DOT/FAA/TC-23/10

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405

Flight Simulation-Driven Research into Simplified Vehicle Operations for Urban Air Mobility

May, 2023

Final report

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: <u>actlibrary.tc.faa.gov</u> in Adobe Acrobat portable document format (PDF).

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

1. Report No.	2. Government Accession No.	Recipient's Catalog No.
10DOT/FAA/TC-23/10		
4. Title and Subtitle	5. Report Date	
Flight Simulation-Driven Research into Si	May 2023	
for Urban Air Mobility		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
I. Chakraborty, A.M. Comer, R. Bhandari	, S.H. Putra, A.A. Mishra	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Vehicle Systems, Dynamics, and Design I	Laboratory (VSDDL)	
Department of Aerospace Engineering		11. Contract or Grant No.
Auburn University, Auburn, AL, USA	692M152140004	
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
FAA sponsors for this research are Ross S	Final Report	
Compliance and Airworthiness Division,	14. Sponsoring Agency Code	

15. Supplementary Notes

The technical points of contact for this project were Mr. Robert McGuire, Mr. David Sizoo, and Mr. Ross Schaller of the FAA.

16. Abstrac

The goal of this project was to study the Simplified Vehicle Operations (SVO) paradigm for vertical takeoff and landing (VTOL) urban air mobility (UAM) aircraft through piloted simulations in two fixed-base flight simulators located at the Vehicle Systems, Dynamics, and Design Laboratory (VSDDL), part of the Department of Aerospace Engineering at Auburn University. A lift-pluscruise (LPC) aircraft flight simulation model was deployed to two flight simulators, with identical cockpit display elements and core flight control system (FCS) architecture, which was based on the Total Energy Control System (TECS). The simulator setups differed in the design of the pilot inceptors and in the inceptor-to-command mappings. A total of twenty-one participants were recruited and classified into three groups depending on their flight experience or lack thereof. They included Certified Flight Instructors (CFI), individuals who held pilot's licenses and/or were undergoing pilot training, and individuals who held driver's licenses but did not have any piloting experience or training. Each participant flew the same tasks in both simulators, which included vertical reposition and hold, hovering turn and hold, lateral reposition and hold, pirouette, and precision hover handling qualities task elements (HQTE). A representative UAM mission that comprised takeoff and transition with obstacle clearance, enroute navigation, and landing approach with obstacle clearance was also simulated. In addition to data logged from the simulators, pilot experience summaries and feedback regarding the workload experienced during each simulated task were collected.

The piloted simulation campaign showed that participants, including the non-pilot individuals, were able to successfully fly the simulated tasks. Analysis of the simulator data, corroborated by participant feedback, revealed that coupling between inceptor axes occurred on both simulators, albeit in different manners and on different tasks for each. Analysis of the task workload debrief forms allowed calculation of Cooper-Harper handling qualities ratings for each participant, each task, and each simulator.

17. Key Words	18. Distribution Statement			
Simplified Vehicle Operations, Urban Air Mobility, Vertical Takeoff and Landing, Lift-Plus-Cruise, Handling Qualities Task Elements		National Technical In Virginia 22161. This	nilable to the U.S. publ nformation Service (N' document is also avai ministration William J c.faa.gov.	TIS), Springfield, lable from the
19. Security Classif. (of this report) 20. Security Classif. (of this page)		ge)	21. No. of Pages	22. Price
Unclassified	Unclassified		133	

Contents

1	Intro	oduction	1
2	Fligl	ht simulator setup	3
	2.1 I	Flight simulator #1 / Blue Sim – airplane-centric (AC) setup	3
	2.2 I	Flight simulator #3 / Red Sim – helicopter-centric (HC) setup	4
	2.3	Common systems architecture	5
	2.4	Modular Aircraft Dynamics and Control Algorithm Simulation Platform (MADCA	SP)6
3	Simj	plified Vehicle Operations (SVO) setup	7
	3.1 I	Flight control laws	7
	3.1.1	Flight control system architecture	7
	3.1.2	2 Holds	9
	3.1.3	B Heading and track hold	10
	3.1.4	Altitude hold	10
	3.1.5	Position hold	10
	3.1.6	5 Downstream FCS architecture	10
	3.1.7	Modified TECS controller architecture	11
	3.1.8	3 Inner-loop controller architecture	18
	3.1.9	Control allocation	18
	3.2 I	Inceptor designs and inceptor mappings	20
	3.2.1	Inceptor-to-command mappings	22
	3.2.2	2 Lateral axis	22
	3.2.3	B Longitudinal axis	23
	3.2.4	4 Directional axis	24
	3.2.5	5 Acceleration inputs	24
	3.3	Cockpit displays	25
	3.3.1	Primary flight display (PFD)	25
	3.3.2	2 Other display elements	27
4	Desi	on of niloted simulation experiments	30

	4.1	Participant recruitment and flight experience	30
	4.2	Preparatory instructional material	32
	4.3	Simulation task descriptions	33
	4.4	Data collection	34
5	Pi	loted simulation results	35
	5.1	Vertical reposition and hold	35
	5.2	Hovering turn and hold	39
	5.3	Lateral reposition and hold	43
	5.4	Pirouette	48
	5.5	Precision hover	53
	5.6	UAM mission simulation	57
6	Co	onclusions	63
7	Re	eferences	65
A	LI	PC-03 aircraft characteristics	A-1
В	Pr	cocedure for Derived Cooper-Harper Ratings (CHR)	В-1
C	De	erived CHR & Participant Comments	C-1

