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Executive summary 

The traditional process-based approaches of certifying aerospace digital systems are not 

sufficient to address the challenges associated with using Artificial Intelligence (AI) or Machine 

Learning (ML) techniques. To address this, agencies like the National Aeronautics and Space 

Administration (NASA) and the Federal Aviation Administration (FAA) are evaluating an 

alternative Means of Compliance (MoC) called the Overarching Properties (OP). The goals for 

this research are to develop recommendations and assurance criteria and to explore safety risk 

mitigation approaches for such AI/ML-based software systems. This document outlines a novel 

foundation for the application of OPs to support the assurance and certification of complex 

aerospace digital systems consisting of AI/ML-based components.  

To this end, we first select the use case of a Recorder Independent Power Supply (RIPS) system 

that provides several minutes of backup power to the data recorder when an aircraft loses access 

to standard power supply. Our RIPS design utilizes two Artificial Neural Networks (ANN) to 

make predictions that can increase the time between maintenance actions of the RIPS battery by 

reducing unnecessary battery charge/discharge cycles. We then perform a Functional Hazard 

Assessment (FHA) to identify a set of hazards associated with the RIPS and design a set of 

appropriate requirements to mitigate those hazards. The two neural networks are then trained 

using a publicly available dataset on the performance of Lithium-ion batteries and a novel 

approach is proposed for the design, development, integration, and deployment of the ANNs 

using Model-Based System Engineering (MBSE) and Model-Based Design (MBD) principles. 

Using the RIPS as a motivation, we present a novel OP-driven approach that can be used for 

creating certification and assurance arguments for the ANNs used in the RIPS and outline 

potential techniques for generating assurance cases from our OP arguments using an in-house 

data curation platform called the Rapid Assurance Curation Kit (RACK). We also provide a 

thorough discussion on our experience in using OPs for the certification of AI/ML-based hybrid 

software systems and how the use of OPs influenced our design and certification strategy with 

respect to the strategies generally used for the design and certification of traditional software 

systems.        
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1 Introduction 

Current systems, software, and electronic hardware assurance processes for certifying aerospace 

digital systems are based on explicit, detailed, prescriptive approaches, using “objectives” that 

must be satisfied to demonstrate compliance with applicable regulations for aircraft certification. 

These processes do not address the assurance aspects of new technologies such as AI/ML 

implementations, tools or Commercial Off-The-Shelf (COTS) products proposed for use in civil 

aircraft development. For example, the traditional DO-178C/254 (DO-178C Software 

Considerations in Airborne Systems and Equipment Certification, 2011) (DO-254 Design 

Assurance Guidance for Airborne Electronic Hardware, 2000) process for development and 

certification of software does not have a clear approach to support the assurance of AI/ML-based 

components that are developed and qualified using data instead of traditional methods. 

Additionally, standards and guidance for safe use in civil aircraft do not exist for implementation 

of methodologies using AI, autonomy, and non-determinism. The National Aeronautics and 

Space Administration (NASA) recently published a roadmap (Brat, et al., 2023) that identifies 

potential AI/ML and autonomous functions that may be used in future aerospace applications 

along with validation and verification gaps. The Federal Aviation Administration (FAA) and 

NASA have been working on developing a domain independent and technology independent 

alternate means of compliance called the Overarching Properties (OP) (Holloway, 2019) that are 

intended to be a sufficient set of properties that can be used for making approval decisions for 

any entity that is to be used in an aircraft. If the entity can be shown to possess the OPs, then 

approval can be granted for its use in an aircraft. This document proposes an OP-based 

methodology for assurance of aerospace applications that include AI/ML-based components. 

The goals for this research are to develop recommendations and assurance criteria and to explore 

safety risk mitigation approaches for such AI/ML-based software systems (Paul, et al., 2023). As 

a use case to motivate our study, we selected a Recorder Independent Power Supply (RIPS) 

system that provides several minutes of backup power when an aircraft loses access to standard 

power supply. Our hybrid RIPS design is augmented with a battery health monitor (BHM) that 

uses artificial neural networks (ANN) to make predictions. These predictions can increase the 

time between maintenance actions of the RIPS battery by reducing unnecessary battery 

charge/discharge cycles. Using the RIPS as a motivation, we present a novel OP-driven approach 

that can be used for creating assurance arguments for AI/ML-based components. We develop a 

set of argument structures that consider the non-traditional design parameters of AI/ML-based 

components and use appropriate strategies to generate supporting evidence for different Design 

Assurance Levels (DAL). We describe our experience in developing appropriate requirements 
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for the RIPS system via an iterative requirements-engineering process which initiates as a 

traditional approach and is gradually informed by the design aspects of the ANNs, such as the 

data used for development and qualification. In addition, we also demonstrate a unique, 

advanced approach for the design, development, integration, and deployment of AI/ML-based 

systems using Model-Based System Engineering (MBSE) and Model-Based Design (MBD) 

principles. 

2 Use case selection 

This section describes the process followed, decision criteria, options considered, and the 

aerospace AI/ML application use case option selected for Phase 1 of the GE led FAA sponsored 

Assurance of AI/ML Research project.  

2.1 Decision criteria 

Listed below are the criteria that we used for choosing the use case for Phase 1: 

▪ FAA relevance 

Our goal was to choose an application that would be relevant to the Federal Aviation 

Administration’s (FAA) initiatives towards ensuring safe aircraft operations in the US 

National Airspace System (NAS). Given the recent advancements in the aviation industry 

towards greener hybrid-electrical propulsion systems, our selected use case is important 

because the degradation of battery health in such systems can lead to sudden or gradual 

loss of propulsion power that can lead to catastrophic loss-of-thrust situations (Sripad, 

Bills, & Viswanathan, 2021). The FAA has been involved in taking steps for the 

certification of electric aircraft engines that may rely on battery power (FAA, 2021) to 

prevent such incidents from happening. 

▪ Alignment to GE Aviation’s interests 

We wanted to select a use case that would be well-aligned with the current work being 

done in GE Aviation to revolutionize the future of flight. In 2021, GE Aviation entered a 

partnership with the National Aeronautics and Space Administration (NASA) for 

developing integrated hybrid-electric powertrain systems as a part of NASA’s Electrified 

Powertrain Flight Demonstration (EPFD) project (GE, 2021). This makes our selected 

use case pertinent to GE Aviation’s business interests. 
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▪ Data pedigree 

Neural networks models are designed by training them on data. Therefore, data quality 

plays a very important role in the quality of the models that are created. This criterion 

was considered to ensure that we train and validate our neural network model with data 

that can be traced back to a trusted source so that we can have high confidence in the 

quality of the data. Therefore, we selected an existing dataset on Lithium-Ion (li-ion) 

battery health collected and published online by NASA (Kulkarni, Hogge, Quach, & 

Goebel, 2007) and previously used in the literature for developing battery health-

prediction ML models (Hogge, Bole, Vazquez, & Celaya, 2015). 

▪ Model complexity  

The complexity and randomness associated with machine-learning models make it 

challenging to formally verify properties about them. Therefore, another consideration 

behind our use case selection was to analyze a neural network model that would be 

simple enough to be amenable to formal analysis, but complex enough to justify the use 

of a neural network for the task. As a starting point for model development, we studied an 

existing neural network model (Sanabria, 2019) that was designed using battery dataset 

published by NASA. 

▪ EASA AI/ML autonomy level 

In this phase of the project, our objective was to select an application that aligns with the 

European Union Aviation Safety Agency’s (EASA) AI Roadmap Level 1 that is intended 

to assist crew in performing tasks to prepare for flight. Our selected use case of a neural 

network-based system for battery health monitoring can be used by the crew for 

estimating the battery health during pre-flight performance analysis of an aircraft and 

aligns well with EASA AI Roadmap Level 1. In the future, the use case can potentially be 

enhanced to monitor the battery health during flights to assist human and autonomous 

controllers make important operational decisions by calculating flight-parameters such as 

the remaining flight time.  

▪ Hazard consequence level 

Another criteria we considered for our use case selection in Phase 1 was to investigate an 

aviation-related application which will have low consequences in case of a failure. The 

selected use case for a pre-flight battery health monitor has a Hazard Consequence Level 
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“Minor” and a Design Assurance Level (DAL) “D”. In the future, we plan to consider use 

cases with higher failure consequences. 

2.2 Options considered 

Based on the stated decision criteria, we considered the following alternatives as use-case 

options to pursue in Phase I of the effort: 

▪ Lithium-ion battery health monitoring 

The high energy density and efficiency make li-ion batteries the most promising 

candidates for electrification of aviation functions, including propulsion. The criticality of 

this use-case revolves around loss of power to aircraft that is propelled by li-ion batteries. 

This use-case will involve development of an AI-based, data-driven model for the 

estimation of characteristics of a battery that directly relate to its ability to meet the 

power demand over a future time-period. Multiple such characteristics have been 

explored in literature, including state of health (SoH) (GE, 2021; Sanabria, 2019), state of 

charge (SoC) (Ravaioli, et al., 2022; SafeRL, n.d.) and the prediction of remaining useful 

life (RUL) under cycling degradation (Litjens, et al., 2017; Dean A. Pomerleau, 1992). A 

good survey of around 30 datasets that are available to be used for this use-case is 

provided in Cofer et al. (2020) – some of these are publicly available, others require a 

request for data, and few others are not publicly available.   

Initially, we looked at the CALCE Battery Research repository, specifically at the dataset 

mentioned in Chen et al. (2015) which deals with the problem of estimating state-of-

charge (SoC) of LiFePO4 batteries as a function of its previous voltage, current and 

temperature measurements. Simulated dynamic stress testing profiles (DST), that capture 

variability of real-world loading conditions were used to collect the measurements in a 

laboratory, to use as training data. This was used for developing an Artificial Neural 

Network (ANN) based model for predicting SoC of the battery, while also validating it 

using data that capture benchmark driving schedules like the US06 driving schedule and 

the federal urban driving schedule (FUDS). However, this dataset does not capture the 

ground-truth of the SoC directly as a field and would have required its analytical 

estimation as a precursor to the model development activity. In response, we then 

evaluated the battery datasets repository made available by the Prognostics Center of 

Excellence within the NASA Ames Research Center (Julian, Kyle D., Mykel J. 

Kochenderfer, and Michael P. Owen, 2019). The dataset evaluated consisted of a set of 

four li-ion batteries, that were run through three different operational profiles at room 
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temperature. Charging was carried out in a constant current (CC) mode at 1.5A until the 

battery voltage reached 4.2V and then continued in a constant voltage (CV) mode until 

the charge current dropped to 20mA. Discharge was carried out at a constant current 

(CC) level of 2A until the battery voltage fell to 2.7V, 2.5V, 2.2V, and 2.5V for batteries 

5, 6, 7, and 18, respectively. The repeated charge and discharge cycles result in 

accelerated aging of the batteries; the experiments were stopped when the batteries 

reached end-of-life (EOL) criteria, which was a 30% fade in rated capacity (from 2Ahr to 

1.4Ahr). The goal for the current effort would be to use this dataset to build an ANN 

model that can predict SoH for a battery. 

▪ AFRL control function benchmarks 

Machine learning is being exploited to approximate control laws in the aerospace context. 

One of the use cases we reviewed under this project is a benchmark for 2D Spacecraft 

Docking published by the Air Force Research Laboratory (Ravaioli, et al., 2022; SafeRL, 

n.d.). The idea is that an active deputy spacecraft utilizes a neural network to learn to 

dock with a passive chief spacecraft. At each step, the ML-based controller generates 

force to propel the deputy spacecraft towards the chief. The deputy is considered 

successfully docked when its distance to the chief is less than a predefined threshold. In 

the meantime, the deputy must also adhere to a velocity safety constraint that 

dynamically changes as it approaches the chief. However, due to the lack of relevance to 

FAA and GE Aviation, it is not selected as the use case for this project.  

▪ Perception 

Neural networks are commonly used to read and classify content in images. Examples 

include character recognition, disease detection (Litjens, et al., 2017), object 

classification, and vision for autonomous vehicles (Dean A. Pomerleau, 1992). In the 

aerospace domain, researchers have explored using neural networks-based vision to 

perceive alignment with the center line of a runway (D. Cofer et al, 2020). They may also 

be used to perceive safe landing areas, their location, and identify potential obstacles such 

as other aircraft, birds, structures, and terrain. Neural network-based perception is a 

critical function in the autonomous automotive domain (Chen, C.; Seff, A.; Kornhauser, 

A.; Xiao, J., 2015) and appears to have great potential to enable autonomous and reduced 

crew in the aerospace domain. Therefore, assurance for neural network-based perception 

is identified as a high priority application for this research. Further, it is understood to be 

a very challenging technical topic.  
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▪ Collision avoidance 

Airborne Collision Avoidance System (ACAS) is a family of aircraft collision avoidance 

systems for unmanned aircraft systems. It uses large numeric lookup tables to generate 

both horizontal and vertical maneuver guidance in order to reduce the risk of mid-air 

collisions or near mid-air collisions between aircrafts. Recent research work leveraged a 

deep neural network to approximate the compress collision avoidance tables for ACAS  

Xu (Julian, Kyle D., Mykel J. Kochenderfer, and Michael P. Owen, 2019) and ACAS 

sXu  ( Irfan, Ahmed, Kyle D. Julian, Haoze Wu, Clark Barrett, Mykel J. Kochenderfer, 

Baoluo Meng, and James Lopez, 2019) which showed comparable performance to the 

original lookup tables with significantly less storage space. The safety properties about 

the neural networks have been extensively studied and verified in various research 

activities The Deep Neural Network (DNN) representation of the ACAS Xu is also 

publicly available (ACAS Xu DNN Repository, 2017). The ACAS Xu has seven input 

parameters (range to intruder, bearing angle to intruder, relative heading angel of 

intruder, ownship speed, intruder speed, time to loss of vertical separation, previous 

advisory) and produces scores for five advisories, which are Clear of Conflict, Weak 

Left, Weak Right, Strong Left, and Strong Right. There are 50 neural networks tainted for 

ACAS Xu, one for each combination of previous advisory and time to loss of vertical 

separation to reduce runtime to evaluate the networks. However, this use case does not 

align with GE Aviation’s interest, thus is not selected. 

▪ Propulsion system health monitor  

We looked for existing available datasets that emulate critical failures for propulsion 

systems of electric aircraft, but did not find many instances, although publications 

indicate that this is an area of enquiry that is accelerating. In (Palanisamy, Rajendra 

prasath & Kulkarni, Chetan & Corbetta, Matteo & Banerjee, Portia, 2022) (Kulkarni, C. 

S., Corbetta, M., & Robinson, E., 2020), diagnostic frameworks for fault isolation in 

electric powertrains of unmanned aerial vehicles are explored, where FMEA and physics-

based simulations are used to analyze the failures of interest and use them for fault 

isolation. While this body of work itself did not produce data that can be used to develop 

an AI-based model for the effort, it provides an insight regarding how a good simulator 

can be leveraged to generated ample data required for the development of an AI-based 

model. The Aircraft Electrical Power Systems Prognostics and Health Management 

(AEPHM) program being worked by Air Force Research Laboratories (AFRL), and 

Boeing and Smiths Aerospace has published work (Keller, K., Kevin Swearingen, J J 
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Sheahan, Michelle D. Bailey, Jonathan Mark Dunsdon, Katarzyna Przytuła and Brett 

Jordan, 2006). It describes  prognostics and health management (diagnostics, prognostics 

and decision aids) for electrical power systems including electric actuation, fuel 

pumps/valves and wiring, including the generation of test data to characterize degraded 

systems, and the development of algorithms for system health management to support 

maintenance and operational decision-making. We will explore if this dataset is publicly 

available for use in our program. When considering electric motors outside the aviation 

industry, we anticipate abundance of datasets to be available related to the failure and 

health of components of motors in terrestrial applications both within and outside GE  

(Cheng Wang, Tongtong Ji, Feng Mao, Zhenpo Wang, Zhiheng L, 2021). Goebel & Saha 

(2015) provide surveys related to PHM for electric vehicles and propulsion. If this use-

case is selected for further investigation, we will further explore these repositories for use 

in this program. 

