68 

CLow16 39.4 85.3 88.2 32.1 6.3 100 89.6 5462.2 30 

CLow32 44.8 57.3 85.8 32.1 6.3 100 89.6 5077.7 51 

CLow64 65.3 54.8 73.6 32.1 6.3 100 89.6 5444.5 32 

FHigh16 34.6 85.3 88.2 39.0 6.3 100 89.6 5455.3 31 

FHigh32 65.9 57.3 85.8 39.0 6.3 50 89.6 5522.8 27 

FHigh64 29.8 54.8 73.6 39.0 6.3 50 89.6 4391.5 72 

FLow16 40.7 85.3 88.2 47.4 6.3 100 89.6 5766.7 20 

FLow32 58.9 57.3 85.8 47.4 6.3 100 89.6 5719.0 22 

FLow64 73.3 54.8 73.6 47.4 6.3 100 89.6 5923.8 17 

FBHigh16-16 61.3 64.6 78.5 6.0 38.2 50 54.0 4972.4 56 

FBHigh32-32 94.3 36.5 73.6 6.0 38.2 50 54.0 5290.7 38 

FBHigh64-64 93.7 34.1 49.3 6.0 38.2 50 54.0 4967.3 57 

FBLow16-16 68.8 64.6 78.5 58.2 38.2 100 54.0 6326.1 11 

FBLow32-32 73.8 36.5 73.6 58.2 38.2 100 54.0 5904.5 18 

FBLow64-64 97.9 34.1 49.3 58.2 38.2 100 54.0 6232.1 13 

FBHigh32-16 84.8 47.4 76.1 6.0 38.2 50 54.0 5259.6 39 

FBHigh64-32 93.3 35.3 61.5 6.0 38.2 50 54.0 5109.7 47 

FBLow32-16 86.9 47.4 76.1 58.2 38.2 100 54.0 6470.2 6 

FBLow64-32 96.4 35.3 61.5 58.2 38.2 100 54.0 6348.4 10 

FBHigh64-16 86.3 45.6 63.9 6.0 38.2 50 54.0 5135.6 46 

FBLow64-16 89.9 45.6 63.9 58.2 38.2 100 54.0 6385.6 8 

FLFRBHigh16-16-16 67.8 52.5 68.8 16.9 54.2 25 25.1 4844.5 63 

FLFRBHigh32-32-16 92.4 31.2 63.9 16.9 54.2 25 25.1 5064.8 52 

FLFRBHigh32-32-32 96.6 24.4 61.5 16.9 54.2 25 25.1 5026.2 53 

FLFRBHigh64-64-16 92.9 29.1 39.6 16.9 54.2 25 25.1 4775.2 65 

FLFRBHigh64-64-32 99.0 22.7 37.2 16.9 54.2 25 25.1 4798.0 64 

FLFRBHigh64-64-64 98.7 21.9 25.0 16.9 54.2 25 25.1 4642.6 66 

FLFRBLow16-16-16 73.2 52.5 68.8 73.5 54.2 75 25.1 6220.8 14 

FLFRBLow32-32-16 93.4 31.2 63.9 73.5 54.2 75 25.1 6323.0 12 

FLFRBLow32-32-32 100.6 24.4 61.5 73.5 54.2 75 25.1 6365.6 9 

FLFRBLow64-64-16 94.6 29.1 39.6 73.5 54.2 75 25.1 6053.3 15 

FLFRBLow64-64-32 98.8 22.7 37.2 73.5 54.2 75 25.1 6024.5 16 

FLFRBLow64-64-64 99.2 21.9 25.0 73.5 54.2 75 25.1 5887.5 19 

FSLSRHigh16-16-16 79.9 52.5 68.8 16.9 54.2 25 25.1 5166.5 45 

FSLSRHigh32-16-16 92.3 40.0 66.3 16.9 54.2 25 25.1 5245.7 41 
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Table 5.2 continued 

FSLSRHigh32-32-32 108.8 24.4 61.5 16.9 54.2 25 25.1 5351.3 37 

FSLSRHigh64-16-16 95.3 38.6 54.2 16.9 54.2 25 25.1 5166.8 44 

FSLSRHigh64-32-32 110.6 23.6 49.3 16.9 54.2 25 25.1 5250.3 40 

FSLSRHigh64-64-64 109.8 21.9 25.0 16.9 54.2 25 25.1 4935.5 59 

FSLSRLow16-16-16 85.0 52.5 68.8 21.3 54.2 75 25.1 5612.7 25 

FSLSRLow32-16-16 97.3 40.0 66.3 21.3 54.2 75 25.1 5689.6 23 

FSLSRLow32-32-32 112.1 24.4 61.5 21.3 54.2 75 25.1 5749.7 21 

FSLSRLow64-16-16 98.0 38.6 54.2 21.3 54.2 75 25.1 5549.7 26 

FSLSRLow64-32-32 114.0 23.6 49.3 21.3 54.2 75 25.1 5652.6 24 

FSLSRLow64-64-64 114.7 21.9 25.0 21.3 54.2 75 25.1 5378.2 35 

FLFRRLRRHigh16-16-16-16 91.4 43.9 59.0 9.3 63.2 25 2.9 4994.0 54 

FLFRRLRRHigh32-32-16-16 113.4 26.7 54.2 9.3 63.2 25 2.9 5215.8 42 

FLFRRLRRHigh32-32-32-32 121.7 15.8 49.3 9.3 63.2 25 2.9 5188.4 43 

FLFRRLRRHigh64-64-16-16 115.5 24.9 29.9 9.3 63.2 25 2.9 4975.7 55 

FLFRRLRRHigh64-64-32-32 120.7 14.6 25.0 9.3 63.2 25 2.9 4875.8 61 

FLFRRLRRHigh64-64-64-64 120.7 13.3 0.7 9.3 63.2 25 2.9 4591.3 67 

FLFRRLRRLow16-16-16-16 95.2 43.9 59.0 99.6 63.2 75 2.9 6921.7 3 

FLFRRLRRLow32-32-16-16 114.2 26.7 54.2 99.6 63.2 75 2.9 7063.0 1 

FLFRRLRRLow32-32-32-32 121.9 15.8 49.3 99.6 63.2 75 2.9 7021.2 2 

FLFRRLRRLow64-64-16-16 119.1 24.9 29.9 99.6 63.2 75 2.9 6896.4 4 

FLFRRLRRLow64-64-32-32 121.2 14.6 25.0 99.6 63.2 75 2.9 6717.1 5 

FLFRRLRRLow64-64-64-64 121.9 13.3 0.7 99.6 63.2 75 2.9 6447.7 7 

FSLSRBHigh16-16-16-16 89.5 43.9 59.0 9.3 63.2 25 2.9 4944.2 58 

FSLSRBHigh32-16-16-16 102.5 34.1 56.6 9.3 63.2 25 2.9 5086.4 49 

FSLSRBHigh32-32-32-32 118.1 15.8 49.3 9.3 63.2 25 2.9 5093.7 48 

FSLSRBHigh64-16-16-16 100.1 32.9 44.5 9.3 63.2 25 2.9 4871.2 62 

FSLSRBHigh64-32-32-16 118.8 20.0 39.6 9.3 63.2 25 2.9 5083.3 50 

FSLSRBHigh64-64-64-64 118.4 13.3 0.7 9.3 63.2 25 2.9 4531.2 70 

FSLSRBLow16-16-16-16 95.7 43.9 59.0 12.9 63.2 75 2.9 5405.8 33 

FSLSRBLow32-16-16-16 105.5 34.1 56.6 12.9 63.2 75 2.9 5464.3 29 

FSLSRBLow32-32-32-32 121.1 15.8 49.3 12.9 63.2 75 2.9 5471.0 28 

FSLSRBLow64-16-16-16 109.1 32.9 44.5 12.9 63.2 75 2.9 5404.5 34 

FSLSRBLow64-32-32-16 118.1 20.0 39.6 12.9 63.2 75 2.9 5362.0 36 

FSLSRBLow64-64-64-64 120.4 13.3 0.7 12.9 63.2 75 2.9 4881.9 60 
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The respondent-assigned weights closely reflect the most effective LiDAR placements, 

aligning closely with highly weighted criteria such as point density, cost of sensor, and blind spot 

regions. Across both the vehicle and pedestrian scenarios, the top four placements demonstrate a 

consistent pattern with minor distinctions. For vehicle detection, the top four placements— 

beginning with the top performing—are FLFRRLRRLow16-16-16-16, FLFRRLRRLow32-32-

16-16, FLFRRLRRLow32-32-32-32, and FLFRRLRRLow64-64-16-16. In contrast, for 

pedestrian detection, the results are FLFRRLRRLow32-32-16-16, FLFRRLRRLow32-32-32-32, 

FLFRRLRRLow16-16-16-16, and FLFRRLRRLow64-64-16-16. Across both vehicle and 

pedestrian scenarios, these placements consistently involve four LiDAR sensors positioned at the 

front left, front right, rear left, and rear right locations at low elevations. 

Figure 5.3 presents a 3D model illustrating the LiDAR placement design representing the 

top four performing results. The differences among the four designs lie in the channels of the 

LiDAR sensors, as depicted in the results. 

Figure 5.3: Model representing the top 4 LiDAR placement design 

Figure 5.4 presents the heat map showing the ranking of all the LiDAR placement designs 

across both pedestrian and vehicle scenarios, with blue signifying lower scores and red signifying 

top-performing LiDAR placements. 
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(a) Sensing target - Vehicle (respondent-assigned (b) Sensing target - Pedestrian (respondent-assigned 

weights) weights) 

 

  

  

 

   

  

   

    

   

Figure 5.4: Heat Maps of Sensing targets (respondent-assigned weights) 

5.3 Amalgamation Results Using Equal Weights 

A uniform weighting approach was used, assigning equal weights of 14.286 to each of the eight 

criteria. This balanced distribution ensured that each criterion contributed equally to the overall 

assessment, preventing any single criterion from disproportionately influencing the results. 

Additionally, the scaling functions, previously outlined in this section (Chapter 5.1.2), were 

applied to obtain the scaled values. These scaling functions played a crucial role in standardizing 

and transforming the raw data, facilitating a coherent comparison and integration of diverse 
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criterion values within the assessment framework. Tables 5.3 and 5.4 present the amalgamation 

results for both pedestrian and vehicle detections. The results are ranked based on the overall 

amalgamation score. 
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Table 5.3: Amalgamation Results: Sensing target–Vehicle, based on equal weights of the criteria 

Criteria 

Weight 

Alternatives 

PDV SC PC BR SR AES EOI 

Amalgamation 

Results Rank 
14.29 14.29 14.29 14.29 14.29 14.29 14.29 

CHigh16 14.6 85.3 88.2 26.3 6.3 50 89.6 5148 31 

CHigh32 32.2 57.3 85.8 26.3 6.3 50 89.6 4964 37 

CHigh64 41.1 54.8 73.6 26.3 6.3 50 89.6 4881 40 

CLow16 37.6 85.3 88.2 32.1 6.3 100 89.6 6273 6 

CLow32 45.2 57.3 85.8 32.1 6.3 100 89.6 5946 16 

CLow64 54.0 54.8 73.6 32.1 6.3 100 89.6 5863 17 

FHigh16 36.9 85.3 88.2 39.0 6.3 100 89.6 6360 5 

FHigh32 56.2 57.3 85.8 39.0 6.3 50 89.6 5487 22 

FHigh64 54.0 54.8 73.6 39.0 6.3 50 89.6 5246 27 

FLow16 36.6 85.3 88.2 47.4 6.3 100 89.6 6477 2 

FLow32 49.1 57.3 85.8 47.4 6.3 100 89.6 6220 9 

FLow64 57.4 54.8 73.6 47.4 6.3 100 89.6 6129 11 

FBHigh16-16 64.5 64.6 78.5 6.0 38.2 50 54.0 5083 33 

FBHigh32-32 84.3 36.5 73.6 6.0 38.2 50 54.0 4896 38 

FBHigh64-64 84.3 34.1 49.3 6.0 38.2 50 54.0 4513 49 

FBLow16-16 66.3 64.6 78.5 58.2 38.2 100 54.0 6569 1 

FBLow32-32 85.1 36.5 73.6 58.2 38.2 100 54.0 6367 4 

FBLow64-64 83.2 34.1 49.3 58.2 38.2 100 54.0 5957 15 

FBHigh32-16 76.5 47.4 76.1 6.0 38.2 50 54.0 4974 36 

FBHigh64-32 84.2 35.3 61.5 6.0 38.2 50 54.0 4703 43 

FBLow32-16 76.5 47.4 76.1 58.2 38.2 100 54.0 6434 3 

FBLow64-32 86.1 35.3 61.5 58.2 38.2 100 54.0 6189 10 

FBHigh64-16 78.5 45.6 63.9 6.0 38.2 50 54.0 4804 41 

FBLow64-16 77.3 45.6 63.9 58.2 38.2 100 54.0 6246 8 

FLFRBHigh16-16-16 70.5 52.5 68.8 16.9 54.2 25 25.1 4470 50 

FLFRBHigh32-32-16 82.9 31.2 63.9 16.9 54.2 25 25.1 4274 53 

FLFRBHigh32-32-32 87.1 24.4 61.5 16.9 54.2 25 25.1 4203 57 

FLFRBHigh64-64-16 83.0 29.1 39.6 16.9 54.2 25 25.1 3898 64 

FLFRBHigh64-64-32 88.5 22.7 37.2 16.9 54.2 25 25.1 3851 66 

FLFRBHigh64-64-64 88.6 21.9 25.0 16.9 54.2 25 25.1 3666 69 

FLFRBLow16-16-16 70.1 52.5 68.8 73.5 54.2 75 25.1 5988 13 

FLFRBLow32-32-16 81.7 31.2 63.9 73.5 54.2 75 25.1 5780 18 

FLFRBLow32-32-32 87.8 24.4 61.5 73.5 54.2 75 25.1 5736 20 

FLFRBLow64-64-16 82.4 29.1 39.6 73.5 54.2 75 25.1 5413 23 

FLFRBLow64-64-32 87.0 22.7 37.2 73.5 54.2 75 25.1 5352 25 

FLFRBLow64-64-64 87.4 21.9 25.0 73.5 54.2 75 25.1 5173 29 

FSLSRHigh16-16-16 84.0 52.5 68.8 16.9 54.2 25 25.1 4662 45 

FSLSRHigh32-16-16 88.7 40.0 66.3 16.9 54.2 25 25.1 4517 48 

FSLSRHigh32-32-32 97.9 24.4 61.5 16.9 54.2 25 25.1 4356 51 
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Table 5.3 continued 

FSLSRHigh64-16-16 90.8 38.6 54.2 16.9 54.2 25 25.1 4353 52 

FSLSRHigh64-32-32 100.3 23.6 49.3 16.9 54.2 25 25.1 4205 56 

FSLSRHigh64-64-64 100.8 21.9 25.0 16.9 54.2 25 25.1 3841 67 

FSLSRLow16-16-16 82.1 52.5 68.8 21.3 54.2 75 25.1 5413 24 

FSLSRLow32-16-16 88.3 40.0 66.3 21.3 54.2 75 25.1 5288 26 

FSLSRLow32-32-32 98.9 24.4 61.5 21.3 54.2 75 25.1 5148 30 

FSLSRLow64-16-16 88.9 38.6 54.2 21.3 54.2 75 25.1 5103 32 

FSLSRLow64-32-32 99.8 23.6 49.3 21.3 54.2 75 25.1 4976 35 

FSLSRLow64-64-64 101.0 21.9 25.0 21.3 54.2 75 25.1 4622 46 

FLFRRLRRHigh16-16-16-16 94.6 43.9 59.0 9.3 63.2 25 2.9 4256 54 

FLFRRLRRHigh32-32-16-16 105.0 26.7 54.2 9.3 63.2 25 2.9 4088 59 

FLFRRLRRHigh32-32-32-32 111.4 15.8 49.3 9.3 63.2 25 2.9 3956 61 

FLFRRLRRHigh64-64-16-16 107.9 24.9 29.9 9.3 63.2 25 2.9 3757 68 

FLFRRLRRHigh64-64-32-32 110.7 14.6 25.0 9.3 63.2 25 2.9 3580 70 

FLFRRLRRHigh64-64-64-64 111.4 13.3 0.7 9.3 63.2 25 2.9 3226 71 

FLFRRLRRLow16-16-16-16 93.9 43.9 59.0 99.6 63.2 75 2.9 6250 7 

FLFRRLRRLow32-32-16-16 104.2 26.7 54.2 99.6 63.2 75 2.9 6081 12 

FLFRRLRRLow32-32-32-32 111.7 15.8 49.3 99.6 63.2 75 2.9 5963 14 

FLFRRLRRLow64-64-16-16 108.3 24.9 29.9 99.6 63.2 75 2.9 5767 19 

FLFRRLRRLow64-64-32-32 110.6 14.6 25.0 99.6 63.2 75 2.9 5584 21 

FLFRRLRRLow64-64-64-64 111.4 13.3 0.7 99.6 63.2 75 2.9 5230 28 

FSLSRBHigh16-16-16-16 93.0 43.9 59.0 9.3 63.2 25 2.9 4232 55 

FSLSRBHigh32-16-16-16 99.0 34.1 56.6 9.3 63.2 25 2.9 4144 58 

FSLSRBHigh32-32-32-32 108.4 15.8 49.3 9.3 63.2 25 2.9 3912 63 

FSLSRBHigh64-16-16-16 97.8 32.9 44.5 9.3 63.2 25 2.9 3935 62 

FSLSRBHigh64-32-32-16 110.7 20.0 39.6 9.3 63.2 25 2.9 3867 65 

FSLSRBHigh64-64-64-64 109.7 13.3 0.7 9.3 63.2 25 2.9 3201 72 

FSLSRBLow16-16-16-16 94.1 43.9 59.0 12.9 63.2 75 2.9 5013 34 

FSLSRBLow32-16-16-16 97.7 34.1 56.6 12.9 63.2 75 2.9 4890 39 

FSLSRBLow32-32-32-32 109.0 15.8 49.3 12.9 63.2 75 2.9 4687 44 

FSLSRBLow64-16-16-16 99.5 32.9 44.5 12.9 63.2 75 2.9 4726 42 

FSLSRBLow64-32-32-16 106.6 20.0 39.6 12.9 63.2 75 2.9 4573 47 

FSLSBL64-64-64-64 109.9 13.3 0.7 12.9 63.2 75 2.9 3969 60 
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Table 5.4 Amalgamation Results: Sensing target–Pedestrian, based on equal weights of the criteria 

Criteria 

Weight 

Alternatives 

PDV SC PC BR SR AES EOI 

Amalgamation 

Results Rank 
14.29 14.29 14.29 14.29 14.29 14.29 14.29 

CHigh16 15.5 85.3 88.2 26.3 6.3 50 89.6 5160 32 

CHigh32 37.4 57.3 85.8 26.3 6.3 50 89.6 5038 35 

CHigh64 45.0 54.8 73.6 26.3 6.3 50 89.6 4937 39 

CLow16 39.4 85.3 88.2 32.1 6.3 100 89.6 6299 9 

CLow32 44.8 57.3 85.8 32.1 6.3 100 89.6 5941 18 

CLow64 65.3 54.8 73.6 32.1 6.3 100 89.6 6025 16 

FHigh16 34.6 85.3 88.2 39.0 6.3 100 89.6 6328 8 

FHigh32 65.9 57.3 85.8 39.0 6.3 50 89.6 5626 22 

FHigh64 29.8 54.8 73.6 39.0 6.3 50 89.6 4901 41 

FLow16 40.7 85.3 88.2 47.4 6.3 100 89.6 6536 3 

FLow32 58.9 57.3 85.8 47.4 6.3 100 89.6 6360 5 

FLow64 73.3 54.8 73.6 47.4 6.3 100 89.6 6356 6 

FBHigh16-16 61.3 64.6 78.5 6.0 38.2 50 54.0 5037 36 

FBHigh32-32 94.3 36.5 73.6 6.0 38.2 50 54.0 5038 34 

FBHigh64-64 93.7 34.1 49.3 6.0 38.2 50 54.0 4647 47 

FBLow16-16 68.8 64.6 78.5 58.2 38.2 100 54.0 6605 1 

FBLow32-32 73.8 36.5 73.6 58.2 38.2 100 54.0 6206 12 

FBLow64-64 97.9 34.1 49.3 58.2 38.2 100 54.0 6167 13 

FBHigh32-16 84.8 47.4 76.1 6.0 38.2 50 54.0 5092 33 

FBHigh64-32 93.3 35.3 61.5 6.0 38.2 50 54.0 4832 44 

FBLow32-16 86.9 47.4 76.1 58.2 38.2 100 54.0 6582 2 

FBLow64-32 96.4 35.3 61.5 58.2 38.2 100 54.0 6338 7 

FBHigh64-16 86.3 45.6 63.9 6.0 38.2 50 54.0 4914 40 

FBLow64-16 89.9 45.6 63.9 58.2 38.2 100 54.0 6426 4 

FLFRBHigh16-16-16 67.8 52.5 68.8 16.9 54.2 25 25.1 4431 51 

FLFRBHigh32-32-16 92.4 31.2 63.9 16.9 54.2 25 25.1 4410 53 

FLFRBHigh32-32-32 96.6 24.4 61.5 16.9 54.2 25 25.1 4337 55 

FLFRBHigh64-64-16 92.9 29.1 39.6 16.9 54.2 25 25.1 4039 63 

FLFRBHigh64-64-32 99.0 22.7 37.2 16.9 54.2 25 25.1 4001 64 

FLFRBHigh64-64-64 98.7 21.9 25.0 16.9 54.2 25 25.1 3811 69 

FLFRBLow16-16-16 73.2 52.5 68.8 73.5 54.2 75 25.1 6031 15 

FLFRBLow32-32-16 93.4 31.2 63.9 73.5 54.2 75 25.1 5947 17 

FLFRBLow32-32-32 100.6 24.4 61.5 73.5 54.2 75 25.1 5918 20 

FLFRBLow64-64-16 94.6 29.1 39.6 73.5 54.2 75 25.1 5587 23 

FLFRBLow64-64-32 98.8 22.7 37.2 73.5 54.2 75 25.1 5521 24 

FLFRBLow64-64-64 99.2 21.9 25.0 73.5 54.2 75 25.1 5341 28 

FSLSRHigh16-16-16 79.9 52.5 68.8 16.9 54.2 25 25.1 4604 48 

FSLSRHigh32-16-16 92.3 40.0 66.3 16.9 54.2 25 25.1 4569 49 

FSLSRHigh32-32-32 108.8 24.4 61.5 16.9 54.2 25 25.1 4513 50 
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Table 5.4 continued 

FSLSRHigh64-16-16 95.3 38.6 54.2 16.9 54.2 25 25.1 4417 52 

FSLSRHigh64-32-32 110.6 23.6 49.3 16.9 54.2 25 25.1 4352 54 

FSLSRHigh64-64-64 109.8 21.9 25.0 16.9 54.2 25 25.1 3969 66 

FSLSRLow16-16-16 85.0 52.5 68.8 21.3 54.2 75 25.1 5454 25 

FSLSRLow32-16-16 97.3 40.0 66.3 21.3 54.2 75 25.1 5418 26 

FSLSRLow32-32-32 112.1 24.4 61.5 21.3 54.2 75 25.1 5337 29 

FSLSRLow64-16-16 98.0 38.6 54.2 21.3 54.2 75 25.1 5233 30 

FSLSRLow64-32-32 114.0 23.6 49.3 21.3 54.2 75 25.1 5178 31 

FSLSRLow64-64-64 114.7 21.9 25.0 21.3 54.2 75 25.1 4817 45 

FLFRRLRRHigh16-16-16-16 91.4 43.9 59.0 9.3 63.2 25 2.9 4209 56 

FLFRRLRRHigh32-32-16-16 113.4 26.7 54.2 9.3 63.2 25 2.9 4208 57 

FLFRRLRRHigh32-32-32-32 121.7 15.8 49.3 9.3 63.2 25 2.9 4102 61 

FLFRRLRRHigh64-64-16-16 115.5 24.9 29.9 9.3 63.2 25 2.9 3865 68 

FLFRRLRRHigh64-64-32-32 120.7 14.6 25.0 9.3 63.2 25 2.9 3723 70 

FLFRRLRRHigh64-64-64-64 120.7 13.3 0.7 9.3 63.2 25 2.9 3358 71 

FLFRRLRRLow16-16-16-16 95.2 43.9 59.0 99.6 63.2 75 2.9 6268 10 

FLFRRLRRLow32-32-16-16 114.2 26.7 54.2 99.6 63.2 75 2.9 6224 11 

FLFRRLRRLow32-32-32-32 121.9 15.8 49.3 99.6 63.2 75 2.9 6110 14 

FLFRRLRRLow64-64-16-16 119.1 24.9 29.9 99.6 63.2 75 2.9 5920 19 

FLFRRLRRLow64-64-32-32 121.2 14.6 25.0 99.6 63.2 75 2.9 5735 21 

FLFRRLRRLow64-64-64-64 121.9 13.3 0.7 99.6 63.2 75 2.9 5379 27 

FSLSRBHigh16-16-16-16 89.5 43.9 59.0 9.3 63.2 25 2.9 4182 59 

FSLSRBHigh32-16-16-16 102.5 34.1 56.6 9.3 63.2 25 2.9 4193 58 

FSLSRBHigh32-32-32-32 118.1 15.8 49.3 9.3 63.2 25 2.9 4051 62 

FSLSRBHigh64-16-16-16 100.1 32.9 44.5 9.3 63.2 25 2.9 3969 67 

FSLSRBHigh64-32-32-16 118.8 20.0 39.6 9.3 63.2 25 2.9 3983 65 

FSLSRBHigh64-64-64-64 118.4 13.3 0.7 9.3 63.2 25 2.9 3326 72 

FSLSRBLow16-16-16-16 95.7 43.9 59.0 12.9 63.2 75 2.9 5037 37 

FSLSRBLow32-16-16-16 105.5 34.1 56.6 12.9 63.2 75 2.9 5002 38 

FSLSRBLow32-32-32-32 121.1 15.8 49.3 12.9 63.2 75 2.9 4860 43 

FSLSRBLow64-16-16-16 109.1 32.9 44.5 12.9 63.2 75 2.9 4862 42 

FSLSRBLow64-32-32-16 118.1 20.0 39.6 12.9 63.2 75 2.9 4738 46 

FSLSRBLow64-64-64-64 120.4 13.3 0.7 12.9 63.2 75 2.9 4120 60 
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    b. Sensing target - Vehicle (equal weights) a. Sensing target - Vehicle (equal weights) 

Figure 5.5: Heat Maps of Sensing targets (equal weights) 

 

 

 

  

   

     

   

  

 

  

5.4 Results Based on Randomly Assigned Weights (Sensitivity Analysis) 

In the analysis based on randomly assigned weights, the applied weights were generated without 

bias, ensuring an unbiased distribution across all criteria in the overall weight allocation. Unlike 

the approach with equal weighting, in which each criterion received a fixed weight of 14.29, in 

this method, random weights were generated independently for 10 scenarios across each criterion. 

Furthermore, the scaling functions, previously detailed in Chapter 5.1.2, remained consistent and 

were applied to derive scaled values. 
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Tables 5.5 and 5.6 present the sensitivity of the amalgamated results for the vehicle and 

pedestrian target scenarios, respectively. The random weights, generated as discussed in Chapter 

4, were used as input. Each table presents the rankings obtained for each of the 10 weight scenarios. 

The table columns represent the outcomes from Rank 1 to Rank 72, thus, providing a detailed view 

of the performance associated with different weight configurations. 

Table 5.5: Amalgamation Results: Sensing target–Vehicle, based on randomized weights of the 

criteria 

Sensitivity Analysis 

Rank 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

Scenario 

9 

Scenario 

10 

CHigh16 43 71 20 9 29 25 36 9 71 46 

CHigh32 54 70 24 18 37 40 41 13 72 66 

CHigh64 56 72 25 22 40 36 43 16 70 67 

CLow16 12 60 3 3 6 3 6 4 49 21 

CLow32 21 67 9 7 18 10 13 6 65 31 

CLow64 24 68 11 13 20 8 15 8 59 32 

FHigh16 10 59 2 2 5 2 3 2 43 20 

FHigh32 32 63 13 11 28 16 23 7 64 39 

FHigh64 41 69 17 17 33 19 31 12 69 44 

FLow16 6 58 1 1 2 1 2 1 34 18 

FLow32 15 61 4 5 11 6 7 3 54 23 

FLow64 19 65 6 8 14 5 10 5 48 24 

FBHigh16-16 31 44 29 23 34 21 35 25 42 35 

FBHigh32-32 40 40 35 28 41 33 40 30 46 52 

FBHigh64-64 55 56 43 45 50 44 48 38 58 62 

FBLow16-16 2 13 5 4 1 4 1 10 6 6 

FBLow32-32 5 14 8 10 7 9 5 14 8 12 

FBLow64-64 16 47 18 21 15 13 16 18 13 16 

FBHigh32-16 36 41 33 27 38 31 39 27 45 47 

FBHigh64-32 49 50 39 36 48 42 46 35 53 57 

FBLow32-16 3 18 7 6 4 7 4 11 9 9 

FBLow64-32 11 30 14 16 12 12 11 17 10 14 

FBHigh64-16 42 49 36 32 43 32 44 32 50 49 

FBLow64-16 8 32 10 12 8 11 8 15 11 11 

FLFRBHigh16-16-16 48 36 45 35 47 52 50 42 57 40 

FLFRBHigh32-32-16 57 38 50 44 54 57 57 45 60 55 

FLFRBHigh32-32-32 61 43 54 49 57 59 60 47 61 58 

FLFRBHigh64-64-16 66 55 60 59 62 63 66 53 67 63 

FLFRBHigh64-64-32 68 54 61 61 65 67 68 54 66 68 

FLFRBHigh64-64-64 70 66 67 67 69 69 70 62 68 70 

FLFRBLow16-16-16 9 7 16 14 9 15 17 19 12 7 
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Table 5.5 continued 

FLFRBLow32-32-16 14 16 21 19 17 24 19 21 15 10 

FLFRBLow32-32-32 18 12 23 24 19 26 20 22 14 13 

FLFRBLow64-64-16 25 45 27 30 22 34 25 26 20 15 

FLFRBLow64-64-32 27 46 28 34 24 38 26 28 21 17 

FLFRBLow64-64-64 33 52 32 41 27 43 33 31 26 19 

FSLSRHigh16-16-16 37 22 40 33 44 49 47 40 30 34 

FSLSRHigh32-16-16 44 25 44 40 49 50 49 44 33 42 

FSLSRHigh32-32-32 52 28 48 47 55 53 52 46 41 51 

FSLSRHigh64-16-16 50 35 47 46 51 51 54 48 37 45 

FSLSRHigh64-32-32 58 37 53 53 58 55 59 51 44 56 

FSLSRHigh64-64-64 67 53 62 65 67 61 67 60 55 64 

FSLSRLow16-16-16 20 8 30 26 23 14 22 33 16 22 

FSLSRLow32-16-16 22 11 34 29 26 18 24 36 18 25 

FSLSRLow32-32-32 28 19 37 37 32 23 27 37 19 29 

FSLSRLow64-16-16 29 29 38 38 30 20 30 39 23 27 

FSLSRLow64-32-32 34 31 41 43 36 28 34 43 24 33 

FSLSRLow64-64-64 46 51 49 58 46 37 45 50 29 36 

FLFRRLRRHigh16-16-16-16 45 9 55 50 52 54 51 57 31 41 

FLFRRLRRHigh32-32-16-16 53 21 59 57 59 60 58 63 35 53 

FLFRRLRRHigh32-32-32-32 60 23 64 63 63 65 61 65 40 61 

FLFRRLRRHigh64-64-16-16 65 42 68 68 68 66 65 68 47 59 

FLFRRLRRHigh64-64-32-32 69 48 70 69 70 70 69 69 56 69 

FLFRRLRRHigh64-64-64-64 71 62 71 71 71 71 71 71 62 71 

FLFRRLRRLow16-16-16-16 1 1 12 15 3 17 9 20 1 1 

FLFRRLRRLow32-32-16-16 4 2 15 20 10 22 12 23 2 2 

FLFRRLRRLow32-32-32-32 7 3 19 25 13 29 14 24 3 4 

FLFRRLRRLow64-64-16-16 13 4 22 31 16 30 18 29 4 3 

FLFRRLRRLow64-64-32-32 17 10 26 39 21 39 21 34 5 5 

FLFRRLRRLow64-64-64-64 26 39 31 52 25 46 28 41 7 8 

FSLSRBHigh16-16-16-16 47 15 57 51 53 56 53 58 32 43 

FSLSRBHigh32-16-16-16 51 20 58 55 56 58 56 61 36 48 

FSLSRBHigh32-32-32-32 62 26 65 64 64 68 63 66 52 65 

FSLSRBHigh64-16-16-16 59 34 63 62 61 62 62 64 51 54 

FSLSRBHigh64-32-32-16 63 33 66 66 66 64 64 67 39 60 

FSLSRBHigh64-64-64-64 72 64 72 72 72 72 72 72 63 72 

FSLSRBLow16-16-16-16 23 5 42 42 31 27 29 49 17 26 

FSLSRBLow32-16-16-16 30 6 46 48 35 35 32 52 22 28 

FSLSRBLow32-32-32-32 38 17 52 56 42 45 38 56 27 38 

FSLSRBLow64-16-16-16 35 24 51 54 39 41 37 55 25 30 

FSLSRBLow64-32-32-16 39 27 56 60 45 47 42 59 28 37 

FSLSRBLow64-64-64-64 64 57 69 70 60 48 55 70 38 50 
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Table 5.6:Amalgamation Results: Sensing target–Pedestrian, based on randomized weights of the 

criteria 

Sensitivity Analysis Rank Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Scenario 
6 

Scenario 
7 

Scenario 
8 

Scenario 
9 

Scenario 
10 

CHigh16 45 71 22 10 29 32 37 9 71 46 

CHigh32 56 69 23 17 36 42 42 13 70 67 

CHigh64 59 70 26 23 40 41 44 16 69 68 

CLow16 12 65 5 3 7 2 7 4 54 22 

CLow32 28 68 12 8 19 12 16 6 68 33 

CLow64 22 66 9 13 20 8 14 8 52 32 

FHigh16 15 67 4 2 5 4 8 2 60 20 

FHigh32 33 60 10 9 28 14 22 7 61 37 

FHigh64 64 72 25 19 37 47 46 12 72 65 

FLow16 7 62 1 1 2 1 3 1 41 19 

FLow32 18 59 3 5 10 5 6 3 47 24 

FLow64 14 58 2 7 13 3 4 5 30 21 

FBHigh16-16 38 52 34 24 33 34 40 25 62 39 

FBHigh32-32 39 38 35 28 41 30 38 30 36 51 

FBHigh64-64 53 57 41 45 50 44 47 38 51 61 

FBLow16-16 1 21 6 4 1 6 2 10 12 7 

FBLow32-32 16 44 14 12 11 13 13 14 29 17 

FBLow64-64 11 36 15 20 15 11 12 18 10 15 

FBHigh32-16 36 42 32 26 38 27 36 28 38 42 

FBHigh64-32 43 51 40 36 47 40 45 35 46 56 

FBLow32-16 3 12 7 6 3 7 1 11 7 9 

FBLow64-32 8 26 11 15 12 10 9 17 9 13 

FBHigh64-16 41 50 37 32 43 33 43 32 44 48 

FBLow64-16 5 25 8 11 6 9 5 15 8 10 

FLFRBHigh16-16-16 50 48 48 37 48 55 54 42 67 41 

FLFRBHigh32-32-16 54 37 50 44 52 54 53 45 55 53 

FLFRBHigh32-32-32 58 41 54 49 56 56 57 47 58 57 

FLFRBHigh64-64-16 66 55 58 59 61 61 65 53 65 62 

FLFRBHigh64-64-32 68 54 61 61 65 64 67 54 64 66 

FLFRBHigh64-64-64 70 64 67 67 69 69 70 62 66 70 

FLFRBLow16-16-16 10 15 18 14 9 17 18 19 15 6 

FLFRBLow32-32-16 13 10 19 18 16 22 19 21 13 11 

FLFRBLow32-32-32 17 5 20 22 18 23 20 22 11 12 

FLFRBLow64-64-16 23 35 27 30 22 28 24 26 17 14 

FLFRBLow64-64-32 26 39 28 33 23 31 26 27 18 16 

FLFRBLow64-64-64 32 49 30 41 26 39 31 31 20 18 

FSLSRHigh16-16-16 42 32 42 34 46 49 48 41 50 38 

FSLSRHigh32-16-16 44 29 44 40 49 50 49 44 42 40 

FSLSRHigh32-32-32 46 24 47 46 53 51 50 46 32 49 
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Table 5.6 continued 

FSLSRHigh64-16-16 47 40 49 47 51 52 52 48 43 43 

FSLSRHigh64-32-32 55 33 53 53 58 53 55 51 35 54 

FSLSRHigh64-64-64 67 53 62 65 67 57 68 60 49 64 

FSLSRLow16-16-16 20 16 31 27 24 15 23 33 25 23 

FSLSRLow32-16-16 21 11 33 29 27 16 25 36 19 25 

FSLSRLow32-32-32 24 6 36 35 31 18 27 37 14 28 

FSLSRLow64-16-16 29 27 38 38 30 20 29 39 22 26 

FSLSRLow64-32-32 31 19 39 43 35 24 30 43 16 30 

FSLSRLow64-64-64 40 47 46 57 44 29 41 50 26 34 

FLFRRLRRHigh16-16-16-16 48 28 56 50 54 59 59 57 53 44 

FLFRRLRRHigh32-32-16-16 49 14 57 58 60 58 56 63 33 52 

FLFRRLRRHigh32-32-32-32 57 17 63 63 63 63 61 65 34 60 

FLFRRLRRHigh64-64-16-16 65 45 68 68 68 66 66 68 40 58 

FLFRRLRRHigh64-64-32-32 69 46 70 69 70 70 69 69 48 69 

FLFRRLRRHigh64-64-64-64 71 61 71 71 71 71 71 71 59 71 

FLFRRLRRLow16-16-16-16 2 3 13 16 4 19 10 20 4 1 

FLFRRLRRLow32-32-16-16 4 1 16 21 8 21 11 23 1 2 

FLFRRLRRLow32-32-32-32 6 2 17 25 14 26 15 24 2 4 

FLFRRLRRLow64-64-16-16 9 4 21 31 17 25 17 29 3 3 

FLFRRLRRLow64-64-32-32 19 9 24 39 21 37 21 34 5 5 

FLFRRLRRLow64-64-64-64 25 34 29 52 25 46 28 40 6 8 

FSLSRBHigh16-16-16-16 52 31 60 51 55 62 60 58 57 45 

FSLSRBHigh32-16-16-16 51 22 59 56 57 60 58 61 45 50 

FSLSRBHigh32-32-32-32 60 23 64 64 64 67 62 66 39 63 

FSLSRBHigh64-16-16-16 63 43 66 62 62 68 64 64 56 55 

FSLSRBHigh64-32-32-16 62 30 65 66 66 65 63 67 37 59 

FSLSRBHigh64-64-64-64 72 63 72 72 72 72 72 72 63 72 

FSLSRBLow16-16-16-16 27 13 43 42 32 35 32 49 28 27 

FSLSRBLow32-16-16-16 30 7 45 48 34 36 33 52 24 29 

FSLSRBLow32-32-32-32 35 8 52 55 42 43 34 56 21 35 

FSLSRBLow64-16-16-16 34 18 51 54 39 38 35 55 23 31 

FSLSRBLow64-32-32-16 37 20 55 60 45 45 39 59 27 36 

FSLSRBLow64-64-64-64 61 56 69 70 59 48 51 70 31 47 
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b. Sensing target - Pedestrian (randomly-derived 
Sensing target - Vehicle (randomly-derived weights) 

weights) 

Figure 5.6: Heat Maps showing variations in outcome of random-derived weights 

 

 

   

     

   

    

 

5.5 Discussion of the MCDA Results 

This study applied a robust decision-making process to evaluate and rank various alternatives 

based on predefined criteria, including point density, blind spot regions, sensor cost, power 

consumption, ease of installation, sensor redundancy, and aesthetics. The results provide valuable 

insights into optimizing LiDAR placement for the detection of both vehicles and pedestrians. 
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The approach facilitated a comprehensive assessment, ensuring transparency in the 

decision-making process. Diverse metrics and criteria were used, and decision criteria were scaled 

using value functions derived through regression via the mid-value splitting technique. This 

transformation allowed meaningful comparisons despite variations in units associated with each 

criterion by bringing all criteria to a uniform scale. 

