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Chapter 1: Introduction 
1.1  Scope of Work 
 
This report provides an overview of how climate models resolve high-intensity, low-frequency 
precipitation as relevant to climate change resilience planning for transportation infrastructure. In 
particular, the report focuses on several key research questions below as prioritized by ODOT.  
 

• How do climate models resolve projections for high-intensity, low-frequency 
precipitation and how do those projections incorporate empirical observations?  

• How does modeling support the conclusion that increases in the intensity of rarer, more 
extreme precipitation will increase more than less rare and less extreme precipitation? 

• How does modeling support the conclusion that projected precipitation trends are greater 
than observed trends, particularly for high-intensity, low-frequency precipitation events. 
 

Finally, the report considers initial recommendations for using a risk-based framework to apply 
climate projections in support of resilience planning and design. 
 
1.2  Outline of the Report 
 
This report is organized to address the key research questions described above. Chapter 2 
summarizes key messages supported by the remainder of the report. Chapter 3 provides an 
overview of how climate models resolve high-intensity, low-frequency precipitation events and 
incorporate empirical observations. Chapter 4 discusses the importance of downscaling 
techniques in improving the resolution of high-intensity, low-frequency precipitation events in 
models. Chapter 5 summarizes the state-of-knowledge pertaining to future projections of high-
intensity, low-frequency precipitation events. Finally, Chapter 6 provides high-level 
recommendations for applying climate projections in support of resilience planning and design.
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Chapter 2: Key Messages 
 
 Global climate models (GCMs) are the primary tools used to understand past and future 

climate change. Output from GCMs increasingly informs climate policy and resilience 
planning. 

 Global climate models simulate Earth’s climate based on the laws of physics, fluid 
motion, and chemistry. GCMs are not directly calibrated to observations of high-
intensity, low-frequency precipitation events, but the physics (e.g., convection) governing 
extreme precipitation in models is parameterized, or “tuned,” using empirical values of 
atmospheric circulation and thermodynamics. Model projections of high-intensity, low-
frequency precipitation, however, are validated using empirical measures of extreme 
precipitation. 

 Downscaling techniques are applied to GCM output to provide a more accurate 
representation of high-intensity, low-frequency precipitation. Downscaling techniques are 
often trained using empirical datasets.   

 Intensities for rarer and more extreme precipitation events are projected to increase at a 
faster rate than less rare and less extreme events based on downscaled GCMs. A range of 
studies using GCMs, as well as some recent regional studies using empirical data, 
supports this conclusion. 

 Observed trends in higher-intensity, lower-frequency precipitation totals increase at a 
lower rate than some lower-intensity, higher-frequency precipitation totals in Ohio. 
Trends in higher return period precipitation totals are associated with a higher degree of 
uncertainty in both the observed record and model projections.   

 Ensembles of GCMs increase the number of data points to better represent the full future 
distribution of higher-intensity, lower-frequency precipitation totals. Studies using GCMs 
show that precipitation increases are amplified for heavier precipitation totals. 

 Climate projections used in national and state climate assessments show the heaviest 
precipitation events are likely to increase in both frequency and intensity during the 21st 
century. Specifically, Ohio is projected to experience increases in the number of days 
with and intensity of heavy precipitation, with proportionally greater increases for heavier 
precipitation totals during the 21st century. 

 Overall, GCMs, including most downscaled GCMs, remain limited in their ability to 
simulate high-intensity, low-frequency precipitation events and develop comprehensive 
projections of their future changes. Obstacles to modeling include challenges related to 
simulating small space and time scales over which some extreme precipitation events 
occur (e.g., severe thunderstorms and tropical cyclones) and the shortness of the 
historical record relative to the rarity of the event. 
 