2.3 Selected option  

The team considered the options shown below in Table 1. For the first year/phase of the research, 

the battery health monitor seemed best. It had high scores in terms of relevance to the FAA and 

GE, data pedigree (from NASA published source), and is a non-safety critical Level-1 AI 

function. The propulsion system health monitor appears to be a good choice for the next phase of 

the work. It is also well aligned with the FAA and GE interests and is more complex than the 

battery health monitor because it is a system that includes a diverse set of components. It may 

also be considered a Level-2 system if the use case includes feedback to human pilots during 

flight. The most challenging and thus the final application will be a perception function. AI/ML 

functions have been used to classify and identify objects in images. A perception function in 

aerospace may be used to identify potential objects such as mountains, other aircraft, birds, and 

runway lines. The team will build up the baseline capabilities to argue assurance for less 

complex and safety critical functions at the beginning of the project, then use the experience to 

develop an approach for the more challenging perception function. 
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Table 1. Comparison of the selected and considered use cases 

 Selected Use 

Case  

(Phase 1) 

Considered 

Alternative 

2 

Considered 

Alternative 

3 

Considered 

Alternative 

4 

Considered 

Alternative 

5 

Decision 

Criteria 

Battery 

Health 

Monitor 

Perception 

Function 

Collision 

Avoidance 

Function 

Control 

Function 

Propulsion 

System  

Health 

Monitor 

FAA 

Relevance 

9 9 9 1 9 

Alignment to 

GE 

Aviation’s 

Interests 

9 9 1 1 9 

Data 

Pedigree 

9 9 9 9 9 

Model 

Complexity 

1 9 5 9 5 

AI 

Autonomy 

Level 

1 or 2 2 or 3 2 or 3 3 1 or 2 

Hazard 

Consequence 

Level 

Varies by 

Application 

Varies by 

Application 

Catastrophic, 

Hazardous, 

or Major 

Varies by 

Application 

Varies by 

Application 

 

3 Use case: the Recorder Independent Power System (RIPS) 

The RIPS is an alternate power source that supplies direct current voltage to the flight data 

recorder (FDR), for 10 minutes whenever the primary aircraft power is removed. The desired 

behavior is to ensure continued recording following a loss of primary power associated with an 

aircraft emergency. For this design, the aircraft supplies power to the RIPS. The RIPS provides 

this aircraft power to the FDR, when available, and backup battery power to the FDR, when 

aircraft power is not available. In this way, all power to the FDR passes through the RIPS, so the 

primary system function of the RIPS is simply to “Supply Power to the FDR”. This function is 

captured in Table 2. 



  

 9  

Table 2. Function list 

Function Rationale 

Supply Power to FDR Primary function of a RIPS defined in TSO-C155b Section 3.a. 

 

The system in its operational context is shown in Figure 1, including a high-level representation 

of the external interfaces to the system. The dashed line indicates the boundary of the system to 

which this assessment will be applied. 

 

 
Figure 1. RIPS system scope 

 

The system model (General Elelctric Aviation Systems LLC (US), 2022) was used to create 

components and component interactions that would allow system requirements to be satisfied. 

Through this process, the system was subdivided into the components shown in the simplified 

architecture in Figure 2 and its equivalent internal block diagram representation from the systems 

model is shown in Figure 3. Of these components, this program will focus on the assessment of 

the “Battery Health Monitor” component. 
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Figure 2. Simplified block diagram 

 

 
Figure 3. RIPS internal block diagram 

 

3.1 Battery Health Monitor (BHM) 

This Functional Hazard Assessment (FHA) is performed at the system level to match the 

certification guidance provided in TSO-C155b. However, the neural network that is being 

assessed is being evaluated for the implementation of the BHM subcomponent, therefore, this 
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assessment will additionally describe the BHM subcomponent and its contributions to the 

hazards. 

The BHM is intended to increase the time between maintenance actions for the RIPS battery by 

reducing unnecessary battery charge/discharge cycles. The performance of this function cannot 

interfere with the RIPS ability to supply sufficient backup power when needed. To perform this 

intended behavior, the BHM must provide a charge command when the battery’s charge has 

depleted to the point where it can no longer supply power when needed. Also, the BHM must 

provide a maintenance indicator to signal that battery health has deteriorated to a point where it 

needs to be replaced. Both behaviors can have an impact on the hazards identified in section 6.1. 

For this application, the BHM will estimate the state of charge (SoC) of the battery and 

command a full recharge if the SoC of the battery has reached 30% or less of the nominal charge 

capacity. The BHM will indicate that maintenance is required when the state of health (SoH) of 

the battery is 70% or less. Definitions for SoC and SoH will be provided in later sections of this 

report. 

Based on this understanding of the component behavior, loss of BHM estimation could result in 

the inability to charge the battery or the inability to indicate that a replacement is necessary. 

Also, incorrect estimation of either the state of charge or state of health could produce the same 

result. In either case, the battery may be unable to supply power when needed. Therefore, loss of 

BHM estimation and incorrect BHM estimation of state of charge and state of health will be 

assessed for this application. 

4 Recorder Independent Power System (RIPS) Functional 

Hazard Assessment (FHA) 

4.1 Purpose and scope of the FHA 

As part of the GE Assurance of Artificial Intelligence (AI) research program, a Functional 

Hazard Assessment (FHA) was conducted for the selected use case to support the application of 

an overarching properties assurance analysis. This FHA was initially conducted in accordance 

with the guidance provided in the SAE ARP 4761 (1996), then specific aspects of the assessment 

were formalized in the Semantic Application Design Language (SADL) (2022). 

The use case selected is the design of a 777-2 Recorder Independent Power Supply (RIPS) 

(ARINC, 2010), where a new Battery Health Monitor component has been added. The BHM 

makes use of a neural network to increase the time between maintenance actions for the RIPS 
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battery by reducing unnecessary battery charge/discharge cycles and accurately predicting the 

remaining battery life. 

The FHA is intended to provide identification of RIPS failure conditions and an assessment of 

their effects on the aircraft, the crew, and the occupants. The results of the FHA establish the 

quantitative and qualitative system safety objectives drive from the failure condition 

classification (i.e., hazard classification), as well as the Function Development Assurance Level 

(FDAL) for the RIPS design. These results are fed back into an aircraft-level assessment as an 

iterative process to ensure a mature design and complete analysis 

The FHA considers two modes of failure for each function identified. These failure modes 

include loss of function and malfunction (detected and undetected erroneous function). Likewise, 

the FHA considers internal system functions as well as those functions provided by, or provided 

to, other systems (i.e., exchanged functions). 

4.2 Hazard assessment approach 

The analysis portion of the FHA is captured in an FHA worksheet. The worksheet provides the 

details necessary to conduct this assessment. Refer to Appendix A for details of the FHA 

worksheet. The worksheet considers all functions provided by the system and assesses the failure 

effects on the aircraft, the crew, and its occupants. 

In order to ascertain the effect and severity of the system level functional hazards, the analysis 

considers the following: 

1. Id: A unique, sequential identifier for each of the functions and failure conditions 

provided. 

2. Function: Identifies the action of a system to perform an operational capability. Both 

functional (internal functions and exchanged functions) failure conditions and 

external (environmental/emergency/abnormal) failure conditions should be 

considered. The FHA should also consider failures of an entire function and failures 

of a portion of a function. 

3. Failure Condition (Hazard Description): This is the failure mode of the particular 

function and includes failure modes of the loss-of or undetected erroneous type.  In 

addition, single and combinational failures are considered. Each hazard within the 

FHA worksheet is preceded by an alphanumeric identifier (e.g., A1) to distinguish the 

hazard from others related to the same function. The alpha character represents the 

specific hazard being investigated (described below). The numeric is a sequential 

number quantifying the number of hazards of that specific type associated with that 
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function. The following two hazard types are considered for each function being 

investigated. 

4. Loss of Function: Identifies total loss of the function or where applicable partial loss. 

5. Undetected Malfunction: Used to identify undetected erroneous behavior. 

6. Phase: The flight phases considered in this analysis are defined in Table 3. Each 

failure condition within the FHA is assessed in each of these flight phases when 

establishing the failure’s effect on the aircraft, crew, and occupants. This ensures that 

all phases are addressed when considering the failure condition. If it is determined 

that a failure condition has more than one severity classification based on the failure 

effect, the analysis is extended to a new line such that each flight phase with a 

differing severity classification is evaluated independently. 

7. Effect of Failure Condition on Aircraft /Crew/Occupants: A description of the 

hazard effects on the airplane, crew, and occupants onboard. This description should 

be detailed enough to allow the hazard to be classified with certainty based on the 

terminology provided in the applicable guidance material (e.g., AC 25.1309 or MIL-

STD-882). Consideration is given as to whether the failure may be annunciated or 

unannunciated, and possible mitigating actions that could be taken by the crew. 

8. Failure Condition Classification: This is the severity classification for the failure 

condition identified. Where applicable, regulatory and industry guidance is used in 

determining the severity classifications for the hazards as captured within the FHA 

worksheet. 

9. Min FDAL: This is the minimum functional development assurance level proposed 

for the function based on the failure condition severity classification identified. Refer 

to section 5.3 for more information on assigning the FDAL. 

10. Failure Condition Classification Justification: Identifies specific regulatory 

requirements or guidance for establishing the severity classification for the specific 

hazard addressed. In some cases, there may be other means for providing the failure 

condition justification which includes aircraft architecture, analysis, or engineering 

judgment. 

11. Verification Method: Identifies the planned verification method for the safety 

objectives associated with the failure condition (e.g., Specific analyses, test, etc.). 

12. Remarks: This is a comments section for adding additional text that applies to any 

aspect of the functional analysis. 



  

 14  

4.3 Guidance 

The RIPS safety objectives generated by this analysis utilizes information and guidance from the 

applicable regulatory and guidance material from the following: 

▪ Federal Aviation Administration (FAA) Advisory Circulars (ACs) 

▪ Federal Aviation Regulations (FAR) 

▪ Society of Automotive Engineers (SAE) International Aerospace Recommended Practice 

(ARP) 4754A and 4761 

The definition for different phases of flight and the abbreviations used in the FHA are presented 

in Table 3.  

Table 3. Flight phase definitions 

Flight Phase 

Abbreviation 

Flight Phase 

Name 

Definition 

STD Standing The aircraft is stationary – prior to pushback or taxi and after 

arrival at gate, ramp, or parking area. 

PBT Pushback/ 

Towing 

The aircraft is moving in the gate, ramp, or parking area 

assisted by a tow vehicle. 

TXI Taxi The aircraft is moving under its own power on the surface 

prior to takeoff or after landing. 

TOF Takeoff Application of takeoff power through rotation to an altitude of 

35 feet above runway elevation. 

ICL Initial Climb End of takeoff to first prescribed power reduction or until 

reaching 1000 feet above runway elevation or the Visual 

Flight Rules (VFR) pattern. 

ENR En Route 

(Cruise) 

Instrument Flight Rules (IFR): completion of initial climb 

through cruise altitude and completion of controlled descent 

to the Initial Approach Fix (IAF). 

VFR: completion of initial climb through cruise and 

controlled descent to the VFR pattern altitude or 1000 feet 

above runway elevation. 

APR Approach IFR: From IAF to the beginning of the landing flare. 

VFR: From point of VFR pattern entry or 1000 feet above the 

runway elevation. 

LDG Landing From the beginning of the landing flare until aircraft exits the 

landing runway, comes to a stop on the runway, or when the 

power is applied for takeoff in the case of touch and go 

landing. 

ALL All All phases of operation. 
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In keeping with the guidelines defined in ARP 4761, this FHA contains the following 

information: 

▪ A list of associated functions to be assessed. 

▪ The scope of the FHA including the system boundary to which the assessment applies 

and the failure condition classification criteria to be applied. 

▪ An overview of the approach taken. 

▪ A summary of the results of the FHA and recommendations identified during the 

assessment. 

▪ The FHA worksheet which identifies the functions, their applicable failure conditions, the 

effects of each failure condition and a severity classification of each failure condition. 

4.4 Acceptance criteria 

A failure condition is defined as a condition with an effect on the aircraft and its occupants, both 

direct and consequential, caused or contributed to by one or more failures, considering relevant 

adverse operation or environmental conditions. Hazards are classified according to the severity 

of their effects (refer to AC/AMJ 25.1309 – Arsenal). For the purpose of this FHA, all failure 

conditions that may result in injury, illness, or death to personnel; damage to, or loss of a system, 

equipment, or property; or damage to the environment are considered hazards. 

As previously stated, this FHA is used to establish safety objectives for the RIPS. These 

objectives are defined in terms of failure condition severity classification (leading to a 

quantitative probability of occurrence) and FDAL. Information within this table has been defined 

in accordance with AC/AMJ 25.1309 – Arsenal and modified by ARP 4754A to define the 

associated FDALs. 

4.5 Functional Hazard Assessment (FHA) summary 

This FHA identifies the functional failure conditions at the system (RIPS) level and an 

assessment of their effects. The system description includes the aspects of the system needed to 

determine these failure conditions and the behaviors of the BHM that may contribute to them. 

The analysis that supports this FHA is contained in the FHA worksheet (refer to Appendix A). 

These failure conditions are grouped according to their failure condition classification. The 

Failure Condition ID corresponds with the ID of the failure condition identified in the FHA 

worksheet (just like in Table 4). 
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Table 4. RIPS minor failure conditions 

ID Failure Condition 

A1 Loss of ability to provide backup power 

B1 Backup power provided when not required 

 

5 Recorder Independent Power System (RIPS) requirements 

engineering  

During this phase of the program, a typical top-down design process was followed to construct a 

set of evidence that can be used in exploring arguments to satisfy the overarching properties. 

This section will describe the process followed, the constructs of the natural language 

requirements and associated attributes, then the formalized curation of the requirements. 

5.1 Requirements development process 

5.1.1 System requirements development 

The first step in the systems engineering process is capturing Stakeholder Expectations. For the 

RIPS that is being designed as a use case for this program, a set of expectations, as shown in 

Figure 4, was collected from relevant standards, guidelines, and certification documents. TSO-

C155b (FAA, 2015) is the Technical Standard Order that forms the certification basis for this 

RIPS example design. ARINC 777-2 (ARINC, 2010) contains guidance for the development of a 

RIPS that is interchangeable and installable in multiple aircraft. ED-112A (EUROCAE, 2013) 

contains minimum operational performance requirements for a RIPS unit. Finally, DO-160G 

(RTCA, Inc., 2010) contains a set of environmental conditions and test procedures that are used 

to constrain the conditions in which the RIPS will operate. Additionally, there was a product 

expectation on this RIPS based on a business case that maintenance costs could be decreased by 

reducing battery replacement frequency. It is this expectation that eventually drives the need for 

the neural network designs to more intelligently manage battery charging and maintenance 

actions. 
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Figure 4. Stakeholder needs 

 

From these stakeholder expectations, a set of RIPS System Requirements is constructed. For the 

model-based development process being followed, this involves a few steps. First, the desired 

system behaviors are collected in a set of use cases. Then, with the addition of system 

boundaries, the use cases are linked to systems and actors external to the product that may 

interact with the product in one or more contexts. These can be refined through behavioral 

diagrams to capture relevant parameters and their associated constraints. The use cases drive 

functional requirements. The system boundaries and interactions with the actors and external 

systems are used to define necessary interface requirements. Next, the relevant environmental 

and physical constraints are distilled from the standards. Finally, safety requirements are written 

corresponding to the hazards identified in the safety assessment. 