Figures

Figure 1. Flight simulator #1 (Blue Sim) used for airplane-centric (AC) setup	4
Figure 2. Flight Simulator #3 (Red Sim) used for helicopter-centric (HC) setup	5
Figure 3. Simulator computers and communication architecture	6
Figure 4. Top-level of MADCASP Simulink model	7
Figure 5. LPC-03 configuration overview	8
Figure 6. Inceptor-to-effector FCS architecture for LPC-03	9
Figure 7. Modified TECS control system architecture cruise and lift propulsor channels	13
Figure 8. Modified TECS control system architecture pitch channel	13
Figure 9. Modified TECS control system architecture modifier variables for normal flight	
condition	17
Figure 10. Inceptors for AC and HC setups	20
Figure 11. Primary flight display	26
Figure 12. Auto-flight panel	28
Figure 13. (A) Inceptor positions and control law summaries (B) Control effort and control	
margin awareness	29
Figure 14. Synoptic Display	29
Figure 15. Suggested course for vertical reposition and hold HQTE	35
Figure 16. Vertical repositioning Cooper-Harper Rating	36
Figure 17. Vertical reposition and hold, Participant A4, Blue Sim vs. Red Sim	38
Figure 18. Suggested course for hovering turn and hold HQTE	40
Figure 19. Hovering turn and hold Cooper-Harper Rating	41
Figure 20. Hovering turn and hold, Participant A8, Blue Sim vs. Red Sim	42
Figure 21. Suggested course for lateral reposition and hold HQTE	43
Figure 22. Lateral reposition and hold Cooper-Harper Rating	44
Figure 23. Lateral reposition and hold, Participant A8, Blue Sim vs. Red Sim	46
Figure 24. Suggested course for pirouette HQTE	48
Figure 25. Pirouette HQTE Cooper-Harper ratings	49
Figure 26. Pirouette, Participant B3, Blue Sim vs. Red Sim	52
Figure 27. Suggested course for precision hover HQTE	54
Figure 28. Precision hover HQTE Cooper-Harper ratings	55
Figure 29. Precision hover, Participant A7, Blue Sim vs. Red Sim	56
Figure 30. UAM mission profile	58
Figure 31. Takeoff and VFM-FFM transition Cooper-Harper ratings	58
Figure 32. Initial part of VFM to FFM transition in UAM mission simulation	59

Figure 33. En-route navigation for UAM mission simulation	6
Figure 34. FFM-VFM transition and landing Cooper-Harper ratings	6
Figure 35. UAM landing approach simulation	63
Figure 36. VFM HQTE courses modeled and deployed in X-Plane visual environment	63

Tables

Table 1. LPC-03 control effectors	9
Table 2. Schedules (linear variations between data points)	19
Table 3. Control effector characteristics	19
Table 4. VFM and FFM inceptor-to-command mappings for AC and HC setups	22
Table 5. Group A participant flight experience (* indicates undergoing training)	30
Table 6. Group B participant flight experience (* indicates undergoing training)	31
Table 7. Activity schedule for Blue Sim and Red Sim simulation sessions	33
Table 8. Performance requirements for vertical reposition and hold HQTE	36
Table 9. Derived Cooper-Harper ratings for HQTEs	37
Table 10. Desired and adequate performance for vertical reposition and hold (all particip	ants)39
Table 11. Performance requirements for hovering turn and hold HQTE	41
Table 12. Performance requirements for lateral reposition and hold HQTE	44
Table 13. Desired and adequate performance for lateral reposition and hold (all participal	nts)47
Table 14. Performance requirements for pirouette HQTE	49
Table 15. Desired and adequate performance for pirouette (all participants)	53
Table 16. Performance requirements for precision hover HQTE	54
Table 17. Desired and adequate performance for precision hover (all participants)	57

Acronyms

AC	Airplane-centric			
AOA	Angle of attack			
CFI	Certified Flight Instructor			
CHR	Cooper-Harper rating			
CLC	Control loading computer			
CMEL	Commercial Pilot License, Multi-Engine Land			
CSEL	Commercial Pilot License, Single-Engine Land			
DCC	Displays and controls computer			
DVE	Degraded visual environment			
FAA	Federal Aviation Administration			
FCS	Flight control systems			
FFM	Forward flight mode			
FPA	Flightpath angle			
НС	Helicopter-centric			
HQTE	Handling qualities task element			
IGC	Image generation computer			
IR	Instrument rating			
LHI	Left-hand inceptor			
LNAV	Lateral navigation			
LPC	Lift-plus-cruise			
LQI	Linear quadratic integrator			
MADCASP	Modular Aircraft Dynamics and Control Algorithm Simulation Platform			
MSC	Master simulation computer			
MTE	Mission task element			
MTOM	Maximum takeoff mass			
PEACE	Parametric Energy-based Aircraft Configuration Evaluator			
PFD	Primary flight display			
PIC	Pilot-in-command			
PIO	Pilot-induced oscillation			
PPL	Private Pilot License			
RHI	Right-hand inceptor			
RPC	Remote Pilot Certificate			
RPM	Revolutions per minute			
SPD	Speed			
SPC	Student Pilot Certificate			
SVO	Simplified Vehicle Operations			
TECS	Total Energy Control System			
UAM	Urban air mobility			
VFM	Vertical flight mode			
VNAV	Vertical navigation			

