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Abstract 
This project addressed the emerging field of behavior-based predictive safety analytics, 
focusing on the prediction of road crash involvement based on individual driver behavior 
characteristics. This has a range of applications in the areas of fleet safety management 
and insurance, but may also be used to evaluate the potential safety benefits of an 
automated driving system. This project continued work from a pilot study that created a 
proof-of-concept demonstration on how crash involvement may be predicted on the basis 
of individual driver behavior utilizing naturalistic data from the Second Strategic Highway 
Research Program. The current project largely focuses on understanding and identifying 
the risks from a driver based on their driving behaviors, personal characteristics, and 
environmental influences. This project analyzed large scale continuous naturalistic data 
as well as event data to study the role of different driving behaviors in the buildup of risk 
related to a safety-critical event or crash. This research can be used structure the 
development of real-time crash risk that accounts for those identified driver behaviors to 
be evaluated across the contextualized information on a roadway.  
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Introduction 
In recent decades, research on driving-related outcomes has expanded rapidly, with heavy 
emphasis on understanding driving- and non-driving-related behaviors that lead to the least 
desirable driving outcome—serious crashes (Hakkert & Gitelman, 2014). Crashes are the cause of 
approximately 1.35 million annual deaths worldwide and anywhere from 20 to as many as 50 
million people are injured in road-related crashes each year (World Health Organization, 2018). 
Although only 3% of those fatalities occur in the U.S., in 2010, the economic and societal impact 
of crashes was estimated to cost $836 billion (National Highway Traffic Safety Administration 
[NHTSA], 2015). Although there has been a steady decrease in the rate of road-related fatalities 
from the inception of recorded crash statistics, according to the Fatality Analysis Reporting 
System, the rate has been hovering around 1.1 deaths per 100 million vehicle miles traveled since 
2009 and has even increased in the past few years (NHTSA, 2023). Additionally, estimates suggest 
that as many as 94% of crashes are the result of driver-related errors—specifically, recognition, 
decision, performance and non-performance errors—while the remaining 6% occur due to vehicle, 
environmental, or unknown reasons (NHTSA, 2015). This has led researchers, regulators, and 
practitioners to heavily focus on crash-related aspects of individual drivers.  

Characterizing individuals’ driving performance has been a large focus of transportation safety 
research, dating back to the 1930s when Ryan and Warner (1936) measured drivers’ mental 
capacity and physiological reactions during a period of fatigued driving, followed by McClintock 
(1936), who measured driver judgments on speed and distance in an attempt to correlate it with 
individual differences. Succeeding these efforts, researchers were interested in identifying 
underlying characteristics that led to an individual’s predisposition to being in an accident; 
specifically, accident proneness was adopted from industrial research and applied to driving 
outcomes (see: Shinar, 2017).  

Understanding an individual driver’s contribution to a crash has resulted in an extensive review of 
differential crash involvement by a number of authors (e.g., Cullen et al., 2021; Guo & Fang, 
2013). Further, a small proportion of drivers often account for a major proportion of crashes 
(Sagberg et al., 2015), a phenomenon often referred to as the Pareto principle, or the 80–20 rule. 
Due to their high involvement in crashes, it is of great value to be able to identify these risky 
drivers before crashes occur.  

Background 
The basic idea underlying differential crash involvement is that some drivers have certain 
characteristics that make them more likely to become involved in crashes. For example, drivers 
with a stronger propensity for risk-taking behaviors may tend to look away from the road for longer 
or more frequent periods than the average driver, increasing the risk that a distraction-related driver 
behavior will coincide with an unexpected external event, thus leading to a crash. In another 
scenario, a vigilant driver may habitually double- or triple- check opposing or oncoming traffic at 
a traffic signal before entering the intersection to reduce the likelihood of an incident with other 
vehicles.  
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These characteristics often reference an individual’s demographics and disposition (Knipling, 
2009). Research across the transportation safety domain frequently focuses on specific driver 
characteristics, such as gender (Cullen et al., 2021), age (Hu et al., 2020; Bharadwaj et al., 2021), 
personality (de Winter & Dodou, 2010; Braitman & Braitman, 2017), driving experience (Horswill 
et al., 2020), aggression (Velazquez, 2020; Demir et al., 2016), medical conditions and health 
(Filtness et al., 2020), and self-regulation (Wong et al., 2015; Delvin & McGillivray, 2016).  

Further, personal factors may also include temporal facets. These typically relate to individualized 
changes that occur day-to-day or hour-to-hour, like mood, impairment, comfort, and fatigue 
(Knipling, 2009). Additional personal factors may manifest themselves in terms of observable 
driver behavior patterns (e.g., speeding, close following, hard braking, engagement in distraction) 
as well as in behavioral history (e.g., the number of crashes or violations in the past 3 years, 
criminal records).   