The system level requirements detail the needs of the system but avoid over constraining with 

the inclusion of implementation decisions. For this reason, a neural network is not mentioned at 

this level. However, each type of requirement may have an impact on the neural network(s) 

being implemented, even though the neural network has not been specified. One or more 

functional requirements specifies a behavior that the neural network must contribute to. Interface 

requirements will specify inputs needed to feed the neural network or outputs that are driven by 

behaviors within the neural network. Physical and environmental constraints will impact the 
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training and test data that is collected and used in building and verifying the neural network. 

Then, the neural network will be scrutinized for its ability to impact safety requirements. 

5.1.2 High-level software requirements development 

Within a typical development process, a system architecture is constructed to decompose the 

system into a set of sub-systems and the items (software and complex electronic hardware) that 

make up those sub-systems. High Level Requirements (HLRs) are written for those items that 

detail the behaviors allocated to the item as well as what interactions that item has with other 

items. Within the RIPS system, only one sub-system (battery health monitor) contains a neural 

network, so high level software requirements were written for this component only. For this 

reason, not all system requirements will have a “satisfied by” link down to an HLR. Also, since 

the worst-case failure condition of the RIPS is Minor, this item would be assigned a Design 

Assurance Level of “D” and is only required to have HLRs. Therefore, Low Level Requirements 

(LLRs) are not planned to be developed. In constructing a set of HLRs, functional requirements 

were written for each of the system-level behaviors allocated to the battery health monitor, 

including behaviors necessary to drive any outputs. Next, interface requirements and their 

acceptable ranges were written for all inputs to the sub-system. None of these requirements 

specify the use of a neural network, and, since this is an implementation decision integral to the 

product and the performance of this program, derived requirements were written to specify the 

use of a neural network. As the neural network was being developed, it became clear that aspects 

of the neural network design, training, and testing were important to ensure that the 

implementation would meet requirements. Some of these aspects require additional process rigor 

when collecting data for training or test. An example of this might be the need for configuration 

management control around the data. Other aspects constitute technical requirements around the 

data. These have been added to the HLRs as additional derived requirements. For example, 

training data that does not cover the operational range would cause the neural network to 

extrapolate, which may not meet the system level design constraint requirements. Training data 

that contains gaps within the operational range that may reduce the accuracy of the neural 

network, and also cause the system to not meet these design constraints.  

5.2 Natural language requirements 

5.2.1 System requirements 

The system requirements table contains columns for the essential elements that make up a 

requirement (Id, Name, and Text), as well as attributes that would typically be used to satisfy 
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objectives in ARP-4754A (SAE, 2010) and DO-178C (RTCA, Inc., 2011). Table 5, Table 6, and 

Table 7 show examples of the following columns: 

▪ Id – Unique identifier used in requirement references. 

▪ Name – Descriptive title for the requirement used in requirement references. 

▪ Text – The natural language requirement. 

▪ Requirement Type – The type of requirement being specified. NOTE: Development 

activities may differ depending on the requirement type. 

 

Table 5. System requirements table (Part 1) 

ID Name Text Requirement Type 

RIPS-08 Maintenance Discrete 

Behavior 

The RIPS shall set the 

“Maintenance Required” discrete 

in the “ground” state when the 

RIPS has determined that the 

internal battery needs to be 

replaced. 

Functional 

Requirement 

 

▪ Mitigates Hazard – If this requirement contributes to mitigating one or more hazards in 

the safety analysis, this will be populated with the hazard(s). 

▪ Satisfied By – This indicates the trace relationship to the child(ren) high-level 

requirement(s). 

▪ Architecture Allocation – This is the architectural element that the requirement governs. 

▪ Rationale – Rationale can be included for a number of reasons, including clarifying 

information on the requirement, an explanation of why this requirement is derived, or 

clarification of other attributes. 
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Table 6. System requirements table (Part 2) 

Mitigates Hazard Satisfied By Architecture 

Allocation 

Rationale 

No BHM-HLR-18 Cycle 

Count Input 

BHM-HLR-01 

Monitor Battery… 

Recorder 

Independent Power 

Supply 

 

 

[Example Text] 

 

▪ Derived Requirement Indicator – This indicates if the requirement is derived, as 

defined in DO-178C (RTCA, Inc., 2011). [Options: Requirement, Derived Requirement] 

▪ Source – This is the source(s) of information from the stakeholder needs that was (were) 

used to create the requirement. 

 

Table 7. System requirements table (Part 3) 

Derived Requirement Indicator Source 

Requirement ARINC 777-2 Section 3.5.3 

 

 

5.2.2 High-level software requirements 

The high-level requirements table contains columns for the same essential elements that make up 

a requirement, as well as attributes to satisfy objectives in DO-178C. The requirements table is 

made up of the following columns with examples shown in Table 8, Table 9, and Table 10. 

▪ Id – Unique identifier used in requirement references. 

▪ Name – Descriptive title for the requirement used in requirement references. 

▪ Text – The natural language requirement. 

 

 



  

 21  

Table 8. High-level requirements table (Part 1) 

ID Name Text 

BHM-HLR-

01 

BHM-HLR-01 Monitor 

Battery 

The Battery Health Monitor shall indicate 

battery maintenance is required when the State-

of-Health is less than 70% with a tolerance of 

+/- 1%. 

 

 

▪ Requirement Type – The type of requirement being specified. NOTE: Development 

activities may differ depending on the requirement type. 

▪ Mitigates Hazard – If this requirement contributes to mitigating one or more hazards in 

the safety analysis, this will be populated with the hazard(s). 

▪ Satisfies – This indicates the trace relationship to the parent system requirement. 

▪ Architecture Allocation – This is the architectural element that the requirement governs. 

 

Table 9. High-level requirements table (Part 2) 

Requirement 

Type 

Mitigates 

Hazard 

Satisfies Architecture Allocation 

Functional 

Requirement 

Loss of 

ability to 

provide 

backup 

power 

 

RIPS-08 

Maintenance 

Discrete 

Behavior 

State-of-

Health_Neural_Network_Software_Component 

 

▪ Rationale – Rationale can be included for a number of reasons, including clarifying 

information on the requirement, an explanation of why this requirement is derived, or 

clarification of other attributes. 

▪ Derived Requirement Indicator – This indicates if the requirement is derived, as 

defined in DO-178C (RTCA, Inc., 2011). [Options: Requirement, Derived Requirement] 
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Table 10. High-level requirements table (Part 3) 

Rationale  Derived Requirement Indicator 

[Example Text] Requirement 

 

6 Artificial Neural Networks (ANNs) used in the RIPS 

As indicated previously, two independent neural network models were trained as components of 

the BHM system - one for SoH prediction and the other for SoC prediction. The development of 

a neural network model requires a dataset that captures measurement of relevant battery 

parameters under conditions that largely mirror operating conditions that is expected to be 

encountered by the batteries in the actual scenario. This dataset is expected to contain, from a 

qualitative physics perspective, the critical battery parameters that contain measurements of the 

output of interest (y), namely SoH and SoC, as well as measurements of the inputs (X) that are 

expected to be related to those outputs. A data-driven model like a neural network captures a 

function f(), parameterized by t, such that: y = f(X), i.e., it produces an empirically valid 

estimate of the measured output parameter, y, by making use of the measured input parameters, 

X, in the training dataset. If trained appropriately and if the training dataset sufficiently captures 

the expected operating conditions in which the model will be used, then we expect the neural 

network model to provide accurate and reliable estimates of the output parameters, when 

supplied with input measurements, during operation. The training dataset used for the model as 

well as details related to both the neural network models are described in the next sections. 

6.1 Training data 

To construct the Neural Network model, an existing dataset for commercial Type 1850 Lithium-

ion batteries was used. More specifically, this data set was generated by a custom-built battery 

prognostics testbed at the Prognostics Center of Excellence (PCoE), NASA (B. Saha and K. 

Goebel, 2007; NASA, 2022). Four Li-ion batteries were run through three different operational 

profiles (charge, discharge, and Electrochemical Impedance Spectroscopy) at different 

temperatures. Discharges were carried out at different current load levels until the battery voltage 

fell to preset voltage thresholds. Some of these thresholds were lower than that recommended by 

the OEM (2.7 V) in order to induce deep discharge aging effects. Repeated charge and discharge 

cycles result in accelerated aging of the batteries. The experiments were stopped when the 

batteries reached the end-of-life (EOL) criteria of 30% fade in rated capacity (from 2 Ah to 1.4 

Ah). In the experiment, multiple batteries repeatedly underwent charging and discharging cycles, 

as follows: 
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▪ Charging: Charge the battery with constant electric current 1.5A until the voltage reached 

4.2V. Then, charge it with constant voltage until the charging current decreased to 20mA. 

Stop charging. 

▪ Discharging: Discharge with 2A current until the voltage declined to around 2.7V. 

The experiment was terminated when the capacity of the battery declined to about 70% of the 

capacity ratings.  

Two independent neural network models were trained using this data, one for SoH prediction 

and the other for SoC prediction, using the dataset recorded during the discharging cycle. The 

following inputs were recorded for the discharging cycle which were available to be used for 

training the neural network model: 

x1. Voltage_measured: Battery terminal voltage (Volts) 

x2. Current_measured: Battery output current (Amps) 

x3. Temperature_measured: Battery temperature (degree C) 

x4. Current_charge: Current measured at load (Amps) 

x5. Voltage_charge: Voltage measured at load (Volts) 

x6. Time: Time vector for the cycle (secs) 

x7. Cycle: the charge-discharge cycle number (each cycle starts with a charging, followed by 

discharging cycle, as were described above) 

x8. Capacity: Battery capacity (Ahr) for discharge till 2.7V 

Data from the discharging cycles collected in the above lab setting was considered as emulating 

actual discharging cycles seen during real-world operation, thereby qualifying for use in training 

the neural network. We describe the details of the two models next, including initial outcomes 

from the models. 

6.2 Adaptation for the RIPS use case 

The two output quantities being modeled using the neural networks, namely SoH and SoC, 

pertain to the states of long-term and short-term degradation of the battery. We provide 

definitions of the two output quantities and describe model details, training and validation 

outcomes, all based on the NASA dataset. 

6.2.1 State of Health (SoH) 

The State of Health (SoH) of a battery is a figure of merit, expressed in percentage, to capture the 

long-term degradation of a battery due to natural and irreversible physical and chemical 
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processes. Its purpose is to provide an indication of the performance which can be expected from 

the battery in its current condition or to provide an indication of how much of the useful lifetime 

of the battery has been consumed and how much remains before it must be replaced. This figure 

applies over the lifetime of a battery and qualitatively indicates how capable the battery is, at a 

given cycle during its lifetime, of providing performance relative to when it was brand new. 

Depending upon the application, multiple parameters can be used to generate this figure of merit. 

Most commonly, a comparison of the maximum capacity (ampere-hours) of a fully charged 

battery relative to its maximum capacity when it was brand new is used. By definition, when 

new, the battery's SoH is 100%, but over time as the battery ages, its SoH begins to reduce. It can 

be analogously compared to the odometer reading in an automobile, which indicates the number 

of miles travelled since the vehicle was new, being used as an indicator of the life of the vehicle.  

6.2.1.1 SoH Model 

From the variables in the dataset described in the previous section, the SoH model makes use of 

the following seven inputs in order to estimate SoH: voltage_measured, current_measured, 

temperature_measured, current_charge, voltage_charge, time within cycle, and cycle. This 7-

dimensional input is mapped to an equivalent SoH estimated using the variable ‘Capacity’ in the 

dataset, as the ratio of the capacity value at the start of discharge cycle to the maximum capacity 

of the brand-new battery as specified by the manufacturer. This tuple of <{x1, x2, x3, x4, x5, x6, 

x7}, {y}> was used for training the neural network model. In operation, the model takes current 

measurements of variables x1 – x7 and produces an estimate of the current SoH. The SoH neural 

network model is shown in Figure 5 below.  

 

 
Figure 5. Architecture of the SoH neural network model 

 

Figure 6 below shows model prediction performance in terms of estimating SoH – the blue curve 

is the ground truth, and the orange curve is the model prediction. Note that this model was 

trained and validated using three of the four batteries: ‘B0005, ‘B0006’ and ‘B0007’ (three of the 

leftmost plots). The rightmost plot in the figure shows the model performance for battery 

‘B0018’ that was not included in the training dataset. 
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Figure 6. Prediction performance of the SoH model 

Three of the leftmost plots are for batteries used for model development; 

rightmost plot pertains to battery excluded from the training data. 

 

6.2.2 State of Charge  

The State of Charge (SoC) of a battery is a figure of merit defined within a single operational 

cycle of a battery. Compared to SoH, the SoC provides a more short-term indication of the utility 

of the battery within a discharging cycle. It is defined as the ratio of its current capacity, Q(t) at 

time ‘t’ within the cycle, to the maximal capacity (Qn) of the battery, where the maximal capacity 

is the maximum amount of charge that was stored in the battery at the beginning of that cycle. In 

other words, if a fully charged battery had a certain amount of maximal energy available to be 

released during its use, the SoC at time ‘t’ measures what fraction of that energy has been used at 

‘t’. By definition, the SoC of a battery at the beginning of every discharge cycle is 100% and 

when fully discharged, it becomes 0%. To estimate instantaneous capacity, coulomb counting is 

used, which performs a direct integral of the current measurement of the battery over time to 

estimate energy released in that time. 

6.2.2.1 SoC Model 

From the variables in the dataset described in the previous section, the SoC model makes use of 

the following 5 inputs in order to estimate SoH: voltage_measured, current_measured, 

temperature_measured, current_charge, and voltage_charge. Additionally, the model looks at 

‘n’ past values of each variable, each separated by ‘k’ timesteps, where ‘n’ and ‘k’ are 

parameters. For instance, n=4 and k=2 would imply that the previous 4 values of each of the 

input variables that are separated by 2 time-steps, are also taken as inputs to the model. This 

would make the input dimensionality of the model n * 5. For the present SoC model that was 

explored, the values were set to n=5 and k=2, making the model input 25-dimensional. 

This 25-dimensional input is mapped to an equivalent SoC estimated using the time integral of 

the measured current (instantaneous capacity) and the variable ‘capacity’ in the dataset, as the 

ratio of the instantaneous capacity value to the capacity value at the start of discharge cycle. This 
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tuple of <{xi,(t - n*k)}, {y(t)}> (where i ϵ (1,5), n ϵ (0,5), k ϵ (0,2)) was used for training the 

neural network model; training was done using data from only one of four the batteries 

(‘B0005’) in the dataset. In operation, the model takes current and past measurements of 

variables x1 – x5 for the battery and produces an estimate of the current SoH. The SoC neural 

network model is shown in Figure 7 below. 

 
Figure 7. Architecture for SoC neural network model (with n=5, k=2) 

 

Figure 8 shows the plot of multiple curves of SoC over time parameterized by cycles. In other 

words, 10 random cycles were chosen and the progression of SoC for each of those cycles over 

time was plotted.  

 
Figure 8. Showing SoC over time for diverse cycles of batteries 
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The smallest cycle number chosen was 1 (orange curve) and we can see it has the slowest rate of 

discharge (takes longer to get SoC to 0); in contrast, cycles 144 and 145 are the leftmost curves 

in the plot that seem to discharge relatively faster compared to cycle 1. Assuming the loads are 

similar, intuitively, this reduction in time to get to 0 as cycle count increases can also be thought 

of as the longer-term SoH figure of merit over the life (cycles) of the battery. Figure 9 below 

shows model prediction performance in terms of estimating instantaneous SoC – the blue curve 

is the ground truth, and the orange curve is the model prediction. Note that this model was 

trained and validate using battery ‘B0005’ (leftmost plot below). The remaining 3 plots in the 

figure show that the model performance for batteries not included in the training dataset. 