 Uncertainty in future precipitation projections is difficult to model and constrain due to 
both inconsistent precipitation observations and physical constraints and limitations in 
models. Ultimately, verification of extreme precipitation projections in climate models is 
particularly challenging. 
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 Models continue to improve their ability to provide a more accurate representation of 

high-intensity, low-frequency precipitation events, although uncertainty remains. The 
appropriateness of using projections of high-intensity, low-frequency precipitation to 
support resilience planning should be considered on a project-to-project basis and  risk-
based analyses can provide a framework for using projections and making science-
informed decisions in the face of uncertainty.
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Chapter 3: Global Climate Model Validation and Calibration 
Global climate models (GCMs) are complex numerical representations of the major climate 
system components (atmosphere, land surface, ocean, and sea ice) and their interactions. GCMs 
are the primary tools used to understand past and future climate change, such as from future 
greenhouse gas emissions, and their output is increasingly used to inform a range of climate 
policy decisions and resilience projects. 
 
3.1 Climate model parameterization and calibration 
GCMs are complex, numerical models used to understand how weather and climate may change 
in the future, particularly how greenhouse gas emissions and other drivers will affect regional 
and global climate. GCMs are designed to change as different mechanisms of the climate system 
reach historically unprecedented states, fundamentally differing from weather models based on 
empirical data alone. For example, weather models entirely driven by empirical data assume the 
historical climate remains unchanged, while forward-looking GCMs are designed to anticipate 
changes exceeding historical normals.  
 
GCMs are calibrated (or “tuned”) to observational data or known properties of Earth’s climate, 
including radiative balance, temperature, clouds, wind, and sea ice (Mauritsen et al. 2012). For 
example, the response of extreme precipitation during thunderstorms to warming temperatures is 
initially modeled with some degree of uncertainty using an existing physical understanding of 
the response of the climate system, such as dynamic and convective responses to warmer 
temperatures. These model representations, known as parameterizations, are critical to accurately 
represent the physics of the highest-intensity precipitation events. Parameterizations are 
numerical representations of complex physical processes (e.g., convection leading to 
thunderstorms and extreme precipitation) not initially represented well in the coarse spatial 
resolution of GCMs. 
 
Next, model calibration helps 
constrain this model 
uncertainty that may arise as a 
result of the coarse spatial 
resolution of GCMs or 
uncertain or unknown 
atmospheric processes and 
adjusts model parameters to 
align output with key features 
of the observed climate 
(Hourdin et al. 2017). Most 
GCMs have individualized 
model calibration approaches, 
focusing on a range of 
parameterizations. The most common includes top-of-the-atmosphere energy flux, though 
models also calibrate more complex parameterizations such as cloud microphysics and 
atmospheric circulation that impact precipitation (Hourdin et al. 2017). 
 

How do climate models resolve projections for 
low-frequency, extreme precipitation?  

GCMs are “tuned” to empirical data and known 
properties of Earth’s climate, including radiative 
balance, temperature, atmospheric dynamics, 
clouds, and wind. The models use a series of 
physical equations that resolve precipitation if, for 
example, a thunderstorm is simulated through the 
model representation of convection. This 
representation, or parameterization, is tuned by 
observed data.  
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3.2 Using empirical data to calibrate and parameterize high-intensity, low-
frequency precipitation in climate models 
GCMs are not directly calibrated to less frequent and heavy precipitation events, but the physics 
(e.g., convection and microphysics) that leads to extreme precipitation is parameterized using 
non-precipitation empirical values. For example, models use empirical data to parameterize the 
radiative, dynamic, and cloud property components that affect precipitation. For the heavier 
precipitation events, models do not explicitly parameterize precipitation using the Clausius-
Clapeyron equation, but rather parameterize convective processes during thunderstorms with 
observations.  
 
Changes in temperature or 
cloud properties also have 
indirect effects on precipitation 
rates, and models parametrize 
these processes using non-
precipitation empirical data. 
Energy and water balances are 
parameterized, as well, which 
interact with many more 
complex processes to influence 
precipitation (e.g., see Figure 1 
below summarizing 
components influencing cloud processes that are parameterized in the ECHAM1 model). Last, 
the value of saturation water vapor (maximum water-holding capacity of the atmosphere) 
responds to temperature according to the Clausius-Clapeyron equation (Held & Soden 2006), but 
the conversion of water vapor into precipitation is driven by parameterized radiative and 
dynamic processes in GCMs such as those represented in Figure 1. 
 