Through a questionnaire, weights were established to reflect the preferences of individuals 

familiar with the field. These weights capture the true importance of each criterion. Based on the 

collective judgment of the criteria by knowledgeable individuals, point density was deemed the 

most important criterion and aesthetics the least important. Following this, using equally weighted 

criteria, analysis was carried out. Then, using the equal weighting results as a baseline, the weights 

were changed randomly, and a sensitivity analysis was carried out. 

The MCDA results illustrate how different weighting combinations for these criteria influence 

LiDAR placement rankings. The integration of criteria weighting and scaled performance 

evaluations determined the ranking of the LiDAR placement alternatives. The sensitivity analysis, 

reflecting unbiased weight distributions across criteria, provided insights into the robustness of the 

findings. 

5.5.1 Discussion of MCDA Results Based on the Weighting Approach 

This section examines the MCDA results, with a specific focus on the weighting methodology 

used: the equal weighting approach and questionnaire-derived weighting. This discussion 

evaluates the strengths and limitations of these approaches. Through a detailed examination of the 

intricacies of the decision-making process, the goal is to offer insights into the robustness and 

practicality of the MCDA methodologies applied. The discussion covers key aspects of the 

methodologies, highlighting transparency, subjectivity, and the overall effectiveness of the 

approaches in generating outcomes that are contextually relevant for LiDAR placement 

alternatives. 

5.5.1 (a) Respondent-Assigned Weights 

This method involves gathering responses from stakeholders through a structured 

questionnaire to derive weights for various decision criteria, representing the collective decisions 
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of the respondents. A significant advantage of involving DMs lies in their ability to incorporate 

diverse perspectives, thus, ensuring a decision-making process that more accurately reflects real-

world considerations. By directly engaging DMs in the weight assignment process, this method 

effectively addresses the limitation encountered in approaches that fail to capture the preferences 

of DMs. The same holds true when using a questionnaire to derive scaling functions. Additionally, 

the transparency of the process provided clarity regarding how weights were assigned, thereby 

fostering a sense of trust among DMs. The structured nature of the questionnaire ensured a 

systematic approach to collecting information, reducing the likelihood of ambiguity or 

misinterpretation of DM preferences. 

However, certain challenges may arise despite these advantages. The effectiveness of the 

respondent-assigned method depends heavily on the quality and representativeness of the 

responses obtained. Incomplete or biased responses could introduce inaccuracies into the weight 

assignment process, potentially impacting the reliability of the results. Moreover, the time and 

effort required to administer and collect responses from DMs could impact the duration of the 

study. Depending on the complexity of the decision context and the number of stakeholders 

involved, the questionnaire process may demand a substantial investment of time and human 

resources. 

5.5.1 (b) Equal Weighting 

The equal weighting approach offers a combination of advantages and disadvantages. On the 

positive side, this method serves as a convenient and straightforward way to directly assign weights 

to criteria. The uniform distribution of weights across all criteria simplifies the decision-making 

process and can be particularly appealing in situations in which a quick assessment is required. 

However, despite the convenience and timesaving benefits, the approach overlooks the unique 

perspectives and preferences of DMs. This aspect has particular significance across diverse fields 

that encompass a wide array of stakeholders, ranging from engineers to consumers, who are the 

users of the AVs in this case. This limitation undermines the comprehensiveness required for 

decision-making in a field as multifaceted as transportation, in which the input of various 

stakeholders is pivotal for successful and sustainable outcomes. Moreover, the equal weighting 

method tends to oversimplify the decision-making process by treating all criteria as equally 

important. This tendency may not align with the intricacies of real-world scenarios in which certain 
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criteria carry greater weight due to their impact on the overall success or failure of the alternatives. 

The approach's inclination towards uniformity may lead to below-par decision outcomes, as it 

neglects the differing significance of the individual criteria. 

Nonetheless, the equal weighting method can be an effective starting point, providing a 

baseline for comparisons and highlighting areas in which further analysis or customization of 

weights may be necessary. It can be a practical approach in situations in which there are time 

constraints, and a rapid, basic assessment is sufficient. 

5.5.1 (c) Randomly Assigned Weights  

The sensitivity analysis, conducted through 10 iterations with randomly-generated weights 

representing scenarios 1 to 10, introduced a dynamic dimension to the decision-making process. 

This method not only provided flexibility in exploring different weight assignments but also 

offered a wide range of weight distributions. This variability allowed for the accommodation of 

the potential preferences of the DMs, even if those preferences were not obtained directly. The 

different weight combinations could inadvertently align with the diverse perspectives and priorities 

of stakeholders, contributing to a more inclusive decision analysis. 

Additionally, the approach aided in identifying the sensitivity of decision outcomes to 

changes in criteria weights. The wide range of weight distribution enhanced the adaptability of the 

sensitivity analysis, making it suitable for scenarios in which the precise determination of weights 

might be challenging. The exploration of a broad spectrum of weight possibilities ensured that the 

sensitivity analysis did not exclusively rely on a single set of predefined weights. Instead, it 

systematically considered various weight combinations, thereby accommodating uncertainties and 

variations in DM preferences. This approach provides the DMs with more insights into how 

changes in weightings can impact the overall results, thus, facilitating a more robust examination 

of the decision space. 

Additionally, the approach tends to be timesaving as the weights can be easily generated, 

without the complexities of obtaining them directly from DMs, making the decision-making 

process efficient. In scenarios in which time is an important factor, this streamlined approach 

allows DMs to quickly assess a variety of weight combinations, expediting the exploration of 

different scenarios without the need for extensive data collection from stakeholders. 
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Despite the advantages of this approach, it is also accompanied by limitations. Interpreting 

results from multiple iterations with random weights poses a challenge, given the lack of clear 

patterns or trends. This ambiguity may hinder the ability to draw meaningful conclusions, causing 

potential confusion among DMs. The absence of direct stakeholder involvement is also a notable 

drawback, potentially resulting in the omission of important perspectives important for AV sensor 

deployment and development. This deficiency in real-world expertise may limit the accuracy and 

applicability of sensitivity analysis results generating unrealistic scenarios that may not represent 

the importance of each criterion. 

For example, scenarios with randomly assigned higher weights for criteria such as ease of 

installation or aesthetics could significantly impact the decision results and deviating from the 

optimal outcome. This is noteworthy in the context of AVs, where safety is of the utmost 

importance. The misalignment with the actual preferences and priorities of DMs may lead to an 

analysis that inaccurately reflects the decision landscape. 

5.5.2 Discussion of MCDA Results Based on the Best Alternatives  

This section engages in a comprehensive analysis of the MCDA results that centers on the selected 

LiDAR placement alternatives across the approaches. The evaluation considers the three distinct 

perspectives: results from equal weighting, from randomized weights, and from respondent-

assigned weights. 

5.5.2 (a) MCDA Results Based on Respondent-Assigned Weights of the Criteria 

The weights provided by the respondents were utilized to ascertain the top-performing LiDAR 

placement. According to the weighting results from respondents, the criteria that earned high 

weights were point density, cost of sensor, blind spot regions, and sensor redundancy, thus, 

signifying the heightened importance of these specifications to the respondents. 

For the vehicle detection scenario, the recommended top-performing LiDAR placement 

was FLFRRLRRLow16-16-16-16. This configuration signifies the positioning of LiDAR sensors 

at the front left, front right, rear left, and rear right positions, with 16 channels for each sensor and 

installation at a lower elevation. This configuration aligns with the respondents' weightings by 

placing a significant emphasis on point density, blind spot regions, cost of sensor, and sensor 
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redundancy. The results of the configuration emphasizes a strategic focus on optimizing detection 

capabilities by maximizing point density, minimizing blind spots, managing the cost of sensors, 

and including redundant sensors. 

Regarding the pedestrian detection, the proposed LiDAR placement with the top overall 

score was the FLFRRLRRLow32-32-16-16. Notably, the front positions feature 32 channels each 

while the rear positions have 16 channels each, all positioned low. The slight disparity in the 

LiDAR placement alternatives suggests that a placement suitable for one scenario may not 

necessarily be optimal for another. This aligns with the findings of Hu et al. (2022a), indicating 

that different sensor placements are appropriate for distinct targets, such as vans, cars, box trucks, 

and cyclists. 

The recommended LiDAR configurations for both scenarios align with the criteria weights 

assigned by the survey respondents. The results indicate careful consideration of various criteria 

is required in determining the most effective LiDAR placement alternatives for both vehicle and 

pedestrian targets. 

5.5.2 (b) MCDA Results Based on Equal Weighting of the Criteria 

The equal weighting approach assumes the equal importance of all criteria, thus, providing a 

baseline for evaluating the LiDAR placement alternatives. In this scenario, the alternative labeled 

FBLow1616 emerged as the top-ranking choice, indicating that two sensors positioned both at the 

front and back of the roof, each with 16 channels at low elevation, achieve the highest overall 

score. This outcome was consistent for both vehicle and pedestrian detection scenarios. 

The assumption of equal importance across all criteria in the equal weighting approach can 

lead to unexpected results. While FBLow1616 excels in this scenario, the methodology overlooks 

variations in the significance of individual criteria. It is important to note that the weighting 

assignment in this case may not align with real-world priorities. For example, criteria such as blind 

spot areas, sensor cost, and power consumption may be of greater importance, especially in safety 

critical contexts, but are treated equivalently in the equal weighting approach. 
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5.5.2 (c) MCDA Results Based on Randomized Weights of the Criteria 

The sensitivity analysis conducted across multiple iterations reveals distinct weight distributions, 

making each scenario unique. In the initial iteration, criteria such as point density, cost of sensor, 

power consumption, sensor redundancy, and aesthetics held relatively higher and similar weights 

compared to the other criteria. In this context, FLFRRLRRLow16-16-16-16 emerged as the top-

performing LiDAR placement alternative for vehicle detection, while FBLow16-16 emerged as 

the top choice for pedestrian scenarios. 

Subsequent iterations also produced results influenced by the assigned weights. The second 

iteration mirrored the first regarding different outcomes for pedestrian and vehicle scenarios. The 

top-ranking placements for the two scenarios were FLFRRLRRLow32-32-16-16 for pedestrians 

and FLFRRLRRLow16-16-16-16 for vehicles. 

In the third iteration, higher weights were assigned to point density, cost of sensor, power 

consumption, blind spot regions, and ease of installation. The top-performing alternative for both 

vehicles and pedestrians, FLow16, highlighted the importance placed on the criteria, particularly 

power consumption, cost of sensor, blind spot region, and ease of installation, favoring the 

outcome of a single LiDAR sensor configuration. This setup, featuring LiDAR sensors at the front, 

excelled due to the importance of the criteria. 

The fourth iteration assigned significant weights to cost of sensor, power consumption, 

sensor redundancy, and ease of installation, which resulted in FHigh64 and FLow16 being selected 

as the top-performing alternatives for vehicles and pedestrians, respectively. The results for the 

fifth iteration favored FBLow16-16 for both vehicles and pedestrians. In the eighth scenario, the 

outcome favored a single LiDAR placement, as aesthetics were assigned a relatively high weight. 

The criteria weights played a substantial role, with respondents favoring sensors with 1–2 sensors. 

Finally, in scenarios in which cost of sensor, blind spot regions, and sensor redundancy had 

relatively higher weights, FLFRRLRRLow16-16-16-16 was selected for both vehicle and 

pedestrian scenarios. The absence of criteria such as aesthetics, ease of installation, or power 

consumption were weighted highly, thus, significantly influencing the decision. 

Throughout the different scenarios, varying weights influenced the decisions. Scenarios 

with higher weights for sensor redundancy resulted in configurations with more than one sensor. 

Aesthetic considerations favored single sensors, while cost-conscious scenarios leaned towards 

16-channel sensors. Those prioritizing blind spots opted for low-positioned sensors. All these 
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factors confirm the importance of using MCDA for LiDAR placement optimization, thereby 

allowing decisions to be made based on the most important criteria. 

5.6 Summary of Chapter 5 

Chapter 5 extensively discusses the results obtained through the MCDA framework. The chapter 

commences with an examination of the results derived from respondent-assigned weights, 

encompassing a summary of the weighting outcomes, scaling results, and the subsequent 

amalgamation of these findings. It explores how the varying weighting approaches – respondent-

assigned, equal weights, and randomly assigned weights – influence the MCDA results, thus, 

providing an understanding of their impact on decision outcomes. 

Additionally, the best alternatives occurred across different weighting approaches. Overall, 

Chapter 5 serves as a comprehensive exploration and analysis of the MCDA results, and the 

influence of different weighting strategies on decision-making within the study's framework. 
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CONCLUDING REMARKS 

6.1 Summary 

The exploration of LiDAR sensor placement optimization presented in this thesis, provided 

insights into decision-making regarding LiDAR placement and its broader applications within 

autonomous vehicle (AV) technology. MCDA has been utilized in various aspects of AV 

technology adoption (Anastasiadou et al., 2021; Babaei et al., 2023; Dubljevic et al., 2021; A. Raj 

et al., 2020). However, this work is a unique study explicitly focused on LiDAR placement. 

The thesis encompasses a combination of both single and multi-LiDAR configurations. 

Single LiDAR placements offer cost-effective means of environmental information collection and 

simplified integration, avoiding the complexities associated with multi-LiDAR configurations. 

However, their limitations, including potential blind spots and impact on object detection, 

necessitate the exploration of multiple LiDAR configurations to achieve comprehensive 

environment perception, albeit with challenges in integration, deployment costs, and data 

processing. The thesis investigates both single-LiDAR and multi-LiDAR setups. 

In LiDAR placement within AVs, specific criteria are crucial for ensuring safety and 

operational efficiency. Foremost among these is the necessity for sensor redundancy, which is 

pivotal in mitigating the risks of sensor failure and enhancing the overall reliability of the AV's 

perception system. Redundancy ensures continuity in perceiving the environment accurately, even 

in the event of sensor malfunction. The aspect of point density is equally critical, which is 

instrumental in enabling the LiDAR system to capture and process detailed environmental data 

effectively. This density directly contributes to precise object recognition and tracking, which is 

indispensable for the safe navigation of AVs across diverse driving scenarios. While factors like 

minimizing blind spots enhance overall safety, they may be considered as "nice-to-haves" 

compared to sensor redundancy and point density, which are "must-haves," particularly 

considering the potential use of other sensors to address blind spot minimization. Criteria such as 

aesthetics, ease of installation, cost of sensors, and power consumption remain relevant, but their 

importance might vary. Aesthetics, for example, could influence public acceptance and adoption 

of AVs, yet safety and performance take precedence in AV design considerations. Similarly, while 
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ease of installation and cost play essential roles in operational efficiency, their significance might 

be overshadowed by factors directly impacting safety and system reliability. 

In essence, the critical criteria for LiDAR placement in AVs center around ensuring robust 

safety measures through redundancy and high point density, with secondary considerations 

encompassing factors like aesthetics, installation ease, cost, and power consumption, provided they 

do not compromise the primary objectives of safety and functionality. 

6.2 Conclusions 

In as much as the study primarily concentrates on LiDAR sensors, it is advisable to integrate these 

sensors with others to optimize the perception system. This integration can address LiDAR 

limitations by enhancing the overall capabilities of autonomous systems and ensuring robust 

performance. The sensor fusion of LiDAR with complementary sensors will foster a superior 

performance, leveraging the diverse strengths of each sensor to create a more comprehensive 

environmental perception for AVs and ADAS. 

The findings in this thesis provide insights into optimal LiDAR sensor selection based on 

assigned criteria preferences and their importance. The study progresses from equal weighting of 

criteria to sensitivity analysis, ultimately employing weights from respondents, assigning ranks 

and scores to alternatives, and identifying the performance scores of the LiDAR placement 

alternatives. This thesis's methodology showcases a systematic approach to the complexities of 

LiDAR sensor placement, emphasizing criterion significance and enabling robust comparison 

among alternatives. The knowledge offered, and methodologies developed in the thesis can 

contribute significantly to the field, serving as a foundational resource for future studies in sensor 

placement within AVs and smart city infrastructure in general. 

6.3 Study Limitations 

The study limitations are as follows: 

1) Choice of Sensor: The scope of the thesis does not include sensor fusion with other 

technologies, potentially overlooking the synergistic advantages of integrating LiDAR 

with complementary sensor systems. 
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2) Assumptions: Certain assumptions made regarding the ratings of decision criteria, like ease 

of installation, might affect the precision of results and their real-world relevance 

3) External Factors and Real-world Constraints: The thesis did not comprehensively consider 

real-world constraints, such as regulatory limitations, technological constraints, or 

unforeseen environmental dynamics, potentially impacting the efficacy of the LiDAR 

placement strategy. 

4) Decision Criteria: The selected evaluation metrics might only encompass part of the 

spectrum of relevant performance criteria, potentially deviating from real-world AV 

performance needs. 

5) Sensitivity to Number of Respondents: A more extensive and diverse respondent pool 

might offer varied perspectives, affecting the generalizability of findings in LiDAR 

placement within Autonomous Vehicles (AVs), thereby impacting the evaluation and 

ranking of LiDAR configurations. 

6) Adoption of other sensors: The cost factor associated with LiDAR may lead to alternative 

solutions, such as utilizing cheaper cameras that can be placed extensively throughout the 

vehicle. This cost consideration might prompt some decision makers to opt for camera-

based systems over LiDAR due to affordability, potentially impacting the widespread 

adoption of LiDAR technology in AVs. 

7) Human Factors and User Acceptance: Human-centric considerations regarding user 

acceptance of LiDAR placements within AV systems are not addressed extensively. 

8) Temporal Considerations: Rapid advancements in AV technology, particularly in LiDAR 

sensors, might render specific findings outdated or less relevant over time as sensor 

technologies evolve. 

6.4 Future Work 

Future work in this area of research, may include: 

1) Collaboration with Industry Stakeholders: Engage automotive manufacturers, LiDAR 

sensor suppliers, and AV developers to access real-world data and expertise, enhancing 

research outcomes. 
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2) Survey Respondents: Future surveys should prioritize individuals with extensive 

experience in LiDAR sensor technology. This targeted selection aims to better capture 

nuanced perspectives and expertise, potentially reducing response variation and enhancing 

consistency. 

3) User-Centric Input: Incorporate user preferences and real-world scenarios to refine MCDA 

criteria and weights, ensuring alignment with human values. 

4) Dynamic LiDAR Configurations: Explore adaptive MCDA models considering real-time 

data to accommodate changing driving scenarios effectively. 

5) Machine Learning Integration: Investigate the integration of machine learning for accurate 

and adaptable LiDAR placement decisions, particularly in complex datasets. 

6) Cost-Benefit Analysis and Scalability: Conduct a comprehensive cost-benefit analysis to 

evaluate the impact of optimized LiDAR placements on overall AV costs. 

7) Scalability: Explore the scalability of the configurations across diverse vehicle types, from 

passenger cars to commercial trucks, to cater to a broad spectrum of transportation needs. 

8) Regulatory and Safety Compliance: Address regulatory and safety considerations to ensure 

optimized LiDAR configurations meet the necessary standards for robust implementation 

in AVs. 

Continuous research in LiDAR placement has immense potential to revolutionize transportation 

and mobility, contributing to the development of safer, more efficient, and user-centered AVs and 

ADAS systems. These efforts are expected to shape the future landscape of transportation 

technology. This research is a valuable reference point in exploring MCDA for LiDAR placement 

optimization in the context of AVs. The findings provide insights into the selection of LiDAR 

placement for AVs. 
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APPENDIX A. SURVEYS 

Survey Questionnaire: LiDAR Placement using a Multi Criteria Analysis Approach 

Researcher: Zainab Saka 

Principal Investigator: Prof. Samuel Labi 

Introduction 

Multi-Criteria Analysis (MCA) is a framework that facilitates a systematic and structured approach 

for assessing the relative importance of different performance measures (PM) and for scaling them 

in order to reduce the PMs to commensurate units. It is needed to collect data on perceptions of 

LIDAR placement-related PMs including point density, sensor cost, aesthetics, and installation 

simplicity. The relative weights and scaled functions of these PMs will subsequently be collated 

and used in a multi-criteria analysis framework. 

Section A: Direct Weighting Approach 

Please allocate weight to each criterion based on your level of preference so that the total adds 

up to 100. A higher weight signifies greater importance. 

Criteria Weight 

Point Density 

Cost of Sensor 

Power Consumption 

Blindspot Area 

Sensor Redundancy 

Aesthetics 

Ease of Installation 

Total 100 

Section B: Scaling 

The purpose of this section is to get your input regarding the performance of each criterion. The 

input you provide will be used to create a unified scale for comparison since the performance 

criteria are originally measured using different units. 

Please mark three distinct points by drawing 3 lines to the corresponding X25, X50 and X75 

representing your level of preference or value associated to the criterion. 
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100 

50 

25 

0 

75 

Point 

Density 

(points/m3) 

≤40 ≥800 

Value 

(V) 

POINT DENSITY 

100 

50 

25 

0 

75 

Cost ($) 
≥50,000 ≤4,500 

Value 

(V) 

COST OF SENSOR 
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50 

25 
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75 

Power 

Consumption 

(W) ≥80 ≤8 

Value 

(V) 

POWER CONSUMPTION 

100 

50 

25 
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75 

Blindspot 

region (rating) 

≥120 ≤10 

Value 

(V) 

BLINDSPOT REGION 
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100 

50 

25 

0 

75 

Sensor 

Redundancy 
≤0 ≥100 

Value 

(V) 

SENSOR REDUNDANCY 
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AESTHETICS 

Because Aesthetics is subjective, please assign values of 0, 25, 50, 75 and 100 for each of them 

with 100 signifying your most favorable and 0 your least desirable. 

Set V (A =) = 0 and V (A = ) = 100 

Aesthetics (SR) Value 

No Sensors 

1-2 sensors elevated low on the roof 

1-2 sensors elevated high on the roof 

3-4 sensors elevated low on the roof 

3-4 sensors elevated high on the roof 

100 

50 

25 

0 

75 

Ease of 

Installation 
≥4 ≤0 

Value 

(V) 

EASE OF INSTALLATION 

Thank you for your time! 
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APPENDIX B. RECRUITMENT LETTER 

LiDAR Placement Optimization using a Multi-Criteria Approach 

Zainab Saka (Graduate Student) / zsaka@purdue.edu 

Professor Samuel Labi (Principal Investigator) / labi@purdue.edu 

Subject: Requesting Your Participation in LiDAR Placement Research using a Multi Criteria 

Analysis Approach. 

IRB Protocol Number: #IRB-2023-1570 

Dear Student, 

I am reaching out to invite you to participate in my research. This study focuses on LiDAR 

placement analysis and your input is highly valuable in helping us address our study 

objectives. 

Brief Description: 

Most road crashes and fatalities result from human error. Consequently, companies are turning 

to Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AVs) to enhance 

safety. For this, the placement of the LIDAR sensor (which is integral to ADAS and AVs), 

must be analyzed carefully. This research has developed and implemented a methodology for 

optimal LiDAR placement using a multi-criteria analysis approach. In this approach, the issues 

of relative weighting and scaling of the placement criteria (performance measures) are critical. 

This survey is intended to generate user perspectives that will help address these issues. 

Survey Objectives: 

• To collect road users' perspectives to determine the weighting of LiDAR placement 

criteria (performance measures). 

• To collect road users' perspectives to determine the scaling of LiDAR placement 

criteria (performance measures). 

Estimated Completion Time: 

10-15 minutes 
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Your Privacy and Voluntary Participation: 

We would like to reassure you that your participation in this research is entirely voluntary. 

You are under no obligation to take part, and you have the freedom to choose whether or not 

to participate. Should you decide to participate, you are welcome to withdraw from the study 

at any point without any consequences. This survey is conducted under protocol #IRB-2023-

1570 and adheres to stringent ethical standards. It does not collect any personal or 

identifiable information from respondents. The insights gained will be instrumental in 

LiDAR placement analysis for Autonomous Vehicles, and this will ultimately benefit road 

users, industry, and society at large. 

Please feel free to contact us if you have any questions or suggestions. Thank you! 
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	ABSTRACT 
	Most road fatalities are caused by human error. To help mitigate this issue and enhance overall transportation safety, companies are turning to advanced driver assistance systems and autonomous vehicle development. Perception, a key module of these systems, mostly uses light detection and ranging (LiDAR) sensors and enables object detection and environmental mapping. Extensive research on the use of LiDAR for autonomous driving has been documented in the literature. Yet still, several researchers and practi
	 INTRODUCTION 
	1.1 Study Background 
	Safety is an essential aspect of any transportation system and continues to be a critical issue in current times. Road traffic accidents lead to significant loss of life and cause injuries to millions of people annually. According to a recent technical report published by the National Highway Traffic Safety Administration (NHTSA), the number of people killed in traffic accidents involving motor vehicles in 2021 was 10.5% higher than the number recorded in 2020. The vast majority of fatalities are caused by 
	In addition to safety concerns, transportation systems globally face significant challenges related to congestion. Rapid urbanization and increasing populations have led to a surge in the number of vehicles on the roads, which has resulted in traffic congestion predominantly in urban areas (USDOT, 2022). Such congestion not only causes commuter delays and frustration but also contributes to increased fuel consumption and air pollution (FHWA, 2005). 
	As travel amounts increase, the existing infrastructure often struggles to cope with this increase in demand. It is often the case that existing roads were designed to accommodate contemporaneous traffic volumes. This leads to insufficient capacity, which hinders efficient transportation operations and increases the risk of accidents (US EPA, 2022).  
	Transportation is also a major contributor to greenhouse gas emissions, air pollution, and climate change. Fossil fuel-powered vehicles emit carbon dioxide and other harmful pollutants that have a significant impact on air quality and contribute to global warming. The need to reduce the transportation sector's environmental footprint is a pressing concern for both policymakers and the public (US EPA, 2015). 
	Nonetheless, access to reliable and efficient transportation is crucial for socioeconomic development and individual well-being. However, certain populations, such as low-income communities and people with disabilities, often face challenges accessing transportation services. Lack of transportation options can limit access to education, employment, healthcare, and essential goods and services, thus exacerbating existing social and economic disparities (Morency et al., 2012).  
	As a result, transportation engineers, stakeholders, and policy makers continue to seek solutions to persistent problems concerning road safety, congestion, environmental sustainability, and equity. They might also pave the way for a more inclusive and equitable transportation system, ensuring that all individuals, regardless of their backgrounds or abilities, have access to vital services and opportunities. 
	1.2 Study Motivation 
	The automotive industry, an important stakeholder in transportation development, has been working on a variety of advanced driver assistance systems (ADAS) to address transportation safety and mobility concerns. ADAS integrates diverse subsystems within a vehicle to facilitate driver assistance through the implementation of various functions. Contemporary automotive technology has allowed the integration of particular features (such as blind spot recognition, lane departure warnings, adaptive cruise control
	As defined by the Society for Automotive Engineers (SAE), vehicles that have no ADAS are considered level 0 vehicles, whereas vehicles that have some form of driver assistance are considered to be level 1 vehicles (SAE, 2021; Figure 1.1).  
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	Figure 1.1: Autonomous Driving Levels according to SAE (SAE, 2021) 
	Accordingly, the progression from one level of autonomy to the next necessitates additional study and development in a variety of fields, including sensor technologies (Kukkala et al., 2018). LiDAR is an important sensor in ADAS and is crucial for the development of autonomous driving systems and pedestrian and passenger safety. The vehicle’s onboard computer uses data from the LiDAR sensor to make real-time judgments to safely navigate the roadway. Any error or malfunction in the LiDAR sensors could result
	As the development of autonomous vehicles (AVs) progresses, considerable difficulties in the technology and regulations related to testing and deployment have yet to be overcome. Even though AVs have the potential to improve road safety by eliminating human driving error (Curto et al., 2021; Guo et al., 2021; Shetty et al., 2021), it is extremely important to ensure that they are thoroughly tested and validated before such vehicles are allowed on public roads. This testing also includes evaluating the perfo
	To this end, this thesis is motivated by the potential benefits that AVs could contribute to road users and society in general. First, AVs could transform transportation by drastically reducing the number of accidents and fatalities that occur on the roads. Combs et al. (2019) confirmed that AVs could minimize the number of pedestrian deaths and injuries. Human error has been identified as one of the leading causes of accidents (NHTSA, 2020), and AVs can remove or reduce the element of human error (NHTSA, 2
	Furthermore, AVs could yield significant benefits for a broad spectrum of travelers and road users in terms of health and overall quality of life. AVs facilitate travel for people who are unable to drive a car for reasons such as old age or physical disability. In addition, passengers in AVs are also able to engage in other activities during travel, adding to the convenience and enjoyment of their journeys. As a result, AVs will have a beneficial impact on the overall quality of life of many people (Russell
	Equally, the value of travel time may change in the prospective era of AVs. Zhong et al. (2020) investigated how consumers valued their journey time when traveling in AVs and sharing AVs compared to traditional automobiles. According to their findings, AVs and sharing AVs 
	potentially lowered the value of commuting travel time less when compared to human-driven vehicles (HDVs). The impact on passengers was shown to be less substantial than the impact on drivers. The study also found that the effect on the value of travel time for drivers differed between cities, suburbs, and rural areas, with the most significant drop occurring in the suburbs. 
	Finally, overall, AVs could provide significant advantages and economic benefits for the U.S. economy of up to approximately US$450 billion per year (Fagnant & Kockelman, 2015). This immense expected benefit will be attributable to a reduction in the number of accidents, a reduction in the amount of parking space required (Aria et al., 2016; Milakis et al., 2017; Wu et al., 2021), a reduction in traffic congestion, and increased passenger and freight mobility. Figure 1.2 presents the possibilities of AVs in
	 
	Figure 1.2: Promises of AVs 
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	Although AVs are expected to yield all these potential benefits, there are still many issues that need to be resolved before they reach full deployment. One of the most critical problems is to ensure that the AV sensing technology (such as LiDAR) is reliable. Other obstacles include 
	inadequate infrastructure, lack of user trust, immature or untested automated driving technology, uncertain demand, and lagging policy and regulations (Labi & Sinha, 2022). However, irrespective of these difficulties, the future of AVs appears promising. In the coming years, AV technology is expected to continue improving. If this improvement occurs, it may expedite the deployment of AVs on public roads. 
	1.3 Study Objectives 
	The continued development and operational success of Autonomous Vehicles (AVs) will depend on their ability to perform efficiently and safely. Despite significant progress in research towards improving various aspects of AV development, there still remain critical issues that need to be addressed. Therefore, further research is required to identify and tackle these issues, with the ultimate goal of enhancing AV performance. 
	One critical component for the development of AVs is obstacle detection and mapping of the roadway environment. Companies use different approaches for this, including placement of LiDAR sensors on their AVs. However, the impact of these placements on AV perception is not well understood. This inadequate insight poses a significant challenge to the development of AVs and ultimately, impairs safe deployment of AVs on roads. 
	For that reason, this research focuses on LiDAR placement optimization using a multi- criteria decision analysis approach. As such, the objectives of this thesis consist of the following: 
	1)
	1)
	1)
	 To conduct a comprehensive review of different sensor technologies for AVs, including LiDAR, radar, and cameras. This review is expected to facilitate identification of the strengths and weaknesses of each technology and their potential for improving AV performance. 

	2)
	2)
	 To perform an MCDA to systematically evaluate and compare the performance of alternative LiDAR placement configurations.  

	3)
	3)
	 To investigate the effects of different weights on the analysis outcome. 


