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CHAPTER 1. INTRODUCTION 

1.1 Study Background 

As society transitions into an era of transportation automation, issues related to human-machine 

interface are becoming increasingly paramount. It is universally acknowledged that the benefits of 

automation (including safety and mobility) and other impacts will be profoundly influenced by the 

extent of the vehicle’s human operator awareness of their operating environment. Regarding 

automated transportation, one of the most discussed areas of human-machine interaction, is the 

takeover of the machine (that is, the AV) by the human operator. Key issues associated with human 

takeover of AVs include the measurement and characterization of risk, establishing risk thresholds 

for takeover, designing takeover alert mechanisms, understanding the human driver's propensity 

to take over, determining takeover duration, and assessing the effectiveness of the takeover. For 

these to happen, it is imperative that the AV driver maintains situational awareness of traffic 

roadway conditions. 

1.2 Problem Statement and Study Objectives 

During the period of transition to full vehicle automation, driving responsibility will be shared 

between the automated vehicle system (AVS) and the human driver. An SAE Level 2 (i.e., partial 

automation) vehicle can execute steering and acceleration/deceleration tasks but requires the 

human driver to continuously monitor the roadway and traffic environment and to perform the 

driving tasks when and where needed. 

The literature contains evidence that supports the notion that the monotonous nature of 

monitoring tasks (such as that typically of a Level 2 automated vehicle) could lead to task 

underload and vigilance reduction (i.e., deterioration in the ability to remain vigilant) (Scerbo and 

Mouloua, 1999). In SAE Level 3 (i.e., conditional automation), the automated driving system 

carries out the driving task (this allows the human driver to be occupied with non-driving related 

tasks but requires them to take over vehicle control under certain circumstances. In Level 3 

automated vehicles, when the driver takes his/her mind off the driving task significantly degrades 

his/her situational awareness (SA) which, in turn, reduces takeover performance and increases 

accident risk. It is important to recognize that situational awareness refers to awareness of the AV 

operator not the vehicle. 

A high situational awareness could be rendered ineffective in certain cases, for example, 

where the driver has over-reliance and over trust in the AVS’s capabilities, and thus is overly 

complacent. A prominent real-world example is when a car in self-driving mode crashed on a 

Florida highway in May 2016 (The Guardian, 2016). The driver may have been attentive but 

probably trusted the car to handle the situation. 

Therefore, it is important to design mechanisms that promote, or even prompt the AV 

driver to maintain a certain minimum level of awareness of the prevailing roadway, traffic situation 

or conditions. Some automobile manufacturers have taken measures to actively ensure that the 

human AV operator has a minimum level of situational awareness. For example, Tesla’s Autopilot 

and Nissan’s ProPilot, both of which promise Level 2 automation, require drivers to have their 

hands on the steering wheel in certain situations and Cadillac’s Super Cruise system introduced an 
in-vehicle camera to track drivers’ head position and gaze to ensure the driver’s attention on the 

road ahead (Hanley, 2019). Such mechanisms could involve a physical action by the driver and 
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thereby reduce their overall reaction time to any subsequent safety event needing their attention. 

Conventional wisdom such as “eyes on the road” may not be sufficient for drivers when they are 
using Level 2 or Level 3 AVS. Nevertheless, such AVSs in the practice, are still unable to fully 

address the key underlying issue of enhancing the driver’s situational awareness. 

1.3 Study Objectives 

The study develops inputs needed to build a situational awareness enhancement system (SAES) 

that has general roadway applications, but is intended for human-takeover of control from the AV: 

• Evaluate takeover alert mechanisms. 

• Discuss the propensity of the human operator to takeover, including the factors. 

• Discuss the takeover duration and effectiveness, including the factors. 

• Develop inputs towards a process to measure risks associated with takeover. 

• Present a case study where situation awareness considerations provide insights into AV 

operations policy. 

1.4 Study Approach 

This study investigates the affecting factors that need to be considered in designing an in-vehicle 

situational awareness enhancing system (SAES), which can facilitate AV-manual takeover given 

partial and conditional automation. The research is divided into two phases. In the first phase, we 

present a thorough literature review that explores prompt-based SAES for directing drivers’ 
attention to AV-manual takeover and evaluate their impacts on drivers’ situational awareness and 
takeover performance, and we develop SAES inputs and a general SAES that could serve as a 

starting point for future SAES development. In the second phase, we present a driving simulator-

based experiment that investigates factors including headways and traffic conditions. This study 

synthesizes evidence from past studies; on interactive driving simulator-based experiments with 

SAES. The collected information is used to describe the impacts of SAES on drivers’ situational 
awareness and takeover performance in partial and conditional automation driving environments. 

1.5 Organization of this Report 

The report first presents AV concepts as the background for the study (Chapter 2) and how they 

relate to situational awareness and manual takeover. This consists of a discussion of AV 

technology readiness, the various levels of automation, features of automation and connectivity, 

the anticipated timeline of AV emergence/deployment on public roads, and the role of traffic safety. 

This background is provided to show how these various concepts and developments and their 

trends could influence the AV driver’s situational awareness or are influenced by it. Next, the 

report discusses the concepts of situational awareness in the context of automated driving 

(Chapters 3 and 4). In Chapter 5, a SAES-related case study is presented to show how situational 

awareness helps to develop AV operations, through a driving simulator study. Chapter 6 of the 

report provides concluding remarks including the summary, study limitations, and directions for 

future research. Chapter 7 presents the USDOT performance indicators achieved, and Chapter 8 

lists the study outcomes and outputs. 
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CHAPTER 2. AV CONCEPTS AND RELATION TO 

SITUATIONAL AWARENESS AND MANUAL 

TAKEOVER 

In this chapter, the report presents a few concepts related to AV capabilities and operations. It is 

important to discuss these topics because AV features and capabilities will influence not only the 

situational awareness of AV drivers, but also the specific application context of manual takeover 

of the AV, (that is, the warrants, mechanisms, and effectiveness). This chapter discusses AV 

technology readiness, the various levels of automation, features of automation and connectivity, 

the anticipated timeline of AV emergence/deployment on public roads, and the role of traffic safety. 

2.1 Readiness of AV Technology 

At the time of report, researchers generally agree that significant time and effort (regarding testing 

and regulatory approval) are needed before AVs will be considered ready to operate reliably and 

safely in all traffic and roadway conditions (McLeod, 2021). Significant technological advances 

must happen before AVs will be capable of operating not only at normal conditions but particularly 

in environments made complicated by the presence of other road users (say, the vulnerable kind), 

unexpected road surface conditions (including potholes and roadway debris), heavy fog, disabled 

vehicles, and work zones. AVs, as of 2021, were considered to have reached a level of 6 on the 

10-point Technology Readiness Level scale (McLeod 2021). Technology Readiness Level (TRL) 

is a pertinent issue in the concept of manual takeover of AV because TRL will influence (and also, 

will be influenced by) AV takeover warrants, duration, and performance (effectiveness). 

2.2 Levels of Vehicle Automation and Relationship with Situational Awareness 

Any discussion of manual-takeover of AV must necessarily include a review of the standard levels 

of autonomy (LOA) vehicle autonomy/automation as defined by SAE International (the erstwhile 

Society of Automotive Engineers) in 2014 (SAE, 2014), and revised in 2016 and by the NHTSA 

(2016). Similar to TRL (discussed in the preceding section), LOA is an important consideration in 

takeover discussions because LOA will influence (and also, will be influenced by) the takeover 

warrants, duration, and performance (effectiveness). 

Figure 2.1 presents the classification of automated driving features, from Level 0 (no 

driving automation) to Level 5 (full automation). At Level 0, the human driver carries out all 

driving tasks and the vehicle does not handle any aspect of the driving task. The vehicle may 

include driver assistance features such as blind-spot and lane-departure warnings. At Level 1, the 

vehicle can control one aspect of the driving task: either the steering or the speed, for example, 

cruise control and lane centering. At Level 2, the vehicle has both lateral and longitudinal control 

(the ADS controls both the steering and speed) but always requires full driver attention. At Level 

3 (conditional driving automation), the driver does not drive the vehicle while the automated 

system is engaged, under certain conditions; however, the driver must be ready at any time to 

takeover if the system becomes disengaged. At Level 4, there is no need for a driver, and no need 

for a steering wheel and pedals in the vehicle. Level 4 vehicles are ODD specific – they can operate 
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only within a specific geofenced area, and the vehicle disengages and comes to a stop on its own 

if it encounters a problem. Level 5 is fully self-driving and does not require human involvement. 

Unlike Level 4, the vehicle is not ODD specific that is, it can operate autonomously in all locations 

and under all conditions. 

Figure 2.1 The SAE levels of automation (GHSA, 2018) 

Subsequently, these guidelines were questioned by certain researchers for being vague, for 

example, the technology leap from Level 2 upward is not as linear as the guidelines suggest, and 

some vehicle manufacturers considered Level 2 to be too broad. As such, in 2021, SAE released 

updated descriptions of the levels of driving automation. The update added new terminologies and 

significantly refined concepts that had not been adequately understood by users of past versions, 

and restructured the definitions to incorporate additional classes that are more logical. These 

include additional clarity regarding the differences between Levels 3 and 4; new terms and 

definitions for remote driving and remote assistance; adopting the “Driver Support Systems” 
moniker for SAE Levels 1 and 2; definitions of vehicle types by groups, and classes of sustained 

driving automation; and clarifying and defining the concept of failure mitigation strategy (SAE 

2021). 

A discussion of the levels of automation is important because at least one of these levels 

requires the AV operator to take over the driving task in certain risky conditions. From a general 

perspective, the need to provide oversight to autonomous vehicles is expected to persist until they 

reach Level 5 where human takeover (and thus situational awareness) is obviated because the 

vehicle possesses the capability for fully autonomous driving operations under all types of road 
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environment. NHTSA (2013). Until that happens, it has been stated that it is important for AV 

operators to possess adequate levels of situation awareness in various AV driving scenarios and 

roadway/traffic environments (Martelaro et al., 2015). 

A critical prerequisite for human takeover from the AV is that the operator must have 

adequate situational awareness of the driving environment (roadway features and traffic 

conditions). As shown in Figure 2.1, for Levels 2-4, there is an anticipated occurrence of human 

takeover. In Level 2, the driver is the default controller and maintains control most of the time; in 

Level 4, the ADS is the default controller and is in control most of the time. The case for Level 3 

lies in between that for Level 2 and level 4. Figure 2.2 presents a conceptual and hypothetical 

relationship between the situational awareness needed by the vehicle operator for the driving task 

vs. the level of autonomy of the vehicle in question. 

The relationship in the figure is only hypothetical and could be verified, refuted, or 

modified through a theoretical analysis, empirical study, or questionnaire survey. It serves as an 

initial basis for a discussion on such a relationship. At Levels 0 and 5 where there is no possibility 

of takeover, it can be argued that there is no need for takeover-related situational awareness. At 

Levels 1 (driver assistance) and 2 (partial automation), the driver will need to monitor, engage 

controls, and be ready to take over the vehicle control quickly at any moment, so situational 

awareness is vital at Level 1 and even more vital at Level 2 automation. At Level 4 (fully self-

driving under some conditions), the vehicle can be in full control for the entire trip; however, the 

vehicle possesses driver-control features (steering, pedals, and accelerator), thus the driver’s need 
for situational awareness is rather low. 

At Level 3 (conditional automation with limited self-driving), the autonomous driving 

system can control the vehicle fully in certain conditions and alerts the driver to take over in risky 

or uncertain conditions. As such, the driver needs to have maximum situational awareness so they 

can be ready to take over quickly when they receive the alert. It is worth mentioning that 

researchers at Stanford University have developed a system, Daze, which assesses in-vehicle 

situation awareness during manual or automated driving in a real-time (Martelaro et al., 2015). 

Figure 2.2 Level of situational awareness needed for the driving task vs. level of automation: 

Conceptual and hypothetical relationship. 
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2.3 Features of Automation and Connectivity that are related to Situational Awareness 

AVs use sensor-based technology (cameras, lidar, and radar) and AI-based algorithms for image 

detection to characterize, in real-time, a 3-D representation of the vehicle’s physical roadway and 

traffic environment (Figure 2.3). The cameras capture visual information, while lidar sensors use 

laser beams to measure distances and create detailed 3-D maps of the surroundings. Radar sensors 

detect objects and measure their speed and direction using radio waves. 

These sensors work together to provide a comprehensive view of the vehicle's surroundings 

in real-time. Artificial intelligence algorithms then analyze the sensor data to identify objects, track 

their movements, and make informed decisions for safe navigation. The combination of cameras, 

lidar, and radar sensors enables the AV to accurately detect obstacles, recognize traffic signs and 

signals, and respond to complex driving scenarios. Such technologies ensure a high level of 

perception and decision-making capabilities and are key to AVs’ efficient and reliable operations. 

Figure 2.3 Basic sensing hardware of a typical autonomous vehicle 

(Image source: Madhav (2019). circuitdigest.com/article/debunking-the-magic-behind-sensors-

used-in-self-driving-cars) 

Effective vehicle-to-infrastructure (V2I) connectivity can promote reliable AV operations. 

The zenith concept of connectivity, Vehicle-to-everything (V2X), refers to a communication 

ecosystem that enables and facilitates information exchange between the AV and all other types 

of entities in the ecosystem: vehicles (V2V), the grid (V2G), infrastructure including traffic signals 

(V2I), devices (V2D), and pedestrians (V2P). Ha et al. (2020) pointed out that automation and 

connectivity are sibling technologies. Other researchers have reported that potential applications 

of V2X connectivity have been identified by various national and international organizations 

including SAE International and the European Telecommunications Standards Institute (Kenney, 

2011; ETSI, 2011; Harding et al., 2014; SAE, 2016). Yoshida (2013) have argued that AV 

https://circuitdigest.com/article/debunking-the-magic-behind-sensors-used-in-self-driving-cars
https://circuitdigest.com/article/debunking-the-magic-behind-sensors-used-in-self-driving-cars
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technologies can realize their full potential only when the connectivity technology is fully 

developed. A few other researchers provided information that are suggestive of the critical role of 

V2X connectivity in promoting AV operations in a variety of safety-related traffic functions 

including traffic-related warnings (regarding, for example, blind spot, forward collision, 

approaching road work approaching emergency vehicle) and assists (for merging, intersection 

navigation, congestion prediction, and so on). Such capabilities are helpful in promoting the 

situational awareness of an AV driver. 

2.4 The AV Transition Period and its Phases 

It seems reasonable to suggest that fully autonomous operations will occur not spontaneously but 

in an evolutional and incremental manner over some extended period that is often referred to as 

the Transition Period (Figure 2.4). Several predictions have been made regarding the start year of 

AV deployment at public roads, the market penetration trends, level of autonomy trends, and the 

effects of experimental or initial AV deployment into the traffic stream. The incremental nature of 

the transition process is expected to be manifest regarding technology advancement, road user 

adoption, and infrastructure retrofit. During the transition period, it is expected that the roadways 

will accommodate a variety of vehicle types including Level 0 autonomy (traditional vehicle or 

vehicles operated fully by human drivers), Level 1 to Level 4 autonomy, and Level 5 autonomy, 

until a time in the far future when all vehicles on the road (100% market penetration) are fully 

autonomous. 