While many research efforts have focused primarily on drivers’ dispositions as related to crash 
proneness, many other studies evaluated the effects of situational factors (Knipling, 2009). 
Situational factors play an important role in shaping what behaviors are possible (e.g., driving in 
dense traffic), driving constraints (e.g., speed limits), or shifts in usual driving conditions (e.g., 
bad weather), among others.  

Among these efforts, identification of risky drivers has been performed by examining individual 
driver characteristics, situational elements, and combinations of interacting effects. There is strong 
evidence that enduring personal factors influence crash involvement beyond mere chance (Simons-
Morton et al., 2012). However, it is also clear that these personal factors often interact with 
situational factors and temporary personal factors in non-trivial ways in producing crashes. For 
example, while the occurrence of driver fatigue can be regarded a temporary factor, there is strong 
evidence that the susceptibility to fatigue is an enduring factor (Knipling et al., 2004). A similar 
argument may be made for the role of alcohol in crash causation, as the effect of alcohol on 
behavior may depend strongly on enduring personality-related factors (see review in Elander et 
al., 1993). Thus, crashes often occur through an interaction between dispositional and temporary 
personal factors and situational factors. However, the relative contributions of these different types 
of factors towards the crash genesis are often difficult to disentangle (Elander et al., 1993).  

These temporal and enduring personal factors, along with reinforcement of behavioral selection, 
subsist in ones’ driving style (Sagberg et al., 2015). Sagberg et al. (2015) refer to driving style as 
“a habitual way of driving, which is characteristic for a driver or a group of drivers.” Further, 
driving style tends to occur in a consistent way, which may include both automatized and 
consciously chosen behaviors. A driver may have a repertoire of driving styles applied under 
different conditions, and driving styles that exclude behavior patterns determined exclusively by 
the driving context. 

Current behaviors are influenced by situational factors as well as temporary and enduring personal 
factors. This results in behavioral outcomes that may be successful (i.e., the situation played out 
as expected) or unsuccessful, leading to, for example, crashes, traffic conflicts (e.g., near crashes), 
violations, and other safety-related events. Enduring personal factors are reflected in recurring 
observable behavioral patterns as well as behavioral history. Some of these recurring behaviors 
(e.g., tailgating, speeding, distraction) may be associated with increased crash risk.  
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Ultimately, relating these individual and situational factors to crash risk and crash involvement has 
been a long-standing goal in road safety research (e.g., Elander et al., 1993; Guo et al., 2010; 
McKenna, 1983). These factors have been related to a range of personal factors, such as gender, 
age, personality, and health, and may be manifested in recurrent patterns of observable driving 
behavior, such as speeding, close following, and secondary task engagement. Further, records of 
behavioral history, such as past violations, convictions, and crashes, have also been found to 
predict future crash involvement (Simons-Morton et al., 2012). Fatigue, as a temporal factor, is 
present in roughly 2% of fatal crashes within the U.S. (Stewart, 2022), and is noted as having 
similar inhibiting effects as driving while inebriated (Zhang et al., 2014). Figure 1 provides an 
illustration of the crash factors conceptualization.  

 
Figure 1. Conceptualization of person and situational factors involved in a crash. 

The success of identifying risky drivers ultimately hinges on the establishment of models able to 
reliably relate individual driver characteristics to actual crash risk. This relationship is currently 
poorly understood (Sagberg et al., 2015; Engstrom et al., 2018). Traditionally, the main reason for 
this has been the lack of data containing enough detailed crash recordings and recorded driving 
behavior, demographics, and screening data collected over an extensive time period before the 
crash. In recent years, this picture has started to change due to the adoption of naturalistic driving 
studies. However, existing naturalistic driving analyses have typically focused on the relationship 
between drivers’ engaging in potentially distracting behaviors that result in inattention to the 
driving task and crash risk, with the primary goal to identify risky tasks or behaviors (e.g., Dingus 
et al., 2016; Fitch et al., 2013). 

Research Objectives 
The goal of the current study was to provide insight into the calculation of behavioral indicators 
and associated metrics that would help clarify the relationship between driver-centric variables 
(i.e., driver behaviors, driving style, personality or risk-taking assessments, demographics, etc.) 
and crash risk. Further evaluation includes determining the effect that other situational components 
may have on driver-centric variables (within-person analyses) or crash risk (between-person 
analyses). The research team evaluated the Second Strategic Highway Research Project (SHRP 2) 
and large truck naturalistic databases to examine these interactions with crash risk (Dingus et al., 
2015; Krum et al., 2016, Hammond et al., 2021).  
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Method 
Data Collections 
Two types of naturalistic data collections were used to produce results and analyses in exploring 
the relationship between situational, personal, and behavioral factors with crash risk. Each dataset 
serves a different population and subsequently has its own strengths and weaknesses that were 
explored throughout the project. For example, although the SHRP 2 dataset had a large number of 
drivers, it also had a large number of situational and temporary factors, reflecting the high-fidelity 
nature of the data collection, but reducing the ability to detect certain variance in driving style and 
nearly eliminating any claims of causation.  