	The findings of this study are expected to contribute to a better understanding of the impacts of AV LiDAR placement. This knowledge will prove invaluable in the development of more reliable AVs and ultimately contribute to increased road safety.  
	This research will also help enhance vehicle reliability and provide engineers with the information needed to design more robust LiDAR systems or develop robust algorithms to ensure 
	the reliable operation and better performance of AVs. Doing so will ultimately pave the way for the widespread adoption of AVs, making transportation safer, more efficient, and more convenient for all. 
	1.4 Scope of the Study 
	1) Sensor type: In contrast to the array of sensors used in AVs, including cameras, radar, inertial measurement units (IMUs), ultrasonic sensors, and GPS. However, this thesis focuses on LiDAR technology. The rationale for this focus lies in the unique capabilities and advantages offered by LiDAR in terms of high-precision 3D mapping, environmental perception, and obstacle detection.  
	2) Simulation environment: To facilitate the collection of pertinent data and streamline the evaluation process, the research leverages the Car Learning to Act (CARLA) simulation environment. CARLA provides a virtual platform that is invaluable for assessing LiDAR placement. This approach offers several advantages, including cost-effectiveness and lower resource demands.  
	3) Placement location and number: Of all the candidate locations for LiDAR sensor placement and the number of sensors that can be used, this thesis focuses on the vehicle roof of the vehicle as a key area for the sensor deployment and a maximum number of four sensors. 
	 LITERATURE REVIEW 
	2.1 AV Sensor Types and Characteristics 
	 Sensor technology enables AVs to sense and understand their surroundings, thus, enabling safe roadway navigation and decision-making. A variety of unique sensor types (Figure 2.1), each with a unique set of abilities and functions, are used by AVs. 
	Figure
	Figure 2.1: Camera, Ultrasonic Sensor, LiDAR, and Radar Sensor (Du, 2023) 
	AVs rely on sensing technologies to acquire essential information on the driving environment, ensuring safe navigation, obstacle detection, and response. Sensors are devices that play a fundamental role in detecting events or alterations in their environment and subsequently translating these observations into measurable digital signals. They can be broadly categorized into active and passive sensors (Javaid et al., 2021). Active sensors necessitate an external power source for their operation, whereas pass
	Sensors can be further classified based on their underlying detection mechanisms, encompassing diverse fields such as electrical, biological, chemical, and radioactive detection methods. This categorization extends to conversion phenomena, including thermoelectrical, photoelectrical, electrochemical, electromagnetic, and thermo-optic processes (Sinha, 2017). 
	Additionally, sensors can be categorized as exteroceptive or proprioceptive (Figure 2.2). Exteroceptive sensors primarily focus on environmental perception and range determination, while proprioceptive sensors are specifically engineered for internal measurements, such as assessing 
	forces, angular rates, and other internal dynamics (Woo et al., 2018). Essentially, exteroceptive sensors are analogous to the eyes and ears of a vehicle, allowing it to gather information from the external environment. These sensors detect various stimuli such as distance, light, sound, and objects such as pedestrians or other vehicles. They enable vehicles to interpret this information to create a comprehensive understanding of their surroundings and informing decisions based on the data received (Ortiz e
	In contrast, proprioceptive sensors more closely resemble the vehicle's internal senses. They actively monitor and assess changes occurring within the vehicle's internal systems, including motor performance, battery status, and other vital components. These sensors play a critical role in providing essential data for determining fluid levels and acceleration and are able to measure internal dynamics such as vehicle rotation, individual wheel speeds, and lateral acceleration. This detailed information contri
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	Figure 2.2: Sensors used in Autonomous Driving (adapted from Woo et al., (2018)). 
	2.1.1 Cameras 
	Cameras play a vital role in AV sensing. They are classified as passive sensors because they do not emit energy actively. Rather, they rely on naturally occurring electromagnetic radiation (such as light) to operate. Therefore, they operate in the same spectrum as human sight, making it easy for the vehicle to interpret visual information in its environment that helps in making decisions (Yeong et al., 2021). Cameras are useful for detecting and classifying road obstacles. Cameras can 
	also be equipped with image recognition algorithms to track and identify objects such as pedestrians, road markings, and other obstacles (Campbell et al., 2018). 
	Different types of cameras are currently being used in AV deployment. RGB cameras, which are commonly used for day-to-day image acquisition and videotaping, are mounted on vehicles to capture a 360° view of the road environment (Cazzato et al., 2020). These cameras provide information that can be used with information from radar and LiDAR to identify detected objects. Cameras also provide depth information (Gross & Webster, 2021) when they are strategically installed in conjunction with other cameras. Such 
	Other camera types, such as infrared cameras (also known as thermal cameras) have superior effectiveness compared to RGB cameras. They excel in low-light conditions (Parekh et al., 2022), as they can detect heat signatures that RGB cameras are unable to capture. Infrared cameras also offer several benefits including in-depth estimation, object identification, cost-effectiveness compared to other sensors, and optimal performance when used in conjunction with other sensor technologies. Hence, infrared cameras
	2.1.2 LiDAR 
	2.1.2 (a) Description 
	LiDAR sensors are considered active sensors. They emit energy in the form of laser light and then measure the time that it takes for the light to bounce back from the sensing target to the sensor (Nobis et al., 2019). This process helps measure the distance between the sensor and the object, which allows the vehicle to understand its surroundings and thus make informed operational decisions as it builds up a 3D detailed map of the environment (Arikumar et al., 2022).  
	LiDAR is a key sensor for perceiving the environment and detecting road boundaries and lane markings (Khayyam et al., 2020); hence, it has been critical in autonomous driving 
	development. As previously mentioned, the price of LiDAR has depreciated over the years, which has opened up more opportunities for research. For example, in 2005, Velodyne, a leading LiDAR manufacturer, introduced its first high resolution LiDAR sensor known as the HDL-64E, which cost around US$75,000. In 2012, the company released another LiDAR, the HDL-32E version, which was smaller and lighter than the HDL-64E and cost US$30,000. In comparison to the HDL-64E, the HDL-32E was a spinning 3D laser scanner 
	The LiDAR industry has experienced tremendous adjustments and advances over time. Many newer versions of sensors have been introduced with upgraded features and capabilities to suit specific applications. For example, some sensors are designed for use in specific environments such as urban areas, while others are intended for mapping, surveying, security purposes, and other related applications. With advances in technology, the sensors are becoming more compact, lightweight, and efficient while also becomin
	2.1.2 (b) Specifications Criteria 
	LiDAR sensors can be selected based on specifications (Figure 2.3) that depend on the application context. Specification criteria include point density, scan pattern and rate, accuracy and precision, field of view, range, and resolution. These criteria are further described in the following figure: 
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	Figure 2.3: LiDAR Sensor Specifications Criteria. 
	2.1.2 (b.1) Point Cloud Density 
	Point cloud density refers to the number of laser points measured per unit area or volume within a specified region (Yoo et al., 2010). The sensor performance can be evaluated depending on the density of the point clouds as compared to another sensor with different specifications. The higher the density, the more detailed the representation of the scanned object. However, a disadvantage may be the large file storage requirements and the excessive processing time this method requires. In addition, in some ap
	2.1.2 (b.2) Scan Pattern 
	Scan patterns represent the distinctive ways in which sensors emit pulses to measure the surrounding area. Different LiDAR sensors have different scanning patterns, which vary depending on the specific application or requirement (Raj et al., 2020). For example, some LiDAR sensors use a rotating prism or mirror to scan the laser beams in both vertical and horizontal directions, creating a 3D point cloud of the environment (Choi & Kim, 2020). Other sensors may 
	use multiple fixed beams or a combination of rotating and fixed beams to create a more detailed 3D map (Yeong et al., 2021). The scanning patterns used by LiDAR sensors vary widely depending on their design and intended use. LiDAR sensors can be customized to use specific scanning patterns to meet the needs of different applications, such as robotics, AVs, and industrial automation (Li et al., 2022). 
	2.1.2 (b.3) Field of View (FOV) 
	FOV is the maximum angular range within which the sensor can see and measure objects in its surroundings. In the case of 2D LiDAR, the FOV is confined to the horizontal plane alone, while it encompasses both the horizontal and vertical planes for 3D scanners (Raj et al., 2020). The FOV of a LiDAR sensor depends on the number of beams emitted and the physical design of the sensor (Kibii et al., 2022). For example, Velodyne LiDAR provides sensors with different numbers of beams, such as Velodyne 16, 32, and 1
	2.1.2 (b.4) Accuracy and Precision 
	Accuracy and precision indicate the proximity of the obtained LiDAR measurement to the ground truth (Kim et al., 2022). Ground truth is the actual measurements or observations of a phenomenon that serves as a benchmark for evaluating the accuracy of data obtained from other sources (Yan et al., 2018). Accuracy can be in terms of the range, the angles or in a 3D space. Precision refers to the closeness of repeated measurements and can be evaluated in terms of the range, angle, or spatial precision. 
	Figure 2.4 illustrates the accuracy-precision relationship. The first circle shows tightly clustered points centered around the target, thus, demonstrating high accuracy and precision. Conversely, the second circle displays scattered points, neither close to the target nor tightly grouped, thereby indicating low accuracy and precision. In the third circle, tightly clustered points, though not centered around the target, signify high precision but low accuracy. Finally, the fourth circle depicts widely dispe
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	Figure 2.4: Accuracy and Precision 
	2.1.2 (b.5) Range  
	The range of a LiDAR sensor is the distance to which it can sense an object (Choi, 2016). This varies depending on the application of the sensor, such as for self-driving cars or mapping. LiDAR sensors can be classified as short-range and long-range sensors. Long-range LiDAR sensors can detect, locate, and identify objects as far from the vehicle as 250 meters or more (Campbell et al., 2018). They are ideal for identifying pedestrians, emergency braking, and other situations. Short-range LiDAR, in contrast,
	2.1.2 (b.6) Resolution 
	Resolution refers to the level of detail that can be perceived in the point cloud (Anderson et al., 2006). This level can be impacted by factors such as the number of laser pulses that are emitted in a unit area, the wavelength of the light, or the angular FOV. The resolution of a LiDAR sensor has an effect on the way it measures distances to objects. A higher resolution is more reliable, as it produces a more detailed and finer representation of objects (Azim & Aycard, 2012; Imad et al., 2021). There is a 
	2.1.2 (b.7) Scan Rate 
	The scan rate is the frequency at which the LiDAR sensor emits and receives pulses. The scan rate determines the angular resolution of the system (Warren, 2019). The scan rate of a LiDAR sensor 
	varies depending on the sensor's particular design and intended use. Typically, when the scan rate is high, the point cloud density also produces a detailed 3D representation of the target area (Benedek et al., 2021). A higher scan rate is an important specification for AVs because it provides an indication of the extent to which the sensor captures detailed information of the target area, such as the location and movement of other vehicles, pedestrians, and objects in real-time (Raj et al., 2020). This inf
	2.1.3 Radar 
	Radar sensors work similarly to LiDAR in that they also emit a signal towards objects and calculate the distance to the object (Bilik, 2023). However, radar uses radio waves and works by emitting radio signals in a distinctive pattern. The time taken for the signal to bounce back from the object is measured and, together with the speed of light, is used to calculate distances. There is some similarity between radar and LiDAR, however, key differences also exist.  
	Radar has a long operational range (Bilik et al., 2019) and works well even in rain, fog, or snow because it is an all-weather sensor. In addition, the price is significantly lower than LiDAR (Campbell et al., 2018; Kim et al., 2019). Radars can be classified as long, medium, and short range. The long-range radars operate at 77 GHz frequency, while short- to medium-range radar sensors operate at 24 GHZ and 76 GHz frequencies, respectively (Kocić et al., 2018). 
	2.1.4 Inertial Measurement Unit 
	The IMU is a key sensor for measuring and estimating an AV’s orientation, acceleration, and angular velocity. The IMUs provide information related to the vehicle’s position and orientation. They typically consist of a combination of accelerometers, magnetometers, and gyroscopes (Kim et al., 2021), which work together to measure aspects of the vehicle’s motion. The gyroscopes measure the angular velocity of the vehicle around each of its three axes, while the accelerometers measure the linear acceleration of
	2.1.5 Ultrasonic Sensors 
	An ultrasonic sensor uses sound waves typically in the range of 20K Hz to 40 kHz (Rosique et al., 2019) to calculate distances to objects. It works by transmitting ultrasonic sound waves and using the time they take to return along with the speed of sound waves (331 m/s) to calculate the range to the object (Reddy Cenkeramaddi et al., 2020). Ultrasonic sensors are typically used in conjunction with other sensors for close-range applications, including parking assistance.  
	2.1.6 Global Positioning System 
	GPS is a global navigation satellite system that provides positional information. Other such systems include GLONASS, BeiDou, Galileo, QZSS, and NavIC. Of these, GPS is the most commonly used for a variety of applications (Rosique et al., 2019).   
	GPS was originally developed for military purposes before it was eventually widely adopted for civilian use. Some of the applications include mapping, agriculture, construction, and autonomous driving navigation (Awange & Kiema, 2019). In AV use, GPS plays a critical role in providing information on the position required to navigate the vehicle to its desired destination by using either pre-planned route information or a modified route based on prevailing road conditions such as traffic. However, GPS is sus
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	Figure 2.5: Sensor Technology applications in ADAS and Autonomous Driving. 
	2.2 Improving Perception in AVs Using Sensors  
	Several criteria have been considered in AV studies and AV enhancement. For example, in addition to sensors that enable the AV to see, one approach also allows the AV hear through an audio classification network based on a deep learning framework (Walden et al., 2022). The results of Walden et al.’s study indicate the potential their approach has to improve safety and operational efficiency in various scenarios. For example, their study suggests that AVs can be made capable of recognizing audio cues, such a
	Individual sensor types or a combination of sensor types can also be chosen in a way that acknowledges the limitations of specific sensor types in adverse weather conditions. For example, cameras and LiDAR work together very effectively in adverse weather conditions: Cameras excel at capturing visual features, while LiDAR provides precise depth information and excels at detecting speed and distance (Chen et al., 2017; Vargas et al., 2021).  
	The fusion of radar and cameras also improves perception (Nobis et al., 2019), as the radar sensor’s ability to penetrate through fog, snow, or rain compensates for any limitations of the camera sensor (Pavitha et al., 2021). Furthermore, the combination of radar, camera, and LiDAR (Ahrabian et al., 2019) maximizes the strengths and overcomes the limitations of each individual sensor type. Figure 2.6 identifies where the different sensors could be placed and how they could complement each other.  
	The red areas show the LiDAR coverage, the blue areas indicate where short-/medium-range LiDAR have coverage, the green areas are covered by long-range radar, and the gray areas show the camera coverage. 
	Vehicle to infrastructure (V2I) communication is another resource that is being leveraged as a source of supplementary data to improve AV perception. This improvement is achieved through the development of an environmental perception framework that relies on point voxel region-based convolutional neural networks to enhance the AV's perception capabilities at road intersections. Information from roadside sensors is transferred to the AV to support its perception capabilities (Duan et al., 2021).  
	There has also been some progress towards improving AV perception by considering the influence of sensor placement on AVs. It is important that sensors are optimally placed to enable 
	the AV to achieve the best understanding and perception of its surroundings (Dybedal & Hovland, 2017a; Kim & Park, 2020a; Liu et al., 2019) 
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	Figure 2.6: Sensor coverage areas (redrawn from Ng (2021)).  
	2.2.1 Perception as one of Multiple AV Modules  
	In a manner analogous to human drivers, AVs are equipped with functionalities that enable them to perceive, analyze, and execute tasks. The AV module is conceptually divided into three core components: planning, perception, and control (Claussmann, 2019). The perception component serves as the sensory system of the AV, facilitating environmental awareness, self-localization, and object recognition.  
	The planning element corresponds to the cognitive component, where the AV processes information obtained from perception to formulate decisions aimed at safely guiding the vehicle to its intended destination while simultaneously navigating around identified obstacles. Finally, the control category represents the facet through which the AV translates these formulated intentions into actions, thus, yielding the desired operational outcomes (Pendleton et al., 2017). 
	Perception constitutes a pivotal aspect for autonomous driving technology. This component entails the acquisition of data through environmental perception and localization, which represent two distinct subcategories within the field of perception. The gathered information is subsequently processed to enable the AV to comprehend the road conditions, interpret behavioral cues, and discern various obstacles in its immediate vicinity (Emzivat et al., 2018). 
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	Figure 2.7: Planning, Perception and Control Systems (modified from Claussmann, (2019)) 
	2.2.2 Environmental Perception and Localization 
	Environmental perception and localization are critical aspects of autonomous driving. Therefore, it is ideal that they are carried out precisely. For this reason, the strengths and limitations of available sensor types must be carefully considered (Pavitha et al., 2021). Environmental perception can be achieved using LiDAR, radar, ultrasonic sensors, cameras, or a combination. First, the AV perceives the environment by acquiring information about the driving scene and identifying the different road obstacle
	road signs, streetlights, and movable obstacles, such as pedestrians, cars, bikes, or animals. Then, the information on their speed and behavior is determined to make calculations to predict their movements (Pendleton et al., 2017) and the changing traffic conditions (Duan et al., 2021).  
	Table 2.1: AV Sensor types: strengths and limitations (Vargas et al., 2021) 
	Feature 
	Feature 
	Feature 
	Feature 

	LiDAR 
	LiDAR 

	RADAR 
	RADAR 

	Camera 
	Camera 

	Ultrasonic 
	Ultrasonic 


	Primary Technology 
	Primary Technology 
	Primary Technology 

	Laser beam 
	Laser beam 

	Radio wave 
	Radio wave 

	Light 
	Light 

	Sound wave 
	Sound wave 


	Range 
	Range 
	Range 

	~200 m (656.17 ft) 
	~200 m (656.17 ft) 

	~250 m (820.21 ft) 
	~250 m (820.21 ft) 

	~200m (656.17 ft) 
	~200m (656.17 ft) 

	~5m (16.40 ft) 
	~5m (16.40 ft) 


	Resolution 
	Resolution 
	Resolution 

	Good 
	Good 

	Average 
	Average 

	Very good 
	Very good 

	Poor 
	Poor 


	Affected by Weather Conditions 
	Affected by Weather Conditions 
	Affected by Weather Conditions 

	Yes 
	Yes 

	Yes 
	Yes 

	Yes 
	Yes 

	Yes 
	Yes 


	Affected by Light Conditions 
	Affected by Light Conditions 
	Affected by Light Conditions 

	No 
	No 

	No 
	No 

	Yes 
	Yes 

	No 
	No 


	Detects speed 
	Detects speed 
	Detects speed 

	Good 
	Good 

	Very good 
	Very good 

	Poor 
	Poor 

	Poor 
	Poor 


	Detects distance 
	Detects distance 
	Detects distance 

	Good 
	Good 

	Very good 
	Very good 

	Poor 
	Poor 

	Good 
	Good 


	Interference susceptibility 
	Interference susceptibility 
	Interference susceptibility 

	Good 
	Good 

	Poor 
	Poor 

	Very good 
	Very good 

	Good 
	Good 



	 
	Localization is another aspect of perception in which the vehicle’s location is determined using a global reference (Kuutti et al., 2018). For an AV to operate, it needs to know where it is in the real world, that is, its position and orientation (Elhousni & Huang, 2020). Furthermore, the localization of the AV needs to be carried out as accurately as possible since every other functional operation of the AV, such as planning, control, and even environmental perception, relies on the ability of the AV to kn
	The most commonly used sensor for AV localization is GPS, which is easily accessible and less costly compared to other sensor types. However, GPS is prone to errors such as multipath and low accuracy (Awange & Kiema, 2019; Kos et al., 2010). Multipath interference occurs when satellite signals bounce off surfaces before reaching the receiver, causing multiple signal paths and inaccuracies in determining the vehicle's exact position. Therefore, other sensor types such as radar, LiDAR, and cameras are utilize
	Figure 2.8 illustrates the concept of perception in AVs. Environmental perception focuses on what the AV senses in its surroundings, while localization pertains to the AV's awareness of its own position. The overlapping area (Perception) signifies the integration of environmental awareness and self-awareness, which is crucial for informed decision-making and safe navigation. 
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	Figure 2.8: Environmental Perception and Localization 
	2.3 LiDAR Sensor Technology 
	The time of flight (ToF) principle entails measuring the round-trip travel time of a laser pulse from the LiDAR sensor to a target. This measured time difference, denoted as Δt, is a key parameter for determining the distance between the LiDAR sensor and the target (Liu et al., 2018). This principle is applicable for generating detailed point cloud data that enables AVs to understand and navigate their environments. 
	The ToF in LiDAR follows a precise sequence of operations to ensure the accurate measurement of distances. Initially, the LiDAR system aligns with the target and emits laser light pulses toward it. The emitted signal serves as the trigger for a counter, commencing the counting of clock pulses. As the target diffusely reflects the echo signal, it traverses through the atmosphere and enters the receiving optical system. Here, a photoelectric detector converts it into an electric pulse. Subsequently, an amplif
	In Figure 2.9, the underlying concept is visually depicted. It illustrates the generation of a reference light pulse at time (t), which triggers the clock within the timer circuit. A photosensor then converts the returning signal (reflected light) into an electric pulse that stops the timer from counting.   
	Figure 2.9: Time-of-flight LiDAR system (recreated from Liu et al., (2018)) 
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	The time taken for the emitted light (pulse) to reach the target and be sent back (return) to the source is used together with the speed of light to build a 3D representation of the surrounding environment (Campbell et al., 2018) through the ToF principle.  
	𝑅=𝑐2×∆𝑡,  
	where 𝑅 is the distance to the object, 𝑐 is the speed of light (3 × 108 𝑚/𝑠) and ∆𝑡 is the ToF (Royo & Ballesta-Garcia, 2019; Vargas et al., 2021).  
	The emissions from LiDAR are in the infrared range of 905 nm and 1550 nm of the electromagnetic spectrum. Initially, LiDAR systems at 905 nm were used for AV applications in the early stages of their development because that was the state of the technology at the time. However, there are eye safety concerns at that wavelength, which is an essential consideration for LiDAR’s automotive applications. These restrictions limited the object detection range to approximately 100 m (Vargas et al., 2021; Warren, 201
	Since gaining prominence in 1960, subsequent to Theodore Mainman's groundbreaking invention of the ruby laser, LiDAR has undergone a series of evolutionary phases. Various companies have seized the opportunities and potential this technology offers by investing in LiDAR sensors. For example, at a certain period, LiDAR sensors could record only 1000–2000 points per second (Wang et al., 2020). Currently, LiDAR sensors categorized as long-range sensors can scan up to 200,000 points per second while achieving a
	vertical FOV (Yeong et al., 2021). In addition, Velodyne LiDAR has a sensor with a 40º vertical FOV (Velodyne Ultra Puck VLP-32C Long-Range LiDAR Sensor — Clearpath Robotics, n.d.), while Sense Photonics has a LiDAR with a 75º vertical FOV (Photonics, n.d.). Ouster has an ultra-wide sensor with a 90º FOV but a limited range of up to 35 m (OS0 Ultra-Wide Field-of-View Lidar Sensor for Autonomous Vehicles and Robotics, n.d.).  
	Currently, more startups are emerging in the manufacturing and supply of LiDAR sensors. Table 2.2, modified from Wang et al. (2020), presents vendors of LiDAR products that can be deployed in autonomous driving.   
	LiDAR technology is used in various domains including forestry, geospatial mapping, robotics, mining, security, and smart infrastructure. However, this thesis focuses on the autonomous driving application. One of the compelling factors driving the selection of LiDAR as the primary perception sensor for AVs is its ability to provide extremely precise and rich depth information pertaining to the vehicle's surroundings (Zhang & Singh, 2014). Furthermore, LiDAR generates densely populated point clouds, which ar
	Table 2.2: Vendors with LiDAR Products for Autonomous Driving. 
	Company 
	Company 
	Company 
	Company 

	Products 
	Products 

	Year founded 
	Year founded 

	Country 
	Country 


	Valeo 
	Valeo 
	Valeo 

	Near Field LiDAR 
	Near Field LiDAR 

	1923 
	1923 

	France 
	France 


	Hokuyo 
	Hokuyo 
	Hokuyo 

	UBG Series, URG Series, UST Series, UGM Series, UXM Series 
	UBG Series, URG Series, UST Series, UGM Series, UXM Series 

	1946 
	1946 

	Japan 
	Japan 


	SICK 
	SICK 
	SICK 

	LMS Series, MRS Series, LD- MRS Series 
	LMS Series, MRS Series, LD- MRS Series 

	1946 
	1946 

	Germany 
	Germany 


	Ibeo 
	Ibeo 
	Ibeo 

	IbeoNEXT, ibeo LUX 
	IbeoNEXT, ibeo LUX 

	1998 
	1998 

	Germany 
	Germany 


	Velodyne LiDAR 
	Velodyne LiDAR 
	Velodyne LiDAR 

	Puck, Ultra Puck, Alpha Prime, HDL
	Puck, Ultra Puck, Alpha Prime, HDL
	Puck, Ultra Puck, Alpha Prime, HDL
	-
	32E
	 


	2007 
	2007 

	USA 
	USA 


	Luminar Technologies 
	Luminar Technologies 
	Luminar Technologies 

	Luminar Iris 
	Luminar Iris 

	2012 
	2012 

	USA 
	USA 


	Quanergy Systems 
	Quanergy Systems 
	Quanergy Systems 

	M Series, S Series 
	M Series, S Series 

	2012 
	2012 

	USA 
	USA 


	AEYE 
	AEYE 
	AEYE 

	AEye 4Sight Intelligent sensing platform 
	AEye 4Sight Intelligent sensing platform 

	2013 
	2013 

	USA 
	USA 


	Hesai 
	Hesai 
	Hesai 

	Panda128, QT128 
	Panda128, QT128 

	2014 
	2014 

	China 
	China 


	Robosense 
	Robosense 
	Robosense 

	RS Series 
	RS Series 

	2014 
	2014 

	China 
	China 


	Leishen 
	Leishen 
	Leishen 

	LS Series, HS Series, CX Series 
	LS Series, HS Series, CX Series 

	2015 
	2015 

	Austria 
	Austria 


	Baraja 
	Baraja 
	Baraja 

	Spectrum Series 
	Spectrum Series 

	2015 
	2015 

	Australia 
	Australia 


	Ouster 
	Ouster 
	Ouster 

	OS Series 
	OS Series 

	2015 
	2015 

	USA 
	USA 


	Cepton 
	Cepton 
	Cepton 

	Vista
	Vista
	Vista
	-
	P, Sora
	-
	P, Vista
	-
	X, Nova, Helius
	 


	2016 
	2016 

	USA 
	USA 


	Innoviz 
	Innoviz 
	Innoviz 

	InnovizOne, InnovizTwo, Innoviz360
	InnovizOne, InnovizTwo, Innoviz360
	 


	2016 
	2016 

	USA 
	USA 


	Neuvition 
	Neuvition 
	Neuvition 

	Titan M1 Series, S2 Series, Titan P1 
	Titan M1 Series, S2 Series, Titan P1 

	2016 
	2016 

	USA 
	USA 



	LiDAR technology continues to improve, and its adoption in AVs appears to have a promising future. This type of sensor varies in terms of specifications and options, including cost, size, scanning pattern, FOV, type, pulse rate, scan rate, and detection range (Roriz et al., 2022). The cost of a standard LiDAR sensor has reduced over the years, from US$75,000 (in 2005) to less than US$5,000 (in 2023), thereby facilitating their widespread deployment in the various application areas (Elhousni & Huang, 2020). 
	2.4 LiDAR Placement on AVs 
	The success of AV operations largely depends on their ability to accurately perceive and understand their surroundings. The placement of LiDAR sensors on an AV is a critical factor determining the FOV and the data quality. Proper LiDAR placement ensures effective detection of objects, obstacles, and road hazards, which is essential for safe AV operations (Cai et al., 2023; Kim & Park, 2020; Lucic et al., 2020). 
	Companies each have their own unique LiDAR placement designs or configurations. However, a strategy for determining the placement of the LiDAR has yet to be established (Mou et al., 2018a). As such, researchers are investigating this issue (Berens et al., 2022; Hu et al., 2022; Jin et al., 2022; Liu et al., 2019; Lucic et al., 2020).  
	Table 2.3: LiDAR Placement location, count, and type of different AV driving teams (modified from Mou et al., (2018a)) 
	Placement location & count 
	Placement location & count 
	Placement location & count 
	Placement location & count 

	LiDAR Type 
	LiDAR Type 

	Number  
	Number  

	AV Driving Team 
	AV Driving Team 


	2 on each side on top roof 
	2 on each side on top roof 
	2 on each side on top roof 

	Velodyne-16 
	Velodyne-16 

	4 
	4 

	Ford 
	Ford 


	2 on each side with 1 on the middle front on top roof 
	2 on each side with 1 on the middle front on top roof 
	2 on each side with 1 on the middle front on top roof 

	Velodyne-16 
	Velodyne-16 

	5 
	5 

	Cruise  
	Cruise  


	On top center of the roof 
	On top center of the roof 
	On top center of the roof 

	Velodyne-64 
	Velodyne-64 

	1 
	1 

	Uber 
	Uber 


	1 Velodyne-16 at each side and 1 Velodyne-64 on top roof  
	1 Velodyne-16 at each side and 1 Velodyne-64 on top roof  
	1 Velodyne-16 at each side and 1 Velodyne-64 on top roof  

	Velodyne-16/64 
	Velodyne-16/64 

	2/1 
	2/1 

	Baidu 
	Baidu 


	6 in front and 6 on the rear of the roof 
	6 in front and 6 on the rear of the roof 
	6 in front and 6 on the rear of the roof 

	Velodyne-16 
	Velodyne-16 

	12 
	12 

	Apple 
	Apple 


	2 Velodyne-16 on each side and 1 Velodyne-64 on the roof 
	2 Velodyne-16 on each side and 1 Velodyne-64 on the roof 
	2 Velodyne-16 on each side and 1 Velodyne-64 on the roof 

	Velodyne-16/64 
	Velodyne-16/64 

	4/1 
	4/1 

	UM Perl lab 
	UM Perl lab 


	On the center of the roof 
	On the center of the roof 
	On the center of the roof 

	Velodyne-64 
	Velodyne-64 

	1 
	1 

	Stanford Driving Lab 
	Stanford Driving Lab 


	On the top front of the roof 
	On the top front of the roof 
	On the top front of the roof 

	Ouster-64 
	Ouster-64 

	1 
	1 

	Purdue CART Lab 
	Purdue CART Lab 


	3 placed on top of the racing car 
	3 placed on top of the racing car 
	3 placed on top of the racing car 

	Luminar Solid State LiDAR 
	Luminar Solid State LiDAR 

	3 
	3 

	Black and Gold Autonomous racing Car 
	Black and Gold Autonomous racing Car 



	 
	The LiDAR sensor placements described in Table 2.3 may vary depending on the specific AV platform and its use case. The placements listed provide a general indication of how LiDAR sensors are typically positioned on AVs. However, other platforms may use different configurations or sensor types. Furthermore, it is important to recognize that LiDAR sensors are just one component of the complex sensor suite that AVs use. Other components include cameras, radars, and other sensing technologies. 
	2.4.1 Alternative Approaches for LiDAR Placement on AVs 
	The strategic placement of LiDAR sensors on AVs is of the utmost importance because it necessitates maximizing the acquisition of driving scene data while minimizing the number of LiDAR sensors used. One of the earliest approaches for LiDAR placement considered the sparsity of the LiDAR points (Mou et al., 2018b). The sparsity of point clouds refers to the distribution and density of points captured by the sensor across a given environment. A sparse point cloud has fewer data points, meaning there are large
	Figure 2.10: Region of Interest for an Autonomous Vehicles with three LiDAR sensors (Mou et al., 2018b) 
	Figure
	As a LiDAR sensor rotates, it generates a set of laser beams that define a conical shape. These individual shapes collectively represent the sensor's ROI (Figure 2.11).  
	Figure 2.11:LiDAR Beam forming Cones through a 360° Rotation (Mou et al., 2018a) 
	Figure
	Figure
	Figure
	Figure
	With a similar concern for sparsity, Kim and Park (2020a) visualized the level of coverage produced by the LiDAR point clouds that result from multiple LiDAR sensor placements on the vehicle. An optimization method was proposed in which a LiDAR Occupancy Board (LOB) was introduced to obtain the occupancy of the LiDAR in each local zone. Occupancy in this context refers to the evaluation and visualization of how well the LiDAR sensor covers or occupies specific areas or zones within its FOV. Kim and Park (20
	Figure
	 
	Figure 2.12: LiDAR sensors placed on a Test Vehicle (Kim & Park, 2020b) 
	Deep learning algorithms have also been developed to process LiDAR data (Deng et al., 2021; Shi et al., 2019). Hu et al. (2022a) approached the problem from the perspective of how the physical design of a LiDAR influences its perception of the target environment. Their approach also considers the area in the vicinity of the AV (which Mou et al. referred to as the ROI). To ensure a proper assessment of LiDAR placement, it is essential to study a consistent pattern of objects in various experiments, which can
	Simulation offers numerous advantages and disadvantages. Simulation provides flexibility, allowing conditions to be easily modified by adjusting input parameters, thus, aiding in the exploration of various scenarios. Simulations also bypass the limitations of real-world experiments, such as complexity and risks, while ensuring uninterrupted operations during analysis. However, these benefits are also accompanied by limitations. The accuracy of simulation outputs relies heavily on the quality of the input da
	For example, to test different scenarios using simulation, Hu et al. (2022a) used CARLA, (an open-source simulator for AVs) to test different LiDAR placements. These placements were motivated by those performed in studies from companies such as Toyota, ARGO AI, Cruise, Pony AI, and Ford. The results showed that different target types (vans, cars, box trucks, and cyclists) required different sensor placements.  
	Additionally, the choice of LiDAR type is essential for improving AV perception. Fang et al. (2018) presented a LiDAR simulation framework that also considered the LiDAR type and placement in 3D LiDAR point cloud production. LiDAR point clouds, which were obtained based on traffic and scenes from the real world, were collected to serve as data for training deep neural networks. The point cloud data was acquired using LiDAR scanners, specifically, the Riegl scanner, which has a resolution of approximately 3 
	from simulations to real-world data. This integration of real-world data offered a more accurate depiction of real-world scenarios. Similarly, in their work, Feng et al. emphasized the significance of naturalistic data for enhancing simulations for AV testing. Their method, showcased for driving intelligence testing in AVs, expedites testing procedures and generates vital adversarial examples crucial for AV development (Feng et al., 2021).  
	Acquiring data from multiple LiDAR placement scenarios in the real world requires significant time and effort in the form of model training, raw data collection, and deployment compared to utilizing artificially generated methods (Hu et al., 2022a). Therefore, it is paramount to find a way to evaluate the perception performance of LiDAR while minimizing cost and obtaining the required quantitative information. For this reason, researchers have occasionally used virtual environments such as CARLA (Berens et 
	In AV research, 2D and 3D LiDAR sensors have been used. 2D LiDAR sensors produce distance information while 3D LiDAR sensors produce information on height and geometry (Catapang & Ramos, 2016). Most researchers have focused on 2D LiDAR. Zhao et al. (2017) collected information on vehicle trajectory using a vehicle equipped with 2D LiDAR sensors. In terms of placement, four LiDAR sensors were used: Two short-range models were placed in the front and right bumper of the vehicle, respectively, and two long-ran
	The car used by Pereira et al. (2016) combined both 2D and 3D LiDAR sensors. In addition to the two 2D LiDAR placed on the sides of the bumper, another 3D LiDAR was installed on the AV. Meadows et al. (2019) used three LiDARs: two placed on different sides of the car bumper and the third placed on the vehicle's roof. The information obtained from all these LiDAR sensors is registered to provide the AV with rich 3D information and coverage of the surrounding area. Meadows et al. (2019) focused on determining
	Regarding AV design, Liu et al. (2019) stressed the importance of balancing computational burden with object detection performance; using fewer LiDARs could present issues related to object detection performance. Conversely, using more LiDARs, aside from the high cost, also results in a high computational burden and redundancy. Therefore, it is essential to create balance when determining the optimal number and LiDAR type for AV use. Liu et al.’s (2019) research used three types of LiDAR to evaluate perform
	2.5 Multi-Criteria Decision Analysis  
	The exploration of LiDAR placement methodologies discussed in earlier sections has revealed a multifaceted landscape characterized by various approaches and strategies. Previous studies have delved into different facets of LiDAR deployment. This section introduces multi-criteria decision-making (MCDM), which is used for LiDAR placement optimization in this thesis by discussing concepts of scaling, weighting, and the amalgamation of criteria. 
	MCDA serves as a systematic approach for addressing complex decision-making that involves multiple criteria or factors of different units of measurement and different levels of importance. In MCDA, the decision-makers (DMs) assign weights to the criteria that reflect their respective levels of importance and establish scaling functions for each criterion. Then, they assess various alternatives based on the weighted and scaled criteria. This structured method provides a framework for comparing and ranking al
	Through questionnaire surveys, the DMs allocate relative weights to these criteria to signify their importance and carry out scaling to standardize the measurement units of each criterion. The impacts of each alternative are then amalgamated using various tools and techniques, thus, assisting in the identification of the most suitable option. In instances where no single alternative outperforms the others across all criteria, formulations are introduced to accommodate constraints or tradeoffs. MCDA not only
	2.5.1 Establishing the Alternatives 
	Establishing alternatives is a foundational step in systematic decision-making processes and cuts across various fields. It involves outlining objectives and constraints while identifying a range of potential options to address a particular problem or situation. Similar to everyday decision-making scenarios, the process entails cataloging the costs and benefits associated with each alternative and setting predefined thresholds or criteria for evaluation (Labi, 2014). Through systematic analysis, DMs assess 
	2.5.2 The Performance Criteria  
	Transportation decisions often aim to incorporate a broad spectrum of performance criteria that align with the interests of key stakeholders. These include considering agency goals, the perspectives of facility users, and the broader concerns of society at large (Sinha & Labi, 2007). Performance criteria vary across dimensions, spanning quantitative and qualitative aspects that define evaluation standards. For instance, when assessing a product, factors such as reliability, durability, cost-effectiveness, u
	These criteria serve as essential frameworks for evaluation and offer stakeholders a structured basis for comparison, informed decision-making, and the prioritization of actions based on their alignment with established criteria. In the realm of optimization, performance criteria also play a decisive role in shaping decisions. While some optimization processes may follow a single objective, many entail multiple criteria or constraints across various metrics, known as multi-attribute problems (Labi, 2014). F
	2.5.3 Weighting Methods 
	The process of establishing relative weights for performance criteria in decision-making scenarios is fundamental to the effectiveness and credibility of the MCDM process. Various methods have been devised to address this challenge, each playing a pivotal role in shaping the hierarchy of criterion importance and streamlining the decision-making process (Ortiz-Barrios et al., 2021; Pamučar et al., 2018; Singh & Pant, 2021). 
	These methods typically involve the use of questionnaire surveys or interviews, which are administered to DMs, such as agency engineers and other stakeholders. The respondents' feedback, collected through diverse weighting techniques, shapes the outcome of the decision process. The choice of an appropriate weighting method significantly affects the final outcome of the MCDM analysis, hence, it is an important step (Bai et al., 2022; Keeney & Raiffa, 1993; Li & Sinha, 2000).  
	Some of the most commonly used weighting methods are explained in this section. 
	2.5.3 (a) Equal Weighting  
	The equal weighting approach is straightforward and involves assigning the same weight to all performance criteria. It is a common practice that is relatively simple to implement. An example of this approach in transportation studies is the use of equal weighting in the context of pavement investment decision-making through life-cycle cost analysis (Lamptey et al., 2005). In previous studies, both agency costs and user costs were often combined without explicitly assigning different weights to them. The dir
	However, the equal weighting approach, while straightforward and commonly used, does not provide a representation of the DMs’ preferences and priorities (Li, 2003). Incorporating relative preferences among criteria is essential to make well-informed decisions for transportation systems in MCDA.  
	 