The period of the transition could be described as consisting of four phases: 

• Phase I, low AV-HDV ratio: up to 25% of vehicles on roadways are L4-5 AVs. 

• Phase II, low-to-medium AV-HDV ratio: 25-50% of vehicles on roadways are L4-5 AVs. 

• Phase III, mid-to-high AV-HDV ratio: 50%-75% of vehicles on roadways are L4-5 AVs. 

• Phase IV, high HDV-AV ratio: 50%-75% of vehicles on roadways are L4-5 AVs. 

• Fully autonomous phase (FAP): 100% of vehicles on roadways are L4-5 AVs. 

Within these phases, there could exist sub-phases depending on the share of each level of 

autonomy. At the early years of the transition phase, the market penetrations of Levels 4-5 AVs 

will be low (as they are being tested for commercial use) and Levels 1-2 will be dominant in the 

traffic stream. With time, the market penetration of AVs will increase gradually to a point where 

AVs will dominate the traffic stream. This will be similar to the period in the early twentieth 

century when motor cars became dominant (and horse carriages became obsolete) and the latter 

were no longer considered in the design of road infrastructure. 

Figure 2.4 Timeline of HDV-only traffic, mixed traffic (transition period), and AV-only traffic 
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There exist several hypotheses and predictions regarding the initiation and length of the 

HDV-to-AV transition period. An IHS Automotive (2014) study expects the entire global fleet to 

be fully autonomous by 2050. It has been suggested that human driving will be restricted after 

2060 if AV benefits are realized by that year (Litman, 2014). Also, it has been reported that the 

CEO of Tesla, an automotive industry giant, has suggested prohibiting the use of traditional (HDVs) 

subsequent to widespread adoption of AVs and their safety benefits is (Saeed, 2019). It may very 

well be the case that as AV demand grows, governments might be compelled to make policies 

prohibiting HDVs from certain corridors or classes of highways. It may take several decades for 

the HDV-to-AV transition. 

The length of the transition period can be reduced by legislation (for example, banning 

HDVs from using certain corridors), AV technological advancements, enhanced protocols for 

HDV driver training towards the AV era, infrastructure investments to support AV operations, and 

improvements in public perceptions of AV safety. Kyriakidis et al. (2015) surveyed 5,000 

individuals from over 100 countries and determined that approximately 70% of the respondents 

expect by the year 2050, NHTSA-defined Level 4 vehicles will achieve 50% market penetration. 

A recent study in Indiana (Saeed et al., 2018) suggested that 68% of individuals in small and 

medium-size cities prefer continuing using HDVs over AVs in all classes of ownership (shared 

use, hired, or self-owned). 

The uncertainty in the expected length of the transition phase is governed by several factors, 

some of which are strongly related to human factors (lack of trust in automation), and are discussed 

in Pourgholamali et al. (2022) as follows: 

• Road user/driver attitudes: It seems obvious that there will be marked variability across 

market segments (demographic groups, personal vs. commercial interests, etc.) in their 

willingness to give up their HDVs as soon as AVs become available. 

• AV policy: some jurisdictions will be slow to provide supporting policies for AV 

operations and some may even pass policies to inhibit AV operations, both due to lack of 

trust in automation. For example, a few years ago, Krok (2016) reported that Chicago’s 
City Council members, citing safety risk particularly to pedestrians, considered an 

ordinance that would prohibit autonomous car operations within city limits. 

• Inadequate infrastructure to accommodate AVs: in some cases, the Independent Owner, 

or Operators (IOOs) might be unable to provide the infrastructure funding needed to 

support AVs due to already strained budgets. It will be important for public-sector IOOs to 

cultivate the skill of communicating with legislatures, to open the purse strings to support 

the building of renewed or new types of infrastructure, to support AVs. 

• Test outcomes: Favorability of outcomes of experimental AV deployments at public roads 

and the press and media coverage in the event of any mishaps. AV successes seem to 

receive far less press reporting compared to AV mishaps. As more AV gets deployed 

gradually, the number of crashes (not crash rates) are also expected to increase. Every 

adverse AV incident will receive extensive coverage, thereby exacerbating the fears of an 

already skeptical public, increasing the reluctance of potential customers to patronize AVs, 

and leaving policymakers even more cautious to pass AV-supporting legislation and 

policies. In addition, any crash involving an HDV and AV will likely be blamed on the AV 

as it is the newcomer to the traffic stream, and the public mood might be governed by the 

maxim “it was not as bad until you came along.” 
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It is expected that the above-discussed factors will influence the AV transition phase. As the 

safety and mobility benefits of AV become obvious, skepticism towards AVs will reduce and may 

lead to reduced length of the transition phase. Notwithstanding the effects of these factors, it seems 

to be generally agreed that the transition to a steady-state era of full autonomy will be gradual and 

evolutionary and will be punctuated with bumps and hiccups in AV purchase, patronage, or travel 

demand. It is also expected that there will be a bump (Figure 2.5) regarding the safety impacts of 

AVs (Labi, 2023): in the early years of the transition period, heterogeneity associated with mixed 

traffic will cause increased crashes, mostly caused by errant HDVs (because AVs will be tuned to 

drive conservatively to gain public support). The increased crashes will be caused by poor 

understanding by human drivers of HDV intentions, deliberate “bullying” of AVs by human 

drivers during road operations, unsafe maneuvers by human drivers under their assumption that 

the AVs will compensate for their errant driving (it is easier to offend a machine than to offend 

another driver). Then, over time, crashes will decrease due to (a) increased volumes of AVs 

compared to HDVs, (b) increase in dedicated lanes for AVs at corridors with persistent crashes 

due to DHV-AV interactions, (c) greater mutual understanding between HDVs and AVs of their 

driving patterns (AVs will do this via machine learning of human driving patterns). 

From an IOO perspective, the nature of AV market penetration trends is a key issue because it 

will be a significant factor of the demand for AV-supporting infrastructure, and consequently, the 

expected impact of the required pace of AV-related road infrastructure investments. At the current 

time, road infrastructure is designed to serve a HDV traffic environment. As AV market 

penetration grows and AV traffic become dominant, it will be needed to provide infrastructure to 

serve mixed streams: HDVs, automated Level 1 to Level 4, Level 5 autonomy), and ultimately, a 

fully autonomous vehicle fleet. Saeed   (2019) recognized that AV technological development will 

be evolutionary, and therefore, road infrastructure retrofitting will be incremental. Retrofitting will 

be required to be both proactive and responsive in the sense that it will be not only a cause but also 

an effect of AV demand. 

Figure 2.5 Hypothetical AV Safety bump during the transition mixed-traffic period (Labi, 2023) 
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2.5 The Role of Traffic Safety Requirements 

Globally, road crashes cause, on an annual basis, roughly 1.5 million fatalities, 40 million serious 

injuries, and $230 billion economic loss, besides the large medical expenses and emotional pain 

suffered by the families of accident victims. The unending irony of this situation is that over 90-

95% of highway traffic crashes are not only avoidable but also mostly due to human error (NHTSA, 

2016). 

A promising solution to this persistent problem is vehicle connectivity and autonomy. By 

carrying out the driving task, Autonomous Vehicles (AV) are expected to eliminate or reduce 

human driving error. This is because AVs use verified detection technologies including camera, 

and lidar to reliably characterize roadway environments and use AI for vehicle control. Therefore, 

they are devoid of human’s adverse states (inebriation, somnolence, drug effects, inexperience, 
inattention, carelessness, etc.) that promote unsafety. Due to their far lower scope and intensity of 

human control of the vehicle compared to human driven vehicles (HDVs), AVs continue to 

generate widespread interest among proponents of enhanced highway safety. 

Paradoxically, vehicle autonomy, for all its prospective safety benefits, could pose a two-

edged sword: under certain circumstances, the non-human nature of the vehicle operations could 

be inherently risky. As such, human operator assistance will still be needed to take over the vehicle 

from the automated system where and when warranted, particularly at irregular and unexpected 

conditions of the traffic environment. This means that AV operators will need to possess quick 

and appropriate decision-making reaction capabilities regarding human takeover of the AV. That 

way, safety and mobility will not be unduly degraded. 

The safeness of the AV-to-human takeover hinges on the type and level of assistance that 

are needed from the human operator. This is expected to be a function of the existing stage of the 

HDV-CAV transition phase and the expected level of human cognitive input during the driving 

operation. Regarding trained operators, their input is expected to be adequate, and the transition is 

expected to be smooth. Current efforts in this regard include comprehensive integration (by 

automobile engineers) of human driver capabilities into the automation algorithm. This is expected 

to promote human-centered AV design and real-world operability (Stanton & Edworthy, 1999). 

Therefore, the effect of human interaction with automation technology is currently a 

subject of great interest in the literature. Research, it seems, has mostly focused driving 

environments and the effect on AV driving tasks with assumptions of complete vehicle autonomy 

(zero human interaction) and complete reliance on automation (Stanton & Marsden, 1996). 
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CHAPTER 3 THE CONCEPT OF SITUATIONAL 

AWARENESS IN THE CONTEXT OF AUTOMATED DRIVING 

3.1 SA Definitions and Literature Review 

Situational awareness (SA) is the understanding of the elements of an environment in a specific 

context, so that effective decisions can be made efficiently in terms of time, safety, comfort, and 

so on. In this study, that context is manual takeover of automated driving. Situational awareness 

is described as the outcome of situational assessment, and therefore, is only as good as the process 

used for the assessment. The elements of SA may vary, and SA may change with respect to time, 

location, or other factors. Table 3.1 presents some definitions of SA in the literature. 

Table 3.1 Definitions of Situational Awareness 
Definition Source 

“The knowledge of current and near-term disposition of both [opportunities] and 

[threats] within [an operating environment]” 
Hamilton (1987) 

“Keeping track of the prioritized significant events and conditions in one’s 

environment (from: Aerospace Glossary for Human Factors Engineers)” 
Oliver (1990) 

“The knowledge, cognition and anticipation of events, factors and variables affecting 

the safe, expedient, and effective conduct of the mission.” 
Taylor (1990) 

“One’s ability to remain aware of everything that is happening at the same time and to 

integrate that sense of awareness into what one is doing at the moment. 

Haines & 

Flateau (1992) 

“Continuous perception of self and the vehicle in relation to the dynamic 

environment of vehicle operations, threats, and mission, and the ability to forecast, 

then execute tasks based on that perception.” 

Carol (1992) 

“Continuous extraction of environmental information, integration of this information 

with previous knowledge to form a coherent mental picture, and the use of that picture 

in directing further perception and anticipating future events.” 

Dominguez 

(1994) 

“The perception of the elements in the environment within a volume of time and space, 

the comprehension of their meaning, and the projection of their status in the near 

future.” 

Endsley, 1995 

“An adaptive, externally-directed consciousness that has as its products knowledge 

about a dynamic task environment and directed action within that environment.” 
Smith and 

Hancock, 1995 

The term “situational awareness” has achieved celebrity status at the current time. In the 

literature, it has been stated that the notion of being aware of your surroundings in an adversarial 

or collaborative environment, has been around for several centuries, as it is found in documented 

history of formal military theory and Sun Tzu’s classic piece “The Art of War.” Hartman and 

Secrist (1991) stated that “situational awareness is principally (though not exclusively) cognitive, 

enriched by experience.” SA research and applications in the context of transportation have 

primarily been in the aviation field. SA applications in automated land-transportation vehicles have 
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burgeoned in recent years. Tenny et al. (1992) cautioned that situational awareness contributes to 

good performance, but the two terms are not synonymous. Therefore, it is possible to have good 

SA and still not be a good operator of an automated system, and this could be due to poor 

coordination and motor skills, for example. On the other hand, it is possible to have good driving 

performance with very little situational awareness, and this could happen particularly where the 

operator is experienced and operating the vehicle comes as second nature. 

Endsley et al. (1998) proposed three hierarchical “levels” or scopes of SA: (a) perception, 

(b) comprehension, and (c) projection. In the sections below, various terms reflecting the original 

context (aircraft operations) have been replaced by the context of AV operations. 

Figure 3.1 A situational awareness model (adapted from Endsley, 1995) 
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3.2 Scopes of Situational Awareness (Endsley, 1995) 

In this report, we use the term scope instead of the term “level” that was used in the Endsley (1995) 
study to represent what is arguably, the scopes of Situational Awareness. This is because we seek 

to avoid confusion with the SAE levels of automation. 

Scope 1 Situational Awareness (Perceiving the elements of the current roadway/traffic 

environment) 

SA Scope 1 covers the perception of various characteristics of the key aspects of the roadway and 

driving environments: the locations and dynamics. Details include the locational and dynamic 

attributes of the vehicle (location, relative locations to other stationary or moving objects, its 

movement speed, acceleration, and direction), weather conditions, roadway clearances, emergency 

information, and other relevant aspects of the roadway, roadside, and traffic environment. 

Scope 2 Situational Awareness (Comprehension of the current relationships between the elements) 

SA Scope 2 extends the operators knowledge of their roadway/traffic environment by going 

beyond mere awareness of the existence of the elements to establish their significance and the 

relationships between these elements, both from the perspective of the operator’s objectives. 

Therefore, unlike SA Scope 1, Scope 2 involves a synthesis of the disjoint driving roadway 

environment elements to establish functional patterns among the elements in a way that yields a 

coherent and comprehensible tapestry of the roadway environment. 

Scope 3 Situational Awareness (Projection of the future relationships between the elements) 

SA Scope 3 involves building on SA Scope 1 and SA Scope 2, to acquire knowledge of future 

roadway/traffic conditions through projections of the effect of future actions associated with the 

elements in the environment. This is done within some spatio-temporal boundaries of Situation 

Awareness. 

3.3 Measurement of Situational Awareness 

A situational awareness construct or indicator is defined as a way by which SA could be measured 

quantitatively or qualitatively. SA indicators can be placed into two broad categories: inferred vs. 

direct. Inferred (also termed indirect or derived indicators) use established objective metrics of SA 

based on operator behavior or performance that is observed empirically or through a controlled 

experiment. Examples include indicators based on eye-tracking and physiological-measurement 

equipment. Direct SA indicators are typically obtained using a questionnaire survey where 

respondents are asked to provide a subjective assessment of the SA they perceive. Like in any 

engineering system assessment, the choice of indicator(s) must be chosen carefully and must be 

guided by considerations including appropriateness and relevance, cost and effort in data collection, 

comprehensiveness, and transferability (Labi, 2014). Sirkin et al. (2017) presented metrics or 

indicators for situational awareness, and these are discussed below. 
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3.3.1 Indirect Indicators 

(a) Eye tracking based indicators: Tracking the eye movements of the vehicle operator could 

effectively assess the situational awareness at Level 1 SA, as such data provides an objective record 

of the extant features of the roadway and traffic, or at least, what the operator sees. In other words, 

there could be a difference between what exists and what the operator sees – laying one’s eyes on 

an object does not necessarily mean that one has fully perceived the object (Drew et al., 2013; 

Chabris and Simons, 2011). Eye tracking data collection is rather costly, requires specialized 

equipment and trained personnel, and can be sensitive to ambient conditions including lighting 

particularly if collected outdoors. 

