


# A FRAMEWORK FOR QUANTITATIVE ASSESSMENT OF THE ENVIRONMENTAL, SOCIAL, AND ECONOMIC BENEFITS OF TDOT INFRASTRUCTURE PROJECTS

Research Final Report from The University of Tennessee at Chattanooga | Ignatius Fomunung, Jejal Bathi, Mbaki Onyango, Thomas Wilson, Yu Liang | September 30, 2023

Sponsored by Tennessee Department of Transportation Long Range Planning Research Office & Federal Highway Administration



#### **DISCLAIMER**

This research was funded through the State Planning and Research (SPR) Program by the Tennessee Department of Transportation and the Federal Highway Administration under **RES #2021-06**: A Framework for Quantitative Assessment of the Environmental, Social, and Economic Benefits of TDOT Infrastructure Projects.

This document is disseminated under the sponsorship of the Tennessee Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Tennessee and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the author(s) who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Tennessee Department of Transportation or the United States Department of Transportation.

# **Technical Report Documentation Page**

| 1. Report No.<br>RES2021-06                                               | 2. Government Acces     | ssion No. 3. Ro          | 3. Recipient's Catalog No.       |                   |  |
|---------------------------------------------------------------------------|-------------------------|--------------------------|----------------------------------|-------------------|--|
| 4. Title and Subtitle                                                     |                         |                          | 5. Report Date                   |                   |  |
| A Framework for Quantitative Ass                                          | sessment of the Enviror |                          | eptember 30, 2023                | 3                 |  |
| and Economic Benefits of TDOT                                             |                         |                          | erforming Organiz                | zation Code       |  |
|                                                                           |                         |                          | orrerning organi                 |                   |  |
| 7. Author(s)                                                              |                         |                          | erforming Organiz                | ation Report No.  |  |
| Ignatius Fomunung, Mbaki Onya<br>Liang                                    | ngo, Jejal Bathi, Thon  | nas Wilson, Yu           |                                  |                   |  |
| 9. Performing Organization Name                                           | and Address             | 10. V                    | Work Unit No. (TI                | RAIS)             |  |
| The University of Tennessee a                                             |                         |                          | (                                |                   |  |
| 615 McCallie Ave,                                                         |                         |                          | Contract or Grant 1              | No.               |  |
| Chattanooga, TN 37403  12. Sponsoring Agency Name and                     | 1 Address               |                          | nt RES2021-06 Type of Report and | Period Covered    |  |
| Tennessee Department of Transpo                                           |                         |                          | l Report                         | i i ciloa coverca |  |
| 505 Deaderick Street, Suite 900                                           |                         |                          | 1 - 2023                         |                   |  |
| Nashville, TN 37243                                                       |                         | 14. \$                   | Sponsoring Agency                | y Code            |  |
| 15. Supplementary Notes                                                   |                         | L                        |                                  |                   |  |
| Conducted in cooperation with the                                         | e U.S. Department of T  | Fransportation, Federal  | Highway Admini                   | stration.         |  |
|                                                                           |                         |                          |                                  |                   |  |
| 16. Abstract Traditional infrastructure planning                          |                         |                          |                                  |                   |  |
| under prioritizing the environmen<br>Green Infrastructure (GI) and Lov    |                         |                          |                                  |                   |  |
| sustainability goals, promote ecor                                        |                         |                          |                                  |                   |  |
| for a standardized framework that                                         | quantifies and conside  | ers economic, environn   | nental, and social               | impacts while     |  |
| also taking public opinion and the to develop a systematic quantification | hierarchy of importan   | ce for these benefits in | to consideration.                | Γhis study aims   |  |
| temporally dynamic metrics, obje                                          |                         |                          |                                  |                   |  |
| tangential benefits. This framewo                                         | rk is meant to be used  | by practitioners to asse | ess the applicability            | y and quantified  |  |
| benefits of GI practices to be used                                       |                         |                          |                                  |                   |  |
| Monte Carlo Simulation methods complete with a searchable databate        |                         |                          |                                  |                   |  |
| project. Additionally, a step-by-st                                       |                         |                          |                                  |                   |  |
| and a case study was conducted to demonstrate the toolbox' capabilities   |                         |                          | enefits.                         |                   |  |
| 17. Key Words 18. Distributio                                             |                         |                          | ement                            |                   |  |
| GREEN INFRASTRUCTURE, TRIPLE No restriction.                              |                         |                          | document is availa               | ble to the public |  |
| BOTTOM LINE, DECISION S                                                   | from the sponsor        |                          | -                                |                   |  |
| http://www.t                                                              |                         |                          |                                  |                   |  |
| 19. Security Classif. (of this repor                                      |                         | ssif. (of this page)     | 21. No. of                       | 22. Price         |  |
| Unclassified                                                              | Unc                     | lassified                | Pages                            |                   |  |
| 1                                                                         | 1                       |                          | XXX                              | 1                 |  |

# **Acknowledgement**

The present study acknowledges the funding of the Tennessee Department of Transportation (TDOT) for this project. Additionally, the authors express their gratitude to Dr. Casey Langford, Patrick Garner, Randall Emilaire, and Pamela Boyd-Walker from TDOT for their invaluable contributions in terms of support, dialogue, and direction throughout the research process. Finally, the authors extend their appreciation to the UTC students who participated in the project, namely Md Kamrul Hasan Sabbir, Carmen Harvey, Dax Ladesma, Ezhilvadivu Palaniyappan, and Laura Wright, for their diligent efforts. The list of posters and publications pertinent to this project are listed below:

- Md Kamrul Hasan Sabbir, Ignatius Fomunung, Casey Langford, Thomas Wilson, Jejal Reddy Bathi, Patrick Garner, Yu Liang, Mbaki Onyango, "Quantification and Integration of Social Benefits of Green Infrastructure in Screening Transportation Project Alternatives", The Transportation Research Board (TRB) 102nd Annual Meeting, Washington, D.C, USA (2022) (Accepted for presentation)
- Jejal Reddy Bathi, Carmen Harvey, Ignatius Fomunung, Mbakisya Onyango, M.K.H. Sabbir, Yu Liang, Wilson Thomason, "Database of Green Infrastructure in Transportation Projects Planning: Current Guidance and Standards by Transportation Agencies", The Transportation Research Board (TRB) 102nd Annual Meeting, Washington, D.C, USA (2022) (Accepted for presentation)
- 3. Md Kamrul Hasan Sabbir, "Integrating Social and Environmental Impacts of Green Transportation Infrastructure: A Framework for Effective Decision-Making", MS thesis.

# **Executive Summary**

Green Infrastructure (GI) is a multi-benefit tool that has existed in the municipal "toolbox" for a while. However, the lack of an efficient cost-benefit analysis—one that considers economic as well as environmental and social impacts—leaves it being underutilized, and our community suffers these consequences. The Tennessee Department of Transportation (TDOT) is currently integrating GI components into its infrastructure projects in order to fulfill its sustainability objectives. GI practices reduce and treat stormwater runoff, along with improving water and air quality, and climate resiliency, but it also offers valuable benefits to society and our communities. GI elements, which employ Low Impact Development (LID) techniques, aim to replicate natural processes to treat stormwater as close to its source as feasible and in a way that promotes ground infiltration rather than conveying runoff to a treatment facility. In addition to the obvious environmental benefits stemming from the implementation of these techniques, there are also social and indirect economic benefits. Social benefits of GI could be the aesthetic value of rain gardens and green spaces or the improved public safety and sanitation, while economic benefits could be the costs and investments saved from remediating flooding or other wet weather damages. However, conventional approaches typically emphasize the economic effectsprimarily the principal costs—of infrastructure development and disregard the environmental and social impacts of GI. As a result, GI is perceived as less desirable than Traditional Infrastructure (TI), also known as gray infrastructure. Furthermore, existing methodologies fail to account for public opinion in the decision-making process.

In order to secure funding and satisfy sustainability objectives, TDOT must present GI implementations as a feasible stormwater management option to stakeholders. Achieving this goal necessitates the development of a comprehensive, integrated framework (i.e. a decision-making algorithm) that considers the relative importance of various GI co-benefits, incorporates public opinion, and integrates spatially specific and temporally dynamic metrics for quantifying and monetizing the diverse benefits of GI. When all the impacts—environmental, social, and economic—of implementing GI are determined and considered, it becomes challenging to see how developers would want to choose gray infrastructure over GI. The benefits of GI surpass economic advantages, which tend to be the main benefit of gray infrastructure.

This study utilizes the Analytical Hierarchy Process (AHP) and Monte-Carlo Simulation (MCS) methods—along with a searchable database of applicable Gls for possible field conditions of transportation projects—to construct this comprehensive framework that integrates the various impacts of transportation infrastructures, and ultimately facilitates the selection of suitable Gl for different locations. Initially, a Gl database was created to serve as a reference for the framework and eventually the end product of the toolbox, which is a tool that employs the framework to be used by TDOT and other practitioners. This database comprehensively compiled more than 30 different types of Gl, including rain harvesting methods like cisterns and rain barrels, permeable pavement, green roofs, bioretention systems, landform grading and level spreaders, amongst others. Within this repository of Gl measures, site requirements and specific restrictions were listed for each practice, as well as the quantified impacts and benefits of various Gl methods, with many impacts having monetized values. In order to establish a hierarchy of importance, two surveys were conducted: one on a national scale across all State Departments of Transportation (SDOTs) from which 18 SDOTs responded and another at the community level

throughout the state of Tennessee from which 98 citizens responded. These surveys revealed that the opinion of administrators and citizens did not significantly differ. Perception of GI is overwhelmingly positive and the benefits of implementing such infrastructure—whether environmental, social or economic—are largely understood and accepted. Integrating the hierarchy of importance into the framework makes it possible to consider the biases of public opinion, while still being able to deliver standard unbiased results.

This toolbox can be employed by TDOT to evaluate the all-inclusive spatially specific and temporally dynamic impacts of distinct infrastructure choices, as well as to facilitate decision-making among various infrastructure options. Accompanying the toolbox, a step-by-step user guide was developed to assist practitioners with the use of the GI toolbox in assessing the total benefits of applicable GI. This guide is embedded into the toolbox itself and offers guidance while the tool is being used. Additionally, a case study using the toolbox is also presented to demonstrate the capabilities of the benefit analysis tool and to assist TDOT personnel in navigating the toolbox.

## **Key Findings**

The key findings of this project are as follows:

- All the state DOTs are implementing GI elements into their infrastructure projects.
- There is a lack of a unified decision-making process regarding the overall use of GI in Tennessee *and* nationally.
- There is a lack of quantitative assessment method for social impacts of Gl.
- The Analytical Hierarchy Process offers a robust solution for addressing the Multi-Criteria, Multi-Level complexity inherent in decision-making when selecting the optimal GI choice, effectively managing the associated subjectivity.
- Employing the Monte Carlo Simulation enables the extension of this methodology's applicability to encompass the entire United States.

## **Key Recommendations**

A web-based cost-benefit analysis tool, considering quantified economic, social, and environmental impacts will help SDOTs make the best and most informed decisions about which type of infrastructure to implement in transportation projects. Using the toolbox, environmental and social benefits will no longer be disused, resulting in better choices of infrastructure, and not just from an economic perspective. The community will benefit, and the environment will be impacted less. This toolbox has integrated a hierarchy of importance regarding GI, which allows for unbiased results—no matter the users' opinions—while still considering the biases of public opinion.

- When determining the optimal choice among various Green Infrastructure (GI) options, it is essential to consider the social and environmental impacts associated with each alternative along with the economic impacts.
- The tool can be used to obtain monetary impact from social, environmental and economic aspect of Green Transportation Infrastructure.

- The tool can also be used to obtain quantified environmental and social impacts such as stormwater runoff reduction, air pollutant reduction, energy saved, anticipated green space for recreational use, etc.
- The tool aids in making informed decisions by assisting in the selection of the most optimal infrastructure option from a range of choices.
- The toolbox offers a convenient and easy method for choosing and implementing GI, which undoubtedly will lead to more GI implementation across the state of TN, reducing stormwater hazards and meeting sustainability goals.

With less than a third of SDOTs performing GI analysis regarding economic, environmental, and social impacts, TDOT would be a leader amongst SDOTs to analyze and implement GI based on these impacts.

# **Table of Contents**

| ı | $\Box$ | ISC | 1 A I | N/  | ED | i |
|---|--------|-----|-------|-----|----|---|
| 1 | ,      | 17( | ΙAΙ   | IVI | ГK |   |

| Technical Report  | Documentation Page                                                      | ii |
|-------------------|-------------------------------------------------------------------------|----|
| ·                 | nt                                                                      |    |
|                   | ary                                                                     |    |
|                   |                                                                         |    |
|                   | ndations                                                                |    |
| List of Tables ix |                                                                         |    |
|                   |                                                                         | x  |
| _                 | Terms and Acronyms                                                      |    |
| Chapter 1 Intr    | roduction                                                               | 1  |
| 1.1 Problem St    | tatement                                                                | 2  |
| 1.2 Objectives.   |                                                                         | 2  |
| 1.3 Report Out    | tline                                                                   | 2  |
| Chapter 2 Lite    | erature Review                                                          | 3  |
| Chapter 3 Me      | thodology                                                               | 5  |
| 3.1 The Analyti   | ical Hierarchy Process                                                  | 5  |
| 3.2 Monte-0       | Carlo Simulation                                                        | 6  |
| 3.3 The Hie       | rarchy Structure                                                        | 7  |
| 3.4 Social Ir     | npact Quantification Frameworks                                         | 8  |
| Recreational      | Use                                                                     | 9  |
| Heat Reduction    | on                                                                      | 10 |
| Enhanced Pro      | pperty Value                                                            | 11 |
| Job Creation      | Benefit                                                                 | 12 |
| 3.5 Environ       | mental Impact Quantification Frameworks                                 | 12 |
| Reduced Stor      | mwater Runoff                                                           | 12 |
| Reduced Air F     | Pollutants                                                              | 18 |
| 3.6 Economic I    | mpact Quantification Framework                                          | 23 |
| Rainwater ha      | rvesting (Cistern/Rain Barrel)                                          | 23 |
|                   | (Bioswales/Bio slopes/ Bioretention cells/ Basins with or without under | •  |
| Basins (Deten     | ntion/Retention Basins)                                                 | 25 |
| Planter Boxes     | s (Open/Closed)                                                         | 26 |
| Permeable Pa      | avement                                                                 | 27 |

| Swales         |                          | . 28 |
|----------------|--------------------------|------|
| Chapter 4      | Case Study               | .30  |
| Chapter 5      | Results and Discussion   | .36  |
| 5.1 Surv       | vey, AHP and MCS Results | .36  |
| 5.2 GI R       | epository                | .40  |
| 5.3 Case Study |                          | .41  |
| Chapter 6      | Conclusion               | .44  |
| References     | 45                       |      |
| Appendices     | 49                       |      |

# **List of Tables**

| Table I     | 5          |
|-------------|------------|
| Table II    | 7          |
| Table III   | 8          |
| Table IV    | 11         |
| Table V     | 13         |
| Table VI    | 15         |
| Table VII   | 18         |
| Table VIII  | 19         |
| Table IX    | 22         |
| Table X     | <b>2</b> 3 |
| Table XI    | 24         |
| Table XII   | 25         |
| Table XIII  | 25         |
| Table XIV   | 26         |
| Table XV    | 26         |
| Table XVI   | 27         |
| Table XVII  | 28         |
| Table XVIII | 28         |
| Table XIX   | 29         |
| Table XX    | 30         |
| Table XXI   | 32         |
| Table XXII  | 33         |
| Table XXIII | 33         |
| Table XXIV  | 34         |

# **List of Figures**

| Figure 3-1 Framework for monetizing recreational use9                                                                  |
|------------------------------------------------------------------------------------------------------------------------|
| Figure 3-2 Framework for monetizing heat reduction benefit10                                                           |
| Figure 3-3 Enhanced property value quantification framework                                                            |
| Figure 3-4 Framework for quantifying job creation benefit                                                              |
| Figure 3-5 The climate zones used to estimate the rainfall interception of trees [65]16                                |
| Figure 5-1 Pie Graphs Descriptive statistics of the citizen participants in the survey showing- (A) Highest education  |
| level, (B) Age range, (C) Annual income range, and (D) Race of the participants37                                      |
| Figure 5-2 Bar Graphs Survey results showing citizen participants' opinion about GI in contributing to social impacts. |
| (A) Recreational opportunity. (B) Health benefit from heat reduction, (C) Property value enhancement, (D)              |
| Economic development from job creation                                                                                 |
| Figure 5-3 Bar Graphs Survey results showing citizen participants' opinion about GI in contributing to environmental   |
| impacts                                                                                                                |
| Figure 5-4 Bar Graph Survey results showing SDOT responses regarding how their agency's analysis of GI has changed     |
| in the past 5 years in respect to social, environmental, and economic impacts39                                        |
| Figure 5-5 Examples of GI repository spreadsheet (top) and GI environmental benefits summary (bottom) 40               |
| Figure 5-6 'Weight by Density' graph showing the results of the case study's comparative analysis between Scenario     |
| 1 and Scenario 2. Scenario 2 was found to be the better option                                                         |

# **Glossary of Key Terms and Acronyms**

AHP Analytical Hierarchy Process

CSO Combined Sewer Overflow

CSS Combined Sewer Systems

DA Drainage Area

EPA Environmental Protection Agency

FHWA Federal Highway Administration

Gl Green Infrastructure

LID Low Impact Development

MCDM Multi-Criteria Decision-Making

MCS Monte-Carlo Simulation

PDF Probability Distribution Function

SDOT State Departments of Transportation

TI Traditional Infrastructure

Bioretention

Bioswale

Criteria Pollutants

Likert Scale

Permeable Pavement

Rain Harvesting

Urban Heat Island Effect

# Chapter 1 Introduction

Green Infrastructure (GI) is a holistic approach that uses natural systems to provide multiple benefits in urban areas. It includes Low Impact Development (LID) techniques, which imitate natural processes to capture and treat stormwater close to its source [1]. When GI techniques are used to manage stormwater, ground infiltration increases and the need for treating stormwater runoff which becomes polluted traveling across impervious surfaces is decreased, or possibly eliminated as GI also treats stormwater through filtration and/or sedimentation processes. GI not only helps to reduce strain on capacity limitations of pipe networks that can lead to flooding, or decrease the urban heat island effect with green over "gray" (i.e. concrete) areas and provides habitats for wildlife but also promotes sustainable transportation options that encourage non-motorized travel and compact communities.

Numerous state and federal authorities across the United States are presently incorporating sustainable practices into their infrastructure management plans and land use development strategies. The objective behind this is to stimulate economic growth while simultaneously creating a healthy environment that enhances the overall quality of life. These sustainable infrastructure practices, collectively known as GI, include an array of techniques such as green sidewalks, permeable pavement, downspout disconnection, rainwater harvesting, bioretention, bioswales, urban tree canopy, and many more. In addition to the obvious environmental benefits, the incorporation of GI practices also provides a range of social and economic benefits. Due to these multifaceted advantages, the integration of GI practices into various infrastructure sectors such as transportation and communication, water resources, sewage management systems, power production, etc., has been on the rise in recent years [2-5]. The conventional approaches to infrastructure planning, design, and implementation typically focus on the economic impacts of a project, while environmental impacts may also be considered but not consistently. Many environmental impacts are straightforward and easy to quantify, such as the amount of runoff reduced, but there are various environmental impacts that are much more challenging to quantify and subsequently monetize. For example, wildlife benefit greatly from more green spaces opposed to concrete areas and in turn the environment benefits, but these impacts are very difficult to monetize. To a greater extent, social impacts too can be challenging to quantify due to their subjective nature and are often overlooked. Social impacts are highly variable in terms of space and time, which makes it difficult to generalize their effects in specific locations and periods. Consequently, by omitting social and environmental impacts the traditional approach to infrastructure planning may seem more cost-effective to policymakers than GI projects. However, by integrating the quantification of social and environmental benefits into the cost-benefit analysis of a project, GI projects could become a much more attractive option than traditional infrastructure (TI) [6-9].

The economic benefit of implementing TI pales in comparison to the breadth and value of the numerous benefits of GI. After conducting a literature review, it was found that there have been some attempts to quantify and monetize the social and environmental benefits of GI in recent years. However, these studies do not consider the potential for randomness in public opinion and acceptance of GI within society, nor do they account for the hierarchy of importance among different social, environmental and economic benefits. To address these limitations, this research employs the Analytical Hierarchy Process (AHP) and Monte Carlo Simulation (MCS) techniques to

overcome the subjectivity, as well as spatial and temporal variations inherent in the social and environmental benefits of GI. The proposed framework is intended to be applicable to various regions across the United States [9, 10].

#### 1.1 Problem Statement

The adoption of GI practices by many state departments of transportation (SDOT) in the United States aims to meet sustainability goals, promote economic development, enhance traffic safety, and improve quality of life. GI refers to a living network that integrates landscape areas, natural areas, and waterways, including Low Impact Development (LID) techniques. However, traditional approaches to infrastructure planning (e.g. the use of gray infrastructure) tend to prioritize economic impacts while disregarding environmental and social impacts. While several SDOTs and the Federal Highway Administration (FHWA) have initiatives to quantify the benefits of GI [11-14], there is a need for a unified framework that considers economic, environmental, and social benefits along with public opinion and the comparison of importance of different benefits to aid decision making. In this context, the proposed research aims to develop a systematic quantification framework that captures economic, environmental and social impacts of infrastructure projects, including spatially specific and temporally dynamic metrics, objective weights, practical quantification methods, and calculations to value tangential benefits. The study will propose a framework that can be used by practitioners to promote sustainable infrastructure practices by assessing the applicability and quantified benefits of possible GI for development projects.

# 1.2 Objectives

The objectives of this study are as following:

- 1. To explore and examine the multifaceted benefits of GI and LID techniques in promoting sustainable urban development and enhancing the quality of life in urban areas.
- 2. To generate a database of GI practices with attributes detailing the applicability and benefits of each possible GI, to be used as a reference for the proposed framework (Objective 5).
- 3. To identify and evaluate the existing approaches to quantify and monetize the social and environmental benefits of GI and LID in infrastructure planning and decision-making processes.
- 4. To apply the AHP and MCS techniques to capture the randomness and hierarchy of social and environmental benefits in GI and LID projects and develop a practical calculation model.
- 5. To propose a systematic and comprehensive framework that integrates environmental, social and economic impacts of infrastructure projects, including spatially specific and temporally dynamic metrics, objective weights, and practical quantification methods.