	2.5.3 (b) Direct Weighting 
	Direct weighting is a technique in MCDA that allows DMs to assign numerical weight values to performance criteria. This approach provides a quantitative representation of the relative importance of these criteria and offers some example methods, including point allocation, categorization, and ranking (Odu, 2019; Patidar et al., 2007). 
	Point allocation (PA) involves the allocation of a total of 100 points among decision criteria (Bottomley et al., 2000). Each criterion receives a weight that signifies its importance. The more points a criterion receives, the higher its weight in the decision-making process. Point allocation provides a cardinal scale, expressing weights as numerical values for ease of mathematical operations such as addition and multiplication. Categorization, in contrast, groups decision criteria into different categories
	The choice of direct weighting method should be guided by the specific context of the decision-making process. Notably, ranking and categorization do not provide precise numerical weights and are categorized as ordinal scales. In contrast, point allocation offers numerical weights in a cardinal scale, making it the preferred choice when these weights need to be used in multivariate value or utility functions (Patidar et al., 2007). 
	2.5.3 (c) Observer-Derived Weighting 
	Observer-derived weights represent a methodology in which DMs unconsciously assign weights to various criteria without explicit awareness. This method estimates the relative importance of multiple objectives through an analysis of unaided subjective evaluations of alternatives (Hobbs & Meier, 2000). During this process, DMs provide scores for each objective for a set of alternatives and an overall score on a scale, which often ranges from 0 to 100. Subsequently, a statistical relationship is established by 
	assigned to individual objectives as explanatory variables through regression analysis. The coefficients resulting from this analysis represent the implicit or observer-derived weights associated with the various objectives as perceived by the DMs. 
	The methodology, as emphasized by notable researchers (Huber, 1974; Slovic & Lichtenstein, 1971), involves utilizing regression analysis to derive attribute weights aimed at minimizing deviations from actual rankings or ratings. The reliance on regression methodology is a distinctive advantage of this method, similar to the concept of “policy capturing,” which is frequently used by psychologists and pollsters to predict opinions, reflecting an attempt to optimize the judgment process (Hobbs, 1980; Patidar e
	However, MCDA aims to enhance, not merely replicate, holistic judgments. Research indicates that individuals often prioritize only a few attributes when making decisions involving numerous criteria (Edwards, 1977). This observation suggests that observer-derived weights may cluster on a subset of attributes. Moreover, since DMs may disregard less critical attributes when making holistic judgments, observer-derived weights may not be proportionate to the worth of each attribute. Therefore, the observer-deriv
	2.5.3 (d) Gamble Method 
	The gamble method, as outlined by Keeney and Raiffa (1993), offers a systematic approach to weight assignment within MCDA. It allows the DMs to assess and compare individual goals sequentially. The process begins by identifying the most critical goal, the one with the highest significance in transitioning from its least desirable state to its most desirable state. This goal takes precedence in the weight assignment process. Next, two scenarios are evaluated. In the “sure thing scenario,” the chosen goal is 
	their worst values. The objective is to find the specific p value at which the two scenarios, “sure thing” and “gamble,” become equally appealing to the DM (Z. Li, 2003). 
	This process is repeated iteratively for the remaining goals, with each goal's relative importance decreasing in each subsequent step. Weights are assigned to each goal based on the previously established probabilities. It is important to note that the hypothetical probabilities for achieving the best or worst conditions of each goal may vary among different assessors, thus, reflecting the subjective nature of the evaluation process. 
	The gamble method is particularly valuable in scenarios involving outcome risk, where precise outcomes are unknown, but their probability distributions are known. This method helps in determining the relative importance of different performance criteria. However, it may present challenges in terms of comprehension and administration owing to the need to assess the relative desirability of uncertain outcomes (Sinha & Labi, 2007). 
	2.5.3 (e) Analytical Hierarchy Process (AHP)  
	The AHP, often referred to as the pairwise comparison method, is a systematic decision-making technique designed to assess and prioritize the relative importance of multiple decision criteria. AHP is grounded in the principles of decomposition, comparative judgments, and priority synthesis, offering a structured framework to assign weights to these criteria. It accommodates various factors, including qualitative and quantitative elements, and tangible and intangible aspects (Saaty, 1977). 
	In the AHP framework, decision criteria are organized hierarchically, with each level of the hierarchy representing a specific aspect of the decision process (Bukhsh et al., 2017). The AHP process commences with pairwise comparisons of decision criteria to determine their respective weights, which reflect their relative significance in the decision-making process. To facilitate these comparisons, a structured system is used, as shown in Table 2.4, where values are assigned to represent the degree of importa
	  
	Table 2.4: Pairwise Comparison Ratio for Weighting 
	Importance Level 
	Importance Level 
	Importance Level 
	Importance Level 

	Description 
	Description 

	Assigned Value 
	Assigned Value 


	Equal Importance 
	Equal Importance 
	Equal Importance 

	When criteria X and Y hold the same level of importance 
	When criteria X and Y hold the same level of importance 

	1 
	1 


	Slightly More Important 
	Slightly More Important 
	Slightly More Important 

	If criteria X is slightly more important than criteria Y 
	If criteria X is slightly more important than criteria Y 

	3 
	3 


	Moderately More Important 
	Moderately More Important 
	Moderately More Important 

	If criteria X is moderately more important than criteria Y 
	If criteria X is moderately more important than criteria Y 

	5 
	5 


	Strongly More Important 
	Strongly More Important 
	Strongly More Important 

	If criteria X is strongly more important than criteria Y 
	If criteria X is strongly more important than criteria Y 

	7 
	7 


	Extremely More Important 
	Extremely More Important 
	Extremely More Important 

	If criteria X is extremely more important than criteria Y 
	If criteria X is extremely more important than criteria Y 

	9 
	9 


	Slightly Less Important  
	Slightly Less Important  
	Slightly Less Important  

	If criteria X is slightly less important than criteria Y 
	If criteria X is slightly less important than criteria Y 

	1/3 
	1/3 


	Moderately Less Important  
	Moderately Less Important  
	Moderately Less Important  

	If criteria X is moderately less important than criteria Y 
	If criteria X is moderately less important than criteria Y 

	1/5 
	1/5 


	Strongly Less Important  
	Strongly Less Important  
	Strongly Less Important  

	If criteria X is strongly less important than criteria Y 
	If criteria X is strongly less important than criteria Y 

	1/7 
	1/7 


	Extremely Less Important 
	Extremely Less Important 
	Extremely Less Important 

	If criteria X is extremely less important than criteria Y 
	If criteria X is extremely less important than criteria Y 

	1/9 
	1/9 



	2.5.3 (f) Value swinging 
	The value swinging method (Goicoechea, 1982) offers a systematic approach to addressing MCDM. This method involves envisioning a scenario in which all performance criteria are at their lowest possible values. The goal is to identify the criterion for which it is the most advantageous to transition from its worst value to its best value while keeping all other criteria at their worst levels. This step is repeated for all criteria under consideration. 
	To assign weights to the criteria, the most critical criterion is given the highest weight within a specified range (e.g., a range of 1 to 100, with 100 being the highest weight). Subsequently, the remaining criteria are assigned weights in proportion to their rank in importance. This systematic approach ensures that the most crucial criteria receive the greatest emphasis in the decision-making process, which means it is a valuable tool for evaluating complex scenarios with multiple criteria (Bai et al., 20
	2.5.3 (g) Delphi Approach 
	The Delphi method is a valuable approach for determining the relative importance of criteria, particularly in situations in which existing knowledge is limited or unavailable (Nasa et al., 2021). This method engages a panel of experts in a collaborative process aimed at reaching a consensus regarding the significance of various criteria. The Delphi approach unfolds across a series of 
	distinct phases that incorporate expert perspectives, thereby creating a structured feedback loop that facilitates the process of consensus-building. 
	To address the necessity for building consensus and achieving a comprehensive assessment, the Delphi technique (Dalkey & Helmer, 1963) has proven to be suitable for group decision-making and serves the purpose of aggregating the viewpoints of individual experts Within the Delphi technique, the initial results obtained from questionnaire surveys undergo thorough analysis and summarization. The summary statistics obtained, which include parameters such as the average and standard deviation, are then conveyed 
	(Bendaña et al., 
	2008; Cavalli‐Sforza & Ortolano, 1984; de la Cruz et al., 2008)
	. 

	One significant advantage of the Delphi method is its approach to interaction management (Martino, 1983; Mullen, 2003). Interaction within the Delphi process is entirely anonymous (Sourani & Sohail, 2015), allowing participants to successively change their opinions without publicly disclosing such changes. This anonymity allows participants to alter their opinions without the need for public disclosure, fosters an environment that encourages candid input by focusing solely on the value of ideas, and minimiz
	2.5.4 Scaling Methods 
	In MCDA, scaling is the step that ensures that the criteria are transformed into a common scale or range that makes the different criteria directly comparable. Scaling serves to standardize data and harmonize the measurement levels of various criteria, thereby facilitating analysis, weighting, and amalgamation.  
	Scaling is indispensable when working with diverse criteria that may contain different units or measurement scales, as is frequently the case in decision-making scenarios. Two main categories of scaling methods include certainty and risk scenarios, each of which is suitable for specific contexts (Labi, 2014). 
	 
	Figure
	Figure 2.13: Scaling Categories with some existing methods (Sinha & Labi, 2007) 
	2.5.4 (a) Decision-Making Under Certainty Scenarios 
	Decision-making under certainty is characterized by having complete and precise knowledge of the consequences (in terms of the multiple criteria) associated with each alternative. In such a scenario, DMs can rely on methods that effectively capture, construct, or quantify their preferences regarding the levels of each performance criterion. These methods play a role in facilitating decision-making by providing a structured approach to comparing the alternatives.  
	As the outcomes of each alternative are known with absolute certainty, this scenario ensures that the decision-making process aligns closely with the DMs’ preferences, allowing for a more straightforward and objective selection of the most favorable alternative based on the established criteria. In the certainty scenarios, value functions or deterministic scaling functions are used to quantify the desirability of the criteria (Bai et al., 2008).  
	The scaling methods that fall under certainty scenarios draw from value theory (Keeney & Raiffa, 1993) and rely on the concept of value functions, which are scalar indices representing DMs’ preferences for various levels of a performance criterion under conditions of certainty. In practical terms, if a scale that ranges from 0 to 100 is considered, then the values 0 and 100 are associated with the worst and best levels of the criterion, respectively. The values assigned to intermediate levels are determined
	  
	The multivariate value function, denoted as v(z), is expressed as the following (Patidar et al., 2007): 
	v(z)  
	InlineShape

	where z symbolizes the consequence set of an alternative in terms of evaluating criterion p. The consequence set encompasses the anticipated outcomes across the evaluation criteria after the decision is executed. Notably, the value function possesses a property (Keeney & Raiffa, 1993), which makes it useful for addressing tradeoffs between pairs of evaluation criteria. 
	The techniques that are used to construct value functions under certainty scenarios are explained in this subsection. The methods include the mid-value splitting technique, direct rating, and statistical regression. The methods are flexible and can be adapted to different criteria and decision contexts (Sinha & Labi, 2007). 
	2.5.4 (a.1) Direct Rating 
	The direct rating method is a straightforward approach that often uses questionnaire surveys to generate value functions. In this method, respondents, who are typically the DMs, are asked to directly assign values to each level of a given performance criterion. This technique is useful when addressing criteria that have a relatively small number of discrete levels and when DMs can be questioned directly using some form of survey instrument. This method allows DMs to provide their direct input in the form of
	2.5.4 (a.2) Mid-Value Splitting Technique 
	The mid-value splitting technique seeks information from survey respondents regarding their indifference towards changes in the levels of a performance criterion (Keeney & Raiffa, 1993). This method is well-suited for criteria with a broader domain of possible levels. It helps in capturing the perspectives of DMs concerning the points at which they are indifferent to changes in the performance criterion, thereby enabling the development of value functions that reflect these preferences.  
	The method, executed through a questionnaire survey involving the DM, unfolds as an interactive conversation between the survey administrator and the respondent, who is the DM. 
	During this process, DMs are prompted to express the degree of their indifference concerning various levels of the performance criterion. The extent of their indifference is captured by the concept of “equal delight” or “zero relative desirability” between the two specified levels. 
	To establish the value function of a performance criterion X, with a potential value range from XL to XU units, the steps are as follows: 
	 
	Step 0: Set v(X = XL) = 0 and v(X = XU) = 100 
	Step 1: Establish X50 for which v(X50) = 50 
	Establish X50 such that the survey respondent is equally delighted with (i) and (ii) as follows: 
	(i) is an improvement of X from 0 to X50 and (ii) is an improvement of X from X50 to XU 
	Step2: Establish X25 for which v(X25) = 25 
	Establish X25 such that the survey respondent is equally delighted with (i) and (ii) as follows: 
	(i) is an improvement of X from 0 to X25 and (ii) is an improvement of X from X25 to X50 
	Step 3: Establish X75 for which v(X75) = 75 
	Establish X75 such that the survey respondent is equally delighted with (i) and (ii) as follows: 
	(i) is an improvement of X from X50 to X75 and (ii) is an improvement of X from X75 to XU 
	Step 4: Consistency check 
	Is the survey respondent equally delighted with (i) and (ii) as follows: 
	(i) is an improvement of X from X25 to X50 and (ii) is an improvement of X from X50 to X75? 
	Step 5: Adjustments 
	If the consistency check is affirmative, the values are consistent and, if not, DMs are to revise their responses in steps 1–3. 
	Based on these established values, the value function for the performance criterion can be constructed. This simple and practical mid-value splitting technique proves helpful for assessing value functions, especially in scenarios in which resource constraints limit the adoption of more complex methods.  
	2.5.4 (a.3) Statistical Regression 
	Refer to Section 2.5.4 (b.3) for information regarding statistical regression.  
	2.5.4 (b) Decision Making Under Risk Scenario 
	Decision making under risk is when the decision problem contains significant uncertainty. Unlike certainty-based scenarios, in which precise outcomes are known, the risk-based approach introduces intricacies by associating specific probabilities with the consequences of each alternative regarding the decision criteria (Patidar et al., 2007). This scenario, involving uncertainty regarding the outcomes of decisions, is relevant in some fields such as transportation because organizations often face challenges 
	As such, it is useful, possibly even necessary, for agencies to incorporate risk and uncertainty concepts in scaling their evaluation criteria. In the risk scenario, the range and distribution of possible outcomes for each performance criterion are known. Risk is either subjective or objective. Subjective risk is based on personal perceptions, and objective risk is based on theory, experiment, or observation. In the uncertainty scenario, the range and distribution of possible outcomes for each performance c
	Utility functions are used for scaling evaluation criteria when there is uncertainty or risk in the problem. The DM specifies a certain level of “desirability” (or “utility”) for each decision outcome in terms of each performance criterion, and the expected overall utility of each alternative decision is calculated. The best intervention is that which yields the maximum expected utility (Keeney & Raiffa, 1976). By providing a scale showing the DMs’ preferences for different levels of a performance criterion
	Figure 2.14: Different Risk Behaviors of Decision Makers (Sinha & Labi, 2007) 
	Figure
	The concepts of utility and multi-attribute utility theory prove to be valuable for addressing decision-making problems marked by risk and uncertainty. Utility is treated as a random variable, and the “expected utility” represents the mean of the random variable. DMs specify the level of “desirability” or “utility” for each potential outcome of an action. By assigning suitable utility values to these outcomes and calculating the expected utility for each alternative, it becomes possible to identify the opti
	The multi-attribute theory can be applied using the following steps (Goicoechea, 1982): 
	1.
	1.
	1.
	 Formulate suitable assumptions regarding the preferences of the DM. 

	2.
	2.
	 Determine an appropriate mathematical representation based on these assumptions. 

	3.
	3.
	 Validate the assumptions by incorporating the DM's perceptions. 

	4.
	4.
	 Develop preference rankings, also known as utility functions, for each performance criterion. 

	5.
	5.
	 Integrate individual criterion utility functions using the established mathematical representation and considering the relative weights assigned to each criterion. 

	6.
	6.
	 Establish a preference ranking for alternatives based on their expected utilities. 


	 
	A utility function is a general form of a value function. This means that a value function is a specific form of a utility function in which the degree of uncertainty is 0%. A multi-attribute utility function captures DMs’ preferences regarding the levels of each decision criterion. It extends the concept of a value function but also captures the DMs’ risk preferences for various levels of each 
	attribute. The expected values of the utility function serve as a basis for comparing alternatives. The alternative with the maximum expected utility is identified as the most preferable alternative. However, as noted by Patidar et al. (2007), constructing multi-attribute functions can be exceptionally challenging due to the multiplicity of dimensions. 
	To manage this complexity, an alternative approach is often used. Instead of attempting to reduce dimensionality through a multi-attribute function, several single-criterion (univariate) utility functions are developed individually (Goicoechea, 1982; Patidar et al., 2007).  
	In a risk scenario, risk can either be subjective or objective. Subjective risk is shaped by personal perceptions, reflecting an individual's subjective judgment of the likelihood and impact of various outcomes. In contrast, objective risk is grounded in more tangible sources such as established theories, empirical experiments, or observed data. Objective risk relies on more concrete and measurable foundations, which contrasts with the more personal and interpretive nature of subjective risk. The certainty 
	2.5.4 (b.1) Certainty Equivalent Approach 
	The certainty equivalent approach is a method that enables a DM’s risk-taking behavior within a subjective risk situation to be identified. It establishes a connection between a DM’s single-criterion utility function and their risk attitude. This approach is valuable when confronting situations in which the exact consequences of actions are uncertain, and DMs must navigate a complex landscape of potential outcomes (Patidar et al., 2007). The approach provides insights into DMs’ attitudes toward risk and inf
	 
	2.5.4 (b.2) Direct Questioning Method 
	The direct questioning method is used within the risk-based scenario to directly collect information from DMs regarding their risk preferences and attitudes. DMs are surveyed or interviewed and asked to articulate their willingness to take risks, their risk tolerance, and their comfort levels with uncertainty. This method directly captures the subjective risk perceptions of DMs and plays a large role in developing a comprehensive understanding of their risk attitudes. The responses gathered through direct q
	The gamble method can be used in the direct questioning approach by developing a utility function for a performance criterion. The process begins by assigning utilities of U(XW) = 0 for the worst level of the criterion and U(XB) = 100 for the best level. The comparison involves two scenarios, a guaranteed prospect with an outcome of X = 0.5 × (XB − XW) and a risky prospect where an outcome of XW occurs with probability p and an outcome of XB with probability (1 – p; Bai et al., 2008; Labi, 2014; Sinha & Lab
	2.5.2 (b.3) Probability Distribution Functions 
	This method of scaling falls under the objective risk category. The methods in this category do not involve subjective preferences and are data driven. These methods focus on objective and quantifiable data, enabling the transformation of criteria into a standardized format. The methods are often used when it is challenging to collect or incorporate subjective opinions or when a more objective approach is required.  
	Probability distribution functions do not consider the subjective opinions of the DMs and tend to be superior for making decisions in which the DMs input is of the utmost relevance (Bai et al., 2008; Patidar et al., 2007). The functions aim to transform the raw data associated with various criteria into a common and standardized scale, ensuring that all criteria are directly comparable. 
	Some common methods are min-max normalization, z-score normalization, decimal scaling, and absolute mean and zero-deviation.  
	One of the simplest and most widely used objective techniques is min-max normalization, which is effective when the upper and lower bounds (maximum and minimum values) of decision model scores are known. In such cases, it is relatively straightforward to adjust the minimum and maximum scores to a common range between 0 and 1. It is important to note that min-max normalization retains the original distribution of scores while rescaling them into a common range (Jain et al., 2005). Z-score normalization is an
	To address the limitations of traditional min-max normalization, the median absolute deviation normalization method is proposed. It is notable for its adaptability to data of varying sizes, robustness against outliers, and straightforward implementation. median absolute deviation normalization aligns data with a median of 0 and a median absolute deviation of 1, thus, effectively enhancing its suitability for analysis while minimizing issues such as multicollinearity (Kappal, 2019). 
	Decimal scaling, an alternative technique, serves as a data transformation method similar to conventional z-score normalization. This method adjusts the number of decimal points for each attribute value based on the highest number of placeholders among all columns (Sinsomboonthong, 2022). It is beneficial for logarithmic scale data by ensuring that scores are consistently scaled for comparative analysis. Decimal scaling assumes logarithmic scaling, which may not always hold true in diverse decision-making s
	Similarly, the absolute mean and zero-deviation normalization method (Patro & Sahu, 2015) operates within the range of 0 to 1 and employs individual element scaling, processing each data point separately. Unlike some normalization techniques, absolute mean and zero-deviation is not dependent on data size or quantity and is exclusively applicable to integer numbers.  
	PDF-based methods provide a systematic way to make criteria directly comparable and are effective when coping with known and measurable criteria. However, they do have limitations. These limitations include their lack of adaptability to data with varying characteristics, sensitivity to outliers, assumptions of normality, limited customization options, challenges in handling missing data, and reduced flexibility in accommodating diverse decision-making scenarios. In situations in which decision criteria exhi
	2.5.5 Amalgamation Methods 
	Amalgamation, a crucial step in the MCDA process, serves as the point at which various decision alternatives undergo evaluation after individual performance criteria have been weighted and scaled (Bukhsh et al., 2017; Sinha & Labi, 2007). Its primary aim is to consolidate the numerous criteria into a unified criterion for each alternative, thereby facilitating the identification of the most favorable alternative or the ranking of the alternatives (Bell et al., 2003; Patidar et al., 2007).  
	Several methods are available for amalgamation in MCDA. These include the multiplicative utility function method, the weighted sum method (WSM), the weighted product model (WPM) method, the AHP method, the ELECTRE method, the goal programming method, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, the global criterion or compromise programming method, the neutral compromise solution method, and the lexicographic order technique. These methods offer a wide spectrum of tool
	2.5.5 (a) Weighted Sum Method  
	This method is a widely adopted approach for amalgamating multiple criteria into a single unified criterion for each alternative (Li, 2003). In this method, the determination of relative weights for individual criteria is a critical consideration. It is important to note that the WSM, although user-friendly, offers only a linear approximation of the preference function. Consequently, the solution derived using this method may not faithfully preserve the DM's initial preferences, regardless of how the weight
	the validity of the WSM must be considered, that is, that the values of the criteria remain linearly independent. This implies that the value assigned to each criterion should remain unaffected by or independent of the values assigned to other criteria. Failure to meet this condition could render the WSM incapable of producing a valid solution (Hazelrigg, 2019). 
	2.5.5 (b) Weighted Product Model  
	The WPM (Bridgman, 1922; Triantaphyllou & Mann, 1989) is a widely used technique in MCDA (Cristóbal, 2012; Mateo, 2012) that builds upon the WSM (Goswami et al., 2020). In the WPM, each alternative's assessment relative to the other alternatives is achieved by multiplying ratios, with each corresponding to a specific decision criterion.  
	This methodology first involves the distribution of weights to criteria, the normalization of performance values, and the subsequent calculation of preference scores by multiplying the normalized values with the assigned weights (AlAli et al., 2023). The effectiveness of WPM in addressing MCDM is well-established, with successful applications across a diverse range of scenarios involving various criteria (Supriyono & Sari, 2018; Triantaphyllou & Mann, 1989). 
	2.5.5 (c) Multiplicative Utility Function Method 
	In the foundational work on multi-criteria or multi-attribute utility theory (MAUT), Keeney and Raiffa (1976), presented a framework that leverages the concept of independence among attributes, leading to the development of the multiplicative multi-attribute utility function denoted as uM(z), which is given by the following: 
	 
	Figure
	 
	 
	In this expression, z = (z1, ..., zn) represents evaluations, zi signifies attribute evaluations, ki represents the weight assigned to the ith criterion, and k is a scaling constant. 
	To effectively apply the multiplicative model, it is essential to ensure mutual utility independence. This means that subsets of criteria should be independent of their complements. (Dombi, 2009). The multiplicative MAUT model is a versatile tool, proficient in representing complex preference structures, embracing nonlinearities, and accounting for attribute interactions 
	without reliance on unrealistic behavioral assumptions (Keeney & Raiffa, 1976). The optimal choice is determined by selecting the alternative with the highest overall utility, aligning with the utility-based approach, thereby yielding the best decision outcome (Labi, 2014). 
	2.5.5 (d) ELimination Et Choix Traduisant la REalité (ELECTRE) Method 
	The use of traditional aggregation methods in MCDA can yield results that are sensitive to score variations and the construction of individual indicators. In some cases, different composite indicators may favor one alternative over another (Josselin & Le Maux, 2017). To address this sensitivity and the need for a more rigorous approach, non-compensatory analysis has gained prominence. This methodology relies on pairwise comparisons of alternatives based on individual indicators, which has proved effective i
	Within the domain of non-compensatory models, the outranking methods category is designed to establish relationships of outranking among different alternatives based on a set of varying criteria. Among these methods, ELECTRE-based methods are known for their effectiveness. ELECTRE aims to determine the hierarchy among alternatives through a structured procedure, where one alternative is deemed superior to another only if it meets specific conditions (Li, 2003). 
	The primary condition relates to the concordance index, which is the sum of normalized weights favoring the first alternative. To meet this condition, the concordance index must surpass a predefined threshold value. The second condition pertains to the discordance index, signifying the number of attributes in which the second alternative outperforms the first by an amount exceeding a specified threshold value. To meet this condition, the discordance index should be zero (Josselin & Le Maux, 2017; Li, 2003).
	ELECTRE excels in complex decision-making scenarios with a substantial number of criteria, often exceeding the typical threshold of five and extending to as many as 12 or 13 criteria. It effectively addresses the intricacies of these settings, managing challenges with which conventional compensatory methods may struggle. For example, ELECTRE is extremely effective 
	when actions are evaluated using ordinal scales for at least one criterion. The use of ordinal scales poses challenges in establishing meaningful coding for preference differences. ELECTRE's non-compensatory nature makes it suitable for addressing these situations (Martel et al., 1988).  
	Furthermore, ELECTRE proves to be effective in situations that are characterized by significant heterogeneity among the scales associated with the criteria. These criteria often span a wide range of measurement scales, making it impractical to establish a uniform and common scale for comparison (Figueira et al., 2016; Taherdoost & Madanchian, 2023). For DMs averse to accepting tradeoffs between criteria, ELECTRE's non-compensatory aggregation procedures are indispensable (Taherdoost & Madanchian, 2023).  
	2.5.3 (e) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) Method 
	The TOPSIS method has garnered significant attention within the field of MCDM, thereby proving its versatility and effectiveness (Behzadian et al., 2012; S.-J. Chen & Hwang, 1992; Hwang & Yoon, 1981). This method aims to identify the most favorable alternative by assessing its proximity to the ideal solution and its divergence from the worst solution, ultimately leading to a comprehensive evaluation of each alternative (Papathanasiou & Ploskas, 2018). 
	TOPSIS operates under the assumption that each criterion's preference structure follows either a monotonically decreasing or increasing pattern, signifying “the more, the better” or “the fewer, the better,” respectively. This fundamental characteristic equips TOPSIS to handle a wide range of decision-making scenarios in which criteria exhibit diverse and contrasting preferences, making it an invaluable tool in MCDA (Labi, 2014). 
	Over time, the TOPSIS methodology has undergone extensive experimentation and refinement, particularly in areas such as normalization procedures, the accurate determination of ideal and anti-ideal solutions, and the selection of appropriate metrics for calculating distances from these solutions (Papathanasiou & Ploskas, 2018). These refinements have further enhanced the applicability and robustness of the TOPSIS method in various practical settings. 
	2.5.3 (f) Global Criterion (Compromise Programming) Method 
	The global criterion or compromise programming method (Yu, 1973) offers a unique perspective on MCDM. It focuses on the identification of the optimal solution that minimizes its distance from 
	the global reference point (GRP), which embodies the global optimal values of all decision criteria (Miettinen, 1998). The GRP serves as a comprehensive reference point for assessing the feasibility of alternative solutions.  
	This distinctive approach has gained significance in MCDM by enabling the prioritization and selection of alternatives based on their proximity to the GRP. As a result, it facilitates effective decision-making in complex scenarios (Cochrane & Zeleny, 1973; Miettinen, 1998; Yu, 1973). The method not only aids in selecting the most suitable alternative but also promotes a balanced consideration of all relevant criteria, thus, contributing to well-rounded and robust decision outcomes. 
	By following this unique approach, DMs can systematically assess a wide range of decision alternatives, considering the importance of each criterion and striving to strike a balance among these considerations. With decisions becoming increasingly complex and involving multiple, and often conflicting, objectives, the global criterion or compromise programming method offers an effective way to navigate the complexities of decision-making, making it a valuable tool in MCDM (Cochrane & Zeleny, 1973; Miettinen, 
	2.5.5 (g) Neutral Compromise Solution Method 
	The neutral compromise solution method (Gal et al., 2013) is similar to the global criterion method but differs in its underlying assumption regarding the ideal solution. In this approach, it is assumed that the optimal performance target or ideal solution is positioned at the midpoint within the range of possible values for each performance objective (Setämaa-Kärkkäinen et al., 2006). Consequently, the objective is to find the alternative that minimizes the maximum deviation from this midpoint for each per
	The simplicity of this method is one of its key advantages, providing DMs with a straightforward approach to optimize decision alternatives. However, it is important to recognize that the assumption of the ideal performance level at the midpoint can be overly restrictive or impractical in real decision scenarios. Nonetheless, this method offers a structured approach that can prove valuable in decision-making, particularly when the midpoint ideal solution assumption holds (Branke, 2008).  
	2.5.5 (h) Lexicographic Order Technique 
	In the lexicographic order method (Fishburn, 1974), DMs exercise control over objective functions according to their absolute interests. This approach involves a systematic optimization process in which each objective is addressed in a predetermined order of importance. Initially, the highest-priority objective is optimized, and the method checks whether it yields a unique solution. If a unique solution emerges, it is considered optimal. However, if multiple solutions arise, the process proceeds to the seco
	The method offers a systematic approach for MCDM without using complex mathematical models. It begins by assigning weights to each decision criterion. The first step involves identifying the most significant criterion and determining the value for each alternative with respect to this primary criterion. The alternatives are compared with reference to the primary criterion to identify the optimal alternatives. If a single alternative obviously has the best value for the primary criterion, it is selected as t
	Despite its simplicity and user-friendliness, the lexicographic order method presents two notable limitations (Branke et al., 2008). Firstly, assigning ranks and importance to decision criteria can prove to be a challenging task for DMs. Secondly, the method may prematurely conclude without a comprehensive evaluation of other criteria apart from the most important one. In situations where a single alternative excels in terms of the primary criterion, the evaluation of other alternatives may cease, even if t
	2.6 Summary of the Literature Review 
	Table 2.5 summarizes the literature closely related to this thesis’s subject matter and study objective, and Table 2.6 summarizes the MCDM methods.  
	Table 2.5: Summary of LiDAR placement approaches 
	Reference 
	Reference 
	Reference 
	Reference 

	Subject Matter 
	Subject Matter 

	Study Objective 
	Study Objective 


	(Mou et al., 2018b) 
	(Mou et al., 2018b) 
	(Mou et al., 2018b) 

	Optimal LiDAR Placement 
	Optimal LiDAR Placement 

	The Sparsity and discreteness of LiDAR was considered in defining an ROI. The ROI was further subdivided into smaller conical subspaces and presented as a non-linear optimization issue.  
	The Sparsity and discreteness of LiDAR was considered in defining an ROI. The ROI was further subdivided into smaller conical subspaces and presented as a non-linear optimization issue.  


	(T.-H. Kim & Park, 2020) 
	(T.-H. Kim & Park, 2020) 
	(T.-H. Kim & Park, 2020) 

	Placement Optimization of Multiple LiDAR sensors or AV 
	Placement Optimization of Multiple LiDAR sensors or AV 

	In order to maximize the point cloud density and minimize the dead zone, a Probability Occupancy Grid was introduced. A genetic algorithm was developed to carry out experiments. The results show that placement improves perception performance in AV. 
	In order to maximize the point cloud density and minimize the dead zone, a Probability Occupancy Grid was introduced. A genetic algorithm was developed to carry out experiments. The results show that placement improves perception performance in AV. 


	(Hu et al., 2022) 
	(Hu et al., 2022) 
	(Hu et al., 2022) 

	Investigating Multi-LiDAR Placement on Object detection performance in AV 
	Investigating Multi-LiDAR Placement on Object detection performance in AV 

	The ROI of the LiDAR was modelled as a cuboid similar to (Mou et al., 2018b). The cuboid was further subdivided into voxels. The LiDAR placement was evaluated by using proposing a Probability Occupancy Grid. The experiments were conducted using CARLA. 
	The ROI of the LiDAR was modelled as a cuboid similar to (Mou et al., 2018b). The cuboid was further subdivided into voxels. The LiDAR placement was evaluated by using proposing a Probability Occupancy Grid. The experiments were conducted using CARLA. 


	(Kini, 2020) 
	(Kini, 2020) 
	(Kini, 2020) 

	Sensor Position Optimization for Multiple LiDARs in AVs 
	Sensor Position Optimization for Multiple LiDARs in AVs 

	The point cloud density i.e., LiDAR Occupancy is maximized and used as an objective function to minimize the dead zone (blind spots).  The environment used for the experiment is CARLA using some algorithms from Point Cloud Library (PCL) and the ROI is defined using LiDAR occupancy boards (LOB).  
	The point cloud density i.e., LiDAR Occupancy is maximized and used as an objective function to minimize the dead zone (blind spots).  The environment used for the experiment is CARLA using some algorithms from Point Cloud Library (PCL) and the ROI is defined using LiDAR occupancy boards (LOB).  