  

 
Figure 9. Prediction performance of SoC model 

Leftmost plot is for battery used for model development;  

remaining 3 plots pertain to batteries excluded from the training data. 

 

7 Development and deployment workflow 

The development workflow with elements of subsequent embedded target deployment of the 

battery health monitoring system based on SoC and SoH ANNs is an intricate, highly automated 

process relying on tight integration of the following aspects: 

▪ Artificial Intelligence Development Tools: Training and preliminary validation of ANN-

based components is conducted in TensorFlow (www.tensorflow.org) and resulting ANN 

implementations are generated in the Open Neural Network Exchange (ONNX) format 

(https://onnx.ai). 

▪ System Architecture: Architecture and requirement specification development is 

performed in Cameo (www.3ds.com/products-services/catia/products) and this 

information is exported from Cameo for design, test and integration automation. 

http://www.tensorflow.org/
https://onnx.ai/
http://www.3ds.com/products-services/catia/products
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▪ Integration and Test Automation: ENSEMBLE Embedded Software integration Platform 

(ESiP) (Visnevski N. A., 2021; Visnevski, Hubscher-Younger, Rajhans, & Meng, 2020), 

developed by GE Research is used to process architecture specification from Cameo and 

automate integration of component implementation, test infrastructure, and embedded 

target deployment utilizing Simulink (www.mathworks.com/solutions/simulik.html), 

Deep Learning Blockset (www.mathworks.com/solutions/deep-learning.html), and 

Simulink Embedded Coder (www.mathworks.com/products/embedded-coder.html).  

▪ Continuous Integration and Continuous Deployment (CI/CD): The workflow relies on 

Jenkins CI/CD automation server (www.jenkins.io). 

The overall workflow is depicted in Figure 10. One of the key benefits of using Simulink-based 

implementation of the battery health monitoring system is the leverage of sophisticated 

embedded code generation capabilities of the Embedded Coder package. In fact, the deployment 

strategy chosen, relies heavily on the ability to automatically generate embedded C code with 

subsequent build and deployment of the target application on the embedded computing platform. 

To achieve this, we rely on Deep Learning Toolbox and its capability to bridge the gap between 

ANN implementations done in Python-based TensorFlow and embedded C code generation 

using ANN definitions in the ONNX format. 

The structure of the Simulink model of the BHM is shown in Figure 11. The SoH and SoC 

ANNs are Deep Learning blockset components with direct imports of TensorFlow ANN models 

in ONNX format. Together with some signal pre- and post-conditioning and status evaluation 

logic, they form the core of the system implementation. ESiP processes this implementation 

shown in Figure 11 along with architecture specification from Cameo to produce an integrated 

system-level test harness for validation of the model. Test automation infrastructure in Simulink 

runs a series of test procedures to verify the implementation. At this point, if testing is 

successful, ESiP generates a deployment harness synthesizing the network communication layer 

for the deployable version of the battery health monitoring system. We use RTI Connext (RTI 

Connext DDS) middleware layer implementing Data Distribution Services (DDS) (Data 

Distribution Services Specification, n.d.) as middleware communication layer (Figure 12). 

Embedded Coder then generates C code and builds a fully encapsulated microservice-like 

deployment target application. Currently, we target ARM CPU architecture for deployment and 

have done preliminary tests on ARM Cortex-A on Raspberry Pi version 4.0 

(www.raspberrypi.com). 

 

http://www.mathworks.com/solutions/simulik.html
http://www.mathworks.com/solutions/deep-learning.html
http://www.mathworks.com/products/embedded-coder.html
http://www.jenkins.io/
http://www.raspberrypi.com/
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Figure 10. Development, testing, and deployment workflow 

 

 

 
Figure 11. Core battery health monitoring system 
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Figure 12. Integrated deployment harness 

 

One of the critical advantages of this workflow is in its ability to comprehensively handle all 

aspects of development, integration, validation, and deployment of the system. It enables the 

path from ANN development in TensorFlow all the way down to embedded C code generation, 

eliminating some critical barriers and enabling possible paths to safety certification of 

implementations. 

8 Overarching Properties (OPs) for ANN-based systems 

8.1 Overarching Properties 

The Overarching Properties have been described in (Holloway, 2019) as “a set of properties that 

are sufficient to establish the suitability of a product for installation on an aircraft”. Three distinct 

property statements have been defined: 

▪ Intent: The defined intended behavior is correct and complete with respect to the desired 

behavior, 

▪ Correctness: The implementation is correct with respect to its defined intended behavior, 

under foreseeable operating conditions, and 

▪ Innocuity: Any part of the implementation that is not required by the defined intended 

behavior has no unacceptable impact. 
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Desired behavior denotes the needs and constraints expressed by the stakeholders, defined 

intended behavior is the physical representation of the desired behavior (e.g., a set of 

requirements (Holloway, 2019)), implementation is the hardware or software element or 

combination of items for which approval is being sought, foreseeable operating conditions are 

the external and internal conditions in which the element to be evaluated is to be used, 

encompassing all known normal and abnormal conditions, and unacceptable impact is any 

impact that can lead to a direct or indirect undesirable effect on an aircraft or its components. To 

warrant approval for a hardware or software element, it is necessary to show with evidence that 

the element meets all three OPs. However, Holloway (2019) does not prescribe or imply any 

ordering between the three OPs. 

Apart from the statements and definitions described above, the OP description comprises of a set 

of requisites that must exist to show the possession of OPs, a set of assumptions that must be 

stated for the demonstration of possession of OPs, and a set of constraints that restrict how 

demonstration of OP possession can be done (Holloway, 2019). 

8.2 Overarching Properties for ANNs 

We adopt a hybrid approach for certifying avionics software systems that contain ANN based 

sub-components. The hybrid approach, proposed in Daw et al. (2021) leverages traditional 

certification standards like ARP-4754A or DO-178C for parts of the systems that are supported 

by the standards, and OPs for parts that are not supported by the standards. In our adaptation of 

the hybrid approach, we consider an ANN-based sub-component (called a NN-

SOFTWARECOMPONENT) as an entity that is certified using OPs. The schematics in Figure 13 

depict our certification strategy in which only the ANN-based sub-components of the RIPS—the 

SOH-NN-SW-COMP for SoH prediction and the SOC-NN-SW-COMP for SoC prediction—are certified 

using OPs. 

 



  

 32  

 
Figure 13. Hybrid certification strategy for RIPS system 

 

A NN-SOFTWARE-COMPONENT is composed of an ANN NN-MODEL and an input conditioner INPUT-

C ONDITIONER that can prevent off-nominal input values from being sent to the NN-MODEL. The 

defined intended behavior for the NN-SOFTWARE-COMPONENT is captured as a set of high-level 

requirements NN-REQUIREMENTS. We explicitly define an activity MODEL-DEVELOPMENT-

ACTIVITY for model development which is involved with developing the NN-MODEL using a given 

dataset MODEL-DEVELOPMENT-DATA that can be split by the ML engineers into testing and 

training sets as needed. In addition, we define a logically separate activity SOFTWARE-

QUALIFICATION-ACTIVITY for the atomic qualification/verification of the NN-SOFTWARE-

COMPONENT using a given dataset SOFTWARE- QUALIFICATION-DATA. We also define a sub-

component-level safety assessment NN-SAFETY-ASSESSMENT for the NN-SOFTWARE-COMPONENT 

aimed a identifying the set of aberrant behaviors NN-FAILU RE-MODE of the NN-SOFTWARE-

COMPONENT that can directly or indirectly contribute to system-level hazards. A glossary of these 

terms is provided in Figure 14. 
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Figure 14. Glossary of definitions used in our OP arguments for ANN-based sub-components 

 

Our primary goal was to develop a methodology to demonstrate OP possession for a NN-SOF 

TWARE-COMPONENT. In this endeavor, we worked with two objectives in mind:  

1. unambiguously identifying the conditions under which Intent, Correctness, and Innocuity 

can be claimed for NN-SOFTWARE-COMPONENT by focusing on “what conditions are needed?” 

and not being limited by the complexity involved in meeting the conditions; and  
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2. developing generic arguments to show OP possession so that the arguments can be 

reused, either fully or partially, in the context of ANN-based systems other than our use 

case.  

For this, we took inspiration from the Friendly Argument Notation (FAN) (Holloway, The 

Friendly Argument Notation (FAN), 2020) based argument structures presented in Daw et al. 

(2021) and Wasson & Holloway (2022). In the rest of this section, we will use the argument 

structure shown in Figure 15 which consists of—a block making a claim that the audience must 

accept as true (Believing:); a block that provides a reasoning behind why the audience should 

believe the claim (Is Justified by applying:); and a block of a set of premises1 that can support 

the reasoning (To these premises:). An argument is a valid argument if all premises are shown 

to be true with evidence. Any HIGHLIGHTED-WORD in an argument has a well-defined context-

specific definition provided in Figure 14. 

 

 
Figure 15. Example argument structure used in this paper 

 

Figure 16 shows our argument structure for claiming that NN-SOFTWARE-COMPONENT possesses 

Intent. The highest level of the argument is a belief that NN-SOFTWARE-COMPONENT holds Intent and, 

in the justification, the statement of Intent has been customized to state that the NN-

REQUIREMENTS, which constitute the defined intended behavior for the NN-SOFTWARE-

COMPONENT, are correct and complete with respect to the desired behavior. To argue for 

possession of Intent, we believe that it is necessary to show the following —the defined intended 

behavior semantically captures the desired behavior, the defined intended behavior is verifiable, 

and the usage of the defined intended behavior will appropriately consider off-nominal and 

incorrect/adversarial input values. Therefore, we present four premises to support the Intent 

argument. Premise A1 ensures that the NN-REQUIREMENTS correctly address all the stakeholder 

 

1 A premise is a statement that is either true or false. 



  

 35  

constraints that are necessary for the desired behavior of the NN-SOFTWARE-COMPONENT and Premise 

A2 ensures that there is a way to verify that the NN-REQUIREMENTS are satisfied. However, 

satisfactory performance of NN-SOFTWARE-COMPONENT against a qualification dataset does not 

necessarily guarantee that the software is safe. There could be malicious inputs in the model 

development dataset that could have been used for training the NN-MODEL that may not be detected 

during software qualification. For this reason, we introduce premise A3 to ensure that the 

MODEL-DEVELOPMENT-DATA will be free from such inputs. Moreover, sparsity of the MODEL -

DEVELOPMENT-DATA may cause the model to be error-prone for off-nominal inputs. To address that, 

we add premise A4 to ensure that such inputs to the NN-MODEL will be addressed correctly. 

 

 
Figure 16. Our argument that an ANN-based sub-component possesses Intent 

 

The argument structure for claiming that a NN-SOFTWARE-COMPONENT possesses Correctness is 

presented in Figure 17. Similar to the Intent argument, the belief is that the NN-SOFTWARE -

COMPONENT holds Correctness and the justification is that the NN-SOFTWARE-COMPONENT is 

correct with respect to the NN-REQUIREMENTS, under the SOFTWARE-QUALIFICATION-DATA (which 

represents the foreseeable operating conditions). The argument for Correctness is supported by 

intuitive premises that support the claim by ensuring that the ANN-based software component’s 

implementation correctly satisfies the requirements. The first premise B1 trivially ensures that 

NN-MODEL is developed using the intended development dataset which is analogous to the low-

level requirements. The second premise B2 ensures that the SOFTWARE-QUALIFICATION-DATA is 

an appropriate proxy for the foreseeable operating conditions. Premises B2 and B3 then ensure 
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that the NN-SOFTWARE-COMPONENT follows all constraints set in the requirements. Finally, premise 

B4 ensures that the implementation correctly handles all off-nominal inputs. 

 
Figure 17. Our argument for an ANN-based sub-component possessing Correctness 

 

Figure 18 shows our argument structure for claiming that a NN-SOFTWARE-COMPONENT possesses 

Innocuity. The justification for this argument is that any part of the NN-SOFTWARE-COMPONENT that 

is not required by the NN-REQUIREMENTs has no UNACCEPTABLE-IMPACT, where an 

UNACCEPTABLE-IMPACT is any impact that can violate the NN-SAFETY-ASSESSMENT and 

consequently, the system-level safety assessment. However, contrary to traditional software 

systems, ANNs are difficult to interpret, and it is usually challenging to identify the “parts” of an 

ANN, such as the predictors that are important for the property being modeled (Zhang, et al., 

2018). For this reason, it is difficult to explicitly identify the “parts” of a NN-SOFTWARE-COMPONENT 

that are not directly warranted by the requirements. This creates a hurdle towards a direct 

argument for claiming the possession of Innocuity. Therefore, we have identified a set of 

premises to develop an argument such that, much like a proof by contradiction (Arkoudas & 

Musser, 2017) approach, if the premises hold, then it cannot be the case that the claim will not 

hold. Premise C1 ensures that any potential NN-FAILURE-MODE that can lead to an 

UNACCEPTABLE-IMPACT will be identified in the NN-SAFETY-ASSESSMENT and premise C2 states that 

the effect of all failure modes in the identified set NN-FAILURE-MODES will be mitigated by the NN-

REQUIREMENTS. Therefore, if the NN-R EQUIREMENTS are satisfied by the implementation 
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(Correctness), then no unacceptable impact can occur and, by contradiction, there cannot be any 

“part” of the NN-SOFTWARE-COMPONENT that can have an unacceptable impact. 

We can see that our premises for Innocuity ensure that if a NN-SOFTWARE-COMPONENT possesses 

Correctness and the premises C1 and C2 are true, then the NN-SOFTWARE-COMPONENT will also 

possess Innocuity. We believe that in the absence of a principled approach that can allow for 

parts of a NN-SOFTWARE-COMPONENT to be explicitly identified, this approach is an ad-hoc solution 

for ensuring that the NN-SOFTWARE-COMPONENT will possess Innocuity. Since the possession of all 

three properties is necessary for a product to warrant approval (Holloway, 2019), it is not strictly 

necessary to be able to show the possession of each property independently. 

 
Figure 18. Our argument for an ANN-based sub-component possessing Innocuity 

 

In this subsection, we have identified premises that we believe are necessary and sufficient for 

arguing that a NN-SOFTWARE-COMPONENT will possess the OPs. We have not discussed the 

implications of the premises on the development and verification process and how appropriate 

evidence may be generated to support them. Next, we will use these arguments for one of the NN-

SOFTWARE-COMPONENT instances in the RIPS system and present some DAL-appropriate strategies 

for generating evidences for the premises. 

8.3 Instantiation of our OP arguments for the RIPS  

Let SOC-NN-SW-COMP comprise of the model SOC-NN-MODEL and the SOC-NN-INPT-

CND input conditioner, SOC-NN-REQS be the requirements on SOC-NN-SW-COMP, SOC-

NN-DEV-ACT be the activity for developing SOC-NN-MODEL using SOC-NN-DEV-DATA, 

SOC-NN-QUAL-ACT be the activity for qualifying SOC -NN-SW-COMP using SOC-NN-

QUAL-DATA, RIPS-SOC-CONSTRAINTS be the relevant constraints for the SOCNN-SW-
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COMP, SOC-NN-FMS be the set of failure modes SOC-NN-FM for SOC-NN-SW-COMP 

identified in the component-level safety assessment SOC-NN-SA. 

 
Figure 19. Argument for RIPS SOC-NN-SW-COMP possessing Intent 

 

Since the RIPS is a DAL D application, we instantiate the argument structures for Intent, 

Correctness, and Innocuity for the SOC-NN-SW-COMP and present DAL D appropriate strategies for 

each premise in the arguments. For the development of traditional DAL D software, it is 

sufficient to specify Intent through the development and validation of requirements, Correctness 

through the verification of those requirements on the implementation, and Innocuity through a 

safety assessment of the software component’s contributions to system-level hazards. Given the 

DAL of the RIPS application, we only include the premises that we believed were appropriate. 