 
1 ECHAM is a GCM developed by the Max Planck Institute for Meteorology. Recent versions of ECHAM were 
used in IPCC assessment reports. ECHAM is used as an illustrative example of cloud processes in GCMs, but it is 
cautioned that each GCM has different approaches to parameterizing cloud processes. 

How do GCM projections incorporate empirical 
observations?  

GCMs are not directly calibrated or modeled using 
observed precipitation totals. Rather, the physical 
equations used to simulate extreme precipitation, 
such as convection during a thunderstorm or 
hurricane, are parameterized, or fit, to observations 
of atmospheric dynamics, cloud properties, and 
other physical properties that impact precipitation 
totals. 
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Figure 1. Illustration of the major uncertain climate-related cloud processes frequently used to tune the climate of the ECHAM 

model. Stratiform liquid and ice clouds, and shallow and deep convective clouds are represented. The grey curve to the left 
represents tropospheric temperatures and the dashed line is the top of the boundary layer. Parameters are a) convective cloud 

mass-flux above the level of non-buoyancy, b) shallow convective cloud lateral entrainment rate, c) deep convective cloud lateral 
entrainment rate, d) convective cloud water conversion rate to rain, e) liquid cloud homogeneity, f) liquid cloud water conversion 

rate to rain, g) ice cloud homogeneity, and h) ice particle fall velocity. Adapted from Mauritsen et al. (2012). 

GCMs represent the highest-intensity extreme precipitation events at relatively coarse grid 
resolution using convective parameterization schemes, or physical representation of severe 
weather (e.g., thunderstorms) (Chan et al. 2014). Precipitation is primarily simulated in GCMs 
through microphysics and cumulus parameterization schemes that model large-scale and 
convective precipitation, respectively. Convective precipitation, precipitation that falls during 
high-intensity thunderstorms and tropical cyclones, often represents the most extreme 
precipitation totals. Convection is typically parameterized to represent physical processes in 
simpler numerical models, in which parameters are estimated using non-precipitation empirical 
values (Villalba-Pradas & Tapiador 2022). 
 
The scientific literature is limited on the exact nature of the empirical values and assumptions 
used in convection schemes, but Villalba-Pradas & Tapiador (2022) provide a thorough 
summary of the state of the science on convective parameterization in GCMs. They indicate that 
non-precipitation empirical data are critical to the development of convective parameterizations 
but highlight the limitations of observed data gaps and the inability of modern instrumentation to 
adequately represent convective quantities. Despite having a significant impact on precipitation 
extremes, parameterization equations vary by GCM and are not publicly available, limiting our 
ability to validate models independently. Despite this, GCMs undergo a standardized validation 
process as part of the Coupled Model Intercomparison Project, in which they are required to 
sufficiently reproduce observed climatology and other metrics. This provides more confidence in 
the underlying physics and parameterizations relevant to precipitation in GCMs.  
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3.3 Global climate model uncertainty 
Understanding the basics of model uncertainty helps contextualize how models incorporate 
empirical extreme precipitation data. GCM projections of future climate are constrained by 
uncertainties stemming from future emissions scenarios, physical representations of weather, and 
observational and spatial limitations. These sources of uncertainty can lead to a large inter-model 
spread in local, regional, and global projections of climate and extreme weather variables, 
particularly projections of extreme precipitation (John et al. 2022; Majhi et al. 2022). Accurately 
quantifying the range of future changes in precipitation intensity relative to temperature is a 
substantial challenge due to inconsistent precipitation observations and physical constraints in 
models (Allen & Ingram 2002). Despite the presence of large inter-model uncertainty in the 
magnitude of precipitation projections, the newest CMIP6 simulations of extreme precipitation 
are relatively consistent in projecting an increase in 20-year return periods of annual maximum 
1-day precipitation totals, with over 90% of GCMs projecting an increase during the 21st century 
(John et al. 2022). This indicates that models tend to agree on the direction of extreme 
precipitation trends, but uncertainty remains in the magnitude of these trends, particularly 
due to the spatial resolution of GCMs. One paper demonstrates that the more coarse the model 
is spatially (the larger the grid size) the less intense the simulated precipitation (Chen & Knutson 
2008). In effect, verification of climate model projections of high-return-period precipitation 
using empirical data is particularly challenging and motivates the need for higher-resolution data 
products. 