(b) Indicators based on Physiological Measures: According to Brookhuis et al. (2001) (and 

subsequently echoed by Sirkin et al. (2017)), the use of attentional resources for SA assessment 

increases cognitive workload, and that it is much more difficult to assess the deeper situation 

awareness levels of perception and projection of a driving environment. 

3.3.2 Direct Indicators 

The Subjective Ranking Technique (SART) indicators of assessing situational awareness involve 

ranking by the driver or an observer. SART presents a subjective measure of driver SA and needs 

modification so it can be adequately applicable to non-experts in a driving context (Sirkin, et al., 

2017). Subjective rankings obtained from observers could yield SA measurements that are 

unobtrusive. Further, it has been argued that SART rankings can be used during live action 

evaluation but require several subject matter experts to review participants’ behaviors. Therefore, 

the reliability of the results could be questionable (Salmon et al., 2006). 

The Situation Awareness Global Assessment Technique (or SAGAT), provides popular 

situational awareness assessment indicators. SAGAT involves stopping a simulation in progress 

and requesting the human subject to provide their perceptions regarding a specific activity in the 

simulation environment, for example, the location/position, type, and future status of elements in 

the environment (Endsley, 1995; Sirkin et al. (2017). Obviously, such frame freezing cannot be 

used in tests on real in-service roads. Further, this method’s intermittent stoppages may jeopardize 

the human participants sense of presence and immersion in the simulation, thereby potentially 

compromising the simulation integrity and ecological validity of the study (Lee, 2004; Sirkin et 

al., 2017). 

Question probes provide direct and objective measures of elements perceived in an 

environment. However, it has been stated that this method could also be used to carry out SA 

assessment at SA Levels 2 and 3. According to Sirkin et al. (2017), best practices for this technique 

are inherent in Tremblay (2004)’s Situation Present Awareness Method (SPAM). SPAM’s 

question probes are considered far less intrusive compared to SAGAT’s frame-freezing method 

and are applicable in real-world environments in real time. Mok et al. (2015) cautioned that the 

probe needs to be designed carefully, to (a) avoid drawing the driver’s attention to elements of the 
environment, (b) avoid undue cumbersomeness, (c) avoid driver distraction and hence impaired 

their ability to carry out their primary task. The use of surveys administered after the driving task 

(Baltodano et al., 2015) helps overcome some of these limitations but their efficacy hinges on the 

ability of the human participants to recall their driving experience. In cases where the driving task 

is automated with minimal takeovers, question probes are more feasible to use because the 

participant (driver) could be responding to the SA questions while the automated system drives 

the vehicle, thereby boosting the ecological validity of the experiment. 
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3.4 SA Augmentation via Vehicle Interface Placement Design and Alert Modes: A Review of 

the Literature 

The design and evaluation of vehicle interfaces to enhance an AV driver’s situational awareness 

continues to attract researchers who have assessed various interfaces designed to augment SA in 

AVs. This section presents an overview of vehicle-driver interface development intended to 

increase the driver’s SA in L2 and L3 automated driving systems, as conducted in past studies. 

Most of the past studies have illustrated the benefits of deploying driver engagement 

systems using simulated environments. Schroeter and Steinberger (2016), in a conceptual gamified 

augmented reality application, presented interactive virtual objects on the driving screen to direct 

drivers’ attention at those locations while their Level 2 and Level 3 AVS engaged. It seems, 

however, that the researchers did not present experimental evidence of the application’s efficacy 
to increase drivers’ situational awareness. Capalar and Olaverri-Monreal (2018) used periodic 

visual stimulus (i.e., color-changing LED lights) in a driver’s peripheral vision to evaluate their 
response time to takeover requests. Pradhan et al. (2019) used a multimodal system in Level 2 

AVS (haptic, visual, and auditory warnings) if the driver is visually distracted (i.e., not looking at 

the road for 3 consecutive seconds in a rolling 30-second interval) or a takeover is required. It 

seems, however, that a common shortcoming of these state of the art (SOTA) alert systems is their 

limited ability to continuously maintain drivers’ situational awareness in dynamic traffic 

environments. 

Alert modes: In past research, four categories of takeover alert modes have been investigated: 

• Auditory: speech, chime, music 

• Haptic: pressure, vibration  

• Visual: text, light, video, images (icons, symbols) 

• Olfactory. 

Alert equipment/outlet locations: According to Capallera et al. (2023) and other sources, the 

typical locations are (Figure 3.2(a)): 

• Windshield 

• Center stack (horizontal, vertical) 

• Dashboard location A (above vertical center stack, beneath the windshield) 

• Dashboard location B (left position directly facing the driver) 

• Periphery (side mirror, rearview mirror) 

• Cabin floor, steering wheel (behind wheel, facing the driver) 

• Driver’s seat 

• On hood of the car directly facing the driver (Figure 3.2 (b)) 

• On the driver, for example, a wrist-borne device 

• Other locations inside the car. 
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(a) Frequency of mode locations (Capallera et al., 2023). 

(b) Potential location on hood 

Figure 3.2. Alert mode locations. 

(Source: https://www.macx3.net/mazda_cx_3_adjusting_the_driver_s_seat-13.html) 

Class of information conveyed by the alert: Most of the information for which an alert is triggered 

is related to the following: 

• The ego vehicle itself (its location, status, intentions such as excess speed, closeness to 

lane-marking (lateral), longitudinal closeness to a leading vehicle, ego vehicle in another 

vehicle’s blind spot), 

• External factors (traffic, other users such as vehicle or pedestrians, temporary obstacles, or 

hazards, for example, congested traffic ahead, another vehicle in ego vehicle’s blind spot) 

Table 3.2 (adapted from Tran et al., 2021) presents the SA alert mode types and locations that 

have been investigated in the literature. Evidently, the most common location is the windshield 

while the least common location is the steering wheel. The table also presents the multiplicity 

(single vs. multiple) and dissemination locations of the alerts. Regarding the use of single modes, 

most of the alerts investigated in past studies have been conveyed via the windshield using visual 

modes for example, icons or text. Regarding the visual-light mode, locations have included the 

Visual alert 

facing the 

driver 

https://www.macx3.net/mazda_cx_3_adjusting_the_driver_s_seat-13.html
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windshield (Schmidt and Rittger, 2017; the dashboard (Faltaous et al., 2018; Wang et al., 2017; 

Ulahanna et al., 2020), the center stack (Locken et al., 2016), the steering wheel (Mok et al., 2017), 

the peripheral pillar (Locken et al., 2016), and the driver (Veen et al., 2017). 

Visual text alert via windshield and center stack dissemination was investigated by Lindeman 

et al. (2018), and Sirkin et al. (2017) and Kim et al. (2019) respectively. Studies have used visual 

icons displayed via the windshield (Stockert et al., 2015; Wulf et al., 2014; Lindemann et al., 2018; 

Pokam et al., 2019) and via dashboard (Ulahanna et al., 2020; Beller et al.,2013; Sirkin et al., 2017; 

Wang et al., 2017; Kim et al., 2019). Interior locations have been found to be most effective for 

auditory alerts (Nees et al., 2016; Wang et al., 2017). Haptic alerts were used by Telpaz et al. (2015) 

and Sonada and Wada (2017), and Yusof et al. (2017). 

Regarding multiple modes, interesting combinations have been tested for their efficacy in 

providing situational awareness. Audio-visual interactions (e.g., text/icon and a chime) are also 

common. Studies that used chime and/or speech icons and/or text (a) through the windshield or 

through the entire interior (Tijerina et al. (2016), Wulf et al. (2013), Kim et al. (2017), Wiegand et 

al. (2018), Naujocks et al. (2017)) (b) through the dashboard (Wiegand et al., (2018), and Gang et 

al. (2018)) and (c) through the center stack (Large et al. (2019), and Beukel and Vort (2017)). 

Studies that used chime, speech, icon, light, and physical movement via dashboard alert 

locations, include Zihsler et al. (2016). Wulf et al. (2013) used video via the vertical center stack. 

Studies that used haptic (vibration), icons and light have used a variety of locations: the dashboard 

(Kunze et al., 2019), the vertical center stack (Kunze et al., 2019), the peripheral pillar (Kunze et 

al., 2019), and the driver’s seat (Kunze et al., 2019). 

Table 3.2. SA alert mode types, multiplicity, and dissemination locations (adapted from 

Capallera et al., 2023) 

Uni-modal – Visual 
Windshield/ 

HUD 

Dashboard 

A 

Dashboard 

B 

Center Stack 

(Vertical) 

Steering 

Wheel 

Periphery 

(Pillar) 

Seat Driver All 

Interior 

Light Yang et al., 

(2018), 

Schmidt and 

Rittger 

(2017) 

Faltaous et 

al., (2018), 

Wang et 

al., (2017) 

Ulahannan 

et al., 

(2020) 

Locken et al., 

(2017) 

Mok et 

al., (2017) 

Locken et 

al., (2016), 

Karijabto et 

al., (2017) 

Veen 

et al., 

(2017) 

Text Stockert at 

el., (2015), 

Lindermann 

et al., (2018) 

Sirkin et al., 

(2017) Kim et 

al., (2019) 

Icons Stockert at 

el., (2015), 

Wulf et al., 

(2015), 

Kohn et al., 

(2015), 

Lindemann 

et al., 

(2018), 

Pokam et al., 

(2019) 

Ulahannan 

et al., 

(2020), 

Beller, 

Heesen and 

Vollrath 

(2013) 

Sirkin et al., 

(2017), Wang 

et al., (2017), 

Kim et al., 

(2019) 

Video Kohn et al., 

(2015), Kohn 

et al., (2019) 
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Uni-modal – Auditory 

Windshield 

/ HUD 

Dashboard Center 

Stack 

(Vertical) 

Steering 

Wheel 

Periphery 

(Pillar) 

Seat Driver All Interior 

Chime Nees, Helbein and Porter, 

(2016), Wang et al., (2017), 

Beattie et al., (2014) 

Speech Nees, Helbein and Porter, 

(2016), Serrano et al., (2011) 

Uni-modal – Haptic (Vibration) 

Windshield 

/ HUD 

Dashboard Center 

Stack 

(Vertical) 

Steering 

Wheel 

Periphery 

(Pillar) 

Seat Driver All Interior 

Telpaz et 

al., (2015) 

Sonada & Wada (2017), 

Yusof et al., (2017) 

Multi-modal – Auditory and Visual 

Windshield/ 

HUD 

Dashboard Center 

Stack 

(Vertical) 

Steering 

Wheel 

Periphery 

(Pillar) 

Seat Driver All Interior 

Chime and/ 

or speech + 

icons and/ 

or text 

Tijerina et al., 

(2016), Wulf et 

al., (2013), Kim 

et al., (2017), 

Wiegand et al., 

(2018), Naujoks 

et al., (2017) 

Dashboard A: 

Wiegand et al., 

(2018) 

Dashboard B: 

Gang et al., 

(2018) 

Large et 

al., 

(2019), 

Beukel 

and Voort 

(2017) 

Tijerina et al., 

(2016), Wulf et 

al., (2013), Kim 

et al., (2017), 

Wiegand et al., 

(2018), Naujoks 

et al., (2017) 

Speech 

chime, 

icon, light, 

physical 

movement 

Zihsler et al., 

(2016) 

Video Wulf et 

al., (2013) 

Multi-modal – Haptic and Visual (Vibration icons and light) 

Windshield 

/ HUD 

Dashboard 

A 

Dashboard 

B 

Center 

Stack 

(Vertical) 

Steering 

Wheel 

Periphery 

(Pillar) 

Seat Driver All 

Interior 

Kunze et 

al., (2019) 

icon 

Kunze et 

al., (2019) 

icon 

Kunze et al., 

(2019) light 

Kunze et al., 

(2019) vibration 

Multi-modal – Visual auditory and haptic (Icon/ text, vibration, and chime) 

Windshield 

/ HUD 

Dashboard A Center Stack 

(Vertical) 

Steering 

Wheel 

Peripher 

y (Pillar) 

Seat Driver All Interior 

Okamoto and Sano., (2017) 



27 

CHAPTER 4 HUMAN-TAKEOVER-OF-AV: FACTORS THAT 

INFLUENCE THE NEED FOR SITUATIONAL AWARENESS 

4.1 Introduction 

As discussed in Chapter 2, the Society of Automotive Engineers classifies vehicle automation in 

six levels: level 0 to level 5 with level 0 and level 5 being fully human-driven and fully automated, 

respectively (SAE, 2021). Vehicles having these features are classified as having Level 2 

automation, also termed partial automation. Level 3 vehicles, also known as conditionally 

automated vehicles, possess more advanced driver assistance features and can perform all the 

driving functions. Regarding these levels of automation, vehicle manufacturers continue to 

incorporate increasingly advanced features of driving assistance systems, including adaptive cruise 

control, collision warning, lane keeping assistance, and emergency braking. 

With conditional automation, the driver can engage in certain types of tasks that are not 

related to the driving tasks. Nevertheless, it is still necessary to have a driver in conditionally 

automated vehicles because the automation system has limitations and will occasionally require 

the driver to take over the vehicle control when the automated driving system reaches its limit or 

where the system fails. Such scenarios may include severe weather conditions, degraded lane 

markings, and sensor failure to recognize a stationary object on the road (Ghasemzadeh & Ahmed, 

2013; Wiedemann et al., 2018). Many of the sensors used by an AV for its operation (such as, 

radar, lidar and cameras) often encounter diminished reliability and functionality under extreme 

weather conditions (Rasshofer et. al, 2011; Cord and Gimonet, 2014). For example, in severe rain 

conditions, radar sensors often experience loss in accuracy by up to 45% (Zang et. al., 2019). In 

such conditions, the vehicle issues a takeover request (TOR), alerting the driver that they need to 

take over control of the vehicle from the ADS. 

Conditional automation is an important step in autonomous vehicle design as it may be 

thought of as the boundary between full automation and manual driving. A Level 3 vehicle has an 

advanced automation system capable of performing driving functions, yet not so advanced that it 

does not need driver intervention on occasion. This makes Level 3 a good subject for studies on 

human-machine interaction and interfaces thereof. Level 3 AVs allow for the AV operator to be 

engaged in NDRTs, therefore, the behavior and attitude of Level 3 drivers towards automation 

may vary based on their distraction level and trust in the system. Due to these expected variations, 

there is need to study how drivers will react to takeover requests under different alert modes, 

NDRTs and other factors. 

