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Abstract

The properties of geomaterials usually vary from one location to another within the same site, in both
the vertical and horizontal directions. The variability of soil properties is a complex phenomenon that
results from several sources of uncertainties, including inherited spatial variability, measurement
error, statistical error, and model bias error. This study aimed at investigating the different methods
and techniques used to evaluate the spatial variability of soil properties; the different sources of
geotechnical variability; quantifying the variability of soil properties for inclusion in analysis; and
design of different geotechnical engineering applications. This included conducting in-box tests and
field tests on constructed sections at the Accelerated Load Facility (ALF) site and under-construction
sections from different projects using different devices, such as Dynamic Cone Penetrometer (DCP),
Light Falling Weight Deflectometer (LFWD), and Geogauge. Typical laboratory tests, such as



Atterberg limits, unconsolidated undrained (UU) triaxial, small direct shear, consolidation, and
California bearing ratio (CBR) tests, were also conducted to evaluate the specimen and operator-
related variability of different soil properties. In addition, the specific site variability was also
evaluated using the results from soil borings with laboratory tests and/or the results of in-situ tests
such as cone penetration test (CPT) and standard penetration tests (SPT).

The spatial variability of soil properties can be expressed in terms of mean, coefficient of variation,
scale of fluctuation, and correlation length. Several statistical techniques such as X-Bar/R, ANOVA,
second moment (SM) analysis, semivariogram, Bayesian, probabilistic analysis can be used to
characterize and evaluate the soil variability. The results from laboratory, in-box, and field testing
programs were analyzed using the Gauge R&R, ANOVA, and SM analysis; and the variability of soil
properties were expressed in terms of standard deviations and coefficient of variations (COV).

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis are smaller
than the COVs from ANOVA method. The operator-related variations showed lower values of COVs
than those generated from location/specimen-related variability. Additionally, analyses of variability
from in-box tests indicated lower COVs than the field tests. The COVs for the under-construction
sections were higher than the COVs for the constructed sections at ALF site. In the case of laboratory

tests, the specimen-related variability had higher COVs than the operator-related variability.

The semivariogram approach was used to evaluate the site variability of six sites from CPT tests and
four sites from soil boring data. The vertical and horizontal correlation ranges were determined for
each site and used to evaluate the reduction factor and the spatial COV for evaluating the resistance
factors for the load and resistance factor design (LRFD) of pile foundations.

A two-level Bayesian analyses were used to update the mean bias and standard deviation of the
measured/predicted pile capacity variables estimated using the Laboratoire Central des Ponts et
Chausees (LCPC) Pile-CPT method for three sites. In Level 1, the state variables were updated from
the national data; while in Level 2, the site variables were updated from state data. The updated mean
bias and standard deviation for each specific site were used to calibrate the resistance factors for
LRFD design of pile foundations.

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with 13 CPT
tests using the Stanford Geostatistical Modeling Software (SGeMS) software, which provides
confidence intervals (0 to 100%) of the estimated data between the tested points. The probability that
the estimated CPT data fall between + standard deviation were calculated and further used to update
the spatial variability and the LRFD resistance factor of LCPC Pile-CPT method.

The effect of variability in soil properties in the slope stability analysis was investigated using the
Slide 2018 2D software. Different scenarios were modeled for drained and undrained conditions. The



results showed that the factor of safety decreases with increasing the COV of cohesion and friction
angle and with increasing the vertical and horizontal correlation lengths.

The effect of site variability on shallow and deep foundations was investigated for single and multiple
soil borings with different distances from the foundation using Fenton and Griffiths and Naghibi and
Fenton approaches. The results showed that the ultimate bearing capacity and the resistance factor
decreases with increasing the COV of soil properties and the distance between the foundation and soil
boring.
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Abstract

The properties of geomaterials usually vary from one location to another within the same
site—in both the vertical and horizontal directions. The variability of soil properties is a
complex phenomenon that results from several sources of uncertainties, including
inherited spatial variability, measurement error, statistical error, and model bias error.
This study aimed at investigating the different methods and techniques used to evaluate
the spatial variability of soil properties; the different sources of geotechnical variability;
quantifying the variability of soil properties for inclusion in analysis; and design of
different geotechnical engineering applications. This included conducting in-box tests
and field tests on constructed sections at the Accelerated Load Facility (ALF) site and
under-construction sections from different projects using different devices, such as
Dynamic Cone Penetrometer (DCP), Light Falling Weight Deflectometer (LFWD), and
Geogauge. Typical laboratory tests, such as Atterberg limits, unconsolidated undrained
(UU) triaxial, small direct shear, consolidation, and California bearing ratio (CBR) tests,
were also conducted to evaluate the specimen and operator-related variability of different
soil properties. In addition, the specific site variability was also evaluated using the
results from soil borings with laboratory tests and/or the results of in-situ tests such as
cone penetration test (CPT) and standard penetration tests (SPT).