## 1.3 Report Outline

The subsequent sections of this report are organized as follows: Chapter II presents a review of the pertinent literature, which has been instrumental in informing the author's understanding of the state of the art and shaping the direction of the study. The first segment of Chapter III elucidates the methodology and approach adopted in employing the Analytical Hierarchy Process

and Monte Carlo Simulation, while the latter segment outlines the quantification framework developed for evaluating the various impacts of GI. Chapter IV explains the usage of the toolbox through a case study with hypothetical parameters. And finally, the results of the research supplied in the toolbox's fabrication, along with the results of the case study which explicitly show the function and advantage of the toolbox, are described in Chapter V.

# Chapter 2 Literature Review

Green infrastructure (GI) has the potential to serve as a cost-effective solution for fulfilling transportation infrastructure requirements while enabling SDOTs to maximize the value of their investments in infrastructure by generating various environmental, economic, and social benefits. The implementation of GI in transportation projects has been successful in addressing stormwater management challenges, and an increasing number of projects are adopting a mix of both green and gray infrastructure to lower the overall costs of compliance with stormwater management regulations. GI projects can significantly enhance the aesthetics of communities, particularly when compared to traditional built environment expansion. Successful GI projects have the potential to enhance public safety, improve the attractiveness of communities, raise property values, and create new job opportunities in the green economy.

Recent studies have highlighted the importance of integrating social and environmental impacts into decision-making processes for transportation infrastructure projects. For example, a study by Strong et al. (2017) found that incorporating environmental and social considerations in transportation infrastructure planning and design can result in significant benefits such as reduced greenhouse gas emissions and improved public health outcomes [15]. Similarly, a study by Ameen et al. (2015) emphasized the need for a comprehensive framework that integrates both environmental and social impacts of green transportation infrastructure, highlighting the role of community engagement and stakeholder involvement in the decision-making process [16]. In addition, recent research has focused on developing more robust and standardized frameworks for evaluating the social and environmental impacts of green transportation infrastructure. For instance, a study by Ramani et al. (2011) proposed a framework for quantifying the social and environmental benefits of green transportation infrastructure based on a set of performance indicators that account for factors such as accessibility, safety, and air quality [17]. Another study by Liang et al. (2020) developed a framework for evaluating the environmental and social impacts of transit-oriented development projects, which can help transportation agencies prioritize projects that maximize benefits for both the environment and communities [18].

Furthermore, recent studies have emphasized the need to address implementation challenges associated with integrating social and environmental impacts into decision-making processes. For example, a study by May (2022) identified institutional and regulatory barriers that can hinder the implementation of sustainable transportation policies, emphasizing the need for a coordinated and collaborative approach across different levels of government [19]. Another study by Romero-Bonsu et al. (2020) highlighted the importance of community involvement and stakeholder engagement in green transportation infrastructure projects, emphasizing the need to address power imbalances and ensure equitable outcomes for all stakeholders [20].

Overall, these recent studies highlight the importance of integrating social and environmental impacts along with economic ones into decision-making processes for transportation

infrastructure projects. They also provide insights into the challenges and opportunities associated with developing more robust and standardized frameworks for evaluating these impacts and implementing sustainable transportation policies.

There is currently a lack of standardized and formalized frameworks for evaluating the environmental and social benefits of infrastructure systems. This makes it difficult for transportation departments to optimize their investment strategies. Existing quantification programs also vary significantly in terms of performance metrics, quantification methods, weighting schemes, and integration techniques. Furthermore, these frameworks often prioritize single economic aspects over environmental and social merits [21], resulting in biased decision making. Additionally, individual programs often use subjective and ad-hoc methods for scoping performance metrics and determining their relative importance [22], without considering their effectiveness in benefit characterization or the implications to the corresponding community. While many individual benefit quantification/modeling studies exist, their results have not been efficiently used for quantitative framework development, leading to unstable analysis outcomes due to the strong dependency between explanatory variables. The frameworks often prioritize function [23] and fail to consider the natural variations in stakeholder perspectives and perceptions [24, 25], as well as temporal and spatial factors. Finally, integrating all the benefits into a single measurement tends to be subjective and uncertain, leading to a need for more objective and credible understanding of the mechanism of infrastructure impacts and causes.

The Environmental Protection Agency (EPA) and the Federal Highway Administration's (FHWA) Green Highways Partnership aims to engage public and private entities to enhance the functionality and sustainability of highways through GI practices such as bioretention, planting street trees, landscape improvements, and removal of unnecessary pavement [26]. The partnership assigns a score to projects based on the extent to which they adopt such practices, among others. The FHWA Sustainable Highways Self-Evaluation Tool is a self-assessment tool that incorporates sustainable principles into system planning and processes, project development, and transportation systems management, operations, and maintenance [27]. Greenroads, initiated by the University of Washington and developed jointly with CH2M HILL, is a rating system, similar to LEED, that certifies roads as "green" based on established standards [28]. The University of Wisconsin's BE2ST is a green highway construction rating system based on Life Cycle Assessment/ Life Cycle Cost Analysis [29], while the Sustainable Infrastructure Project Rating System assesses infrastructure based on economic, environmental, and social impacts using the "Triple Bottom Line" approach, which verifies the sustainability of civil engineering projects [30].

A significant gap in the literature mentioned above is the limited consideration of stakeholder perspectives and perceptions [31]. Stakeholders, such as community members and local businesses, have unique perspectives and interests in transportation infrastructure projects. Their input is critical in understanding the local context and can provide valuable insights into the potential impacts of a project. However, the current frameworks often lack a systematic and inclusive approach to engage and incorporate the input from stakeholders. Furthermore, most existing frameworks do not consider temporal and spatial variations in impacts [32]. Impacts of green transportation infrastructure can change over time and differ based on the location of the project. Ignoring such variations can lead to inadequate understanding of the long-term impacts of the infrastructure and can result in poor decision-making. Finally, there is a need for more

objective and credible understanding of the mechanisms of infrastructure impacts and causes. Many benefit quantification and modeling studies exist, but their results have not been efficiently used for quantitative framework development, leading to unstable analysis outcomes due to the strong dependency between explanatory variables. Therefore, the development of more robust models and tools to account for these complexities is necessary.

Addressing these gaps in the literature is crucial for developing effective decision-making frameworks that incorporate the social, environmental and economic impacts of green transportation infrastructure. Future research could focus on developing standardized and objective metrics for quantifying the social and environmental benefits of green transportation infrastructure, incorporating stakeholder input systematically, accounting for temporal and spatial variations in impacts, and developing robust models that can account for the complexity of the infrastructure system.

# Chapter 3 Methodology

The methodology employed in this study integrates several key components:

- 1. The Analytical Hierarchy Process
- 2. Monte-Carlo Simulation
- 3. Quantification and Monetization frameworks for various impacts of GI

The subsequent sections will delve into each of these subjects, providing a comprehensive overview of their roles and significance in this study.

## 3.1 The Analytical Hierarchy Process

The Analytic Hierarchy Process (AHP) is a multi-criteria decision-making (MCDM) method that was developed by Thomas Saaty in the late 1970s [33]. It is a mathematical model used for complex MCDM problems that require the consideration of multiple criteria and preferences. AHP has been widely applied in various fields, including engineering, economics, management, and environmental science [34]. The method involves a structured process that allows decision-makers to break down complex problems into smaller, more manageable parts, and to prioritize them based on their importance. The AHP method is based on the principle that decisions can be made by comparing the relative importance of different criteria and alternatives. It involves a pairwise comparison of criteria and alternatives, where the decision-maker assigns values to each criterion or alternative in relation to others using a scale from 1 to 9. These values are then used to derive a set of weights that reflect the relative importance of each criterion or alternative. The AHP method also includes a consistency test to ensure that the pairwise comparisons are logical and consistent.

# TABLE I THE FUNDAMENTAL SCALE FOR PAIRWISE COMPARISON

|  | Intensity of importance | Definition |
|--|-------------------------|------------|
|--|-------------------------|------------|

| 1                                                     | 1 Equal importance          |  |
|-------------------------------------------------------|-----------------------------|--|
| 3 Moderate importance                                 |                             |  |
| 5 Strong or essential importance                      |                             |  |
| 7 Very strong or demonstrated importance              |                             |  |
| 9 Extreme importance                                  |                             |  |
| 2,4,6,8                                               | 2,4,6,8 Intermediate values |  |
| Reciprocals Reciprocals Values for inverse comparison |                             |  |

The AHP method has been widely adopted in various fields due to its ability to provide a structured, transparent, and flexible decision-making process. The method has also been extensively studied and validated by researchers, and its effectiveness has been demonstrated in numerous applications.

The AHP method is mathematically represented by a series of equations, which are used to calculate the weights of criteria and alternatives. The most widely used equation for AHP is the eigenvector method, which is based on the principle of maximizing the consistency of the pairwise comparisons. The AHP is deemed particularly appropriate for the current study given its focus on addressing the inherent subjectivity in evaluating the social and environmental impacts of green transportation infrastructure. The use of AHP can effectively transform subjective assessments into objective measures, making it a fitting approach for the current study. Furthermore, AHP was chosen to address the complexities of the decision-making process that involves multiple levels and criteria, which requires a systematic and rigorous analysis to arrive at an optimal decision.

#### 3.2 Monte-Carlo Simulation

Monte Carlo Simulation (MCS) is a powerful computational tool widely used in various fields such as engineering, finance, physics, and environmental sciences. It is a probabilistic method that uses random sampling to simulate different scenarios and estimate the probability distribution of outcomes [35]. MCS has been used in environmental sciences to assess the uncertainty and variability of different parameters and their impacts on the system [36]. It is particularly useful in assessing the uncertainty associated with the implementation of Green Infrastructure (GI) projects, which involves various uncertain factors.

The basic idea behind MCS is to generate a large number of random samples from a probability distribution function (PDF) of the input parameters and propagate them through a mathematical model to obtain the output distribution. The output distribution represents the probability of different outcomes for a given scenario, which can be used to estimate the expected value and variance of the output.

The MCS can be mathematically represented by the following equation:

$$I = \frac{1}{N} \sum_{i=1}^{n} f(x_i)$$

Where,

I = the estimated value of the output

N = the number of samples

 $x_i$  = a random sample from the PDF of the input parameters

 $f(x_i)$  = the corresponding output of the model for the input sample  $x_i$ 

The utilization of MCS in this study was motivated by the need to account for the inherent randomness that may stem from public opinion. Given that the community survey was conducted solely within the state of Tennessee, the use of MCS is expected to facilitate the extrapolation of the survey results to a broader scale encompassing the entire United States.

# 3.3 The Hierarchy Structure

The hierarchy structure for determining the best choice among GI, traditional infrastructure, and combined infrastructure is shown in **Error! Reference source not found.**:

TABLE II
THE HIERARCHY STRUCTURE FOR DETERMINING
THE BEST INFRASTRUCTURE CHOICE

| Goal                       | Level 1       | Level 2                   | Alternatives                               |
|----------------------------|---------------|---------------------------|--------------------------------------------|
|                            |               | Recreational use          | Green                                      |
|                            |               | Heat reduction            | infrastructure                             |
|                            | Social        | Job creation              | (GI)                                       |
|                            |               | Enhanced property value   | Combination of                             |
| Likelihood of<br>Selection | Environmental | Reduced stormwater runoff | green and<br>traditional<br>infrastructure |
|                            |               | Reduced air pollutants    | (CI)                                       |
|                            |               | Reduced energy use        | Translitional                              |
|                            | Economic      | Initial cost              | Traditional<br>infrastructure              |
|                            |               | Maintenance cost          | (TI)                                       |

However, the 'Reduced Energy Use' impact under environmental impact was discarded for two reasons:

- 1. In the case of transportation infrastructure, the area is typically open and not confined, rendering the shading effect ineffective in providing any cooling benefits.
- 2. The diminished urban heat island effect resulting from the majority of transportation infrastructures being situated in open areas may yield certain indirect financial advantages through the mitigation of extreme heat events. However, it should be noted that the benefit derived from this impact has already been considered within the 'Heat Reduction' impact discussed in the section on social impacts. Consequently, in order to prevent duplication of calculations, the 'Reduced Energy Use' impact was excluded.

As a result of not considering the 'reduced energy use' impact, the hierarchy structure shown in Error! Reference source not found. takes the form of Error! Reference source not found.:

Table III
THE HIERARCHY STRUCTURE FOR DETERMINING
THE BEST INFRASTRUCTURE CHOICE

| Goal                       | Level 1       | Level 2                   | Alternatives                       |
|----------------------------|---------------|---------------------------|------------------------------------|
|                            |               | Recreational use          | Cura an infrareture                |
|                            |               | Heat reduction            | Green infrastructure<br>(GI)       |
|                            | Social        | Job creation              |                                    |
| Likelihood of<br>Selection |               | Enhanced property value   | Combination of green and           |
|                            | Environmental | Reduced stormwater runoff | traditional<br>infrastructure (CI) |
|                            |               | Reduced air pollutants    |                                    |
|                            |               | Initial cost              | Traditional<br>infrastructure (TI) |
|                            | Economic      | Maintenance cost          |                                    |

# 3.4 Social Impact Quantification Frameworks

In the next step of the AHP, we need to determine entries for four pairwise matrices—one for each social criterion—to compare the efficiency of the three alternatives in contributing to the social aspect in concern.

In order to populate the matrices with appropriate entries, the social impact monetization framework, which has been developed through previous research, will be employed.

#### **Recreational Use**

The increase in vegetation due to the newly built GI would allow increased participation of the inhabitants of the areas encapsulated by the GI in activities like walking, biking, jogging on sidewalks, etc. These activities are similar to the ones performed in parks. Therefore, the benefits gained from recreational use resulting from the increase in vegetation can be compared to the benefits from the added area in a park.

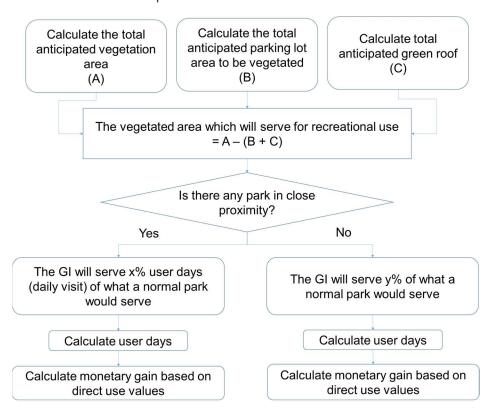



Figure 3-1 Framework for monetizing recreational use

As the first step to quantifying the benefit, the area which will serve for recreation is determined. The total amount of anticipated vegetation less the parking lot vegetation and green roof area will serve for recreation. After identifying the vegetated area, the Gl's proximity to the available recreational area is determined. A GI in close proximity to a park may not function as effectively as a GI without such adjacency, in terms of its ability to serve as a park. Therefore, a Gl's ability to serve recreational activities depends on its proximity to existing recreational opportunities. A 10-minute walking distance or 0.5 miles radius is selected as the proximity measure.

The methodology relies on a report *How Much Value Does the City of Philadelphia Receive from its Park and Recreation System* [37] prepared by the Trust for Public Land to determine the increase in recreational activities per acre increase in vegetation. The report calculates the increase in the number of daily visits (user days) per acre of the increased area in the park. According to a survey conducted by the National Recreation and Parks Association, residents frequent nearby parks at an average rate of 26.7 visits annually per 1,000 acres of parkland [38]. The increase in the user

days is then attributed to a monetary value by the 'Unit Day Value' method [39] as the last step of the methodology.

#### **Heat Reduction**

Extreme heat events (EHE) are one of the major reasons for loss of lives [40-42] and increased emergency room use due to morbidity impacts [43, 44] during the summer season. GI reduces the urban heat island effect as trees provide shading and replace dark paved surfaces with green vegetation that absorbs less heat [45-47]. Several heat-related hospitalizations and mortalities can be avoided due to the reduced heat resulting from the impact of GI.

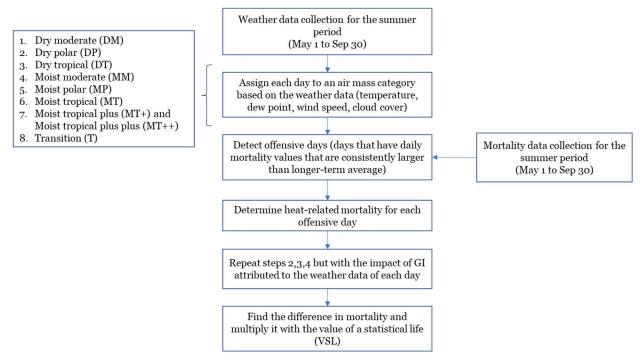



Figure 3-2 Framework for monetizing heat reduction benefit

The weather data for the summer season for the area where the GI is going to be built is collected as the first step of monetizing this benefit. Consequently, based on the weather data (temperature, dew point, wind speed, cloud cover, etc.), each day of summer is assigned to an air mass category [48]. The mortality data for the area of interest is also necessary for this framework. Based on the air mass labels of each day and mortality data for respective days, the 'offensive days' are identified. An 'offensive day' is when daily mortality values are higher than the longer-term average. The next step is to determine the heat-related mortality on each of the offensive days.

The next step repeats steps 2,3, and 4 however with the impact of GI attributed to the weather data. The impact of GI is going to be determined by the existing meteorological models [46, 47]. Having the impact of GI attributed to the weather data, we can calculate the difference in the number of fatalities between the two scenarios. Based on the calculated number, we can anticipate the total number of lives saved throughout the project. The last step is to estimate the monetary gain based on the Environmental Protection Agency's (EPA) recommended Value of Statistical Life [49].

## **Enhanced Property Value**

Due to increased aesthetics, vegetation, improved air and water quality, and better living standards in general, properties adjacent to a GI are expected to experience an increase in value. Previous studies have attempted to estimate the enhancement of value, and the value ranges from 1% to 7%. Table 4 shows a literature review of those studies and their estimated percent increase in property values:

**Table IV**LITERATURE ON ESTIMATING PROPERTY VALUE ENHANCEMENT

| Study                                                                                                                      | % increase in value |
|----------------------------------------------------------------------------------------------------------------------------|---------------------|
| The effect of low-impact-development on property values. [50]                                                              | 3.5 – 5.0           |
| How Water Resources Limit and/or Promote Residential Housing Developments in Douglas County. [51]                          | 1.1 - 2.7           |
| Piedmont community tree guide: benefits, costs, and strategic planting. [52]                                               | 3.0 - 7.0           |
| What is a tree worth? Green-city Strategies and Housing Prices.<br>[53]                                                    | 2.0                 |
| Influence of trees on residential property values in Athens,<br>Georgia (USA): A survey based on actual sales prices. [54] | 3.5 - 4.5           |

As the first step of this methodology, the area where the GI is going to be built has to be identified. After the area is identified, the median value of the properties in that area will be calculated from the house sales data. The property sales data is a prerequisite in this framework.

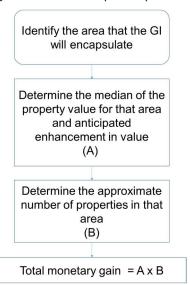



Figure 3-3 Enhanced property value quantification framework.

Having determined that, the enhancement in property value is estimated using the literature listed in the previous section. Consequently, the number of properties in the area of interest is calculated. As the last step of the framework, the total monetary gain is determined using the median value and the anticipated increase in value.

#### **Job Creation Benefit**

Traditional infrastructures need skilled workers with esoteric knowledge whereas GI can create job opportunities that can be done by comparatively less-skilled workers. While the skilled workers can afford to manage jobs elsewhere, employing the unskilled people comes with additional social benefits.

The total work hours anticipated in the lifetime of the GI is a data prerequisite for this framework to quantify the benefit. Having collected the data, the framework utilizes existing literature [55-58] to estimate the number of jobs that will allow unskilled workers to be employed throughout the project.

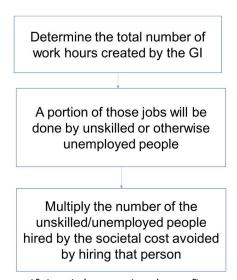



Figure 3-4 Framework for quantifying job creation benefit

The last step of the methodology is to determine the total monetary value of employing unskilled people by multiplying the number of jobs created by the social cost avoided by employing each person [59-61].

# 3.5 Environmental Impact Quantification Frameworks

Coherent with the procedure for social impacts, quantification methods elucidated below are used to determine the two pairwise matrices for the environmental impacts.

#### **Reduced Stormwater Runoff**

Green infrastructure is an approach that incorporates a combination of natural and engineered elements, including vegetation, pipes, soil, and stone, with the purpose of mitigating the speed and volume of stormwater runoff, treating it, and enabling absorption and infiltration into the soil where appropriate [13]. Various components of GI, such as trees, green sidewalks, green medians, permeable pavement, bioretention, and water harvesting, can collectively aid in the

reduction of stormwater runoff [62-64], consequently leading to a decrease in the amount of stormwater runoff collected and conveyed to a facility for treatment. The total amount of reduced runoff can be computed by consolidating the different components utilized in a GI project. The calculated figure can subsequently be translated into a monetary equivalent, taking into account the amount of water treatment costs saved as a result of runoff reduction [9].

While green roofs are a widely used feature in GI projects, they are not commonly utilized in green transportation infrastructure. As a result, the contribution of green roofs will not be factored into the benefit transfer framework being employed.

**Table V**Data Requirement for Quantifying Reduced Stormwater Runoff

| GI Element                    | Data Requirements                                                                                                                                                             |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tree plantation               | <ol> <li>Estimated number of trees to be planted</li> <li>Annual precipitation</li> </ol>                                                                                     |  |  |
| Bioretention and Infiltration | <ol> <li>Annual precipitation</li> <li>Area covered by the element</li> <li>Contributory drainage area to the element</li> <li>Percentage of the rainfall captured</li> </ol> |  |  |
| Permeable Pavement            | <ol> <li>Annual Precipitation</li> <li>Permeable pavement area</li> <li>Percentage of precipitation retained</li> </ol>                                                       |  |  |
| Water Harvesting              | <ol> <li>Annual precipitation</li> <li>Area covered by the element</li> <li>Collection efficiency</li> </ol>                                                                  |  |  |

The equation for the total amount of runoff reduced can be expressed as below:

$$Q_T = Q_{TP} + Q_{BI} + Q_{PP} + Q_{WH} (2)$$

Where,

 $Q_T$  = Total amount of reduced stormwater runoff

 $Q_{TP}$  = Runoff amount reduced by tree plantation

 $Q_{BI}$  = Runoff amount reduced by bioretention and infiltration

 $Q_{PP}$  = Runoff amount reduced by permeable pavement

#### $Q_{WH}$ = Runoff amount reduced by water harvesting

The following sections will describe the procedure to calculate each runoff amount in Equation (2).