Chapter 4: Downscaling Global Climate Models and Improved 
Resolution of High-Intensity, Low-Frequency Precipitation 
4.1 Limitations of GCMs and motivation for downscaling 
GCMs are limited in their ability to provide an accurate representation of extreme precipitation 
events because of the small space and time scales over which these events occur relative to the 
resolution of GCMs. For example, a high-intensity deluge precipitation event occurring during a 
thunderstorm would impact a relatively small area at a sub-daily or hourly timescale. GCMs are 
often run at relatively coarse spatial and temporal resolutions, often over 100+ km grids and at 
daily or longer time scales. At these resolutions, it is difficult to fully represent small-scale 
convection, even with convective parameterizations (Wehner et al. 2021; Flato et al. 2013).  

As a result, GCMs tend to simulate many days with light precipitation and fewer days with 
heavy rainfall events, often underestimating rainfall intensities during the highest-intensity 
precipitation events (Sun et al. 2006; Jong et al. 2023). This can partially be attributed to the 
differences in coarse spatial grids in GCMs relative to observed precipitation (Wehner et al. 
2009; Endo et al. 2012; Asadieh & Krakauer 2015; Jong et al. 2023). 

To address these limitations, downscaling techniques are used to increase model accuracy of 
finer-scale processes that drive more extreme precipitation. The following section details 
common downscaling techniques that address the issues described above and improve how 
climate models provide a more accurate representation of high-intensity, low-frequency 
precipitation events.   
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4.2 Downscaling techniques improve model representation of extreme precipitation  
Downscaling GCMs increases the resolution and accuracy of high-intensity, low-frequency 
precipitation events using two primary downscaling techniques, statistical and dynamical. 
Statistical downscaling uses relationships between a finer-scale training dataset (e.g., historical 
observations, or forward-looking output from the Weather Research & Forecasting Model) and 
larger-scale GCM output. Statistical downscaling essentially “scales” coarse spatial resolution 
climate projections to finer spatial resolutions using weather stations or gridded historical 
reanalyses.2 Dynamical downscaling uses high-resolution regional physical models to simulate 
large-scale climate processes over finer local or regional scales. These regional models are run 
using boundary conditions taken from the GCM to simulate the physics of weather patterns and 
processes, rather than representing them statistically as in statistical downscaling. This both 
preserves the GCM’s representation of the impacts of climate change on extreme precipitation 
and incorporates finer-scale processes not well-represented by GCMs (NOAA 2016). For 
example, the convective parameterizations described in Chapter 4 are often prescribed in these 
regional simulations, providing a better representation of convective storms (e.g., thunderstorms) 
under the influence of climate change.   
 
Localized Constructed Analogs (LOCA) is a statistically downscaled data product and has been 
used in many statewide and national climate assessments. As demonstrated in Figure 2, statistical 
downscaling in LOCA simulates higher precipitation totals over finer spatial resolutions, more 
accurately depicting land features and analyzing the effects of climate change on extreme 
precipitation at the local level.  
 