As we evaluated strategies to satisfy our proposed premises that were equivalent to this DAL D 

perspective, we limited those strategies for what could be performed treating the ANNs as black 

boxes and used existing standards as inspiration to remain grounded to what is traditionally done 

in the industry. 

The Intent argument for SOC-NN-SW-COMP is given in Figure 19. Since for traditional DAL D 

software it is usually not necessary to review the quality of the low-level requirements, and the 

model development data is roughly analogous to low-level requirements for ANNs, we believe 

that premise A3 is not applicable for our RIPS use case. Potential strategies for the applicable 

premises are: 

▪ A1: A reviewer will review the SOC-NN-REQS to ensure that they address all the RIPS-SOC-

CONSTRAINTS. This is roughly analogous to reviewing the high-level requirements for 

completeness and correctness in DO-178C Table A2 (Objectives 1 and 2) and Table A3 

(Objectives 1, 2, and 6). 
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▪ A2: A reviewer will review the appropriate planning documentation that outlines the 

qualification plan for the RIPS. This is roughly analogous to reviewing the Software 

Verification Plan for DAL D in DO-178C Table A1 (Objective 1), Table A9, and Table 

A10. 

▪ A4: A reviewer will review the RIPS requirements and design documents to ensure that a 

mechanism exists to address off-nominal input values to the SOC-NN-SW-COMP. This is 

roughly analogous to reviewing the design descriptions and the software requirements 

data for DAL D software in DO-178C Table A2 (Objectives 1, 2, and 3). 

 

 
Figure 20. Argument for RIPS SOC-NN-SW-COMP possessing Correctness 

 

The argument for SOC-NN-SW-COMP Correctness is shown in Figure 20. Here, premise B1 is not 

applicable because traditionally, for DAL D, it is not necessary to verify the implementation’s 

compliance to the low-level requirements. The strategies for the applicable premises are: 

▪ B2: A reviewer will review that the SOC-NN-QUAL-DATA adequately represents the SoC under 

the foreseeable operating conditions of the RIPS. The qualification data is used to verify 

the software component and it is necessary to review it for any DAL. 

▪ B3 and B4: Software verification results against the SOC-NN-REQS (using the SOC-NN-QUAL-

D ATA for data-dependent constraints) can be used. This is roughly analogous to the code 
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compliance and test coverage of high-level requirements for traditional DAL D software 

prescribed in DO-178C Table A6 (Objective 1) and Table A7 (Objective 3). 

▪ B5: Robustness testing results using the SOC-NN-QUAL-DATA can be used. This is inspired by 

the recommendation in DO-178C Table A6 (Objective 2). 

 

 
Figure 21. Argument for RIPS SOC-NN-SW-COMP possessing Innocuity 

 

Finally, Figure 21 shows the Innocuity argument for SOC-NN-SW-COMP. In this case, all premises 

are applicable, and the strategies are as follows: 

▪ C1: A reviewer will review the component-level safety assessment and confirm that that 

all component-level failure modes have been correctly identified. This is inspired by 

ARP-4754A Table A (Objectives 3.1, 3.3, and 3.6) which prescribes an initial system 

safety assessment and a post-development analysis of the implementation to identify the 

contribution of different components to system safety. 

▪ C2: A reviewer will review that the SOC-NN-REQS mitigate the effects of all identified SOC-

NN-FM. This is inspired by ARP-4754A Table A (Objective 3.6) which prescribes that 

high-level requirements must mitigate all system hazards (by mitigating component-level 

failure conditions contributing to system hazards). 

9 Assurance cases 

The text-based argument structures we presented earlier in this paper can be converted into other 

industry-accepted formats such as the Goal Structuring Notation (GSN) (Kelly & Weaver, 2004). 

In this section, we present some GSN fragments corresponding to our arguments using a colored 

augmentation of the GSN format presented in (Meng, Paul, Moitra, Siu, & Durling, 2021). 
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Figure 22, Figure 23, and Figure 24 show the GSN assurance case fragments corresponding to 

the Intent, Correctness, and Innocuity arguments presented earlier for the SOC-NN-SW-COMP. The 

top-level goals in the GSN fragments represent the top-level claims about OP possession in the 

arguments. These claims are supported by lower-level sub-goals which are the premises in the 

corresponding arguments. There are unique strategies for each of the top-level goals and the sub-

goals that connect the hierarchy of goals in each argument structure. Red goals with diamonds 

under them in the figures are incomplete goals for which we have not generated evidence for in 

this work. 

 

 
Figure 22. Assurance case fragment (SOC-NN-SW-COMP holds Intent) 
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Figure 23. Assurance case fragment (SOC-NN-SW-COMP holds Correctness) 
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Figure 24. Assurance case fragment (SOC-NN-SW-COMP holds Innocuity) 

10 Formalization of artifacts for curation 

We have formalized the artifacts generated for this project based on a concept presented in 

Valapil et al. (2021) so that it can be ingested into our research-grade database called the Rapid 

Assurance Curation Kit (RACK) which is available as open-source (GE High Assurance GitHub 

Repository, 2022). RACK (Moitra, et al., 2022) is a novel data curation platform being 

developed under the DARPA Automated Rapid Certification of Software (ARCOS) program.  

We are developing RACK as a scalable way to curate diverse types of certification evidence 

such as test cases and test results, analytic results from formal methods tools, the structure of 

design artifacts, and relevant requirements. Behind the scenes, RACK is a triple store with a 

schema (which we often call a data model) optimized for curation of certification evidence. The 

foundation of our data model is the well-known entity-relationship (E-R) model. The E-R model 

is comprised of entity classes and relationship classes, where entity classes represent real-world 

concepts or objects, and relationship classes represent the connections between those concepts or 
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objects. In our use of that model, we restrict attributes to be associated only with entity instances. 

We allow the usual cardinalities on relationship instances. 

RACK allows data models to be created using Semantic Application Design Language (SADL) 

(2022), which is a controlled-English grammar that expresses Web Ontology Language (OWL) 

ontologies plus rules. SADL expressivity is equivalent to OWL 1 plus qualified cardinality from 

OWL 2. SADL is also an integrated development environment (IDE), available as a set of 

Eclipse plugins or as a set of services providing a web browser-based interface for creating, 

testing, and maintaining semantic models. The grammar includes constructs for querying, 

testing, and modeling lifecycle management. SADL is open source and has been used in a wide 

variety of applications. The team has previously extended the SADL grammar to create the 

SADL Requirements Language (SRL), which enables capturing requirements in controlled 

English. 

RACK consists of a core ontology consisting of the classes THING, ENTITY, COLLECTION, 

AGENT, and ACTIVITY, that can be extended with project-specific concepts and properties that 

can be used to formalize project-specific data and ingest it into RACK. To enable formalizing 

airborne systems, their development process, and their certification process, we have created 

classes called FILE, FUNCTION, HWCOMPONENT, INTERFACE, SWCOMPONENT, 

SYSTEM, ANALYSIS, HAZARD, REVIEW, REQUIREMENT, TEST, and OBJECTIVE that 

are sub-types of ENTITY. 

10.1 SADL formalization of the FHA 

To express functional hazard assessment for the RIPS system, we have designed a data model 

that is built upon RACK’s core ontology. In the data model, we have introduced classes such as 

Severity, DesignAssuranceLevel, VerificationMethod, and Phase that can take predetermined 

enumerated values that constrain the possible instances to values that are appropriate as per the 

official standards as follows:  
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Severity (note "Severity Types taken from FAA Circular AC No: 23.1309-
lE") is a type of THING,  
  must be one of {Negligible (note "No safety effect: failure 
conditions that would not affect the operational capability of the 
airplane or increase crew workload"),  
      Minor (note "Failure conditions that would 
not significantly reduce airplane safety and involve crew actions that 
are within their capabilities."),  
      Major (note "Failure conditions that would 
reduce the capability of the airplane or the ability of the crew to 
cope with adverse operating conditions to the extent that there would 
be a significant reduction in safety margins or functional 
capabilities."),  
      Hazardous (note "Failure conditions that 
would reduce the capability of the airplane or the ability of the crew 
to cope with adverse operating conditions"),  
      Catastrophic (note "Failure conditions that 
are expected to result in multiple fatalities of the occupants, or 
incapacitation or fatal injury to a flight crewmember normally with 
the loss of the airplane.")}. 
  
 DesignAssuranceLevel (note "The minimum Design Assurance Level") is a 
type of THING 
  must be one of {LevelA (note "Level A"),  // Cannot use 'A' since 
it is a keyword in SADL, so using LevelA instead 
      LevelB (note "Level B"),  
      LevelC (note "Level C"),  
      LevelD (note "Level D")}. 
       
 VerificationMethod (note "The method used for verifying a component") 
is a type of ACTIVITY 
  must be one of {FHA (note "Functional Hazard Assessment"), 
     FTA (note "Fault Tree Analysis"), 
     DD (note "Dependency Diagram"), 
     MA (note "Markov Analysis"), 
     FMEA (note "Failure Modes and Effects 
Analysis"), 
     FMES (note "Failure Modes and Effects 
Summary"), 
     ZSA (note "Zonal Safety Analysis"), 
     CMA (note "Common Mode Analysis"), 
     PRA (note "Particular Risk Analysis")}. 
       
 Phase (note "The flight phase") is a type of THING 
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  must be one of {ALL (note "All phases"), 
      STD (note "Standing"), 
      PBT (note "Pushback/Towing"), 
      TXI (note "Taxi"), 
      TOF (note "TakeOff"), 
      ICL (note "Initial climb"),  
      ENR (note "En-route (Cruise)"), 
      APR (note "Approach"), 
      LDG (note "Landing")}. 

 

10.2 SADL formalization of the RIPS requirements 

The RACK core ontology provides a REQUIREMENT class that has some basic properties that 

can be used to encode the information present in our RIPS requirements as follows:  

 

REQUIREMENT 
 (note "Captures (both high- and low-level) properties of a 
process or artifact that are to be assessed") 
 is a type of ENTITY. 
 
 governs (note "ENTITY(s) that are the subject of the 
requirement") describes REQUIREMENT with values of type ENTITY. 
 governs is a type of wasImpactedBy. 
 
 satisfies (note "Parent ENTITY(s) (e.g. REQUIREMENT) that this 
REQUIREMENT is derived from") describes REQUIREMENT with values of 
type ENTITY. 
 satisfies is a type of wasImpactedBy. 
 
 Rq:mitigates (note "ENTITY(s) (e.g. HAZARD) that is being 
mitigated by this REQUIREMENT") describes REQUIREMENT with values of 
type ENTITY. 
 Rq:mitigates is a type of wasImpactedBy. 
  

 wasGeneratedBy of REQUIREMENT only has values of type 

REQUIREMENT_DEVELOPMENT. 
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To express our project-specific properties like Requirement Type, Architecture Allocation, 

Source, etc., we introduce new properties to the REQUIREMENT class of RACK Core as 

follows:  

 

architectureAllocation describes REQUIREMENT with values of type 
THING.  
  
Rq:derivedRequirementIndicator (note "Use True for derived requirement 
and false otherwise") describes REQUIREMENT with values of type 
boolean.  
  
rationale describes REQUIREMENT with values of type string.  
  
requirementType describes REQUIREMENT with a single value of type 
RequirementType. 
  
correctness describes REQUIREMENT with values of type Correctness. 
  
correctnessFailComments describes REQUIREMENT with values of type 
string.  
  
completetness describes REQUIREMENT with values of type Completeness. 
 
completenessFailComments describes REQUIREMENT with values of type 
string. 
  
verificationRationale describes REQUIREMENT with a single value of 
type string. 

   

Rq:verificationMethod describes REQUIREMENT with a single value of 

type VerificationMethod. 
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To separate the different levels of requirements in our systems design, we create three sub-

classes of REQUIREMENT class to encode three different levels – System, High Level, and 

Low Level as follows:  

 

SystemLevelRequirement (note "System Level Requirement") is a type of 
REQUIREMENT 
  described by rd:satisfiedBy with values of type string  
 described by rd:source with values of type string.  
  
SoftwareHighLevelRequirement (note "Software High Level Requirement") 
is a type of REQUIREMENT. 

SoftwareLowLevelRequirement (note "Software Low Level Requirement") is 

a type of REQUIREMENT. 

 

 

To allow users to instantiate some properties with values from a pre-fixed set, we can also create 

enumerated classes like the one shown below for Requirement Type as follows:  

 

 

RequirementType (note "The type of requirements") is a type of THING 
  must be one of {functionalRequirement, 
      designConstraint, 
      interfaceRequirement, 
      safetyRequirement, 
      performanceRequirement, 
      usabilityRequirement, 
      physicalRequirement 

      }. 

 

All SADL files have been provided in Appendix C for reference. 
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10.3 Traceability of artifacts in RACK 

Using RACK’s query interface, it is possible to see the ontological traceability between the 

artifacts ingested into RACK. 

Requirements to requirements 

Shown below in Figure 25 is the RACK query (and partial result) that shows the traceability 

between requirements using the “satisfies” property of the REQUIREMENT class.  

 

 
Figure 25. RACK query and results connecting HLRs to system requirements 

 

Requirements to hazards 

Shown below in Figure 26 is the RACK query (and partial result) that shows the traceability 

between requirements and hazards using the “mitigates” property of the REQUIREMENT class.  
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Figure 26. RACK query and results connecting requirements to hazards 

 

In the future, we plan to develop an automated toolchain such that once the requirements, OP 

arguments, and evidence supporting the premises are ingested into RACK, GSN assurance case 

fragments can be automatically generated.  

11 Reflection 

The AI model development community has devised strategies and rules that, implicitly or 

explicitly, address multiple issues that are relevant and related to assurance of AI models, more 

specifically, machine learning models. Since the underlying framework of logical inference that 

ML models try to emulate is induction, the outputs produced by these models are not 

categorically defensible; any individual prediction, in the absence of further context, is equally 

likely to be incorrect or grossly inaccurate. Moreover, this induction is performed directly from 

data using non-linear, empirical models like ANNs, with extremely large parametric spaces. This 
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complexity leads to models that are largely black-box in nature - namely it is hard to characterize 

how the model performs its inference or estimation. A predominant approach to address this risk 

has involved devising methods that can additionally quantify prediction uncertainty, even if the 

uncertainty metrics used are also empirical and do not have clean semantics (e.g., in 

classification problems, the softmax output produced by the ANN is used as a proxy for 

prediction probabilities, even if they are known to not be indicative of the true degree of 

accuracy of prediction, or confidence). More recent approaches explicitly recognize and estimate 

two different categories of uncertainty, namely aleatoric versus epistemic, to address the 

independent causes associated with each category, thus deconstructing uncertainty arising from 

stochasticity in the data generation process from the uncertainty caused by lack of necessary 

information in the training data (i.e., ignorance). Model opaqueness has also been addressed as 

an issue of interpretability or transparency of the model, and methods have been created that can 

link a model’s prediction to salient portions of the raw input, thus implicitly ascribing cause or 

saliency to the inference produced (e.g., classification of the picture as a “cat” is augmented with 

highlighting regions of the picture the capture the “whiskers” and “ears”). Multiple initiatives 

like XAI (Gunning & Aha, 2019) and Trustworthy AI (Thiebes, Lins, & Sunyaev, 2021) have 

pursued the goal of reducing the opacity of black-box models like ANNs and led to the design of 

techniques to do the same. 