The spatial variability of soil properties can be expressed in terms of mean, coefficient of
variation, scale of fluctuation, and correlation length. Several statistical techniques such
as X-Bar/R, ANOVA, second moment (SM) analysis, semivariogram, Bayesian,
probabilistic analysis can be used to characterize and evaluate the soil variability. The
results from laboratory, in-box, and field testing programs were analyzed using the Gauge
R&R, ANOVA, and SM analysis; and the variability of soil properties were expressed in
terms of standard deviations and coefficient of variations (COV).

The results of laboratory, in-box, and field tests showed that the COVs from SM analysis
are smaller than the COVs from ANOVA method. The operator-related variations showed
lower values of COVs than those generated from location/specimen-related variability.
Additionally, analyses of variability from in-box tests indicated lower COVs than the
field tests. The COVs for the under-construction sections were higher than the COVs for
the constructed sections at ALF site. In the case of laboratory tests, the specimen-related
variability had higher COVs than the operator-related variability.



The semivariogram approach was used to evaluate the site variability of six sites from
CPT tests and four sites from soil boring data. The vertical and horizontal correlation
ranges were determined for each site and used to evaluate the reduction factor and the
spatial COV for evaluating the resistance factors for the load and resistance factor design
(LRFD) of pile foundations.

A two-level Bayesian analyses were used to update the mean bias and standard deviation
of the measured/predicted pile capacity variables estimated using the Laboratoire Central
des Ponts et Chausees (LCPC) Pile CPT method for three sites. In Level 1, the state
variables were updated from the national data; while in Level 2, the site variables were
updated from state data. The updated mean bias and standard deviation for each specific
site were used to calibrate the resistance factors for LRFD design of pile foundations.

The probabilistic method was used to analyze the CPT data obtained from LA 1 site with
13 CPT tests using the Stanford Geostatistical Modeling Software (SGeMS) software,
which provides confidence intervals (0 to 100%) of the estimated data between the tested
points. The probability that the estimated CPT data fall between the standard deviation
were calculated and further used to update the spatial variability and the LRFD resistance
factor of LCPC Pile-CPT method.

The effect of variability in soil properties in the slope stability analysis was investigated
using the Slide 2018 2D software. Different scenarios were modeled for drained and
undrained conditions. The results showed that the factor of safety decreases with
increasing the COV of cohesion and friction angle and with increasing the vertical and
horizontal correlation lengths.

The effect of site variability on shallow and deep foundations was investigated for single
and multiple soil borings with different distances from the foundation using Fenton and
Griftiths and Naghibi and Fenton approaches. The results showed that the ultimate
bearing capacity and the resistance factor decreases with increasing the COV of soil
properties and the distance between the foundation and soil boring.
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Implementation Statement

This study aimed at evaluating the different sources of geotechnical variability that

include laboratory and field testing, variability of testing devices, and quantifying the

spatial variability of soil properties for incorporation into analysis and design of different

geotechnical engineering applications. The findings of this study can be implemented into

the design and analysis of deep foundations, shallow foundations, slope stability, and any

other geotechnical application as summarized below:

1.

The variability of different soil properties evaluated in terms of coefficient of
variation (COV) from the laboratory and the AASHTO Materials Reference
Laboratory (AMRL) test results can be implemented in reliability analysis and
design for different geotechnical engineering applications.

The variability and spatial distribution of in-situ testing measurements of field
sections, in terms of COV using the different devices, such as DCP, LFWD,
Geogauge, Nuclear Density Gauge (NDG), and E-Gauge, can be implemented in

forensic analysis and design of pavements, embankments, slopes, etc.