VSDDL	Vehicle Systems, Dynamics, and Design Laboratory
VTOL	Vertical takeoff and landing

Executive Summary

The goal of this project was to investigate the Simplified Vehicle Operations (SVO) paradigm for vertical takeoff and landing (VTOL) urban air mobility (UAM) aircraft through piloted simulations in two fixed-base flight simulators at the Vehicle Systems, Dynamics, and Design Laboratory (VSDDL), part of the Department of Aerospace Engineering at Auburn University.

The same lift-plus-cruise (LPC) aircraft model was used in both simulators. The simulator setups differed in the physical design of the left-hand and right-hand inceptors and the inceptor-to-command mappings (i.e., response types, that were employed in their fly-by-wire flight control systems (FCS)). The downstream control system architecture, which was based on the Total Energy Control System (TECS) algorithm, was common to both setups. Additionally, both simulators had identical cockpit display setups.

A total of twenty-one participants were recruited and classified into three groups depending on their flight experience or lack thereof. Group A comprised five Certified Flight Instructors (CFIs), Group B comprised nine individuals who held pilot's licenses and/or were undergoing pilot training, and Group C comprised seven individuals who held driver's licenses but did not have any piloting experience or training. The study participants were given access to brief training videos describing in general terms how to fly each simulator setup. Each participant flew the same tasks in both simulators, which included vertical reposition and hold, hovering turn and hold, lateral reposition and hold, pirouette, and precision hover handling qualities task elements (HQTEs). A representative UAM mission that comprised takeoff and transition with obstacle clearance, en-route navigation, and landing approach with obstacle clearance was also simulated. In addition to data logged from the simulators, pilot experience summaries and feedback regarding the workload experienced during each simulated task were collected.

The piloted simulation campaign showed that participants, including the non-pilot individuals, were able to successfully fly the simulated tasks. Analysis of the task workload debrief forms allowed the calculation of Cooper-Harper handling qualities ratings for each participant, for each task, on each simulator. Analysis of the simulator data, corroborated by participant feedback, revealed that coupling between inceptor axes occurred on both simulators, albeit in different manners and on different tasks for each. A usability analysis of the inceptors and refinement of their design is proposed for subsequent work. Certain deficiencies in the behavior of the position hold control system and the flight director were identified and will be rectified for future work. Logical avenues for future work include simulation of wind, gust, and turbulence, flight in degraded visual environment (DVE), additional forward flight HQTEs, and simulation of offnominal scenarios with degraded handling qualities or system failures.

1 Introduction

The recent spate of novel vertical takeoff and landing (VTOL) or short takeoff and landing (STOL) aircraft design efforts (including, but not limited to (Joby Aviation, n.d.; Beta Team, n.d.; Wisk Aero, n.d.; Archer Aviation, n.d.; Electra Aero, n.d.) (Volocopter, 2018; Lilium, 2018; Aurora Flight Sciences, 2018)) aimed at on-demand mobility (ODM) and urban air mobility (UAM) operations (Uber Elevate, 2018; FAA, 2020; Garrow, German, & Leonard, 2021; Goodrich & Theodore, 2021; Kohlman, Patterson, & Raabe, 2019) and featuring all-electric propulsion systems with distributed propulsors is notable.

The Simplified Vehicle Operations (SVO) paradigm for UAM flight vehicles aims to ensure that pilots can operate them safely and proficiently with substantially reduced pilot workload and training requirements. Whereas technology infusion into flight decks has historically necessitated additional pilot training and currency requirements, the SVO approach is to infuse technologies into the aircraft that dramatically reduce pilot workload, build in protection, and reduce training requirements (GAMA, 2019; GAMA, 2020). Therefore, it requires a holistic and integrated approach to the design of: (i) inceptors, (ii) flight control laws, and (iii) cockpit displays. This work, funded by the Federal Aviation Administration (FAA), analyzes some aspects of the above through piloted flight simulations of a lift-plus-cruise (LPC) electric VTOL (e-VTOL) aircraft model using two fixed-base flight simulators developed at the Vehicle Systems, Dynamics, and Design Laboratory (VSDDL), part of the Department of Aerospace Engineering at Auburn University.

With regard to inceptors, as UAM designs combine characteristics of both conventional fixed-wing aircraft and rotorcraft, there is legitimate debate regarding whether, or to what extent the cockpit control inceptors should resemble those found in conventional fixed-wing aircraft or rotorcraft. In addition to their ergonomic design, the mapping between the inceptor axes and the motion variables commanded by pilot inputs along those axes will likely impact pilot performance and must therefore be studied (see, for example, (Lombaerts, Kaneshige, & Feary, 2020; Dollinger, Reiss, Angelov, Loebl, & Holzapfel, 2021; Duerksen, 2003; Beringer, 2002; Beringer, 1999). In this work, two inceptor layouts were assessed. An *airplane-centric* (AC) inceptor layout was implemented in VSDDL Flight Simulator #1 (dubbed *Blue Sim*) and a *helicopter-centric* (HC) inceptor layout in VSDDL Flight Simulator #3 (dubbed *Red Sim*).