#### Stormwater Runoff Reduced by Tree Plantation

Accurate estimation of water interception at the individual tree level is imperative in determining the reduction in stormwater runoff for a given project. This necessitates the knowledge of the size, type, and number of trees being planted. It is worth noting that the extent of rainfall interception varies depending on the leaf surface area of the tree species, where larger leaf surface area results in increased interception. Moreover, the rate of rainfall interception by trees is influenced by the climate zone of the site, precipitation levels, and seasonal variability, which ultimately impacts evapotranspiration rates.

**Table VI**AVERAGE RUNOFF INTERCEPTION AMOUNT BY TREE SIZE AND CLIMATE ZONE

# 40 Year Avg Annual Interception i<sub>t</sub> (gallon/year/tree)

| Climate Zones                  | Small Tree | Medium Tree | Large Tree |
|--------------------------------|------------|-------------|------------|
| Coastal<br>Southern California | 1,583      | 1,396       | 2,120      |
| Desert Southwest               | 570        | 1,818       | 930        |
| Inland Empire                  | 107        | 1,925       | 2,238      |
| Interior West                  | 281        | 573         | 1,245      |
| Northern<br>California Coast   | 420        | 369         | 673        |
| Northern Mountain and Prairie  | 549        | 948         | 1,209      |
| San Joaquin<br>Valley          | 49         | 350         | 552        |
| Temperate<br>Interior West     | 161        | 893         | 1,111      |
| Tropical                       | 605        | 1,237       | 2,108      |
| Central Florida                | 1,573      | 6,191       | 12,641     |
| Coastal Plain                  | 723        | 1,962       | 5,699      |
| Lower Midwest                  | 1,116      | 1,870       | 4,808      |
| Midwest                        | 292        | 1,129       | 2,162      |

|                                  | 40 Year Avg Annual Interception i <sub>t</sub> (gallon/year/tree) |             |            |  |
|----------------------------------|-------------------------------------------------------------------|-------------|------------|--|
| Climate Zones                    | Small Tree                                                        | Medium Tree | Large Tree |  |
| Northeast                        | 358                                                               | 1,156       | 1,909      |  |
| Piedmont                         | 1,265                                                             | 2,566       | 4,778      |  |
| Western Washington<br>and Oregon | 182                                                               | 346         | 549        |  |

The US Forest Services' Center for Urban Forest Research has developed a set of Tree Guides, which considers various factors to estimate the level of benefits offered by trees [65]. The above table illustrates the findings in the report and the intercept values to be used in the quantification procedure.

The following figure shows the climate zones used in the report.




Figure 3-5 The climate zones used to estimate the rainfall interception of trees [65].

Based on the interception value  $i_t$  obtained from Table 6, the equation for  $Q_{TP}$  is:

$$Q_{TP}$$
 (gallons) = Number of Trees  $\times i_t$ 

Based on the number of trees varied by sizes, the total runoff reduced can be determined by multiplying by the corresponding  $i_t$  value.

#### Stormwater Runoff Reduced by Bioretention and Infiltration

Bioretention and infiltration features that are well-designed are capable of capturing a significant portion, if not all, of the precipitation that falls within their coverage area, including the associated drainage area (DA). However, the ability of these features to accommodate rainfall in urban settings is contingent upon the availability of square footage and the locally prescribed maximum ponding times. To determine a site-specific measure of performance, sophisticated hydrological modeling is required.

$$Q_{BI} (\text{gal}) = [Precipitation (in) \times \{Element Area (sq.ft.) + Drainage Area (sq.ft.)\}] \\ \times \% Rainfall Capture \times 144 \frac{sq.in.}{sq.ft.} \times 0.00433 \frac{gal}{in^3}$$

To enable a generalized quantification method across the United States, a straightforward equation will be employed, utilizing a default and conservative value of 80% for rainfall capture ability. Therefore, the equation converts to:

$$Q_{BI}\left(gal\right) = \left[Precipitation\left(in\right) \times \left\{Element\ Area\left(sq.ft.\right) + Drainage\ Area\left(sq.ft.\right)\right\}\right] \times \\ 0.80 \times 144 \ \frac{sq.in.}{sq.ft.} \times 0.00433 \ \frac{gal}{in^3}$$

#### Stormwater Runoff Reduced by Permeable Pavement

Research indicates that pervious pavement has the capacity to infiltrate between 80% to 100% of the rainwater that falls on a given site, depending on the precipitation intensity [62, 66, 67]. The following equation provides a means of quantifying the aggregate volume of runoff that a specific permeable pavement installation can mitigate on an annual basis, taking the capacity as 80% for conservative approach.

$$Q_{PP}$$
 (gal) = Annual Precipitation (in) × Permeable Pavement Area (sq. ft.) × 0.80 ×  $144 \frac{sq. in.}{sq. ft.}$  ×  $0.00433 \frac{gal}{in^3}$ 

#### Stormwater Runoff Reduced by Water Harvesting

The advantages associated with water harvesting are contingent upon the quantity, measured in gallons, of stormwater runoff that is stored at the site. Under optimal conditions, a maximum of 0.62 gallons of runoff per inch of rain can be collected from each square foot of roof collection area. However, the following equation incorporates a conservative efficiency factor of 0.75 from the range of 0.75-0.9 to accommodate water loss resulting from a range of factors, including evaporation and suboptimal gutter systems [68].

$$Q_{WH}$$
 (gal) = Annual Precipitation (in) × GI Element Surface Area (sq. ft.) × 0.75 × 144  $\frac{sq. in.}{sq. ft.}$  × 0.00433  $\frac{gal}{in^3}$ 

#### Benefit Monetization

In urban areas where combined sewer systems (CSS) are in place, stormwater runoff mixes with wastewater and proceeds to a treatment facility. To quantify the benefits of reducing stormwater

runoff in these cities, an avoided cost method is a viable option. The value of reducing stormwater runoff is deemed equivalent to the expenditure that would be incurred by the local stormwater utility to manage the same. Thus, the valuation formula is straightforward. The cost of treating stormwater has been reported varying from \$0.01 to \$0.03 per gallon of stormwater [69]. Considering the report is from 2009 and the corresponding time value of money, taking the conservative value of \$0.01/gallon to estimate avoided treatment cost, the total monetary gain from the avoided water stormwater treatment is given by the following equation.

Monetary Gain from Avoided Stormwater Treatment =  $Q_T(gal) \times 0.01 \times C$ 

Where,

 $Q_T$  = Total amount of reduced stormwater runoff,

C = Conversion factor to calculate the time value of money from 2009 to current year.

#### **Reduced Air Pollutants**

The implementation of GI in communities can aid in the reduction of air pollutants [14]. The utilization of vegetated systems such as green sidewalks and tree barriers can effectively mitigate the adverse impact of urban heat island effects while also improving air quality [70]. This section aims to provide a quantitative analysis of the impact of green infrastructure on air quality, and outlines guidelines for assessing these impacts in monetary terms. Specifically, the pollutants of concern are carbon dioxide ( $CO_2$ ), nitrogen dioxide ( $CO_2$ ), ozone ( $CO_3$ ), sulfur dioxide ( $CO_3$ ), and particulate matter with an aerodynamic diameter of ten micrometers or less ( $CO_3$ ).

Trees, and bio-infiltration are examples of practices that offer a direct benefit in terms of uptake and deposition. While numerous studies have acknowledged that vegetative infrastructure, such as bioswales, rain gardens, and other bio-infiltration techniques, can offer substantial air quality benefits, there is a current absence of scientific research that measures and quantifies the direct uptake potential of these practices in relation to air pollution. The lack of studies that provide specific uptake values for bio-infiltration practices impedes the ability to comprehensively calculate their direct uptake benefits. Therefore, the data requirement to quantify the total amount of pollutant reduction by the practices are only regarding the tree plantation practice and they are listed below:

**Table VII**Data Requirements to Quantify Pollutant Reduction

| GI Element      | Data Requirements                                  |
|-----------------|----------------------------------------------------|
| Tree plantation | 1. Estimated number of trees to be planted by size |
| Tree plantation | 2. Average annual uptake of pollutant by each tree |

## Air Pollutants Reduced by Tree Plantation

The uptake potential of tree planting depends on various factors, such as climate zone, existing air quality and pollutant levels, and the size, age, and type of tree. The Forest Service's *Tree Guides* offer an estimation of air quality benefits from trees based on the climate zone [65]. The appendices in the guides are organized based on the size of the tree (including example tree types) and its location in relation to a surrounding building. By utilizing the "Uptake and Avoided" data available in the Tree Guides' appendices, one can calculate air quality benefits on a per-tree basis. The following table shows a summary of the value to be used in framework for the "Uptake and Avoided" value for trees based on its size and location. The 'Piedmont' region extends from southern New Jersey in a broad band south and west to eastern Texas, and should be the chosen region for TDOT users in Chattanooga, TN. This region is characterized by rolling wooded hills separated by streams and rivers. As for TDOT users in Knoxville and the Eastern part of the state, the 'Midwest' region is the appropriate choice in the tool. The 'Midwest' region extends from North Dakota to northern Kansas, stretching to the southeast into the Appalachian Mountains of West Virginia, Virginia, Kentucky, Tennessee, Georgia, and the Carolinas. It's characterized by wooded states on the eastern side and former prairie lands mostly converted to crop fields on the western side. While TDOT users in Nashville, Memphis, and the western part of the state should choose the 'Lower Midwest' region in the tool, which is characterized by hot, humid summers, and winters that are cold but milder than the areas to the north.

**Table VIII**AVERAGE UPTAKE AND AVOIDED AMOUNT OF AIR

POLLUTANT BY TREE SIZE AND LOCATION [65]

40 Year Avo Untake + Avoided k., (lhs/vear/tree)

|                  |                  | 40 Tear Avg Of | $piake + Avoiaea k_{ua}$ | ios/yeur/iree) |
|------------------|------------------|----------------|--------------------------|----------------|
| Climate Zones    | Pollutant        | Small Tree     | Medium Tree              | Large Tree     |
|                  | $O_3$            | 0.20           | 0.48                     | 0.89           |
| Coastal          | $CO_2$           | 14             | 34                       | 140            |
| Southern         | $NO_2$           | 0.05           | 0.12                     | 0.48           |
| California '     | $SO_2$           | 0.13           | 0.21                     | 0.42           |
|                  | $PM_{10}$        | 0.33           | 0.79                     | 1.49           |
| Desert Southwest | $O_3$            | 0.21           | 0.47                     | 0.21           |
|                  | CO <sub>2</sub>  | 159            | 318                      | 267            |
|                  | NO <sub>2</sub>  | 0.31           | 0.74                     | 0.42           |
|                  | $SO_2$           | 0.19           | 0.46                     | 0.28           |
|                  | PM <sub>10</sub> | 0.25           | 0.64                     | 0.46           |
| Interior West    | $O_3$            | 0.26           | 0.48                     | 0.92           |
|                  | CO <sub>2</sub>  | 174            | 363                      | 628            |

# 40 Year Avg Uptake + Avoided kua (lbs/year/tree)

| Climate Zones                 | Pollutant             | Small Tree | Medium Tree | Large Tree |
|-------------------------------|-----------------------|------------|-------------|------------|
|                               | $NO_2$                | 0.46       | 0.84        | 1.51       |
|                               | $SO_2$                | 0.37       | 0.68        | 1.22       |
|                               | $PM_{10}$             | 0.20       | 0.43        | 0.67       |
|                               | $O_3$                 | 0.16       | 0.16        | 0.26       |
|                               | $CO_2$                | 82         | 134         | 158        |
| Northern<br>California Coast  | $NO_2$                | 0.12       | 0.12        | 0.20       |
|                               | SO <sub>2</sub>       | 0.03       | 0.03        | 0.04       |
|                               | $PM_{10}$             | 0.35       | 0.16        | 0.36       |
|                               | <i>O</i> <sub>3</sub> | 0.32       | 0.36        | 0.43       |
|                               | CO <sub>2</sub>       | 37         | 85          | 161        |
| Northern Mountain and Prairie | $NO_2$                | 0.19       | 0.32        | 0.43       |
|                               | SO <sub>2</sub>       | 0.20       | 0.34        | 0.46       |
|                               | PM <sub>10</sub>      | 0.10       | 0.13        | 0.16       |
|                               | $O_3$                 | 0.16       | 1.46        | 2.71       |
|                               | CO <sub>2</sub>       | 26.91      | 107.05      | 229.79     |
| San Joaquin<br>Valley         | NO <sub>2</sub>       | 0.16       | 0.80        | 1.56       |
| , arrey                       | $SO_2$                |            |             |            |
|                               | PM <sub>10</sub>      | 0.14       | 1.15        | 2.17       |
|                               | $O_3$                 | 0.20       | 0.31        | 0.70       |
|                               | CO <sub>2</sub>       | 214        | 313         | 358        |
| Temperate<br>Interior West    | $NO_2$                | 0.33       | 0.52        | 0.69       |
| Intervol West                 | SO <sub>2</sub>       | 0.66       | 1.13        | 1.39       |
|                               | PM <sub>10</sub>      | 0.17       | 0.27        | 0.59       |
|                               | <i>O</i> <sub>3</sub> | 0.16       | 0.31        | 0.6        |
|                               | CO <sub>2</sub>       | 174        | 188         | 370        |
| Tropical                      | $NO_2$                | 0.45       | 1.03        | 1.18       |
|                               | $SO_2$                | 0.39       | 0.91        | 1.03       |
|                               | $PM_{10}$             | 0.25       | 0.51        | 0.73       |
|                               | $O_3$                 | 0.39       | 0.92        | 1.99       |
| Central Florida               | CO <sub>2</sub>       | 99         | 187         | 584        |
|                               | $NO_2$                | 0.18       | 0.42        | 0.81       |

| 40 Year Avg | Uptake + Avoided ku | a (lbs/year/tree) |
|-------------|---------------------|-------------------|
|-------------|---------------------|-------------------|

| Climate Zones                       | Pollutant        | Small Tree | Medium Tree | Large Tree |
|-------------------------------------|------------------|------------|-------------|------------|
|                                     | SO <sub>2</sub>  | 0.12       | 0.29        | 0.55       |
|                                     | $PM_{10}$        | 0.17       | 0.46        | 0.84       |
|                                     | $O_3$            | 0.17       | 0.29        | 0.88       |
|                                     | $CO_2$           | 103        | 149         | 489        |
| Coastal Plain                       | $NO_2$           | 0.22       | 0.33        | 0.93       |
|                                     | SO <sub>2</sub>  | 0.63       | 0.93        | 2.55       |
|                                     | PM <sub>10</sub> | 0.14       | 0.31        | 0.63       |
|                                     | $O_3$            | 0.20       | 0.32        | 0.68       |
|                                     | $CO_2$           | 91         | 150         | 374        |
| Lower Midwest                       | $NO_2$           | 0.16       | 0.27        | 0.57       |
|                                     | SO <sub>2</sub>  | 0.53       | 0.89        | 1.86       |
|                                     | PM <sub>10</sub> | 0.15       | 0.27        | 0.45       |
|                                     | $O_3$            | 0.15       | 0.20        | 0.28       |
|                                     | $CO_2$           | 336        | 444         | 734        |
| Midwest                             | $NO_2$           | 0.39       | 0.63        | 1.11       |
|                                     | SO <sub>2</sub>  | 0.23       | 0.42        | 0.69       |
|                                     | PM <sub>10</sub> | 0.17       | 0.26        | 0.35       |
|                                     | O <sub>3</sub>   | 0.14       | 0.29        | 0.54       |
|                                     | $CO_2$           | 144        | 250         | 485        |
| Northeast                           | $NO_2$           | 0.18       | 0.37        | 0.70       |
|                                     | $SO_2$           | 0.15       | 0.40        | 0.85       |
|                                     | PM <sub>10</sub> | 0.13       | 0.33        | 0.45       |
|                                     | $O_3$            | 0.14       | 0.35        | 0.21       |
|                                     | $CO_2$           | 168        | 128         | 340        |
| Piedmont                            | NO <sub>2</sub>  | 0.22       | 0.33        | 0.41       |
| Ī                                   | $SO_2$           | 0.42       | 0.60        | 0.82       |
|                                     | PM <sub>10</sub> | 0.17       | 0.56        | 0.31       |
|                                     | $O_3$            | 0.14       | 0.27        | 0.43       |
| Western<br>Washington<br>and Oregon | $CO_2$           | 15         | 61          | 257        |
|                                     | $NO_2$           | 0.08       | 0.17        | 0.28       |
|                                     | SO <sub>2</sub>  | 0.03       | 0.07        | 0.10       |

|               |                  | 40 Year Avg U | ptake + Avoided k <sub>ua</sub> ( | lbs/year/tree) |
|---------------|------------------|---------------|-----------------------------------|----------------|
| Climate Zones | Pollutant        | Small Tree    | Medium Tree                       | Large Tree     |
|               | PM <sub>10</sub> | 0.15          | 0.29                              | 0.45           |
|               | $O_3$            | 0.25          | 0.78                              | 1.36           |
| Inland Empire | $NO_2$           | 0.20          | 0.72                              | 1.08           |
|               | $CO_2$           | 24            | 157                               | 275            |
|               | SO <sub>2</sub>  | 0.05          | 0.14                              | 0.19           |
|               | $PM_{10}$        | 0.16          | 0.61                              | 0.90           |

Once the uptake value is determined, the total air pollutant reduction can be determined by the following equation:

Total annual air pollutant reduction (lbs) = no. of trees  $\times k_{ua}$ 

Where.

 $k_{ua}$ = average annual uptake and avoided pollutant emissions lbs/ tree obtained from Table 8

This equation can be utilized to obtain the total reduction of each air pollutant ( $O_3$ ,  $NO_2$ ,  $SO_2$ ,  $PM_{10}$ ).

### Benefit Monetization

The benefit transfer equation for the reduced air pollutant is as follows:

Total value of pollutant reduction (\$) = Total annual criteria pollutant reduction benefit (lbs)  $\times$  price of criteria pollutant (USD/lb)

Here,

The 'price of criteria pollutant' refers to the avoided cost of treating each pound of air pollutant. The value suggested by The Forest Service are as follows [9, 71-73]:

**Table IX**AVOIDED COST OF CRITERIA POLLUTANTS

| Pollutant       | Price of criteria pollutant(USD/lb) |
|-----------------|-------------------------------------|
| O <sub>3</sub>  | 3.34                                |
| NO <sub>2</sub> | 3.34                                |

| Pollutant       |                 | Price of criteria pollutant(USD/lb) |
|-----------------|-----------------|-------------------------------------|
| SO₂             |                 | 2.06                                |
| PI              | M <sub>10</sub> | 2.84                                |
| CO <sub>2</sub> | Low             | 0.023                               |
| High            |                 | 0.046                               |

However, since these values correspond to the time value of money of 2006, additional conversion is required to convert them to current value.

## 3.6 Economic Impact Quantification Framework

The economic impact quantification frameworks start with the inherent assumption that the subsequent direct benefits of traditional and green transportation infrastructure are the same. Since this study considers the marginal impact of green transportation infrastructure, the direct benefits are not considered. However, the initial and maintenance cost of infrastructures depending on what GI elements are integrated into the system vary largely. Therefore, the initial and maintenance cost of different GI elements are considered in this study. Due to well-developed research to determine the economic aspects of green infrastructure quantification frameworks rely on previously developed quantification methods with some modification to make them spatially specific and temporally dynamic.