This chapter begins with a discussion on takeover concepts. Section 4.3 is dedicated to 

risks in the driving environment, i.e., the factors that necessitate a takeover request. These include 

the road environment, roadway design and traffic conditions. The section also discusses the driving 

risks arising from passenger behavior and attributes (such as NDRTs, driver impairments, fatigue) 

and how they affect takeover performance and response time. Section 4.4 discusses takeover 

warrants. These are combinations of risk factors that necessitate a takeover request and their 

thresholds thereof. They include rainfall, snow, or hail that impede sensor function, levels of lane 

marking degradation beyond which the vehicle may not recognize the lane, boundaries, and so on. 
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Section 4.5 addresses alert designs and modalities which explore the typical ways in which 

takeover alerts are delivered to the AV driver and the effectiveness of each alert. This section also 

considers predetermined time budgets and how the allocated time affects the takeover performance 

and quality. Section 4.6 reviews the propensity of an AV operator to take over the vehicle control, 

and focuses on the level of trust, learning effect, and situation awareness. In Section 4.7, we discuss 

SA as a function of several factors. Section 4.8 reviews techniques and methods that are used to 

model takeover response times. 

4.2 Takeover Concepts 

Takeover performance can be measured from two perspectives: takeover time and takeover quality. 

Takeover time can be described as the time elapsed between when the driver receives the TOR 

and when the driver responds to it by taking the necessary action. Takeover quality assesses 

features including the time to collision (TTC), number of collisions, driver aggressiveness when 

braking, lateral deviations, etc. (Körber et al., 2016; Favarò et a., 2019). 

Another aspect that has been considered in the literature is the effect of road obstacles 

(Cohen-Lazry et al., 2019; Tanshi & Soffker, 2019; Wiedemann et al., 2018). Several scenarios 

have been established to study the impact of different obstacle types on TOP, crash-avoidance, 

and lane-change performance. Some of these scenarios are: 

• crash avoidance with/without lane change possibility when a vehicle is on the road shoulder 

(Wiedemann et al., 2018), 

• caution due to the presence of stationary vehicles in the left lane that block the view on 

pedestrians that may be crossing the road (Vlakveld et al., 2018), 

• takeover performance evaluation via crash avoidance/lane changes in the presence of 

different types of stationary obstacles on the road (e.g., fallen tree, stopped vehicle, etc.) 

(Tanshi & Soffker, 2019), and 

• the performance difference between the stationary obstacle and the moving-bottleneck (a 

slow-moving vehicle) scenarios (Tanshi & Soffker, 2019). 

4.3 Risk Factors (Inputs) 

Conditionally automated systems are limited in their capabilities and thus require sustained human 

attention and intervention as the system reaches its limitations in any driving situation. This 

transition must happen in a timely and safe manner. It is therefore essential to estimate the level 

of risk and driver reaction times in different circumstances to design the optimal time budget. 

Examples of situations that may affect a driver’s reaction time and takeover quality include: the 

road environment, traffic conditions, and driver attributes. 
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Figure 4.1 Risk factors associated with TO that influence TOP and alert design to promote SA 

4.3.1 Road environment 

Several researchers have studied the effect of road environment factors on takeover performance 

and time. These include weather, pavement surface, lane marking condition, and the presence of 

construction zones. Weather condition was found to be a significant factor of an AV’s detection 

capability of lane markings (Bahram et al., 2015; Zang et al., 2019; Tyler et al., 2019). In 2020, 

Waymo announced that it will start testing AVs on public roads in Florida to gain further 

experience on the efficiency of AVs in heavy rain. 

Such inclement weather conditions affect the image quality of AVs’ sensors, and thus 

negatively affects desired positions of AVs on the highway cross-section (Ghasemzadeh et al., 

2013). In a self-reported study, Canadian drivers indicated how they would adapt their behavior in 

inclement weather conditions and at high speeds such as 90 km/h (Robertson et.al., 2017); the 

results of the Robertson et al study showed that younger male drivers demonstrate greater 

acceptance of (and trust in) automation and are more willing to rely on AVs. 

Another road environment feature that will affect take-over likelihood (TOL) is the 

presence of road construction zones. In this regard, TOR scenarios include avoiding physical 

obstacles (for example, stalled vehicles, large animals, and debris on the roadway) on the road 

(Cohen-Lazry et al., 2019). These require the AV to change lanes or come to a complete stop (Kim 

et al., 2017; Vlakveld et al., 2018). These researchers studied TOT timing and the driver’s takeover 
performance in time-critical situations, for example, under different weather conditions, such as 

the performance of lidar systems and cameras under different weather conditions including rain 

(Rasshofer et al., 2011; Cord and Gimonet, 2014; Zang et al., 2019). 
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(a) Snow or rainstorms (Source: NHTSA.gov) (b) Fog conditions (Source: Katie Mourn, Unsplash) 

(c) Construction work zones 

(Source: FHWA.gov) 

(d) Roadway obstacles (debris, stalled vehicles, etc. 

(Source: Agustín Lautaro, Unsplash) 

Figure 4.2 Common road-environment problems that influence takeover and need for SA 

4.3.2 Roadway design 

Road design could influence takeover propensity and thus, the need for SA. For example, the 

heterogeneity of road design standards across states or other jurisdictions could lead to inability of 

the AV perception systems (and associated SA systems) to recognize the requisite vehicle control 

behavior for safe operations. The use of software trained based on a specific design may lead to 

the ADS confusion when faced with road designs different from those for which its algorithms 

were trained (Figure 4.3(a)). 

Borojeni et al. (2018) and Brandenburg & Chuang (2019) studied takeover performance 

and takeover time at curved road sections (Favarò et al., 2019; Naujoks, et.al., 2015). The former 

found a significant interaction between road curvature and cue urgency on reaction time and the 

latter suggested that drivers need more time to react to TORs that are presented on curved sections 

compared to straight sections. This was attributed to drivers showing stronger braking behavior, 

increased response time, and higher lateral deviation at curve sections compared to straight 

sections. Wiedemann et al. (2018) also considered a scenario with a double-curve sections 

(bending sharply to the right and then to the left) (Figure 4.3(b)) and reached a similar conclusion. 

https://FHWA.gov
https://NHTSA.gov
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(a) (b) 

Figure 4.3 Unconventional roadway designs that require high SA (Sources: FHWA; MJT Eng.) 

(a) 

Wide shoulder (low takeover propensity). 

Source: FHWA 

(b) 

Wide recovery zone (low takeover propensity). 

Source: FHWA 

(c) 

Narrow shoulder (high takeover propensity). 

Source: Quora.com 

(d) 

Areas with traffic-calming designs (high takeover 

propensity), Source: Quora.com 

Figure 4.4 Road designs (cross sectional) that may require high SA 

https://Quora.com
https://Quora.com
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Road design speed is also an effective factor of human takeover of the AV and has been 

considered widely in the literature (Favarò et al. 2021; Tanshi and Soffker 2019). These studies 

showed that (a) the average drift and offset increase with an increase in speed, and (b) takeover 

performance decreases when vehicle speed increases. The effect of several other roadway design 

factors on TOT and takeover performance are worthy of consideration. For example, the number 

of lanes (Fleskes & Hurwitz, 2019) and shoulder width (Figure 4.4(a)) could affect the driver’s 
takeover performance and decision particularly during certain adverse road conditions such as the 

presence of road obstacles. Urban road sections designed for traffic calming may require takeover. 

Further, road designs that are intended for use of the roadway by multiple roads users (for example, 

vehicles, pedestrians, and cyclists) through demarcated (albeit, closely-located or adjacent) zones 

for each user class, will require the driver’s high alert to avoid collisions with vulnerable road users 
and therefore, a high takeover propensity, and ultimately, a greater need for situational awareness. 

4.3.3 Road traffic operating conditions 

Road traffic operating conditions that are most influential of AV operators’ takeover propensity 

includes their awareness of the following: traffic density (which is reflected in the time headway), 

traffic stream heterogeneity, behavior of vulnerable road users, and the presence of devices that 

foster communication between the AV and other road users (other AVs, HDVs, pedestrians, and 

cyclists) in the road environment. 

Traffic conditions (particularly in terms of traffic density) affect takeover request 

propensity, takeover time, and performance (Fleskes & Hurwitz, 2019; Gold et al., 2018; Gold et 

al., 2014; Körber et al., 2016). This factor has been examined in several ways including studying 

simulation scenarios with different lanes (Gold et al., 2018). Research has shown that higher traffic 

density has a stronger influence on crash rate and shorter time-to-collision (Gold et al., 2018). 

Fleskes & Hurwitz (2019) carried out a similar study and reached a similar conclusion. 

Another factor in roadway operations that is strongly linked to increase in crash rate and 

severity (and decreases takeover performance) is the time headway (Siebert et al., 2014). A recent 

study (Brandenburg & Chuang, 2019) concluded that time headways should be sufficiently large 

- at least 0.6 seconds, as a TOR alert is typically issued by automated driving systems when 

headways fall to a level smaller than this threshold. 

The heterogeneity of the traffic stream/ environment, particularly, presence of other road 

users (e.g., pedestrians and bicyclists) (Figure 4.5(a)) directly affects takeover time and 

performance. Further, making the decision to cross the street will be more difficult for the 

pedestrian or bicyclist regarding an AV encounter compared to an HDV (Clercq et al., 2019; 

Rodríguez Palmeiro et al., 2018). This is because there will be no eye-contact or hand gesture from 

the AV (Deb et al., 2018). 
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(a) Dense road use with VRUs (high 

takeover propensity).  Source: 

unsplash.com/@joaccord 

(b) Awareness of AVs connectivity to pedestrians 

via cell phone (low takeover propensity). 
(Source: CNN Health online 2/3/2020) 

Figure 4.5 Some traffic conditions that may affect SA 

In this regard, several studies have analyzed pedestrian road-crossing behaviors (Razmi et 

al., 2020; Rodríguez et al., 2018; Velasco et al., 2019) and the effect of human-machine-interface 

(HMI) in this regard (Ackermann et al., 2019; Gruenefeld et al., 2019; Clercq et al., 2019). Based 

on the results of these studies (some of which used virtual reality and others used real world 

scenarios), the pedestrian stress level is affected by vehicle visual features (e.g., magnetic signs on 

the hood and door, signs on the roof, etc.), vehicle direction (same direction vs. opposite direction), 

and pedestrians’ trust in AV technology. As such, the applicability of informal communication 

signals between pedestrians and drivers have been studied to identify an acceptable 

communication method for road crossing when they encounter self-driving vehicles (Ackermann 

et al., 2019; Gruenefeld et al., 2019). 

4.3.4 Distraction of the AV operator 

One of the most common factors of crashes is driver inattention, and the effect of inattention can 

be exacerbated in situations of unfavorable road design and traffic operating conditions. Unlike 

other factors, driver inattention is difficult to predict and hence difficult to account for in situational 

awareness assessment systems. Nevertheless, attributes of certain demographics including driver 

age and state of sobriety, could help predict the probability and severity of driver inattention. 

Situational awareness is typically a function of the type of non-driving related tasks being 

performed. Research has shown that drivers that tend to spend more time looking away from the 

road and being unaware of their surroundings are at a higher risk and are more prone to slower 

reactions and higher rates of collisions (Zeeb et al., 2015). For example, active tasks such as writing 

emails are more distractive compared to passive ones such as watching a video or listening to the 

news. Thus, more distractive tasks, such as the use of handheld devices as opposed to mounted 

ones, may cause not only longer reaction times, but also, slower motor response times, slower 

takeover times, lower overall takeover quality, and more errors such as larger lane deviations at 
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takeover (Zeeb et al, 2016; Zeeb et al., 2017). In such cases, the AV operator’s situational 

awareness is extremely low. 

Figure 4.6 Human driver distraction 
(Photo credit: National Institutes of Health, www.nih.gov/news) 

In driving simulation studies, driving distractions are simulated (and their impact evaluated) 

using Non-Driving Related Tasks (NDRTs), which are broadly defined as visually or mentally 

distracting activities that have no relation to the driving task. Such distractions include phone 

texting, sipping coffee, facial grooming, reading, and talking to other passengers. In experimental 

settings, these are mimicked using puzzle solving, object sorting, or arithmetic computation. Like 

the real-life loss of attention, they are designed to mimic, NDRTs cause an increase in mental 

workload. The mental state and cognitive task load due to driver distractions are typically assessed 

in a driving simulation laboratory or on the road. This is done by measuring and analyzing the 

physiological responses of the driver in cases of the driver’s takeover of the AV when requested 

to do so. The driver’s mental workload can be assessed through the measured changes in their 

physiological indicators (heart rate and pupil diameter, for example). By examining these changes, 

it is possible to measure the correlation between a given task’s mental demand and takeover 

performance. More demanding tasks (such as email writing) have been shown to have greater 

effects on physiological state and consequently, on the drivers’ takeover performance impairment 

compared to less demanding tasks (Alrefaie et al., 2019). 

4.3.5 Driver/Passenger Attributes 

(a) Driver impairment 

Generally, driving performance is a statement of how well a driver carries out the driving task. 

Regarding Level 3 automation, the driver is expected to takeover, i.e., resume control of the vehicle 

when the system reaches its limit. Although the driver is expected to be alert and ready to perform 

this driving task, this is not always the case. Driver impairments, for example, can and do affect 

the driver’s takeover performance. It is useful to measure the extent to which these impairments 

affect the driver’s performance and how they can be controlled. 

Regarding the driver’s sobriety state, this could be due to the intake of alcohol, medication, 

illness, or illicit drugs. The most common threshold for legal blood alcohol concentration (BAC) 

is 0.08% and driving with BAC above this limit is considered to be unsafe. A study by Wiedemann 

et al. (2018) suggested that driving at 0.08% BAC level causes increased response time for taking 

over the driving task from an autonomous vehicle and impairs overall driving performance in terms 

of lateral and longitudinal vehicle control. 

https://www.nih.gov/news
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Fatigued or drowsy driving can affect driving performance. Fatigue lowers the driver’s 
alertness and impairs their situation awareness. Also, fatigue induced by lack of sleep causes 

drivers to react slower to takeover requests compared to fatigue induced by lengthy driving time 

(Vogelpohl et al., 2019). It is believed that prolonged autonomous driving induces drowsiness in 

the AV operator particularly if they are not engaged in any non-driving related task. It has been 

shown that the level of drowsiness remains stable when a non-driving related task is introduced 

during autonomous driving (Schömig et al., 2015). Driver fatigue could be exacerbated by driving 

an AV (compared to an HDV), and this could further impair takeover time and performance where 

other fatigue factors are present in the AV driver. Schömig et al. (2015) found that AV drivers are 

more susceptible to fatigue compared to HDVs, due to their being less active and lower 

involvement in the driving process and that AV drivers tend to show signs of fatigue after a short 

period of driving relative to HDV drivers. 

Several researchers have encouraged the introduction of non-driving related tasks into 

autonomous driving to maintain the driver’s situational awareness, and others have suggested the 

introduction of scheduled manual driving (Wu et al., 2019). Scheduled manual driving has been 

found to have no effect on younger drivers but affect older drivers. The latter tend to react more 

slowly during a takeover event in both brake application and turning the steering wheel. Depending 

on the complexity of the takeover scenario, the time needed to take control of the AV when it 

reaches its system limits, is affected by drowsiness. Drowsiness does not have a significant effect 

on takeover times for simple takeover scenarios (Weinbeer et al., 2017). 