With regard to flight control laws, the novel configurations of UAM aircraft, their VTOL capability, their over-actuated designs (more control effectors than control degrees of freedom), and the requirement to transition between forward flight mode (FFM) and vertical flight mode

(VFM) present simultaneous opportunities and challenges for the design of advanced flight control systems (FCS). SVO goals necessitate FCS designs that guarantee stability and controllability while simultaneously allowing intuitive augmented manual control. While a multitude of FCS designs for fixed-wing aircraft and rotorcraft are reported in literature, the FCS architecture employed in this work for both AC and HC setups has the Total Energy Control System (TECS) at its core for the longitudinal dynamics. TECS, which was originally developed for fixed-wing applications and is based on total energy principles, provides decoupled speed and flightpath responses through coordinated control of thrust and pitch attitude; see Lambregts earlier work (Lambregts A. , 1983c; Lambregts A. , 1983a; Lambregts A. , 1983b; Lambregts A. , 1983d)) and more recent work (Lambregts, 2013; Lambregts, 2006).

TECS has been successfully flight-tested on multiple fixed-wing platforms (Lambregts, 2006; Bruce, Kelly, & Person, 1986; Bruce R., 1987; Bruce R., 1989; Faleiro & Lambregts, 1999). Additional studies analyzing, extending, or improving TECS performance for fixed-wing applications are reported; see (Eladl, et al., 2008; Maclosky, Mathisen, & Leiphon, 2012; Ganguli & Balas, 2001; Chudy & Rzucidlo, 2009a; Chudy & Rzucidlo, 2009b) (Chudy & Rzucidlo, 2011a; Chudy & Rzucidlo, 2011b; Chakraborty, Lozano, & Mavris, 2015; Cooper, 2014; Voth & Ly, 1991) (Kaminer & O'Saughnessy, 1991; Lamp & Luckner, 2013; Weibel & Lawrence, 2013; Niedermeier & Lambregts, 2009; Degaspare & Kienitz, 2020).

More recent works (Chen, Chen, Yang, & Jeng, 2007; Vasquez-Beltran & Rodriguez-Cortes, 2015; Hernandez-Garcia & Rodriguez-Cortes, 2013; Chen, Zhang, Zhang, & Shen, 2017; Zhang, Zhiming, Wang, & Wu, 2019) (Deng, Wu, & You, 2021; Jimenez, Lichota, Agudelo, & Rogowski, 2020; Chakraborty, Ahuja, Comer, & Mulekar, 2019; Chakraborty I., Mishra, Comer, & Leonard, 2021; Comer & Chakraborty, 2023) describe the use of TECS for VTOL configurations, including helicopters, quad-rotors, tilt-rotors, and LPC.

Regarding cockpit displays, the major challenge is to design them to provide the necessary information to the pilot without causing information overload. In SVO architectures where the pilot commands a higher-level trajectory variable (e.g., flightpath angle) as opposed to an attitude variable (e.g., pitch attitude), it may be possible to simplify the instrument information presented to the pilot (Duerksen, 2003). A modified primary flight display (PFD) was developed for this purpose.

Given the unique nature of UAM aircraft, it is desirable to provide, in addition to information regarding flight states and systems, information regarding expended control effort (an awareness of impending control saturation) and current FCS operating mode (a defense against mode

confusion). Indications for these factors were also incorporated into the cockpit displays. The cockpit display elements and layout were standardized between AC and HC setups.

The FAA has proposed to adapt military methodologies called mission task elements (MTEs) that are outlined in ADS-33E-PRF (United States Army, 2000) after modifying them suitably for VTOL aircraft performing civilian missions under civil certification rules (Mitchell, Klyde, Shubert, Sizoo, & Schaller, 2022; Klyde, et al., 2020; Klyde, Lampton, Mitchell, Berka, & Rhinehart, 2021) . Handling qualities MTEs or handling qualities task elements (HQTEs) are part of a mission-oriented approach in which they are intended to represent realistic maneuvering elements of the mission.

The HQTEs that were the basis for the piloting tasks considered in this work included:

- vertical reposition and hold,
- hovering turn and hold,
- lateral reposition and hold,
- pirouette,
- precision hover, and
- UAM heliport approach.

These tasks were carried out by participants who were classified into three groups: Group A - aviators holding instructor certificates, Group B - licensed pilots and students undergoing flight training at any level, and Group C - individuals holding driver's licenses but no pilot's license and with no prior piloting experience or training.