### **Rainwater harvesting (Cistern/Rain Barrel)**

### Initial Cost

- 1. Determine impervious area (user input)
- 2. Choose rain event.
- 3. Determine storage = 20-year rainfall event x impervious area
- 4. Determine Tank cost = Storage x avg cost per gallon

**Table X**RAINWATER HARVESTING TANK COSTS

| Material   | Size range (gallons) | Avg Cost per gallon (\$) |
|------------|----------------------|--------------------------|
| Steel      | 500 - 15,000         | 2.51                     |
| Fiberglass | 10,000 - 35,000      | 1.33                     |
| Concrete   | 2,000 – 35,000       | 1.66                     |
| HDPE       | 50 - 1,500           | 1.43                     |

- 1. Determine installation cost = 60% of tank cost
- Determine pump cost from Horsepower needed:

$$X = Qh_p\gamma = \frac{4 \, gallon \, per \, minute \, \times 1 \, cfs}{449 \, gpm} \, \times h_p \, ft \, \times \, 62.4 \, \frac{lb}{ft^3}$$

a.  $h_p$  is user input (take default 15 ft)

$$Pump\ cost = -100.71x2 + 1327.7x - 39.38$$

- 3. Total capital cost = Tank cost + Installation cost + pump cost
- 4. Repeat capital cost for the project period. Example: If the project period is 100 years, divide it by the GI element lifespan which is 20 years for rainwater harvesting. Therefore, repetition = 100/20 = 5 times

### Maintenance Cost

1. Choose maintenance frequency:

**Table XI**Maintenance Costs for Rainwater Harvesting

| Cost Item                                                                         | Low       | Med       | High      |
|-----------------------------------------------------------------------------------|-----------|-----------|-----------|
| Inspection, Reporting & Information Management                                    | 135 x 1   | 130 x 2   | 340 x 12  |
| Roof Washing, Cleaning Inflow Filters                                             | 150 x 1   | 240 x 2   | 540 x 12  |
| Tank inspection and disinfection                                                  | 120 x 0.5 | 240 x 1   | 360 x 2   |
| Intermittent System Maintenance (System flush, debris/sediment removal from tank) | 270 x 1/3 | 390 x 1/3 | 510 x 1/3 |
| Total                                                                             | 435       | 1,110     | 11,450    |

2. Determine the maintenance cost and convert to current money value.

# Bioretention (Bioswales/Bio slopes/ Bioretention cells/ Basins with or without underdrain/ Rain Garden)

### Initial Cost

- 1. User input: Drainage area (acre)
- 2. User input: Underdrain? (Yes/No)
- 3. Underdrain: Base Facility Cost = 0.80 \* Drainage Area \* \$89,028 No underdrain: Base Facility Cost = 0.80 \* Drainage Area \* \$42,254
- 4. Engineering & Planning Cost = 25 % of Base facility cost
- 5. Total initial cost = Base facility cost + Engineering & Planning Cost

6. Repeat for project period.

### Maintenance Cost

1. Choose maintenance frequency and convert to current money value.

**Table XII**Maintenance Costs for Bioretention Cells, Bioswales, and Rain Gardens

| Cost Item                                                  | Low          | Med         | High      |
|------------------------------------------------------------|--------------|-------------|-----------|
| Inspection, Reporting & Information Management             | 60 x 1/3     | 130 x 0.5   | 570 x 1   |
| Vegetation Management with Trash & Minor<br>Debris Removal | 60 x 1       | 124 x 2     | 270 x 3   |
| Till Soil                                                  | 320 x 0.2    | 448 x 0.25  | 560 x 0.5 |
| Unclog Drain                                               | 160 x 0.2    | 160 x 0.5   | 190 x 1   |
| Replace Mulch                                              | 1,935 x 0.25 | 1,999 x 0.5 | 2,145 x 1 |
| Total                                                      | 660          | 1,505       | 3,995     |

### **Basins (Detention/Retention Basins)**

### Initial Cost

- 1. Determine Drainage Area (DA) in acres (User Input)
- 2. Base facility cost level per acre of DA? (User Input)
  - a. Very High = \$15,000/acre
  - b. High = \$5,000/acre
  - c. Medium = \$3,000/acre
  - d. Low = \$1,000/acre
- 3. Cost Adjustment Factor:

Table XIII
Cost Adjustment Factors for Drainage Area

| DA (ac) | Multiplier |
|---------|------------|
| 10      | 2.00       |
| 75      | 1.35       |
| 75      | 1.35       |
| 200     | 1.00       |
| >200    | 1.00       |

Final base facility cost = base facility cost x adjustment factor

4. Engineering and planning cost = 25% of final Base facility cost

5. Total cost = Final base facility cost + Engineering and planning cost.

### Maintenance Cost

1. Choose maintenance frequency and convert to current money value.

## Table XIV

MAINTENANCE COSTS FOR BASINS

| Cost Item                                                      | Low       | Med       | High       |
|----------------------------------------------------------------|-----------|-----------|------------|
| Inspection, Reporting & Information Management                 | 90 x 1/3  | 140 x 1/3 | 260 x 1    |
| Vegetation Management with Trash & Minor<br>Debris Removal     | 360 x 1/3 | 480 x 1   | 825 x 12   |
| Vector Control                                                 | 200 x 1/6 | 200 x 1/3 | 2,675 x 12 |
| Intermittent Facility Maintenance (Excluding Sediment Removal) | 250 x 1   | 1,000 x 1 | 2,800 x 1  |
| Total                                                          | 435       | 1,595     | 45,060     |

### Planter Boxes (Open/Closed)

### Initial Cost

- 1. Determine Drainage Area (DA) (User Input)
- 2. Determine Impervious area percentage (User Input)
- 3. Determine total impervious area
- 4. Determine total number of vaults needed = 1 vault per 0.25 acre of impervious area
- 5. Select construction type (User input):
  - a. In situ
  - b. Prefabricated
- 6. Determine capital cost =
  - a. In situ = \$38,957 / planter box
  - b. Prefabricated = \$10000 / planter box

### Maintenance Cost

1. Choose maintenance frequency and convert to current money value

# **Table XV**Maintenance Costs for Planter Boxes

|                           | Cost Iter | n |             | Low      | Med    | High   |
|---------------------------|-----------|---|-------------|----------|--------|--------|
| Inspection,<br>Management | , 0       | & | Information | 20 x 1/3 | 30 x 1 | 45 x 3 |

| Cost Item                                                | Low          | Med       | High    |
|----------------------------------------------------------|--------------|-----------|---------|
| Litter & Minor Debris Removal, and Vegetation Management | 45 x 1       | 60 x 2    | 75 x 6  |
| In-Curb Planter Vault Sweeping                           | 65 x 1       | 80 x 2    | 95 x 6  |
| Unclog Drain                                             | 160 x<br>0.2 | 160 x 0.5 | 190 x 1 |
| Up-Fill Growth Medium                                    | 125 x<br>0.2 | 130 x 0.5 | 200 x 1 |
| Total                                                    | 175          | 455       | 1,545   |

### **Permeable Pavement**

Initial Cost

1. Select type:

# **Table XVI**INITIAL COST FOR PERMEABLE PAVERS

|                                        | Cost Per Sq. Foot (Installed) |          |  |
|----------------------------------------|-------------------------------|----------|--|
| Paver System                           | Low                           | High     |  |
| Asphalt                                | \$0.50                        | \$1.00   |  |
| Porous Concrete                        | \$2.00                        | \$6.50   |  |
| Grass / Gravel Pavers                  | \$1.50                        | \$5.75   |  |
| Interlocking Concrete Paving<br>Blocks | \$5.00                        | \$10.00* |  |

- 2. Surface Area of Permeable Pavement System (ft2)
- 3. Base Facility Cost = Surface are x Unit cost
- 4. Engineering cost = 10% of Base cost
- 5. Total capital cost = Base cost + Engineering cost

### Maintenance Cost

1. Choose maintenance frequency and convert to current money value.

**Table XVII**Maintenance Costs for Permeable Pavement

|                             | Cost Iter     | n   |             | Low      | Med       | High    |
|-----------------------------|---------------|-----|-------------|----------|-----------|---------|
| Inspection,                 | Reporting     | &   | Information | 90 x 1/3 | 140 x 1/3 | 260 x 1 |
| Management                  |               |     |             |          |           |         |
| Litter & Minor              | r Debris Remo | val | 45 x 1/3    | 120 x 1  | 120 x 12  |         |
| Permeable pavement sweeping |               |     |             | 160 x    | 80 x 1    | 80 x 12 |
|                             |               |     | 1/3         |          |           |         |
| Total                       |               |     |             | 99       | 247       | 2,660   |

### **Swales**

### Initial Cost

- 1. Drainage Area (acre) User input
- 2. Drainage area impervious cover user input
- 3. Base cost level user input

# **Table XVIII**Initial Costs for Swales

Base Facility Cost guidelines (Year 2005)

Very High = \$15,000/acre

High = \$5,000/acre

Medium = \$3,000/acre

Low = \$1,000/acre

- 4. Cost multiplier y = -0.4x + 3, where x is DA (if  $x \ge 5$ -acre, y = 1)
- 5. Total base cost = Multiplier x base cost
- 6. Engineering and planning cost = 25% of base cost
- 7. Total capital cost = base cost + engineering and planning cost

### Maintenance Cost

1. Choose maintenance frequency and convert to current money value

**Table XIX**Maintenance Costs for Swales

| Cost Item                                                  | Low       | Med          | High        |
|------------------------------------------------------------|-----------|--------------|-------------|
| Inspection, Reporting & Information Management             | 90 x 1/3  | 140 x 1/3    | 260 x 1     |
| Vegetation Management with Trash & Minor<br>Debris Removal | 360 x 1/3 | 480 x 1      | 480 x 12    |
| Corrective Maintenance                                     | 960 x 0.1 | 1,440 x 0.25 | 1,440 x 0.5 |
| Total                                                      | 246       | 1,967        | 6,740       |

29

## Chapter 4 Case Study

A case study, with hypothetical site characteristics and parameters, was performed to demonstrate the utility of the tool. In the study, two scenarios—of the same project site (i.e., identical site parameters)—were compared to illustrate how the tool functions to give results of implementing disparate GI at a potential site. The hypothetical project site is located in a suburban area of East Chattanooga, TN. Scenario 1 analyzed Cistern implementation, while Scenario 2 analyzed bioretention system implementation. To create these two different analytical "Scenarios," a profile was created and saved for each. Within each corresponding profile, values were entered into the toolbox—some the same, for site characteristics and parameters, and some different, for each respective GI. When scenarios of different GI and GI configurations are being analyzed for the same project site, time can be saved by creating the first scenario profile, complete with input values, and then creating the second scenario profile using the first profile as a template. The second scenario profile will then have the same input values as the first profile and any different GI-related values can be changed.

**Table XX**Input Values for 'Determining GI'

| Category          | Sub-Category                                | Input          | Reasoning                                                                                                |
|-------------------|---------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|
|                   | Site Slope Restrictions                     | Max 0.05       | Many GI should be constructed on land with less than 5%, but some GI can be accommodated on 5-10% slope. |
| Site Requirements | Cross-sectional and side slope restrictions | Max 0.04       | Many GI should be constructed on land with less than 5%, but some GI can be accommodated on 5-10% slope. |
|                   | Contributing Drainage                       | Max 4 acres    | 1-4 acres is an average DA of many infiltration GI.                                                      |
|                   | Area                                        | Min 0.10       |                                                                                                          |
|                   | Soil infiltration rate                      | Min 0.5 in/hr  | Hydrologic Soil Group B has an infiltration rate of 0.3-0.5 in/hr                                        |
| Subgrade          | GI infiltration rate                        | Min 6.40 in/hr | Amended soils of GI typically have much better infiltration rates than natural soils.                    |
| Requirements      | Soil Groups                                 | -              |                                                                                                          |
|                   | Distance to high water table                | Min 2 ft       | Minimum of 2' is required between bottom of infiltration basins and seasonal high groundwater table.     |
| Setback           | Set back from buildings                     | Min 10 ft      |                                                                                                          |
| Requirements      | Distance from drinking wells                | -              |                                                                                                          |
| Environmental     | TSS % removal                               | Min 0.90       | Studies indicate that GI measures, such                                                                  |
| Benefits          | TP % removal                                | Min 0.80       | as bioretention systems, can remove                                                                      |

| Category         | Sub-Category            | Input    | Reasoning                               |
|------------------|-------------------------|----------|-----------------------------------------|
|                  | TN % removal            | Min 0.80 | 75-80% phosphorous and nitrogen,        |
|                  | Metals % removal        | Min 0.95 | 95% of metals, and 90% of total         |
|                  | Organisms % removal     | Min 0.90 | suspended solids and organics/bacteria. |
|                  | Flooding Reduction      | Υ        |                                         |
| •                | Rainwater Detention     | -        |                                         |
| Stormwater       | Groundwater Recharge    | -        |                                         |
| Improvements     | Temperature Reduction   | -        |                                         |
| Improvements     | Peak Rate Reduction     | -        |                                         |
|                  | Runoff Reduction Volume | Y        |                                         |
|                  | Installation Cost Range |          |                                         |
| ,                | Low                     | -        |                                         |
|                  | High                    | -        |                                         |
| Cost             | Unit                    | -        |                                         |
| Considerations   | Maintenance Cost Range  |          |                                         |
|                  | Low                     | -        |                                         |
|                  | High                    | -        |                                         |
|                  | Unit                    | -        |                                         |
| GI               | Lifespan                | -        |                                         |
|                  | Motorists and           |          |                                         |
| Social Benefits  | Commuters               | -        |                                         |
| Joeidi Dellejits | Public Safety           | -        |                                         |
|                  | Public Spaces           | -        |                                         |

The values for site requirements (site slope restrictions, soil groups, setback requirements, etc.), desired environmental benefits (percent total suspended solids, phosphorus, nitrogen, metals and organisms removed, stormwater improvements, etc.), and cost considerations (installation cost range, maintenance cost range, and lifespan) that were entered under the 'Determine GI' tab of the tool were the same for both Scenario 1 and Scenario 2. Table XX summarizes these input values and offers reasonings for the parameter choice. The 'Possible GI' offered to the user on the right-hand side of the interface of the toolbox, blocked in red, were the same. These suggested GI practices, dependent on the input values for the site and desired environmental benefits, for the case study were 'Sand Filters,' 'Level Spreaders,' 'Green Streets,' 'Urban Tree Canopy,' and 'Downspout Disconnection.' These 'Possible GI' are merely suggestions based on the given parameters. The user is not limited in their analysis to these 'Possible GI' suggestions. To emphasize this capability, Scenario 1 of the case study analyzed the implementation of Cisterns (i.e., rain harvesting) and Scenario 2 analyzed the implementation of a bioretention system.

The second tab of the tool, 'Economic Impact,' has several header tabs of possible GI to be implemented. It is only necessary for the user to fill-out the input values for the GI element or

elements they wish to analyze in the current profile. While the GI repository encompasses more than 30 different GI elements, summarized and suggested on the home tab of the tool, the economic impacts, encompassing both capital and maintenance costs, for all 30+ GI components were not incorporated into the framework. This omission was due to the heterogeneous design details present across various SDOTs, coupled with time constraint for this study. As a result, in the 'Economic impact' tab of the tool only the GI elements for which the cost equations are devised are shown for consideration. Additional research is required to establish standardized metrics for all remaining GI elements.

Scenario 1 analyzed a steel cistern collecting from a drainage area of 2,000 ft<sup>2</sup> for a maximum rainfall event of 6 in. (approximately a 25-year storm), all maintenance costs were categorized as 'Medium.' Scenario 2 analyzed a bioretention system with underdrain and a drainage area of 90,000 ft<sup>2</sup> (approximately 2 acres), maintenance cost to unclog the drain was categorized as 'Medium' and all others were categorized as 'Low.' Table XXI and Table XXII show the input values along with capital and maintenance cost totals (in red) calculated by the tool for Scenario 1 and Scenario 2, respectively.

**Table XXI**Scenario 1 Input values for 'Economic Impact'

|              | CISTERN                          |                       |  |  |  |  |  |  |  |  |  |
|--------------|----------------------------------|-----------------------|--|--|--|--|--|--|--|--|--|
|              |                                  |                       |  |  |  |  |  |  |  |  |  |
| Category     | Sub-Category                     | Input/ Output         |  |  |  |  |  |  |  |  |  |
|              | Impervious Area                  | 2,000 ft <sup>2</sup> |  |  |  |  |  |  |  |  |  |
| Capitol Cost | Max. Design Rainfall Event       | 6 in                  |  |  |  |  |  |  |  |  |  |
| Capitor Cost | Material                         | Steel                 |  |  |  |  |  |  |  |  |  |
|              | Total Storage Needed             | 7,480 gal             |  |  |  |  |  |  |  |  |  |
|              | Total Capital Cost               | \$9,948.40            |  |  |  |  |  |  |  |  |  |
|              | Inspection, reporting and        |                       |  |  |  |  |  |  |  |  |  |
|              | information management           | Medium                |  |  |  |  |  |  |  |  |  |
| Maintenance  | Roof washing, cleaning inflow    |                       |  |  |  |  |  |  |  |  |  |
| Cost         | filters                          | Medium                |  |  |  |  |  |  |  |  |  |
|              | Tank inspection and disinfection | Medium                |  |  |  |  |  |  |  |  |  |
|              | Intermittent system maintenance  | Medium                |  |  |  |  |  |  |  |  |  |
|              | Total Maintenance Cost           | \$1,110               |  |  |  |  |  |  |  |  |  |

**Table XXII**SCENARIO 2 INPUT VALUES FOR 'ECONOMIC IMPACT'

|              | BIORETENTION                   |               |  |  |  |  |  |  |  |  |
|--------------|--------------------------------|---------------|--|--|--|--|--|--|--|--|
|              |                                |               |  |  |  |  |  |  |  |  |
| Category     | Sub-Category                   | Input/ Output |  |  |  |  |  |  |  |  |
| Capitol Cost | Drainage area                  | 2 acres       |  |  |  |  |  |  |  |  |
| Capitor Cost | Underdrain                     | Υ             |  |  |  |  |  |  |  |  |
|              | Total Capital Cost             | \$178,056     |  |  |  |  |  |  |  |  |
|              | Inspection, reporting and      |               |  |  |  |  |  |  |  |  |
|              | information management         | Low           |  |  |  |  |  |  |  |  |
| Maintananca  | Vegetation management with     |               |  |  |  |  |  |  |  |  |
| Maintenance  | trash and minor debris removal | Low           |  |  |  |  |  |  |  |  |
| Cost         | Till Soil                      | Low           |  |  |  |  |  |  |  |  |
|              | Unclog Drain                   | Medium        |  |  |  |  |  |  |  |  |
|              | Replace Mulch                  | Low           |  |  |  |  |  |  |  |  |
|              | Total Maintenance Cost         | \$707.75      |  |  |  |  |  |  |  |  |

Input values for 'Environmental Impacts' regarding climate zone and number of trees were the same for both Scenario 1 and Scenario 2—like site characteristics and parameters from above—since these "scenarios" were analyzing different GI implemented on the same project site. 'Environmental Impact' inputs for both scenarios are summarized in Table XXIII, along with the total runoff and air pollutant reduction and any monetized value of savings (in green). The climate zone 'Piedmont' is the appropriate choice for Chattanooga, TN and many other Tennessee regions. The 'Reduced Stormwater Runoff' section of the 'Environmental Impact' tab requires the user only enter values in the appropriate and corresponding GI practice to be analyzed (between 'Bioretention and Infiltration,' 'Permeable Pavement,' and 'Water Harvesting'). Although there are only three categories, the majority of possible GI practices will fall under one of these categories. For example, bioswales, green roofs, downspout disconnections and many others function through infiltration, thus values would be entered into the 'Bioretention and Infiltration' category, in order for the reduced runoff amount to be calculated and those benefits be considered in the analysis.

**Table XXIII**INPUT VALUES FOR 'ENVIRONMENTAL IMPACT'

| Category         | Sub-Category             | Scenario 1 Input | Scenario 2 Input |  |  |  |
|------------------|--------------------------|------------------|------------------|--|--|--|
|                  | STRATUM Climate Zone     | Piedr            | mont             |  |  |  |
| Ontions          | Number of Small Trees    | 50               |                  |  |  |  |
| Options          | Number of Medium Trees   | 2                | 0                |  |  |  |
|                  | Number of Large Trees    | 1                | 0                |  |  |  |
|                  | Reduced Stormwo          | ater Runoff      |                  |  |  |  |
| Runoff amount re | duced by tree plantation | 162,350          | ) gal/yr         |  |  |  |

| Category                      | Sub-Category                               | Scenario 1 Input   | Scenario 2 Input       |  |  |
|-------------------------------|--------------------------------------------|--------------------|------------------------|--|--|
| Dia natantian and             | Annual Precipitation                       | -                  | 53 in                  |  |  |
| Bioretention and Infiltration | Element Area                               | -                  | 4,000 ft <sup>2</sup>  |  |  |
| mijnadani                     | Drainage Area                              | -                  | 90,000 ft <sup>2</sup> |  |  |
|                               | luced by bioretention and<br>filtration    | -                  | 2,485,101 gal/yr       |  |  |
| Dannardda                     | Annual Precipitation                       | -                  | -                      |  |  |
| Permeable<br>Pavement         | Permeable Pavement<br>Area                 | -                  | -                      |  |  |
| Runoff amo                    | ount reduced by permeable<br>pavement      | -                  | -                      |  |  |
| Water Harvesting              | Annual Precipitation                       | 53 in              | -                      |  |  |
| Water Harvesting              | GI Element Surface Area                    | 36 ft <sup>2</sup> | -                      |  |  |
| Runoff amount re              | educed by water harvesting                 | 892 gal/yr         | -                      |  |  |
| Total amount of re            | duced stormwater runoff                    | 163,242 gal/yr     | 2,647,451 gal/yr       |  |  |
| Benefit<br>Monetization       | Conversion Factor from 2009 to current USD | 1.4                | 42                     |  |  |
| Monetary Gair                 | n from Avoided Stormwater<br>Treatment     | \$2,318.04 /yr     | \$37,593.81 /yr        |  |  |
|                               | Reduced Air Po                             | ollutants          |                        |  |  |
| Total annuc                   | al Air Pollutant Reduction                 | 48.6 lbs           | 48.6 lbs               |  |  |
| Total val                     | ue of Pollutant Reduction                  | \$148.43           | \$148.43               |  |  |
|                               | Reduced Ener                               | rgy Use            |                        |  |  |
|                               |                                            |                    | 65,540                 |  |  |
| 40-Year                       | Average of Energy Saved                    | 65,540 kWh/tree/yr | kWh/tree/yr            |  |  |
|                               | Value of Energy saved                      | \$7,786.15         | \$7,786.15             |  |  |

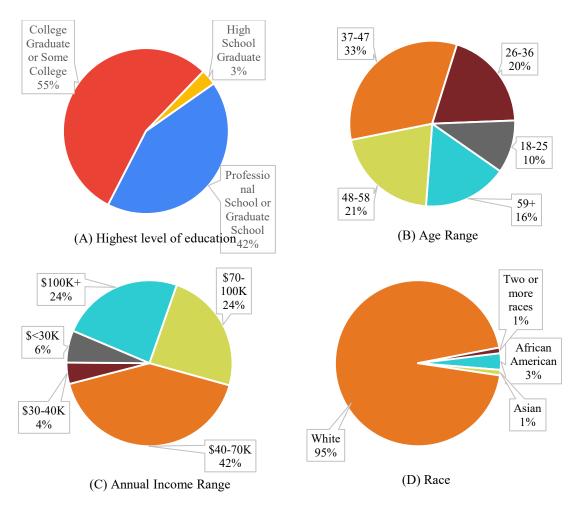
Reduced stormwater runoff for Scenario 1 (analyzing Cistern) was calculated with values entered into the 'Water Harvesting' category—leaving values for 'Permeable Pavement' and 'Bioretention and Infiltration' blank—while the reduced runoff for Scenario 2 (analyzing Bioretention) was calculated with values entered into the 'Bioretention and Infiltration' category—likewise, leaving 'Permeable Pavement' and "Water Harvesting' blank. The conversion factor in the 'Benefit Monetization' category was set at the default, 1.42, and was the same for both scenarios.

## **Table XXIV**INPUT VALUES FOR 'SOCIAL IMPACT'

| Category     | Sub-Category           | Scenario 1 Input | Scenario 2 Input |
|--------------|------------------------|------------------|------------------|
|              | Latitude and Longitude | 35.052257,       | -85.106411       |
| Nearby Parks | Radius                 | 2.0 r            | niles            |

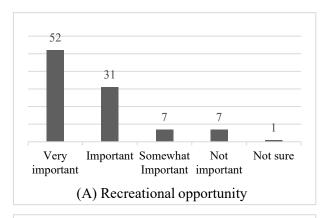
| Category            | Sub-Category                                       | Scenario 1 Input | Scenario 2 Input |  |
|---------------------|----------------------------------------------------|------------------|------------------|--|
| Enhanced            | Median property value for that area                | -                | 400,000          |  |
|                     | Anticipated enhancement in value                   | -                | 0.01             |  |
| Property Value      | Approx. number of properties in the area           | -                | 30               |  |
|                     | Total monetary gain                                | -                | \$120,000        |  |
|                     | Total anticipated vegetation area                  | -                | -                |  |
| Recreational<br>Use | Total anticipated parking lot area to be vegetated | -                | -                |  |
|                     | Total anticipated green roof area                  | -                | -                |  |
| Total anticip       | ated vegetated area for recreational use           | -                | -                |  |

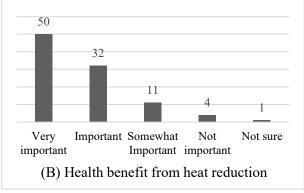
The latitude and longitude initially entered in the toolbox under the 'Social Impact' tab is the user's current location coordinates; however, these can easily be changed by entering the coordinates of the project site. The latitude and longitude used for the case study was 35.052257, -85.106411 with a radius of 2.0 miles resulting in 8 nearby parks. 'Enhanced Property Value' and 'Recreational Use' was left blank for Scenario 1 because a small cistern would not offer either type of social benefit. For Scenario 2, the median property value was estimated to be \$400,000, the anticipated enhancement in value was estimated to be 0.01 (i.e., 1% of \$400,000 median property value), and the approximate number of properties in the area was estimated to be 30. 'Recreational Use' values were left blank for Scenario 2 because bioretention systems don't typically offer green roof area or vegetation area for recreational purposes.