(b) Driver’s age 

Compared to other factors, age-related factors seem to have received little attention in the literature. 

This may be due to an expectation that cognitive sharpness decreases with age, and thus by 

extension, takeover quality and response times will be longer for older individuals compared to 

younger ones. There exists limited literature that support this notion; nonetheless, it is universally 

accepted in studies of other research fields such as psychology. 

Two factors that exacerbate age effects are situation complexity and engagement in a non-

driving-related-task (NDRT). In a comprehensive study in this field, Körber et al. (2016) used 

three levels of traffic density (zero, medium, and high) involving younger and older drivers. Also, 

two scenarios (with and without NDRTs) for each age group were considered, to study the effect 

of NDRT engagement on takeover performance. The dependent variables in their study were: 

takeover time (TOT), minimum time-to-collision (TTC), and maximum lateral and longitudinal 

accelerations. The researchers found no significant difference between younger and older drivers 

which suggests that despite the expectation of cognitive decline in older participants, they reacted 

as fast as the young ones. 

In terms of takeover time, the study by Körber et al. (2016) suggested that in the absence 

of secondary tasks and in zero and high-traffic densities (TDs), older drivers have lower takeover 

time (TOT). However, in a normal (medium)-TD, younger drivers’ TOT was found to be lower. 

Also, the results from the NDRT scenarios suggested that, in all TDs, older drivers have lower 

TOT. In addition, the difference between the two groups’ TOTs is more obvious in the medium-

TD scenario. The results of some other studies on the relationship between driver’s age and road 

design speed (Favarò et al., 2019; Makishita & Matsunaga, 2008; Tanshi & Soffker, 2019) 

indicated that, in the absence of NDRTs, older drivers are more cautious and exhibit a lower TOT. 

However, both in manual driving (reaction time) (Makishita & Matsunaga, 2008) and automated 
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driving (takeover reaction time), it was found that older people need more time to react or takeover 

when a secondary task is assigned. 

It has been observed that these study outcomes contradict each other. A plausible reason is 

the difference between the duration of engagement in the NDRT as the hands-free cell phone 

conversation using the 20-questions task (TQT) (Körber et al., 2016) was implemented in the entire 

driving period. On the other hand, the other studies had assigned these tasks from time to time in 

the driving procedure. This factor is important because getting used to a task could affect the TOT. 

Another possible reason for the dichotomy in the results is that the NDRT type influences a driver’s 
TOT. Older adults generally are less familiar with technology compared to relatively young adults 

(Souders & Charness, 2018.). Therefore, NDRTs that involve high technology tasks might affect 

older drivers to a greater extent compared to the younger ones. 

In terms of the relationship between age and takeover quality (TOQ), several studies have 

been conducted (Wu et al., 2020; Li et al., 2019; Körber et al., 2016). Regarding the effect of 

engagement in multiple NDRTs on TOQ, (Wu et al., 2020) realized that older drivers had 

significantly inferior TOR performance compared to the younger ones. They also studied 

drowsiness after the NDRT engagement and how it affects drivers TOQ. 

4.3.6 Availability of in-vehicle assistance systems 

The reaction time of AV drivers to critical situations is much lower compared to manual drivers 

(on average by approximately 2.5 seconds) (Demmel et al, 2019). Vehicle-to-everything (V2X) 

capabilities could help mitigate this situation in a superior manner compared to locally-based 

solutions (vehicle sensors). With V2X, the AV can possess information about traffic conditions 

downstream of its location that it may not be provided by its sensors. Therefore, with V2X, the 

vehicle alerts the driver more quickly so it can be ready for takeover, thus increasing the chances 

of a smooth and successful takeover, compared to a vehicle relying on only sensors. Tanshi and 

Sofrker (2019) proposed a takeover set of rules to assist AV drivers. 

However, the typically huge influx of sequential data from a highly dynamic traffic 

environment could render this approach ineffective due to computational intensiveness. Thus, 

Katrakazas et al. (2019) proposed a methodology for assessing risk, real-time integration of 

vehicle-related and network-level collision risk using dynamic Bayesian networks modeling and 

interaction-aware motion modeling. Their study results suggest that using their methodology, 

interaction-awareness could be enhanced by as much as 10% in collision-prone traffic conditions. 

4.4 Takeover Warrants 

Conditionally automated vehicles (Level 3) do not require sustained driver attention. However, 

SAE requires that a driver be always present and ready to take over control of the vehicle with 

notice (SAE, 2021). This is due in part to the inherent limitations of the automation system and 

hence its potential inability to handle unusual driving scenarios. As discussed in the previous 

sections of this chapter, takeover requests may be prompted by adverse environmental conditions 

(e.g., severe weather), roadway design (e.g., sharp curves or unidentifiable lane markings) and 

traffic conditions, or the AVs sensor failure (Dixit et al., 2016). Even more challenging is 

navigating the urban environment and understanding pedestrian behavior and traffic dynamics 

(Rasouli and Tsotsos, 2018). The combinations of risk factors that may cause takeover requests 

and their corresponding thresholds are referred to as takeover warrants. 
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This section discusses how these takeover warrants affect the takeover process and how 

they influence the design of the automation system. It is easy to identify the risk factors associated 

with takeover requests. However, modeling their specific thresholds is challenging because many 

stem from the inherent limitations of each sensor used, the decision-making algorithms 

implemented, and specific computational architectures chosen. Currently, most warrants are based 

on the extent to which a sensor is impaired due to weather. Some of this information may be 

proprietary to specific vendors and thus not readily available to the public. For this reason, a few 

researchers have documented the performance of various sensors under different weather 

conditions. Rasshofer et al. (2011) investigated the performance of lidar systems under inclement 

weather and Cord and Gimonet (2014) investigated rain effect on cameras. Zang et al. (2019) 

found that in severe rain conditions, radar detection range could be impaired by as much as 45%. 

Although literature is widely available on the various risk levels in the driving environment 

and the limitations of the sensors typically used in AV operations, there is inadequate literature on 

comprehensive and systematic discussions on combining these factors and determining their 

thresholds. Researchers with the requisite infrastructure will need to study and establish takeover 

warrants. To assess the thresholds for takeover warrants, researchers may need to look beyond 

only the sensor-weather relationship and consider other conditions. For example, what levels of 

retro reflectivity for pavement markings will be too low for an AV to detect. Additionally, varying 

the complexity of the urban driving environment may also be necessary to ascertain the level of 

complexity at which the detection systems fail. 

4.5 Alert Design Recommendations 

Chapter 3 of this report presented a review of alert designs in literature. This section (Section 4.5) 

builds on that information further, to make recommendations for alert designs that could be 

included in any system intended to prospectively enhance AV driver’s situational awareness. As 

discussed in the previous sections, in a Level 3 autonomous vehicle, a driver is needed to take over 

control of the AV when the system automation reaches its limit or fails. When this situation 

happens, a takeover request is initiated, and the driver is expected to respond to it. “Alert design” 
refers to how the information is relayed to the driver. Properly designed alerts could influence the 

efficacy of the driver’s response to the alert. This section explores different alert designs and their 

combinations, and the time budget related to the takeover request. 

4.5.1 Alert modes 

Some of the most common alert designs include auditory signals, vibrotactile alerts and visual 

alerts. Numerous researchers (Cohen-Lazry et al., 2019; Petermeijer et al., 2017) have investigated 

how the placement and combinations of these alerts influence driver takeover performance in 

various settings, including how they impact reaction time and takeover quality. Takeover alerts are 

typically delivered to the driver through visual cues, auditory signals, vibrotactile feedback, or a 

combination thereof. Using only one alert mode is referred to as uni-modal alert, while the 

combination of two or more alert types is referred to as multi-modal. 

(a) Uni-modal alert designs 

In practice, uni-model alerts are uncommon. In the research literature, they are often paired with 

other experimental conditions to obtain certain responses, such as directionality of the takeover 

response (Cohen-Lazry et.al, 2019; Petermeijer et al., 2017) or compared with other forms of alert 
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modes (Kim & Yang, 2020; Petermeijer et al., 2017). In the literature, it has shown that the efficacy 

of uni-modal alerts is generally significantly inferior to its combinatorial counterparts (Petermeijer 

et al., 2017). 

To increase unimodal alert efficacy, researchers have explored novel ways, such as abstract 

approaches with flashing vertical arrows which indicate needed longitudinal control of the vehicle 

and horizontal arrows which signal lateral control, or skeuomorphically, where control 

mechanisms such as, a visual of a steering wheel indicates a need for lateral control, and brake 

pedal indicates a need for longitudinal control are displayed (Brandenburg & Chuang, 2019). The 

difference in the effects of these two approaches on takeover response have been found to be little. 

The skeuomorphic has been associated with larger maximum decelerations compared with the 

abstract concept. Researchers have also considered augmented reality concepts, where the visual 

display shows the driver which sections of road should be avoided or which way to drive. Although 

the results did not indicate significant differences in the overall takeover time, the takeover quality 

was found to vary between the two scenarios (Lorenz et.al, 2014). 

Another approach considered in the literature is the anthropomorphizing of the auditory 

alerts, as reported by Hester et al. (2017b). In this, the agents are designed to be either 

anthropomorphic and helpful for driving, by providing the driver with relevant information such 

as their speed, proximity to other vehicles, etc., or anthropomorphic but not helpful to driving, 

providing information that is not relevant to the driving task. Otherwise, the agent was just an 

ordinary beep. The results showed that the anthropomorphic agent with relevant information 

helped drivers avert a crash in 4 out of 6 takeover scenarios, whereas the beep and 

anthropomorphic but irrelevant information agents were able to avoid crashes in only 1 out of 6 

cases. Quite expectedly, when no alert is provided, takeover performance was poor at best, and 

often led to more crashes. The interesting finding however is the effect of anthropomorphizing of 

the alert agent. This would have significant implications for alert design and is a promising area 

of research that needs to be explored further. 

The literature generally suggests that directionality of a uni-modal alert does not influence 

the directionality of the response (Petermeijer et al., 2017) and that uni-modal alerts are less 

effective at conveying the urgency of a takeover request (Kim & Yang, 2020). In addition, this 

effect is exacerbated only when NDRTs, such as cell phone use, are involved (Yoon et al., 2019). 

However, anthropomorphizing in vehicle agents although not extensively explored, has shown so 

far to produce superior results in takeover performance (Hester et al., 2017b). It is worth exploring 

further how much enhancement could be earned using an anthropomorphized alert compared with 

other alert modes, under different experimental, and using real-world scenarios. In addition, when 

visual cues are used, there is need to investigate how the size and positioning of the visual stimuli 

influences the takeover time and quality. 

(b) Multi-modal alert designs 

A combination of two or more modalities is referred to as a multi-modal design type. This 

encompasses everything from a simple combination of two or more visual, vibrotactile and 

auditory designs, to more complex and abstract designs such as steering wheel transformations 

and other spatial design considerations. Literature has shown that multi-modal alerts are more 

effective at conveying the urgency of a takeover alert compared to their uni-modal counterparts. 

They result in faster response times. Consistently, tri-modal alerts appear to have the best 

performance, followed by bi-modal alerts and last uni modal alerts (Kim & Yang, 2020; Yoon et 
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al., 2019; Zhou et al., 2020). Moreover, combinations containing vibrotactile alerts produce faster 

response times than combinations that do not (Huang et al., 2019; Petermeijer et al., 2017). 

In some cases, drivers may be alerted about an impending takeover through auxiliary 

means, in addition to the already discussed alerts. For example, researchers have experimented 

with a redesign of the steering wheel to allow it fold over during automated driving, and then 

unfold back to shape right as a takeover request is issued. Although this transformation may take 

less than a second, the movement and sound made during the transformation is perceivable enough 

that it acts as an advance alert of an impending takeover. Some researchers suggest that drivers’ 
reaction times are faster in the transforming steering wheel design compared with conventional 

design (Kerschbaum et.al., 2015), although the overall response time is not significantly affected. 

An advance warning of reduced system confidence may be given, indicating a takeover may be 

required but is not yet imminent. This has been shown to improve the driver’s situational awareness 

and improve takeover performance (Tijerina et al., 2016; Van Der Heiden et al., 2017). 

4.5.2 Time Budget for the Takeover 

Several approaches to alert design have considered changing the time budget and measuring its 

effects on the driver reaction and takeover performance. It is imperative that the driver is provided 

adequate time to react to the situation and safely assume control. It has been stated in the literature 

that depending on the situation at hand, the time budget influences different aspects of takeover 

performance. In addition, it has been shown that although drivers react faster with a shorter time 

budget, the takeover quality is generally worse because of rushed decisions (often made on impulse) 

(Gold et.al., 2013; Kim & Yang, 2017a), and the number of deviations in the lane position at 

takeover increase with a reduction in allocated time budget (Clark & Feng, 2015). Crash rates 

increase sharply when the allocated time budget falls below 10 seconds (Wan & Wu, 2018), but 

time budget does not directly have a significant effect on the minimum or average speed at takeover 

(Clark & Feng, 2015). Moreover, other critical indicators of takeover performance including the 

minimum time to collision (TTC), braking and throttle input are influenced not only by the 

allocated time budget but also by the driver’s prevailing NDRT just before the takeover request 

was issued (Clark & Feng, 2015; Gold et al., 2018; Wan & Wu, 2018). 

Table 4.1: Summary of Alert Designs 

Alert 

Design 

Description / Type Summary Discussion 

Mode 

class 

of the 

Alert 

Unimodal: comprising of 

one mode of message 

transfer, visual, auditory, 

vibrotactile. 

Not used commonly in practice due to limited efficacy, used in 

research in combination with other factors. 

Other approaches (abstract representation or augmented reality) 

showed no significant improvements over traditional types. 

Multi-modal: 

visual/audio, 

visual/vibrotactile, etc. 

More effective than unimodal alerts, produce faster response times. 

Combinations that include vibrotactile types produce faster response 

times than those that do not. 

Time 

budget 

(TB) 

Time allocated for the 

driver to takeover control 

of the AV before a 

collision is eminent. 

Shorter TBs lead to quicker reactions but poor takeover quality. 

Time budgets (TB) below 10s are associated with higher crash rates. 

TBs do not directly influence the minimum or average speed at 

takeover. 
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4.6 Propensity of the AV Operator to take over the Vehicle Control 

Driving experience in an automated vehicle may be influenced by several factors that stem from 

the driver’s characteristics, attributes, and attitudes towards automation. Such factors include level 

of trust in the automation, previous experience and associated learning effects, driver’s alertness, 

and situation awareness. These factors are important because not only do they affect the driving 

experience, but also influence takeover performance. Studying these factors and their effects may 

provide insights into how designers could improve autonomous vehicle design, such as restricting 

certain NDRTs to improve situation awareness. Understanding the user’s propensity to take over 

may also help designers engineer systems that balance the need for trust in the automation with 

the caution required, and the level of situation awareness. 