2 Flight simulator setup

2.1 Flight simulator #1 / Blue Sim – airplane-centric (AC) setup

Flight simulator #1, dubbed as *Blue Sim* for the project, is shown in Figure 1. It has a reconfigurable cockpit in terms of seating arrangements (centerline, side-by-side, or tandem), and width (between 30" and 72") and height (between 34" and 54"). Centerline seating configuration was chosen for this work, with a cockpit width of 40" and height of 44". External views are shown on five displays, with forward view displayed on a single 75" wide by 42.2" high, 3840×2160 resolution screen, and side views displayed using four 29.6" wide by 16.7" high, 2560×1440 resolution screens. Two of the side screens are positioned directly to the left

and right of the pilot while the remaining two are positioned directly to the left and right of the back seat occupants. The cockpit displays include three touchscreens: a 13.4" wide by 10.7" high 1920×1080 resolution center display, with a 21.3" wide by 12.3" high 1920×1080 resolution display on either side. Additionally, there is an iPad Mini-based moving map display (that uses the Garmin PilotTM application) and a 6.1" wide by 3.4" high 1080×1920 resolution screen used to display a downward-looking view.

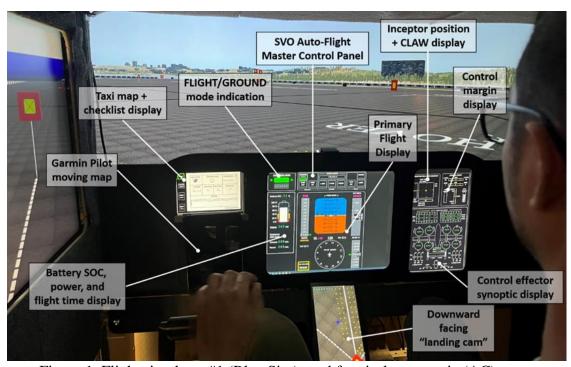


Figure 1. Flight simulator #1 (Blue Sim) used for airplane-centric (AC) setup

2.2 Flight simulator #3 / Red Sim – helicopter-centric (HC) setup

Flight Simulator #3, dubbed *Red Sim* for this project, is shown in Figure 2. It is based on a Diamond DA40 cabin. While the simulator has side-by-side seating arrangements for both the front and aft row of seats, centerline seating was set up in the front row for this project. Five 1080p overhead projectors are used to project external visuals onto a 16 ft diameter 270° horizontal field-of-view cylindrical screen with 90" image height. The images cast from the projectors are blended and corrected for distortion (due to projection onto a cylindrical surface) using Pixelwix warp-and-blend software. The main cockpit displays include three touchscreens, a 13.4" wide by 10.7" high 1920 × 1080 resolution center display, with a 6.5" wide by 11.6" high 1080 × 1920 resolution display on either side. An iPad Mini-based moving map display (that uses the Garmin PilotTM application), and a 6.1" wide by 3.4" high 1080 × 1920 resolution

screen display (to show a downward-looking view) are used in addition to the main cockpit displays.

Figure 2. Flight Simulator #3 (Red Sim) used for helicopter-centric (HC) setup

2.3 Common systems architecture

The common systems architecture for both simulators, which comprise multiple computers that are networked together, is shown in Figure 3. The master simulation computer (MSC) runs the flight simulation model and computes the aircraft trajectory during flight. The trajectory is transmitted to the image generation computers (IGCs), of which there are three in Blue Sim and two in Red Sim. They render the external (out-the-window) views using X-Plane, which is used only for generating external visuals and querying terrain elevation but not for any computational function. The displays and controls computer (DCC) receives aircraft trajectory, system states, and control effector states from the MSC and uses them to drive the cockpit displays and generate audio. The DCC is also used to communicate the pilot's interaction with the FCS through the inceptors or the touchscreen displays to the MSC. The control loading computer (CLC), which is meant to drive control loading actuators that provide force feedback for the cockpit controls, is not present in either Blue Sim or Red Sim.

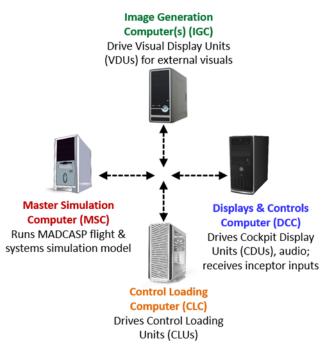


Figure 3. Simulator computers and communication architecture

2.4 Modular Aircraft Dynamics and Control Algorithm Simulation Platform (MADCASP)

The Modular Aircraft Dynamics and Control Algorithm Simulation Platform (MADCASP) is a MATLAB/Simulink-based stability and control assessment and flight simulation platform that has been developed by VSDDL with funding from NASA Langley Research Center under the Transformational Tools and Technologies (TTT) project (NASA, 2018). The top-level layout of the Simulink model which lies at the core of the MADCASP is shown in Figure 4. The FCS architectures are incorporated inside the Flight Controls block. Control effector commands are generated as the output from this block. The aero-propulsive and key systems models (e.g., power, energy, and actuation) are incorporated in the *Flight Mechanics & Systems Models* block. The net forces and moments and the angular momenta of spinning/rotating subsystems are computed inside this block. The Vehicle Equations of Motion Integration block computes the vehicle motion using six-degree-of-freedom rigid body equations of motion. These equations of motion are written in body-fixed axes with respect to a fixed vehicle reference point, which may be offset from the center of gravity. The position of the vehicle during flight is described by the current latitude, longitude, and geocentric radius. Quaternions are used as attitude descriptors in the equations of motion. The flat-earth position and the 3-2-1 Euler angle sequence are postprocessed from the primary position and attitude descriptors. The Mass Properties block tracks

the change in vehicle mass-properties due to configuration changes. The *Communication Interface* block is used to interface MADCASP with flight simulators for piloted simulations, where MADCASP executes on the MSC and exchanges data with the other simulator computers (IGC, DCC, CLC). In addition to real-time simulation, the MADCASP framework is also used for pre-processing tasks which include generalized trim analysis (in which trim is solved as a constrained optimization problem), model linearization, and dynamic stability analysis.