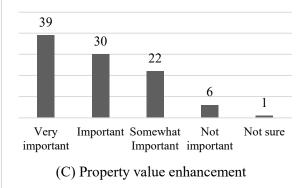

It may be noticed that "impact" and "benefit" are often used interchangeably throughout the tool and in this report. While an impact is not always beneficial, the reason for this is because in the context of environmental and social impacts of implementing GI, these impacts are benefits. For example, the environmental and social *impacts* (Table XXIII and Table XXIV, respectively) of implementing any type of GI are stormwater runoff reduction, air pollutant reduction, energy savings, monetary gain through property value enhancement, and recreational space creation. These are the impacts of GI, but they are also all beneficial. As for economic impacts, these are not also considered benefits because they define the economic cost.

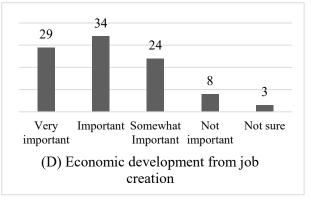
## Chapter 5 Results and Discussion

State and federal authorities across the United States are currently implementing sustainable practices, such as GI and LID, into their infrastructure management strategies and plans. Their aim is to meet sustainability goals, while also promoting economic growth and enhancing public safety and quality of life. While traditional infrastructure planning and design has focused on the economic impacts of a project the environmental and social benefits have most been ignored. As state departments of transportation (SDOTs) move toward integrating GI practices into transportation infrastructure, there is a need for a standardized framework that considers economic, environmental, and social benefits along with public opinion and a hierarchy of importance of different benefits to aid decision making. With this in mind, the proposed research aims to develop a systematic quantification framework that captures economic, environmental and social impacts of infrastructure projects, including spatially specific and temporally dynamic metrics, objective weights, practical quantification methods, and calculations to value tangential benefits. The study will propose a framework that can be used by practitioners to promote sustainable infrastructure practices by assessing the applicability and quantified benefits of possible GI for development projects.


### 5.1 Survey, AHP and MCS Results

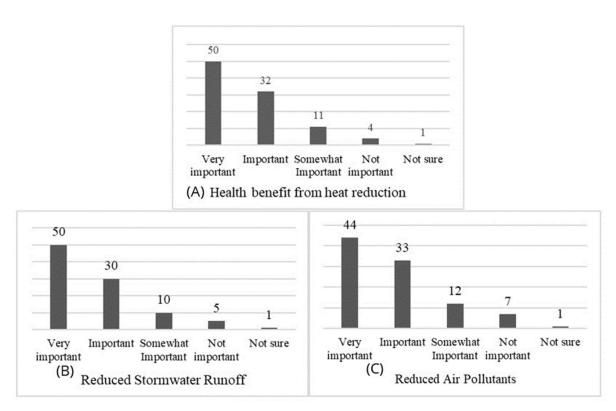

To determine a hierarchy of importance and integrate public opinion into the frameworks, two surveys—using the Likert scale—were conducted. The first surveyed citizens at the community level throughout the state of Tennessee and the second surveyed administrators on a national scale across all SDOTs. Survey responses were rated by the Likert scale approach, which is a widely used rating scale used to measure opinions. This approach consists of a statement or question, followed by a series of five answer statements (e.g., 1- 'Strongly Disagree' to 5- 'Strongly Agree'). Respondents choose the option that best corresponds with how they feel about the statement or question. Due to the range of possible answers respondents are offered, Likert scales are great for expressing their level of agreement or feelings about the topic in a subtle way.



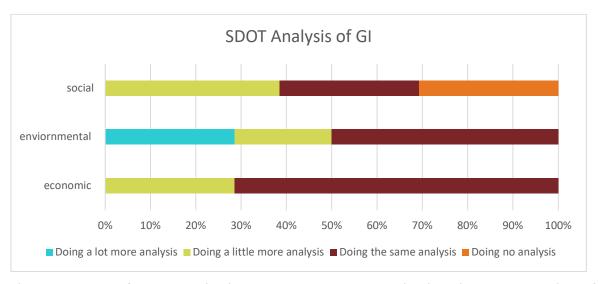


**Figure 5-1 Pie Graphs** Descriptive statistics of the citizen participants in the survey showing- (A) Highest education level, (B) Age range, (C) Annual income range, and (D) Race of the participants.

The first survey received 98 responses from citizens in Tennessee. Figure 5-1 shows the general demographics of these citizen participants. While gender was not considered a critical demographic in understanding opinions about GI, demographics that were thought to be influential were 'Highest level of education,' 'Age Range,' 'Annual Income Range,' and 'Race.' More than half of the citizen respondents (55%) are college graduates or have some college education, while 42% have some amount of professional or graduate school education, and only 3% have high school education as their highest form of education. A third of respondents are aged 37-47, while only 10% are aged 18-25. The large majority of citizen respondents (90%) earn more than \$40K annually and 95% of respondents identify as "White." In the survey, the participants were asked to rank the importance of GI in contributing to the social aspects (ref. Figure 5-2) and environmental (ref. Figure 5-3). More than half of respondents said GI is "Very Important" in contributing to "Recreational Opportunity" and health benefits from heat reduction, while respondents appear to believe GI does not contribute as significantly to economic development from job creation. Citizen respondents believe GI contributes to health benefit from heat reduction and reduced stormwater runoff more so than it contributes to reducing air pollutants.








**Figure 5-2 Bar Graphs** Survey results showing citizen participants' opinion about GI in contributing to social impacts. (A) Recreational opportunity. (B) Health benefit from heat reduction, (C) Property value enhancement, (D) Economic development from job creation.

From the second survey—sent to all SDOTs nationwide—responses from 18 SDOTs were received, mostly from the north-eastern region. From these 18 SDOT responses, more than half currently do not use GI analysis, although almost 94% are at least somewhat knowledgeable about GI practices. When considering GI and conducting GI analysis, 100% of SDOTs rank "Environmental" as the most important aspect, and 75% of SDOTs rank "Social" as the second most important aspect and "Economic" as the last, while the rest (25%) deem "Economic" as the second most important aspect. Figure 5-4 portrays changes over the past five years in the responding SDOT's analysis of GI regarding social, environmental, and economic impacts. Concerning SDOT's analysis of social impacts of GI projects and how it has changed, 38% responded with "We are doing a little more analysis," 31% responded with "We are doing the same amount of analysis," and 31% responded with "We do no analysis," out of 13 responses. GI analysis of social impacts is the only category in which some SDOTs are doing no analysis, while GI analysis of environmental impacts is the only category in which some SDOTs have been doing "a lot more." As for current analysis being performed within respondent SDOTs, 44% (or 8 out of 18) conduct GI analysis—although 78% (or 14 out of 16) use GI measures on some level—while only 28% (or 5 out of 18) analyze GI on the basis of their social, economic and environmental impacts and benefits. Furthermore, from these surveys it was discovered that public opinion and the opinion of national SDOT employees was similar. Opinions of GI and the benefits it can present are overwhelmingly positive and are understood and accepted by the majority.



**Figure 5-3 Bar Graphs** Survey results showing citizen participants' opinion about GI in contributing to environmental impacts.



**Figure 5-4 Bar Graph** Survey results showing SDOT responses regarding how their agency's analysis of GI has changed in the past 5 years in respect to social, environmental, and economic impacts.

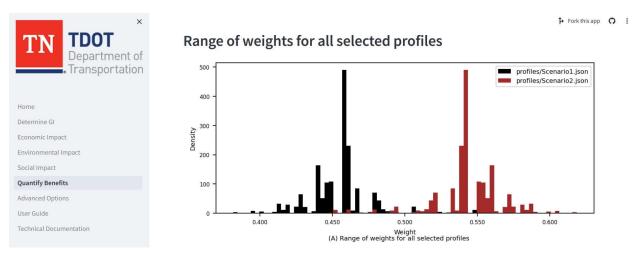
## 5.2 GI Repository

A design repository of GI measures—in the form of an excel spreadsheet—was developed to be used as a reference in the construction of the web-based toolbox. This database contains information—from site requirements to cost breakdowns—pertaining to each GI practice that will be referenced and integrated into the algorithm used in the framework so the toolbox can determine which GIs are applicable for specific project parameters. For a very simple example,