The propensity of an AV operator to take over the vehicle is typically explained as the 

operator’s tendency to take over control even before a takeover request is initiated. This could be 

measured based on the alertness of the driver (i.e., how often they gaze on the road during 

automation) and placing their hand on the steering wheel and their foot on brake pedal. A drivers’ 

propensity to take over is influenced by several factors, including their trust in automation, the 

type of driver and their situational awareness. These, in turn, are assessed differently depending 

on the situation at hand, and typically using proxy variables such as pre-emptively putting foot on 

brake, having hand on steering wheel, etc. Typically, a steering wheel change of 2-degrees or more 

is widely used as a threshold to measure the likelihood to take over via steering, with any change 

less than 2-degrees assumed to be used for stabilization of the vehicle by the drivers (Cohen-lazry 

et al., 2019). A 10% or more brake pedal actuation is often used to define a braking reaction to a 

request to take over (Gold et al., 2018). 

4.6.1 Impact of driver type and their level of trust 

The propensity of a driver to take over might be based on the level of the driver’s trust in vehicle 

autonomy and the driver type. Factors that affect the level of trust include the driver’s 

aggressiveness and their age, which is linked to their driving experience. Trust in automation also 

correlates with reliance on automation. Drivers that trust automation tend to rely more on it, and 

those that do not trust the automation are more likely to reject it. In the literature, it has shown that 

software and automation agents that exhibit personality attributes identical to those of drivers or 

that are anthropomorphic, have a higher tendency of being accepted by AV operators (Hester et 

al., 2017a; Körber et al., 2018). 

It has been shown that the extent to which a driver monitors the road during an autonomous 

driving process is influenced by the driver’s level of trust of an autonomous vehicle (Körber et al., 

2018). It has also been shown that the experience (learning effect) with autonomous vehicles 

increases the level of trust that drivers have in autonomy (Gold et al., 2015). As described by 

(Marsh & Dibben, 2003) and supported by (Hoff & Bashir, 2015), trust can be categorized as: 

situational trust, dispositional trust, and learned trust. 

Situational and learned trust are derived trust based on the experience of the AV operator 

with an autonomous vehicle and its environment. Dispositional trust refers to the type of trust 

which is more stable and likely to affect the AV operator’s propensity to take over, as it describes 

the type of driver (driver aggressiveness). It makes sense that cautious drivers are likely to exhibit 

a higher level of propensity to take over compared to other types of drivers. Also, a crash may 

occur if the operator is over reliant on autonomy and fails to pay attention to the driving process. 

Therefore, it is necessary to ensure a balance. 
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The driver’s age also influences their trust of vehicle autonomy. The driver’s experience is 

generally directly related to his/her age. Older adults have more driving experience compared to 

younger adults. Older people tend to trust automated decision aids more compared to younger ones. 

This is because they do not have great confidence in their own driving performance (Ho et al., 

2005, Gold et al., 2015). It has been reported that older adults are unable to quickly detect 

automation failures (Ho et al., 2005). 

4.6.2 Driver’s learning effect 

The learning effect, which is also referred to as repetition effect is closely linked to trust in 

automation. As stated in the previous section, trust can be categorized under three layers, which 

includes learned trust. Learned trust refers to trusting the automation after experiencing and 

becoming familiar with it, and therefore, being able to assess its potential. This learning effect is a 

crucial component in determining how people will welcome automation as it will influence their 

willingness to purchase an AV. According to Gold et al. (2018), the repetition of take-over 

situations could enhance takeover performance. It has been argued that such improvement in 

takeover performance is significant only for the initial takeover event compared to the subsequent 

takeover situations (Hergeth et al., 2017). 

Moreover, when drivers encounter noncritical takeover situations prior to critical ones, the 

learning effect could fade out or invert. This happens because drivers would need more time to 

adapt to the change from a noncritical to a critical takeover situation. Even though this might be 

true for all models, the driver’s age was found to have no influence on such learning effect, as the 

takeover time (TOT) and minimum time to collision (TTC) decreases for both older and younger 

drivers (Körber et al., 2016). Happee et al. (2017) also support the argument that when AV operator 

is more familiar with their AVs the overall driving performance improves because the intervention 

time (TOT) and the brake reaction time decrease. 

4.7 Overall Situation Awareness as a Function of the Factors 

Similar to the level of trust, situational awareness also affects the propensity of an autonomous 

vehicle driver to take over control of the vehicle. A number of research studies have investigated 

how to get the driver’s attention to revert to the road quickly during a takeover request, as this is 

believed to result in a faster reaction time and improves the overall driving performance. 

Situational awareness could be impacted by factors such as the duration of the autonomous phase, 

how fast the driver reverts their attention to the road, the NDRT type during the automated phase 

and the amount of time available to take over control of the vehicle. How quickly a driver gains 

situation awareness can affect the overall safety on the road, as the driver may even momentarily 

fail to consider the safety of other road users and only focus on pending takeover tasks. 

Drivers (particularly, those in a fatigued state) that stay too long in autonomous driving 

mode typically find it difficult to stay alert, (Vogelpohl et al., 2019). For situation awareness, the 

number of latent hazards that could be spotted depends on how fast the driver’s eye reverts to the 

road and the amount of time available (Vlakveld et al., 2018). However, eyes-on-road is only 

necessary but not sufficient to ensure higher situation awareness in relation to visual distraction in 

the case of highly automated driving (Radlmayr et al., 2014). Also, the urgency of the takeover 

request may not necessarily ensure that the driver gains enough situation awareness within that 

short period. Borojeni et al. (2018) showed that drivers respond to urgent cues faster only on 
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straight sections. Urgent cues presented on curved sections, resulted in slower response than non-

urgent cues. 

Situational awareness plays a major role in traffic safety. A driver’s alertness and how they 

interpret information is expected to affect the safety of the ego vehicle and the safety of the other 

road users. The Revell et al. (2019) study results suggest that during takeover, drivers focus more 

on the interaction with the system (such as the acceleration of the vehicle) compared to the situation. 

This means that safety may be compromised if human machine interfaces are not designed to 

support situational awareness, or if takeover requests are not designed in a way to help the drivers 

to quickly regain situational awareness. Also, the time available to initiate a manual takeover of 

an autonomous vehicle affects the level of situational awareness gained. Typically, drivers do not 

have enough time to gaze at their rear-view mirrors during a takeover request even though they 

might display faster reaction times (Lotz et al., 2019). 

Drivers are more inclined to apply the brakes than to turn the steering wheel or press a 

special TOR button during a takeover request (Kim & Yang, 2017a). Drivers accept software 

applications that can lockout NDRT during a takeover request. With the use of task lockouts, it 

takes less time to get the driver’s hands on the steering wheel but does not necessarily change the 

brake application time (Wandtner et.al., 2018). The two commonly used methods for measuring 

situational awareness gained during a takeover request are Situation Awareness Global 

Assessment Technique (SAGAT) and Situation Awareness Rating Technique (SART). The SART 

has proven to be more accurate compared to the SAGAT (van den Beukel et al., 2013). 

Figure 4.7 Situational awareness in the context of human takeover of AV: Considerations 
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4.8 Modeling Takeover Performance 

4.8.1 Response time 

Response time, in the context of human takeover of AV, consists of three separate but sometimes 

overlapping time segments. The first is the time taken to perceive and register the threat and need 

for a takeover, often referred to as the reaction time. This is modeled as the time interval from the 

takeover request to the first perceivable reaction (often, when the driver first gazes on the road 

ahead to identify the threat, or the time to first glance) (Kim et al., 2018). 

The second segment is the transition or motor response time, which is the time immediately 

after registering the threat. The driver then undertakes a physical action to mitigate the threat by 

applying brakes or moving the steering. This segment is modeled as the time from the first glance 

(TTFG) to the first detectable action, either turning the steering wheel through a specified angle 

(typically 2 degrees), pressing the brake pedal a specified distance, typically 10% of its maximum 

travel distance (Zeeb, et. al., 2015; Kim et al., 2018) or simply, the time to put hands on the steering 

wheel, conveniently named the time to first hands (TTFH). The last segment is the settling or 

stabilization time. This refers to the amount of time taken for the driver to perform the full 

transition to fully manual control and have the vehicle settle on a normal trajectory. Takeover time 

is the sum of these three segments. However, depending on the attributes and factors being studied, 

researchers may use either of the described times as a response time, and often, the distinction is 

either unnecessary or irrelevant. 

Kim et al. (2018) showed that mentally and visually distracting tasks affect only the time-

to-first-gaze, i.e., the time to first hands or settling time were not changed. They showed a 

statistically significant difference in the overall response time between the two tasks compared 

with a control sample. With regard to the reaction time alone, however, the visually distracting 

task produced a significantly slower reaction time compared to both the control and the mentally 

distracting task. 

4.8.2 Takeover effectiveness or quality 

The effectiveness of AV-to-manual takeover can be measured in terms of the ease of takeover and 

vehicle jerk during takeover, and the overall safety and mobility of the AV and of the neighboring 

process in wake of the takeover. Driver takeover performance is important not only for the safety 

of the individuals on board but also for other road users. Thus far, much of the literature has 

focused on highway driving scenarios where pedestrians and cyclists may not be an issue. 

However, the reality is that AV deployment will inevitably start in cities where pedestrians 

are ubiquitous. Fleskes & Hurwitz (2019) showed that the presence of cyclists in a driving 

environment can impact the driver’s takeover performance. Their study showed that upon takeover, 

drivers were more likely to yield when they spotted a cyclist closer to the stop line than when they 

thought they were further away. However, the probability of yielding decreased when the takeover 

time budget was reduced. The literature lacks extended studies on the effect of the presence of 

pedestrians and other urban elements on takeover performance (because most of these studies 

focused exclusively on highway driving scenarios). 
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CHAPTER 5. SAES APPLICATION CASE STUDY: HEADWAY 

TRADEOFFS IN AV ENVIRONMENTS USING A DRIVING 

SIMULATOR EXPERIMENT 

5.1 Introduction 

CAV technologies provide promising solutions to transportation challenges that have plagued 

transportation systems for decades. Past research findings suggest that CAV adoption can 

contribute to the enhancement of safety, productivity, and capacity of existing highway 

transportation corridors (Du et al., 2020). A growing body of research documents the impacts of 

deploying the V2X connectivity (including vehicle-to-infrastructure (V2I) and vehicle-to-vehicle 

(V2V) to facilitate roadway traffic and environment monitoring, trajectory planning, and path 

decision making during automated driving modes (Darbha et al., 2018; Jung et al., 2020; Dong et 

al., 2020; Chen et al., 2021). For example, with V2X communication, CAVs are afforded not only 

a superior level of situational awareness regarding their surrounding environments but also an 

opportunity to form platoons that are associated with smaller headways. 

One of the expected benefits of V2X capabilities of CAVs is the decrease of headways 

between successive vehicles in the traffic stream, thereby improving traffic throughput and overall 

mobility in a road corridor. Large headways improve safety and driver comfort but impair 

throughput; conversely, when the headways are too small, the AV operator/driver may exhibit 

discomfort and thus takeover from the automated driving system (Figure 5.1). The research 

question, therefore, is: what is the best headway that achieves a good balance between 

secure/comfortable headway versus mobility-enhancing headway? 

Figure 5.1 Travel efficiency vs. driver comfort – Conceptual tradeoff (Li et al., 2021) 
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Headway can be expressed in terms of time or distance. The former is the bumper-to-

bumper gap from the following vehicle to the lead vehicle in front; the former is the time (often, 

seconds) that elapses between two consecutive vehicles in a car-following situation (Winsum et 

al., 1996; Fuller, 1981). Headway can be considered a key measure of road traffic safety hazard in 

the context of rear end collisions (Vogel, 2003). It has been reported that in countries such as 

France, Hong Kong, and Netherlands, a 2-second time headway is recommended. In other 

countries such as Sweden, a lower threshold of 1-second is used (Risto and Martens, 2013; Vogel, 

2003). 

Regarding the distance headway, Cutting & Vishton (1995) observed that drivers of 

following vehicles often perceptively estimate the distance to the leading vehicle in front. Figure 

5.1 shown earlier in this chapter, suggests that in the context of headway distance (or time), there 

exists a tradeoff between travel efficiency and the driver’s comfort. Risto & Marten (2013) suggest 

that, in comparison to time headway, the driver’s judgment in distance headway could be 

influenced to a greater extent, depending on travel speed variations and the physical distance 

between the lead vehicle and the following vehicle. It has been proposed, in the literature, that for 

safety reasons, a 20-40 veh/km increase in traffic density should be accompanied by a 4–10m 

reduction in the minimum headway distance (Abuelenin & Abul-Magd, 2015). 

Duan et al. (2013) cautioned of the extant gap between minimum safe distance headway 

and the headway distance that drivers found comfortable. They observed that in experiments where 

drivers were asked to “keep a comfortable distance,” they often maintained longer headways 

compared to experiments where they were asked to “keep a minimal safe distance.” Also, Piccinini 

et al. (2014) found that even with vehicles equipped with an ACC, drivers still tend to adopt longer 

headways compared to the group tested with driving without ACC. 

Suzuki & Nakatsuji (2015) and Taieb-Maimon & Shinar (2001) observed that the 

headways preferred by human drivers vary with traffic conditions. This suggests that driving 

behavior is influenced by the risk perception of drivers. This is supported by the findings in the 

literature that older drivers tend to drive with longer headways because they generally have higher 

perceptions of safety risk (Charlton et al., 2006; Ni et al., 2010; Shinar et al., 2005; Andrews and 

Westerman, 2012; Martchouk et al., 2011). Chen et al. (2019a, 2021a) observed that under when 

traffic volume is high, experienced drivers tended to maintain greater time headways to reduce 

crash risks. Also, as established in the literature, driver perceptions and behavior differ across the 

class of the vehicles they drive or follow on the roadway (Chen et al., 2021b) and that lower 

headways are associated with higher perceptions of (a) risks of rear-end collision and (b) 

discomfort and insecurity (Siebert et al., 2014; Lewis-Evans et al., 2010). One of these researchers 

evaluated the impact of a range of time headways and observed a significant increase in drivers’ 
perceptions of safety risk and discomfort after 2-second headways. Siebert et al. (2014) 

subsequently identified appropriate time-headway thresholds that correspond to different speeds 

from 50km/h to 150km/h. 

These past studies helped lay a foundation for further investigations into the patterns of 

driver’s headway behavior and preferences. This is important in the current era as society 

transitions towards vehicle automation and automation-to-human takeover situations. With regard 

to headway research associated with vehicle automation, previous studies have shown that drivers 

with low trust in automation generally deactivate automated driving when they encounter the least 

risk in traffic such as congested traffic characterized by small headways (Petersen et al., 2019; Deo 

and Trivedi, 2019; Molnar et al., 2018; Hengstler et al., 2016; Miller et al., 2016). Also, driver 
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perceptions and behavior are expected to be different depending on the automation status of the 

vehicles they are driving and the vehicles they are following on the roadway in a specific instance 

of traffic flow. 