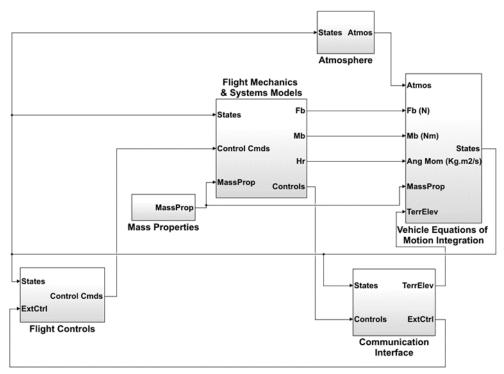


Figure 4. Top-level of MADCASP Simulink model

3 Simplified Vehicle Operations (SVO) setup

3.1 Flight control laws

3.1.1 Flight control system architecture

The LPC-03 configuration is shown in Figure 5. It has a total of eight identical lift propulsors and one pusher cruise propulsor, which are each driven by an electric motor and are of a constant-speed propeller design.

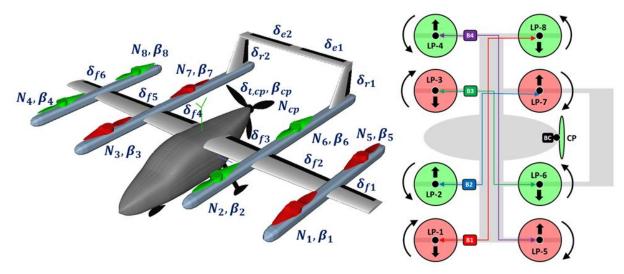


Figure 5. LPC-03 configuration overview

The lift propulsors are mounted on inboard and outboard booms which are fixed to the wings, with two lift propulsors per boom. Each wing has an inboard flaperon (inboard of the inboard boom), a midboard flaperon (between the two booms), and an outboard flaperon (outboard of the outboard boom). Twin vertical stabilizers, each containing a rudder, are mounted at the aft ends of the inboard booms. A single horizontal stabilizer, containing two elevators, is mounted on top of the vertical stabilizers. The flaperons, elevators, and rudders are used to control roll, pitch, and yaw respectively in FFM. In VFM, roll is controlled using differential thrust between left-side and right-side lift propulsors. Pitch is controlled through differential thrust between fore and aft lift propulsors. The lift propulsor axes are canted inboard or outboard, as shown in Figure 5, to generate yawing moments from the lateral thrust components. For each lift propulsor, the yawing moment so generated is in the same direction as its aerodynamic reaction torque. Yaw is controlled by increasing thrust on all lift propulsors that create a yawing moment in the desired direction while reducing thrust on the remaining. The configuration was sized for a representative UAM mission (Figure A-1) using the Parametric Energy-based Aircraft Configuration Evaluator (PEACE) sizing framework. Further details regarding PEACE and its use to size the LPC-03 concept are provided in other work by Chakraborty & Mishra (2022; 2020). The characteristics of the sized aircraft are summarized in Appendix A, Table A-1, and are used as the starting point for FCS development. An overview of the FCS architecture from the inceptors to the vehicle control effectors is shown in Figure 6. The full list of control effectors is given in Table 1. The AC and HC setups differ in the physical design of the inceptors as well as the inceptor-to-command mappings that are employed. The rest of the FCS architecture is identical between the AC and HC setups, as indicated in Figure 6 by the shaded locks.

Table 1. LPC-03 control effectors

#	Symbol	Description	Unit
1-3	δ_{f1} , δ_{f2} , δ_{f3}	Flaperon, left wing, out-/mid-/inboard	deg
4-6	δ_{f4} , δ_{f5} , δ_{f6}	Flaperon, right wing, in-/mid-/outboard	deg
7, 8	δ_{e1} , δ_{e2}	Left, right elevator	deg
9, 10	δ_{r1} , δ_{r2}	Left, right rudder	deg
11	$\delta_{t,cp}$	Cruise prop throttle setting	
12	eta_{cp}	Cruise prop blade pitch	deg
		Cruise prop revolutions per minute	
13	N_{cp}	(RPM)	RPM
14-21	N_{1-8}	Lift prop RPMs	RPM
22-29	eta_{1-8}	Lift prop pitches	deg

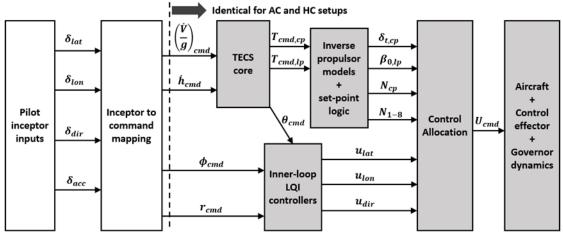


Figure 6. Inceptor-to-effector FCS architecture for LPC-03

3.1.2 Holds

The holds include heading hold, track hold, altitude hold, and position hold. The implementation is identical for both Blue Sim and Red Sim. The modes engage and disengage automatically based on the state of the aircraft and inputs received from the inceptors. The pilot does not directly engage any of these holds but can disengage them through inceptor inputs.