The semivariorgam analysis can be used to evaluate the spatial variability from
multiple CPT tests and/or multiple soil borings to determine the vertical and
horizontal correlation ranges of the site variability, which will be used to evaluate
the spatial COV for the specific site for use in many geotechnical engineering
applications. This includes specific site calibration of resistance factor for LRFD
design of shallow and deep foundations, settlement calculation, and slope stability
analysis.

The Bayesian analysis technique can be incorporated to update the mean bias and
standard deviation, and hence the COV of the measured/predicted pile capacity
variables as more pile load test data are available. This technique can be applied
to update state variables (level 1) or specific site variables (level 2) for use to
calibrate the resistance factors for LRFD design of pile foundations.

The application of the probabilistic analysis approach using the SGeMS software
can provide us with the confidence level of estimated data between the tested

points from kriging analysis, and hence the probability that the estimated data fall
between + standard deviation. The results of probabilistic analysis can be used to
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update the spatial variability of the specific site for calibrating the LRFD
resistance factor for different geotechnical engineering applications, such as
LRFD design of pile foundation.

The variations of soil properties can be implemented to evaluating the slope
stability analysis of slopes, embankments, and mechanically stabilized earth
(MSE) walls.

The method proposed by Fenton and Griftiths can be implemented to incorporate
the variability in soil properties and distance from soil boring(s) for analysis and
design of shallow foundations.

The method proposed by Naghibi and Fenton can be implemented to incorporate
the variability in soil properties and distance from soil boring(s) for analysis and
design of deep foundations.
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Introduction

The subsurface soil conditions of all natural deposits are usually subjected to significant
degree of variability in terms of soil type, layering, and their properties, which are rarely
homogeneous. Unlike structural engineers who deal with mostly homogeneous man-
made materials, such as concrete and steel, geotechnical engineers have to cope with
highly variable natural materials (soils and rocks). As a result, high variance is expected
in the resistance of geotechnical structures (e.g., foundations, slopes, earth-retaining
structures) due to the vertical and horizontal spatial variations of soil properties for the
site. Generally, the soil borings and in-situ tests are carried out at fixed-spaced locations
(e.g., every 100 feet), and the laboratory tests are conducted on samples retrieved from
discrete depths, which can result in special variations of soil properties for the specific
site. Due to variability problem, the accuracy and reliability of the measured data to be
used in the design geotechnical structure are somehow unknown. Therefore, geotechnical
engineering often deals with different kinds of uncertainties that can result in either
under-design, which can cause failure, or overdesign, which increases the construction

cost if these uncertainties are not considered properly in the design.

Site investigation and characterization of subsurface soil conditions are very crucial for
geotechnical engineering design and analysis. The scope of site exploration and
investigation is mainly controlled by how much the customer and project authorities are
willing to spend, rather than by what is needed to explain the subsurface soil condition.
To design foundations and other geotechnical structures, specialists are preferably
looking for exclusive soil properties at numerous locations. However, reaching this goal
can be unlikely and expensive, since it may consume huge amounts of finance, labor, and
material as well as time. Fortunately, some soil properties are spatially correlated with
each other and thus can be related to many environmental issues (e.g., [1], [2], [3]).

The soil properties inherently vary spatially from point to point within the same site (both
horizontally and vertically) due to several factors including depositional environment,
degree of weathering, and physical processes (e.g., [4], [5]). The inherent spatial
variability of soil renders inescapable uncertainty in geotechnical design [4]. Soil
variability is a complex phenomenon that arises from many different sources of
uncertainties. The four primary sources of geotechnical uncertainty are inherited spatial
variability (horizontally and vertically) of the soil deposit during deposition, random
measurement errot, statistical uncertainty, and model bias uncertainty. The first source of



uncertainties results from the natural geologic processes that continuously modify the in-
situ characteristics of the soil properties, which vary from location to location. Different
factors such as the random mixture of various soil types and composition, variation in
water content, variation in density, and variation of stress level over time contribute to the
in-site variation in the soil properties. The inherent soil variability is described as a
random field that can be described precisely by the mean (m), coefficient of variation
(COV), and scale of fluctuation. Measurement error is caused by equipment and/or
operator induced variation, which can take place from one test to another. Equipment
error arises from variations when tests are set up and loads are delivered. Operator
induced variation occurs when personal judgement is required to read scales and take
measurement, or during sample preparation and handling. Statistical uncertainty is
associated with choosing the best equation/correlation required to interpret collected data
from a range of equations. Statistical uncertainty is expected to be significant because the
volume of soil sampled can be a large fraction of the volume of interest. The bias model
uncertainties are due to variations between the model's predictions from the measured
values, which arise from transformation when the important property was not measured
directly but rather projected using a credible transformation/interpretation model or other
sufficiently reasonable (or measured) information (e.g., [6], [7], [8]). These sorts of
uncertainties can be lumped together and termed as total site variability (e.g., [7], [8]).