SHRP 2 Naturalistic Data Collection 
The SHRP 2 collection consisted of 3,092 primary drivers and 454 secondary drivers across six 
collection sites within the contiguous U.S., for a collective 3,546 drivers (52.2% female). Primary 
drivers consisted of those who consented to the study and completed additional questionnaires, 
while secondary drivers had data collected inadvertently by driving in a primary driver’s 
instrumented vehicle. Young and senior drivers were oversampled in order to have ample data to 
examine any age-related effects involving extreme subgroups.  

SHRP 2 Subjective Measures 
A series of subjective measures were collected before a data acquisition system (DAS) was 
installed in a participant’s personal vehicle, heretofore referred to as ego vehicle. These measures 
comprehensively covered driving-relevant factors that may in some way affect driving style, 
though driving style was not directly measured. 

Risk-taking Behavior  
A risk-taking behavior questionnaire was created as a combination of the Cox Assessment of Risk 
Driving Scale (CARDS) and DeJoy Risk Perception Questionnaire (Transportation Research 
Board, 2014). The questions assessed self-report frequency of driving behaviors in the prior 12 
months. Example items included the frequency of running red lights, making illegal turns, and 
getting very angry at other drivers. 

Risk-Perception 
A risk-perception questionnaire was created for the SHRP 2 data collection (Dingus et al., 2015). 
The questions assessed the perceptual risk with driving behaviors on a seven-point Likert scale 
ranging from “No Greater Risk” to “Much Greater Risk.” An example item from the scale was “If 
you were to engage in changing lanes suddenly to get ahead in traffic, how do you think that would 
affect your risk of a crash?”  

Thrill/Adventure Seeking  
The Sensation Seeking Scale-form V (SSS-V; Zuckerman, 1994) presented a series of scenarios 
in which respondents chose their preference in a pair of options. Examples of scenarios involved 
mountain climbing, learning to fly an airplane, and social drinking. A composite score was created 
from the scale to represent sensation seeking.  
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Driver History  
A driving history questionnaire was created for the SHRP 2 data collection effort. This included 
estimating annual mileage, years of driving, and number of police-reportable crashes and moving 
violations that occurred in the past 3 years.  

Driving Knowledge 
A custom 20-item questionnaire to assess driving knowledge was created for the data collection 
effort. This consisted of several state licensing practice tests on non-state specific driving 
regulations. A composite score ranging from 0 to 20 was created from correct answers.  

Driver Behavior  
A modified version of the Manchester Driver Behavior Questionnaire (Dingus et al., 2015) was 
used to assess driver style and driver behaviors. This questionnaire had 24 items that assessed 
behavioral frequency of improper driving-related behaviors. Example items included the 
frequency of speeding, missing environmental cues, or performing aggressive behaviors.   

Large Truck Naturalistic Driving Data Collections 
VTTI conducted several naturalistic driving studies with commercial motor vehicles (CMVs) that 
provide a wealth of vehicle data and driver behaviors. CMV collections at VTTI often have fewer 
participants than light vehicle studies, but the CMV operator will drive many more miles than their 
light vehicle counterpart. The 177 participants used from the large truck collections (FAST DASH 
2 and OBMS 2 [Krum et al., 2016; Hammond et al., 2021]) averaged approximately 40,000 miles 
traveled during the study duration.  

Due to the large number of miles traveled per CMV, there is ample data to examine within-person 
effects, largely, the variance in driving styles or deviations from normal behavior. However, there 
were a number of other considerations for evaluating CMVs compared to light vehicles, including 
the following. 

• Naturalistic data collections contain some drivers from the same fleet, so fleet-level 
variables may influence driver behaviors (e.g., safety culture, training, dispatcher 
flexibility). 

• CMV operators are trained professionals and may therefore exhibit different driving styles 
than light vehicle operators who do not drive professionally. 

• Though dependent on vehicle operations, Class 8 tractor-trailer CMVs primarily travel on 
highway or interstate roadways. This reduces the variance in urban or last-mile contexts, 
but provides extensive driving metrics across high-speed travel. 

• CMV operators must adhere to hours-of-service regulations, which limit the extent of time 
on-the-job and on-road. Fatigue may be the largest influence on a truck driver’s driving 
style outside of the state-based characteristics (i.e., mood, anxiety).  

• The CMV operator workforce is male-dominated. These drivers share other similar 
characteristics (i.e., demographics, personality) that may fail to be representative of the 
larger population of light vehicle drivers. 