Assurance is also related to model performance, and the expected performance of a data driven 

model like ANN is a function of the model configuration, its training procedure and parameters, 

and the data used to train the model—poor choices on any of the three can result in an inferior 

model, making its predictions unreliable. Many strategies and mechanisms (hyperparameter 

optimization, dropout, early stopping) have been devised to guide modelers in the choice of 

model configuration and training parameters, such that for a given training dataset, it will lead to 

a model with good expected performance. Model performance is also affected by the training 

data used to estimate its parameters - the distribution of this data informs the competence of the 

model to make predictions in various regions of the input data space - one common issue arises 

when the model is making predictions in regions which are outside the envelope of the training 

data (i.e., regions of extrapolation). It is well understood that ANNs are unreliable when making 

predictions in the region of extrapolation, and care is often taken to make sure that the model is 

not making predictions in this region; from an assurance perspective, the goal would be to ensure 

that ANNs are not exposed to inputs that are in the region of extrapolation for the model. It is 

important to make sure that the training data sufficiently covers, without gaps, regions of the 

input space as characterized by the operating conditions of the model, in order for the model 

predictions to be uniformly reliable across the entire input space. Given that the input space is 
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often continuous, and the training data can only have a finite number of discrete samples, all 

data-driven models inherently perform interpolation, whose quality in a region of the input is 

dictated by the density of training samples in that region. Often, data-driven models do not 

explore this issue since they do not have control over the data generation process; it is common 

for AI models to be built starting with data that is available at the outset. 

The goal of all such strategies is to help design a model that generalizes and shows good 

prediction performance when applied to data samples that were not seen by the model (this is a 

balancing act as is characterized by the bias-variance tradeoff) and involves finding the right 

balance between overfitting or underfitting the model to the training data. When available 

training data is found to be lacking in terms of volume, techniques have been devised to generate 

synthetic examples (e.g., data augmentations, generative models like Generative Adversarial 

Networks (GANs)) in order to increase data volume; while this often addresses the data 

sufficiency issue to help address the bias-variance tradeoff, it introduces the new risk of these 

synthetic samples being different from the actual distribution of input data, thereby causing the 

model to learn the underlying concept incorrectly.  

Another property of AI models like ANN that is relevant to the assurance question is the 

property of robustness2, whereby minute perturbations to the inputs can cause the model outputs 

to change drastically - this can lead to a model whose performance then becomes extremely 

sensitive to properties of the ambient conditions in which the model is deployed. A special case 

of this robustness question is adversarial robustness, which involves algorithmically generating 

perturbations to input in order to drastically change model output. A large body of approaches 

have been developed for tackling adversarial robustness and guarding models from falling prey 

to malicious attacks. While adversarial robustness is about attacking a model that has already 

been trained, Trojans are data samples that are corrupted in a way to influence model 

performance during training, making them vulnerable to manipulation during operation. Fairness 

metrics have also dominated in the AI community to measure ethics of using AI models for 

making social decisions (e.g., job offers, loan evaluation). Such metrics are meant to characterize 

and measure the ability of AI models to be fair and unbiased with respect to demographics 

representing minorities in society (e.g., gender, race), which are naturally under-represented in 

the training data, thereby biasing the model to incompletely characterize outcomes for such 

classes. Bias can also be inherently present in the training data on account of existing social 

 

2 Robustness in the context of a NN-MODEL implies that the model will be resilient to minute perturbations to the 

inputs while in the context of a NN-SOFTWARE-COMPONENT, it implies that the component will respond 

correctly to abnormal (off-nominal) inputs. 
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practices that are themselves biased; training a model on this data without correcting for such 

bias will lead to the model producing outcomes that reflect the same bias in its predictions. 

The value alignment problem identified recently in AI presents the broadest perspective on the 

assurance question for AI models. Most data-driven models, when built under supervision 

(training data also contains outputs), make use of an appropriate metric (e.g., mean square error) 

that they try to optimize, towards the larger goal of estimating the model parameters. This metric 

or objective is often a quantity whose optimization can be heuristically linked to what can be 

considered as a good model. However, such metrics are only proxies of the true intent for which 

the model is being developed, and thus it is imaginable that we can run into cases where the 

correspondence between the metric being optimized by the model and the true intent cease to 

align, thereby making the model deviate from the true purpose for which it was developed. 

Fundamentally, this results from our inability to define a concrete metric or objective that exactly 

aligns with the true intent of the model. This is a new subfield in AI and its expression of the 

assurance problem, especially intent is amply clear. Even if this area is nascent and not a lot of 

approaches have been developed towards addressing this issue, we expect it will result in a body 

of work that will intersect most closely to the work being done by the assurance community 

itself. 

In the light of the challenges described above, we have tried to be as thorough as possible in 

designing the premises for our OP arguments to ensure that they can correctly support the claims. 

However, it should be noted that other alternative combinations of premises for each argument 

may also be possible. Moreover, since our primary goal was to exhaustively identify sufficient 

premises, we have been conservative in some cases (e.g., it may be impossible to guarantee 

premise B2 if the operating conditions are defined by continuous parameters). 

Additionally, when working through the phases of development for a system relying on AI/ML, 

the use of OP may alter the development approach. For traditional development of DAL D 

software, HLRs are written and validated followed by review for their applicability to the safety 

assessment. When working through OP arguments, the premises supporting Innocuity place a 

greater emphasis on the identification of failure modes specific to the software component. These 

failure modes may drive the need for additional mitigations in the design. In the requirements 

set, this results in a larger set of derived requirements. When this was applied to the AI/ML 

software components in the RIPS system, we focused on assuring failure modes in the ANNs 

would not contribute to incorrect decisions made by the software component. Mitigations around 

each ANN were needed to assure that decisions were never left to the ANN for input vectors that 
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would result in low prediction performance, such as input combinations outside the bounds of 

the training data. 

The hybrid certification strategy adopted is not only beneficial when strategically applying OP to 

sub-components developed with new or novel methodologies that do not align well with existing 

traditional certification standards, but also when integrating these subcomponents with 

previously developed software and COTS software as done in this work. The hybrid certification 

strategy must be identified in the planning documents (e.g., Plan for Software Aspects of 

Certification) and the certification approach for each sub-system clearly identified. Care must be 

taken to ensure that the design and or development assurance of the integration of sub-

components is covered (e.g., software/software integration) by an adequate certification standard. 

This will likely be achievable by the traditional certification standards. 

The OP approach to certification of the SoC and SoH sub-components is a promising alternative 

to attempting to certify AI/ML under DO-178C. The OP framework provides the opportunity to 

streamline the activities required to adequately show compliance of software developed with 

novel development methodologies such as ANNs. While the use case selected was only DAL D, 

reusing the generic argument-based OP approach and extending it to higher DALs seems 

feasible. One area of improvement would be to remove the reliance on DO-178C objective 

applicability referenced by this OP approach. Nevertheless, given the paucity of prior work on 

this topic, we believe that our work provides a suitable foundation for developing a well-

accepted OP-based certification approach for AI/ML-based avionics systems in the future. 

Additionally, there is close alignment with the principles of Trustworthy AI, such as robustness, 

safety, and fairness, that may be useful for establishing “trust” in AI-based systems. 

12 Related work 

Daw et al. (2023) have used OPs (Holloway, 2019) and Overarching Properties Related 

Arguments (OPRA) (Wasson & Holloway, 2022) at the system level by performing a case study 

of an auxiliary power unit in an aircraft very similar to our RIPS system. They use the FAN 

notation to capture OPs and the system models are captured in AADL linked to MATLAB 

simulation toolchains. They observe that OPs capture with enough precision a single critical 

component of a safety-critical system and that OPs need a hybrid and multi-disciplinary 

approach to be used along with existing certification guidelines and related standards (Daw & 

Beecher, 2023). They have also similarly applied a hybrid approach to OPs on a surrogate UAV 

model with a collision avoidance system (Daw, Beecher, Holloway, & Graydon, 2021). They 

note that use of AI/ML components is acceptable to model “macro-behaviors” of safety-critical 
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software but do not develop a corresponding OP framework as outlined in this paper. Durling et 

al. (2021) have aligned Adaptive Stress Testing (AST) of safety-critical airborne software with 

OPs while also aligning AST with DO-178Cs objectives such as Robustness Testing, Exhaustive 

Testing & Product Service History for airworthiness.  

However, they note a gap in linking OPs to DAL-specific evidence that is prescribed by DO-

178C objectives. In comparison, we demonstrate OP possession for the DAL D RIPS system. 

Graydon et al. (2021) have retrospectively demonstrated OP possession of a DAL C system 

named SAFEGUARD, intended for providing geo-fencing capabilities for unmanned aerial 

vehicles. They have performed a detailed case study providing a plausible approach to establish 

OP possession of an already certified system. They reuse already established DO-178C 

qualification packs for some of SAFEGUARD’s sub-components such as its operating system, to 

argue for innocuity. Their OP possession argument highlights the inter-related nature of OP 

arguments with existing DO-178C evidence and objectives (Graydon & Cronin, 2021). Blood et 

al. (2023) identify several AI failure modes that can occur in systems with AI function and 

advocate the use of traditional reliability and hazard analysis techniques as a starting point to 

manage their outcomes iteratively during their design, development, and operation.  

Our paper identifies AI failure modes like their work, such as data pipeline failures, robustness 

failure of NN model & validation of inputs to NN model (automated naivete) and refines them as 

premises into the OP framework. The EASA concept paper for use of AI/ML in aviation 

(Torens, Durak, & Dauer, 2022) provides guidelines and a regulatory framework prescribing 

different sets of assessment objects at each stage of AI/ML deployment from training of the 

AI/ML models to their testing and use in real systems. They develop the guidelines for Urban 

Air Mobility (UAM) while considering increasing levels of autonomy of AI/ML functions. 

Further, EASA and Collins Aerospace (2023) have provided an extensive survey about the use of 

Formal Methods for ML along with a methodology for FM-based ML Assurance while aligning 

with EASA concept paper objectives. They have applied their methodology on an on-ground 

ML-based Remaining Useful Life (RUL) estimator that aids flight preparation (EASA and 

Collins Aerospace, 2023). The SAE G34 meeting (Brat G. , 2021) compares the different tools 

supported by NASA ranging from requirements capture to the development of assurance cases of 

safety-critical systems with respect to the AI/ML guidelines provided in the EASA concept 

paper. Aerospace Industry and academic partners have developed a roadmap and vision 2045 for 

the verification & validation of autonomous systems (Brat, et al., 2023) extensively along several 

technical areas ranging from Machine Learning V&V techniques, Model-Based Systems 

Engineering (MBSE) for AI/ML and certification of AI/ML systems. Kaakai et al. (Kaakai, et 

al., 2022) have developed a machine learning product development lifecycle that also includes 
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EASA guidelines for ML that will eventually become an aeronautical standard, namely, AS6983. 

Aerospace Vehicle Systems Institute (AVSI) (2020) have produced a report, “AFE 87 - Machine 

Learning”, that contains recommendations for development of assurance guidelines and 

certification methodologies for AI/ML in safety-critical systems. Usman et al. (2022) have 

developed coverage metrics for Deep Neural Networks (DNNs) but observed that their coverage 

metrics are not sensitive to the functional diversity of DNNs. Sun et al. (2022) have used NN 

verification frameworks such as Marabou framework (Katz, et al., 2019) to verify NNs against 

model poisoning attacks during the training phase and have applied their approach to the MNIST 

digit recognition and the German Traffic Sign Recognition benchmarks which are classified 

using small NN models. Irfan et al. (2020) performed formal verification of neural networks for 

small, unmanned aircraft collision avoidance using the Marabou framework. Finally, EASA’s 

Artificial Intelligence Roadmap 2.0 (with a minor section partly written by ChatGPT/Open AI 

GPT-3 and edited by human experts) (EASA, 2023) outline the applicability of human-aiding AI 

with several avionics applications from air-traffic management to aircraft production & 

maintenance while also providing the challenges involved developing assurance and establishing 

trustworthiness in AI. 

13 Conclusion 

In this document, we presented a set of premise-based argument structures that can be used for 

arguing for the OP possession of neural network-based sub-components and proposed potential 

strategies to generate supporting evidence for an example DAL D system. To our knowledge, 
this work is the first attempt at laying a generic foundation for using OPs to certify AI/ML-based 

systems. Although our approach presents a good initial foundation for using OPs for the 

certification of AI/ML-based systems, more work is needed to for its practical realization. One 

potential direction of future work would be to analyze the practical implications of our premises 

and investigate ways to generate supporting evidence. Similarly, work is needed to study the 

effectiveness of our premises and detect any potential inconsistencies or vulnerabilities in our 

argument structures. In subsequent phases of this project, we plan to continue investigating our 

proposed approach with respect to DAL A, B, and C systems. 
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A Comprehensive list of RIPS requirements 
 

Table A- 1. RIPS system requirements table 

Id Name Text 

RIPS-

01 

Backup Power Time When aircraft power to the recorder drops below 18 Vdc, the 

RIPS shall make DC power available for 10 minutes. 

RIPS-

02 

Backup Time 

Tolerance 

The tolerance on the time of 10 minutes output shall be ±1 

minute. 

RIPS-

03 

Recharge Timing From the time aircraft power greater than 22 Vdc is available 

until the RIPS is capable of providing the full 10 minutes of 

power shall be no more than 15 minutes. 

RIPS-

04 

Battery 

Replacement 

The RIPS shall have a replaceable battery 

RIPS-

05 

Maintenance 

Discrete 

The RIPS shall have a “Maintenance Required” Standard 

Discrete Output. 

RIPS-

06 

RIPS Active 

Discrete 

The RIPS shall have a “RIPS Active” Standard Discrete 

Output. 

RIPS-

07 

No Fault Discrete The RIPS shall have a “No Fault” Standard Discrete Output. 

RIPS-

08 

Maintenance 

Discrete Behavior 

The RIPS shall set the "Maintenance Required" discrete in the 

“ground” state when the RIPS has determined that the internal 

battery needs to be replaced. 

RIPS-

09 

RIPS Active 

Discrete Behavior 

The RIPS shall set the "RIPS Active" discrete in the “ground” 

state when the RIPS is supplying power to the recorder. 

RIPS-

10 

No Fault Discrete 

Behavior 

The RIPS shall set the "RIPS Active" discrete in the “ground” 

state when the RIPS has determined that it is able to supply 

back-up power to the recorder for the duration specified in 

RIPS-01 and that it has detected no internal faults or external 

wiring faults. 

RIPS-

11 

Operating 

Temperature Range 

The RIPS shall operate from -15 degC to 55 degC. 

RIPS-

12 

RIPS Form Factor The RIPS shall form factor shall match the dimensions defined 

in ARINC 777-2 Attachment 5 Figure 5-1. 

RIPS-

13 

Weight The RIPS shall weigh no more than 5 pounds. 

RIPS-

14 

Connector Type The RIPS shall use D38999/20JC35P connectors. 
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Id Name Text 

RIPS-

15 

Battery Recharge 

Initiation 

When aircraft power is available, the RIPS shall initiate a 

recharge of the internal battery when estimated remaining 

charge is less than 30%. 

RIPS-

16 

Battery Recharge 

Completion 

After a battery recharge has been initiated and while aircraft 

power is available, the RIPS shall continue recharge the 

internal battery until the estimated remaining charge is above 

99%. 

RIPS-

17 

Minimum Operating 

Pressure 

The RIPS shall operate down to a minimum operating pressure 

of 57.18 kPa. 

RIPS-

18 

Operating 

Temperature 

Variation 

The RIPS shall operate in an environment with a maximum 

temperature rate of change of 2 degC per minute. 

RIPS-

50 

Loss of Backup 

Power 

Loss of ability for the RIPS to provide backup power to the 

Flight Data Recorder shall be considered a MINOR failure 

condition. 

RIPS-

51 

Inadvertent Backup 

Power 

Backup power provided by the RIPS to the Flight Data 

Recorder shall be considered a MINOR failure condition. 

 

 

 

Table A- 2. Battery Health Monitor HLRs 

Id Name Text 

BHM-HLR-

01 

Monitor Battery The Battery Health Monitor shall indicate 

battery maintenance is required when the State-

of-Health is less than 70% with a tolerance of 

+/- 1%. 