|                                                                                                     |                                                                                   |                                                         |            |                                                                        | Roadway C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | assificatio                                                                               | ns                                  |                                                                                                                             | Site Requirements                                                                                    |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Category                                                                                       | ,                                                                                 |                                                         | Functi     | onal Classific<br>Roadway                                              | cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | ocation or Set                      | ting                                                                                                                        | Site Slope<br>Restriction                                                                            | -                                                                                                             | Side Slope<br>Restrictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ributing [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Praina                                                    | age Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                     |                                                                                   |                                                         |            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                     |                                                                                                                             |                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ax. (acre) c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | pervious area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                     |                                                                                   |                                                         | erial<br>v | Collector                                                              | Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Urban                                                                                     | Suburban                            | Rural                                                                                                                       | Maximum<br>5%                                                                                        | _                                                                                                             | Maximum<br>4:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sp                                                        | pace reqd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                     |                                                                                   |                                                         | Y          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         | Y                                   | Y                                                                                                                           | 5%                                                                                                   |                                                                                                               | 4:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.51                                                      | impervious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bioretention                                                                                        |                                                                                   |                                                         | Y          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ                                                                                         | Y                                   | Υ                                                                                                                           | 8%                                                                                                   |                                                                                                               | 2:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                     |                                                                                   |                                                         | Y          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         | Y                                   | Y                                                                                                                           | 20%                                                                                                  | _                                                                                                             | 4:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ra                                                        | ange 3-6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                     |                                                                                   |                                                         | N<br>Y     | Y                                                                      | Y<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y                                                                                         | Y                                   | Y                                                                                                                           | 4%                                                                                                   | _                                                                                                             | 2:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pan                                                       | 4%<br>nge 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Enhanced Swa                                                                                        | les                                                                               |                                                         | Y          | Y                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                         | Y                                   | Y                                                                                                                           | 4%                                                                                                   |                                                                                                               | 4:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | ge 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vegative Filter                                                                                     | Strips                                                                            |                                                         | Y          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ                                                                                         | Y                                   | Y                                                                                                                           | 25%                                                                                                  |                                                                                                               | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Grass Channel                                                                                       | s                                                                                 |                                                         | Υ          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                         | Y                                   | Y                                                                                                                           | 4%                                                                                                   |                                                                                                               | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10%                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                     |                                                                                   |                                                         | Y<br>N     | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                         | Y                                   | Y                                                                                                                           | 4%<br>6%                                                                                             | _                                                                                                             | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dati                                                      | 10%<br>io 1:10 -1:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     |                                                                                   |                                                         | N          | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         | Y                                   | Y                                                                                                                           | 6%                                                                                                   | _                                                                                                             | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ratio 1:10 -1:8                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Permeable Pay                                                                                       |                                                                                   | -                                                       |            | N                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         | Y                                   | Y                                                                                                                           | 6%                                                                                                   |                                                                                                               | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ratio 1:10 -1:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | io 1:10 -1:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Porous Asphal                                                                                       | LFaving                                                                           |                                                         | N          | N                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ                                                                                         | Y                                   | Y                                                                                                                           | 6%                                                                                                   |                                                                                                               | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rati                                                      | io 1:10 -1:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                     |                                                                                   |                                                         | Υ          | Y                                                                      | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Υ                                                                                         |                                     | Y                                                                                                                           | 5%                                                                                                   | _                                                                                                             | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                     |                                                                                   | Subgrad                                                 | le Requ    | uirements                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                     |                                                                                                                             |                                                                                                      |                                                                                                               | Enviro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nmental B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Soil Infiltration                                                                                   | Pate                                                                              | S                                                       | ioil Gro   | oups                                                                   | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to High                                                                                   | Distance fr                         |                                                                                                                             |                                                                                                      | 100                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Minimum                                                                                             |                                                                                   |                                                         |            | -                                                                      | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table                                                                                     | Drinking W                          | ells To                                                                                                                     | Solids (TSS)                                                                                         |                                                                                                               | hosphorous<br>(TP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrogen<br>TN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s                                                         | Organism<br>removal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (in. per hou                                                                                        | rì                                                                                | Not 8                                                   | Recomi     | mended                                                                 | Minim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ım (ft.)                                                                                  | Minimum                             | (fr.)                                                                                                                       | Solids (155)                                                                                         |                                                                                                               | (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | removal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.5                                                                                                 |                                                                                   |                                                         |            | underdrain                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 50                                  | (res)                                                                                                                       | 37%                                                                                                  |                                                                                                               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5                                                                                                 |                                                                                   |                                                         | C, D       | 1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 50 - 100                            | )                                                                                                                           | 85%                                                                                                  |                                                                                                               | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| less than 0.3                                                                                       |                                                                                   | C, D exce                                               | ept w/     | underdrain                                                             | 10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nax                                                                                       | 50                                  |                                                                                                                             | 98%                                                                                                  |                                                                                                               | 65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5% -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                     | 3                                                                                 |                                                         |            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                     |                                                                                                                             |                                                                                                      | 2                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81%<br>Range 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5%-                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                 |                                                                                   |                                                         | C, D       | 1                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | 50 - 100                            | R                                                                                                                           | ange 85%-100%                                                                                        | Range                                                                                                         | 80%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | Range 90%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5                                                                                                   |                                                                                   | C, D exce                                               | ept w/     | underdrain                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nax                                                                                       | 50                                  |                                                                                                                             |                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                 |                                                                                   |                                                         | C, D       | i.                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 50 - 100                            | R                                                                                                                           | ange 80%-100%                                                                                        | Range                                                                                                         | e 80%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Range !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Range 4<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0%-                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5                                                                                                 | _                                                                                 |                                                         | C.D        |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                         | 50 - 100                            |                                                                                                                             | 80%                                                                                                  |                                                                                                               | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5                                                                                                 |                                                                                   |                                                         | C, D       |                                                                        | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           | 50 - 100                            |                                                                                                                             | nge 36% to 60%                                                                                       |                                                                                                               | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6% to 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5                                                                                                 |                                                                                   |                                                         | C, D       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 50 - 100                            |                                                                                                                             | 50%                                                                                                  |                                                                                                               | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5                                                                                                 | -                                                                                 |                                                         | C, D       | 1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 50 - 100                            | )                                                                                                                           | 50%                                                                                                  |                                                                                                               | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30%<br>Range 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201                                                       | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.5                                                                                                 |                                                                                   | C, D                                                    | or >30     | 0% clay                                                                | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 1-4                                                                                     | 100                                 | R                                                                                                                           | ange 80%-85%                                                                                         | Range                                                                                                         | e 80%-85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J7%- F                                                    | Range 93%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.5                                                                                                 |                                                                                   | C D                                                     | or >30     | 0% clay                                                                | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 1-4                                                                                     | 100                                 | R                                                                                                                           | ange 80%-85%                                                                                         | Range                                                                                                         | e 80%-85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5% Range 18%-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Range 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%- p                                                     | Range 94%-100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                     | -                                                                                 |                                                         |            |                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |                                     |                                                                                                                             |                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%<br>Range 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5                                                                                                 |                                                                                   | C, D                                                    | or >30     | % clay                                                                 | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 1-4                                                                                     | 100                                 |                                                                                                                             | 80%                                                                                                  | Range                                                                                                         | nge 80%-85% Range 18%-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18%-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | Range 0%-39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.5                                                                                                 |                                                                                   | C, D                                                    | or >30     | 0% clay                                                                | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 1-4                                                                                     | 100                                 |                                                                                                                             | 80%                                                                                                  | Range                                                                                                         | e 80%-85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18%-30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Range 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%-                                                       | Range 0%-39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.5                                                                                                 | -                                                                                 | C. D                                                    | or >30     | 0% clay                                                                | N,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ά                                                                                         | 100                                 |                                                                                                                             | 50%                                                                                                  |                                                                                                               | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90%<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5                                                                                                 |                                                                                   | -, -                                                    | 01730      | , ciuy                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | 100                                 |                                                                                                                             | 3074                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flooding                                                                                            | Rains                                                                             |                                                         |            | dwater 1                                                               | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak I                                                                                    |                                     | off Reduction                                                                                                               |                                                                                                      |                                                                                                               | Cost Con<br>Cost Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ensideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maintena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | GI<br>ge Lifespan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| riooding                                                                                            | Dete                                                                              |                                                         | Reci       | harge                                                                  | Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reduc                                                                                     |                                     | Volume                                                                                                                      | Low                                                                                                  |                                                                                                               | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uni                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| reduction                                                                                           |                                                                                   |                                                         |            | Υ                                                                      | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         |                                     | 40-80%                                                                                                                      |                                                                                                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                                                         | I/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| reduction<br>Y                                                                                      | - 1                                                                               |                                                         |            | Υ                                                                      | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         |                                     | 50%                                                                                                                         |                                                                                                      | 1id                                                                                                           | Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| reduction<br>Y<br>Y                                                                                 |                                                                                   | V                                                       |            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                     |                                                                                                                             |                                                                                                      |                                                                                                               | \$6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | varies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | n/a 10 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| reduction<br>Y                                                                                      | Y-L                                                                               | ow.                                                     |            | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         |                                     | ge 85%-90%                                                                                                                  |                                                                                                      |                                                                                                               | 5.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | varies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                         | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| reduction<br>Y<br>Y                                                                                 |                                                                                   | ow.                                                     |            | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         |                                     | e 50%-100                                                                                                                   |                                                                                                      | fid                                                                                                           | Mid<br>\$16.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mid<br>\$0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | varies<br>Mid<br>\$0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                         | n/a<br>.ft. 25-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| reduction<br>Y<br>Y<br>N                                                                            | Y-L                                                                               | ow<br>Low                                               |            | Y                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                         | Rang                                | e 50%-1009                                                                                                                  | 6 N<br>\$5.<br>% N                                                                                   | fid<br>15<br>fid                                                                                              | \$16.00<br>Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a<br>sq. ft.<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>sq.                                                  | .ft. 25-50<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| reduction<br>Y<br>Y<br>N<br>N                                                                       | Y-L<br>Y-<br>Y-<br>Y-                                                             | low<br>Low                                              |            |                                                                        | Y<br>Y<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                                                                                         | Rang                                | ge 50%-1009<br>ge 50%-1009                                                                                                  | 6 N<br>\$5.<br>6 N<br>\$20,000.                                                                      | 1id<br>15<br>1id<br>00 \$                                                                                     | \$16.00<br>Mid<br>\$30,000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a<br>sq. ft.<br>n/a<br>each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mid<br>\$0.31<br>Mid<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mid<br>\$0.61<br>Mid<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sq.                                                       | ft. 25-50<br>n/a<br>l/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Preduction  Y  Y  N  N  N  N  N  N                                                                  | Y-L<br>Y-                                                                         | OW<br>LOW<br>LOW<br>LOW                                 |            | N                                                                      | Y<br>Y<br>N<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y                                                                                         | Rang                                | ge 50%-1009<br>0%<br>25%                                                                                                    | 6 N<br>\$5.<br>% N                                                                                   | fid<br>15<br>fid<br>00 \$                                                                                     | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>sq.<br>n<br>N<br>sq.                                 | ft. 25-50<br>n/a<br>n/A<br>ft. 20-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| reduction<br>Y<br>Y<br>N<br>N                                                                       | Y-L<br>Y-<br>Y-                                                                   | low<br>Low                                              |            |                                                                        | Y<br>Y<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y Y 1.0 ft/s                                                                              | Rang                                | ge 50%-1009<br>ge 50%-1009                                                                                                  | 6 N<br>\$5.<br>6 N<br>\$20,000.                                                                      | 1id<br>15<br>1id<br>00 \$                                                                                     | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mid<br>\$0.31<br>Mid<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n<br>sq.<br>n<br>N<br>sq.                                 | ft. 25-50<br>n/a<br>l/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Preduction  Y  Y  N  N  N  N  N  N  N  N  N  N  N                                                   | Y-L<br>Y-<br>Y-                                                                   | N<br>OW<br>LOW<br>LOW<br>LOW                            |            | N                                                                      | Y<br>Y<br>N<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y                                                                                         | Rang                                | ge 50%-1009<br>0%<br>25%<br>25%                                                                                             | 6 N<br>\$5.<br>6 N<br>\$20,000.                                                                      | 1id<br>15<br>1id<br>00 \$<br>30<br>Y                                                                          | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>sq.<br>n<br>N<br>sq.                                 | ft. 25-50<br>n/a<br>l/A<br>ft. 20-50<br>l/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| reduction Y Y N N N N N N N Y Y Y Y Y Y Y Y Y                                                       | Y-L<br>Y<br>Y<br>Y                                                                | Low Low V                                               |            | N<br>Y<br>Y<br>Y                                                       | Y N Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y 1.0 ft/s                                                                                | Rang                                | ge 50%-1009<br>0% 25% 25% 10% Y                                                                                             | 6 N \$5.                                                                                             | flid<br>15<br>flid<br>00 \$<br>30<br>Y<br>Y<br>50                                                             | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n sq. n sq. N sq. N sq. sq. sq. sq. sq.                   | ft. 25-50<br>n/a<br>k/A<br>ft. 20-50<br>k/A<br>k/A<br>ft. 20-40<br>ft. 20-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| reduction Y Y N N N N N N N N Y Y Y Y Y                                                             | Y                                                                                 | LOW LOW LOW Y Y Y                                       |            | N<br>Y<br>Y<br>Y<br>Y                                                  | Y N Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y 1.0 ft/s                                                                                | Rang                                | ge 50%-1009<br>0% 25% 25% 10% Y Y Y                                                                                         | 6 N \$5. 6 N \$20,000. \$0. \$5. \$5. \$5. \$5.                                                      | flid<br>15<br>flid<br>00 \$<br>30<br>Y<br>Y<br>50<br>50                                                       | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>sq.<br>n<br>N<br>sq.<br>N<br>sq.<br>N<br>sq.<br>sq.  | ft. 25-50<br>n/a<br>l/A<br>ft. 20-50<br>l/A<br>l/A<br>ft. 20-40<br>ft. 20-41<br>ft. 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| reduction Y Y N N N N N N N Y Y Y Y Y Y Y Y Y                                                       | Y                                                                                 | NOW<br>LOW<br>LOW<br>LOW<br>NOW<br>NOW<br>NOW<br>Y      |            | N<br>Y<br>Y<br>Y                                                       | Y N Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y 1.0 ft/s                                                                                | Rang                                | ge 50%-1009<br>0% 25% 25% 10% Y                                                                                             | 6 N \$5.                                                                                             | flid<br>15<br>flid<br>00 \$<br>30<br>Y<br>Y<br>50<br>50                                                       | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>sq.<br>n<br>N<br>sq.<br>N<br>sq.<br>sq.<br>sq.       | ft. 25-50<br>n/a<br>l/A<br>ft. 20-50<br>l/A<br>l/A<br>ft. 20-40<br>ft. 20-41<br>ft. 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| reduction Y Y N N N N N N Y Y Y Y Y Y Y                                                             | Y<br>Y<br>1                                                                       | NOW<br>LOW<br>LOW<br>LOW<br>NOW<br>NOW<br>NOW<br>Y      |            | N<br>Y<br>Y<br>Y<br>Y                                                  | Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y 1.0 ft/s                                                                                | Rang<br>Rang                        | ge 50%-1009<br>0% 25% 25% 10% Y<br>Y Y Y                                                                                    | 6 N S5. 55. 50 N S20,000. 50. 55. 55. 55.                                                            | Mid<br>15<br>Mid<br>000 \$<br>30<br>Y<br>Y<br>50<br>50<br>30<br>30<br>Y                                       | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00<br>\$12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n<br>sq.<br>n<br>N<br>sq.<br>N<br>sq.<br>sq.<br>sq.       | ft. 25-50<br>N/a<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ft. 20-40<br>ft. 20-41<br>ft. 15-50<br>ft. 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| reduction Y Y N N N N N N Y Y Y Y Y Y Y                                                             | Y<br>Y<br>1                                                                       | NOW<br>LOW<br>LOW<br>LOW<br>NOW<br>NOW<br>NOW<br>Y      |            | N<br>Y<br>Y<br>Y<br>Y                                                  | Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y 1.0 ft/s                                                                                | Rang<br>Rang<br>4 in                | ge 50%-1009<br>0% 25% 25% 10% Y<br>Y Y Y                                                                                    | 6 N \$5. 6 N \$20,000. \$0. \$5. \$5. \$5. \$5.                                                      | Mid<br>15<br>Mid<br>000 \$<br>30<br>Y<br>Y<br>50<br>50<br>30<br>30<br>Y                                       | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00<br>\$12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n<br>sq.<br>n<br>N<br>sq.<br>N<br>sq.<br>sq.<br>sq.       | ft. 25-50<br>N/a<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ft. 20-40<br>ft. 20-41<br>ft. 15-50<br>ft. 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| reduction                                                                                           | Y-L<br>Y<br>Y<br>Y                                                                | NOW LOW LOW LOW Y Y Y Y Y Y N N N N N N N N N N N N N   |            | N<br>Y<br>Y<br>Y<br>Y<br>Y                                             | Y  Y  N  Y  Y  Y  Y  Y  Y  Y  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y 1.0 ft/s Y Y Y Y Y Y GIEr                                                               | Rang<br>Rang                        | ge 50%-1009<br>0% 25% 25% 10% Y<br>Y Y Y                                                                                    | 6 N S5. 55. 50 N S20,000. 50. 55. 55. 55.                                                            | Mid<br>15<br>Mid<br>000 \$<br>30<br>Y<br>Y<br>50<br>50<br>30<br>30<br>Y                                       | \$16.00<br>Mid<br>530,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00<br>\$12.00<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01<br>\$0.01<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50<br>h/a<br>h/A<br>h/A<br>ft. 20-50<br>h/A<br>h/A<br>h/A<br>tt. 20-40<br>ft. 20-41<br>ft. 15-50<br>ft. 15-50<br>h/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| reduction Y Y N N N N N N N Y Y Y Y Y Y Y Y                                                         | Y-L<br>Y-<br>Y-<br>Y-                                                             | NOW LOW LOW LOW Y Y Y Y Y Y N N N N N N N N N N N N N   |            | N<br>Y<br>Y<br>Y<br>Y<br>Y                                             | Y N N Y Y Y Y Y Y Y N O Catego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y 1.0 ft/s                                                                                | Rang Rang 4 in Vironmen High        | e 50%-100% e 50%-1000 0% 255% 255% 10% Y Y Y 0% ttal Bendard                                                                | 6 N S5. 55. 50 N S20,000. 50. 55. 55. 55.                                                            | 11d 15 15 16d 100 \$ 30 \$ 7 Y Y 50 30 30 30 Y Y A Ary                                                        | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00<br>\$12.00<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.<br>n/a<br>Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50<br>n/a<br>14/A<br>ft. 20-50<br>14/A<br>14/A<br>14/A<br>15-50<br>ft. 20-41<br>ft. 15-50<br>ft. 15-50<br>ft. 15-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| reduction Y Y N N N N N N N Y Y Y Y Y Y Y Y Tetion or Im                                            | Y-L<br>Y-<br>Y-<br>Y-                                                             | NOW LOW LOW LOW Y Y Y Y Y Y N N N N N N N N N N N N N   |            | N<br>Y<br>Y<br>Y<br>Y<br>Y                                             | Y  Y  N  Y  Y  Y  Y  Y  Y  Y  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y 1.0 ft/s                                                                                | Rang Rang Vironmen High Benef       | e 50%-1009 0% 25% 25% 10% Y Y Y O% tal Benefit or Re                                                                        | 6                                                                                                    | 11d 15 15 16d 100 \$ 30 \$ 7 Y Y 50 30 30 30 Y Y A Ary                                                        | \$16.00<br>Mid<br>\$30,000.00<br>\$3.33<br>n/a<br>n/a<br>\$28.00<br>\$28.00<br>\$34.00<br>\$12.00<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a<br>sq. ft.<br>n/a<br>each<br>sq. ft.<br>n/a<br>n/a<br>sq. ft.<br>sq. ft.<br>sq. ft.<br>sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50<br>h/a<br>h/A<br>h/A<br>ft. 20-50<br>h/A<br>h/A<br>h/A<br>tt. 20-40<br>ft. 20-41<br>ft. 15-50<br>ft. 15-50<br>h/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| reduction Y Y N N N N N N N N Y Y Y Y T T T T T T                                                   | Y-L<br>Y<br>Y<br>Y<br>I                                                           | NOW Low Low NOW     |            | N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                | Y N Y Y Y Y Y Y Y O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y 1.0 ft/s Y Y Y Y GI Er                                                                  | Rang Rang A in  vironmen High Benet | e 50%-1009 0% 25% 25% 10% Y Y Y O% tal Bendifit or Remental E                                                               | 6                                                                                                    | 11d 15 16d 000 \$ 300 Y Y 500 500 300 Y Y Y S00 500 300 Y Y Y Y S00 500 300 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | \$16.00 Mid 530,000.00 (\$3.33 n/a n/a 1/a \$28.00 \$28.00 \$28.00 \$34.00 \$12.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a sq. ft. n/a each sq. ft. n/a n/a sq. ft. sq. ft. sq. ft. sq. ft. sq. ft. cq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>\$0.09<br>\$0.09<br>\$0.09<br>\$0.01<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50 //a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| reduction                                                                                           | Y-L<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y-<br>Y- | NOW LOW LOW NOW NOW NOW NOW NOW NOW NOW NOW NOW N       |            | N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                | Y N Y Y Y Y Y Y Y Y O Catego Catego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y 1.0 ft/s Y Y Y Y GI Er ry and ry)                                                       | Rang Rang A in  vironmen High Benet | e 50%-1000  ge 50%-1000  0%  25%  25%  10%  Y  Y  Y  O%  fatal Bendard  fit or Re  mental E  Range 8                        | 6 N S5. S20,000. \$0. S0. S5. S5. S5. S5. S5. S5. S5. S5. S5. S6. S6. S6. S6. S6. S6. S6. S6. S6. S6 | 11d 15 16d 000 \$ 300 Y Y 500 500 300 Y Y Y S00 500 300 Y Y Y Y S00 500 300 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | \$16.00 Mid 530,000.00 (\$3.33 n/a 1/a \$28.00 \$28.00 \$28.00 \$34.00 \$12.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a sq. ft. n/a each sq. ft. n/a sq. ft. sq. f | Mid<br>\$0.31<br>Mid<br>Y<br>\$0.01<br>Yes<br>\$0.09<br>\$0.09<br>\$0.01<br>\$0.01<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50  /o   /o   /o   /o   /o   /o   /o   /o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| reduction Y Y N N N N N N N Y Y Y Y Y Y A Catego                                                    | Y-L<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y<br>Y                                  | NOW LOW LOW LOW NOW NOW NOW NOW NOW NOW NOW NOW NOW N   |            | N Y Y Y Y Y Y Y Y Y Y Y Infiltra                                       | y N Y Y Y Y Y Y Y Y N Catego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y 1.0 ft/s  Y Y Y Y Y Y Y Y Y SIErr ry and ry)                                            | Rang Rang A in  vironmen High Benet | e 50%-1000 0% 25% 25% 10% Y Y Y tal Benefit or Re mental E Range 8.                                                         | 6 N S S S S S S S S S S S S S S S S S S                                                              | 11d 15 16d 000 \$ 300 Y Y 500 500 300 Y Y Y S00 500 300 Y Y Y Y S00 500 300 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | \$16.00 Mid (\$30,000.00 (\$3.33 n/a n/a \$28.00 (\$528.00 (\$53.40 (\$534.00 (\$12.00 (\$N )]) Mid (\$10.00 (\$N )] Mid (\$N ) Mid | n/a sq. ft. n/a each sq. ft. n/a sq. ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mid 50.31 Mid Fig. 1 M                                                                                                                                                                                                                                                               | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50 n/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N                                                                                                   | y y y y y y y y y y                                                               | NOW LOW LOW LOW NOW NOW NOW NOW NOW NOW NOW NOW NOW N   |            | N Y Y Y Y Y Y Y Y Y Y Infiltra                                         | Y N Y Y Y Y Y Y Y N  Catego Catego Catego ention (Ba attion trendation trenda | y 1.0 ft/s  Y Y Y Y Y Y Y GI Er  ry and ry)  ches ches                                    | Rang Rang A in  vironmen High Benet | e 50%-1009 ge 50%-1009 0% 255% 10% Y Y Y 0% ttal Benefit or Re mental E Range 8 10 10                                       | 55. 55. 55. 55. 55. 55. 55. 55. 55. 55.                                                              | Aid 15                                                                                                        | \$16.00 Mid \$30,000.00 \$3.33 n/a \$28.00 \$528.00 \$528.00 \$528.00 \$528.00 \$528.00 \$520.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a sq. ft. n/a each sq. ft. n/a sq. ft. n/a sq. ft. sq. ft. sq. ft. sq. ft. odd Catego Catego Catego Gere Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mid 50.31 Mid 7 9 50.01 Yes 50.09 50.01 \$0.01 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50  \[ \lambda \] \[ \l |
| reduction Y Y N N N N N N N Y Y Y Y Y Y A Catego                                                    | y y y y y y y y y y                                                               | NOW LOW LOW LOW NOW NOW NOW NOW NOW NOW NOW NOW NOW N   |            | GI Mair<br>(Sul                                                        | y  Y  N  Y  Y  Y  Y  Y  Y  Y  Y  N  Catego  Catego  Catego  cation trene  ation trene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y 1.0 ft/s Y Y Y Y Y GI Er ry and ry) sins)                                               | Rang Rang A in  vironmen High Benet | e 50%-1009 ge 50%-1009 0% 255% 10% Y Y Y 0% ttal Benefit or Re mental E Range 8 10 10                                       | 6 N S S S S S S S S S S S S S S S S S S                                                              | Aid 15                                                                                                        | \$16.00 Mid (\$30,000.00 (\$3.33 n/a n/a \$28.00 (\$528.00 (\$53.40 (\$534.00 (\$12.00 (\$N )]) Mid (\$10.00 (\$N )] Mid (\$N ) Mid | n/a sq. ft. n/a each sq. ft. n/a sq. ft. n/a sq. ft. sq. ft. sq. ft. sq. ft. odd Catego Catego Catego Gere Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mid 50.31 Mid 7 9 50.01 Yes 50.09 50.01 \$0.01 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50 n/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1/a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| reduction Y Y N N N N N N N Y Y Y Y T Catego  Suspended : al Phosphorotal Nitroge Metals            | y-t-t-y                                                                           | Now Low Low Low N N N Y Y Y T T T T T T T T T T T T T T |            | GI Mair<br>(Sul<br>Biorete<br>Infiltra<br>Permea                       | y N Y Y Y Y Y Y Y Y Y Y N  Catego Catego ention (Bation trendation | y 1.0 ft/s  Y Y Y Y Y Y Y Y Y Y SIE  GI Er  ry and ry)  sins)                             | vironmen High Benet                 | e 50%-100: ge 50%-100: 0% 255% 25% 10% Y Y O% ital Ben: fit or Re mental E Range 8: 10 10                                   | 6 h h 6 520,000. 520,000. 520,000. 55.55. 55.55. 55.55. 55.55. 55.55. 55.55.                         | Aid 15                                                                                                        | \$16.00 Mid \$30,000.00 \$3.33 n/a \$28.00 \$528.00 \$528.00 \$528.00 \$528.00 \$528.00 \$520.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/a sq. ft. n/a each sq. ft. n/a sq. ft. n/a sq. ft. sq. ft. sq. ft. sq. ft. odd Catego Catego Catego Gere Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mid 50.31 Mid 7 9 50.01 Yes 50.09 50.01 \$0.01 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n n sq. n N sq. N N sq. sq. sq. sq. sq. sq. sq. sq. sq. N | ft. 25-50  \[ \lambda \] \[ \l |
| N                                                                                                   | y-t-t-y                                                                           | Now Low Low Low N N N Y Y Y T T T T T T T T T T T T T T |            | GI Mair<br>(Sul<br>Biorete<br>Infiltra<br>Permea                       | y  Y  N  Y  Y  Y  Y  Y  Y  Y  Y  N  Catego  Catego  Catego  cation trene  ation trene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y 1.0 ft/s  Y Y Y Y Y Y Y Y Y Y SIE  GI Er  ry and ry)  sins)                             | vironmen High Benet                 | e 50%-100: ge 50%-100: 0% 255% 25% 10% Y Y O% ital Ben: fit or Re mental E Range 8: 10 10                                   | 55. 55. 55. 55. 55. 55. 55. 55. 55. 55.                                                              | Aid 15                                                                                                        | \$16.00 Mid \$30,000.00 \$3.33 n/a \$28.00 \$28.00 \$34.00 \$12.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a sq. ft. n/a each sq. ft. n/a sq. ft. n/a sq. ft. sq. ft. sq. ft. sq. ft. odd Catego Catego Catego Gere Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mid \$0.31 Mid V \$0.01 Yes \$0.09 \$0.01 \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.02 Y | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50  \[ \lambda \] \[ \l |
| reduction Y Y N N N N N N N Y Y Y Y T Catego  Suspended : al Phosphor otal Nitroge Metals           | y-t-t-y                                                                           | Now Low Low Low N N N Y Y Y T T T T T T T T T T T T T T |            | GI Mair<br>(Sul<br>Biorete<br>Infiltra<br>Infiltra<br>Permea           | y N Y Y Y Y Y Y Y Y Y Y N  Catego Catego ention (Bation trendation | y 1.0 ft/s  Y Y Y Y Y Y GI Er  ry and ry)  sins) ches ches ches ches                      | vironmen High Benet                 | e 50%-100: ge 50%-100: ge 50%-100: 0% 25% 25% 10% Y Y O% ttal Benefit or Re mental E Range 8: 10 10 Range 9:                | 6 h h 6 520,000. 520,000. 520,000. 55.55. 55.55. 55.55. 55.55. 55.55. 55.55.                         | Aid 15                                                                                                        | \$16.00 Mid \$30,000.00 \$3.33 n/a \$28.00 \$28.00 \$34.00 \$12.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a sq.ft. n/a each sq.ft. n/a n/a sq.ft. sq.ft. sq.ft. sq.ft. sq.ft. order Catego Catego Catego Con ( Bicker Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid \$0.31 Mid V \$0.01 Yes \$0.09 \$0.01 \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.02 Y | Mid<br>\$0.61<br>Mid<br>N<br>\$0.07<br>n/a<br>\$0.23<br>\$0.23<br>\$0.23<br>\$0.23<br>N<br>Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50   \( \frac{1}{2} \)  |
| reduction Y Y N N N N N N N Y Y Y Y T Catego  Suspended : al Phosphor otal Nitroge Metals           | y-t-t-y                                                                           | Now Low Low Low N N N Y Y Y T T T T T T T T T T T T T T |            | GI Mair<br>(Sul<br>Biorete<br>Infiltra<br>Infiltra<br>Permea           | y N Y Y Y Y Y Y Y Y Y Y N  Catego Catego Catego ention (Ba ation trendation t | y 1.0 ft/s  Y Y Y Y Y Y GI Er  ry and ry)  sins) ches ches ches ches                      | vironmen High Benet                 | e 50%-100° ge 50%-100° 0% 25% 25% 10% 7 7 7 9 6tal Benefit or Re mental E Range 8 10 10 Range 9                             | \$ 6                                                                                                 | Aid 15                                                                                                        | \$16.00 Mid \$30,000.00 \$3.33 n/a \$28.00 \$28.00 \$34.00 \$12.00 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a sq.ft. n/a each sq.ft. n/a n/a sq.ft. sq.ft. sq.ft. sq.ft. sq.ft. order Catego Catego Catego Con ( Bicker Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid \$0.31 Mid V \$0.01 Yes \$0.09 \$0.01 \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.01 Y \$0.02 Y | Mid \$0.61 Mid N SO.07 n/a so.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50   \( \frac{1}{2} \)  |
| reduction Y N N N N N N N Y Y Y Y T Catego  Suspended 3 al Phosphonotal Nitroge Metals  Organism re | y y y y y y y y y y                                                               | N N N N N N N N N N N N N N N N N N N                   |            | GI Main<br>(Sul<br>Biorete<br>Infiltra<br>Permea<br>Porous<br>Infiltra | y N Y Y Y Y Y Y Y Y Y N  Catego Categ | y  v  v  loft/s  y  y  y  y  y  y  y  y  y  y  y  y  hes  ches  ches  ments- caving  ches | Rang Rany Vironmen High Benet       | e 50%-100° ge 50%-100° 0% 25% 25% 10% 7 7 7 9 6tal Benefit or Re mental E Range 8 10 10 Range 9                             | \$ 6                                                                                                 | Aid 15                                                                                                        | 516.00 Mid 300,000.00 53.33 n/a n/a 0,28.00 528.00 534.00 512.00 N  GI Main Sub Bioretenti Vegativ Perme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a sq.ft. n/a each sq.ft. n/a each sq.ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mid S0.31 Mid Y S0.01 Yes S0.09 S0.09 S0.01 Y                                                                                                                                                                                                                                                                | Mid \$0.61 Mid N SO.07 n/a so.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50   v/a     v/ |
| reduction Y Y N N N N N N N Y Y Y Y T Catego  Suspended : al Phosphor otal Nitroge Metals           | y y y y y y y y y y                                                               | N N N N N N N N N N N N N N N N N N N                   |            | GI Main<br>(Sul<br>Biorete<br>Infiltra<br>Permea<br>Porous<br>Infiltra | y N Y Y Y Y Y Y Y Y Y Y N  Catego Catego Catego ention (Ba ation trendation t | y  v  v  loft/s  y  y  y  y  y  y  y  y  y  y  y  y  hes  ches  ches  ments- caving  ches | Rang Rany Vironmen High Benet       | e 50%-100° ge 50%-100° 0% 25% 25% 10% 7 7 7 9 6tal Benefit or Re mental E Range 8 10 10 Range 9                             | \$ 6                                                                                                 | Aid 15                                                                                                        | 516.00 Mid 300,000.00 53.33 n/a n/a 0,28.00 528.00 534.00 512.00 N  GI Main Sub Bioretenti Vegativ Perme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/a sq.ft. n/a each sq.ft. n/a n/a sq.ft. sq.ft. sq.ft. sq.ft. sq.ft. order Catego Catego Catego Con ( Bicker Filter oswale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mid So.31 Mid Y So.01 Yes So.09 So.09 So.01 So.01 Y So.01 Yes So.09 So.09 So.09 So.01 So.01 Y                                                                                                                                                                                                                                                                | Mid \$0.61 Mid N SO.07 n/a so.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.23 \$0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50   \( \frac{1}{2} \)  |
| reduction Y N N N N N N N Y Y Y Y T Catego  Suspended 3 al Phosphonotal Nitroge Metals  Organism re | y-L<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y<br>y                                  | N N N N N N N N N N N N N N N N N N N                   |            | GI Main Y Y Y Y Y Y Y Y Infiltra Infiltra Permea Porous Infiltra       | y N Y Y Y Y Y Y Y Y Y N  Catego Categ | y y y y y y y y y y y y y y y y y y y                                                     | Rang Rany Vironmen High Benet       | e 50%-100* ge 50%-100* ge 50%-100* 0% 25% 25% 10% Y Y 0% tal Ben- fit or Re mental E Range 8: 10 10 10 Range 9: 10 er Impro | \$ 6                                                                                                 | fild 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                   | 516.00 Mid 30,000.00 53.33 n/a n/a 528.00 528.00 534.00 512.00 N  GI Main Sub Bioretenti Vegativ Bi Enhance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/a sq.ft. n/a each n/a each n/a each n/a sq.ft. n/a sq.ft. sq.ft | Mid So.31 Mid Y So.01 Yes So.09 So.09 So.01 So.01 Y So.01 Yes So.09 So.09 So.09 So.01 So.01 Y                                                                                                                                                                                                                                                                | Mid 50.61 Mid 50.61 Mid Mid N | n<br>n<br>sq.<br>n<br>N<br>N<br>sq.<br>sq.<br>sq.<br>sq.  | ft. 25-50   v/a     v/ |

**Figure 5-5** Examples of GI repository spreadsheet (top) and GI environmental benefits summary (bottom).

bioretention basins are mostly applicable for arterial roadways but permeable pavements are mostly not suitable for that type of roadway, exceptions are due to specific site requirements such as maximum slope. To compile a comprehensive database, the team thoroughly researched Gls that have the potential or that are currently being used across the US including municipalities, states, and federal government. After gathering this information, standards and classifications of different Gl practices were cataloged based on their limitations, design requirements, costs, and benefits. The Gl repository includes 12 main categories: Bioretention, Enhanced Swales, Vegetative Filter Strips, Grass Channels, Permeable Pavements, Basins, Infiltration Beds/Basins, Landform Grading, Manufactured Treatment Devices, Wetlands, Amended Soils, and Land Conservation/Restoration. These 12 main categories are further subcategorized into more than 30 Gl measures. Standards and classification categories are: Roadway Classification, Site Requirements, Subgrade Requirements, Set Back Requirements, Environmental Benefits, Stormwater Improvements, and Cost Considerations.