Several techniques have been proposed to evaluate the site variability. These techniques
involved Geographic Information Systems (GIS), geostatistical studies, multivariate
statistical analysis, and other methods. The GIS was initially developed as a tool for data
retrieval and displaying geographic information, and later enhanced for spatial analysis
[9]. GIS with various spatial interpolation methods, including inverse distance and
kriging, was used in several regional scales for soil quality survey studies (e.g., [10],
[11]). The traditional interpolation techniques including inverse distance and kriging are
inadequate for the uncertainty assessment with the soil variables. Kriging algorithm is apt
to smooth out a local spatial variation of the variable. Goovaerts et al. [12] indicated that
small values are typically overestimated and large values are underestimated, with the
local error variance being the minimum and the variance of kriging estimates being six
times smaller than the sample variance. However, the Sequential Gaussian Simulation
(SGS) can be used to generate variable maps and reproduce actual statistics, histograms,
and variograms of the spatial variability for the data without smoothing effect.

Defining the spatial variability from the measured data requires engineers to determine
the correlation between data pairs that are separated by different distances (vertically and
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horizontally) using different parameters. One of the main fundamental parameters used is
the covariance Cov(q;,qj) between data values q; and q; separated by a distance (h). The
other parameter that is used to measure site variability in terms of the extent of spatial
dependency between samples is known as the semi-variogram, y(h), which can be defined
as the distance range (a) that defines the end of correlation between the data pairs.
Researchers are also looking for new techniques to evaluate site variability parameters
using advanced statistical methods, such as the Bayesian analysis, probability analysis, or
distribution by adopting the sequential Gaussian simulation using the Stanford
Geostatistical Modeling Software (SGeMS).

Several researchers in literature studied the effect of site variability for different
geoterchnical engineering applications. Onyejekwe et al. [13] performed geostatistical
spatial analysis to evaluate the undrained shear strength profile at any specific location
within the site. Lacasse and Nadim [4] showed that the geotechnical parameters had
variability in both vertical and horizontal directions with a greater inclination for the
geotechnical properties. McVay et al. [14] conducted a study to evaluate the resistance
factors (¢pr) for the Load and Resistance Factor Design (LRFD) of piles that incorporates
the spatial variability of local rock and soil strength. Otero [15] performed a study to
improve the LRFD resistance factors (¢r) for non-redundant shaft design incorporating
the new design methods for larger single shaft design. Faraone [16] presented a
methodology that incorporates the framework of reliability-based design, while
accounting for the site-specific spatial variability, which is applicable to several deep
foundation design practices. Fenton and Griffiths [17] investigated the effect of variation
in soil parameters on the bearing capacity of shallow foundations. Naghibi and Fenton
[18] investigated the effect of site soil variability with varied distance from soil boring to
calculate resistance factor for deep foundation. Several studies are also available in
literature on the effect of spatial variability on the slope stability analysis (e.g., [19], [20],

[21]).

This study aimed at evaluating the operator-induced and equipment-induced variations,
evaluating the different sources of geotechnical variability from both soil
boring/laboratory and in-situ testing; and quantifying the special variability of soil
properties for incorporation into analysis and design of different geotechnical engineering
applications such as LRFD design of pile foundations, bearing capacity shallow
foundations, and slope stability analysis.



Literature Review

General

The subsurface soil deposits are usually heterogeneity in nature, which contribute to the
spatial variation in soil types, soil layering, and soil properties. Therefore, the soil
properties of all natural soil deposits have certain degrees of variability and vary
inherently from point to point within the same site, in both the vertical and horizontal
directions, due to many reasons including the depositional environment, the degree of
weathering, and the physical process [e.g., [4], [5]. Looking at the microscopic level, the
soils are associated with different types of phases that can include minerals, gasses, ions,
and other non-mixable fluids and micro organisms. Meanwhile, at the macroscale level,
the soil heterogeneity leads to geological processes of soil varying, which imparts soil
spatial formation such as physical, chemical and biological weathering, deposition,
consolidation, cementation, desiccation, leaching, and diagenesis.