 

 
Figure 2. Two maps displaying the difference in spatial resolution of annual precipitation differences between a GCM (left) and 

downscaled climate data (right).3 

Improvements have been made to statistically downscaled products in recent years to better 
project precipitation extremes, leading to the development of updated statistical and dynamical 

 
2 Reanalyses are historical data products that assimilate observations into numerical weather prediction models to 
provide a spatially and temporally continuous history of weather across the Earth. 
3 Research - Downscaling at Berkeley Lab (lbl.gov) 

https://downscaling.lbl.gov/research/
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downscaled extreme precipitation projections for use in support of the upcoming Fifth National 
Climate Assessment. A comparison of the original LOCA training dataset (Livneh et al. 2015) 
and station observations initially showed an underestimation of precipitation extremes (Pierce et 
al. 2021; Risser et al. 2021). The improved downscaling approach in LOCA2 uses a high-
resolution gridded daily precipitation training dataset that more realistically preserves 
precipitation extremes by updating the time adjustment in assimilating empirical precipitation 
data into the model (Pierce et al. 2021). Model projections of 20-year precipitation totals average 
74 and 98 mm for LOCA2 and GHCN weather stations, respectively. While the historical 
representation of model projections remains lower than observed values, the resulting LOCA2 
dataset leads to 20-year return period daily precipitation totals that are more accurate relative to 
observations and 30% higher than LOCA (Pierce et al. 2021). The LOCA2 5- to 500-year return 
period values also better correspond to observations and increase by 20–30%, capturing tail-end 
precipitation extremes across North America (Pierce et al. 2023). In Ohio, 100-year events are 
projected to become 40-50-year events by late-21st century under a medium-emissions scenario 
(Pierce et al. 2023). 
 
The increased resolution and 
representation of observations of the 
heaviest precipitation events lead to 
increased user confidence in 
downscaled precipitation datasets to 
support planning decisions in a 
changing climate. Dynamical 
downscaling using physical climate 
models, such as the Weather 
Research & Forecasting Model (WRF), is the most comprehensive option to more explicitly 
simulate high-intensity, low-frequency precipitation, as it models processes and spatial scales 
most directly associated with the most extreme precipitation totals. WRF is a numerical weather 
model designed by the National Center for Atmospheric Research (NCAR), the National 
Oceanic and Atmospheric Administration (NOAA), the U.S. Air Force, the Naval Research 
Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA). It was 
specifically designed for operational weather forecasting and meteorological research 
applications4 and can be calibrated to observational datasets to provide a more accurate 
representation of extreme precipitation from convective storms, tropical cyclones, extratropical 
cyclones, and other significant mesoscale weather phenomena. To improve the representation of 
precipitation extremes in regional climates, dynamical downscaling has been applied to LOCA2 
projections in California to allow convection to be dynamically produced by WRF without the 
use of convective parameterizations.5 Dynamically downscaled climate models, however, are 
computationally expensive and, as a result, not as widely used as statistical-downscaled data 
products. While publicly available dynamically downscaled data exists in California, there is 
currently no publicly available dynamically downscaled data product in Ohio. 

 
4 https://www.mmm.ucar.edu/models/wrf  
5 Pierce, D. (2023). Loca version 2 (California) vs. Loca Version 2 (North America). LOCA Statistical Downscaling 
(Localized Constructed Analogs). https://loca.ucsd.edu/loca-version-2-california-vs-loca-version-2-north-america/  

Downscaling is still not a perfect 
representation of precipitation extremes, 

but it is the best option available to evaluate 
higher-intensity, less-frequent precipitation 

events in the future. 