• The data collection efforts do not capture as many person-based assessments as SHRP 2 
and therefore most investigations involve in situ driver behaviors. 
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• Fewer crashes occurred during the course of data collection, in magnitude and on a per 
mile basis. Recorded crashes that did occur were primarily low-speed incidents that neither 
involved other vehicles nor caused property damage. 

Data Cleaning 
The naturalistic datasets required preparation to ensure use of the appropriate data. We used a time 
series data dictionary and took the following steps to ensure appropriate data was used for the 
analyses: 

• Trips were analyzed by driver instead of vehicle to mitigate multiple drivers within one 
vehicle.  

• The first 60 secs of each drive were deleted to obtain consistent speed and GPS data. This 
incorporated the boot speed of the DAS. However, reduced events that occurred within 1 
minute of the start of the DAS were not removed.  

• To reduce the file size and the number of missing values, we only used radar tracking 1 
and 2 (radar variables). We also removed the binary radar variables.  

• Rolling windows were applied on data with a window size of 30 secs and a sliding window 
of 15 secs.  

• Missing values from GPS speed were replaced using the Last Observation Carried Forward  
imputation method. It was observed that the GPS speed was only recorded when it changed, 
so any range of NA values were replaced by the value that preceded the NA value.  

• All other missing values in other variables were replaced using Kalman Smoothing. In this 
method, an initial estimate was developed for the state parameters in a forward pass, 
similarly to the traditional Kalman Filter. Following this step, a backwards pass estimate 
was conducted, and the error was minimized through Expectation Maximization. It was 
assumed these values were missing due to the equipment going offline. So, the same 
replacement of NA values was applied for the steering position variable and pedal gas 
variable. This was done so the missing values followed the trend of the closest previous 
observation. This was done using the imputeTS package in R.  

• After the rolling window was performed, all rows containing NAs were removed and the 
data was exported into a CSV format.  

Behavioral Indicators and Modeling 
Using the SHRP 2 data, two distinct analysis levels were created and analyzed. First, a person-
level dataset was established to describe the participants. This dataset included scoring the selected 
personality and behavioral self-report measures and aggregating trip-level data to the person-level. 
The second analysis level consisted of trips, subsampled to match the event data. Roughly 41,400 
trips were analyzed using behavioral indicators, then further matched to event data, which 
consisted of 1,836 crashes, 6,881 near-crashes, and 32,581 baseline sampled events. These crash 
and near-crash (CNC) events provided full context of situational factors and driver behaviors, 
while the baseline events provided the full context of a nominal, or normal driving extraction. 
Among the truck database, all trips were analyzed to produce similar datasets. 
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Results 
Calculated Indices 
The research team identified and calculated a number of indices and indicators to describe an 
individual’s collection of trips. 

Crash, Near-crash 
In order to estimate crash-risk, individuals were divided into groupings. These groupings reflect 
whether the following was experienced during the data collection period: 

• Crash (vs. no crash) 
• Crash and/or near-crash (vs. neither crash nor near-crash) 
• At-fault crash or at-fault near-crash event (vs. not at fault or no event) 

Acceleration-based Indicators 
Acceleration events were calculated for each trip and were aggregated within trip and within 
person. These events were based on selected thresholds and represent safety-critical events that 
are not typically present in normal operations. The acceleration events were calculated per trip, 
and their associated bins were as follows.  

• Longitudinal accelerations (i.e., fast acceleration) 
o Three bins: 

 0.1 g to 0.2 g 
 0.2 g to 0.35 g 
 0.35 g and above 

• Longitudinal decelerations (i.e., hard braking) 
o Three bins: 

 -0.1 g to -0.2 g 
 -0.2 g to -0.35 g 
 -0.35 g and below 

• Lateral accelerations (i.e., strong turns) 
o Four bins: 

 ±0.1 g to ±0.20 g 
 ±0.2 g to ±0.30 g 
 ±0.3 g to ±0.35 g 
 ±0.35 g and above/below 

Lateral accelerations incorporate forces on the inertial measurement unit from both directions on 
the y-axis, represented as positive and negative g-forces. Positive forces represent lateral 
movement to the right-side of the vehicle (i.e., above +0.35 represents a strong positive force 
against the right of the vehicle as it is turning left or negotiating curves to the left).  

For CMV naturalistic datasets, acceleration metrics were calculated based on map-matched data. 
The metrics were binned based on varying thresholds and were calculated as they happened on 
specific sections of roadways. This provided the ability to evaluate specific roadway characteristics 
according to the mapped dataset. Figure 2 denotes an illustrative representation of the longitudinal 
deceleration bins calculated and their respective thresholds. 
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Figure 2. Schematic defining the concept of longitudinal deceleration. 

Similarly, Figure 3 illustrates the lateral acceleration bins and thresholds. Negative accelerations 
dictate a left acceleration (e.g., turning right) and positive accelerations dictate a right acceleration. 