	(Dybedal & Hovland, 2017) 
	(Dybedal & Hovland, 2017) 
	(Dybedal & Hovland, 2017) 

	Optimal Placement of 3D Sensors considering Range and Field of view 
	Optimal Placement of 3D Sensors considering Range and Field of view 

	A mixed integer linear programming framework was used to address the challenge of determining the best placement for 3D sensors. The space covered by each sensor is represented as a cone, considering limitations in both field of view and range. This cone model is subsequently divided into smaller cubes, and constraints are established to resolve the optimization problem. 
	A mixed integer linear programming framework was used to address the challenge of determining the best placement for 3D sensors. The space covered by each sensor is represented as a cone, considering limitations in both field of view and range. This cone model is subsequently divided into smaller cubes, and constraints are established to resolve the optimization problem. 


	(Domínguez et al., 2011) 
	(Domínguez et al., 2011) 
	(Domínguez et al., 2011) 

	LiDAR Based Perception Solution for AVs 
	LiDAR Based Perception Solution for AVs 

	Different obstacles are perceived and tracked based on real world acquired photos and LiDAR point clouds. The task is classified into four phases. i.e., Segmentation, fragmentation detection, clustering, and tracking. 
	Different obstacles are perceived and tracked based on real world acquired photos and LiDAR point clouds. The task is classified into four phases. i.e., Segmentation, fragmentation detection, clustering, and tracking. 


	(Berens et al., 2022) 
	(Berens et al., 2022) 
	(Berens et al., 2022) 

	Genetic Algorithm for the Optimal LiDAR sensor configuration on a vehicle.  
	Genetic Algorithm for the Optimal LiDAR sensor configuration on a vehicle.  

	This paper considers redundancy and the shape of the car to propose a genetic algorithm that finds the optimal position of multiple sensors concurrently. The environment used for the experiment is CARLA by setting up the Region of Interest as a cylinder with the height and radius depending on what the car is applicable for.  
	This paper considers redundancy and the shape of the car to propose a genetic algorithm that finds the optimal position of multiple sensors concurrently. The environment used for the experiment is CARLA by setting up the Region of Interest as a cylinder with the height and radius depending on what the car is applicable for.  



	  
	Table 2.6: Summary of MCDA methods 
	Method 
	Method 
	Method 
	Method 

	Summary 
	Summary 


	AHP (Analytic Hierarchy Process) 
	AHP (Analytic Hierarchy Process) 
	AHP (Analytic Hierarchy Process) 

	Hierarchical decision-making method using pairwise comparisons to derive priority scales, facilitating complex decisions by breaking them down into simpler pairwise comparisons. 
	Hierarchical decision-making method using pairwise comparisons to derive priority scales, facilitating complex decisions by breaking them down into simpler pairwise comparisons. 


	ELECTRE (ELimination Et Choix Traduisant la REalité) 
	ELECTRE (ELimination Et Choix Traduisant la REalité) 
	ELECTRE (ELimination Et Choix Traduisant la REalité) 

	Outranking method that assesses alternatives based on criteria and assigns ranks using concordance and discordance indices, allowing for the identification of preference relations. 
	Outranking method that assesses alternatives based on criteria and assigns ranks using concordance and discordance indices, allowing for the identification of preference relations. 


	TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 
	TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 
	TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) 

	Compares alternatives based on their distance to the ideal and anti-ideal solutions, ranking them by their proximity to the best solution and farthest from the worst solution. 
	Compares alternatives based on their distance to the ideal and anti-ideal solutions, ranking them by their proximity to the best solution and farthest from the worst solution. 


	MAUT (Multi-Attribute Utility Theory) 
	MAUT (Multi-Attribute Utility Theory) 
	MAUT (Multi-Attribute Utility Theory) 

	It assesses alternatives by analyzing their utility functions for each criterion. This allows for comparing alternatives using utility values obtained from individual preferences. 
	It assesses alternatives by analyzing their utility functions for each criterion. This allows for comparing alternatives using utility values obtained from individual preferences. 


	Weighted Sum Model 
	Weighted Sum Model 
	Weighted Sum Model 

	Aggregates scores by multiplying criterion scores by respective weights and summing them to rank alternatives based on their total weighted scores. 
	Aggregates scores by multiplying criterion scores by respective weights and summing them to rank alternatives based on their total weighted scores. 


	WPM (Weighted Product Model) 
	WPM (Weighted Product Model) 
	WPM (Weighted Product Model) 

	Ranks alternatives by multiplying the ratings of each alternative across criteria by their respective weights and aggregating these products to determine the best alternative. 
	Ranks alternatives by multiplying the ratings of each alternative across criteria by their respective weights and aggregating these products to determine the best alternative. 



	 
	 METHODS AND EXPERIMENTAL SET UP 
	3.1 Multi-Criteria Decision Framework 
	Figure 3.1 presents the steps of the multi-criteria decision framework. The first step is to establish the relevant alternatives for the LiDAR sensor placement. The next step is criteria identification. The criteria considered in this thesis consist of the point density, blind spot area, sensor cost, power consumption, ease of installation, sensor redundancy, and aesthetics. The next step is the weighting, whereby the relative levels of importance across the criteria are established. A direct weighting appr
	Subsequently, the different criteria are scaled using value functions. This process harmonizes diverse metrics and criteria, thus, transforming performance evaluations into a unified scale. This standardization facilitates meaningful comparisons among alternatives, particularly given the different measurement associated with each criterion. Following that, the amalgamation step integrates criteria weighting with the scaled performance evaluations. This process computes overall scores or rankings for each al
	Figure 3.1: Multi-Criteria Decision Framework 
	Figure
	3.1.1 Establishing Alternatives 
	This is the first phase of the methodology in which the alternatives are identified. A systematic approach was used to identify the different LiDAR placement alternatives to optimize the LiDAR placement for AVs. The initial step involved identifying key variables: LiDAR positions on the AV roof (Front left, front right, rear left, rear right, center, front, back, side left, side right), channel counts (16, 32, 64), sensor numbers (1, 2, 3, 4), and elevation (High – 20 inches, Low – 10 inches).  
	Figure 3.2 provides a visualization of the car's coordinate system, outlining the X, Y, and Z axes, which play an important role in understanding the LiDAR sensor placement on the roof of the AV. In this context, the four corners of the vehicle’s roof are marked to designate the front left, 
	front right, rear left and rear right positions on the vehicle. The center point is the center of the roof. Additionally, the top front location is situated between the front left and front right corners and the side left, and side right is between the front left and rear left and front right and rear right, respectively. These precise location references are used for the placement of the LiDAR sensors during each experiment within the experimental environment. Figure 3.2's delineation of the car's spatial 
	Figure
	 
	Figure 3.2: LiDAR placement Scenario for Roof of the Car 
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	Figure 3.3: 3D representation of LiDAR placement Scenario for Roof of the Car 
	The LiDAR placement alternatives were developed through combining all the variables. This approach ensured the consideration of a broad range of placement scenarios. This was obtained by running a code that combines the different factors under consideration while retaining only unique 
	placements. For example, for a single LiDAR sensor, reasonable placement positions included the front or  center of the roof. With two sensors, suitable placements were at the front and back. Three LiDAR sensors could be positioned at the front, side left, and side right or front left, front right, and rear. For four sensors, options entailed front, rear, side left, and side right placements or front left, front right, rear left, and rear right (Figures 3.3 – 3.5).   
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	Figure 3.4: LiDAR Placement positions 
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	Figure 3.5: 3D models of LiDAR (yellow color) placement options 
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	Furthermore, channel counts were considered when additional sensors were positioned at the back. For example, in the three LiDAR sensor placement, all three sensors could have the same channel, (e.g., 32, 32, 32), or a scenario could exist in which the two sensors at the front had a higher channel, while the sensor at the back had a lower channel (e.g., 64, 64, 16). This consideration allowed for a reasonable approach to sensor configuration, ensuring compatibility and optimizing LiDAR placement. Placing a 
	Table 3.1: LiDAR Placement Alternatives 
	ID 
	ID 
	ID 
	ID 

	LiDAR Number 
	LiDAR Number 

	Location on Roof of Vehicle 
	Location on Roof of Vehicle 

	Elevation 
	Elevation 

	Corresponding LiDAR Channels 
	Corresponding LiDAR Channels 


	1 
	1 
	1 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	High 
	High 

	16 
	16 


	2 
	2 
	2 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	High 
	High 

	32 
	32 


	3 
	3 
	3 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	High 
	High 

	64 
	64 


	4 
	4 
	4 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	Low 
	Low 

	16 
	16 


	5 
	5 
	5 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	Low 
	Low 

	32 
	32 


	6 
	6 
	6 

	1-LiDAR 
	1-LiDAR 

	Center 
	Center 

	Low 
	Low 

	64 
	64 


	7 
	7 
	7 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	High 
	High 

	16 
	16 


	8 
	8 
	8 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	High 
	High 

	32 
	32 


	9 
	9 
	9 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	High 
	High 

	64 
	64 


	10 
	10 
	10 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	Low 
	Low 

	16 
	16 


	11 
	11 
	11 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	Low 
	Low 

	32 
	32 


	12 
	12 
	12 

	1-LiDAR 
	1-LiDAR 

	Front 
	Front 

	Low 
	Low 

	64 
	64 


	13 
	13 
	13 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	16-16 
	16-16 


	14 
	14 
	14 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	32-32 
	32-32 


	15 
	15 
	15 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	64-64 
	64-64 


	16 
	16 
	16 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	16-16 
	16-16 


	17 
	17 
	17 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	32-32 
	32-32 


	18 
	18 
	18 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	64-64 
	64-64 


	19 
	19 
	19 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	32-16 
	32-16 


	20 
	20 
	20 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	64-32 
	64-32 


	21 
	21 
	21 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	32-16 
	32-16 


	22 
	22 
	22 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	64-32 
	64-32 


	23 
	23 
	23 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	High 
	High 

	64-16 
	64-16 


	24 
	24 
	24 

	2-LiDARs 
	2-LiDARs 

	Front, Rear 
	Front, Rear 

	Low 
	Low 

	64-16 
	64-16 


	25 
	25 
	25 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	16-16-16 
	16-16-16 


	26 
	26 
	26 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	32-32-16 
	32-32-16 


	27 
	27 
	27 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	32-32-32 
	32-32-32 


	28 
	28 
	28 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	64-64-16 
	64-64-16 


	29 
	29 
	29 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	64-64-32 
	64-64-32 


	30 
	30 
	30 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	High 
	High 

	64-64-64 
	64-64-64 


	31 
	31 
	31 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	16-16-16 
	16-16-16 


	32 
	32 
	32 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	32-32-16 
	32-32-16 


	33 
	33 
	33 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	32-32-32 
	32-32-32 


	34 
	34 
	34 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	64-64-16 
	64-64-16 


	35 
	35 
	35 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	64-64-32 
	64-64-32 


	36 
	36 
	36 

	3-LiDARs 
	3-LiDARs 

	Front Left, Front Right, Rear 
	Front Left, Front Right, Rear 

	Low 
	Low 

	64-64-64 
	64-64-64 


	37 
	37 
	37 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	16-16-16 
	16-16-16 


	38 
	38 
	38 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	32-16-16 
	32-16-16 


	39 
	39 
	39 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	32-32-32 
	32-32-32 


	40 
	40 
	40 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	64-16-16 
	64-16-16 



	Table 3.1 continued 
	41 
	41 
	41 
	41 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	64-32-32 
	64-32-32 


	42 
	42 
	42 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	High 
	High 

	64-64-64 
	64-64-64 


	43 
	43 
	43 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	16-16-16 
	16-16-16 


	44 
	44 
	44 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	32-16-16 
	32-16-16 


	45 
	45 
	45 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	32-32-32 
	32-32-32 


	46 
	46 
	46 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	64-16-16 
	64-16-16 


	47 
	47 
	47 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	64-32-32 
	64-32-32 


	48 
	48 
	48 

	3-LiDARs 
	3-LiDARs 

	Front, Side Left, Side Right 
	Front, Side Left, Side Right 

	Low 
	Low 

	64-64-64 
	64-64-64 


	49 
	49 
	49 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	16-16-16-16 
	16-16-16-16 


	50 
	50 
	50 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	32-32-16-16 
	32-32-16-16 


	51 
	51 
	51 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	32-32-32-32 
	32-32-32-32 


	52 
	52 
	52 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	64-64-16-16 
	64-64-16-16 


	53 
	53 
	53 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	64-64-32-32 
	64-64-32-32 


	54 
	54 
	54 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	High 
	High 

	64-64-64-64 
	64-64-64-64 


	55 
	55 
	55 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	16-16-16-16 
	16-16-16-16 


	56 
	56 
	56 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	32-32-16-16 
	32-32-16-16 


	57 
	57 
	57 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	32-32-32-32 
	32-32-32-32 


	58 
	58 
	58 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	64-64-16-16 
	64-64-16-16 


	59 
	59 
	59 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	64-64-32-32 
	64-64-32-32 


	60 
	60 
	60 

	4-LiDARs 
	4-LiDARs 

	Front Left, Front Right, Rear Left, Rear Right 
	Front Left, Front Right, Rear Left, Rear Right 

	Low 
	Low 

	64-64-64-64 
	64-64-64-64 


	61 
	61 
	61 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	16-16-16-16 
	16-16-16-16 


	62 
	62 
	62 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	32-16-16-16 
	32-16-16-16 


	63 
	63 
	63 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	32-32-32-32 
	32-32-32-32 


	64 
	64 
	64 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	64-16-16-16 
	64-16-16-16 


	65 
	65 
	65 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	64-32-32-16 
	64-32-32-16 


	66 
	66 
	66 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	High 
	High 

	64-64-64-64 
	64-64-64-64 


	67 
	67 
	67 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	16-16-16-16 
	16-16-16-16 


	68 
	68 
	68 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	32-16-16-16 
	32-16-16-16 


	69 
	69 
	69 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	32-32-32-32 
	32-32-32-32 


	70 
	70 
	70 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	64-16-16-16 
	64-16-16-16 


	71 
	71 
	71 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	64-32-32-16 
	64-32-32-16 


	72 
	72 
	72 

	4-LiDARs 
	4-LiDARs 

	Front, Side Left, Side Right, Rear 
	Front, Side Left, Side Right, Rear 

	Low 
	Low 

	64-64-64-64 
	64-64-64-64 



	 
	To develop an effective naming convention, which is used in the remainder of the thesis, Table 3.1 was used to develop a name for each of the LiDAR placement alternatives. The position on the roof of the vehicle, the elevation, and the channel configuration of the LiDAR sensors were utilized. 
	Table 3.2 provides the breakdown of the naming convention, offering clear meanings for each nomenclature. These descriptions enable an understanding of the placement and 
	configuration of LiDAR sensors on the vehicle for each of the placement alternatives. By deciphering the naming convention, the location, elevation, and channel configuration of the LiDAR sensors are identified.  
	Table 3.2: Naming Convention for the LiDAR Alternatives  
	Alternatives 
	Alternatives 
	Alternatives 
	Alternatives 

	Location on AV 
	Location on AV 


	CHigh16 
	CHigh16 
	CHigh16 

	Center of the car roof elevated high with a 16-channel LiDAR sensor 
	Center of the car roof elevated high with a 16-channel LiDAR sensor 


	FLow64 
	FLow64 
	FLow64 

	Front of the car roof elevated low with a 64-channel LiDAR sensor 
	Front of the car roof elevated low with a 64-channel LiDAR sensor 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	Front and back of the car roof elevated high, each equipped with a 16-channel LiDAR sensor 
	Front and back of the car roof elevated high, each equipped with a 16-channel LiDAR sensor 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	Front left, front right, and back of the car roof elevated high, each using a 16-channel LiDAR sensor 
	Front left, front right, and back of the car roof elevated high, each using a 16-channel LiDAR sensor 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	Front, side left, and side right of the car roof elevated high, with sensors of 32, 16, and 16 channels, respectively 
	Front, side left, and side right of the car roof elevated high, with sensors of 32, 16, and 16 channels, respectively 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	Front left, front right, rear left, and rear right of the car roof elevated high, each with a 16-channel LiDAR sensor 
	Front left, front right, rear left, and rear right of the car roof elevated high, each with a 16-channel LiDAR sensor 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	Front, side left, side right, and back of the car roof elevated low, equipped with 64, 32, 32, and 16 channel LiDAR sensors, respectively 
	Front, side left, side right, and back of the car roof elevated low, equipped with 64, 32, 32, and 16 channel LiDAR sensors, respectively 



	3.1.2 Identification of Evaluation Criteria  
	Table 3.3 presents the criteria used in this thesis and their descriptions. An in-depth explanation of each criterion is presented in this section. 
	  
	Table 3.3: Identified Criteria, Definition, and Importance 
	Criterion 
	Criterion 
	Criterion 
	Criterion 

	Explanation 
	Explanation 

	Importance 
	Importance 


	Point Density 
	Point Density 
	Point Density 

	The number of LiDAR points collected per unit area or volume. Higher point density provides more detailed and accurate data for detecting small or distant objects.  
	The number of LiDAR points collected per unit area or volume. Higher point density provides more detailed and accurate data for detecting small or distant objects.  

	Assesses the level of detail and accuracy required for object detection.  
	Assesses the level of detail and accuracy required for object detection.  


	Cost of Sensor 
	Cost of Sensor 
	Cost of Sensor 

	This is the financial cost associated with acquiring the LiDAR sensor(s).  
	This is the financial cost associated with acquiring the LiDAR sensor(s).  

	Considers the budget constraints and the cost-effectiveness of the sensor(s) in relation to the benefits they provide. 
	Considers the budget constraints and the cost-effectiveness of the sensor(s) in relation to the benefits they provide. 


	Power Consumption 
	Power Consumption 
	Power Consumption 

	This measures the amount of electrical power (in watts) that the LiDAR sensor(s) consume during operation.  
	This measures the amount of electrical power (in watts) that the LiDAR sensor(s) consume during operation.  

	Evaluates the importance of conserving power in autonomous vehicles where energy efficiency can affect range and operating costs. 
	Evaluates the importance of conserving power in autonomous vehicles where energy efficiency can affect range and operating costs. 


	Blind Spot Area 
	Blind Spot Area 
	Blind Spot Area 

	This criterion focuses on the area around the vehicle that is not covered or is poorly covered by the LiDAR sensor(s).  
	This criterion focuses on the area around the vehicle that is not covered or is poorly covered by the LiDAR sensor(s).  

	Evaluates the significance of minimizing blind spots to enhance safety. 
	Evaluates the significance of minimizing blind spots to enhance safety. 


	Sensor Redundancy  
	Sensor Redundancy  
	Sensor Redundancy  

	The number of LiDAR sensors used on the autonomous vehicle. More sensors can provide redundancy, increase coverage, and enhance the robustness of the perception system. 
	The number of LiDAR sensors used on the autonomous vehicle. More sensors can provide redundancy, increase coverage, and enhance the robustness of the perception system. 

	Assesses the importance of including redundancy in the LiDAR setup and whether multiple sensors are needed for safety and reliability. 
	Assesses the importance of including redundancy in the LiDAR setup and whether multiple sensors are needed for safety and reliability. 


	Aesthetics 
	Aesthetics 
	Aesthetics 

	Aesthetics considers the visual appearance of the LiDAR sensor(s) and how well they integrate with the vehicle's design.  
	Aesthetics considers the visual appearance of the LiDAR sensor(s) and how well they integrate with the vehicle's design.  

	Aesthetics may be relevant in consumer markets in which appearance matters. 
	Aesthetics may be relevant in consumer markets in which appearance matters. 


	Ease of Installation 
	Ease of Installation 
	Ease of Installation 

	Ease of installation assesses how straightforward and efficient it is to install and set up the LiDAR sensor(s) on the vehicle. Factors may include the time, complexity, and expertise required. 
	Ease of installation assesses how straightforward and efficient it is to install and set up the LiDAR sensor(s) on the vehicle. Factors may include the time, complexity, and expertise required. 

	Ease of installation can impact the deployment timeline and cost, making it important for practical considerations. 
	Ease of installation can impact the deployment timeline and cost, making it important for practical considerations. 



	3.1.2 (a) Point Density 
	This metric is assessed by quantifying the number of LiDAR points per unit volume of object. The data for the metric is collected using the CARLA simulator (previously explained in this chapter). The numbers of points of spawned objects at intervals to the ego vehicle (the AV equipped with sensors and systems for self-navigation) we recollected and used to calculate the point density per unit volume of the object. The average point density is used as a metric for decision-making. Segmentation techniques wer
	 𝑃𝑜𝑖𝑛𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦=𝑁𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑉𝑜𝑙𝑢𝑚𝑒 
	 
	where Nr of points represents the total number of LiDAR points acquired for the specific object under consideration. The Object Volume is determined based on the object’s dimensions, including its length, width, and height, obtained from the bounding box surrounding the object.  
	𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ ×ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 (points/m3) 
	Figure 3.6 presents a high-density and low-density sample of acquired point clouds, and Figure 3.7 presents a pedestrian point cloud at varying distances from the ego vehicle in a bounding box. 
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	Figure 3.6: Point Clouds 
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	Figure 3.7: Pedestrian point cloud illustrated in a bounding box at 10m and 90m respectively, from the ego vehicle 
	3.1.2 (b) Cost of Sensor 
	Selecting the most suitable LiDAR sensor involves finding a balance between cost and performance. While high-cost sensors may necessitate a larger initial investment, they are often equipped with advanced features that significantly enhance operational efficiency or offer higher accuracy (Ortiz Arteaga et al., 2019). These advanced capabilities translate into the acquisition of more precise and reliable data, which is paramount for the safe and effective operation of AVs. 
	One of the factors driving the cost of LiDAR systems is the high precision their lasers require. These lasers must emit light at precise wavelengths, thus, demanding costly and intricate manufacturing processes. Moreover, the optics responsible for directing and focusing the laser beams contribute substantially to the overall cost, with their complexity further raising expenses (Hassan, 2023). Nonetheless, the past two decades have witnessed significant strides in industrial laser technology, which has led 
	In evaluating the cost of LiDAR sensors for optimal placement, it is important to carefully assess specific requirements and strike the right balance with operational objectives. Achieving this equilibrium ensures that the chosen LiDAR sensor seamlessly aligns with the operational goals of the AVs. On average, LiDAR sensor costs vary based on their specifications. A 16-channel LiDAR sensor typically falls within the range of US$4,000 and $5,000, while a 32-channel LiDAR sensor is priced between US$9,000 and
	3.1.2 (c) Power Consumption 
	Power consumption is considered a metric for optimizing the LiDAR sensor placement because efficiency and reliability are of paramount importance. As automakers and new mobility companies assess LiDAR technology, the power consumption implications are important. The difference in power consumption between LiDAR sensors can have a significant impact on the overall performance and efficiency of an AV system. Power consumption is not merely a technical detail but carries tangible consequences for various aspec
	Consequently, the choice of LiDAR sensor technology can have far-reaching implications for energy efficiency, operational costs, and environmental impact, hence, power consumption is a pivotal consideration for automakers and companies involved in advancing AV technology. The decision to opt for LiDAR sensors that consume less power not only contributes to sustainability but also enhances the overall performance and economic feasibility of AV systems. A 16-channel LiDAR sensor consumes approximately 8 watts
	3.1.2 (d) Blind Spot Regions 
	The blind spot region is another metric that can be obtained from the LiDAR point clouds. Blind spot regions are areas around the vehicle that are not visible to the LiDAR sensor (see Figure 3.8 for typical LiDAR sensor coverage and blind spot regions). These areas can pose a significant risk for collisions with objects, pedestrians, or other vehicles. Therefore, evaluating these regions is necessary to ensure the safety of passengers, pedestrians, and other drivers on the road, and to make reliable decisio
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	Figure 3.8: Sensor Coverage and Blind Spot Regions of LiDAR Sensor 
	Estimating the blind spot regions for the purpose of this research involved processing distinct point cloud data outputs from the simulator. In this way, variations in coverage in areas proximate to the vehicle across different placement alternatives were identified. This information served as the basis for rating the alternatives derived from the blind spot regions by assigning a higher value to the highest blind spot region and a lower value to smaller blind spot regions. The blind spot regions varied acr
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	 Blindspot region sample1                             (b) Blindspot region sample 2                                 


	Figure 3.9: Blindspot Region Coverage  
	3.1.2 (e) Sensor Redundancy 
	Sensor redundancy pertains to the utilization of multiple LiDAR sensors, either of the same type or different types, providing overlapping or complementary data. This redundancy serves as an additional layer of safety and reliability in the context of AVs. In the event of sensor failure, discrepancies, or adverse environmental conditions, these redundant LiDAR sensors can seamlessly assume control to ensure the continued accuracy and safety of the system. This not only ensures the protection of passengers a
	3.1.2 (f) Aesthetics 
	The visual appeal of AVs is relevant in shaping public perceptions. While the fundamental performance is essential and the most important factor of AVs, people also place significant emphasis on design and aesthetics. If the sensor on the AV is relatively large or too high, the form may not be accepted by the public (Chen et al., 2021).  
	In this thesis, the aesthetic consideration is associated with the number (count) and elevation of the LiDAR sensors in the AV. Aesthetic judgments in this context are entirely subjective and have the potential to exert some influence on design decisions in AV development 
	based on the weight assigned to the aesthetics criteria. The number of sensors could significantly impact the aesthetic appeal of an AV's external design, which primarily relies on users' perceptual judgments. An excessive number of sensors could potentially create a less appealing appearance. Conversely, a better arrangement of sensors could contribute to a modern visual design. The strategic incorporation of multiple sensors could convey a distinct impression of cutting-edge technology. 
	The elevation of the sensors, particularly their integration within the vehicle's structure, is equally important for overall aesthetics. Sensors situated at specific elevations must be seamlessly integrated to ensure a visually pleasing vehicle exterior. While aesthetic considerations may not outweigh concerns about vehicle safety and robustness for participants, they remain an important factor. Striking the right balance is imperative to fostering confidence in AV technology and ensuring that AVs are both
	3.1.2 (g) Ease of Installation 
	The ease of installation describes how complex or demanding the installation process is. It directly affects the efficiency and cost-effectiveness of sensor installation and its integration with other sensors. In this research, the factor revolves around the assumption that as the number of sensors increases, the installation process becomes progressively more complex and demanding. 
	With a single sensor configuration, the installation process is characterized by relative simplicity. This configuration typically demands less physical and structural alterations to the vehicle, making it a convenient and cost-effective choice for manufacturers. The ease of installation can streamline the production process and reduce associated costs. As the number of sensors in a configuration increases, so does the complexity of the installation process. Multiple sensors necessitate a more extensive net
	3.1.3
	3.1.3
	 
	Weighting Method 
	 

	The significance of each criterion in the LiDAR placement optimization framework was determined using three different sources: equal weighting, sensitivity analysis, and responses from questionnaire surveys. These sources were used to allocate weights to each criterion, ensuring that the sum of all allocated weights equaled 100. A higher weight indicates a greater degree of importance in the decision-making process. Table 3.4 presents the weights allocation table used for all instances. The results for the 
	Table 3.4: Direct weighting table 
	Criteria 
	Criteria 
	Criteria 
	Criteria 

	Weight 
	Weight 


	Point Density 
	Point Density 
	Point Density 

	 
	 


	Cost of Sensor 
	Cost of Sensor 
	Cost of Sensor 

	 
	 


	Power Consumption 
	Power Consumption 
	Power Consumption 

	 
	 


	Blindspot Area 
	Blindspot Area 
	Blindspot Area 

	 
	 


	Sensor Redundancy 
	Sensor Redundancy 
	Sensor Redundancy 

	 
	 


	Aesthetics 
	Aesthetics 
	Aesthetics 

	 
	 


	Ease of Installation 
	Ease of Installation 
	Ease of Installation 

	 
	 


	Total 
	Total 
	Total 

	100 
	100 



	3.1.4
	3.1.4
	 
	Scaling Method 
	 

	The primary objective of scaling is to establish a consistent scale across the criteria to allow comparative analysis. Given that the performance criteria have diverse measurement units, for example, cost in dollars and power consumption in watts, this process involves the use of a value function to standardize the various performance criterion levels to a unified scale ranging from 0 to 100. In this scale, a rating of 100 denotes the most favorable level of performance, while lower values signify progressi
	Value functions and utility functions serve as indispensable tools in different decision-making scenarios. The value function approach is used when decisions unfold in a scenario of certainty, allowing DMs to confidently assess and compare attribute levels. Conversely, the utility function approach applies when decision-making occurs in conditions of risk and uncertainty (Bai et al., 2008; Sinha & Labi, 2007). In scenarios in which outcomes are subject to probabilistic elements and not guaranteed, utility f
	Value scaling offers a systematic framework for transforming attributes into quantifiable indicators of worth and desirability. The value function embodies the DM's preferences concerning 
	diverse attribute levels when certainty prevails. Within this framework, the most favored outcome is assigned a value of 1 or 100%, symbolizing the most desirable level of attainment, while the least favorable outcome receives a value of zero, denoting the least desirable. Utility functions represent a more specialized form of value function because they represent not only the intrinsic value associated with various attribute levels but also the DM's stance on risk. In other words, they account for the DM’s
	To derive the value scaling functions in this thesis, a questionnaire using the mid-value splitting technique was dispensed to respondents. In this technique, the respondent (DM) assigns specific values to each level of the criterion (Figure 3.8) to assign values to various criteria.  
	The value function establishes a connection between different levels of the performance criterion X and values ranging from 0 to 100, where 100 signifies the most favorable level. The development of a value function involves determining the values for specific points within the function. These points play a critical role in assessing the desirability of different levels of a performance criterion (X). The objective is to establish the value associated with three intermediate points (X25, X50, and X75) with 
	The process begins by defining reference values for the worst (most unfavorable) and best (most favorable) levels. The worst level is assigned a value of 0, indicating the lowest desirability. In contrast, the best level is assigned a value of 100, representing the highest desirability. The following steps then ensue:  
	•
	•
	•
	 Identify X50: X50 is the point within the value function where equal satisfaction is derived from these two conditions: (a) performance improvement from the worst level to X50 and (b) performance improvement from X50 to the best level. 

	•
	•
	 Determine X25: X25 is identified as the point at which an equal level of satisfaction is achieved regarding performance improvement from the worst level to X25 and performance improvement from X25 to X50. 

	•
	•
	 Determine X75: X75 is the point where an equal level of satisfaction is derived from performance improvement from X50 to X75 and performance improvement from X75 to the best level. 

	•
	•
	 Finally, a consistency check is carried out to validate the values assigned to X25, X50, and X75. This check involves ensuring that the perceived improvements from X25 to X50 and 


	from X
	from X
	from X
	50 to X75 display an equal level of satisfaction. If the response to this consistency check is affirmative, indicating consistent values, the evaluation proceeds. If not, reevaluation and adjustment is performed. 


	 
	Figure
	Figure 3.10: A conceptual Value Function 
	The value function establishes a connection between different levels of the performance criterion X and values ranging from 0 to 100, where 100 signifies the most favorable level. The development of a value function involves determining the values for specific points within the function. These points play an important role in assessing the desirability of distinct levels of a performance criterion (X). The objective is to establish the value associated with three intermediate points (X25, X50, and X75) to a
	The process begins by defining reference values for the worst (most unfavorable) and best (most favorable) levels. The worst level is assigned a value of 0, indicating the lowest desirability. In contrast, the best level is assigned a value of 100, representing the highest desirability. The following steps are then followed:  
	•
	•
	•
	 Identify X50: X50 is the point within the value function where equal satisfaction is derived from these two conditions: (a) performance improvement from the worst level to X50 and (b) performance improvement from X50 to the best level. 


	•
	•
	•
	 Determine X25: X25 is identified as the point at which an equal level of satisfaction is achieved regarding performance improvement from the worst level to X25 and performance improvement from X25 to X50. 

	•
	•
	 Determine X75: X75 is the point where an equal level of satisfaction is derived from performance improvement from X50 to X75 and performance improvement from X75 to the best level. 

	•
	•
	 Finally, a consistency check is carried out to validate the values assigned to X25, X50, and X75. This check involves ensuring that the perceived improvements from X25 to X50 and from X50 to X75 display an equal level of satisfaction. If the response to this consistency check is affirmative, indicating consistent values, the evaluation proceeds. If not, reevaluation and adjustment is done. 


	 
	An example of the implementation of the value function used to collect data is shown in Figure 3.11. 
	 
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure 3.11: Value Function example for Sensor Cost 
	3.1.5 Amalgamation  
	This is the step that combines the weighted and scaled levels of all the performance criteria for each LiDAR placement alternative. In this thesis, the amalgamation technique used is the weighted 
	sum method. This is presented below. For j alternatives and I criteria, the weighted sum of all the criteria for each alternative j, is: 𝑊𝑆𝑗=∑𝑤𝑖×𝑆𝑖𝑗𝑚𝑖=1  
	where: 
	•
	•
	•
	 𝑖=𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛,𝑖=1,2,…..𝐼 

	•
	•
	 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒,𝑗=1,2,….𝐽 

	•
	•
	 𝑊𝑆𝑗 is the weighted sum for alternative j. 

	•
	•
	 𝑊𝑖 denotes the weight allocated to criterion i. 

	•
	•
	 𝑆𝑖𝑗 is the performance of alternative j on criterion i. 

	•
	•
	 I is the total number of criteria.  

	•
	•
	 J is the total number of alternative LiDAR placement designs 


	The result of the amalgamation stage is a score, or value assigned to each LiDAR placement design alternative. These scores facilitate a straightforward ranking of the alternatives, with higher scores generally signifying superior overall. 
	3.1.6 Decision  
	This is the final stage of the MCDA process. During this phase, the most preferred alternative is chosen based on the results of the amalgamation step. Typically, the alternative that ranks highest or scores the best across the established criteria is selected after conducting a sensitivity analysis. Before arriving at the final decision, a sensitivity analysis is conducted to evaluate how adjustments in the criteria weights could influence the ultimate choice. If the DM deems it necessary, the weight and v
	3.2 Questionnaire Survey Method 
	To conduct the questionnaire, the initial step involved designing a questionnaire following the guidelines outlined by the Institutional Review Board protocols at Purdue University, West 
	Lafayette, Indiana. The survey questionnaire was granted an exemption category under #IRB-2023-1570 and refrained from collecting any personally identifiable information. 
	The questionnaire was administered to capture participants' preferences regarding the relative importance of various criteria. To ensure that the respondents could offer valuable insights into the research, individuals with expertise in the subject matter were selectively recruited. All recruitment and associated procedures strictly adhered to the protocols set forth by the Institutional Review Board at Purdue University. 
	3.1 Experimental Setup 
	For the subsequent data collection (Chapter 4) to assess the various LiDAR placement alternatives, an experimental setup involving CARLA was used. CARLA is an open-source driving simulator that supports the training and validation of different aspects of AV driving, such as perception and control. In this thesis, the CARLA platform provided the tools and resources needed for the LiDAR data collection and experimentation within a controlled virtual environment. The simulation environment is built on the Unre
	One significant advantage of CARLA is its flexibility (Gómez-Huélamo et al., 2021), which allows for the modification of the simulation environment to create custom scenarios for testing and evaluation. Labi (2014) underscores how simulation tools offer unparalleled flexibility by seamlessly allowing specific input parameters to be adjusted. This flexibility fosters an adaptable experimental environment, crucial for testing diverse scenarios, including those pertinent to this thesis. Specifically, in this s
	 
	Figure
	Figure 3.12:  Experimental Setup 
	The Python API in CARLA enables users to interact with the CARLA simulator using the Python programming language through a set of tools and libraries. With the use of the API, users can create and control vehicles, access different sensors, and test their algorithms. This helps reduce the complexity and cost of physical experiments. The Python API also provides code examples demonstrating how to interact with the simulator, which serves as a starting point for users to develop custom scripts depending on th
	 
	Some terminologies used in connecting to the simulator are explained below:   
	•
	•
	•
	 A Client object is created to establish a connection with the CARLA simulator running on the local machine at the default port 2000. 