https://www.mmm.ucar.edu/models/wrf
https://loca.ucsd.edu/loca-version-2-california-vs-loca-version-2-north-america/
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Chapter 5: Climate Model Projections of High-Intensity, Low-
Frequency Precipitation 
The Intergovernmental Panel 
on Climate Change (IPCC) 
states the following on 
projected trends in extreme 
precipitation, “The increase in 
the frequency of heavy 
precipitation events will be 
non-linear with more warming 
and will be higher for rarer 
events (high confidence), with a 
likely doubling and tripling in 
the frequency of 10-year and 
50-year events, respectively, 
compared to the recent past at 
4°C of global warming” 
(Seneviratne et al. 2021). This 
is supported by GCM 
projections from scientific 
studies that demonstrate larger 
relative change in return period 
intensities for rarer events than 
for less rare events (e.g., Li et 
al. 2021; Pendergrass 2018; 
Mizuta & Endo 2020; Wehner 
2020), as well as the physical basis for greater increases among the highest-intensity, least-
frequent events governed by the Clausius-Clapeyron equation (e.g., Wentz et al. 2007; Allan & 
Soden 2008; Seneviratne et al., 2021). 
 
Observed trends in higher-intensity, lower-frequency precipitation totals increase at a lower rate 
than some lower-intensity, higher-frequency precipitation totals in Ohio. As highlighted in Task 
1, Climate Science Review Responses to ODOT Questions, the rarest storms are infrequent 
relative to the observed period, and it is difficult to identify a discernable trend over such a short 
timeframe. While the observational record in Ohio does not capture larger increases in more-
intense precipitation relative to less-intense precipitation over the recent past, GCMs and 
physical theory largely support this relationship across the Continental US, with evidence in the 
observed record in some regions around the globe (Fischer & Knutti 2016). Initially derived in 
physical theory alone, early GCM simulations first demonstrated the amplification of 
precipitation extremes as the return period increases (Fowler & Hennessy 1995). Ensembles of 
GCMs increase replication and the length of the timeframe to characterize the full range of the 
future distribution of higher-intensity, lower-frequency precipitation totals. For example, GCM 
ensemble projections of late-21st century precipitation under a high-emissions RCP8.5 scenario 
demonstrate that the probability of the higher-intensity, lower-frequency precipitation totals 
increases nearly exponentially with increasing precipitation totals (Neelin et al. 2017). 
 

How does modeling support the conclusion that 
projected trends in precipitation are greater 
than observed trends, particularly for low-
frequency, extreme precipitation amounts?  

Observed trends in lowest-frequency, extreme 
precipitation totals increase at a slower rate than 
some lower-intensity heavy precipitation events in 
Ohio, likely a consequence rarity of the events 
relative to the observed timeframe. High-
resolution downscaled GCMs, which are 
evaluated against empirical data across the United 
States, project that intensities for more extreme 
precipitation events will increase at a faster rate 
than less extreme events (e.g., Pierce et al. 2023; 
Pendergrass & Hartmann 2014). In some cases, 
the highest precipitation intensities are projected 
to increase at a rate above the Clausius Clapeyron 
scaling of 7% per 1˚C. 
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Using GCMs, Pendergrass (2018) demonstrates that the intensity of more extreme precipitation 
events increases at a faster rate than less extreme events, with the highest-intensity and lowest-
frequency events outpacing the expected 7% per 1˚C warming from the Clausius-Clapeyron 
equation (see Figure 3). The uncertainty in climate model simulations of increasing precipitation 
intensity, however, also increases for the higher-intensity, lower-frequency events, as 
demonstrated by the increasing model spread (e.g., between top and bottom quartiles) in Figure 
3, as does the likelihood of exceeding 7% per 1˚C warming in models. 

 

 
Figure 3. Projected percent change in precipitation intensity with warming temperatures. Top quartile represents the highest 25% 

of climate model projections, ensemble mean represents the average, and bottom quartile represents the lowest 25%. The grey 
area denotes changes in extreme precipitation that exceed the Clausius-Clapeyron equation. Adapted from Pendergrass (2018) 

and Pendergrass & Hartmann (2014). 