 
Figure 3. Schematic defining the concept of lateral acceleration. 

Headway 
Forward headway was calculated as the distance traveled at a categorized time headway when a 
lead vehicle was present. The categories consisted of eight (8) 0.5 second bins starting at 0.0 
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seconds and ending at time headway greater than 3.5 seconds. The distance traveled was then 
normalized by the time spent with a lead vehicle present.  

Minimum Headway at Speeds 
A minimum time headway was calculated for each trip in which there was a lead vehicle present 
among categorized speeds of the ego vehicle. The categories of speed consisted of six (6) 10-mph 
bins starting at 0 mph and ending at  ≥ 50 mph. The metric described the lowest elapsed travel 
time for the following vehicle to reach the space occupied by the leading vehicle.  

Minimum Time-to-collision at Speeds 
A minimum time-to-collision was calculated among categorized speeds of the ego vehicle for each 
trip in which there was a lead vehicle present. The categories of speed consisted of six (6) 10-mph 
bins starting at 0 mph and ending at ≥ 50 mph. This measure was similar to minimum headway, 
though time-to-collision was calculated as the elapsed time before a collision between two vehicles 
if both vehicles maintained their current velocities. 

Speed Behaviors 
Speed behaviors were analyzed for CMVs as the distance traveled at certain speeds relative to the 
posted speed limit. Specifically, the metric comprised the difference between average speed and 
the posted speed limit, which was then calculated in miles driven over road segments. An 
illustration of speed behavior is presented in Figure 4. 

 
Figure 4. Schematic defining the concept of speed behavior. 

Lane Deviations 
For CMVs, lane deviations were measured by the lateral distance between the centerline of the 
lane and the middle point of the ego vehicle, as calculated by computer vision detection of lane 
lines and extrinsic positioning of the forward-facing camera. Lane deviations (illustrated in Figure 
5) were calculated as the miles traveled in each bin, with the first bin representing no lane 
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deviation, and subsequent bins representing up to an additional 12 inches outside of the lane. 
Specifically: 

• Bin 1: Deviation of 0–21 inches, or tires on both sides are inside the lane. 

• Bin 2: Deviation of 21–33 inches, or one tire is 0–12 inches outside the lane. 

• Bin 3: Deviation of 33–45 inches, or one tire is 13–24 inches outside the lane. 

• Bin 4: Deviation of > 45 inches, or one tire is > 24 inches outside the lane. 

 

Figure 5. Schematic defining the concept of lane deviation. 

Exposure Metrics  
In order to normalize driving behavior, a series of exposure-based metrics were created to enhance 
other calculations. Exposure, representing the data of a complete trip, was critical for making 
comparisons between and within individuals. 

Speed-based Time and Distance 
Time and distance bins were calculated at various vehicle speeds to determine exposure rates of 
events or other relevant calculations relative to speed. These bins are represented by increments of 
10 mph starting at 0–10 mph and ending at above 80 mph. Nine (9) speed bins were calculated for 
time and distance. As an example of a distance calculation, a trip may consist of 14 miles traveled 
between 21–30 mph. These metrics were calculated and reported per trip. 

Posted Speed Limits 
We calculated the distance traveled while under various posted speed limits. Speed limits were 
provided at limits of 35 mph, 50 mph, 65 mph, and over 65 mph, along with information on how 
much of the posted speed limit data was not available.   

Roadway Type 
Various roadway types, generally classifying roads as urban or rural, had calculations produced 
for CMV (only local and highway driving) and SHRP 2 (full highway safety information system 
breakdown) datasets. The road type was calculated as a percentage of time spent across each 
category. 
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Following Distance Metrics 
To normalize headway and time-to-collision metrics, radar-based exposure metrics were produced. 
We calculated the number of targets that the radar classified, as well as the time spent with a lead 
vehicle present.  

Between-subjects Behaviors 
The first step in using the behavioral indicators was to produce a correlation matrix of CNCs with 
select behaviors (Table 2). The behaviors included acceleration-based metrics and forward 
headway to the lead vehicle. Many of the relationships were significant and were explored further.  

Further investigation into these between-subjects metrics revealed that individuals who were 
involved in a CNC were more likely to perform closer following and strong accelerations (Table 
1). 