The framework developed in this study includes a comprehensive, searchable database of GI practices in which environmental, social and economic benefits are quantified and monetized so that SDOTs and practitioners can assess the costs and applicability of GI for transportation projects. The quantification methods used in this toolbox take into account spatial and temporal variables, as well as the hierarchy of importance concluded from the AHP. This study is a further step in producing a standardized method of quantifying GI features and can assist SDOTs in accurate cost-benefit analysis for GI implementation. Furthermore, this toolbox assesses environmental and social impacts in addition to the economic benefits which traditional infrastructure planning has prioritized, thus promoting the use of GI and LID practices over gray infrastructure determined by real-time and space cost-benefit evidence.

Further quantification and integration of *indirect* economic costs should be added to this framework to add further accuracy to the cost-benefit analysis. This study did not take into consideration the extent of economic costs avoided by GI practices compared to gray infrastructure. For example, although 'reduced flood damage' was considered in economic costs, the avoided expenses from remediating other wet weather damages possibly exacerbated by traditional infrastructure such as combined sewer overflows (CSO) or property erosion were not. Undoubtedly, quantifying these hypothetical costs proves challenging, but should not be ignored. Savings enabled by GI practices transcend economic benefits, the social and environmental benefits of CSO prevention and deterring bank erosion is substantial, but perhaps even more difficult to quantify.

## 5.3 Case Study

The results of this case study explicitly show the quantification and monetization of the economic, environmental, and social impacts of implementing GI in a project site. The end result of the toolbox, when benefits are quantified, offers the user a comparative analysis portrayed as a 'Weight by Density' graph concluding the best scenario in terms of benefits, as it equates to the quantified values. Scenario 1, analyzing rain harvesting with a cistern, and Scenario 2, analyzing a bioretention system, for the same project site were considered with the toolbox, comparing their quantified economic, environmental, and social impacts. Scenario 2—implementing bioretention—was identified as the better option—over Scenario 1. The results of 'Quantifying Benefits' produces a weight by density graph portraying the profiles compared, the profile with

the greater weight density is determined to be the better option, regarding the quantified and monetized economic, environmental, and social impacts.



**Figure 5-6** 'Weight by Density' graph showing the results of the case study's comparative analysis between Scenario 1 and Scenario 2. Scenario 2 was found to be the better option.

The case study results determining Scenario 2 as the better option was not overtly surprising, since the bioretention system offers much greater monetized environmental and social benefits (\$37,593.81/year and a monetary gain of \$120,000, respectively) compared to a cistern (\$3,009.26/year and \$0, respectively), despite its much greater capital cost (\$178,056). However, Scenario 1 and Scenario 2 were compared again with a singular change: leaving the 'Social Impacts' of Scenario 2 blank. Meaning all values described above remained the same; however, the social impacts (i.e., enhanced property value and recreational use) were left blank for both Scenario 1 and Scenario 2. Surprisingly, Scenario 2 remained the better option and highlights just how financially impactful long-term benefits can be over short-term capital costs. The cistern scenario undoubtedly offered a substantially lower capital cost (\$9,948.40 versus the bioretention's \$178,056.00), but still was not the best option since the bioretention scenario's environmental and social benefits quickly surpass the cistern's combined impacts. This case study will resonate well with anyone who has ever implemented TI over GI based solely on initial capital costs, which is often the reason TI is chosen over GI. Implementing GI elements may appear disadvantageous if only considering the capital costs, but when all other costs are considered—environmental and social—the overall cost of GI is considerably lower than TI.

There are several limitations to the toolbox and associated frameworks that require further research and implementation. Multiple profiles can be created in the tool to analyze numerous GI scenarios; however, the tool is only presently capable of comparing two profiles at once and to compare three or more profiles, individually paired comparisons must be performed. The framework does not account for the direct benefits of transportation infrastructure, such as congestion reduction, travel time reduction, and fuel savings. This omission was based on the assumption that GI elements would not influence these direct benefits. Further research is needed to substantiate this assumption. As of now, there is no way to validate the results of the social benefit quantification frameworks. Most of the frameworks are also based on methods

that are survey based which still brings some subjectivity into the assessment. However, a benchmark can be set by authorities to follow on a local/state/federal scale to assess all the projects on a general scale. The Likert scale—used in the surveys—was based in such a way that the survey did not have the scope to facilitate the participants to deem the GI is inefficient when compared to TI. Instead of having only positive choices, there should also be some choices from the other side of the spectrum which would make this framework more valid. Additionally, the toolbox may exhibit some bias due to the limited participation of only 18 SDOTs in the survey. The survey serves as a tool for assessing the relative significance of economic, environmental, and social aspects of GI. To mitigate potential bias, obtaining more responses from SDOTs is essential.

## Chapter 6 Conclusion

Green Infrastructure (GI) is rapidly gaining acceptance as an alternative to traditional infrastructure due to its multifold benefits. GI can provide economic, environmental, and social benefits to the community and to society. However, unlike economic benefits, the environmental and social benefits of GI are challenging to quantify which is why they are often overlooked when comparing the benefits of GI to other alternative options like gray/traditional infrastructure. Incorporating the environmental and social benefits into the cost-benefit assessment framework can make GIs much more attractive alternatives to policymakers. Which is why this study aimed to develop a tool that can be used by practitioners to assess the environmental and social benefits along with economic benefits of GI practices. But most importantly, environmental and social benefits will no longer be overlooked and disused, this toolbox can undoubtedly lead to increased implementation of GI practices and in turn will benefit the environment, the community, and its citizens. The environmental and social impacts assessed with the toolbox are equally benefits, and so used synonymously. For example, the social impacts of reducing urban heat, increasing green spaces that can be used as parks, and eliminating potential sanitation hazards like combined sewer overflows are all undeniably advantageous. Similarly, environmental impacts of improved water and air quality, reduced stormwater runoff and increased groundwater recharge are easily identified as beneficial.

This framework incorporates the Analytical Hierarchy Process and Monte Carlo simulation to integrate GI's social benefits and public opinion into the decision-making process and determine the effectiveness of different alternatives in accruing monetary gain from benefits over the lifetime of the project. With the tool developed in this study, departments of transportation across the U.S. can efficiently and accurately assess the applicability of GI and LID practices based quantified benefits—environmental, social and economic—not just the economic impacts. This cost-benefit analysis is based on real-time and space variables, with the hierarchy of importance and public opinion considered. It will surely improve the analysis of GI measures for their use in transportation infrastructure projects, as we move toward further sustainability and improving social welfare.

With less than half of the nation's SDOTs conducting GI analysis for transportation projects, and only a little more than half of *these* analysis consider social, environmental, and economic benefits, TDOT can use this toolbox to lead the nation in efficient and effective GI analysis and implementation. In analyzing GI in terms of social, environmental, and economic impacts, TDOT will not only be able to unveil aspects of a cost-benefit analysis they and many other SDOTs have been ignoring and/or missing, but they will also be ahead of many agencies since nearly a third of SDOTs do no assessment of social impacts when analyzing GI for transportation projects.

## References

- [1] C. Davies, C. McGloin, R. MacFarlane, and M. Roe, "Green infrastructure planning guide project: Final report," *NECF, Annfield Plain,* 2006.
- [2] A. Khattak, M. Noltenius, C. Cherry, D. Greene, M. Zhang, and R. Arvin, "Green Generates Green," Tennessee. Department of Transportation, 2018.
- [3] L. Liu and M. B. Jensen, "Green infrastructure for sustainable urban water management: Practices of five forerunner cities," *Cities*, vol. 74, pp. 126-133, 2018.
- [4] R. E. Pitt and J. Voorhees, "Modeling green infrastructure components in a combined sewer area," *Journal of Water Management Modeling*, 2011.
- [5] T. Semeraro, A. Pomes, C. Del Giudice, D. Negro, and R. Aretano, "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," *Energy Policy,* vol. 117, pp. 218-227, 2018.
- [6] E. National Academies of Sciences and Medicine, "Cost/Benefit Analysis of Converting a Lane for Bus Rapid Transit—Phase II Evaluation and Methodology," 2011.
- [7] E. Wang, Z. Shen, and K. Grosskopf, "Benchmarking energy performance of building envelopes through a selective residual-clustering approach using high dimensional dataset," *Energy and Buildings*, vol. 75, pp. 10-22, 2014.
- [8] M. A. Mostafa and N. M. El-Gohary, "Stakeholder-sensitive social welfare-oriented benefit analysis for sustainable infrastructure project development," *Journal of Construction Engineering and Management*, vol. 140, no. 9, p. 04014038, 2014.
- [9] D. Gallet, "The Value of green infrastructure: a guide to recognizing its economic, environmental and social benefits," in *WEFTEC 2011*, 2011: Water Environment Federation, pp. 924-928.
- [10] R. Raucher and J. Clements, "A triple bottom line assessment of traditional and green infrastructure options for controlling CSO events in Philadelphia's watersheds," in *WEFTEC 2010*, 2010: Water Environment Federation, pp. 6776-6804.
- [11] R. T. N. TERRY BELLAMY, MUHAMMED KHALID, RAVINDRA GANVIR, WASI KHAN, "GREEN INFRASTRUCTURE STANDARDS," 2014. [Online]. Available: <a href="https://ddot.dc.gov/sites/default/files/dc/sites/ddot/publication/attachments/2014-0421-DDOT%20Green%20Infrastructure%20Standards.pdf">https://ddot.dc.gov/sites/default/files/dc/sites/ddot/publication/attachments/2014-0421-DDOT%20Green%20Infrastructure%20Standards.pdf</a>
- [12] C. Clark, B. Busiek, and P. Adriaens, "Quantifying thermal impacts of green infrastructure: Review and gaps," in *Cities of the Future/Urban River Restoration Conference 2010*, 2010: Water Environment Federation, pp. 69-77.
- [13] E. Kuehler, J. Hathaway, and A. Tirpak, "Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network," *Ecohydrology*, vol. 10, no. 3, p. e1813, 2017.
- [14] P. Kumar *et al.*, "The nexus between air pollution, green infrastructure and human health," *Environment international*, vol. 133, p. 105181, 2019.
- [15] K. C. Strong, M. E. Ozbek, A. Sharma, and D. Akalp, "Decision support framework for transitoriented development projects," *Transportation research record*, vol. 2671, no. 1, pp. 51-58, 2017.
- [16] R. F. M. Ameen, M. Mourshed, and H. Li, "A critical review of environmental assessment tools for sustainable urban design," *Environmental Impact Assessment Review*, vol. 55, pp. 110-125, 2015.

- [17] T. L. Ramani, J. Zietsman, W. E. Knowles, and L. Quadrifoglio, "Sustainability enhancement tool for state departments of transportation using performance measurement," *Journal of Transportation Engineering*, vol. 137, no. 6, pp. 404-415, 2011.
- [18] Y. Liang, M. Du, X. Wang, and X. Xu, "Planning for urban life: A new approach of sustainable land use plan based on transit-oriented development," *Evaluation and program planning,* vol. 80, p. 101811, 2020.
- [19] A. D. May, "Encouraging good practice in the development of Sustainable Urban Mobility Plans," *Case studies on transport policy*, vol. 3, no. 1, pp. 3-11, 2015.
- [20] N. O. Bonsu, J. TyreeHageman, and J. Kele, "Beyond agenda 2030: Future-oriented mechanisms in localising the sustainable development goals (SDGs)," *Sustainability*, vol. 12, no. 23, p. 9797, 2020.
- [21] J. Ang-Olson, *Cost/benefit Analysis of Converting a Lane for Bus Rapid Transit: Phase II Evaluation and Methodology.* Transportation Research Board, 2011.
- [22] C. Systematics, "Assessing the economic benefit of transportation infrastructure investment in a mature surface transportation system," *The National Cooperative Highway Research Program, NCHRP Project,* pp. 20-24, 2012.
- [23] L. Zhang and N. M. El-Gohary, "Quantifying the Environmental, Social, and Economic Value of Educational Building Projects using BIM Data," in *Computing in Civil and Building Engineering* (2014), 2014, pp. 203-210.
- [24] D. J. Forkenbrock, S. Benshoff, and G. E. Weisbrod, *Assessing the social and economic effects of transportation projects*. Transportation Research Board Iowa City, IA, USA, 2001.
- [25] G. Atkins, N. Davies, and T. Kidney Bishop, "How to value infrastructure: Improving cost benefit analysis," *Project Management Institute. Institute for Government,* 2017.
- [26] J. Faulin, S. E. Grasman, A. A. Juan, and P. Hirsch, "Sustainable transportation: concepts and current practices," in *Sustainable transportation and smart logistics*: Elsevier, 2019, pp. 3-23.
- [27] A. Amedzuki, M. Meyer, and C. Ross, *Transportation planning for sustainability guidebook*. US Federal Highway Administration, 2011.
- [28] A. Eisenman, "Sustainable streets and highways: an analysis of green roads rating systems," 2012.
- [29] J. Lee, T. B. Edil, C. H. Benson, and J. M. Tinjum, "Use if BEST in-highways for green highway construction rating in Wisconsin," in *Green Streets and Highways 2010: An Interactive Conference on the State of the Art and How to Achieve Sustainable Outcomes*, 2010, pp. 480-494.
- [30] J. M. Diaz-Sarachaga, D. Jato-Espino, B. Alsulami, and D. Castro-Fresno, "Evaluation of existing sustainable infrastructure rating systems for their application in developing countries," *Ecological indicators*, vol. 71, pp. 491-502, 2016.
- [31] C. McAndrews and J. Marcus, "The politics of collective public participation in transportation decision-making," *Transportation Research Part A: Policy and Practice*, vol. 78, pp. 537-550, 2015.
- [32] L. Wang, X. Xue, Z. Zhao, and Z. Wang, "The impacts of transportation infrastructure on sustainable development: Emerging trends and challenges," *International journal of environmental research and public health,* vol. 15, no. 6, p. 1172, 2018.
- [33] T. L. Saaty, "The analytic process: planning, priority setting, resources allocation," *McGraw, New York,* 1980.
- [34] L. G. Vargas, "An overview of the analytic hierarchy process and its applications," *European journal of operational research*, vol. 48, no. 1, pp. 2-8, 1990.
- [35] C. Z. Mooney, Monte carlo simulation (no. 116). Sage, 1997.
- [36] M. Creutz, "Overrelaxation and monte carlo simulation," *Physical Review D,* vol. 36, no. 2, p. 515, 1987.

- [37] P. P. Alliance, "How much value does the City of Philadelphia receive from its park and recreation system," *A report by the Trust for Public Land's Centre for City Park Excellence for the Philadelphia Parks Alliance. Philadelphia, USA,* 2008.
- [38] J. Clements, "Economic Framework and Tool for Quantifying and Monetizing the Triple Bottom Line Benefits and Costs of Green Stormwater Infrastructure," in *WEFTEC 2021*, 2021: Water Environment Federation.
- [39] U. S. A. C. O. ENGINEERS. "Economic Guidance Memorandum, 22-03, Unit Day Values for Recreation for Fiscal Year 2022 " U.S. ARMY CORPS OF ENGINEERS <a href="https://planning.erdc.dren.mil/toolbox/library/EGMs/EGM22-03.pdf">https://planning.erdc.dren.mil/toolbox/library/EGMs/EGM22-03.pdf</a> (accessed 2022).
- [40] C. Koppe, S. Kovats, G. Jendritzky, and B. Menne, *Heat-waves: risks and responses* (no. EUR/03/5036810). World Health Organization. Regional Office for Europe, 2004.
- [41] A.-J. Valleron and A. Boumendil, "Epidemiology and heat waves: analysis of the 2003 episode in France," *Comptes rendus biologies*, vol. 327, no. 12, pp. 1125-1141, 2004.
- [42] R. Kaiser, A. Le Tertre, J. Schwartz, C. A. Gotway, W. R. Daley, and C. H. Rubin, "The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality," *American journal of public health*, vol. 97, no. Supplement\_1, pp. S158-S162, 2007.
- [43] S. M. Bernard and M. A. McGeehin, "Municipal heat wave response plans," *American journal of public health*, vol. 94, no. 9, pp. 1520-1522, 2004.
- [44] J. C. Semenza, J. E. McCullough, W. D. Flanders, M. A. McGeehin, and J. R. Lumpkin, "Excess hospital admissions during the July 1995 heat wave in Chicago," *American journal of preventive medicine*, vol. 16, no. 4, pp. 269-277, 1999.
- [45] M. E. Mercado, A. B. Hudischewskyj, S. G. Douglas, and J. R. Lundgren, "Meteorological and air quality modeling to further examine the effects of urban heat island mitigation measures on several cities in the northeastern US," *San Rafael, CA: ICF Consulting,* 2001.
- [46] D. J. Sailor, "Streamlined mesoscale modeling of air temperature impacts of heat island mitigation strategies," *Final report. Portland, OR: Portland State University. Available: web. cecs. pdx. edu/~ sailor/FinalStreamlineReportEPA2003. pdf [accessed 13 July 2006],* 2003.
- [47] C. Rosenzweig, W. D. Solecki, and R. B. Slosberg, "MITIGATING NEW YORK CITY'S HEAT ISLAND WITH URBAN FORESTRY, LIVING ROOFS, AND LIGHT SURFACES NEW YORK CITY REGIONAL HEAT ISLAND INITIATIVE," 2006.
- [48] L. S. Kalkstein and S. C. Sheridan, "The impact of heat island reduction strategies on health-debilitating oppressive air masses in urban areas," *Prepared for US EPA Heat Island Reduction Initiative*, 2003.
- [49] EPA. "Guidelines for Performing Economic Analyses. External Review Draft (original version issued in 2000). U.S. Environmental Protection Agency." <a href="http://yosemite.epa.gov/ee/epa/eermfile.nsf/vwAN/EE-0516-01.pdf/\$File/EE-0516-01.pdf">http://yosemite.epa.gov/ee/epa/eermfile.nsf/vwAN/EE-0516-01.pdf/\$File/EE-0516-01.pdf</a>. (accessed.
- [50] B. Ward, E. MacMullan, and S. Reich, "The effect of low-impact-development on property values," *Proceedings of the Water Environment Federation*, vol. 2008, no. 6, pp. 318-323, 2008.
- [51] S. Schultz and N. Schmitz, "How Water Resources Limit and/or Promote Residential Housing Developments in Douglas County," *University of Nebraska-Omaha Research Center*, vol. 1, p. 2008, 2008.
- [52] E. G. McPherson *et al.*, "Piedmont community tree guide: benefits, costs, and strategic planting," *Gen. Tech. Rep. PSW-GTR-200. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station.* 99 p, vol. 200, 2006.
- [53] S. M. Wachter and G. W. Bucchianeri, "What is a tree worth? Green-city Strategies and Housing Prices," *Green-City Strategies and Housing Prices (July 2006)*, 2006.

- [54] L. M. Anderson and H. K. Cordell, "Influence of trees on residential property values in Athens, Georgia (USA): A survey based on actual sales prices," *Landscape and urban planning,* vol. 15, no. 1-2, pp. 153-164, 1988.
- [55] I. The Louis Berger Group, "Green Collar Jobs Demand Analysis Final Report ", 2008. [Online]. Available:

  <a href="https://planning.dc.gov/sites/default/files/dc/sites/op/publication/attachments/dc\_green\_jobs-final\_report.pdf">https://planning.dc.gov/sites/default/files/dc/sites/op/publication/attachments/dc\_green\_jobs-final\_report.pdf</a>
- [56] E. Moore, H. Cooley, J. Christian-Smith, and K. Donnelly, "Sustainable water jobs," in *The world's water*: Springer, 2014, pp. 35-61.
- [57] WERF, "BMP and LID Whole Life Cost Models: Version 2.0. Project 1757.," 2009. [Online]. Available: <a href="https://www.waterrf.org/research/projects/bmp-and-lid-whole-life-costmodels-version-20">https://www.waterrf.org/research/projects/bmp-and-lid-whole-life-costmodels-version-20</a>.
- [58] D. R. Group, "Managing Street Trees as Green Infrastructure 2019 Cost Assessment," 2019. [Online]. Available: <a href="https://dochub.com/noelle-teghfg/qd0E4NeKgW0aXEMKJ9LYyj/cost-assessment-of-managing-street-trees-task-d-pdf?dt=C">https://dochub.com/noelle-teghfg/qd0E4NeKgW0aXEMKJ9LYyj/cost-assessment-of-managing-street-trees-task-d-pdf?dt=C</a> kDyLQVnbWMN sxq3bA
- [59] P. R. G. Layard, *Handbook of labor economics*. North-Holland, 1986.
- [60] J. S. Masur and E. A. Posner, "Regulation, unemployment, and cost-benefit analysis," *Va. L. Rev.*, vol. 98, p. 579, 2012.
- [61] W. Hewes, "Creating Jobs and Stimulating the Economy through Investment in Green Water Infrastructure," *American Rivers and Alliance for Water Efficiency*, 2008.
- [62] D. B. Booth, J. Leavitt, and K. Peterson, "The University of Washington Permeable Pavement Demonstration Project--Background and First-Year Field Results," University of Washington Water Center, 1996.
- [63] S. Wise *et al.*, "Integrating valuation methods to recognize green infrastructure's multiple benefits," in *Low impact development 2010: Redefining water in the city*, 2010, pp. 1123-1143.
- [64] M. Keeley, A. Koburger, D. P. Dolowitz, D. Medearis, D. Nickel, and W. Shuster, "Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee," *Environmental Management*, vol. 51, pp. 1093-1108, 2013.
- [65] Q. X. E. Gregory McPherson, James R. Simpson, Dennis R. Pettinger, Paula J. Peper, Donald R. Hodel. "Community Tree Guides." https://www.fs.usda.gov/psw/topics/urban forestry/products/tree guides.shtml (accessed.
- [66] E. Bean, W. Hunt, and D. Bidelspach, "A monitoring field study of permeable pavement sites in North Carolina," in *Eighth Biennial Stormwater Research and Watershed Management Conference*, 2005, pp. 57-66.
- [67] USEPA, "Low impact development (LID): A literature review," *United States Environmental Protection Agency Washington, DC,* 2000.
- [68] T. W. Board, "Texas Manual on Rainwater Harvesting," Austin, TX, 2005.
- [69] R. A. McLaughlin and A. Zimmerman, "Best Management Practices for Chemical Treatment Systems for Construction Stormwater and Dewatering," United States. Federal Highway Administration. Western Federal Lands Highway ..., 2009.
- [70] K. Abhijith *et al.*, "Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments–A review," *Atmospheric Environment*, vol. 162, pp. 71-86, 2017.
- [71] E. G. McPherson *et al.*, *Midwest community tree guide: benefits, costs, and strategic planting.* Pacific Southwest Research Station, Forest Service, US Department of Agriculture, 2006.
- [72] J. E. Stiglitz *et al.*, "Report of the high-level commission on carbon prices," 2017.
- [73] N. H. Stern, *The economics of climate change: the Stern review*. cambridge University press, 2007.