Downscaled GCMs, trained by observed reanalysis datasets, project that intensities for more 
extreme, lower-frequency precipitation events will increase at a faster rate than less extreme, 
higher-frequency events, providing confidence in the IPCC conclusion that increases will be 
higher for rarer events. Downscaled GCM projections of extreme precipitation, particularly those 
associated with the 20-year return period from LOCA2 projections referenced in Pierce et al. 
(2023), align relatively well with weather station observations across the United States during the 
historical period (Figure 4). Because the models represent the spatial variability in observed 
high-return-period precipitation well in the historical period, and demonstrate substantial 
improvements in representation of the observed precipitation magnitudes, users should 
have confidence in model representation of both empirical data and forward-looking 
precipitation projections. The LOCA2 projections demonstrate that the intensities of the more 
extreme precipitation events could increase at a faster rate than less extreme events; all seasonal 
percent increases of 500-year precipitation totals outpace 5- and 50-year precipitation total 
increases across the United States by late century (Figure 5). Together, these findings provide a 
significant link between empirical data and projected increases in higher-intensity, lower-
frequency precipitation across the United States. 
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Figure 4. The 20-yr return value (mm/day) of daily precipitation over the U.S. for three datasets. (top left) 3,662 observed Global 
Historical Climatology Network (GHCN) weather station observations. (top right) the GHCN weather station data gridded to the 
LOCA grid. (bottom) Multi-model ensemble average 20-year return value from LOCA version 2 (CMIP6) during same historical 

period as GHCN weather station data. Adapted from Pierce et al. (2023). 

 

 
Figure 5. Multi-model ensemble average projected change (%; solid lines) in 5-, 50-, and 500-yr return values of daily 

precipitation as a function of Shared Socioeconomic Pathway (SSP) (x axis) averaged over Canada and the contiguous United 
States exclusive of Arizona and New Mexico. Different colored lines are shown for each season, as indicated by the legend. 

Changes are calculated from the historical period of 1950–2014 to 2075–2100. The vertical bars to the right of the panels show 
the interquartile ranges across the models for each season as a measure of uncertainty. Adapted from Pierce et al. (2023). 

 
The IPCC finding that extreme precipitation increases nonlinearly with intensity primarily relies 
on scientific studies of return period precipitation less frequent than 100-year events(Seneviratne 
et al., 2021). The study by Pierce et al. (2023) described above goes further and provides 
projections for precipitation totals based on 500-year events, showing that heavy precipitation 
totals are projected to increase in frequency at a faster rate during the course of the 21st century 
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(Figure 6). In Ohio, 100-year events are projected to become 40-50-year events in some areas by 
late-21st century under a medium-emissions scenario (Pierce et al. 2023). This likely reflects the 
difficult requirement for much longer weather records needed to model and validate return 
periods longer than the observed record. The IPCC conclusion is primarily based on a physical 
understanding of the dynamic and thermodynamic contributions to precipitation in a convective 
environment (e.g., during thunderstorms) and the anticipated increase in atmospheric moisture 
availability that would result from projected warming temperatures (Seneviratne et al., 2021). 
This represents the most up-to-date state of climate science and modeling on extreme 
precipitation, and, while the conclusions come with a degree of uncertainty, models are the most 
relevant tools for planning in a changing climate. 
 

 
Figure 6. Future return period (in years) for the historical (1950–2014) 100-yr return value of daily precipitation. Displayed 

values are the median across all models that have at least one run of the indicated emissions scenarios (medium, medium-high, or 
high emissions). Adapted from Pierce et al. (2023). 

Chapter 6: Summary of Climate Projections and Recommendations 
6.1 Precipitation Projections for Ohio 
The effects of global climate change on precipitation are already being experienced in Ohio. 
Heavy precipitation totals have historically increased in both frequency and intensity (USGCRP 
2018; Bonnin et al. 2011; Ohio DOT Asset Reliability Final Report)  and are projected to 
increase at a faster rate during the next century (e.g., Figure 6). Ohio is projected to experience 
increases in annual precipitation totals, primarily driven by projected increases during the winter 
and spring months. For heavy precipitation, projections show Ohio could experience increases in 
the intensity and number of days with both very heavy (historical 95th percentile precipitation 
total) and extremely heavy (99th percentile) precipitation, with a proportionally greater increase 
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for extremely heavy precipitation. Projections also show that the number of days with 
precipitation greater than 3 inches is also projected to increase at a proportionally greater rate 
than days above 1 and 2 inches.6 By the end of the 21st century, 100-year events could become 
40-50-year events in Ohio under a medium-emissions scenario (Figure 6). The IPCC concluded 
that very rare heavy precipitation events will increase in frequency and intensity as the global 
temperatures warm, with changes in intensity increasing nonlinearly as the frequency of an event 
decreases. 
 