Table 1. Percent of Time Drivers Operated across Headways Based on CNC-involvement   

 HW  0–
0.5 s 

HW 0.5–
1.0 s 

HW 1.0–
1.5 s 

HW 1.5–
2.0 s 

HW 2.0–
2.5 s 

HW 2.5–
3.0 s 

HW 3.0–
3.5 s 

HW > 
3.5 s 

No CNCs  
(n = 1,143) 

0.89% 6.55% 13.32% 14.22% 12.25% 9.82% 7.8% 35.14% 

CNCs  
(n = 2,031) 

1.4% 9.96% 15.9% 15.18% 12.11% 9.17% 7.15% 29.13% 

Percent 
Change 

+57% +52% +19% +7% -1% -7% -8% -17% 

 

Within-subjects Behaviors 
Defining a real-time crash risk involved determining the behavioral attributes of drivers across 
various circumstances and under a variety of conditions. Current investigations defined high-
threshold longitudinal acceleration and deceleration events, along with high threshold lateral 
acceleration events (positive and negative), and the average headway when a lead vehicle was 
present, and the ego vehicle was below a 3.5-second headway. This selection of headway removed 
times larger than 3.5 seconds, as this removed confounding variables related to the binned times 
of headway that did not account for times greater than 3.5 seconds. The radar-sensing technology 
could detect much larger gaps, which were factored into the average. Indicators were created across 
the entirety of a trip and normalized as appropriate. 
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Table 2. Correlation Matrix of Crashes and Near-crashes with Acceleration and Headway Metrics 

Variable CNC Long. 
Accel 

Long. 
Decel 

Lat. 
Accel 

Headway 
0–0.5 s 

Headway 
0.5–1.0 s 

Headway 
1.5–2.0 s 

Headway 
2.0–2.5 s 

Headway 
2.5–3.0 s 

Headway 
3.0–3.5 s 

Headway 
>  3.5 s 

Crash & 
Near Crash —      

Long. 
Accel 

0.407**
* —     

Long. 
Decel 

0.787**
* 0.56*** —    

Lat. Accel 0.508**
* 0.419*** 0.598*** —   

Headway 
0–0.5 s 

0.205**
* 0.107*** 0.199*** 0.186*** —  

Headway 
0.5–1.0 s 

0.376**
* 0.178*** 0.378*** 0.303*** 0.435*** — 

Headway 
1.0–1.5 s 

0.336**
* 0.151*** 0.325*** 0.272*** 0.144*** 0.631*** — 

Headway 
1.5–2.0 s 

0.274**
* 0.103*** 0.23*** 0.165*** 0.014 0.258*** 0.654*** —     

Headway 
2.0–2.5 s 

0.219**
* 0.065*** 0.148*** 0.093*** -0.058*** 0.041* 0.301*** 0.651*** —    

Headway 
2.5–3.0 s 

0.165**
* 0.03 0.082*** 0.02 -0.091*** -0.078*** 0.090*** 0.379*** 0.67*** —   

Headway 
3.0–3.5 s 

0.123**
* 0.01 0.044* -0.011 -0.103*** -0.125*** -0.01 0.229*** 0.44*** 0.659*** —  

Headway >  
3.5 s 0.07*** -0.017 -0.021 -0.063*** -0.129*** -0.281*** -0.281*** -0.092*** 0.124*** 0.29*** 0.44*** — 

* p < .05, ** p < .01, *** p < .001       
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Table 3. Correlation Matrix of Crashes and Near-crashes with Acceleration and Headway Metrics 

Variable Average Trip 
Headway 

Average Trip 
Long. Accel 

Average Trip 
Long. Decel 

Average Trip Lat. 
Accel 

Average Trip 
Headway —    

Average Trip Long. 
Accel -0.074 —   

Average Trip Long. 
Decel -0.332*** 0.317*** —  

Average Trip Lat. 
Accel -0.318*** 0.279*** 0.349*** — 

 

Table 3 provides a series of paired-sample t-tests evaluating the trips of 749 drivers who 
experienced CNC events, as well as those with recorded baseline events. The full trips for these 
drivers were analyzed for acceleration and headway indicators and split between those trips that 
contained CNCs and those that did not.  

 Table 3. Behavioral Indicator across CNC-involved or Baseline Trips   

 Longitudinal 
Acceleration 

Longitudinal 
Deceleration 

Lateral 
Acceleration 

Average 
Headway 

Non-CNC trip 0.039 0.163 0.247 2.226 

CNC trip 0.063 0.566 0.299 2.154 

Difference -0.024 0.403 -0.052 0.072 

Effect size 0.038 0.052 0.034 0.034 

t-score -3.532 -26.545 -2.969 5.457 

p-value < 0.001 < 0.001 0.003 < 0.001 

 

Results indicated that drivers experienced more longitudinal accelerations/decelerations, more 
lateral accelerations, and shorter headways when their trip involved a CNC event compared to no 
CNC.  

Discussion 
The use of real time crash prediction models has largely focused on indicators related to 
infrastructure (e.g., Yang et al., 2018), traffic (e.g., traffic flow; Xu et al., 2015) or environmental 
conditions (e.g., weather; Abdel-Aty et al., 2012). The foundation of these models includes the 
segmentation and categorization of roadways based on common infrastructure elements, and then 
further modeling of these segments under various strains of traffic patterns and/or environmental 
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conditions. A common output of these models is the identification of higher crash likelihoods 
among certain road attributes when crossed with traffic or environmental conditions, indicating 
the interaction-level effects of crashes (e.g., Sun et al., 2020).  