Further, it is important to duly recognize that, in the emerging age of vehicle automation, 

humans’ drivers will have their driving roles change to co-driver or even passenger roles 

(Elbanhawi et al., 2015). Wright et al. (2019), Merat et al. (2014) and Forster et al. (2017) carried 

out driving simulator experiments and determined that Level 3 automated drivers tended to take 

over the vehicle based on a comprehensive but implicit assessment of the traffic and other 

conditions on the roadway. Payre et al. (2016) argued that the takeover actions, inherently, are 

indicative of some absence of trust reposed in human drivers regarding the automated driving 

system and that they perceive ADS only as a backup. In that case, it seems reasonable to argue that 

in Levels 4 or 5 automation (where there is little or no possibility of human takeover of the driving 

task), driver and passenger anxiety could be exacerbated, particularly in traffic environments 

deemed to be risky, such as dense traffic with little headways. As such, it seems essential or, at 

least, prudent, to assess the driver’s needs regarding headway comfortability in the context of AVs. 

In the literature, drivers’ headway preferences under different driving conditions have been 

examined to some extent. Yet still, there is limited research on the difference in driver’s comfort 

level between the vehicle-following distance decided by human drivers and that decided by the 

automated driving system. In the prospective era of a mixed stream (CAVs and HDVs sharing the 

roadway), the problem will remain as it currently exists. Therefore, it is critical to identify the 

headway threshold by analyzing the trade-offs between the user-friendly headways (to ensure 

drivers’ comfort level and safety) and smaller headways (to enhance overall mobility) in an 
automated driving environment. 

To address this issue, driving simulator experiments could be carried out to observe driver 

perception and behavior. In comparison to other platforms for AV testing (such as, in-service roads 

and test tracks), driving simulators provide a flexible, cost-effective, and safe opportunity to 

investigate the research question (Boyle and Lee, 2010; Chen et al., 2019a; 2019b; Chen et al., 

2021; Fisher et al., 2011). The present study seeks to contribute to the ongoing national 

conversations regarding headway design in the AV era. The study uses a driving simulator 

experiment to carry out headway threshold design in the context of CAV operations environment. 

The experiment takes due cognizance of driver discomfort and takeover intentions, and to provide 

information useful for characterizing the tradeoffs between mobility-enhancing headways versus 

safe/comfortable headways in an automated driving environment. 

The driving simulator in the present study possesses a Level 3 automated driving system 

whose features are consistent with SAE standards for that level of automation (SAE International, 

2018): requires driver vigilance and readiness for takeover in specific safety-critical traffic 

situations; and the capability to adopt specified. The latter is also important as smaller headways 

without considering the driver’s perception will cause several unwarranted takeovers; the driver 

will take over if they feel discomfort or feel that any instance of close car-following is not safe. 

Also, this study adopted the method of constant stimuli (Simpson, 1988; Gescheider, 1985; Leek, 

2001), with slight modification, to measure the quantitative relationship between the driver 

perception and the stimulus (in this case, the different values of the distance headway). 

The study described in this chapter was carried out at Purdue’s CCAT/NEXTRANS 

Driving Simulation and Human Factors Laboratory located at Kent Avenue in West Lafayette. The 

study used the same experimental settings as another similar parallel study. The experiment 
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described herein in this report used the same resources and at the same time as the other experiment. 

The other study, however, focused on trucks as vehicles while the current study focused on 

automobiles. 

The remainder of this chapter is structured as follows. Section 5.2 provides details of 

experimental design, procedures of driving simulator test and the method of analysis. Sections 5.3 

and 5.4 present the results and discussions, respectively. Section 5.5 concludes the chapter with a 

summary of the findings and future research directions. 

5.2 Study Methodology 

5.2.1 The Human Subjects 

The human subjects for the headways experiment were voluntary participating students enrolled 

at Purdue University during the study period, had a U.S. driving license, and were in a good state 

of health (self-declared). The experiment followed Purdue’s IRB guidelines, and the researchers 
sought and obtained IRB approval. Each participant provided their informed consent. Participants 

were screened prior to the conduction of the experiment and were required to: have had adequate 

sleep the night prior to the experiment; have abstained from consumption of caffeinated beverages 

and alcohol 24 hours prior to the day of experiment; and be fully sober and conscious at the start 

of the experiment, depending on the level of caution they stated to exercise, the participants were 

grouped as follows: when driving normally: high-confidence (Group 1); moderate or neutral 

confidence (Group 2), and cautious (Group 3). 

5.2.2 Equipment and established scenarios of driving task 

A fixed-base driving simulator was used for the experiments. This simulator has 3 screens, a 

dashboard, a steer with force feedback, and pedals for the clutch (in case of manual gear control), 

the brake, and the accelerator). The simulator has control buttons for various functions including 

turn-signal and headlight, gear mode shift (manual-automatic transmission), and a sound system. 

The driving simulation environments and scenarios were designed using SCANeRTM studio 

software, and the simulation environment used is a straight section on the Interstate 465 corridor 

in northern Indianapolis. The simulator is capable of easily transitioning between autonomous and 

manual driving modes and is useful in situations where the participant seeks to transition from 

automated to manual mode where the participant deemed the extant headways to be unsafe or 

uncomfortable during the driving process. The driver’s levels of discomfort were also measured 

using a questionnaire survey. 

5.2.3 The Experimental Process 

The first step in the experiment was to carry out a practice run (that is, pre-test participant training). 

This facilitated driver familiarization with various control functions and modes of the driving 

simulator (including autonomous driving activation) and to ascertain whether any prospective 

participant was prone to simulator sickness. The participants were informed that they bore the 

responsibility for monitoring the system performance and to transition to manual mode anytime 

they felt such a switch was warranted. Instructions were also given on weather conditions (which 

could interfere with signals from sensors), lane-marking conditions and the presence of 

construction zones. Where the vehicle encounters road or traffic conditions it cannot handle, it 

issues a request for the driver to take over control of the vehicle. The simulators’ automated driving 
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system can make a takeover request at any time during the drive. However, the driver is fully 

responsible for ensuring complete situational awareness of the extant traffic conditions. 

Regarding the manual-driving session, participants completed ten tests in the manual 

driving mode. In each test, the drivers made manual control adjustments to maintain comfortable 

following distances between themselves and a leading vehicle and were asked to switch from 

manual driving to automated driving when (in their opinion), a “comfortable” level of headway 

had been reached. These thresholds mean values (μ) and standard deviation (σ) were determined. 

Regarding the automated-driving session, five headway levels were set to μ-2σ, μ-σ, μ, μ+σ, 
μ+2σ. The vehicle was set to follow the leading vehicle with a predefined headway. The 5 distance 

headways served as the “stimuli”. For each of these headways, fifty tests were carried out (thus, 

250 observations in total). The stimuli were randomized and counterbalanced across the 

participants. At the end of each test, the participants answered “yes” or “no” to the following 

questions: (a) Q1 – Did you experience any discomfort? Y/N, and (b) Q2 – Did you have a desire 

to take over the vehicle? Y/N. Question 2 was posed to the participants only when the response to 

Question 1 was affirmative. 

This experiment collected data on the levels of drivers’ discomfort and not their comfort 

levels. This is because (a) the results of the pilot study suggested that drivers are generally more 

sensitive to discomfort than they are to comfort, (b) a benefit of CAVs is the opportunity to operate 

at smaller headways compared to traditional vehicles; because drivers tend to feel more 

uncomfortable with distance headway reductions, it is more intuitive to measure their discomfort. 

The 3 discomfort levels defined are: Very uncomfortable, Somewhat Uncomfortable, and No 

discomfort. 

• Where the participant response to Question 1 as “No”, it was then noted that the 

headway in question posed No Discomfort. 

• Where the response to Question 1 was “Yes” and the response to Question 2 was 

“No”, it was then noted that the headway in question posed a little discomfort, that 

is, Somewhat Uncomfortable, and, 

• Where the response to Question 2 was “Yes”, the headway in question was noted 

as ‘Very Uncomfortable’. 

Figure 5.2 presents the overall procedure for measuring the headway thresholds. Figure 5.3 

illustrates the relationship between headways and level of discomfort. Using the method shown in 

Figure 5.4, this study developed a relationship between the stimulus (distance headways) and 

driver’s discomfort level. 
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Figure 5.2 Steps for the headway threshold determination 

Figure 5.3 Relationship between headways and level of discomfort 

5.2.4 Analysis of the Experimental Data 

Analysis was carried out to determine the two thresholds indicated in Figure 5.3 based on the driver 

discomfort thresholds. Threshold 1 delineates ‘Very Uncomfortable’ headway and ‘Somewhat 

uncomfortable’ headway. Threshold 2 delineates ‘Somewhat Uncomfortable’ and ‘No Discomfort’ 
headways. These two thresholds were determined using a modification of the Method of Constant 

Stimuli (which records the responses detected and plots them as a function of stimulus intensity). 

Figure 5.4 presents an example of the psychometric graph. When the stimulus intensity is 
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extremely low, the probability of subjects reporting a stimulus detection is close to zero. When the 

stimulus intensity is high, the experiment participants tend to confirm the detection of stimulus. 

When the psychometric curves are plotted with an adequate number of measurements, the results 

often follow a particular “S” shape (or “ogive”), and a theoretical sigmoidal curve could be fitted 

to the observations. 

(a) Datapoints    (b) Best-fitting model to the data 

Figure 5.4 Concepts of (a) psychometric graph development (b) absolute threshold determination 

For this purpose, the cumulative Gaussian distribution is typically used for the curve fitting, 

and its efficacy in this regard is supported by theory as well as experimental findings in past 

research. Examples include the outcomes of psychometric studies that are found in biological and 

psychological science publications (Gescheider, 2013). The maximum likelihood technique can 

then be used to estimate the parameters (mean and standard variation) that characterize the 

Gaussian distribution. Figure 5.4(a) presents the observations and Figure 5.4(b) presents a curve 

drawn to fit these observations. 

Using the fitted curve, the threshold is estimated as the stimulus value corresponding to 

50% detection as shown in Figure 5.4. The experiment sought to determine the two headway 

thresholds based on the driver’s comfort levels. Thus, the Method of Constant Stimuli was 

modified as follows: to measure the headway threshold between ‘No discomfort’ and the 
‘Somewhat Uncomfortable’ levels (that is, Threshold 2), all the answers of “Yes” to the first 

question (Q1) were first placed in the ‘Uncomfortable’ group. Then, the conventional method of 

constant stimuli method was applied to the ‘No Discomfort’ and ‘Uncomfortable’ classes. 

The study followed this process to estimate the first threshold. The fraction of responses 

for each stimulus level was recorded, and the data were fitted using the cumulative Gaussian 

function. The distribution mean and standard deviation were estimated using the maximum 

likelihood method (via a Probit model), and the absolute threshold using the mean value of the 

distribution was determined. 



51 

5.3 Experiment Outcomes 

Probit modeling was carried out to determine thresholds and Tables 5.1–5.3 and Figures 5.6–5.7 

each present the results (headway measurements) in both manual and AV modes. Thresholds were 

determined for each of the three groups of drivers: Cautious, Neutral and Confident. Regarding 

the Confident group of drivers, it was observed that when the distance headway is smaller than the 

estimated threshold (15.69 m), the drivers tended to take over the automated driving system. In 

addition, it was observed that the Confident drivers tended to feel uncomfortable with decreases 

of the distance headway to less than 22.65 m. Regarding the Neutral group of drivers, it was 

observed that drivers tended to feel uncomfortable when the distance headway was below 40.83 

m, and indicated their intention to take over the automated driving system when the distance 

headway further decreased to levels below 30.39 m. Regarding the Cautious drivers group, it was 

estimated that Threshold 1 and Threshold 2 are 60m and 37m, respectively. 

Table 5.1 Headway measurements – Cautious drivers 
The mean of distance headways in manual mode (m) 66.32 

Stimulus (meters) 30 40 50 60 70 

Frequency 

No Discomfort 0 0 7 24 45 

Somewhat Uncomfortable 1 36 43 26 5 

Very Uncomfortable 49 14 0 0 0 

Nr. of Observations 50 50 50 50 50 

Threshold 1 in AV mode (meters) 37.38 

Threshold 2 in AV mode (meters) 60.00 

Table 5.2 Headway measurements – Neutral drivers 
The mean of distance headways in manual mode (m) 42.76 

Stimulus (meters) 15 25 35 45 55 

Frequency 

No Discomfort 0 0 5 41 49 

Somewhat Uncomfortable 1 1 43 9 0 

Very Uncomfortable 0 0 0 0 49 

Nr. of Observations 49 49 2 0 1 

Threshold 1 in AV mode (meters) 30.39 

Threshold 2 in AV mode (meters) 40.83 

Table 5.3 Headway measurements – Confident drivers 
The mean of distance headways in manual mode (m) 23.51 

Stimulus (meters) 13 18 23 28 33 

Frequency 

No Discomfort 0 0 29 44 50 

Somewhat Uncomfortable 1 48 20 6 0 

Very Uncomfortable 49 2 1 0 0 

Nr. of Observations 50 50 50 50 50 

Threshold 1 in AV mode (meters) 15.69 

Threshold 2 in AV mode (meters) 22.65 
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(i) Estimation of Threshold 1 

(ii) Estimation of Threshold 2 

Figure 5.5 Determination of Headway Thresholds for “Cautious” drivers 
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Estimation of Threshold 1 

Estimation of Threshold 2 

Figure 5.6 Determination of Headway Thresholds for “Neutral” drivers 
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(i) Estimation of Threshold 1 

(ii) Estimation of Threshold 2 

Figure 5.7 Determination of Headway Thresholds for “Confident” drivers 
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CHAPTER 6 CONCLUDING REMARKS 

6.1 Summary of Findings and Conclusions 

This study investigates the affecting factors that need to be considered to design an in-vehicle 

situational awareness enhancing system (SAES), which can facilitate AV-manual takeover given 

partial and conditional automation. The research is divided into two phases. In the first phase, we 

present a thorough literature review that explores prompt-based SAES for directing drivers’ 
attention to AV-manual takeover and evaluate their impacts on drivers’ situational awareness and 
takeover performance, and we develop SAES inputs and a general SAES that could serve as a 

starting point for future SAES development. 

The second part of the study used driving simulator experiments to demonstrate situational 

awareness system applications, specifically to investigate drivers’ comfortable car-following 

distances in a CAV environment. The level of comfort was indirectly and implicitly a function of 

the drivers’ situational awareness of the road and traffic environment. The driving simulator had 

level 3 automation. In the experiment, drivers reported the levels of their discomfort associated 

with different headways and their intention to take over the vehicle from the automated driving 

system. This information served as a basis for the threshold headway analysis. Different headway 

thresholds were determined for three groups of drivers operating at the same vehicle speed. The 

results suggest that ‘Cautious’ drivers tend to be more sensitive to headway decreases because they 

exhibit intentions to take over the driving task from the automated driving system at longer 

headway relative to confident or neutral drivers. Also, the reference headways (that is, those 

measured during manual driving) are all slightly longer compared to the automated driving’s 

headway Threshold 2. That is, drivers did not report discomfort even where the CAV maintained 

headways smaller than those typically adopted by the drivers. 