Researchers have long recognized the necessity of assessing variability and uncertainty in
geotechnical engineering design, and reliability-based design (RBD) approaches have
been developed internationally over the last 30 years. For example, Terzaghi et al.
emphasized the importance of uncertainty and unpredictability in geotechnical
engineering design and practice [22]. Several studies have been done by various
researchers (e.g., [6], [8], [14], [23], [24]) to enhance the state of knowledge in
geotechnical engineering by assessing variability and uncertainty, and applying
reliability-based design methodologies.

The variability of subsurface soil condition and soil properties is a complex phenomenon
that results from many different sources of uncertainties. The inherent soil variability is
usually described as a random field with mean (m), coefficient of variation (COV), and
scale of fluctuation of data. Before examining the historical progress of the study of
spatial variability in the field of geotechnical engineering, it is necessary, by way of
background, to treat the various mathematical techniques used in this area of research.
This section will present the work available in literature on geotechnical engineering

variability and uncertainty analysis.



Variability and Uncertainty in Geotechnical Engineering

In geotechnical engineering analyses, variability is a primary source of uncertainty. Many
areas of geotechnical engineering, notably the characterization of soil properties, are
fraught with uncertainty. There are two types of uncertainty in geotechnical properties:
aleatory and epistemic uncertainty ( [4], [25], [26]). Aleatory uncertainty is a
consequence of the spatial variability of the soil characteristic and indicates the property's
intrinsic randomness. Lack of information and flaws in measurement and/or calculation
cause epistemic uncertainty. For example, systematic inaccuracy is caused by factors
such as property measurement methods, modeling errors, and the amount of available
data. Human error is the third source of uncertainty. However, because it is difficult to
separate and its effects on probability are frequently included in compilations of statistics
on aleatory uncertainty, it is not usually considered in uncertainty assessments [27].
Figure 1 presents the schematic of the sources of uncertainty in geotechnical soil
properties.

Figure 1. Sources of uncertainty in geotechnical soil properties (Adapted from [25])
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In the field of geotechnical engineering, traditional tools for dealing with soil
heterogeneity have relied on a high factor of safety and local experience. This creates
inconsistency in performance measurement, prompting widespread recognition of the
need for more reliable techniques to incorporate soil heterogeneity into a more
quantitative scheme suited to engineering design. Since the performance of geotechnical
structures depends on local extremes of characteristics within a subsurface profile, it is
critical to probabilistically characterize the soil profile [28]. The probabilistic
classification of soil profiles offers a format for evaluating geotechnical information
about subsurface soil conditions at a specific site; a foundation for performance



prediction of a geotechnical engineering structure and evaluating the probability of
failure; and allows a geotechnical engineer to better evaluate various site investigation
and testing programs [29].

Baecher originally described two key sources of variability in rock mass attributes, found
from site investigations, as inherent spatial variation and mistakes induced by sampling
and testing when conducting site characterization on rock masses [30]. Baecher and
Einstein and Baecher proposed a method for coping with large amounts of uncertainty in
rock mass joints based on statistical reasoning and formal inference [30], [31]. Baecher
concluded that the sources of uncertainties are due to geological uncertainty resulting
from site formations, geometry, and previous history; model uncertainty caused by
physical model offerings; parametric uncertainty arising from spatial variability,
measurement error, and estimation bias; and finally, uncertainty arising from omissions or
overlooking geological details [30], [32], [33], [34].

Geotechnical variability is a complex attribute that results from many disparate sources of
uncertainties. As shown in Figure 2, Christian et al. [35] classified the uncertainty in
soil/rock parameters into two groups: (1) data scatter, which includes spatial variation of
the soil deposit and random testing/measurement errors; and (2) systematic error, which
includes statistical error and measurement bias. The spatial variability usually results
from the natural geologic processes and deposits that produced and continuously modify
the in-situ characteristics of soil, which makes the soil properties to vary, horizontally and
vertically, from place to place. Different parameters (e.g. the mixture of various soil,
water content, density, stress level) contribute to the change of soil properties.