As discussed in Chapters 4 and 5, high-resolution downscaled GCMs, which are evaluated 
against non-precipitation empirical data, improve model representation of finer-scale processes 
that drive more extreme precipitation. As ODOT considers the most useful results for informing 
potential updates to their three categories of flood-related design standards, ICF recommends 
that ODOT consider updating previous studies based on the most up-to-date, advanced 
downscaled climate models (e.g., LOCA2). While downscaling is still not a perfect 
representation of precipitation extremes, it is the best option available to evaluate higher-
intensity, less-frequent precipitation events in the future. 
 
6.2 Recommendations for Climate-Informed Decision Making 
ICF’s review of the best available science suggests that Ohio is projected to experience increases 
in the number of days with and intensity of heavy precipitation, with proportionally greater 
increases for heavier precipitation totals during the 21st century. The prospect of this change 
carries significant implications for hydraulic infrastructure planning and design. As ODOT 
considers how to incorporate this information into design and the range of risks associated with 
different policy options, ICF recommends two approaches to navigate the uncertainty around this 
decision. 
 
Recommendation 1 – Policy Scenario Analysis.  Conduct a scenario analysis to inform 
ODOT’s understanding of the risks and costs associated with different policy options. 
Specifically: 
 

(1) What if ODOT were to keep existing design practices but extreme precipitation events 
increase in intensity? 

(2) What if ODOT were to update design practices to accommodate an increase in extreme 
precipitation that never materializes? 

 
A “thought experiment” analysis to estimate high-level costs under both scenarios could be 
helpful in informing ODOT’s overall risk tolerance around changes to design practices. For 
example, the first scenario has low capital costs but comes with increased risk. The latter 
scenario is risk-averse but comes with increased costs that would prove ineffective if resilience 
measures were later proven unnecessary. 
 
The analysis could include sub-scenarios where design standards are changed to different 
degrees or are applied to different subsets of assets (i.e., only the most critical) similar to 
ODOT’s current risk-based design approach. The simplest version of this analysis, for example, 

 
6 Projections for Ohio are from the 2020 Ohio DOT Asset Reliability Final Report. 
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could involve modeling the risks of action versus inaction on example assets covering the main 
typology of ODOT’s hydraulic infrastructure and extrapolating the results statewide. Of note to 
ODOT, this analysis could be within the scope of ODOT’s ongoing Resilience Improvement 
Plan project led by the Office of Statewide Planning and Research. 
 
Recommendation 2 – Pilot Integration of Climate Model Projections into H&H Modeling.  
In addition to or instead of the scenario analysis above, ODOT could begin with an initial pilot to 
sensitivity test H&H design decisions to different climate change factors. For example, on select 
upcoming design projects, evaluate design options under a baseline (no climate change) scenario 
as well as under a scenario with changes in extreme precipitation. Practitioners would perform 
standard H&H modeling under each scenario to evaluate the implications for design decisions. 
 
Overall, adaptation and resilience planning to address climate risk depends on the availability of 
robust extreme weather and climate data. Scientists and practitioners rely heavily on empirical 
data and forward-looking climate models to address this need. Observations provide a baseline 
understanding of climate risk for near-term planning, while climate models provide a longer-
term perspective on climate risk that may well exceed the baseline historical risk. ODOT should 
consider trends in both observed and model-projected extreme precipitation to inform their 
planning decisions going forward.
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