3.1.3 Heading and track hold

Heading hold is engaged below 40 knots if directional input $\delta_{dir} = 0$ and yaw rate is below a threshold. Track hold is engaged above 70 knots if lateral input $\delta_{lat} = 0$ and bank angle is below a threshold. Based on the error between actual and target heading or track, a turn rate command (for heading hold) or a bank command (for track hold) is generated by PI control action.

3.1.4 Altitude hold

The altitude hold in VFM and FFM is identical and is engaged when the longitudinal pilot input δ_{lon} is below a specified threshold and the climb rate is below a specified threshold. The reference altitude established at engagement is maintained with the PI control logic.

3.1.5 Position hold

This is only engaged in hover conditions when the total airspeed (forward and lateral) is below a specified threshold and δ_{lat} , δ_{lon} , and δ_{acc} inceptors are centered. Longitudinal and lateral positioning errors are calculated relative to an *anchor point* that is established at engagement, and used to generate an acceleration command for the longitudinal axis and a bank angle command for the lateral axis using proportional-integral-derivative (PID) control action.

3.1.6 Downstream FCS architecture

The downstream FCS architecture (see Figure 6) is common to both AC and HC setups. For both setups, the inceptor-to-command mappings generate the following commands: (i) normalized acceleration command $(\dot{V}/g)_{cmd}$, (ii) altitude rate command \dot{h}_{cmd} , (iii) bank angle command ϕ_{cmd} , and (iv) yaw rate command r_{cmd} . Moving left-to-right across Figure 6, the remaining FCS modules comprise the following:

■ TECS core algorithm (Section 3.1.7):

Using the normalized acceleration $(\dot{V}/g)_{cmd}$ and height rate \dot{h}_{cmd} commands, the modified TECS algorithm generates a thrust command $T_{cmd,lp}$ for the lift propulsors, a thrust command $T_{cmd,cp}$ for the cruise propulsor, and a pitch attitude command θ_{cmd} .

• Inner-loop LQI controllers (Section 3.1.8):

Based on the commanded pitch angle θ_{cmd} , bank angle ϕ_{cmd} , and yaw rate r_{cmd} , the inner-loop controllers use linear quadratic integral (LQI) logic to generate normalized variables u_{lat} , u_{lon} , and $u_{dir} \in [-1, +1]$ that denote control effort about lateral (roll), longitudinal (pitch), and directional (yaw) axes.

• Inverse propulsor models and set-point logic:

The cruise propulsor inverse model calculates the cruise propulsor throttle setting $\delta_{t,cp}$ based on the cruise propulsor thrust command $T_{cmd,cp}$ and the flight condition. The lift propulsor inverse model calculates $\beta_{0,lp}$, a common blade pitch component shared by all lift propellers, based on the lift propulsor thrust command $T_{cmd,lp}$ and the flight condition. The set-point logic for lift propellers varies their revolutions per minute (RPM) to maintain $\beta_{0,lp}$ at a defined set-point.

Control allocation (Section 3.1.9):

The control allocation and set-point logic then map the control groups to the 29 control effector states listed in Table 1.

3.1.7 Modified TECS controller architecture

The classical TECS algorithm uses flightpath angle (FPA) γ and utilizes small angle assumptions. For low-speed flight in VFM, the FPA may be large enough to invalidate the small angle assumption. Further, for a vertical climb or descent, all vertical velocities map to $\gamma = 90^{\circ}$ or $\gamma = -90^{\circ}$, limiting the use of FPA as a feedback parameter entirely. Therefore, the classical implementation is modified by using \dot{h} in place of γ . To do so, a quantity F is defined as follows:

$$F = \min\left(1, \frac{1}{|V|}\right)$$

The product quantities $F\dot{h}_{cmd}$ and $F\dot{h}$ are used in place of the classical γ_{cmd} and γ . Per the equation above, at higher speeds, F=1/V, and noting that $\dot{h}=V\sin\gamma$, it follows that $F\dot{h}_{cmd}=\dot{h}_{cmd}/V=\sin\gamma_{cmd}\approx\gamma_{cmd}$ and also $F\dot{h}=\dot{h}/V=\sin\gamma\approx\gamma$. Thus, in this scenario, the modified TECS logic effectively operates on FPA, similar to the classical scheme (Lambregts, 2013). However, for low speeds and hovering flight, F=1, and therefore, $F\dot{h}_{cmd}=\dot{h}_{cmd}$, $F\dot{h}=\dot{h}$. In this scenario, the modified TECS operates on vertical velocity directly.