	•
	•
	 The get_world() method is used to obtain a reference to the current simulation world object, which represents the virtual environment of the simulator. 

	•
	•
	 The set_timeout() method is used to set the timeout for network requests between the client and the simulator to 2000 milliseconds. 


	•
	•
	•
	 The get_blueprint_library() method is used to retrieve the blueprint library, which contains all the possible actors that can be spawned in the simulation, such as vehicles, props, and pedestrians. 

	•
	•
	 The get_map() method is used to obtain the current map, which in this case, is Town 03 where the experiments are conducted. 

	•
	•
	 The get_spawn_points() method is used to obtain a list of available spawn points on the map. These spawn points represent different locations where actors can be placed in the simulation. For this thesis, the experiments were conducted using the same spawn point. 

	•
	•
	 The filter () method is used to filter the actor list to only include vehicles in specific cases.  


	 
	Figure
	Figure 3.13: CARLA software architecture (obtained from open-source CARLA documentation) 
	The vehicles available in CARLA’s menu are based on real-world vehicles and include models such as Audi, Citroen, Chevrolet Impala, Tesla, and Lincoln MKZ. However, there could be some minor differences in the vehicle dimensions due to the limitations of the simulation environment (as shown in Table 3.5 and 3.6). The Audi A2 was used in this thesis. The Audi A2 was selected due to its unique physical design and engineering features. This vehicle strikes a balance between advanced technology and practical ur
	 
	 
	Table 3.5: Real-World Dimensions of Audi a2 Vehicle 
	 
	 
	 
	 

	Dimensions (inches) 
	Dimensions (inches) 

	Dimensions (meters) 
	Dimensions (meters) 


	Height 
	Height 
	Height 

	61.1 
	61.1 

	1.553 
	1.553 


	Width (without mirrors) 
	Width (without mirrors) 
	Width (without mirrors) 

	65.9 
	65.9 

	1.673 
	1.673 


	Length 
	Length 
	Length 

	150.6 
	150.6 

	3.826 
	3.826 



	Table 3.6: CARLA Dimensions of Audi a2 Vehicle 
	 
	 
	 
	 

	Dimensions (inches) 
	Dimensions (inches) 

	Dimensions (meters) 
	Dimensions (meters) 


	Height 
	Height 
	Height 

	61.0 
	61.0 

	1.549 
	1.549 


	Width (without mirrors) 
	Width (without mirrors) 
	Width (without mirrors) 

	67.1 
	67.1 

	1.790 
	1.790 


	Length 
	Length 
	Length 

	145.9 
	145.9 

	3.705 
	3.705 



	3.2 Summary of Chapter 3 
	Chapter 3 discusses the study methods and experimental setup, establishing the foundation for the MCDM framework applied in the thesis. The chapter commences by outlining the steps involved in establishing LiDAR placement design alternatives, which serves as a fundamental phase in the decision-making process. This involves meticulous identification and enumeration of various evaluation criteria, providing a comprehensive spectrum for assessment. These criteria encompass diverse aspects such as point density
	The chapter further explores the methodologies used in the decision framework. It explains the approach used to assign weights to these criteria, thereby recognizing their relative significance in the decision-making process. Additionally, the chapter addresses the scaling method used to standardize the diverse metrics into a unified measurement system. The process of amalgamation, in which the disparate measurements are combined into an overall assessment, is also detailed, leading up to the decision-makin
	The significance of the questionnaire survey is also highlighted, underscoring the value of garnering empirical insights from DMs. This particular methodology aids in validating and refining the evaluation criteria and methodologies inherent in the decision framework. Finally, the chapter concludes by explaining the experimental setup and presenting the simulation environment used in conducting the experiments.
	 DATA COLLECTION 
	4.1 Introduction 
	The data collection methodology in this thesis encompasses a multifaceted approach involving diverse sources to ensure the comprehensive acquisition of information. First, simulator data was gathered using CARLA, an open-source driving simulator. This simulator provided data in the form of LiDAR point clouds, which were subsequently processed to derive insights from the data. Then, data was compiled from the datasheets of LiDAR sensor manufacturers. This inclusion was pivotal because it supplies technical d
	Regarding the weighting data categories, the thesis employs three distinct approaches: equal weighting, respondent-assigned weighting, and randomly assigned weights. Equal weighting ensures the balanced importance of all data points by assigning equal significance to each criterion. In contrast, respondent-assigned weighting involves assigning weights based on the relevance of the criteria perceived by the respondents, thereby integrating a subjective yet informed perspective into the dataset. Randomly assi
	4.1.1 Data Collected From CARLA 
	Experiments were conducted in CARLA using the Python API to interface with the simulator via custom-written code. From the simulator, data on the point density and blind spot regions was obtained. Table 4.1 presents the data extracted from the simulator. The average vehicle point density (PDV), average pedestrian point density (PDP), and blind spot region ratings (BR) were all obtained from the experiments. The values for PDV and PDP were all derived from the number of LiDAR points for each vehicle and pede
	from 10 (indicating the least blind spot regions) to 120 (representing the alternative with the highest degree of blind spot regions). 
	Table 4.1: Criteria data Collected from the simulation experiments 
	Alternatives 
	Alternatives 
	Alternatives 
	Alternatives 

	PDP (pts/m3) 
	PDP (pts/m3) 

	PDP 
	PDP 
	(pts/m3) 

	BR (Rating) 
	BR (Rating) 


	CHigh16 
	CHigh16 
	CHigh16 

	54 
	54 

	55 
	55 

	70 
	70 


	CHigh32 
	CHigh32 
	CHigh32 

	84 
	84 

	95 
	95 

	70 
	70 


	CHigh64 
	CHigh64 
	CHigh64 

	104 
	104 

	115 
	115 

	70 
	70 


	CLow16 
	CLow16 
	CLow16 

	96 
	96 

	100 
	100 

	60 
	60 


	CLow32 
	CLow32 
	CLow32 

	116 
	116 

	115 
	115 

	60 
	60 


	CLow64 
	CLow64 
	CLow64 

	145 
	145 

	193 
	193 

	60 
	60 


	FHigh16 
	FHigh16 
	FHigh16 

	94 
	94 

	89 
	89 

	50 
	50 


	FHigh32 
	FHigh32 
	FHigh32 

	153 
	153 

	196 
	196 

	50 
	50 


	FHigh64 
	FHigh64 
	FHigh64 

	145 
	145 

	79 
	79 

	50 
	50 


	FLow16 
	FLow16 
	FLow16 

	93 
	93 

	104 
	104 

	40 
	40 


	FLow32 
	FLow32 
	FLow32 

	128 
	128 

	164 
	164 

	40 
	40 


	FLow64 
	FLow64 
	FLow64 

	158 
	158 

	236 
	236 

	40 
	40 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	189 
	189 

	174 
	174 

	120 
	120 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	311 
	311 

	400 
	400 

	120 
	120 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	311 
	311 

	394 
	394 

	120 
	120 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	197 
	197 

	210 
	210 

	30 
	30 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	317 
	317 

	239 
	239 

	30 
	30 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	302 
	302 

	438 
	438 

	30 
	30 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	256 
	256 

	315 
	315 

	120 
	120 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	310 
	310 

	390 
	390 

	120 
	120 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	256 
	256 

	332 
	332 

	30 
	30 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	325 
	325 

	423 
	423 

	30 
	30 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	269 
	269 

	327 
	327 

	120 
	120 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	261 
	261 

	358 
	358 

	30 
	30 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	220 
	220 

	205 
	205 

	90 
	90 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	300 
	300 

	382 
	382 

	90 
	90 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	334 
	334 

	424 
	424 

	90 
	90 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	301 
	301 

	386 
	386 

	90 
	90 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	346 
	346 

	451 
	451 

	90 
	90 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	346 
	346 

	448 
	448 

	90 
	90 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	217 
	217 

	235 
	235 

	20 
	20 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	292 
	292 

	392 
	392 

	20 
	20 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	340 
	340 

	470 
	470 

	20 
	20 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	297 
	297 

	404 
	404 

	20 
	20 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	333 
	333 

	449 
	449 

	20 
	20 



	 
	Table 4.1 continued 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	337 
	337 

	453 
	453 

	20 
	20 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	309 
	309 

	279 
	279 

	90 
	90 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	348 
	348 

	381 
	381 

	90 
	90 


	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	438 
	438 

	578 
	578 

	90 
	90 


	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	367 
	367 

	411 
	411 

	90 
	90 


	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	466 
	466 

	604 
	604 

	90 
	90 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	472 
	472 

	592 
	592 

	90 
	90 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	294 
	294 

	317 
	317 

	80 
	80 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	344 
	344 

	432 
	432 

	80 
	80 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	450 
	450 

	628 
	628 

	80 
	80 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	349 
	349 

	440 
	440 

	80 
	80 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	461 
	461 

	659 
	659 

	80 
	80 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	475 
	475 

	670 
	670 

	80 
	80 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	404 
	404 

	372 
	372 

	110 
	110 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	524 
	524 

	648 
	648 

	110 
	110 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	617 
	617 

	799 
	799 

	110 
	110 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	565 
	565 

	684 
	684 

	110 
	110 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	606 
	606 

	779 
	779 

	110 
	110 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	617 
	617 

	780 
	780 

	110 
	110 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	397 
	397 

	410 
	410 

	10 
	10 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	514 
	514 

	662 
	662 

	10 
	10 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	621 
	621 

	804 
	804 

	10 
	10 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	571 
	571 

	749 
	749 

	10 
	10 


	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 

	605 
	605 

	791 
	791 

	10 
	10 


	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 

	617 
	617 

	803 
	803 

	10 
	10 


	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 

	387 
	387 

	355 
	355 

	110 
	110 


	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 

	452 
	452 

	493 
	493 

	110 
	110 


	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 

	571 
	571 

	730 
	730 

	110 
	110 


	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 

	437 
	437 

	464 
	464 

	110 
	110 


	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 

	606 
	606 

	745 
	745 

	110 
	110 


	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 

	591 
	591 

	737 
	737 

	110 
	110 


	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 

	398 
	398 

	415 
	415 

	100 
	100 


	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 

	436 
	436 

	532 
	532 

	100 
	100 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	581 
	581 

	788 
	788 

	100 
	100 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	457 
	457 

	581 
	581 

	100 
	100 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	546 
	546 

	731 
	731 

	100 
	100 


	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 

	594 
	594 

	775 
	775 

	100 
	100 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	581 
	581 

	788 
	788 

	100 
	100 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	457 
	457 

	581 
	581 

	100 
	100 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	546 
	546 

	731 
	731 

	100 
	100 


	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 

	594 
	594 

	775 
	775 

	100 
	100 



	4.1.2 Data Collected From Other Sources  
	Of the seven criteria used in this study, some, including average sensor cost, power consumption, sensor redundancy, and ease of installation, were not obtained from the CARLA simulator. 
	The data for average sensor cost was collected from online datasheets provided by LiDAR sensor vendors and through direct communication with sellers. To calculate the average sensor cost, the average between the lower and upper cost range was determined. Power consumption information was extracted from the datasheets of the LiDAR sensors. Sensor redundancy within this thesis denotes the level of backup or failover capability inherent in the sensor setup. It quantifies the system's resilience to sensor malfu
	Ease of installation was assessed using an ordinal ranking from 1 to 4, where 1 indicates the easiest installation and 4 the most difficult. The ranking is based on the number of sensors to be installed, with one sensor receiving a raw value of 1, and four sensors assigned a value of 4. The assumption of assessing ease of installation based on an ordinal ranking is based on the assumption of a logical correlation between complexity and quantity.  
	Table 4.2 presents the relevant data. 
	  
	Table 4.2: Criteria data collected from other sources 
	Alternatives 
	Alternatives 
	Alternatives 
	Alternatives 

	SC (Dollars) 
	SC (Dollars) 

	PC  
	PC  
	(Watts) 

	SR 
	SR 
	(Rating) 

	AES 
	AES 
	(Rating) 

	EOI (Rating) 
	EOI (Rating) 


	CHigh16 
	CHigh16 
	CHigh16 

	4,500 
	4,500 

	8 
	8 

	0.00 
	0.00 

	2 
	2 

	1 
	1 


	CHigh32 
	CHigh32 
	CHigh32 

	11,500 
	11,500 

	10 
	10 

	0.00 
	0.00 

	2 
	2 

	1 
	1 


	CHigh64 
	CHigh64 
	CHigh64 

	12,500 
	12,500 

	20 
	20 

	0.00 
	0.00 

	2 
	2 

	1 
	1 


	CLow16 
	CLow16 
	CLow16 

	4,500 
	4,500 

	8 
	8 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	CLow32 
	CLow32 
	CLow32 

	11,500 
	11,500 

	10 
	10 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	CLow64 
	CLow64 
	CLow64 

	12,500 
	12,500 

	20 
	20 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	FHigh16 
	FHigh16 
	FHigh16 

	4,500 
	4,500 

	8 
	8 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	FHigh32 
	FHigh32 
	FHigh32 

	11,500 
	11,500 

	10 
	10 

	0.00 
	0.00 

	2 
	2 

	1 
	1 


	FHigh64 
	FHigh64 
	FHigh64 

	12,500 
	12,500 

	20 
	20 

	0.00 
	0.00 

	2 
	2 

	1 
	1 


	FLow16 
	FLow16 
	FLow16 

	4,500 
	4,500 

	8 
	8 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	FLow32 
	FLow32 
	FLow32 

	11,500 
	11,500 

	10 
	10 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	FLow64 
	FLow64 
	FLow64 

	12,500 
	12,500 

	20 
	20 

	0.00 
	0.00 

	4 
	4 

	1 
	1 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	9,000 
	9,000 

	16 
	16 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	23,000 
	23,000 

	20 
	20 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	25,000 
	25,000 

	40 
	40 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	9,000 
	9,000 

	16 
	16 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	23,000 
	23,000 

	20 
	20 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	25,000 
	25,000 

	40 
	40 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	16,000 
	16,000 

	18 
	18 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	24,000 
	24,000 

	30 
	30 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	16,000 
	16,000 

	18 
	18 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	24,000 
	24,000 

	30 
	30 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	17,000 
	17,000 

	28 
	28 

	50.00 
	50.00 

	2 
	2 

	2 
	2 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	17,000 
	17,000 

	28 
	28 

	50.00 
	50.00 

	4 
	4 

	2 
	2 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	13,500 
	13,500 

	24 
	24 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	27,500 
	27,500 

	28 
	28 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	34,500 
	34,500 

	30 
	30 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	29,500 
	29,500 

	48 
	48 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	36,500 
	36,500 

	50 
	50 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	37,500 
	37,500 

	60 
	60 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	13,500 
	13,500 

	24 
	24 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	27,500 
	27,500 

	28 
	28 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	34,500 
	34,500 

	30 
	30 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	29,500 
	29,500 

	48 
	48 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	36,500 
	36,500 

	50 
	50 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	37,500 
	37,500 

	60 
	60 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	13,500 
	13,500 

	24 
	24 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	20,500 
	20,500 

	26 
	26 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	34,500 
	34,500 

	30 
	30 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	21,500 
	21,500 

	36 
	36 

	66.67 
	66.67 

	1 
	1 

	3 
	3 



	Table 4.2 continued 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	35,500 
	35,500 

	40 
	40 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	37,500 
	37,500 

	60 
	60 

	66.67 
	66.67 

	1 
	1 

	3 
	3 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	13,500 
	13,500 

	24 
	24 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	20,500 
	20,500 

	26 
	26 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	34,500 
	34,500 

	30 
	30 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	21,500 
	21,500 

	36 
	36 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	35,500 
	35,500 

	40 
	40 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	37,500 
	37,500 

	60 
	60 

	66.67 
	66.67 

	3 
	3 

	3 
	3 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	18,000 
	18,000 

	32 
	32 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	32,000 
	32,000 

	36 
	36 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	46,000 
	46,000 

	40 
	40 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	34,000 
	34,000 

	56 
	56 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	48,000 
	48,000 

	60 
	60 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	50,000 
	50,000 

	80 
	80 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	18,000 
	18,000 

	32 
	32 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	32,000 
	32,000 

	36 
	36 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	46,000 
	46,000 

	40 
	40 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	34,000 
	34,000 

	56 
	56 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 

	48,000 
	48,000 

	60 
	60 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 

	50,000 
	50,000 

	80 
	80 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 

	18,000 
	18,000 

	32 
	32 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 

	25,000 
	25,000 

	34 
	34 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 

	46,000 
	46,000 

	40 
	40 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 

	26,000 
	26,000 

	44 
	44 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 

	40,000 
	40,000 

	48 
	48 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 

	50,000 
	50,000 

	80 
	80 

	75.00 
	75.00 

	1 
	1 

	4 
	4 


	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 

	18,000 
	18,000 

	32 
	32 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 

	25,000 
	25,000 

	34 
	34 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	46,000 
	46,000 

	40 
	40 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	26,000 
	26,000 

	44 
	44 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	40,000 
	40,000 

	48 
	48 

	75.00 
	75.00 

	3 
	3 

	4 
	4 


	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 

	50,000 
	50,000 

	80 
	80 

	75.00 
	75.00 

	3 
	3 

	4 
	4 



	4.1.3 Weighting and Scaling Data Collected Using the Questionnaire 
	The data obtained through the questionnaire include the weighting data and the scaling data (used to derive the value functions).  
	 
	 
	4.1.3 (a) Weighting Data 
	A total of 20 responses were collected to assign weights to each criterion. Table 4.3 presents the weighting results. In Chapter 5, this data is used in the amalgamation phase of the analysis. 
	Table 4.3: Weighting data generated from the survey results 
	Respondents ID 
	Respondents ID 
	Respondents ID 
	Respondents ID 

	PD 
	PD 

	COS 
	COS 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 


	1 
	1 
	1 

	38 
	38 

	8 
	8 

	8 
	8 

	8 
	8 

	15 
	15 

	8 
	8 

	15 
	15 


	2 
	2 
	2 

	27 
	27 

	11 
	11 

	13 
	13 

	17 
	17 

	16 
	16 

	7 
	7 

	9 
	9 


	3 
	3 
	3 

	25 
	25 

	6 
	6 

	13 
	13 

	25 
	25 

	19 
	19 

	3 
	3 

	10 
	10 


	4 
	4 
	4 

	0 
	0 

	45 
	45 

	0 
	0 

	27 
	27 

	27 
	27 

	0 
	0 

	0 
	0 


	5 
	5 
	5 

	33 
	33 

	13 
	13 

	7 
	7 

	20 
	20 

	20 
	20 

	3 
	3 

	4 
	4 


	6 
	6 
	6 

	20 
	20 

	20 
	20 

	13 
	13 

	7 
	7 

	20 
	20 

	7 
	7 

	13 
	13 


	7 
	7 
	7 

	30 
	30 

	19 
	19 

	3 
	3 

	20 
	20 

	6 
	6 

	10 
	10 

	13 
	13 


	8 
	8 
	8 

	26 
	26 

	18 
	18 

	11 
	11 

	14 
	14 

	13 
	13 

	8 
	8 

	11 
	11 


	9 
	9 
	9 

	33 
	33 

	17 
	17 

	11 
	11 

	11 
	11 

	11 
	11 

	7 
	7 

	11 
	11 


	10 
	10 
	10 

	25 
	25 

	15 
	15 

	6 
	6 

	18 
	18 

	13 
	13 

	15 
	15 

	9 
	9 


	11 
	11 
	11 

	20 
	20 

	13 
	13 

	20 
	20 

	13 
	13 

	13 
	13 

	7 
	7 

	13 
	13 


	12 
	12 
	12 

	29 
	29 

	7 
	7 

	14 
	14 

	21 
	21 

	14 
	14 

	7 
	7 

	7 
	7 


	13 
	13 
	13 

	29 
	29 

	14 
	14 

	14 
	14 

	14 
	14 

	7 
	7 

	7 
	7 

	14 
	14 


	14 
	14 
	14 

	25 
	25 

	19 
	19 

	19 
	19 

	19 
	19 

	13 
	13 

	0 
	0 

	6 
	6 


	15 
	15 
	15 

	29 
	29 

	18 
	18 

	6 
	6 

	24 
	24 

	18 
	18 

	0 
	0 

	6 
	6 


	16 
	16 
	16 

	50 
	50 

	13 
	13 

	13 
	13 

	17 
	17 

	3 
	3 

	3 
	3 

	2 
	2 


	17 
	17 
	17 

	13 
	13 

	25 
	25 

	13 
	13 

	25 
	25 

	13 
	13 

	0 
	0 

	13 
	13 


	18 
	18 
	18 

	20 
	20 

	20 
	20 

	20 
	20 

	18 
	18 

	7 
	7 

	4 
	4 

	12 
	12 


	19 
	19 
	19 

	27 
	27 

	27 
	27 

	7 
	7 

	20 
	20 

	13 
	13 

	0 
	0 

	7 
	7 


	20 
	20 
	20 

	31 
	31 

	31 
	31 

	8 
	8 

	15 
	15 

	8 
	8 

	0 
	0 

	8 
	8 


	Average: 
	Average: 
	Average: 

	26.46 
	26.46 

	17.88 
	17.88 

	10.84 
	10.84 

	17.63 
	17.63 

	13.36 
	13.36 

	4.68 
	4.68 

	9.14 
	9.14 



	4.1.3 (b) Scaling Data  
	Table 4.4 presents the data obtained from the mid-value splitting questionnaire results. In Table 4.4, the criteria values corresponding to values of 25, 50, and 75 were assigned by respondents and the criteria values corresponding to 0 and 100 were provided to them.  
	 
	 
	 
	Table 4.4: Scaling data generated from the survey results (mid-value splitting) 
	Value 
	Value 
	Value 
	Value 

	PD 
	PD 

	COS 
	COS 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	0 
	0 
	0 

	40 
	40 

	50,000 
	50,000 

	80 
	80 

	120 
	120 

	0 
	0 

	0 
	0 

	4.00 
	4.00 


	25 
	25 
	25 

	200 
	200 

	35,000 
	35,000 

	40 
	40 

	30 
	30 

	75 
	75 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	190 
	190 

	40,000 
	40,000 

	40 
	40 

	50 
	50 

	60 
	60 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	180 
	180 

	40,000 
	40,000 

	65 
	65 

	80 
	80 

	70 
	70 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	75 
	75 

	15,000 
	15,000 

	60 
	60 

	70 
	70 

	10 
	10 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	150 
	150 

	40,000 
	40,000 

	72 
	72 

	62 
	62 

	60 
	60 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	50 
	50 

	10,000 
	10,000 

	25 
	25 

	70 
	70 

	15 
	15 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	90 
	90 

	30,000 
	30,000 

	50 
	50 

	74 
	74 

	2 
	2 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	100 
	100 

	25,000 
	25,000 

	60 
	60 

	80 
	80 

	25 
	25 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	90 
	90 

	25,000 
	25,000 

	30 
	30 

	80 
	80 

	40 
	40 

	1 
	1 

	2.00 
	2.00 


	25 
	25 
	25 

	60 
	60 

	40,000 
	40,000 

	70 
	70 

	95 
	95 

	25 
	25 

	1 
	1 

	3.80 
	3.80 


	25 
	25 
	25 

	50 
	50 

	35,000 
	35,000 

	60 
	60 

	95 
	95 

	15 
	15 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	120 
	120 

	30,000 
	30,000 

	75 
	75 

	50 
	50 

	50 
	50 

	1 
	1 

	3.50 
	3.50 


	25 
	25 
	25 

	50 
	50 

	10,000 
	10,000 

	40 
	40 

	60 
	60 

	70 
	70 

	1 
	1 

	2.00 
	2.00 


	25 
	25 
	25 

	55 
	55 

	30,000 
	30,000 

	40 
	40 

	50 
	50 

	25 
	25 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	50 
	50 

	7,100 
	7,100 

	55 
	55 

	80 
	80 

	35 
	35 

	1 
	1 

	3.50 
	3.50 


	25 
	25 
	25 

	200 
	200 

	30,000 
	30,000 

	40 
	40 

	50 
	50 

	25 
	25 

	1 
	1 

	3.00 
	3.00 


	25 
	25 
	25 

	70 
	70 

	12,000 
	12,000 

	40 
	40 

	40 
	40 

	25 
	25 

	1 
	1 

	2.00 
	2.00 


	25 
	25 
	25 

	100 
	100 

	12,000 
	12,000 

	60 
	60 

	60 
	60 

	55 
	55 

	1 
	1 

	2.50 
	2.50 


	25 
	25 
	25 

	55 
	55 

	20,000 
	20,000 

	50 
	50 

	60 
	60 

	50 
	50 

	1 
	1 

	3.50 
	3.50 


	25 
	25 
	25 

	60 
	60 

	15,000 
	15,000 

	50 
	50 

	55 
	55 

	55 
	55 

	1 
	1 

	3.00 
	3.00 



	Table 4.4 continued 
	50 
	50 
	50 
	50 

	240 
	240 

	30,000 
	30,000 

	30 
	30 

	20 
	20 

	80 
	80 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	30,000 
	30,000 

	30 
	30 

	40 
	40 

	70 
	70 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	35,000 
	35,000 

	55 
	55 

	60 
	60 

	80 
	80 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	100 
	100 

	10,000 
	10,000 

	40 
	40 

	45 
	45 

	35 
	35 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	20,000 
	20,000 

	65 
	65 

	50 
	50 

	75 
	75 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	180 
	180 

	8,000 
	8,000 

	15 
	15 

	45 
	45 

	50 
	50 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	8,500 
	8,500 

	35 
	35 

	51 
	51 

	11 
	11 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	10,000 
	10,000 

	40 
	40 

	50 
	50 

	50 
	50 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	150 
	150 

	15,000 
	15,000 

	15 
	15 

	40 
	40 

	70 
	70 

	2 
	2 

	1.50 
	1.50 


	50 
	50 
	50 

	100 
	100 

	25,000 
	25,000 

	50 
	50 

	70 
	70 

	50 
	50 

	2 
	2 

	2.50 
	2.50 


	50 
	50 
	50 

	70 
	70 

	25,000 
	25,000 

	40 
	40 

	60 
	60 

	45 
	45 

	2 
	2 

	2.50 
	2.50 


	50 
	50 
	50 

	200 
	200 

	20,000 
	20,000 

	60 
	60 

	25 
	25 

	75 
	75 

	2 
	2 

	3.00 
	3.00 


	50 
	50 
	50 

	200 
	200 

	7,500 
	7,500 

	20 
	20 

	40 
	40 

	80 
	80 

	2 
	2 

	1.50 
	1.50 


	50 
	50 
	50 

	90 
	90 

	20,000 
	20,000 

	20 
	20 

	20 
	20 

	50 
	50 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	200 
	200 

	6,800 
	6,800 

	40 
	40 

	60 
	60 

	65 
	65 

	2 
	2 

	3.00 
	3.00 


	50 
	50 
	50 

	300 
	300 

	20,000 
	20,000 

	20 
	20 

	20 
	20 

	50 
	50 

	2 
	2 

	2.50 
	2.50 


	50 
	50 
	50 

	100 
	100 

	8,500 
	8,500 

	35 
	35 

	30 
	30 

	50 
	50 

	2 
	2 

	1.70 
	1.70 


	50 
	50 
	50 

	120 
	120 

	10,000 
	10,000 

	50 
	50 

	40 
	40 

	75 
	75 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	100 
	100 

	15,000 
	15,000 

	45 
	45 

	45 
	45 

	75 
	75 

	2 
	2 

	2.00 
	2.00 


	50 
	50 
	50 

	110 
	110 

	10,000 
	10,000 

	35 
	35 

	40 
	40 

	65 
	65 

	2 
	2 

	2.00 
	2.00 


	75 
	75 
	75 

	150 
	150 

	10,000 
	10,000 

	10 
	10 

	15 
	15 

	75 
	75 

	3 
	3 

	1.00 
	1.00 


	75 
	75 
	75 

	150 
	150 

	5,200 
	5,200 

	20 
	20 

	30 
	30 

	80 
	80 

	3 
	3 

	2.00 
	2.00 


	75 
	75 
	75 

	500 
	500 

	10,000 
	10,000 

	10 
	10 

	15 
	15 

	75 
	75 

	3 
	3 

	1.00 
	1.00 


	75 
	75 
	75 

	150 
	150 

	7,500 
	7,500 

	25 
	25 

	20 
	20 

	85 
	85 

	3 
	3 

	1.50 
	1.50 


	75 
	75 
	75 

	135 
	135 

	7,000 
	7,000 

	30 
	30 

	25 
	25 

	90 
	90 

	3 
	3 

	1.50 
	1.50 


	75 
	75 
	75 

	200 
	200 

	10,000 
	10,000 

	35 
	35 

	30 
	30 

	85 
	85 

	3 
	3 

	1.50 
	1.50 


	75 
	75 
	75 

	125 
	125 

	8,500 
	8,500 

	20 
	20 

	20 
	20 

	90 
	90 

	3 
	3 

	1.50 
	1.50 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 



	Table 4.4 continued 
	100 
	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 


	100 
	100 
	100 

	800 
	800 

	4,500 
	4,500 

	8 
	8 

	10 
	10 

	100 
	100 

	4 
	4 

	1.00 
	1.00 



	 
	Table 4.5 presents the direct rating assigned to aesthetics by respondents. The LiDAR placement alternatives were categorized based on the number and elevation of the sensors. Respondents were asked to assign values of 0, 25, 50, 75, and 100 to the different categories with 0 being their least favorable and 100 being their most preferred option. The categories are no sensors, 1–2 sensors at high elevations, 1–2 sensors at low elevations, 3–4 sensors at high elevations, and 3–4 sensors at low elevations.  
	Table 4.5: Scaling data for the Aesthetics Criterion (Survey Results)  
	Respondents ID 
	Respondents ID 
	Respondents ID 
	Respondents ID 

	No-sensors 
	No-sensors 

	1-2 Sensors-Low 
	1-2 Sensors-Low 

	1-2 Sensors-High 
	1-2 Sensors-High 

	3-4 Sensors-Low 
	3-4 Sensors-Low 

	3-4 Sensors-High 
	3-4 Sensors-High 


	1 
	1 
	1 

	0 
	0 

	25 
	25 

	50 
	50 

	75 
	75 

	100 
	100 


	2 
	2 
	2 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	3 
	3 
	3 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 

	0 
	0 


	4 
	4 
	4 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 

	0 
	0 


	5 
	5 
	5 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 

	0 
	0 


	6 
	6 
	6 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 

	0 
	0 


	7 
	7 
	7 

	0 
	0 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 


	8 
	8 
	8 

	100 
	100 

	75 
	75 

	50 
	50 

	25 
	25 

	0 
	0 


	9 
	9 
	9 

	0 
	0 

	50 
	50 

	75 
	75 

	25 
	25 

	25 
	25 


	10 
	10 
	10 

	0 
	0 

	50 
	50 

	25 
	25 

	100 
	100 

	75 
	75 


	11 
	11 
	11 

	0 
	0 

	75 
	75 

	50 
	50 

	100 
	100 

	25 
	25 


	12 
	12 
	12 

	0 
	0 

	25 
	25 

	50 
	50 

	75 
	75 

	100 
	100 


	13 
	13 
	13 

	0 
	0 

	75 
	75 

	25 
	25 

	100 
	100 

	50 
	50 


	14 
	14 
	14 

	0 
	0 

	50 
	50 

	25 
	25 

	100 
	100 

	75 
	75 


	15 
	15 
	15 

	0 
	0 

	25 
	25 

	50 
	50 

	50 
	50 

	100 
	100 


	16 
	16 
	16 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	17 
	17 
	17 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	18 
	18 
	18 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	19 
	19 
	19 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	20 
	20 
	20 

	100 
	100 

	75 
	75 

	25 
	25 

	50 
	50 

	0 
	0 


	Average: 
	Average: 
	Average: 

	55 
	55 

	65 
	65 

	41.25 
	41.25 

	55 
	55 

	28.75 
	28.75 



	4.1.4 Sensitivity Analysis of the Weighting Data  
	A sensitivity analysis was carried out using randomly generated data to introduce diverse weights for each criterion. This approach helped to assess the impact of varying criteria on the overall rankings of the alternatives. Ten scenarios of criteria weights were generated and subsequently used (Chapter 5) to obtain an overall ranking for the LiDAR placement alternatives. Table 4.6 presents the randomly generated weight data. It is important to note that these weights were generated in such a way that there
	Table 4.6: Criterion Weights for the Sensitivity Analysis 
	 
	 
	 
	 

	PD 
	PD 

	SC 
	SC 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 

	Total 
	Total 


	Scenario 1 
	Scenario 1 
	Scenario 1 

	19 
	19 

	21 
	21 

	14 
	14 

	12 
	12 

	14 
	14 

	13 
	13 

	7 
	7 

	100 
	100 


	Scenario 2 
	Scenario 2 
	Scenario 2 

	27 
	27 

	14 
	14 

	22 
	22 

	6 
	6 

	25 
	25 

	3 
	3 

	2 
	2 

	100 
	100 


	Scenario 3 
	Scenario 3 
	Scenario 3 

	17 
	17 

	19 
	19 

	16 
	16 

	21 
	21 

	1 
	1 

	9 
	9 

	17 
	17 

	100 
	100 


	Scenario 4 
	Scenario 4 
	Scenario 4 

	6 
	6 

	15 
	15 

	22 
	22 

	14 
	14 

	18 
	18 

	6 
	6 

	19 
	19 

	100 
	100 


	Scenario 5 
	Scenario 5 
	Scenario 5 

	8 
	8 

	17 
	17 

	14 
	14 

	17 
	17 

	18 
	18 

	17 
	17 

	10 
	10 

	100 
	100 


	Scenario 6 
	Scenario 6 
	Scenario 6 

	19 
	19 

	20 
	20 

	6 
	6 

	3 
	3 

	11 
	11 

	22 
	22 

	19 
	19 

	100 
	100 


	Scenario 7 
	Scenario 7 
	Scenario 7 

	21 
	21 

	19 
	19 

	17 
	17 

	14 
	14 

	1 
	1 

	23 
	23 

	6 
	6 

	100 
	100 


	Scenario 8 
	Scenario 8 
	Scenario 8 

	1 
	1 

	9 
	9 

	21 
	21 

	23 
	23 

	7 
	7 

	9 
	9 

	30 
	30 

	100 
	100 


	Scenario 9 
	Scenario 9 
	Scenario 9 

	26 
	26 

	18 
	18 

	5 
	5 

	9 
	9 

	23 
	23 

	6 
	6 

	12 
	12 

	100 
	100 


	Scenario 10 
	Scenario 10 
	Scenario 10 

	12 
	12 

	21 
	21 

	5 
	5 

	21 
	21 

	24 
	24 

	10 
	10 

	7 
	7 

	100 
	100 



	 
	4.2 Summary of Chapter 4  
	Chapter 4 examines the data collection methods used throughout the thesis, beginning with an overview of the diverse sources from which information was gathered. These sources encompass data obtained from CARLA, the primary simulation platform, alongside additional datasets procured from various external sources. This compilation of data includes crucial information pivotal to evaluating performance criteria within the decision-making process. The chapter further details the methodologies used to collect da
	The chapter also explores the intricacies of the weighting and scaling processes applied to the collected data. The different categories of weights utilized in the thesis were discussed, 
	including respondent-assigned weights, randomly generated weights, and equal weights, with each contributing distinctively to the decision-making model. 
	Overall, Chapter 4 presents the methodologies used for data collection, emphasizing the importance of diverse data sources, the processes of weighting and scaling, and the impact of sensitivity analysis. These elements collectively played a fundamental role in the subsequent phases of the decision-making process within the thesis.
	 RESULTS AND DISCUSSION  
	This chapter presents the findings of the thesis concerning the LiDAR placement optimization using a multi-criteria decision framework. Initially, respondent-assigned weights were used to obtain an overall ranking for the alternatives. Subsequently, equal weights and randomly generated weights were used to get an overall ranking of the alternative LiDAR placement designs. The equal weighting involved assigning each criterion a weight of 14.29, thus, assuming an equal level of importance for all criteria in 
	5.1 Results Based on Respondent-Assigned Weights 
	5.1.1 Summary of Weighting Results 
	In the evaluation of the decision criteria, 20 responses were considered to determine the average values, collectively reflecting the overall decision-making regarding the assignment of weights.  
	Figure
	Figure 5.1: Weighting Results (Respondent-assigned) 
	The weighting results reveal the collective perspective of the respondents and their expertise in the subject matter. Notably, the criterion with the highest average weight is the point density (PD), which received an average value of 26.46. This high rating displays the overall importance attributed to the detection of objects, which is a safety component in the decision-making process. This result suggests a shared view that the precision and efficiency of detection capabilities significantly influence th
	Conversely, aesthetics (AES) and ease of installation (EOI) received lower average weights of 4.68 and 9.14, respectively. These comparatively lower weights indicate a consensus among the respondents that, while aesthetics and ease of installation are considerations, they are deemed less important than other criteria. This prioritization of technical and functional aspects over aesthetic appeal and ease of installation can be attributed to the main purpose of AVs; hence, performance and functionality are th
	Furthermore, the variability within each criterion is highlighted by the standard deviations: PD (9.44), COS (8.62), PC (5.13), BR (5.29), SR (5.46), AES (3.92), and EOI (4.01). This variability showcases varying levels of consistency within the dataset. Higher standard deviations indicate greater diversity among data points, while lower deviations signify a more uniform trend across the criteria. This gradient in variability underscores the diverse ranges of values and dispersion around the mean, offering 
	5.1.2 Summary of Scaling Results 
	To obtain the value functions used for the scaling process, a regression analysis was carried out to establish a function that represents the collective preferences of the data obtained from the respondents. To do so, a regression line was fitted to the data and the best-fit line was determined based on which option had the least deviation from the collected responses. This approach provided a holistic understanding of the respondents’ preferences and aided in identifying the overall trend within the datase
	Figure 5.2 illustrates the resulting value function charts. The regression line, representing the best fit for the data, was selected in the form of logarithmic, linear, or exponential functions, based on its alignment with the observed patterns in the dataset. The regression equations were then used to scale the data for amalgamation and to obtain results.
	 