BHM-HLR-

02 

Temperature Input The Battery Health Monitor shall receive 

temperature as an input. 

BHM-HLR-

03 

Temperature Range The Battery Health Monitor shall estimate state-

of-charge for batteries operating from -15 degC 

to 55 degC. 

BHM-HLR-

04 

Battery Terminal Voltage 

Input 

The Battery Health Monitor shall receive 

battery terminal voltage measurements as an 

input. 

BHM-HLR-

05 

Battery Terminal Voltage 

Range 

The Battery Health Monitor battery terminal 

voltage measurement input shall allow for 

voltage measurements from 0 Vdc to positive 

40 Vdc. 
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Id Name Text 

BHM-HLR-

06 

Battery Output Current Input The Battery Health Monitor shall receive 

battery output current measurements as an 

input. 

BHM-HLR-

07 

Battery Output Current 

Range 

The Battery Health Monitor battery output 

current measurement input shall allow for 

current ranges from 0 A to 3 A. 

BHM-HLR-

08 

Time Input The Battery Health Monitor shall receive 

operating time since last charge as an input. 

BHM-HLR-

09 

Time Range The Battery Health Monitor time measurement 

input shall allow for time measurements from 0 

seconds up to 3.6e+7 seconds. 

BHM-HLR-

10 

Maintenance Required 

Output 

The Battery Health Monitor shall provide 

Maintenance Required state as an output. 

BHM-HLR-

11 

Charge Command Behavior The Battery Health Monitor shall set the charge 

command output to the active state when the 

State-of-Charge is less than or equal to 30% 

with a tolerance of +/- 3%. 

BHM-HLR-

12 

Charge Command The Battery Health Monitor shall provide a 

charge command as an output. 

BHM-HLR-

13 

State-of-Health Neural 

Network 

The Battery Health Monitor shall implement a 

neural network to compute the State-of-Health. 

BHM-HLR-

14 

State-of-Charge Neural 

Network 

The Battery Health Monitor shall implement a 

neural network to compute the State-of-Charge. 

BHM-HLR-

15 

Battery Terminal Voltage Out 

of Range 

The Battery Health Monitor shall indicate a 

failure if a voltage measurement is received 

outside of the range defined in BHM-HLR-05. 

BHM-HLR-

16 

Temperature Out of Range The Battery Health Monitor shall indicate a 

failure if a temperature measurement is received 

outside of the range defined in BHM-HLR-03. 

BHM-HLR-

17 

Battery Output Current Out 

of Range 

The Battery Health Monitor shall indicate a 

failure if a current measurement is received 

outside of the range defined in BHM-HLR-07. 

BHM-HLR-

18 

Cycle Count Input The Battery Health Monitor shall receive a 

count of the charge-discharge cycles for the 

current battery. 

BHM-HLR-

19 

Cycle Count Input Range The Battery Health Monitor cycle count input 

shall allow for values from 0 to 200 cycles. 

BHM-HLR-

20 

Load Voltage Input The Battery Health Monitor shall receive 

voltage measurements at the load as an input. 
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Id Name Text 

BHM-HLR-

21 

Load Voltage Input Range The Battery Health Monitor load voltage 

measurement input shall allow for voltage 

measurements from 0 Vdc to positive 40 Vdc. 

BHM-HLR-

22 

Load Current Input The Battery Health Monitor shall receive the 

current measurements at the load as an input. 

BHM-HLR-

23 

Load Current Input Range The Battery Health Monitor load current 

measurement input shall allow for current 

ranges from 0 A to 3 A. 

BHM-HLR-

24 

Charge Command Complete The Battery Health Monitor shall set the charge 

command output to the inactive state when the 

State-of-Charge is greater than or equal to 99% 

+/- 1%. 

BHM-HLR-

25 

State-of-Health Training 

Range 

The Battery Health Monitor State-of-Health 

Neural Network shall be trained with a training 

data set that contains State-of-Health values 

from 0% to 100%. 

BHM-HLR-

26 

State-of-Health Training Gap 

Coverage 

The Battery Health Monitor State-of-Health 

Neural Network shall be trained with a training 

data set that does not contain a gap in the State-

of-Health values greater than 0.5% for the range 

defined in BHM-HLR-25. 

BHM-HLR-

27 

State-of-Charge Training 

Range 

The Battery Health Monitor State-of-Charge 

Neural Network shall be trained with a training 

data set that contains State-of-Charge values 

from 0% to 100%. 

BHM-HLR-

28 

State-of-Charge Training Gap 

Coverage 

The Battery Health Monitor State-of-Charge 

Neural Network shall be trained with a training 

data set that does not contain a gap in the State-

of-Charge values greater than 0.5% for the 

range defined in BHM-HLR-27. 

BHM-HLR-

29 

Battery Voltage Runtime 

Monitor 

The Battery Health Monitor shall indicate 

battery maintenance is required if the measured 

battery voltage is less than 17 Vdc. 
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B RIPS FHA Worksheet 

The FHA worksheet for the RIPS is included in Table B- 1. 

 

Table B- 1. RIPS FHA Summary 

Id Functi

on 

Failure 

Conditio

n 

Fligh

t 

Phas

e 

Effect On 

System 

Severit

y 

Min 

Require

d DAL 

Severity 

Justificatio

n 

Verificatio

n Method 

Affected 

Systems 

Documentation 

A1 Provide 

backup 

power 

to the 

Flight 

Data 

Record

er 

Loss of 

ability to 

provide 

backup 

power 

All Unable to 

record 

aircraft state 

and 

performanc

e 

parameters 

Minor D TSO-C155b 

section 

3.b(2) 

classifies 

this as a 

minor failure 

condition 

FHA Flight 

Data 

Recordin

g System 

Power from the 

RIPS is only 

provided to the 

Flight Data 

Recorder and 

will only impact 

the elements of 

the Flight Data 

Recording 

System. 

B1 Provide 

backup 

power 

to the 

Flight 

Data 

Record

er 

Backup 

power 

provided 

when not 

required 

All Erroneously 

provided 

power may 

result in the 

inability to 

record 

aircraft state 

and 

performanc

e 

parameters 

Minor D TSO-C155b 

section 

3.b(1) 

classifies 

this as a 

minor failure 

condition 

FHA Flight 

Data 

Recordin

g System 

Power from the 

RIPS is only 

provided to the 

Flight Data 

Recorder and 

will only impact 

the elements of 

the Flight Data 

Recording 

System. 
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C Complete SADL formalization of requirements and hazards 

 

FHA Ontology 

//--------------------------------------------------------------------
------------------------- 
 //-- Additional classes required 
 //-------------------------------------------------------------------
--------------------------  
 Severity (note "Severity Types taken from FAA Circular AC No: 
23.1309-lE") is a type of THING,  
  must be one of {Negligible (note "No safety effect: failure 
conditions that would not affect the operational capability of the 
airplane or increase crew workload"),  
      Minor (note "Failure conditions that would 
not significantly reduce airplane safety and involve crew actions that 
are within their capabilities."),  
      Major (note "Failure conditions that would 
reduce the capability of the airplane or the ability of the crew to 
cope with adverse operating conditions to the extent that there would 
be a significant reduction in safety margins or functional 
capabilities."),  
      Hazardous (note "Failure conditions that 
would reduce the capability of the airplane or the ability of the crew 
to cope with adverse operating conditions"),  
      Catastrophic (note "Failure conditions that 
are expected to result in multiple fatalities of the occupants, or 
incapacitation or fatal injury to a flight crewmember normally with 
the loss of the airplane.")}. 
  
 DesignAssuranceLevel (note "The minimum Design Assurance Level") is a 
type of THING 
  must be one of {LevelA (note "Level A"),  // Cannot use 'A' since 
it is a keyword in SADL, so using LevelA instead 
      LevelB (note "Level B"),  
      LevelC (note "Level C"),  
      LevelD (note "Level D")}. 
       
 VerificationMethod (note "The method used for verifying a component") 
is a type of ACTIVITY 
  must be one of {FHA (note "Functional Hazard Assessment"), 
     FTA (note "Fault Tree Analysis"), 
     DD (note "Dependency Diagram"), 
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     MA (note "Markov Analysis"), 
     FMEA (note "Failure Modes and Effects 
Analysis"), 
     FMES (note "Failure Modes and Effects 
Summary"), 
     ZSA (note "Zonal Safety Analysis"), 
     CMA (note "Common Mode Analysis"), 
     PRA (note "Particular Risk Analysis")}. 
       
 Phase (note "The flight phase") is a type of THING 
  must be one of {ALL (note "All phases"), 
      STD (note "Standing"), 
      PBT (note "Pushback/Towing"), 
      TXI (note "Taxi"), 
      TOF (note "TakeOff"), 
      ICL (note "Initial climb"),  
      ENR (note "En-route (Cruise)"), 
      APR (note "Approach"), 
      LDG (note "Landing")}. 
 
 
 //-------------------------------------------------------------------
--------------------------   
 //-- Additional properties required 
 //-------------------------------------------------------------------
--------------------------  
  
 //-- For HAZARD   
 eventPhase (note "The event phase") describes HAZARD with values of 
type Phase.  
 severityClassification (note "The severity classification of the 
hazard") describes HAZARD with values of type Severity. // Required 
because the original "severity" property of HAZARD is float [0,1] 
 minimumRequiredDal (note "The minimal DAL required for such a 
hazard") describes HAZARD with values of type DesignAssuranceLevel. 
 classificationJustification (note "Justification of severity 
classification") describes HAZARD with values of type string. 
 verificationMethod (note "The verification method used to verify that 
the hazard has been mitigated") describes HAZARD with values of type 
VerificationMethod. 
 affects (note "The system affected by the hazard") describes HAZARD 
with values of type SYSTEM. 
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FHA Instance data 

//-- Functions 
  
 Backup-power (note "Provide backup power to the Flight Data 
Recorder") is a FUNCTION 
  with identifier "Backup-power" 
  with description "Provide backup power to the Flight Data 
Recorder".  
 
  
 //-- The system and components involved, and their functions 
  
 Flight-data-recorder (note "The flight data recorder") is a SYSTEM 
  with identifier "Flight-data-recorder". 
  
  
 Recorder-independent-power-supply (note "Recorder independent power 
supply") is a SYSTEM 
  with identifier "Recorder-independent-power-supply" 
  with function Backup-power. 

 

//-- Hazards  
  
Hzrd-A1 is a HAZARD 
  with identifier "Hzrd-A1" 
  with description "Loss of ability to provide backup power" 
  with eventPhase ALL 
  with H:effect "Unable to record aircraft state and performance 
parameters"  
  with severityClassification Minor 
  with minimumRequiredDal LevelD 
  with classificationJustification "TSO-C155b section 3.b(2) 
classifies this as a minor failure condition" 
  with verificationMethod FHA 
  with H:source Recorder-independent-power-supply 
  with affects Flight-data-recorder. 
   
   
 Hzrd-B1 is a HAZARD 
  with identifier "Hzrd-B1" 
  with description "Backup power provided when not required"  with 
eventPhase ALL 
  with H:effect "Erroneously provided power may result in the 
inability to record aircraft state and performance parameters"  
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  with severityClassification Minor 
  with minimumRequiredDal LevelD 
  with classificationJustification "TSO-C155b section 3.b(1) 
classifies this as a minor failure condition" 
  with verificationMethod FHA 
  with H:source Recorder-independent-power-supply 
  with affects Flight-data-recorder. 

 

 

Requirements Ontology 

//-- Different types of requirements 
 SystemLevelRequirement (note "System Level Requirement") is a type of 
REQUIREMENT 
  described by rd:satisfiedBy with values of type REQUIREMENT 
  described by rd:source with values of type string. // Should we 
enumerate this in the future? 
  
 SoftwareHighLevelRequirement (note "Software High Level Requirement") 
is a type of REQUIREMENT. 
 SoftwareLowLevelRequirement (note "Software Low Level Requirement") 
is a type of REQUIREMENT.  
 
   
  
 //-- Other classes needed to express system design 
 Correctness (note "Correctness of a REQUIREMENt (taken from Cameo 
Class Properties)") is a type of THING. 
 
 Completeness (note "Completeness of a REQUIREMENt (taken from Cameo 
Class Properties)") is a type of THING.      
           
 RequirementType (note "The type of requirements") is a type of THING 
  must be one of {functionalRequirement, 
      designConstraint, 
      interfaceRequirement, 
      safetyRequirement, 
      performanceRequirement, 
      usabilityRequirement, 
      physicalRequirement 
      }.   
       
 CertificationReference (note "Certification References used in a 
System Design") is a type of THING 



 

C-5 

 

  must be one of {TSO-C124c (note "For Flight Data Recorder 
Equipment"), 
     TSO-C155b (note "For Recorder Independent 
Power Supply"), 
     ARINC-777-2 (note "For Recorder Independent 
Power Supply"), 
     ED-112A (note "For Minimum Operational 
Performance Specification For Crash Protected Airborne Recorder 
Systems"), 
     DO-160G (note "For Environmental Conditions 
and Test Procedures for Airborne Equipment"), 
     SAE-ARP-4761 (note "For Guidelines and 
Methods for Conducting the Safety Assessment Process on Civil Airborne 
System and Equipment"), 
     RTCA-DO178C (note "For Software 
Considerations in Airborne Systems and Equipment Certification") 
     }.  
       
  
 Parameter (note "The input or output to a SYSTEM") is a type of THING 
  must be one of {MaintainanceRequired, 
      MeasuredTemperature, 
      LoadMeasurements, 
      MeasuredCurrent, 
      MeasuredVoltage, 
      ChargeControllerComm, 
      BHMComm, 
      SwitchCommand, 
      BatteryPower, 
      ReportFault, 
      BackupActive, 
      BateryPower, 
     SwitchCommand, 
     SupplyPowerToRecorder, 
     ReceivePowerFromAircraft 
     }. 
      
 parValue describes Parameter with a single value of type Value.  
        
  
 Value (note "The values that can be taken by parameters") is a type 
of THING 
  described by probability with a single value of type string, 
  described by magnitude with a single value of type string.   
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 //-- Additional properties on RACK core classes  
 architectureAllocation describes REQUIREMENT with values of type 
THING.  
 Rq:derivedRequirementIndicator (note "Use True for derived 
requirement and false otherwise") describes REQUIREMENT with values of 
type boolean.  
 rationale describes REQUIREMENT with values of type string.  
 requirementType describes REQUIREMENT with a single value of type 
RequirementType. 
 correctness describes REQUIREMENT with values of type Correctness. 
 correctnessFailComments describes REQUIREMENT with values of type 
string.  
 completetness describes REQUIREMENT with values of type Completeness. 
 completenessFailComments describes REQUIREMENT with values of type 
string. 
 verificationRationale describes REQUIREMENT with a single value of 
type string. 
 Rq:verificationMethod describes REQUIREMENT with a single value of 
type VerificationMethod. 
  
  
 input describes SYSTEM with values of type Parameter. 

 output describes SYSTEM with values of type Parameter. 

 

 

Requirements Instance data 

// -- RIPS System Requirements 
 
RIPS-01 is a SystemLevelRequirement 
  with identifier "RIPS-01" 
  with title "RIPS-01 Backup Power Time" 
  with description "When aircraft power to the recorder drops below 18 
Vdc, the RIPS shall make DC power available for 10 minutes." 
  with requirementType functionalRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.1". 
  
   
  
RIPS-02 is a SystemLevelRequirement 
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  with identifier "RIPS-02" 
  with title "RIPS-02 Backup Time Tolerance" 
  with description "The tolerance on the time of 10 minutes output 
shall be +/- 1 minute." 
  with requirementType designConstraint 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.2.3". 
   