## **Appendices**

Appendices should be separated by category and may include correspondences, interview transcripts, non-textual elements, questionnaires or surveys, research instruments, sample calculations, or raw statistical data. Include raw data used in the making of the report. If the raw data is extensive and would be cumbersome to include, provide the documentation to TDOT Lead Staff and the Research Office in a separate, readable file. Deliverables that are separate from the research project should be provided separately in this manner as well.



## Quantification and Integration of Social Benefits of Green Infrastructure in Screening Transportation Project Alternatives

Md Kamrul Hasan Sabbir, Ignatius Fomunung, Casey Langford, Thomas Wilson, Jejal Reddy Bathi, Patrick Garner, Yu Liang, Mbaki A. Onyango

### Background

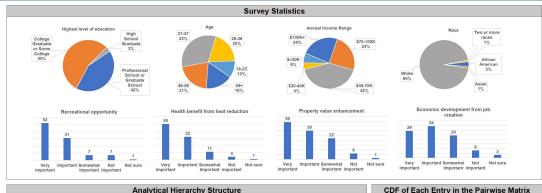
- Green infrastructure (GI) practices are being implemented in the US to promote economic development and improve quality of life.
- Examples of GI practices include green sidewalks, permeable pavement, bioretention etc.
- GI also brings social benefits in addition to economic and environmental benefits.

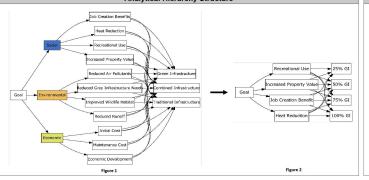
  Total description of the control of t
- Traditional infrastructure (TI) planning often ignores social benefits but incorporating them into costbenefit analysis can make GI more attractive.
- This research develops a framework which integrates social benefits into decision-making process and assesses the effectiveness of alternatives in monetary gain from social benefits over the lifetime of projects.

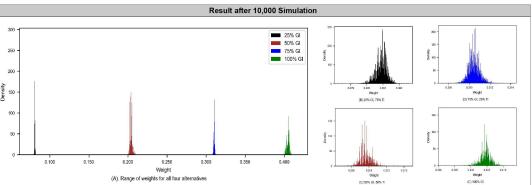
#### **Analytical Hierarchy Process**

- AHP involves breaking down a problem into a hierarchy of smaller, more manageable subproblems, and then evaluating them in relation to one another
- AHP uses a pairwise comparison method to assign weights to different options or criteria, allowing for a more objective and systematic approach to decision making
- approach to decision-making.
   AHP can be useful in helping to identify the most important factors in a decision, and in providing a clear and defensible rationale for the final decision made.

### Monte-Carlo Simulation


- Monte Carlo simulation is a computational method that uses random samples to track behavior and determine the sensitivity and uncertainty of a statistic.
- The method is useful for dealing with subjective expert opinions or personal preferences when applying weights.
- The steps for Monte Carlo simulation include establishing the distribution function and probability cumulative distribution for each outlined uncertainty generating a random number, and assigning values using the probability cumulative distribution.
   The final step is to draw the target function's
- The final step is to draw the target function's probability cumulative distribution.
   The Monte Carlo simulation method is useful for
- The Monte Carlo simulation method is useful for quantifying uncertainty and sensitivity in statistical analysis.


### Methodology


- The first hierarchy structure in the figure 1 can be used to determine the best choice among green infrastructure (GI), traditional infrastructure, and combined infrastructure.
- The research reported here considers only the social impacts and determines the efficiency of infrastructure based on its social impacts.
- The resulting hierarchy structure in the figure 2 considers only the social impacts and has four criteria: recreational use, heat reduction, job creation, and enhanced property value.
- A survey with 98 responses was conducted and used to rank the importance of GI in contributing to the social aspects of GI
- The survey results were used to construct 93 pairwise matrices, one for each participant, which compare the relative efficiency of each criteria.
   Six cumulative distributive functions (CDFs) were
- extracted for each entry in the pairwise matrix.

  7. Second level pairwise matrices were populated by comparing the monetary gain from different
- aspects.

  8. The weights were used to determine the priority of







#### Result and Conclusion

- The 100% GI option is the most efficient choice for earning monetary value from social aspects.
- A novel framework was developed for determining the effectiveness of different alternatives in accruing monetary gain from social aspects.
- Monte Carlo simulation was used to handle randomness in public acceptance and the AHP was used to transform subjectivity into a quantifiable system.
- Social benefit assessment frameworks are effective in determining monetary gain across different spatial and temporal variables.
- The framework is flexible and can be used to consider social, environmental, and economic aspects.

#### Limitations

- The framework has a limited Likert scale that only allows for positive choices, which limits its validity.
- The AHP may not be necessary for determining the efficiency of GI compared to TI, but it is useful for considering environmental and economic aspects in a larger framework.
- The results of the social benefit quantification
- frameworks cannot currently be validated.

  Most of the frameworks rely on survey-based methods, which introduces subjectivity into the assessment

g 0.6

300.

08-

806

§ 0.4

#### Future Work

- An improved survey with a Likert scale having both positive and negative responses can be utilized to modify the framework.
- Similar method will be implemented for environmental and economic aspects to functionalize the comprehensive framework in figure 1.
- Further research is required to validate the result regarding the monetary gain from social benefits.
- regarding the monetary gain from social benefits.
   A benchmark set by authorities can be developed to assess all projects on a general scale.

### Acknowledgement

This research was sponsored by the Tennessee Department of Transportation (TDOT) grant no. RES2021-06. The authors also extend their gratitude to the Department of Civil Engineering of The University of Tennessee at Chattanooga.

#### References

- Saaty, T. L. What is the analytic hierarchy process?In Mathematical models for decision
- support, Springer, 1988. pp. 109-121.

  2. Mooney, C. Z. Monte carlo simulation. Sage, 1997.

  3. Kalkstein, L. S. and S. C. Sheridan. The impact of
- Kalkstein, L. S., and S. C. Sheridan. The impact of heat island reduction strategies on healthdebilitating oppressive air masses in urban areas. Prepared for US EPA Heat Island Reduction Initiative, 2003.
- EPA. Guidelines for Performing Economic Analyses. External Review Draft (original version issued in 2000). U.S. Environmental Protection Agency. http://yosemite.epa.gov/ee/epa/germfile.nsf/ywAN
- http://osemitle.epa.gov/ee/epa/eermfile.nsf/vvAN/ E-0516-01.pdf/sFilerE-0516-01.pdf. 5 Ward, B., E. MacMullan, and S. Reich. The effect of low-impact-development on property values. Proceedings of the Water Environment Federation, Vol. 2008, No. 6, 2008, pp. 316-323.
- Raucher, R., and J. Clements. A triple bottom line assessment of traditional and green infrastructure options for controlling CSO events in Philadelphia's watersheds. In Proceedings of the Water Environment Federation, No. 9, Water Environment Federation, 2010. pp. 6776-6804.



### Green Infrastructure (GI) for Transportation Design

Carmen Harvey Faculty Advisor: Dr. Jejal Bathi

### What is Green Infrastructure?

- · Green infrastructure is a practice used in stormwater management that uses natural means or a made environment similar to nature to improve runoff.
- · Removes contaminants and sedimentation from stormwater
- Infiltrates stormwater to recharge groundwater levels.
- Reduces levels of TSS, total nitrogen, total phosphorus, and bacteria from runoff.
- Native species included in designs to increase biodiversity.
- · Typical designs are used in urban settings.
- · Implementation of green infrastructure can positively enhance aesthetics of the built environment.





### **Limitations of Green Infrastructure**

- × Limited information on applications and uses in transportation.
- × Information about GI's are not in a central database.
- X Many GI's work only under specific design considerations but that can be location specific.
- X Currently GI's are implemented after initial design instead of as part of the planning process.
- × Some GI's can be cost prohibitive to install and maintain.
- X More research needs to be performed to understand the Environmental, Social, and Economics of Green Infrastructure.

### **Project Objectives**

Objective 1: Research all Green Infrastructure (GI's) used across the United States including municipalities, state, and federal

Objective 2: Develop a design repository of GI's that have the potential or that are currently used in various Department of Transportation in U.S. States.

Objective 3: Catalog standards and classifications of different GI's based on their limitations, design requirements, cost, and benefits.

Objective 4: Work with the team to provide a database to facilitate development of a web based planning tool that uses machine learning and site applicability of each GI's for use on a State Design Project.

### Gray Infrastructure vs Green Infrastructure (GI)



Traditional Pavement Designs



Curb and Gutter This Photo by Unknown



Concrete Conveyances

Green Infrastructure



Retention Ponds and Natural Basins



Raingardens and Bioswales

### **Process to Develop GI Repository**

#### Research Sources

- Local Government Standards
- Nationwide State DOTs Gl design guidelines
- Scientific Literature and Research Papers

#### Data Collection

- GI specifications ■ Standards Drawings
- National State DOT's GI Survey Results Format
- Excel Spreadsheet
- Webtool using spreadsheet data
- Machine Learning application.

### **Example DOT Survey Data and Analysis**

16. Over the past 5 years, how has your agency's analysis of the social impacts of GI projects changed? (check only one response)



- We are doing a lot more in-depth
- We are doing a little more analysis. We are doing about the same amount of analysis
- We are doing less analysis. We do no analysis

### Results and Summary

- 16 Total Responses
- Mostly from the north-eastern region
- More than half do not use GI analysis although almost 94% are at least somewhat knowledgeable about GI.
- 100% of the DOTs rank 'Environmental' as the most important aspect when conducting GI analysis (75% of these DOTs are knowledgeable about GI and the rest are somewhat knowledgeable)
- 75% of the DOTs rank 'Social' as the second most important aspect and 'Economic' as the last while the rest deem 'Economic' aspect as the second most important

### **GI Repository Categories**

#### Main GI Categories **★** Infiltration Bed/Basins

- **★** Bioretention **★** Landform Grading
- **±** Enhanced Swales
- devices **₫** Grass Channels ★ Wetlands
- **★** Permeable Pavements-★ Amended Soils Porous Asphalt Paving **★** Land Conservation/ **★** Basins
  - Restoration

- **Primary Repository Headings ♀** Roadway Classification
- **♀** Site Requirement
- Subgrade Requirement
- **♀** Set Back Requirement
- **♀** Environnemental Benefits
- ♀ Stormwater Improvement
- **9** Cost Considerations

### **GI Repository Spreadsheet Example**

|                        |          | F                         | Roadway ( | Classificatio | ons                 |       | Site Requirements |                                                 |                            |                                 |  |
|------------------------|----------|---------------------------|-----------|---------------|---------------------|-------|-------------------|-------------------------------------------------|----------------------------|---------------------------------|--|
| Main Category          | Functi   | onal Classific<br>Roadway | ation     | Le            | Location or Setting |       |                   | Cross-sectional &<br>Side Slope<br>Restrictions | Contributing Drainage Area |                                 |  |
|                        | Arterial | Collector                 | Local     | Urban         | Suburban            | Rural | Maximum           | Maximum                                         | max. (acre)<br>or ratio    | % impervious area<br>space reqd |  |
|                        | Y        | Y                         | Y         | Y             | Y                   | Y     | 5%                | 4:1                                             | 5                          |                                 |  |
|                        | Y        | Y                         | Y         | Y             | Y                   | Y     | 5%                | 4:1                                             | N/A                        | 2.5 impervious                  |  |
| Bioretention           | Y        | Y                         | Y         | Y             | Y                   | Y     | 8%                | 2:1                                             | 2                          | 4%                              |  |
|                        | Y        | Y                         | Y         | Y             | Y                   | Y     | 20%               | 4:1                                             | 5                          | Range 3-6%                      |  |
|                        | N        | Y                         | Y         | Y             | Y                   | Y     | 496               | 2:1                                             | 2                          | 4%                              |  |
| Enhanced Swales        | Y        | Y                         | N         | Y             | Y                   | Y     | 4%                | 4:1                                             | 5                          | Range 10-20%                    |  |
| crinanced Swales       | Y        | Y                         | N         | N             | Y                   | Y     | 4%                | 4:1                                             | 5                          | Range 10-20%                    |  |
| Vegative Filter Strips | Y        | Y                         | Y         | Y             | Y                   | Y     | 25%               | 2%                                              | N/A                        | 20%                             |  |
| Grass Channels         | Y        | Y                         | Y         | N             | Y                   | Y     | 4%                | 3:1                                             | 5                          | 10%                             |  |
| Grass Charmers         | Y        | Y                         | Y         | N             | Y                   | Y     | 4%                | 3:1                                             | 5                          | 10%                             |  |
|                        | N        | Y                         | Y         | Y             | Y                   | Y     | 6%                | 2%                                              | 15                         | Ratio 1:10 -1:8                 |  |
| Permeable              | N        | Y                         | Y         | Y             | Y                   | Y     | 6%                | 2%                                              | 15                         | Ratio 1:10 -1:8                 |  |
| Pavements- Porous      | N        | N                         | Y         | Y             | Y                   | Y     | 6%                | 2%                                              | 15                         | Ratio 1:10 -1:8                 |  |
| Asphalt Paving         | N        | N                         | Y         | Y             | Y                   | Y     | 6%                | 2%                                              | 15                         | Ratio 1:10 -1:8                 |  |
|                        | Y        | Y                         | Y         | Y             |                     | Y     | 5%                | 2%                                              | N/A                        | 0%                              |  |

|                           | Y                         | Y Y        |                 | Y Y Y                |                                 | Y           |               | Υ :                       | Y 5%               |                    | N/A                | 0%               |         |                      |  |     |     |
|---------------------------|---------------------------|------------|-----------------|----------------------|---------------------------------|-------------|---------------|---------------------------|--------------------|--------------------|--------------------|------------------|---------|----------------------|--|-----|-----|
|                           | Subgrade Rea              | quirements |                 |                      |                                 |             |               | Environ                   | mental Benefits    |                    |                    |                  |         |                      |  |     |     |
| Soil Infiltration Rate    | Soil Groups               |            |                 | e to High<br>r Table | Distance from<br>Drinking Wells | Total Suspe | nded          | Total Phosphorous         | Total Nitrogen     | Metals             | Organism           |                  |         |                      |  |     |     |
| Minimum<br>(in, per hour) | Not Recommended           |            | Not Recommended |                      | Minim                           | um (ft.)    | Minimum (ft.) | Solids (TS                | SS)                | (TP)               | (TN)               | Metals           | removal |                      |  |     |     |
| 0.5                       | C, D except w             | underdrain |                 | 2                    | 50                              | 37%         |               | X                         | 14%                |                    | X                  |                  |         |                      |  |     |     |
| 0.5                       | C, I                      | )          |                 | 2                    | 50 - 100                        | 85%         |               | 60%                       | 25%                | 75%                | 60%                |                  |         |                      |  |     |     |
| less than 0.3             | C, D except w             | underdrain | 10              | max                  | 50                              | 98%         |               | 65%                       | 40%                | Range 75%<br>- 81% | •                  |                  |         |                      |  |     |     |
| 0.5                       | C, I                      | )          |                 | 2                    | 50 - 100                        | Range 85%-  | 100%          | Range 80%-100%            | Range 60%-<br>100% | Range<br>95%-100%  | Range 90%-<br>100% |                  |         |                      |  |     |     |
| 5                         | C, D except w             | underdrain | 10              | max                  | 50                              |             |               |                           |                    |                    |                    |                  |         |                      |  |     |     |
| 0.5                       | C, I                      | )          |                 | 2                    | 50 - 100                        | Range 80%-  | 100%          | Range 80%-100% Range 50%- |                    | Range<br>40%-100%  | No                 |                  |         |                      |  |     |     |
| 0.5                       | C, I                      | )          |                 | <1                   | 50 - 100                        | 80%         |               | 25%                       | 40%                | 20%                | No                 |                  |         |                      |  |     |     |
| 0.5                       | C, D                      |            | C, D            |                      | C, D                            |             | C, D          |                           | Range 1-4          |                    | 50 - 100           | Range 36% to 60% |         | 20% Range 169<br>20% |  | 40% | n/a |
| 0.5                       | C, I                      | )          |                 | 2                    | 50 - 100                        | 50%         |               | 25%                       | 20%                | 30%                | n/a                |                  |         |                      |  |     |     |
| 0.5                       | C, I                      | )          |                 | 2                    | 50 - 100                        | 50%         |               | 25%                       | 20%                | 30%                | n/a                |                  |         |                      |  |     |     |
| 0.5                       | C, D or >3                | D% clay    | Ran             | ge 1-4               | 100                             | Range 80%   | -85%          | Range 80%-85%             | Range 18%-30%      | Range<br>50%-90%   | Range 93%-<br>100% |                  |         |                      |  |     |     |
| 0.5                       | C, D or >3                | 0% clay    | Rang            | ge 1-4               | 100                             | Range 80%   | -85%          | Range 80%-85%             | Range 18%-30%      | Range<br>50%-90%   | Range 94%-<br>100% |                  |         |                      |  |     |     |
| 0.5                       | C, D or >30% clay         |            | Ran             | ge 1-4               | 100                             | 80%         |               | Range 80%-85%             | Range 18%-30%      | Range<br>50%-90%   | Range 0%-39%       |                  |         |                      |  |     |     |
| 0.5                       | C, D or >30% clay Range 1 |            | ge 1-4          | 100                  | 80%                             |             | Range 80%-85% | Range 18%-30%             | Range<br>50%-90%   | Range 0%-39%       |                    |                  |         |                      |  |     |     |
| 0.5                       | C Dorb3                   | DAS MAY    | N.              | N/A                  | 100                             | 50%         |               | Y                         | Y                  | Y                  | Y                  |                  |         |                      |  |     |     |

|           |                        |                         |                          |                        | Runoff Reduction<br>Volume |             |                         | GI      |        |                           |         |          |
|-----------|------------------------|-------------------------|--------------------------|------------------------|----------------------------|-------------|-------------------------|---------|--------|---------------------------|---------|----------|
| Flooding  | Rainwater<br>Detention | Groundwater<br>Recharge | Temperature<br>Reduction | Peak Rate<br>Reduction |                            | Installa    | Installation Cost Range |         |        | Maintenance Cost<br>Range |         |          |
| reduction | Detention              | Recharge                | Reduction                | Reduction              | voiume                     | Low         | High                    | Unit    | Low    | High                      | Unit    | Years    |
| Y         | N                      | Y                       | Y                        | Y                      | 40-80%                     |             |                         |         | MID    | MID                       | N/A     |          |
| Y         | N                      | Y                       | Y                        | Y                      | 50%                        | Mid         | Mid                     | n/a     | MID    | MID                       | n/a     |          |
| N         | Y-Low                  | Y                       | Y                        | Y                      | Range 85%-90%              | \$1.50      | \$6.00                  | sq. ft. | varies | varies                    | n/a     | 10 years |
|           | Y - Low                |                         | Y                        |                        | Range 50%-100%             | Mid         | Mid                     | n/a     | Mid    | Mid                       | n/a     |          |
|           |                        |                         |                          | Y                      |                            | \$5.15      | \$16.00                 | sq. ft. | \$0.31 | \$0.61                    | sq. ft. | 25-50    |
| N         | Y - Low                |                         | Y                        |                        | Range 50%-100%             | Mid         | Mid                     | n/a     | Mid    | Mid                       | n/a     |          |
| N         | Y - Low                |                         | N                        |                        | 0%                         | \$20,000.00 | \$30,000.00             | each    | Y      | N                         | N/A     |          |
| N         | N                      | N                       | Y                        | Y                      | 25%                        | \$0.30      | \$3.33                  | sq. ft. | \$0.01 | \$0.07                    | sq. ft. | 20-50    |
| N         | N                      | Y                       | Y                        | 1.0 ft/s-4 in          | 25%                        | Y           | n/a                     | n/a     | Yes    | n/a                       | N/A     |          |
| N         | N                      | Y                       | Y                        |                        | 10%                        | Y           | n/a                     | n/a     | Yes    | n/a                       | N/A     |          |
| Y         | Y                      | Y                       | Y                        | Y                      | Y                          | \$5.50      | \$28.00                 | sq. ft. | \$0.09 | \$0.23                    | sq. ft. | 20-40    |
| Y         | Y                      | Y                       | Y                        | Y                      | Y                          | \$5.50      | \$28.00                 | sq. ft. | \$0.09 | \$0.23                    | sq. ft. | 20-41    |
| Y         | Y                      | Y                       | Y                        | Y                      | Y                          | \$5,30      | \$34.00                 | sq. ft. | \$0.01 | \$0.23                    | sq. ft. | 15-50    |
| Y         | Y                      | Y                       | Y                        | Y                      | Y                          | \$5.30      | \$12.00                 | sq. ft. | \$0.01 | \$0.23                    | sq. ft. | 15-50    |
|           |                        |                         |                          |                        |                            |             |                         |         |        |                           |         |          |

### **Conclusion and Future Work**

- The database repository of GI has been created and is currently being used to rank GI's based on their applicability for transportation purposes
- The data table will be updated based on State-wide surveys to DOT's based on their use of GI's in transportation. Community surveys will collect additional information from the publics perspective of Green Infrastructure.
- Once the data is collected it will used to asses the Social and Economic benefits of GI's and in development of planning tools.