	Figure
	Figure
	Figure
	Figure
	Figure 5.2: Value Functions of the Decision Criteria
	Figure 5.2 continued 
	Figure
	Figure
	Figure
	 
	The value functions were used to obtain the scaling results. Using the sensor redundancy index as an example, if the raw data (𝑋) is 60, the value function (Y) = 0.0084𝑋2 - 0.0121𝑋 + 2.2483 is applied by replacing 𝑋 in the equation 𝑌 = 0.0084(60)2 − 0.0121(60) + 2.2483 to get the Scaled Value (𝑌) = 31.7633. This process is repeated for all the criteria.  
	5.1.3 Amalgamation Results 
	This section presents the outcomes derived from the application of the WSM explained in Chapter 3. The utilization of this method in the amalgamation process involves the weighting and scaling of the raw values for each criterion. This culminates in the determination of the outcomes for each alternative. The methodology considers the “contributions” of each criterion, reflecting their respectively assigned weights. Based on the amalgamation results, the LiDAR placement alternatives were then ranked using th
	5.2 Amalgamation Results Based on Respondent-Assigned Weights 
	In Tables 5.1 and 5.2, the results are presented by utilizing weights derived from the questionnaire. As detailed in previous chapters, the respondents provided their preferences, thereby contributing to the determination of criterion weights. Tables 5.1 and 5.2 offer insights into the outcomes achieved by incorporating these questionnaire-based weights into the evaluation process. 
	 
	Table 5.1: Amalgamation Results: Sensing target–Vehicle, based on respondent-assigned weights of the criteria 
	                    Criteria  
	                    Criteria  
	                    Criteria  
	                    Criteria  
	                     Weight 
	Alternatives 

	PDV 
	PDV 

	SC 
	SC 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 

	 
	 
	Amalgamation Results 

	 
	 
	 
	Rank 


	TR
	26.46 
	26.46 

	17.88 
	17.88 

	10.84 
	10.84 

	17.63 
	17.63 

	13.36 
	13.36 

	4.68 
	4.68 

	9.14 
	9.14 


	CHigh16 
	CHigh16 
	CHigh16 

	14.6 
	14.6 

	85.3 
	85.3 

	88.2 
	88.2 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4469.8 
	4469.8 

	67 
	67 


	CHigh32 
	CHigh32 
	CHigh32 

	32.2 
	32.2 

	57.3 
	57.3 

	85.8 
	85.8 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4408.6 
	4408.6 

	69 
	69 


	CHigh64 
	CHigh64 
	CHigh64 

	41.1 
	41.1 

	54.8 
	54.8 

	73.6 
	73.6 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4466.6 
	4466.6 

	68 
	68 


	CLow16 
	CLow16 
	CLow16 

	37.6 
	37.6 

	85.3 
	85.3 

	88.2 
	88.2 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5414.7 
	5414.7 

	25 
	25 


	CLow32 
	CLow32 
	CLow32 

	45.2 
	45.2 

	57.3 
	57.3 

	85.8 
	85.8 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5086.9 
	5086.9 

	37 
	37 


	CLow64 
	CLow64 
	CLow64 

	54.0 
	54.0 

	54.8 
	54.8 

	73.6 
	73.6 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5143.9 
	5143.9 

	36 
	36 


	FHigh16 
	FHigh16 
	FHigh16 

	36.9 
	36.9 

	85.3 
	85.3 

	88.2 
	88.2 

	39.0 
	39.0 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5515.7 
	5515.7 

	21 
	21 


	FHigh32 
	FHigh32 
	FHigh32 

	56.2 
	56.2 

	57.3 
	57.3 

	85.8 
	85.8 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5266.1 
	5266.1 

	31 
	31 


	FHigh64 
	FHigh64 
	FHigh64 

	54.0 
	54.0 

	54.8 
	54.8 

	73.6 
	73.6 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5029.9 
	5029.9 

	45 
	45 


	FLow16 
	FLow16 
	FLow16 

	36.6 
	36.6 

	85.3 
	85.3 

	88.2 
	88.2 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5658.1 
	5658.1 

	18 
	18 


	FLow32 
	FLow32 
	FLow32 

	49.1 
	49.1 

	57.3 
	57.3 

	85.8 
	85.8 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5459.4 
	5459.4 

	23 
	23 


	FLow64 
	FLow64 
	FLow64 

	57.4 
	57.4 

	54.8 
	54.8 

	73.6 
	73.6 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5502.1 
	5502.1 

	22 
	22 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	64.5 
	64.5 

	64.6 
	64.6 

	78.5 
	78.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5057.3 
	5057.3 

	40 
	40 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	84.3 
	84.3 

	36.5 
	36.5 

	73.6 
	73.6 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5027.1 
	5027.1 

	46 
	46 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	84.3 
	84.3 

	34.1 
	34.1 

	49.3 
	49.3 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4719.3 
	4719.3 

	61 
	61 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	66.3 
	66.3 

	64.6 
	64.6 

	78.5 
	78.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6259.5 
	6259.5 

	6 
	6 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	85.1 
	85.1 

	36.5 
	36.5 

	73.6 
	73.6 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6202.5 
	6202.5 

	7 
	7 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	83.2 
	83.2 

	34.1 
	34.1 

	49.3 
	49.3 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	5843.7 
	5843.7 

	15 
	15 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	76.5 
	76.5 

	47.4 
	47.4 

	76.1 
	76.1 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5041.4 
	5041.4 

	43 
	43 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	84.2 
	84.2 

	35.3 
	35.3 

	61.5 
	61.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4869.8 
	4869.8 

	54 
	54 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	76.5 
	76.5 

	47.4 
	47.4 

	76.1 
	76.1 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6195.9 
	6195.9 

	8 
	8 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	86.1 
	86.1 

	35.3 
	35.3 

	61.5 
	61.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6073.8 
	6073.8 

	11 
	11 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	78.5 
	78.5 

	45.6 
	45.6 

	63.9 
	63.9 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4930.8 
	4930.8 

	51 
	51 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	77.3 
	77.3 

	45.6 
	45.6 

	63.9 
	63.9 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6052.9 
	6052.9 

	12 
	12 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	70.5 
	70.5 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4917.9 
	4917.9 

	52 
	52 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	82.9 
	82.9 

	31.2 
	31.2 

	63.9 
	63.9 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4812.4 
	4812.4 

	57 
	57 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	87.1 
	87.1 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4776.8 
	4776.8 

	59 
	59 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	83.0 
	83.0 

	29.1 
	29.1 

	39.6 
	39.6 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4515.0 
	4515.0 

	66 
	66 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	88.5 
	88.5 

	22.7 
	22.7 

	37.2 
	37.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4519.5 
	4519.5 

	65 
	65 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	88.6 
	88.6 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4374.4 
	4374.4 

	70 
	70 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	70.1 
	70.1 

	52.5 
	52.5 

	68.8 
	68.8 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6139.7 
	6139.7 

	10 
	10 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	81.7 
	81.7 

	31.2 
	31.2 

	63.9 
	63.9 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6014.0 
	6014.0 

	14 
	14 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	87.8 
	87.8 

	24.4 
	24.4 

	61.5 
	61.5 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6027.9 
	6027.9 

	13 
	13 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	82.4 
	82.4 

	29.1 
	29.1 

	39.6 
	39.6 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5731.6 
	5731.6 

	16 
	16 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	87.0 
	87.0 

	22.7 
	22.7 

	37.2 
	37.2 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5711.8 
	5711.8 

	17 
	17 


	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	87.4 
	87.4 

	21.9 
	21.9 

	25.0 
	25.0 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5577.1 
	5577.1 

	19 
	19 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	84.0 
	84.0 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5273.6 
	5273.6 

	30 
	30 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	88.7 
	88.7 

	40.0 
	40.0 

	66.3 
	66.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5149.1 
	5149.1 

	35 
	35 



	Figure
	Table 5.1 continued 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	97.9 
	97.9 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5060.4 
	5060.4 

	39 
	39 


	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	90.8 
	90.8 

	38.6 
	38.6 

	54.2 
	54.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5047.7 
	5047.7 

	42 
	42 


	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	100.3 
	100.3 

	23.6 
	23.6 

	49.3 
	49.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4978.4 
	4978.4 

	50 
	50 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	100.8 
	100.8 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4697.7 
	4697.7 

	62 
	62 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	82.1 
	82.1 

	52.5 
	52.5 

	68.8 
	68.8 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5535.3 
	5535.3 

	20 
	20 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	88.3 
	88.3 

	40.0 
	40.0 

	66.3 
	66.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5450.1 
	5450.1 

	24 
	24 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	98.9 
	98.9 

	24.4 
	24.4 

	61.5 
	61.5 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5399.9 
	5399.9 

	26 
	26 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	88.9 
	88.9 

	38.6 
	38.6 

	54.2 
	54.2 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5308.8 
	5308.8 

	28 
	28 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	99.8 
	99.8 

	23.6 
	23.6 

	49.3 
	49.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5277.8 
	5277.8 

	29 
	29 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	101.0 
	101.0 

	21.9 
	21.9 

	25.0 
	25.0 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5016.9 
	5016.9 

	47 
	47 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	94.6 
	94.6 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5079.9 
	5079.9 

	38 
	38 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	105.0 
	105.0 

	26.7 
	26.7 

	54.2 
	54.2 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4993.2 
	4993.2 

	49 
	49 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	111.4 
	111.4 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4916.8 
	4916.8 

	53 
	53 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	107.9 
	107.9 

	24.9 
	24.9 

	29.9 
	29.9 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4775.7 
	4775.7 

	60 
	60 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	110.7 
	110.7 

	14.6 
	14.6 

	25.0 
	25.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4611.7 
	4611.7 

	63 
	63 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	111.4 
	111.4 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4345.9 
	4345.9 

	71 
	71 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	93.9 
	93.9 

	43.9 
	43.9 

	59.0 
	59.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6887.6 
	6887.6 

	1 
	1 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	104.2 
	104.2 

	26.7 
	26.7 

	54.2 
	54.2 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6799.1 
	6799.1 

	2 
	2 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	111.7 
	111.7 

	15.8 
	15.8 

	49.3 
	49.3 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6749.7 
	6749.7 

	3 
	3 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	108.3 
	108.3 

	24.9 
	24.9 

	29.9 
	29.9 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6611.9 
	6611.9 

	4 
	4 


	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 

	110.6 
	110.6 

	14.6 
	14.6 

	25.0 
	25.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6436.8 
	6436.8 

	5 
	5 


	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 

	111.4 
	111.4 

	13.3 
	13.3 

	0.7 
	0.7 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6172.1 
	6172.1 

	9 
	9 


	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 

	93.0 
	93.0 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5036.1 
	5036.1 

	44 
	44 


	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 

	99.0 
	99.0 

	34.1 
	34.1 

	56.6 
	56.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4995.0 
	4995.0 

	48 
	48 


	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 

	108.4 
	108.4 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4836.8 
	4836.8 

	56 
	56 


	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 

	97.8 
	97.8 

	32.9 
	32.9 

	44.5 
	44.5 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4808.7 
	4808.7 

	58 
	58 


	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 

	110.7 
	110.7 

	20.0 
	20.0 

	39.6 
	39.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4868.0 
	4868.0 

	55 
	55 


	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 

	109.7 
	109.7 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4299.7 
	4299.7 

	72 
	72 


	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 

	94.1 
	94.1 

	43.9 
	43.9 

	59.0 
	59.0 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5362.5 
	5362.5 

	27 
	27 


	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 

	97.7 
	97.7 

	34.1 
	34.1 

	56.6 
	56.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5256.4 
	5256.4 

	32 
	32 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	109.0 
	109.0 

	15.8 
	15.8 

	49.3 
	49.3 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5150.8 
	5150.8 

	34 
	34 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	99.5 
	99.5 

	32.9 
	32.9 

	44.5 
	44.5 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5151.7 
	5151.7 

	33 
	33 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	106.6 
	106.6 

	20.0 
	20.0 

	39.6 
	39.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5056.4 
	5056.4 

	41 
	41 


	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 

	109.9 
	109.9 

	13.3 
	13.3 

	0.7 
	0.7 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4602.0 
	4602.0 

	64 
	64 



	  
	Table 5.2: Amalgamation Results: Sensing target–Pedestrian, based on respondent-assigned weights of the criteria 
	                           Criteria  
	                           Criteria  
	                           Criteria  
	                           Criteria  
	                           Weight 
	Alternatives 

	PDV 
	PDV 

	SC 
	SC 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 

	 
	 
	Amalgamation    Results 

	 
	 
	 
	Rank 


	TR
	26.46 
	26.46 

	17.88 
	17.88 

	10.84 
	10.84 

	17.63 
	17.63 

	13.36 
	13.36 

	4.68 
	4.68 

	9.14 
	9.14 


	CHigh16 
	CHigh16 
	CHigh16 

	15.5 
	15.5 

	85.3 
	85.3 

	88.2 
	88.2 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4493.4 
	4493.4 

	71 
	71 


	CHigh32 
	CHigh32 
	CHigh32 

	37.4 
	37.4 

	57.3 
	57.3 

	85.8 
	85.8 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4545.6 
	4545.6 

	69 
	69 


	CHigh64 
	CHigh64 
	CHigh64 

	45.0 
	45.0 

	54.8 
	54.8 

	73.6 
	73.6 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4570.4 
	4570.4 

	68 
	68 


	CLow16 
	CLow16 
	CLow16 

	39.4 
	39.4 

	85.3 
	85.3 

	88.2 
	88.2 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5462.2 
	5462.2 

	30 
	30 


	CLow32 
	CLow32 
	CLow32 

	44.8 
	44.8 

	57.3 
	57.3 

	85.8 
	85.8 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5077.7 
	5077.7 

	51 
	51 


	CLow64 
	CLow64 
	CLow64 

	65.3 
	65.3 

	54.8 
	54.8 

	73.6 
	73.6 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5444.5 
	5444.5 

	32 
	32 


	FHigh16 
	FHigh16 
	FHigh16 

	34.6 
	34.6 

	85.3 
	85.3 

	88.2 
	88.2 

	39.0 
	39.0 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5455.3 
	5455.3 

	31 
	31 


	FHigh32 
	FHigh32 
	FHigh32 

	65.9 
	65.9 

	57.3 
	57.3 

	85.8 
	85.8 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5522.8 
	5522.8 

	27 
	27 


	FHigh64 
	FHigh64 
	FHigh64 

	29.8 
	29.8 

	54.8 
	54.8 

	73.6 
	73.6 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4391.5 
	4391.5 

	72 
	72 


	FLow16 
	FLow16 
	FLow16 

	40.7 
	40.7 

	85.3 
	85.3 

	88.2 
	88.2 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5766.7 
	5766.7 

	20 
	20 


	FLow32 
	FLow32 
	FLow32 

	58.9 
	58.9 

	57.3 
	57.3 

	85.8 
	85.8 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5719.0 
	5719.0 

	22 
	22 


	FLow64 
	FLow64 
	FLow64 

	73.3 
	73.3 

	54.8 
	54.8 

	73.6 
	73.6 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5923.8 
	5923.8 

	17 
	17 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	61.3 
	61.3 

	64.6 
	64.6 

	78.5 
	78.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4972.4 
	4972.4 

	56 
	56 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	94.3 
	94.3 

	36.5 
	36.5 

	73.6 
	73.6 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5290.7 
	5290.7 

	38 
	38 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	93.7 
	93.7 

	34.1 
	34.1 

	49.3 
	49.3 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4967.3 
	4967.3 

	57 
	57 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	68.8 
	68.8 

	64.6 
	64.6 

	78.5 
	78.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6326.1 
	6326.1 

	11 
	11 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	73.8 
	73.8 

	36.5 
	36.5 

	73.6 
	73.6 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	5904.5 
	5904.5 

	18 
	18 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	97.9 
	97.9 

	34.1 
	34.1 

	49.3 
	49.3 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6232.1 
	6232.1 

	13 
	13 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	84.8 
	84.8 

	47.4 
	47.4 

	76.1 
	76.1 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5259.6 
	5259.6 

	39 
	39 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	93.3 
	93.3 

	35.3 
	35.3 

	61.5 
	61.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5109.7 
	5109.7 

	47 
	47 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	86.9 
	86.9 

	47.4 
	47.4 

	76.1 
	76.1 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6470.2 
	6470.2 

	6 
	6 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	96.4 
	96.4 

	35.3 
	35.3 

	61.5 
	61.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6348.4 
	6348.4 

	10 
	10 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	86.3 
	86.3 

	45.6 
	45.6 

	63.9 
	63.9 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5135.6 
	5135.6 

	46 
	46 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	89.9 
	89.9 

	45.6 
	45.6 

	63.9 
	63.9 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6385.6 
	6385.6 

	8 
	8 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	67.8 
	67.8 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4844.5 
	4844.5 

	63 
	63 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	92.4 
	92.4 

	31.2 
	31.2 

	63.9 
	63.9 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5064.8 
	5064.8 

	52 
	52 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	96.6 
	96.6 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5026.2 
	5026.2 

	53 
	53 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	92.9 
	92.9 

	29.1 
	29.1 

	39.6 
	39.6 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4775.2 
	4775.2 

	65 
	65 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	99.0 
	99.0 

	22.7 
	22.7 

	37.2 
	37.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4798.0 
	4798.0 

	64 
	64 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	98.7 
	98.7 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4642.6 
	4642.6 

	66 
	66 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	73.2 
	73.2 

	52.5 
	52.5 

	68.8 
	68.8 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6220.8 
	6220.8 

	14 
	14 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	93.4 
	93.4 

	31.2 
	31.2 

	63.9 
	63.9 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6323.0 
	6323.0 

	12 
	12 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	100.6 
	100.6 

	24.4 
	24.4 

	61.5 
	61.5 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6365.6 
	6365.6 

	9 
	9 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	94.6 
	94.6 

	29.1 
	29.1 

	39.6 
	39.6 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6053.3 
	6053.3 

	15 
	15 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	98.8 
	98.8 

	22.7 
	22.7 

	37.2 
	37.2 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6024.5 
	6024.5 

	16 
	16 


	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	99.2 
	99.2 

	21.9 
	21.9 

	25.0 
	25.0 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5887.5 
	5887.5 

	19 
	19 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	79.9 
	79.9 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5166.5 
	5166.5 

	45 
	45 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	92.3 
	92.3 

	40.0 
	40.0 

	66.3 
	66.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5245.7 
	5245.7 

	41 
	41 



	Figure
	Table 5.2 continued 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	108.8 
	108.8 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5351.3 
	5351.3 

	37 
	37 


	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	95.3 
	95.3 

	38.6 
	38.6 

	54.2 
	54.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5166.8 
	5166.8 

	44 
	44 


	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	110.6 
	110.6 

	23.6 
	23.6 

	49.3 
	49.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	5250.3 
	5250.3 

	40 
	40 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	109.8 
	109.8 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4935.5 
	4935.5 

	59 
	59 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	85.0 
	85.0 

	52.5 
	52.5 

	68.8 
	68.8 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5612.7 
	5612.7 

	25 
	25 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	97.3 
	97.3 

	40.0 
	40.0 

	66.3 
	66.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5689.6 
	5689.6 

	23 
	23 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	112.1 
	112.1 

	24.4 
	24.4 

	61.5 
	61.5 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5749.7 
	5749.7 

	21 
	21 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	98.0 
	98.0 

	38.6 
	38.6 

	54.2 
	54.2 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5549.7 
	5549.7 

	26 
	26 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	114.0 
	114.0 

	23.6 
	23.6 

	49.3 
	49.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5652.6 
	5652.6 

	24 
	24 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	114.7 
	114.7 

	21.9 
	21.9 

	25.0 
	25.0 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5378.2 
	5378.2 

	35 
	35 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	91.4 
	91.4 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4994.0 
	4994.0 

	54 
	54 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	113.4 
	113.4 

	26.7 
	26.7 

	54.2 
	54.2 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5215.8 
	5215.8 

	42 
	42 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	121.7 
	121.7 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5188.4 
	5188.4 

	43 
	43 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	115.5 
	115.5 

	24.9 
	24.9 

	29.9 
	29.9 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4975.7 
	4975.7 

	55 
	55 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	120.7 
	120.7 

	14.6 
	14.6 

	25.0 
	25.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4875.8 
	4875.8 

	61 
	61 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	120.7 
	120.7 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4591.3 
	4591.3 

	67 
	67 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	95.2 
	95.2 

	43.9 
	43.9 

	59.0 
	59.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6921.7 
	6921.7 

	3 
	3 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	114.2 
	114.2 

	26.7 
	26.7 

	54.2 
	54.2 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	7063.0 
	7063.0 

	1 
	1 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	121.9 
	121.9 

	15.8 
	15.8 

	49.3 
	49.3 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	7021.2 
	7021.2 

	2 
	2 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	119.1 
	119.1 

	24.9 
	24.9 

	29.9 
	29.9 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6896.4 
	6896.4 

	4 
	4 


	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 

	121.2 
	121.2 

	14.6 
	14.6 

	25.0 
	25.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6717.1 
	6717.1 

	5 
	5 


	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 

	121.9 
	121.9 

	13.3 
	13.3 

	0.7 
	0.7 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6447.7 
	6447.7 

	7 
	7 


	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 

	89.5 
	89.5 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4944.2 
	4944.2 

	58 
	58 


	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 

	102.5 
	102.5 

	34.1 
	34.1 

	56.6 
	56.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5086.4 
	5086.4 

	49 
	49 


	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 

	118.1 
	118.1 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5093.7 
	5093.7 

	48 
	48 


	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 

	100.1 
	100.1 

	32.9 
	32.9 

	44.5 
	44.5 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4871.2 
	4871.2 

	62 
	62 


	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 

	118.8 
	118.8 

	20.0 
	20.0 

	39.6 
	39.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	5083.3 
	5083.3 

	50 
	50 


	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 

	118.4 
	118.4 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4531.2 
	4531.2 

	70 
	70 


	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 

	95.7 
	95.7 

	43.9 
	43.9 

	59.0 
	59.0 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5405.8 
	5405.8 

	33 
	33 


	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 

	105.5 
	105.5 

	34.1 
	34.1 

	56.6 
	56.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5464.3 
	5464.3 

	29 
	29 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	121.1 
	121.1 

	15.8 
	15.8 

	49.3 
	49.3 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5471.0 
	5471.0 

	28 
	28 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	109.1 
	109.1 

	32.9 
	32.9 

	44.5 
	44.5 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5404.5 
	5404.5 

	34 
	34 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	118.1 
	118.1 

	20.0 
	20.0 

	39.6 
	39.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5362.0 
	5362.0 

	36 
	36 


	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 
	FSLSRBLow64-64-64-64 

	120.4 
	120.4 

	13.3 
	13.3 

	0.7 
	0.7 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4881.9 
	4881.9 

	60 
	60 



	 
	The respondent-assigned weights closely reflect the most effective LiDAR placements, aligning closely with highly weighted criteria such as point density, cost of sensor, and blind spot regions. Across both the vehicle and pedestrian scenarios, the top four placements demonstrate a consistent pattern with minor distinctions. For vehicle detection, the top four placements—beginning with the top performing—are FLFRRLRRLow16-16-16-16, FLFRRLRRLow32-32-16-16, FLFRRLRRLow32-32-32-32, and FLFRRLRRLow64-64-16-16. 
	Figure 5.3 presents a 3D model illustrating the LiDAR placement design representing the top four performing results. The differences among the four designs lie in the channels of the LiDAR sensors, as depicted in the results.  
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	Figure 5.3: Model representing the top 4 LiDAR placement design  
	Figure 5.4 presents the heat map showing the ranking of all the LiDAR placement designs across both pedestrian and vehicle scenarios, with blue signifying lower scores and red signifying top-performing LiDAR placements.  
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	(a) Sensing target - Vehicle (respondent-assigned weights) 
	(a) Sensing target - Vehicle (respondent-assigned weights) 
	(a) Sensing target - Vehicle (respondent-assigned weights) 
	(a) Sensing target - Vehicle (respondent-assigned weights) 

	(b) Sensing target - Pedestrian (respondent-assigned weights) 
	(b) Sensing target - Pedestrian (respondent-assigned weights) 


	 
	 
	 



	Figure
	Figure 5.4: Heat Maps of Sensing targets (respondent-assigned weights) 
	5.3 Amalgamation Results Using Equal Weights 
	A uniform weighting approach was used, assigning equal weights of 14.286 to each of the eight criteria. This balanced distribution ensured that each criterion contributed equally to the overall assessment, preventing any single criterion from disproportionately influencing the results. Additionally, the scaling functions, previously outlined in this section (Chapter 5.1.2), were applied to obtain the scaled values. These scaling functions played a crucial role in standardizing and transforming the raw data,
	criterion values within the assessment framework. Tables 5.3 and 5.4 present the amalgamation results for both pedestrian and vehicle detections. The results are ranked based on the overall amalgamation score. 
	Table 5.3: Amalgamation Results: Sensing target–Vehicle, based on equal weights of the criteria 
	                    Criteria  
	                    Criteria  
	                    Criteria  
	                    Criteria  
	                     Weight 
	Alternatives 

	PDV 
	PDV 

	SC 
	SC 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 

	 
	 
	Amalgamation Results 

	 
	 
	 
	Rank 


	TR
	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 


	CHigh16 
	CHigh16 
	CHigh16 

	14.6 
	14.6 

	85.3 
	85.3 

	88.2 
	88.2 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5148 
	5148 

	31 
	31 


	CHigh32 
	CHigh32 
	CHigh32 

	32.2 
	32.2 

	57.3 
	57.3 

	85.8 
	85.8 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4964 
	4964 

	37 
	37 


	CHigh64 
	CHigh64 
	CHigh64 

	41.1 
	41.1 

	54.8 
	54.8 

	73.6 
	73.6 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4881 
	4881 

	40 
	40 


	CLow16 
	CLow16 
	CLow16 

	37.6 
	37.6 

	85.3 
	85.3 

	88.2 
	88.2 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6273 
	6273 

	6 
	6 


	CLow32 
	CLow32 
	CLow32 

	45.2 
	45.2 

	57.3 
	57.3 

	85.8 
	85.8 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5946 
	5946 

	16 
	16 


	CLow64 
	CLow64 
	CLow64 

	54.0 
	54.0 

	54.8 
	54.8 

	73.6 
	73.6 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5863 
	5863 

	17 
	17 


	FHigh16 
	FHigh16 
	FHigh16 

	36.9 
	36.9 

	85.3 
	85.3 

	88.2 
	88.2 

	39.0 
	39.0 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6360 
	6360 

	5 
	5 


	FHigh32 
	FHigh32 
	FHigh32 

	56.2 
	56.2 

	57.3 
	57.3 

	85.8 
	85.8 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5487 
	5487 

	22 
	22 


	FHigh64 
	FHigh64 
	FHigh64 

	54.0 
	54.0 

	54.8 
	54.8 

	73.6 
	73.6 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5246 
	5246 

	27 
	27 


	FLow16 
	FLow16 
	FLow16 

	36.6 
	36.6 

	85.3 
	85.3 

	88.2 
	88.2 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6477 
	6477 

	2 
	2 


	FLow32 
	FLow32 
	FLow32 

	49.1 
	49.1 

	57.3 
	57.3 

	85.8 
	85.8 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6220 
	6220 

	9 
	9 


	FLow64 
	FLow64 
	FLow64 

	57.4 
	57.4 

	54.8 
	54.8 

	73.6 
	73.6 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6129 
	6129 

	11 
	11 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	64.5 
	64.5 

	64.6 
	64.6 

	78.5 
	78.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5083 
	5083 

	33 
	33 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	84.3 
	84.3 

	36.5 
	36.5 

	73.6 
	73.6 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4896 
	4896 

	38 
	38 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	84.3 
	84.3 

	34.1 
	34.1 

	49.3 
	49.3 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4513 
	4513 

	49 
	49 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	66.3 
	66.3 

	64.6 
	64.6 

	78.5 
	78.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6569 
	6569 

	1 
	1 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	85.1 
	85.1 

	36.5 
	36.5 

	73.6 
	73.6 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6367 
	6367 

	4 
	4 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	83.2 
	83.2 

	34.1 
	34.1 

	49.3 
	49.3 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	5957 
	5957 

	15 
	15 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	76.5 
	76.5 

	47.4 
	47.4 

	76.1 
	76.1 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4974 
	4974 

	36 
	36 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	84.2 
	84.2 

	35.3 
	35.3 

	61.5 
	61.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4703 
	4703 

	43 
	43 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	76.5 
	76.5 

	47.4 
	47.4 

	76.1 
	76.1 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6434 
	6434 

	3 
	3 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	86.1 
	86.1 

	35.3 
	35.3 

	61.5 
	61.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6189 
	6189 

	10 
	10 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	78.5 
	78.5 

	45.6 
	45.6 

	63.9 
	63.9 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4804 
	4804 

	41 
	41 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	77.3 
	77.3 

	45.6 
	45.6 

	63.9 
	63.9 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6246 
	6246 

	8 
	8 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	70.5 
	70.5 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4470 
	4470 

	50 
	50 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	82.9 
	82.9 

	31.2 
	31.2 

	63.9 
	63.9 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4274 
	4274 

	53 
	53 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	87.1 
	87.1 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4203 
	4203 

	57 
	57 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	83.0 
	83.0 

	29.1 
	29.1 

	39.6 
	39.6 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3898 
	3898 

	64 
	64 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	88.5 
	88.5 

	22.7 
	22.7 

	37.2 
	37.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3851 
	3851 

	66 
	66 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	88.6 
	88.6 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3666 
	3666 

	69 
	69 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	70.1 
	70.1 

	52.5 
	52.5 

	68.8 
	68.8 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5988 
	5988 

	13 
	13 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	81.7 
	81.7 

	31.2 
	31.2 

	63.9 
	63.9 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5780 
	5780 

	18 
	18 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	87.8 
	87.8 

	24.4 
	24.4 

	61.5 
	61.5 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5736 
	5736 

	20 
	20 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	82.4 
	82.4 

	29.1 
	29.1 

	39.6 
	39.6 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5413 
	5413 

	23 
	23 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	87.0 
	87.0 

	22.7 
	22.7 

	37.2 
	37.2 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5352 
	5352 

	25 
	25 


	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	87.4 
	87.4 

	21.9 
	21.9 

	25.0 
	25.0 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5173 
	5173 

	29 
	29 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	84.0 
	84.0 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4662 
	4662 

	45 
	45 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	88.7 
	88.7 

	40.0 
	40.0 

	66.3 
	66.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4517 
	4517 

	48 
	48 


	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	97.9 
	97.9 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4356 
	4356 

	51 
	51 



	Figure
	Table 5.3 continued 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	90.8 
	90.8 

	38.6 
	38.6 

	54.2 
	54.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4353 
	4353 

	52 
	52 


	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	100.3 
	100.3 

	23.6 
	23.6 

	49.3 
	49.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4205 
	4205 

	56 
	56 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	100.8 
	100.8 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3841 
	3841 

	67 
	67 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	82.1 
	82.1 

	52.5 
	52.5 

	68.8 
	68.8 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5413 
	5413 

	24 
	24 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	88.3 
	88.3 

	40.0 
	40.0 

	66.3 
	66.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5288 
	5288 

	26 
	26 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	98.9 
	98.9 

	24.4 
	24.4 

	61.5 
	61.5 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5148 
	5148 

	30 
	30 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	88.9 
	88.9 

	38.6 
	38.6 

	54.2 
	54.2 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5103 
	5103 

	32 
	32 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	99.8 
	99.8 

	23.6 
	23.6 

	49.3 
	49.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	4976 
	4976 

	35 
	35 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	101.0 
	101.0 

	21.9 
	21.9 

	25.0 
	25.0 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	4622 
	4622 

	46 
	46 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	94.6 
	94.6 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4256 
	4256 

	54 
	54 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	105.0 
	105.0 

	26.7 
	26.7 

	54.2 
	54.2 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4088 
	4088 

	59 
	59 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	111.4 
	111.4 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3956 
	3956 

	61 
	61 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	107.9 
	107.9 

	24.9 
	24.9 

	29.9 
	29.9 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3757 
	3757 

	68 
	68 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	110.7 
	110.7 

	14.6 
	14.6 

	25.0 
	25.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3580 
	3580 

	70 
	70 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	111.4 
	111.4 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3226 
	3226 

	71 
	71 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	93.9 
	93.9 

	43.9 
	43.9 

	59.0 
	59.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6250 
	6250 

	7 
	7 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	104.2 
	104.2 

	26.7 
	26.7 

	54.2 
	54.2 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6081 
	6081 

	12 
	12 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	111.7 
	111.7 

	15.8 
	15.8 

	49.3 
	49.3 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5963 
	5963 

	14 
	14 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	108.3 
	108.3 

	24.9 
	24.9 

	29.9 
	29.9 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5767 
	5767 

	19 
	19 


	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 
	FLFRRLRRLow64-64-32-32 

	110.6 
	110.6 

	14.6 
	14.6 

	25.0 
	25.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5584 
	5584 

	21 
	21 


	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 
	FLFRRLRRLow64-64-64-64 

	111.4 
	111.4 

	13.3 
	13.3 

	0.7 
	0.7 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5230 
	5230 

	28 
	28 


	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 
	FSLSRBHigh16-16-16-16 

	93.0 
	93.0 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4232 
	4232 

	55 
	55 


	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 
	FSLSRBHigh32-16-16-16 

	99.0 
	99.0 

	34.1 
	34.1 

	56.6 
	56.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4144 
	4144 

	58 
	58 


	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 
	FSLSRBHigh32-32-32-32 

	108.4 
	108.4 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3912 
	3912 

	63 
	63 


	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 
	FSLSRBHigh64-16-16-16 

	97.8 
	97.8 

	32.9 
	32.9 

	44.5 
	44.5 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3935 
	3935 

	62 
	62 


	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 
	FSLSRBHigh64-32-32-16 

	110.7 
	110.7 

	20.0 
	20.0 

	39.6 
	39.6 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3867 
	3867 

	65 
	65 


	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 
	FSLSRBHigh64-64-64-64 

	109.7 
	109.7 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3201 
	3201 

	72 
	72 


	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 
	FSLSRBLow16-16-16-16 

	94.1 
	94.1 

	43.9 
	43.9 

	59.0 
	59.0 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	5013 
	5013 

	34 
	34 


	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 
	FSLSRBLow32-16-16-16 

	97.7 
	97.7 

	34.1 
	34.1 

	56.6 
	56.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4890 
	4890 

	39 
	39 


	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 
	FSLSRBLow32-32-32-32 

	109.0 
	109.0 

	15.8 
	15.8 

	49.3 
	49.3 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4687 
	4687 

	44 
	44 


	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 
	FSLSRBLow64-16-16-16 

	99.5 
	99.5 

	32.9 
	32.9 

	44.5 
	44.5 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4726 
	4726 

	42 
	42 


	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 
	FSLSRBLow64-32-32-16 

	106.6 
	106.6 

	20.0 
	20.0 

	39.6 
	39.6 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	4573 
	4573 

	47 
	47 


	FSLSBL64-64-64-64 
	FSLSBL64-64-64-64 
	FSLSBL64-64-64-64 

	109.9 
	109.9 

	13.3 
	13.3 

	0.7 
	0.7 

	12.9 
	12.9 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	3969 
	3969 

	60 
	60 



	  
	Table 5.4 Amalgamation Results: Sensing target–Pedestrian, based on equal weights of the criteria 
	                             Criteria  
	                             Criteria  
	                             Criteria  
	                             Criteria  
	                              Weight 
	Alternatives 