Measurement errors are caused by equipment or operator-induced variation, which can
take place from one test to another. Operator-induced variation occurs when personal
judgement is required to read scales, take measurements, or during sample preparation
and handling and possible soil disturbance. Equipment error arises from variations in the
way tests are set up, loads are delivered, or soil response is sensed. For example, in the
light falling weight deflectometer (LFWD) tests, the load plate of LEFWD may be situated
on the material to be tested differently in succeeding tests. Drop height and rod resistance
may vary slightly from one drop to another, and temperature changes can affect the
damping properties of the rubber buffer.

Statistical error is predominantly caused by the use of a small number of measurements;
whereas the model bias arises when a correlation model is selected to interpret specific
data.



Figure 2. Uncertainty in soil properties [35]
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Baecher and Christian [36] adopted Hacking's terminology [37] for two basic forms of
uncertainty: aleatory and epistemic uncertainty, which reflect natural variability and lack
of information, respectively. As illustrated in Figure 3, Baecher and Christian [36]
categorized the uncertainty in geotechnical engineering design into three broad groups:
natural variability (temporal, spatial), knowledge uncertainty (model, parameters), and
decision model uncertainty (objectives, values, and time preferences).

Figure 3. Categories of uncertainty in risk analysis [36]
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As defined by Baecher and Christian [36], the natural variability is the variability of soil
qualities across time and space, expressed as variability at a single place with changes in
time (temporal) and variability throughout space at a single time (spatial). Another name
for natural variability is the aleatory uncertainty. Since it has been introduced into the
design due to a lack of information, data, and understanding, Baecher and Christian's
knowledge uncertainty is known as subjective uncertainty. It is also known as epistemic
uncertainty. Figure 3 describes how the model and parameter uncertainties can be



subdivided from the knowledge uncertainty. In geotechnical design, Baecher and
Christian's decision model uncertainty, which comprises of objectives, values, and time
preferences, entails implementing designs that reflect both aleatory and epistemic
uncertainties.

Phoon and Kulhawy ( [6], [7], [38]) evaluated three key types of uncertainty in
geotechnical variability: (1) inherent variability, (2) model uncertainty, and (3)
measurement error. The generic depiction of uncertainty for soil parameters studied by
Kulhawy and his co-authors is shown in Figure 4. For a homogeneous random field
model, the inherent variability is represented using the coefficient of variation and scale
of fluctuation [38]. Unlike the model uncertainty, the transformation model uncertainty
considered by Kulhawy and Phoon reflects uncertainty originating from the application
of empirical models or correlation models to convert indirect measurements to required
design parameters [7]. The equipment, procedural/operator, and random testing effects all
contribute to measurement error during the measurement procedure [6].

Figure 4. Uncertainty in soil property estimates [38]

SOIL  —» IN-SITU  — TRANSFORMATION —» ESTIMATED
MEASUREMENT MODEL SOIL PROPERTY
inhe_rent data statistical model
soil 5 :
variability scatter | |uncertainty uncertainty

——

inherent
soil
variability error

measurement

Unlike most prior researchers, Griffiths and Fenton [19] concentrated on aleatory
uncertainty, soil fluctuation that occurs naturally. Their research focuses on the spatial
variability of soil parameters and the application of random field finite element models
for reliability-based design. Vanmarcke's random field theory, which uses the correlation
structure of one-dimensional random processes in terms of a variance function and a
scale of fluctuation, was adopted by Griffiths and Fenton [39]. The random field theory
aids in the construction of models for studying soil spatial variability and is the
foundation of Griffiths and Fenton's reliability analysis. Griffiths and Fenton use a
positive connection between soil parameters obtained at near distances to reflect the soil



information at a given place. Griffith et al. [24] also developed the random finite element
method (RFEM) in reliability-based design by combining random field theory and the
finite element approach with Monte Carlo simulation methodologies. Fenton researched
quantifying soil qualities in order to create spatial correlation structures that might be
used to make inferences about other locations with similar soil engineering properties
([40], [41]). Fenton used the fractal model to examine the tip resistance measurements
from cone penetration tests (CPT) and constructed a global correlation model to

characterize the spatial variability of tip resistance [23].