These results could be viewed from the perspective of the role of operator trust in AI 

technology, and consequently, their intention to take over control of the vehicle from the 

automated driving. Researchers have shown that the trust in automated driving and the acceptance 

of technology will influence AV driver/operator’s decision to transition between automated and 

manual modes. Du et al. (2020) inferred that in Level 3 automated driving, certain physiological 

attributes (which are indicative of the driver’s workload and resultant stress) could significantly 

influence the driver’s takeover propensity and performance. 

The type of driver could be significant. The current study used a single demographic. 

However, Chen et al. (2021) showed that older drivers tend to exercise greater caution and thus 

tend to maintain longer headways. On the other hand, mid-age drivers are more confident of their 

driving abilities and tend to follow the leading vehicle with smaller headways. On the other hand, 

novice drivers are more cautious in following a leading vehicle, and keep longer headways 

(Underwood, 2013). The literature also suggests that irrespective of driver experience and age 

effects, a cautious style of driving is associated with long headways (Shinar and Schechtman, 2002; 

Saifuzzaman et al., 2015; Ivanco, 2017; Bao et al., 2020). The current study, consistent with the 

previous research results which had focused on traditional human-driven operations, suggest that 

driving styles (measured in terms of caution levels) significantly affects the driver comfort level 

and hence, their headway lengths, in the context of CAV environment. In particular, the ‘Cautious,’ 
‘Neutral,’ and ‘Confident’ drivers tend to deactivate the automated driving mode when the distance 



56 

headway reach a threshold of 37.38 meters, 30.39 meters, and 15.69 meters, respectively. 

Interestingly, Martin-Gasulla et al (2019) stated that less cautious car-following behaviors (time 

headway decrease from 1.8s to 0.6s) of CAVs contribute to a 15% reduction in delay; however, it 

could be argued that this comes at a cost of decreased safety. 

It is anticipated that these insights can help enhance AV user safety and comfort in the 

prospective future where the traffic stream will be characterized by a mixed stream of HDVs and 

AVs. The study results can also provide insight into the extent to which reduced headways can 

improve overall mobility and productivity without jeopardizing AV driver/occupant comfort. Also, 

the study results suggest that even in the far future of Level 5 automation, human factor issues 

(specifically, occupant comfort) will continue to be important. From a general perspective, there 

still exists concern about the levels of comfort and trust that drivers and passengers will have for 

AI technologies embedded in transportation vehicles. In this vein, the present research presents 

information that hopefully contributes to increased understanding of headway trade-offs between 

the mobility (or, travel efficiency) of the vehicle and the driver experience (comfort level) in the 

context on AV environments. 

The findings from this research, hopefully, presents insights that are useful to automated 

vehicle manufacturers and AV-related technology companies regarding the AV design. It is hoped 

that due consideration of the results of this study (and indeed, similar research studies), could help 

in the development of user-friendly AV designs that foster user acceptance and trust of automation 

(Vob et al., 2018). For example, by learning from the human driver’s perception (e.g., different 

comfortable headways), the car manufacturer is better informed to provide dashboard options that 

“personalize” the AV to the driving style of a specific driver. However, the results of the current 

study suggest that capacities and delay values used in highway capacity analysis should be updated 

using “user-friendly” headways in AV-operations environment. Therefore, in the long run, 

transportation planning involving autonomous mobility, could be enhanced. 

6.2 Study Limitations and Directions for Future Research 

The study has a few limitations that could be addressed in future research. First, the levels of driver 

discomfort could be assessed using objective metrics instead of subjective metrics used in this 

study. For example, the participants’ physiological attributes (using electrocardiogram (ECG) or 

EEG), could be used to measure their discomfort levels. Second, a driver’s assessment of distance 

headway (and hence, their discomfort level) could be unduly influenced by the volumes and speed 

of ambient traffic, and the roadway conditions, and therefore, future studies could account for 

environmental and operational effects on drivers’ perception of the existing following headways 

and therefore, their discomfort levels. Third, a wider and more diverse sample could be used in 

future research, to better understand how the results vary across the different socio-demographic 

populations (past studies have observed that trust in automation (and prospectively, headway 

distances) varies significantly across various population groups). Fourth, past exposure to 

automation or technology could be affecting drivers’ trust in automated driving and subsequently 

their comfortable level of headways. However, information on the participants past exposure to 

new automotive technologies was not collected in the current study. 
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CHAPTER 7 SYNOPSIS OF PERFORMANCE 

INDICATORS 

7.1 USDOT Performance Indicators Part I 

Two (2) transportation-related courses were offered annually during the study period that were 

taught by the PI and teaching assistants (TA) who also served as a research assistant (RA) for this 

research project. Four graduate students and a post-doctoral researcher (subsequently designated 

a Visiting Assistant Professor) participated in the research project during the study period. The 

Visiting Assistant Professor was subsequently appointed as a tenure-track assistant professor at 

the University of Wisconsin-Madison. Two (2) transportation-related advanced degree programs 

(MS in Transportation and PhD in Transportation) utilized the CCAT grant funds from this 

research project, during the study period to support graduate students. This and other CCAT 

research projects were leveraged to obtain $210,000 in additional funding from the Indiana DOT 

titled “Integrating Transformative Technologies in Indiana’s Transportation Operations”. 
Additional funding worth $100,000 was also provided through a Purdue Graduate Fellowship 

awarded to one of the students who helped conduct this research. 

7.2 USDOT Performance Indicators Part II 

Research Performance Indicators: One (1) journal article was produced from this project. Also, 

through conferences, the research from this project was disseminated to over 92 people from 

industry, government, and academia. These include: the 2018 Purdue ITE Seminar in West 

Lafayette, IN; the 2019 International Conference on Smart Cities, Seoul, Korea; and the 2020 

Next-generation Transportation Systems Conference, West Lafayette, IN. The study was also 

presented on Youtube as Episode #10 of CCAT’s Research Review Series. The number of views 

to date is 750. 

https://www.youtube.com/watch?v=2rskMX5KN9k 

One (1) other related research project was funded by a source other than UTC and matching 

fund sources. Also, as of the time of writing, there are no new technologies, procedures/policies, 

and standards/design practices that were produced by this research project. 

Leadership Development Performance Indicators 

This research project generated 2 academic engagements and 1 industry engagement. The PIs held 

positions in 2 national organizations that address issues related to this research project. 

Education and Workforce Development Performance Indicators 

The methods, data and/or results from this study were incorporated in the syllabus for subsequent 

versions (Fall 2022 and 2023) of the following courses at Purdue University: (a) CE 299: Smart 

Mobility, an optional undergraduate level course at Purdue’ civil engineering B.S. program, and 

(b) CE 398: Introduction to Civil Engineering Systems, a mandatory undergraduate level course 

at Purdue University’s civil engineering program. 

https://www.youtube.com/watch?v=2rskMX5KN9k
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These students will soon be entering the workforce. Thereby, the research helped enlarge 

the pool of people trained to develop knowledge and utilize at least a part of the technologies 

developed in this research, and to put them to use when they enter the workforce. 

Collaboration Performance Indicators 

There was collaboration with other agencies, and 1 agency provided matching funds worth 

$210,000. 

The outputs, outcomes, and impacts are described in Chapter 8. 
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CHAPTER 8 STUDY OUTCOMES AND OUTPUTS 

8.1 Outputs 

8.1.1 Publications, conference papers, or presentations 

(a) Journal Publications 

Li, Y., Chen, T., Chen, S., Labi, S. (2022). Tradeoffs between safe/comfortable headways versus 

mobility-enhancing headways in an automated driving environment: preliminary insights 

using a driving simulator experiment, Frontiers in Engineering & Built Environment, 

Volume 1 Issue 2, 173-187, https://doi.org/10.1108/febe-05-2021-0025 

(b) Conference Presentations 

Li, Y., Peeta, S., Labi, S., (2018). Drivers perception of headways in autonomous vehicle 

operations. Road School, Purdue University, W. Lafayette, IN. 

Li, Y., Labi, S. (2019). Drivers’ perception of headways in autonomous vehicles, 2019 

International Conference on Smart Cities, Seoul, South Korea. 

Li, Y., Chen, S., Labi, S. (2020). A driving simulation experiment to measure headway tradeoffs. 

in autonomous vehicle operations, Next-generation Transportation Systems Conference 

(online), W. Lafayette, IN. 

(c) National Webinar Presentations 

Li, Y., Labi, S. (2021). Effect of human drivers’ time delay & heterogeneity on traffic stabilization 

capability of CAVs, August 2021, Presented at the CCAT Research Review Series on Youtube, 

Episode 10, The Center for Connected and Automated Transportation, Ann Arbor, Michigan. 

https://www.youtube.com/watch?v=2rskMX5KN9k 

8.1.2 Other products 

Other products of this research are as follows: 

• Material for the Purdue courses “CE 299 (Smart Mobility) and CE 398 (Civil Engineering 

Systems). 

• Research material to support future research related to the subjects of human machine 

interactions and situational awareness. 

8.2 Outcomes 

The outcomes of this project are the prospective initiatives or changes that could be made to 

existing in-vehicle alert warrants and modes, to ensure smooth and safe takeover of the ADS by 

the driver where necessary. This could lead to regulation, legislation, or policy regarding 

situational awareness. As this report suggests, precursors to such initiatives could include: 

• Increased understanding and awareness of the need for situational awareness in AVs, and 

that has a profound effect on safety in the emerging era of automated vehicle operations. 

• Strong justification to both OEMs to consider installing features in their vehicles that 

effectively enhance situational awareness. 

https://doi.org/10.1108/febe-05-2021-0025
https://www.youtube.com/watch?v=2rskMX5KN9k
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8.3 Impacts 

Automated driving experience and its related tasks including human takeover of the AV, is 

influenced by various factors including environmental conditions, road and traffic conditions, 

vehicle sensors, driver attributes, and driver characteristics. This study report discusses the 

conditions and factors that may prompt a takeover request, different types and modalities of alerts 

employed in takeover requests, potential non driving related tasks performed by drivers and how 

each one affects the response time and quality of takeover. In addition, specific physiological and 

psychological characteristics of the driver affect the driving performance. Such characteristics 

include driver’s trust in the automation, propensity to take over, drivers age, and social 

demographic factors. These factors can shape autonomous vehicle design and policy and are 

discussed in this study. 

Explorations of risk levels in the driving environment can help vehicle designers, traffic 

engineers, and policy makers understand the potential risks with autonomous vehicles and 

consequently institute policy, updated roadway designs, or traffic management plans, to mitigate 

these risks. Insights regarding takeover alerts and drivers’ response to them can help designers 

understand the most effective ways to alert the drivers of a takeover. Takeover warrants highlight 

the limitations of the automation and may be instrumental in shaping policy towards AV use. 

Understanding passenger attributes and driver characteristics, such as their trust in 

automation systems, their propensity for or aversion from risk as well as level of aggression in 

their driving style may aid vehicle designers and engineers to engineer safety-enhancing 

automation systems to better handle different scenarios. Finally, an understanding of response time 

can help vehicle designers and manufacturers allocate a sufficient time budget to allow for a 

successful takeover. 

The broader impacts of enhanced situational awareness of AV operators reverberates at 

various spatial scales of the highway transportation system, from the vehicle itself, to immediate 

environment where the vehicle operates, to the road (link) section, to the road corridor, and to 

wider the network in general. At each spatial scale, these impacts include (at least, prospectively) 

increased traffic flow and throughput, enhanced overall mobility, increased safety and comfort of 

AV drivers and passengers (particularly, the infirm), and other related accompanying benefits 

(lower emissions, and social quality due to reduced accidents. The overall project outcomes also 

include: a broadening of the body of knowledge and technologies associated with human-machine 

interface and interactions in the context of AVs, enlargement of the pool of people trained to 

develop knowledge and utilize new technologies and put them to use; improve the physical, 

institutional, and information resources, such as the CCAT/NEXTRANS Human Factors Research 

Lab’s cab driving simulator (located at Kent Avenue in West Lafayette), that provides students 

with access to training and new technologies. 
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APPENDIX 
CCAT Project: Development of Situational Awareness Enhancing Systems for AV-

to-Manual Handover and Other Tasks 

Published Related Work 

Paper 1: Li, Y., Chen, T., Chen, S., Labi, S. (2022). Tradeoffs between safe/comfortable 

headways versus mobility-enhancing headways in an automated driving environment: 

preliminary insights using a driving simulator experiment. 

Frontiers in Engineering and Built Environment, Volume 1 Issue 2, 173-187. 

https://www.emerald.com/insight/content/doi/10.1108/FEBE-05-2021-0025/full/html 

Abstract 

The anticipated benefits of connected and autonomous vehicles (CAVs) include safety and 

mobility enhancement. Small headways between successive vehicles, on one hand, can cause 

increased capacity and throughput and thereby improve overall mobility. On the other hand, small 

headways can cause vehicle occupant discomfort and unsafety. Therefore, in a CAV environment, 

it is important to determine appropriate headways that offer a good balance between mobility and 

user safety/comfort. In addressing this research question, this study carried out a pilot experiment 

using a driving simulator equipped with a Level-3 automated driving system, to measure the 

threshold headways. The Method of Constant Stimuli (MCS) procedure was modified to enable 

the estimation of two comfort thresholds. The participants (drivers) were placed in three categories 

(Cautious, Neutral and Confident) and 250 driving tests were carried out for each category. Probit 

analysis was then used to estimate the threshold headways that differentiate drivers' discomfort 

and their intention to re-engage the driving tasks. The results indicate that Cautious drivers tend to 

be more sensitive to the decrease in headways, and therefore exhibit greater propensity to 

deactivate the automated driving mode under a longer headway relative to other driver groups. 

Also, there seems to exist no driver discomfort when the CAV maintains headway up to 5%–9% 

shorter than the headways they typically adopt. Further reduction in headways tends to cause 

discomfort to drivers and trigger takeover control maneuver. In future studies, the number of 

observations could be increased further. The study findings can help guide specification of user-

friendly headways specified in the algorithms used for CAV control, by vehicle manufacturers and 

technology companies. By measuring and learning from a human driver's perception, AV 

manufacturers can produce personalized AVs to suit the user's preferences regarding headway. 

Also, practitioners and researchers could apply the identified headway thresholds to update 

highway lane capacities and passenger-car-equivalents in the autonomous mobility era. The study 

represents a pioneering effort and preliminary pilot driving simulator experiment to assess the 

tradeoffs between comfortable headways versus mobility-enhancing headways in an automated 

driving environment. 

https://www.emerald.com/insight/content/doi/10.1108/FEBE-05-2021-0025/full/html
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