	PDV 
	PDV 

	SC 
	SC 

	PC 
	PC 

	BR 
	BR 

	SR 
	SR 

	AES 
	AES 

	EOI 
	EOI 

	 
	 
	Amalgamation Results 

	 
	 
	 
	Rank 


	TR
	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 

	14.29 
	14.29 


	CHigh16 
	CHigh16 
	CHigh16 

	15.5 
	15.5 

	85.3 
	85.3 

	88.2 
	88.2 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5160 
	5160 

	32 
	32 


	CHigh32 
	CHigh32 
	CHigh32 

	37.4 
	37.4 

	57.3 
	57.3 

	85.8 
	85.8 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5038 
	5038 

	35 
	35 


	CHigh64 
	CHigh64 
	CHigh64 

	45.0 
	45.0 

	54.8 
	54.8 

	73.6 
	73.6 

	26.3 
	26.3 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4937 
	4937 

	39 
	39 


	CLow16 
	CLow16 
	CLow16 

	39.4 
	39.4 

	85.3 
	85.3 

	88.2 
	88.2 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6299 
	6299 

	9 
	9 


	CLow32 
	CLow32 
	CLow32 

	44.8 
	44.8 

	57.3 
	57.3 

	85.8 
	85.8 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	5941 
	5941 

	18 
	18 


	CLow64 
	CLow64 
	CLow64 

	65.3 
	65.3 

	54.8 
	54.8 

	73.6 
	73.6 

	32.1 
	32.1 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6025 
	6025 

	16 
	16 


	FHigh16 
	FHigh16 
	FHigh16 

	34.6 
	34.6 

	85.3 
	85.3 

	88.2 
	88.2 

	39.0 
	39.0 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6328 
	6328 

	8 
	8 


	FHigh32 
	FHigh32 
	FHigh32 

	65.9 
	65.9 

	57.3 
	57.3 

	85.8 
	85.8 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	5626 
	5626 

	22 
	22 


	FHigh64 
	FHigh64 
	FHigh64 

	29.8 
	29.8 

	54.8 
	54.8 

	73.6 
	73.6 

	39.0 
	39.0 

	6.3 
	6.3 

	50 
	50 

	89.6 
	89.6 

	4901 
	4901 

	41 
	41 


	FLow16 
	FLow16 
	FLow16 

	40.7 
	40.7 

	85.3 
	85.3 

	88.2 
	88.2 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6536 
	6536 

	3 
	3 


	FLow32 
	FLow32 
	FLow32 

	58.9 
	58.9 

	57.3 
	57.3 

	85.8 
	85.8 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6360 
	6360 

	5 
	5 


	FLow64 
	FLow64 
	FLow64 

	73.3 
	73.3 

	54.8 
	54.8 

	73.6 
	73.6 

	47.4 
	47.4 

	6.3 
	6.3 

	100 
	100 

	89.6 
	89.6 

	6356 
	6356 

	6 
	6 


	FBHigh16-16 
	FBHigh16-16 
	FBHigh16-16 

	61.3 
	61.3 

	64.6 
	64.6 

	78.5 
	78.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5037 
	5037 

	36 
	36 


	FBHigh32-32 
	FBHigh32-32 
	FBHigh32-32 

	94.3 
	94.3 

	36.5 
	36.5 

	73.6 
	73.6 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5038 
	5038 

	34 
	34 


	FBHigh64-64 
	FBHigh64-64 
	FBHigh64-64 

	93.7 
	93.7 

	34.1 
	34.1 

	49.3 
	49.3 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4647 
	4647 

	47 
	47 


	FBLow16-16 
	FBLow16-16 
	FBLow16-16 

	68.8 
	68.8 

	64.6 
	64.6 

	78.5 
	78.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6605 
	6605 

	1 
	1 


	FBLow32-32 
	FBLow32-32 
	FBLow32-32 

	73.8 
	73.8 

	36.5 
	36.5 

	73.6 
	73.6 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6206 
	6206 

	12 
	12 


	FBLow64-64 
	FBLow64-64 
	FBLow64-64 

	97.9 
	97.9 

	34.1 
	34.1 

	49.3 
	49.3 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6167 
	6167 

	13 
	13 


	FBHigh32-16 
	FBHigh32-16 
	FBHigh32-16 

	84.8 
	84.8 

	47.4 
	47.4 

	76.1 
	76.1 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	5092 
	5092 

	33 
	33 


	FBHigh64-32 
	FBHigh64-32 
	FBHigh64-32 

	93.3 
	93.3 

	35.3 
	35.3 

	61.5 
	61.5 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4832 
	4832 

	44 
	44 


	FBLow32-16 
	FBLow32-16 
	FBLow32-16 

	86.9 
	86.9 

	47.4 
	47.4 

	76.1 
	76.1 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6582 
	6582 

	2 
	2 


	FBLow64-32 
	FBLow64-32 
	FBLow64-32 

	96.4 
	96.4 

	35.3 
	35.3 

	61.5 
	61.5 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6338 
	6338 

	7 
	7 


	FBHigh64-16 
	FBHigh64-16 
	FBHigh64-16 

	86.3 
	86.3 

	45.6 
	45.6 

	63.9 
	63.9 

	6.0 
	6.0 

	38.2 
	38.2 

	50 
	50 

	54.0 
	54.0 

	4914 
	4914 

	40 
	40 


	FBLow64-16 
	FBLow64-16 
	FBLow64-16 

	89.9 
	89.9 

	45.6 
	45.6 

	63.9 
	63.9 

	58.2 
	58.2 

	38.2 
	38.2 

	100 
	100 

	54.0 
	54.0 

	6426 
	6426 

	4 
	4 


	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 
	FLFRBHigh16-16-16 

	67.8 
	67.8 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4431 
	4431 

	51 
	51 


	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 
	FLFRBHigh32-32-16 

	92.4 
	92.4 

	31.2 
	31.2 

	63.9 
	63.9 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4410 
	4410 

	53 
	53 


	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 
	FLFRBHigh32-32-32 

	96.6 
	96.6 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4337 
	4337 

	55 
	55 


	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 
	FLFRBHigh64-64-16 

	92.9 
	92.9 

	29.1 
	29.1 

	39.6 
	39.6 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4039 
	4039 

	63 
	63 


	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 
	FLFRBHigh64-64-32 

	99.0 
	99.0 

	22.7 
	22.7 

	37.2 
	37.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4001 
	4001 

	64 
	64 


	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 
	FLFRBHigh64-64-64 

	98.7 
	98.7 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3811 
	3811 

	69 
	69 


	FLFRBLow16-16-16 
	FLFRBLow16-16-16 
	FLFRBLow16-16-16 

	73.2 
	73.2 

	52.5 
	52.5 

	68.8 
	68.8 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	6031 
	6031 

	15 
	15 


	FLFRBLow32-32-16 
	FLFRBLow32-32-16 
	FLFRBLow32-32-16 

	93.4 
	93.4 

	31.2 
	31.2 

	63.9 
	63.9 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5947 
	5947 

	17 
	17 


	FLFRBLow32-32-32 
	FLFRBLow32-32-32 
	FLFRBLow32-32-32 

	100.6 
	100.6 

	24.4 
	24.4 

	61.5 
	61.5 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5918 
	5918 

	20 
	20 


	FLFRBLow64-64-16 
	FLFRBLow64-64-16 
	FLFRBLow64-64-16 

	94.6 
	94.6 

	29.1 
	29.1 

	39.6 
	39.6 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5587 
	5587 

	23 
	23 


	FLFRBLow64-64-32 
	FLFRBLow64-64-32 
	FLFRBLow64-64-32 

	98.8 
	98.8 

	22.7 
	22.7 

	37.2 
	37.2 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5521 
	5521 

	24 
	24 


	FLFRBLow64-64-64 
	FLFRBLow64-64-64 
	FLFRBLow64-64-64 

	99.2 
	99.2 

	21.9 
	21.9 

	25.0 
	25.0 

	73.5 
	73.5 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5341 
	5341 

	28 
	28 


	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 
	FSLSRHigh16-16-16 

	79.9 
	79.9 

	52.5 
	52.5 

	68.8 
	68.8 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4604 
	4604 

	48 
	48 


	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 
	FSLSRHigh32-16-16 

	92.3 
	92.3 

	40.0 
	40.0 

	66.3 
	66.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4569 
	4569 

	49 
	49 


	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 
	FSLSRHigh32-32-32 

	108.8 
	108.8 

	24.4 
	24.4 

	61.5 
	61.5 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4513 
	4513 

	50 
	50 



	Figure
	Table 5.4 continued 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 
	FSLSRHigh64-16-16 

	95.3 
	95.3 

	38.6 
	38.6 

	54.2 
	54.2 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4417 
	4417 

	52 
	52 


	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 
	FSLSRHigh64-32-32 

	110.6 
	110.6 

	23.6 
	23.6 

	49.3 
	49.3 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	4352 
	4352 

	54 
	54 


	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 
	FSLSRHigh64-64-64 

	109.8 
	109.8 

	21.9 
	21.9 

	25.0 
	25.0 

	16.9 
	16.9 

	54.2 
	54.2 

	25 
	25 

	25.1 
	25.1 

	3969 
	3969 

	66 
	66 


	FSLSRLow16-16-16 
	FSLSRLow16-16-16 
	FSLSRLow16-16-16 

	85.0 
	85.0 

	52.5 
	52.5 

	68.8 
	68.8 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5454 
	5454 

	25 
	25 


	FSLSRLow32-16-16 
	FSLSRLow32-16-16 
	FSLSRLow32-16-16 

	97.3 
	97.3 

	40.0 
	40.0 

	66.3 
	66.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5418 
	5418 

	26 
	26 


	FSLSRLow32-32-32 
	FSLSRLow32-32-32 
	FSLSRLow32-32-32 

	112.1 
	112.1 

	24.4 
	24.4 

	61.5 
	61.5 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5337 
	5337 

	29 
	29 


	FSLSRLow64-16-16 
	FSLSRLow64-16-16 
	FSLSRLow64-16-16 

	98.0 
	98.0 

	38.6 
	38.6 

	54.2 
	54.2 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5233 
	5233 

	30 
	30 


	FSLSRLow64-32-32 
	FSLSRLow64-32-32 
	FSLSRLow64-32-32 

	114.0 
	114.0 

	23.6 
	23.6 

	49.3 
	49.3 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	5178 
	5178 

	31 
	31 


	FSLSRLow64-64-64 
	FSLSRLow64-64-64 
	FSLSRLow64-64-64 

	114.7 
	114.7 

	21.9 
	21.9 

	25.0 
	25.0 

	21.3 
	21.3 

	54.2 
	54.2 

	75 
	75 

	25.1 
	25.1 

	4817 
	4817 

	45 
	45 


	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 
	FLFRRLRRHigh16-16-16-16 

	91.4 
	91.4 

	43.9 
	43.9 

	59.0 
	59.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4209 
	4209 

	56 
	56 


	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 
	FLFRRLRRHigh32-32-16-16 

	113.4 
	113.4 

	26.7 
	26.7 

	54.2 
	54.2 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4208 
	4208 

	57 
	57 


	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 
	FLFRRLRRHigh32-32-32-32 

	121.7 
	121.7 

	15.8 
	15.8 

	49.3 
	49.3 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	4102 
	4102 

	61 
	61 


	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 
	FLFRRLRRHigh64-64-16-16 

	115.5 
	115.5 

	24.9 
	24.9 

	29.9 
	29.9 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3865 
	3865 

	68 
	68 


	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 
	FLFRRLRRHigh64-64-32-32 

	120.7 
	120.7 

	14.6 
	14.6 

	25.0 
	25.0 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3723 
	3723 

	70 
	70 


	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 
	FLFRRLRRHigh64-64-64-64 

	120.7 
	120.7 

	13.3 
	13.3 

	0.7 
	0.7 

	9.3 
	9.3 

	63.2 
	63.2 

	25 
	25 

	2.9 
	2.9 

	3358 
	3358 

	71 
	71 


	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 
	FLFRRLRRLow16-16-16-16 

	95.2 
	95.2 

	43.9 
	43.9 

	59.0 
	59.0 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6268 
	6268 

	10 
	10 


	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 
	FLFRRLRRLow32-32-16-16 

	114.2 
	114.2 

	26.7 
	26.7 

	54.2 
	54.2 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6224 
	6224 

	11 
	11 


	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 
	FLFRRLRRLow32-32-32-32 

	121.9 
	121.9 

	15.8 
	15.8 

	49.3 
	49.3 

	99.6 
	99.6 

	63.2 
	63.2 

	75 
	75 

	2.9 
	2.9 

	6110 
	6110 

	14 
	14 


	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 
	FLFRRLRRLow64-64-16-16 

	119.1 
	119.1 

	24.9 
	24.9 

	29.9 
	29.9 

	99.6 
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	Figure 5.5: Heat Maps of Sensing targets (equal weights) 
	5.4 Results Based on Randomly Assigned Weights (Sensitivity Analysis) 
	In the analysis based on randomly assigned weights, the applied weights were generated without bias, ensuring an unbiased distribution across all criteria in the overall weight allocation. Unlike the approach with equal weighting, in which each criterion received a fixed weight of 14.29, in this method, random weights were generated independently for 10 scenarios across each criterion. Furthermore, the scaling functions, previously detailed in Chapter 5.1.2, remained consistent and were applied to derive sc
	Tables 5.5 and 5.6 present the sensitivity of the amalgamated results for the vehicle and pedestrian target scenarios, respectively. The random weights, generated as discussed in Chapter 4, were used as input. Each table presents the rankings obtained for each of the 10 weight scenarios. The table columns represent the outcomes from Rank 1 to Rank 72, thus, providing a detailed view of the performance associated with different weight configurations. 
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	Table 5.6:Amalgamation Results: Sensing target–Pedestrian, based on randomized weights of the criteria 
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	b. Sensing target - Pedestrian (randomly-derived weights) 
	b. Sensing target - Pedestrian (randomly-derived weights) 
	 

	Figure
	Figure
	Sensing target - Vehicle (randomly-derived weights) 
	 
	Figure
	 
	Figure 5.6: Heat Maps showing variations in outcome of random-derived weights 
	 
	5.5 Discussion of the MCDA Results 
	This study applied a robust decision-making process to evaluate and rank various alternatives based on predefined criteria, including point density, blind spot regions, sensor cost, power consumption, ease of installation, sensor redundancy, and aesthetics. The results provide valuable insights into optimizing LiDAR placement for the detection of both vehicles and pedestrians.  
	The approach facilitated a comprehensive assessment, ensuring transparency in the decision-making process. Diverse metrics and criteria were used, and decision criteria were scaled using value functions derived through regression via the mid-value splitting technique. This transformation allowed meaningful comparisons despite variations in units associated with each criterion by bringing all criteria to a uniform scale. 
	Through a questionnaire, weights were established to reflect the preferences of individuals familiar with the field. These weights capture the true importance of each criterion. Based on the collective judgment of the criteria by knowledgeable individuals, point density was deemed the most important criterion and aesthetics the least important. Following this, using equally weighted criteria, analysis was carried out. Then, using the equal weighting results as a baseline, the weights were changed randomly, 
	The MCDA results illustrate how different weighting combinations for these criteria influence LiDAR placement rankings. The integration of criteria weighting and scaled performance evaluations determined the ranking of the LiDAR placement alternatives. The sensitivity analysis, reflecting unbiased weight distributions across criteria, provided insights into the robustness of the findings. 
	5.5.1 Discussion of MCDA Results Based on the Weighting Approach  
	This section examines the MCDA results, with a specific focus on the weighting methodology used: the equal weighting approach and questionnaire-derived weighting. This discussion evaluates the strengths and limitations of these approaches. Through a detailed examination of the intricacies of the decision-making process, the goal is to offer insights into the robustness and practicality of the MCDA methodologies applied. The discussion covers key aspects of the methodologies, highlighting transparency, subje
	5.5.1 (a) Respondent-Assigned Weights 
	This method involves gathering responses from stakeholders through a structured questionnaire to derive weights for various decision criteria, representing the collective decisions 
	of the respondents. A significant advantage of involving DMs lies in their ability to incorporate diverse perspectives, thus, ensuring a decision-making process that more accurately reflects real-world considerations. By directly engaging DMs in the weight assignment process, this method effectively addresses the limitation encountered in approaches that fail to capture the preferences of DMs. The same holds true when using a questionnaire to derive scaling functions. Additionally, the transparency of the p
	However, certain challenges may arise despite these advantages. The effectiveness of the respondent-assigned method depends heavily on the quality and representativeness of the responses obtained. Incomplete or biased responses could introduce inaccuracies into the weight assignment process, potentially impacting the reliability of the results. Moreover, the time and effort required to administer and collect responses from DMs could impact the duration of the study. Depending on the complexity of the decisi
	5.5.1 (b) Equal Weighting  
	The equal weighting approach offers a combination of advantages and disadvantages. On the positive side, this method serves as a convenient and straightforward way to directly assign weights to criteria. The uniform distribution of weights across all criteria simplifies the decision-making process and can be particularly appealing in situations in which a quick assessment is required. However, despite the convenience and timesaving benefits, the approach overlooks the unique perspectives and preferences of 
	criteria carry greater weight due to their impact on the overall success or failure of the alternatives. The approach's inclination towards uniformity may lead to below-par decision outcomes, as it neglects the differing significance of the individual criteria. 
	Nonetheless, the equal weighting method can be an effective starting point, providing a baseline for comparisons and highlighting areas in which further analysis or customization of weights may be necessary. It can be a practical approach in situations in which there are time constraints, and a rapid, basic assessment is sufficient.  
	5.5.1 (c) Randomly Assigned Weights   
	The sensitivity analysis, conducted through 10 iterations with randomly-generated weights representing scenarios 1 to 10, introduced a dynamic dimension to the decision-making process. This method not only provided flexibility in exploring different weight assignments but also offered a wide range of weight distributions. This variability allowed for the accommodation of the potential preferences of the DMs, even if those preferences were not obtained directly. The different weight combinations could inadve
	Additionally, the approach aided in identifying the sensitivity of decision outcomes to changes in criteria weights. The wide range of weight distribution enhanced the adaptability of the sensitivity analysis, making it suitable for scenarios in which the precise determination of weights might be challenging. The exploration of a broad spectrum of weight possibilities ensured that the sensitivity analysis did not exclusively rely on a single set of predefined weights. Instead, it systematically considered v
	Additionally, the approach tends to be timesaving as the weights can be easily generated, without the complexities of obtaining them directly from DMs, making the decision-making process efficient. In scenarios in which time is an important factor, this streamlined approach allows DMs to quickly assess a variety of weight combinations, expediting the exploration of different scenarios without the need for extensive data collection from stakeholders. 
	Despite the advantages of this approach, it is also accompanied by limitations. Interpreting results from multiple iterations with random weights poses a challenge, given the lack of clear patterns or trends. This ambiguity may hinder the ability to draw meaningful conclusions, causing potential confusion among DMs. The absence of direct stakeholder involvement is also a notable drawback, potentially resulting in the omission of important perspectives important for AV sensor deployment and development. This
	For example, scenarios with randomly assigned higher weights for criteria such as ease of installation or aesthetics could significantly impact the decision results and deviating from the optimal outcome. This is noteworthy in the context of AVs, where safety is of the utmost importance. The misalignment with the actual preferences and priorities of DMs may lead to an analysis that inaccurately reflects the decision landscape. 
	5.5.2 Discussion of MCDA Results Based on the Best Alternatives   
	This section engages in a comprehensive analysis of the MCDA results that centers on the selected LiDAR placement alternatives across the approaches. The evaluation considers the three distinct perspectives: results from equal weighting, from randomized weights, and from respondent-assigned weights.  
	5.5.2 (a) MCDA Results Based on Respondent-Assigned Weights of the Criteria 
	The weights provided by the respondents were utilized to ascertain the top-performing LiDAR placement. According to the weighting results from respondents, the criteria that earned high weights were point density, cost of sensor, blind spot regions, and sensor redundancy, thus, signifying the heightened importance of these specifications to the respondents. 
	For the vehicle detection scenario, the recommended top-performing LiDAR placement was FLFRRLRRLow16-16-16-16. This configuration signifies the positioning of LiDAR sensors at the front left, front right, rear left, and rear right positions, with 16 channels for each sensor and installation at a lower elevation. This configuration aligns with the respondents' weightings by placing a significant emphasis on point density, blind spot regions, cost of sensor, and sensor 
	redundancy. The results of the configuration emphasizes a strategic focus on optimizing detection capabilities by maximizing point density, minimizing blind spots, managing the cost of sensors, and including redundant sensors. 
	Regarding the pedestrian detection, the proposed LiDAR placement with the top overall score was the FLFRRLRRLow32-32-16-16. Notably, the front positions feature 32 channels each while the rear positions have 16 channels each, all positioned low. The slight disparity in the LiDAR placement alternatives suggests that a placement suitable for one scenario may not necessarily be optimal for another. This aligns with the findings of Hu et al. (2022a), indicating that different sensor placements are appropriate f
	The recommended LiDAR configurations for both scenarios align with the criteria weights assigned by the survey respondents. The results indicate careful consideration of various criteria is required in determining the most effective LiDAR placement alternatives for both vehicle and pedestrian targets. 
	5.5.2 (b) MCDA Results Based on Equal Weighting of the Criteria 
	The equal weighting approach assumes the equal importance of all criteria, thus, providing a baseline for evaluating the LiDAR placement alternatives. In this scenario, the alternative labeled FBLow1616 emerged as the top-ranking choice, indicating that two sensors positioned both at the front and back of the roof, each with 16 channels at low elevation, achieve the highest overall score. This outcome was consistent for both vehicle and pedestrian detection scenarios. 
	The assumption of equal importance across all criteria in the equal weighting approach can lead to unexpected results. While FBLow1616 excels in this scenario, the methodology overlooks variations in the significance of individual criteria. It is important to note that the weighting assignment in this case may not align with real-world priorities. For example, criteria such as blind spot areas, sensor cost, and power consumption may be of greater importance, especially in safety critical contexts, but are t
	  
	5.5.2 (c) MCDA Results Based on Randomized Weights of the Criteria   
	The sensitivity analysis conducted across multiple iterations reveals distinct weight distributions, making each scenario unique. In the initial iteration, criteria such as point density, cost of sensor, power consumption, sensor redundancy, and aesthetics held relatively higher and similar weights compared to the other criteria. In this context, FLFRRLRRLow16-16-16-16 emerged as the top-performing LiDAR placement alternative for vehicle detection, while FBLow16-16 emerged as the top choice for pedestrian s
	Subsequent iterations also produced results influenced by the assigned weights. The second iteration mirrored the first regarding different outcomes for pedestrian and vehicle scenarios. The top-ranking placements for the two scenarios were FLFRRLRRLow32-32-16-16 for pedestrians and FLFRRLRRLow16-16-16-16 for vehicles. 
	In the third iteration, higher weights were assigned to point density, cost of sensor, power consumption, blind spot regions, and ease of installation. The top-performing alternative for both vehicles and pedestrians, FLow16, highlighted the importance placed on the criteria, particularly power consumption, cost of sensor, blind spot region, and ease of installation, favoring the outcome of a single LiDAR sensor configuration. This setup, featuring LiDAR sensors at the front, excelled due to the importance 
	The fourth iteration assigned significant weights to cost of sensor, power consumption, sensor redundancy, and ease of installation, which resulted in FHigh64 and FLow16 being selected as the top-performing alternatives for vehicles and pedestrians, respectively. The results for the fifth iteration favored FBLow16-16 for both vehicles and pedestrians. In the eighth scenario, the outcome favored a single LiDAR placement, as aesthetics were assigned a relatively high weight. The criteria weights played a subs
	Throughout the different scenarios, varying weights influenced the decisions. Scenarios with higher weights for sensor redundancy resulted in configurations with more than one sensor. Aesthetic considerations favored single sensors, while cost-conscious scenarios leaned towards 16-channel sensors. Those prioritizing blind spots opted for low-positioned sensors. All these 
	factors confirm the importance of using MCDA for LiDAR placement optimization, thereby allowing decisions to be made based on the most important criteria. 
	5.6 Summary of Chapter 5 
	Chapter 5 extensively discusses the results obtained through the MCDA framework. The chapter commences with an examination of the results derived from respondent-assigned weights, encompassing a summary of the weighting outcomes, scaling results, and the subsequent amalgamation of these findings. It explores how the varying weighting approaches – respondent-assigned, equal weights, and randomly assigned weights – influence the MCDA results, thus, providing an understanding of their impact on decision outcom
	Additionally, the best alternatives occurred across different weighting approaches. Overall, Chapter 5 serves as a comprehensive exploration and analysis of the MCDA results, and the influence of different weighting strategies on decision-making within the study's framework.
	 CONCLUDING REMARKS 
	6.1 Summary 
	The exploration of LiDAR sensor placement optimization presented in this thesis, provided insights into decision-making regarding LiDAR placement and its broader applications within autonomous vehicle (AV) technology. MCDA has been utilized in various aspects of AV technology adoption (Anastasiadou et al., 2021; Babaei et al., 2023; Dubljevic et al., 2021; A. Raj et al., 2020). However, this work is a unique study explicitly focused on LiDAR placement.  
	The thesis encompasses a combination of both single and multi-LiDAR configurations. Single LiDAR placements offer cost-effective means of environmental information collection and simplified integration, avoiding the complexities associated with multi-LiDAR configurations. However, their limitations, including potential blind spots and impact on object detection, necessitate the exploration of multiple LiDAR configurations to achieve comprehensive environment perception, albeit with challenges in integration
	In LiDAR placement within AVs, specific criteria are crucial for ensuring safety and operational efficiency. Foremost among these is the necessity for sensor redundancy, which is pivotal in mitigating the risks of sensor failure and enhancing the overall reliability of the AV's perception system. Redundancy ensures continuity in perceiving the environment accurately, even in the event of sensor malfunction. The aspect of point density is equally critical, which is instrumental in enabling the LiDAR system t
	ease of installation and cost play essential roles in operational efficiency, their significance might be overshadowed by factors directly impacting safety and system reliability. 
	In essence, the critical criteria for LiDAR placement in AVs center around ensuring robust safety measures through redundancy and high point density, with secondary considerations encompassing factors like aesthetics, installation ease, cost, and power consumption, provided they do not compromise the primary objectives of safety and functionality.  
	6.2 Conclusions 
	In as much as the study primarily concentrates on LiDAR sensors, it is advisable to integrate these sensors with others to optimize the perception system. This integration can address LiDAR limitations by enhancing the overall capabilities of autonomous systems and ensuring robust performance. The sensor fusion of LiDAR with complementary sensors will foster a superior performance, leveraging the diverse strengths of each sensor to create a more comprehensive environmental perception for AVs and ADAS. 
	The findings in this thesis provide insights into optimal LiDAR sensor selection based on assigned criteria preferences and their importance. The study progresses from equal weighting of criteria to sensitivity analysis, ultimately employing weights from respondents, assigning ranks and scores to alternatives, and identifying the performance scores of the LiDAR placement alternatives. This thesis's methodology showcases a systematic approach to the complexities of LiDAR sensor placement, emphasizing criteri
	6.3 Study Limitations 
	The study limitations are as follows: 
	1)
	1)
	1)
	 Choice of Sensor: The scope of the thesis does not include sensor fusion with other technologies, potentially overlooking the synergistic advantages of integrating LiDAR with complementary sensor systems.  


	2)
	2)
	2)
	 Assumptions: Certain assumptions made regarding the ratings of decision criteria, like ease of installation, might affect the precision of results and their real-world relevance 

	3)
	3)
	 External Factors and Real-world Constraints: The thesis did not comprehensively consider real-world constraints, such as regulatory limitations, technological constraints, or unforeseen environmental dynamics, potentially impacting the efficacy of the LiDAR placement strategy. 

	4)
	4)
	 Decision Criteria: The selected evaluation metrics might only encompass part of the spectrum of relevant performance criteria, potentially deviating from real-world AV performance needs. 

	5)
	5)
	 Sensitivity to Number of Respondents: A more extensive and diverse respondent pool might offer varied perspectives, affecting the generalizability of findings in LiDAR placement within Autonomous Vehicles (AVs), thereby impacting the evaluation and ranking of LiDAR configurations.  

	6)
	6)
	 Adoption of other sensors: The cost factor associated with LiDAR may lead to alternative solutions, such as utilizing cheaper cameras that can be placed extensively throughout the vehicle. This cost consideration might prompt some decision makers to opt for camera-based systems over LiDAR due to affordability, potentially impacting the widespread adoption of LiDAR technology in AVs.  

	7)
	7)
	 Human Factors and User Acceptance: Human-centric considerations regarding user acceptance of LiDAR placements within AV systems are not addressed extensively. 

	8)
	8)
	 Temporal Considerations: Rapid advancements in AV technology, particularly in LiDAR sensors, might render specific findings outdated or less relevant over time as sensor technologies evolve. 


	6.4 Future Work  
	Future work in this area of research, may include: 
	1)
	1)
	1)
	 Collaboration with Industry Stakeholders: Engage automotive manufacturers, LiDAR sensor suppliers, and AV developers to access real-world data and expertise, enhancing research outcomes.  


	2)
	2)
	2)
	 Survey Respondents: Future surveys should prioritize individuals with extensive experience in LiDAR sensor technology. This targeted selection aims to better capture nuanced perspectives and expertise, potentially reducing response variation and enhancing consistency.  

	3)
	3)
	 User-Centric Input: Incorporate user preferences and real-world scenarios to refine MCDA criteria and weights, ensuring alignment with human values. 

	4)
	4)
	 Dynamic LiDAR Configurations: Explore adaptive MCDA models considering real-time data to accommodate changing driving scenarios effectively. 

	5)
	5)
	 Machine Learning Integration: Investigate the integration of machine learning for accurate and adaptable LiDAR placement decisions, particularly in complex datasets. 

	6)
	6)
	 Cost-Benefit Analysis and Scalability: Conduct a comprehensive cost-benefit analysis to evaluate the impact of optimized LiDAR placements on overall AV costs.  

	7)
	7)
	 Scalability: Explore the scalability of the configurations across diverse vehicle types, from passenger cars to commercial trucks, to cater to a broad spectrum of transportation needs. 

	8)
	8)
	 Regulatory and Safety Compliance: Address regulatory and safety considerations to ensure optimized LiDAR configurations meet the necessary standards for robust implementation in AVs. 


	 
	Continuous research in LiDAR placement has immense potential to revolutionize transportation and mobility, contributing to the development of safer, more efficient, and user-centered AVs and ADAS systems. These efforts are expected to shape the future landscape of transportation technology. This research is a valuable reference point in exploring MCDA for LiDAR placement optimization in the context of AVs. The findings provide insights into the selection of LiDAR placement for AVs. 
	 
	 
	  
	APPENDIX A. SURVEYS 
	Survey Questionnaire: LiDAR Placement using a Multi Criteria Analysis Approach 
	Researcher: Zainab Saka 
	Principal Investigator: Prof. Samuel Labi 
	Introduction 
	Multi-Criteria Analysis (MCA) is a framework that facilitates a systematic and structured approach for assessing the relative importance of different performance measures (PM) and for scaling them in order to reduce the PMs to commensurate units. It is needed to collect data on perceptions of LIDAR placement-related PMs including point density, sensor cost, aesthetics, and installation simplicity. The relative weights and scaled functions of these PMs will subsequently be collated and used in a multi-criter
	 
	Section A: Direct Weighting Approach 
	Please allocate weight to each criterion based on your level of preference so that the total adds up to 100. A higher weight signifies greater importance.  
	Criteria 
	Criteria 
	Criteria 
	Criteria 

	Weight 
	Weight 


	Point Density 
	Point Density 
	Point Density 

	 
	 


	Cost of Sensor 
	Cost of Sensor 
	Cost of Sensor 

	 
	 


	Power Consumption 
	Power Consumption 
	Power Consumption 

	 
	 


	Blindspot Area 
	Blindspot Area 
	Blindspot Area 

	 
	 


	Sensor Redundancy 
	Sensor Redundancy 
	Sensor Redundancy 

	 
	 


	Aesthetics 
	Aesthetics 
	Aesthetics 

	 
	 


	Ease of Installation 
	Ease of Installation 
	Ease of Installation 

	 
	 


	Total 
	Total 
	Total 

	100 
	100 



	Section B: Scaling 
	The purpose of this section is to get your input regarding the performance of each criterion. The input you provide will be used to create a unified scale for comparison since the performance criteria are originally measured using different units.  
	Please mark three distinct points by drawing 3 lines to the corresponding X25, X50 and X75 representing your level of preference or value associated to the criterion. 
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	AESTHETICS 
	Because Aesthetics is subjective, please assign values of 0, 25, 50, 75 and 100 for each of them with 100 signifying your most favorable and 0 your least desirable.  
	 
	Set V (A =) = 0 and V (A = ) = 100 
	Aesthetics (SR) 
	Aesthetics (SR) 
	Aesthetics (SR) 
	Aesthetics (SR) 

	Value 
	Value 


	No Sensors 
	No Sensors 
	No Sensors 

	 
	 


	1-2 sensors elevated low on the roof 
	1-2 sensors elevated low on the roof 
	1-2 sensors elevated low on the roof 

	 
	 


	1-2 sensors elevated high on the roof 
	1-2 sensors elevated high on the roof 
	1-2 sensors elevated high on the roof 

	 
	 


	3-4 sensors elevated low on the roof 
	3-4 sensors elevated low on the roof 
	3-4 sensors elevated low on the roof 

	 
	 


	3-4 sensors elevated high on the roof 
	3-4 sensors elevated high on the roof 
	3-4 sensors elevated high on the roof 
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	Thank you for your time! 
	Thank you for your time! 
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	APPENDIX B. RECRUITMENT LETTER  
	LiDAR Placement Optimization using a Multi-Criteria Approach 
	Zainab Saka (Graduate Student) / zsaka@purdue.edu 
	P
	Professor Samuel Labi (Principal 
	Investigator) / labi@purdue.edu
	 

	 
	 

	Subject: Requesting Your Participation in LiDAR Placement Research using a Multi Criteria Analysis Approach. 
	 
	IRB Protocol Number: #IRB-2023-1570 
	 
	Dear Student,  
	I am reaching out to invite you to participate in my research. This study focuses on LiDAR placement analysis and your input is highly valuable in helping us address our study objectives. 
	 
	Brief Description: 
	Most road crashes and fatalities result from human error. Consequently, companies are turning to Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AVs) to enhance safety. For this, the placement of the LIDAR sensor (which is integral to ADAS and AVs), must be analyzed carefully. This research has developed and implemented a methodology for optimal LiDAR placement using a multi-criteria analysis approach. In this approach, the issues of relative weighting and scaling of the placement criteri
	 
	Survey Objectives: 
	L
	LI
	Lbl
	• To collect road users' perspectives to determine the weighting of LiDAR placement criteria (performance measures). 

	LI
	Lbl
	• To collect road users' perspectives to determine the scaling of LiDAR placement criteria (performance measures). 


	 
	Estimated Completion Time: 
	10-15 minutes 
	 
	 
	 
	Your Privacy and Voluntary Participation: 
	We would like to reassure you that your participation in this research is entirely voluntary. You are under no obligation to take part, and you have the freedom to choose whether or not to participate. Should you decide to participate, you are welcome to withdraw from the study at any point without any consequences. This survey is conducted under protocol #IRB-2023-1570 and adheres to stringent ethical standards. It does not collect any personal or identifiable information from respondents. The insights gai
	Please feel free to contact us if you have any questions or suggestions. Thank you! 
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