Despite the collective efforts of researchers into predicting real-time crash risk, very few models 
have incorporated any driving behaviors, and, if these behaviors were represented, it was usually 
a cross-sectional documentation of a single behavior. The primary example of this inclusion would 
be vehicle speed, commonly identified through the same detection methods as those used to collect 
traffic flow (as presented in Dutta & Fontaine, 2020).  

The marrying of infrastructure- and traffic-based data with the individual-level variables of driving 
styles, personality-based metrics, and other behavioral indicators is so uncommon due to the 
natural mismatch in data collection methods and presentation of models. Typically, these 
individual difference-centric variables are gathered within laboratory settings or via naturalistic 
data, where a large set of behaviors can be operationalized and collected. However, the nature of 
collecting these data leads to large sets of behaviors captured across a smaller set of individuals, 
and often there is little meaningfully captured data that relates to infrastructure or traffic. Similarly, 
the epidemiologic collection of crash data and related roadway attribute and environmental data 
lacks the capabilities to connect such individual-centric information as is necessary to begin 
collating the two streams of micro (i.e., individual) and macro (i.e., crash-oriented) data. Despite 
this mismatch, recent improvements in naturalistic driving data collections have allowed 
researchers to begin making these connections, though a number of concessions exist for 
generalizations and modeling crash risk.  

Each step undertaken by researchers and the industry reveals additional insight into driving 
behaviors and their relation to crash risk. The ability to classify drivers according to their driving 
style, as defined by actual behaviors on road, leads to increasingly accurate identification of risky 
drivers and risky behaviors. Exploration of new behavioral indicators and the interactions of these 
indicators across varying conditions provides additional insight into the relationship between 
nominal driving and crash likelihood, while also providing limited insights into crash avoidance 
techniques or skills as they relate to individual-level variables.  

The results of this study investigated individuals’ driving styles, traditionally operationalized by 
some combination of acceleration and headway behaviors, and tailor these driving styles for 
comparison to outcome-oriented behaviors related to crashes, near-crashes, or some other driving-
related event (e.g., following traffic laws). The creation and use of specific behavioral indicators 
was meant to further explicate the relationship to crash risk by comparing to CNC events.  

Results also indicated that various driving styles may be adopted by the same individual. The 
relationship between driving style and situational context will provide additional insight into how 
various outcomes occur, and the relationship of those interaction-effects on crash likelihood. At-
risk in situ behaviors may be performed by an individual; these will then impact the representation 
of an individual’s driving style through the existing operationalization of driving styles. It is 
currently unknown under what conditions these less safe behaviors occur.   

Several limitations apply across the dataset, as the typical difficulties of naturalistic data include 
describing crash risk and generalizing to a larger population of individuals. The smaller number 
of crashes and use of near-crashes that act as surrogate to crashes limit the capacity to properly 
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identify individual-centric contributions specifically related to crashes. Further, the varying levels 
of severity in crashes is usually not represented in naturalistic data compared to epidemiologic 
datasets. In addition, defining at-fault, shared-fault, and partially at-fault contributions towards 
crash events is difficult without fully contextualizing the situation by making assumptions during 
data reduction. 

Specific to the analyses, when performing within-subjects designs, capturing data not related to 
the CNC event would reduce the multicollinearity of comparing driving styles to CNC metrics, 
where the CNC serves as predictor and outcome. This effort may reduce some significance of 
results if the CNC was the result of a specific driving style element; however, not including these 
behaviors may lead to improper classifications. Ultimately, operationalizing a near-crash event by 
more strictly confining it to outcome and not behaviors (e.g., hard brake beyond threshold alone) 
would alleviate the described multicollinearity.   

Impairment within naturalistic data is currently under-collected and methods of detecting the 
varying aspects of impairment are under-implemented. Distraction and fatigue are often limited to 
classification during reduction of event-based or baseline data, though computer vision methods 
for detecting these impairments is becoming an increasing reality among naturalistic driving data 
collections as well as in driver monitoring system implementations. These data could be used to 
further describe driving styles or other systematic behaviors on-road. Impairment related to alcohol 
or drug usage is also difficult to capture in naturalistic data, as is epidemiologic data, which makes 
attributions of driving style to crash likelihood more difficult. However, future efforts may 
evaluate the ability to detect alcohol- or drug-impaired driving through measuring variability in 
driving styles.  