Onyejekwe et al. [13] conducted a research study with the goal of statistically describing
the variability of geotechnical factors in order to increase geotechnical engineers'
adoption of reliability-based design (RBD). The first and second statistical moments, as
well as the coefficient of variation (COV) were used to describe the geotechnical
characteristics. Their probability distributions and fluctuation scales, were also
calculated. The degree of fit of study data to known empirical correlations was studied.
Correlations between difficult-to-obtain parameters and more easily-obtain parameters
were generated. They revealed that the Semivariogram Function (SVF) is better suitable
for determining the scale of variation from widely dispersed, noncontinuous, irregular
data received from laboratory testing than the Autocorrelation Function (ACF). A
framework was suggested in his research that combines the spatial averaging impact of
parameters computed from widely dispersed, irregular, and non-continuous data using the
scale of fluctuation and variance reduction factor.

McVay et al. [14] noted that the Florida Department of Transportation (FDOT) and the
Federal Highway Administration (FHWA) use a constant load and resistance factored
design (LRFD) for deep foundation design, which depend on redundancy and
independent of pile or shaft dimension. They stated that the properties of soil differ from
one location to another and are often spatially associated. Since the skin friction (and end
bearing) need spatial averaging of the soil properties across the pile shaft, the resulting
total shaft resistance variability (CVR) will not be the same as the soil/rock field
measurement variability (CVg). The varying degree of spatial correlation, as expressed by
a covariance function, and the correlation length (a) will also affect the total shaft
resistance variability (CVR). They showed that while CVr is a function of pile/shaft
dimensions, CVq value and spatial correlation, the value of resistance factors (¢r) is not
constant for any given location. They provided four quadrant iterative design charts for
single and group pile/shaft layouts, which consider side and tip resistances as well as
layered systems, which were produced to assist the designer.



Faraone [16] debated that AASHTO specifies resistance factors (¢pr) for use in a variety
of design approaches, foundation types, and levels of field verification in current
reliability-based design practice for deep foundations (e.g., load testing). These values of
¢ are calibrated using databases of measured vs anticipated resistances and are based on
defined target reliabilities. This calibration has the drawback of not accounting for the
varying degrees of design parameter variability that can be seen across different sites
(i.e., homogeneous versus heterogeneous sites). He introduced a reliability-based design
methodology that he thinks accounts for site-specific spatial variability and may be
applied to a variety of deep foundation design practices. Through stochastic modeling,
geostatistical tools are employed to describe site heterogeneity and quantify uncertainty
of either foundation resistance or rock mass modulus.

Data Scatter

The first source of uncertainties results from the natural geologic processes that
continuously modify the in-situ characteristics of soil. The soil properties vary from place
to place. Different parameters (e.g. the mixture of various soil, water content, density,
stress level) contribute to the change of soil properties. Measurement error is caused by
equipment- or operator- induced variation, which can take place from one test location to
another. Operator-induced variation occurs when personal judgement is required to read
scales, take measurements, or during sample preparation and handling. Equipment error
arises from variations when tests are set up and loads are delivered. For example in the
case of the LFWD, drop height, rod resistance, and seating of the load plate can vary
from one drop to another, and the rubber buffer can be influenced by temperature change.
Collectively, these two sources can be described as data scatter ( [6], [7], [8]).

Various geologic, physical-chemical, and environmental processes contribute to the
development of soil deposit. Some of these processes continue for long periods of time
and can modify the soil characteristics. Due to the ongoing natural processes, soil
properties will vary in both the horizontal and vertical directions The spatial variability
can be depicted precisely by the central trend, the COV, and the scale of fluctuation.

Soil Profile

The spatial variation of soil properties can be classified into a deterministic trend
component "f"" and a random component "¢". The relationship can be formulated as
follows ( [7], [42], [43]):
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sp(2) = 1(z) +&(2) [1]

where sp is the soil property, z is the depth, and the vertical spatial soil variability is
represented by the random component. First, the random component is measured by all

geostatistical operations, and the deterministic component is added later.

While quantifying spatial variability, it is required to model sp(z) as a homogeneous
random function or field [44]. Two considerations are required to maintain when the
function sp(z) is considered statistically homogeneous: (1) there are no change in mean
trend and variation of "¢" along the depth; and (2) the correlation is a function only of the
deviations between two separation distances, rather than their absolute position. When
data is collected from a homogenous soil layer, fluctuations in the soil property pro