RIPS-03 is a SystemLevelRequirement 
  with identifier "RIPS-03" 
  with title "RIPS-03 Recharge Timing" 
  with description "From the time aircraft power greater than 22 Vdc 
is available until the RIPS is capable of providing the full 10 
minutes of power shall be no more than 15 minutes." 
  with requirementType performanceRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.2.2". 
   
RIPS-04 is a SystemLevelRequirement 
  with identifier "RIPS-04" 
  with title "RIPS-02 Backup Time Tolerance" 
  with description "The RIPS shall have a replaceable battery" 
  with requirementType usabilityRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false. 
   
RIPS-05 is a SystemLevelRequirement 
  with identifier "RIPS-05" 
  with title "RIPS-05 Maintenance Discrete" 
  with description "The RIPS shall have a 'Maintenance Required' 
Standard Discrete Output." 
  with requirementType interfaceRequirement 
  with rd:satisfiedBy BHM-HLR-10 
  with rationale "Discrete interface required by ARINC 777-2." 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.3". 
   
RIPS-06 is a SystemLevelRequirement 
  with title "RIPS-06 RIPS Active Discrete" 
  with identifier "RIPS-06" 
  with description "The RIPS shall have a 'RIPS Active' Standard 
Discrete Output." 
  with requirementType interfaceRequirement 
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  with rationale "Discrete interface required by ARINC 777-2." 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.1". 
   
 
RIPS-07 is a SystemLevelRequirement 
  with title "RIPS-07 No Fault Discrete" 
  with identifier "RIPS-07" 
  with description "The RIPS shall have a 'No Fault' Standard Discrete 
Output." 
  with requirementType interfaceRequirement 
  with rationale "Discrete interface required by ARINC 777-2." 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.2". 
   
RIPS-08 is a SystemLevelRequirement 
  with identifier "RIPS-08" 
  with title "RIPS-08 Maintenance Discrete Behavior" 
  with description "The RIPS shall set the 'Maintenance Required' 
discrete in the 'ground' state when the RIPS has determined that the 
internal battery needs to be replaced." 
  with requirementType functionalRequirement 
  with rd:satisfiedBy BHM-HLR-18 
  with rd:satisfiedBy BHM-HLR-01 
  with rd:satisfiedBy BHM-HLR-02 
  with rd:satisfiedBy BHM-HLR-04 
  with rd:satisfiedBy BHM-HLR-20 
  with rd:satisfiedBy BHM-HLR-22 
  with rd:satisfiedBy BHM-HLR-23 
  with rd:satisfiedBy BHM-HLR-05 
  with rd:satisfiedBy BHM-HLR-06 
  with rd:satisfiedBy BHM-HLR-07 
  with rd:satisfiedBy BHM-HLR-08 
  with rd:satisfiedBy BHM-HLR-09 
  with rd:satisfiedBy BHM-HLR-19 
  with rd:satisfiedBy BHM-HLR-21 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.3". 
   
RIPS-09 is a SystemLevelRequirement 
  with identifier "RIPS-09" 
  with title "RIPS-09 RIPS Active Discrete Behavior" 
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  with description "The RIPS shall set the 'RIPS Active' discrete in 
the 'ground' state when the RIPS is supplying power to the recorder." 
  with requirementType functionalRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.1". 
 
RIPS-10 is a SystemLevelRequirement 
  with identifier "RIPS-10" 
  with title "RIPS-10 No Fault Discrete Behavior" 
  with description "The RIPS shall set the 'RIPS Active' discrete in 
the 'ground' state when the RIPS has determined that it is able to 
supply back-up power to the recorder for the duration specified in 
RIPS-01 and that it has detected no internal faults or external wiring 
faults." 
  with requirementType functionalRequirement 
  with rd:satisfiedBy BHM-HLR-15 
  with rd:satisfiedBy BHM-HLR-16 
  with rd:satisfiedBy BHM-HLR-17 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 3.5.2". 
   
RIPS-11 is a SystemLevelRequirement 
  with identifier "RIPS-11" 
  with title "RIPS-11 Operating Temperature Range" 
  with description "The RIPS shall operate from -15 degC to 55 degC." 
  with requirementType designConstraint 
  with rd:satisfiedBy BHM-HLR-03 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "DO-160G Section 4.5.2 and 4.5.4". 
   
RIPS-12 is a SystemLevelRequirement 
  with identifier "RIPS-12" 
  with title "RIPS-12 RIPS Form Factor" 
  with description "The RIPS shall form factor shall match the 
dimensions defined in ARINC 777-2 Attachment 5 Figure 5-1." 
  with requirementType physicalRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with rationale "Following the form factor defined in ARINC 777-2 
allows the RIPS system to be installed in all aircraft locations 
compatible with this standard." 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 2.2". 
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RIPS-13 is a SystemLevelRequirement 
  with identifier "RIPS-13" 
  with title "RIPS-13 Weight" 
  with description "The RIPS shall weigh no more than 5 pounds." 
  with requirementType designConstraint 
  with architectureAllocation Recorder-independent-power-supply 
  with rationale "Max weight specified in ARINC 777-2." 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 2.7". 
   
RIPS-14 is a SystemLevelRequirement 
  with identifier "RIPS-14" 
  with title "RIPS-14 Connector Type" 
  with description "The RIPS shall use D38999/20JC35P connectors." 
  with requirementType physicalRequirement 
  with architectureAllocation Recorder-independent-power-supply 
  with rationale "Use the standard connectors suggested in ARINC 777-
2." 
  with Rq:derivedRequirementIndicator false 
  with rd:source "ARINC 777-2 Section 2.2". 
   
   
RIPS-15 is a SystemLevelRequirement 
  with identifier "RIPS-15" 
  with title "RIPS-15 Battery Recharge Initiation" 
  with description "When aircraft power is available, the RIPS shall 
initiate a recharge of the internal battery when estimated remaining 
charge is less than 35%." 
  with requirementType designConstraint 
  with rd:satisfiedBy BHM-HLR-12 
  with rd:satisfiedBy BHM-HLR-11 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false. 
  
   
RIPS-16 is a SystemLevelRequirement 
  with identifier "RIPS-16" 
  with title "RIPS-16 Battery Recharge Completion" 
  with description "After a battery recharge has been initiated and 
while aircraft power is available, the RIPS shall continue recharge 
the internal battery until the estimated remaining charge is above 
99%." 
  with requirementType designConstraint 
  with rd:satisfiedBy BHM-HLR-24 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false. 
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RIPS-17 is a SystemLevelRequirement 
  with identifier "RIPS-17" 
  with title "RIPS-17 Minimum Operating Pressure" 
  with description "The RIPS shall operate down to a minimum operating 
pressure of 57.18 kPa." 
  with requirementType designConstraint 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "DO-160G Section 4". 
   
 RIPS-18 is a SystemLevelRequirement 
  with identifier "RIPS-18" 
  with title "RIPS-18 Operating Temperature Variation" 
  with description "The RIPS shall operate in an environment with a 
maximum temperature rate of change of 2 degC per minute." 
  with requirementType designConstraint 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "DO-160G Section 4". 
   
 RIPS-50 is a SystemLevelRequirement 
  with identifier "RIPS-50" 
  with title "RIPS-50 Loss of Backup Power" 
  with description "Loss of ability for the RIPS to provide backup 
power to the Flight Data Recorder shall be considered a MINOR failure 
condition." 
  with requirementType safetyRequirement 
  with Rq:mitigates Hzrd-A1 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "TSO C155b Section 3.b(2)". 
   
   
 RIPS-51 is a SystemLevelRequirement 
  with identifier "RIPS-51" 
  with title "RIPS-51 Inadvertant Backup Power" 
  with description "Backup power provided by the RIPS to the Flight 
Data Recorder shall be considered a MINOR failure condition." 
  with requirementType safetyRequirement 
  with Rq:mitigates Hzrd-B1 
  with architectureAllocation Recorder-independent-power-supply 
  with Rq:derivedRequirementIndicator false 
  with rd:source "TSO C155b Section 3.b(2)". 
   
 // BHM High Level Requirements 
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 BHM-HLR-01 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-01" 
 with title "BHM-HLR-01 Monitor Battery" 
 with description "The Battery Health Monitor shall indicate 
battery maintenance is required when the State-of-Health is less than 
70% with a tolerance of +/- 1%." 
 with requirementType functionalRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
  
BHM-HLR-02 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-02" 
 with title "BHM-HLR-02 Temperature Input" 
 with description "The Battery Health Monitor shall receive 
temperature as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
  
BHM-HLR-03 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-03" 
 with title "BHM-HLR-03 Temperature Range" 
 with description "The Battery Health Monitor shall estimate 
state-of-charge for batteries operating from -15 degC to 55 degC." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-11. 
 
BHM-HLR-04 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-04" 
 with title "BHM-HLR-04 Battery Terminal Voltage Input" 
 with description "The Battery Health Monitor shall receive 
battery terminal voltage measurements as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-05 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-05" 
 with title "BHM-HLR-05 Battery Terminal Voltage Range" 
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 with description "The Battery Health Monitor battery terminal 
voltage measurement input shall allow for voltage measurements from 0 
Vdc to positive 40 Vdc." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-06 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-06" 
 with title "BHM-HLR-06 Battery Output Current Input" 
 with description "The Battery Health Monitor shall receive 
battery output current measurements as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-07 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-07" 
 with title "BHM-HLR-07 Battery Output Current Range" 
 with description "The Battery Health Monitor battery output 
current measurement input shall allow for current ranges from 0 A to 3 
A." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08.  
 
BHM-HLR-08 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-08" 
 with title "BHM-HLR-08 Time Input" 
 with description "The Battery Health Monitor shall receive 
operating time since last charge as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08.  
 
BHM-HLR-09 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-09" 
 with title "BHM-HLR-09 Time Range" 
 with description "The Battery Health Monitor time measurement 
input shall allow for time measurements from 0 seconds up to 3.6e+7 
seconds." 
 with requirementType designConstraint 
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 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08.  
 
BHM-HLR-10 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-10" 
 with title "BHM-HLR-10 Maintenance Required Output" 
 with description "The Battery Health Monitor shall provide 
Maintenance Required state as an output." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-05. 
  
BHM-HLR-11 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-11" 
 with title "BHM-HLR-11 Charge Command Behavior" 
 with description "The Battery Health Monitor shall set the charge 
command output to the active state when the State-of-Charge is less 
than or equal to 30% with a tolerance of +/- 3%." 
 with requirementType functionalRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-15. 
 
BHM-HLR-12 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-12" 
 with title "BHM-HLR-12 Charge Command" 
 with description "The Battery Health Monitor shall provide a 
charge command as an output." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-15. 
  
BHM-HLR-13 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-13" 
 with title "BHM-HLR-13 State-of-Health Neural Network" 
 with description "The Battery Health Monitor shall implement a 
neural network to compute the State-of-Health." 
 with requirementType designConstraint 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-01." 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator true. 
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BHM-HLR-14 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-14" 
 with title "BHM-HLR-14 State-of-Charge Neural Network" 
 with description "The Battery Health Monitor shall implement a 
neural network to compute the State-of-Charge." 
 with requirementType designConstraint 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-01." 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator true. 
 
BHM-HLR-15 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-15" 
 with title "BHM-HLR-15 Battery Terminal Voltage Out of Range" 
 with description "The Battery Health Monitor shall indicate a 
failure if a voltage measurement is received outside of the range 
defined in BHM-HLR-05." 
 with requirementType functionalRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-10. 
 
BHM-HLR-16 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-16" 
 with title "BHM-HLR-16 Temperature Out of Range" 
 with description "The Battery Health Monitor shall indicate a 
failure if a temperature measurement is received outside of the range 
defined in BHM-HLR-03." 
 with requirementType functionalRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-10. 
 
BHM-HLR-17 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-17" 
 with title "BHM-HLR-17 Battery Output Current Out of Range" 
 with description "The Battery Health Monitor shall indicate a 
failure if a current measurement is received outside of the range 
defined in BHM-HLR-07." 
 with requirementType functionalRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-10. 
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BHM-HLR-18 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-18" 
 with title "BHM-HLR-18 Cycle Count Input" 
 with description "The Battery Health Monitor shall receive a 
count of the charge-discharge cycles for the current battery." 
 with requirementType interfaceRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-19 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-19" 
 with title "BHM-HLR-19 Cycle Count Input Range" 
 with description "The Battery Health Monitor cycle count input 
shall allow for values from 0 to 200 cycles." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-20 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-20" 
 with title "BHM-HLR-20 Load Voltage Input" 
 with description "The Battery Health Monitor shall receive 
voltage measurements at the load as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-20 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-20" 
 with title "BHM-HLR-20 Load Voltage Input" 
 with description "The Battery Health Monitor shall receive 
voltage measurements at the load as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-21 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-21" 
 with title "BHM-HLR-21 Load Voltage Input Range" 
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 with description "The Battery Health Monitor load voltage 
measurement input shall allow for voltage measurements from 0 Vdc to 
positive 40 Vdc." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-22 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-22" 
 with title "BHM-HLR-22 Load Current Input" 
 with description "The Battery Health Monitor shall receive the 
current measurements at the load as an input." 
 with requirementType interfaceRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-23 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-23" 
 with title "BHM-HLR-23 Load Current Input Range" 
 with description "The Battery Health Monitor load current 
measurement input shall allow for current ranges from 0 A to 3 A." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-08. 
 
BHM-HLR-24 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-24" 
 with title "BHM-HLR-24 Charge Command Complete" 
 with description "The Battery Health Monitor shall set the charge 
command output to the inactive state when the State-of-Charge is 
greater than or equal to 99% +/- 1%." 
 with requirementType functionalRequirement 
 with architectureAllocation Battery-Health-Monitor 
 with Rq:derivedRequirementIndicator false 
 with Rq:satisfies RIPS-16. 
  
BHM-HLR-25 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-25" 
 with title "State-of-Health Training Range" 
 with description "The Battery Health Monitor State-of-Health 
Neural Network shall be trained with a training data set that contains 
State-of-Health values from 0% to 100%." 
 with requirementType designConstraint 
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 with architectureAllocation Battery-Health-Monitor 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-01." 
 with Rq:derivedRequirementIndicator true. 
  
BHM-HLR-26 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-26" 
 with title "State-of-Health Training Gap Coverage" 
 with description "The Battery Health Monitor State-of-Health 
Neural Network shall be trained with a training data set that contains 
State-of-Health values from 0% to 100%." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-01." 
 with Rq:derivedRequirementIndicator true. 
 
BHM-HLR-27 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-27" 
 with title "State-of-Charge Training Range" 
 with description "The Battery Health Monitor State-of-Charge 
Neural Network shall be trained with a training data set that contains 
State-of-Charge values from 0% to 100%." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-11." 
 with Rq:derivedRequirementIndicator true. 
 
BHM-HLR-28 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-28" 
 with title "State-of-Charge Training Gap Coverage" 
 with description "The Battery Health Monitor State-of-Charge 
Neural Network shall be trained with a training data set that does not 
contain a gap in the State-of-Charge values greater than 0.5% for the 
range defined in BHM-HLR-27." 
 with requirementType designConstraint 
 with architectureAllocation Battery-Health-Monitor 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-11." 
 with Rq:derivedRequirementIndicator true. 
  
  
BHM-HLR-29 is a SoftwareHighLevelRequirement 
 with identifier "BHM-HLR-29" 
 with title "Battery Voltage Runtime Monitor" 
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 with description "The Battery Health Monitor shall indicate 
battery maintenance is required if the measured battery voltage is 
less than 17 Vdc." 
 with requirementType functionalRequirement 
 with Rq:mitigates Hzrd-A1 
 with architectureAllocation Battery-Health-Monitor 
 with rationale "This requirement was derived from implementation 
decisions made to satisfy BHM-HLR-01." 
 with Rq:derivedRequirementIndicator true 
 with Rq:satisfies RIPS-08. 
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