Conclusions and Recommendations 
There have been many efforts to classify and relate a particular driving element—whether it be 
individual, infrastructure or environment-based—to crash risk. The implications of understanding 
crash risk are critical within the transportation industry, but also indirectly impact the daily lives 
the many individuals using the built roadway environment. Understanding how individuals make 
driving choices, such as the way they drive their vehicle across the various conditions they operate 
in, the errors of judgement made when driving impaired, or choosing what information is enough 
to make some roadway maneuver, could help researchers and industry make the roads safer. More 
information about driver behavior characteristics would enhance the ability to create training tools, 
performance metrics, infrastructure vehicle failsafe redundancies, or establish some other barrier 
to prevent or alleviate those identified poor driving habits and behaviors. While finding a solution 
seems unwieldy and untenable, exploring the variance within and between individuals’ driving 
styles will be key in understanding how drivers deviate from nominal, non-crashworthy behaviors. 

Toward a Real-time Evaluation of Human Performance 
Extensive work is necessary to define and model crash risk for the in-situ vehicle operator. Existing 
models for real-time crash risk typically use traffic flows and infrastructure variables, and provide 
insight on when conflict will exist for that road segment. Adopting the estimates of crash risk from 
those models into an individual-centric model would allow for the crash risk to be calculated per 
road segment (and per other factors, such as traffic flow or speed) within the collective trip. These 
estimates would then be modified by adding additional layers of information into the model, 
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including enduring person-focused variables (e.g., driving style, personality, risk-taking 
behaviors), temporal person-focused variables (e.g., mood, anxiety, fatigue), and situational 
variables (e.g., environment, trip type, traffic).  

Ultimately, a cumulative risk score may be modeled to describe the main effect and interactive 
effects differing parameters have on an individual’s crash risk. Risk can be described as time-, 
road-, or trip-based, as determined by the specificity of the data collected.  

Recommendations 
Several recommendations can be made based on the exploration of topics discussed in this study. 
These include recommendations regarding behavior-based predictive safety analytics, driving 
styles, environmental and traffic-based conditions, and crash risk. These recommendations exist 
for both research and industry and cover future data collection efforts, analyses, and data 
representations.  

• Break down known crash precursors and correlate them to driving styles. Typical driving 
styles have been correlated to road safety elements, but little information exists as to how 
they relate to crash precursors. Speeding behaviors are typically operationalized within 
driving styles, which serves as a precursor. However, little is known about the propensity 
towards distraction, fatigue, or other impairment as a driving style, or how drivers 
operating a vehicle under those conditions alter their behaviors from their typical driving 
habits.    

• Better define driving style-based behavioral indicators and associated metrics. A continual 
effort within naturalistic data use is to further create and refine useful metrics to evaluate 
safe and effective performance. The ongoing efforts to define behavioral indicators will 
produce additional content on the interaction between person-factors and situational 
contexts. Examples include when a person’s typical driving style is characterized as safe 
and patient, but that person is in a situation that alters their driving behaviors, such as 
driving in an unfamiliar area of a city in which other drivers are aggressive. This situational 
combination of stressors may decrease the driver’s safe behaviors in a way that would 
affect their category of driving styles more than others would be affected. This effect could 
manifest as increased distraction, decreased situational awareness, poorer driving 
performance, or any number of other different ways.   

• Capture trip-level data across the industry. Current epidemiologic data excels at capturing 
information across local, state, and national levels. Crash, vehicle, and violation data are 
heavily represented through state and federal data collection efforts. Similarly, miles 
traveled, traffic flows, and infrastructure capacities are largely understood at a national 
level. Further, crash event data is becoming increasingly available through police accident 
reports, state tracking, or onboard monitoring systems implemented within CMV fleets. 
However, a shift toward collecting trip-level data, in conjunction with other data streams, 
would provide much more information that could be utilized effectively and efficiently to 
identify other systematic elements of roadway usage.  
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Additional Products 
Education and Workforce Development Products 
This project involved three graduate students. Dr. McDonald mentored two master’s students on 
this project. Mr. Miller and Dr. Sarkar mentored one Virginia Tech master’s student who worked 
closely with VTTI.  

Technology Transfer Products 
A number of planned publications are to be included as technology transfer products. These may 
include any of the following expected publication topics: 

1. Calculating behavioral indicators of unsafe driving based on naturalistic driving data (focus 
on computational methods). 

2. How do enduring personal characteristics cause crashes? 

3. Predicting crash involvement based on enduring personal characteristics and observable 
driver behavior. 

4. A prototype analytics tool for identifying unsafe drivers. 

5. The role of different naturalistic driving datasets in developing crash risk indicators.  

6. Comparing between dynamic Bayesian networks, support vector models, and baseline risk 
rates. 

7. Illustrating how naturalistic driving data can be combined with public data to identify risk. 

Data Products  
This effort produced three datasets. 

1. SHRP 2 sampled trip-level data. This dataset contains roughly 41,500 observations and 
calculated indices. 

2. SHRP 2 person-level data. Variables include trip data aggregated at the person-level. 

3. CMV-based person-level data. Minimal survey data are included in this dataset. 
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