The classical TECS scheme generates two outputs: a thrust command and a pitch attitude command. For the case of the LPC configuration, however, there are two propulsor types (cruise propulsor and lift propulsors) that generate thrust in orthogonal directions. As a result, the modified TECS scheme for the LPC configuration has three outputs: cruise propulsor thrust command $T_{cmd,cp}$, lift propulsor thrust command $T_{cmd,lp}$, and pitch attitude command θ_{cmd} . The generation of these commands is shown in block diagram form in Figure 7 and Figure 8. The specific total energy rate and error are computed separately for the cruise propulsor (\dot{E}_{cp} and $\dot{E}_{e,cp}$) and lift propulsors (\dot{E}_{lp} and $\dot{E}_{e,lp}$). The modified TECS control action is then given by:

$$T_{cmd,cp} = W\left(\frac{K_{I,cp}}{s}\dot{E}_{e,cp} - K_{P,cp}\dot{E}_{cp}\right)$$

$$T_{cmd,lp} = W\left(\frac{K_{I,lp}}{s}\dot{E}_{e,lp} - K_{P,lp}\dot{E}_{lp}\right)$$

$$\theta_{cmd} = -\left(\frac{K_{I,\theta}}{s}\dot{L}_{e} - K_{P,\theta}\dot{L} + K_{V\to\theta}^{FF}\frac{\dot{V}}{g}_{cmd} - K_{P}^{FF}\ddot{h}_{cmd}\right)$$
 4

As seen in Figure 7 and Figure 8, the acceleration and vertical velocity signal paths are modified by a set of modifier variables $\zeta_{x\to y}$ (controlling whether signal 'x' propagates forward and affects the computation for 'y'), namely:

- acceleration to cruise propulsor, $\zeta_{\dot{V} \to cp}$
- vertical velocity to cruise propulsor, $\zeta_{h\to cp}$
- acceleration to lift propulsor, $\zeta_{\dot{V} \rightarrow lp}$
- vertical velocity to lift propulsor, $\zeta_{h\to lv}$
- acceleration to pitch, $\zeta_{\dot{V} \to \theta}$
- vertical velocity to pitch, $\zeta_{\dot{h} \rightarrow \theta}$
- vertical velocity to pitch (proportional path), $\zeta_{h\to\theta,P}$

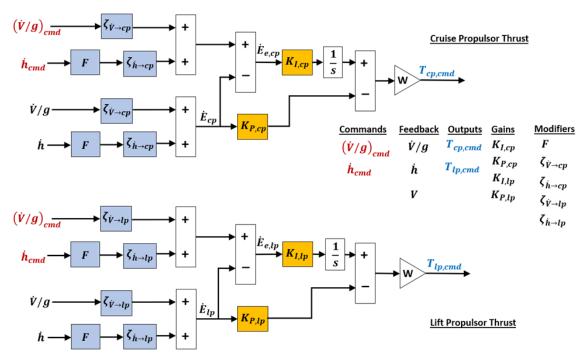


Figure 7. Modified TECS control system architecture cruise and lift propulsor channels

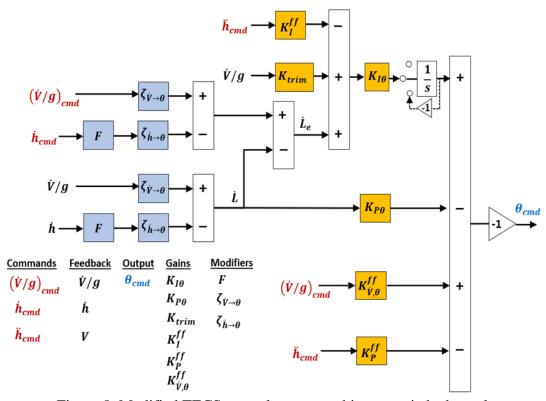


Figure 8. Modified TECS control system architecture pitch channel

The variation of these parameters are best explained by considering VFM, transitioning flight, and FFM scenarios separately, as follows:

Vertical flight:

In VFM, the cruise propulsor is merely idling and does not respond to acceleration, vertical velocity commands, or feedback. Therefore, $\zeta_{\dot{V}\to cp}=\zeta_{\dot{h}\to cp}=0$. Vertical velocity commands \dot{h}_{cmd} are achieved using the thrust of the lift propulsors while maintaining a level pitch attitude. Therefore, $\zeta_{\dot{h}\to lp}=1$, but $\zeta_{\dot{V}\to\theta}=0$. Forward acceleration/deceleration commands $(\dot{V}/g)_{cmd}$ are realized by changing the pitch attitude of the aircraft to tilt the lift propulsor net thrust vector and adjusting the lift propulsor thrust. Therefore $\zeta_{\dot{V}\to lp}=\zeta_{\dot{V}\to\theta}=0$.

Transitioning flight:

In transition flight, the cruise propulsor responds to acceleration commands, thus $\zeta_{\dot{v}\to cp}=1$. However, it does not respond to vertical velocity commands, thus $\zeta_{\dot{h}\to cp}=0$. The lift propulsors continue to respond to vertical velocity commands, but no longer respond to acceleration commands. Therefore, $\zeta_{\dot{h}\to lp}=1$, but $\zeta_{\dot{v}\to lp}=0$. A level deck (pitch attitude) is maintained, and neither acceleration nor vertical velocity commands or feedback cause changes in pitch attitude. Therefore, $\zeta_{\dot{v}\to\theta}=\zeta_{\dot{h}\to\theta}=0$. The level deck is maintained by discharging the integrator state in the pitch channel. This logic is shown in Figure 8.

Forward flight:

In FFM, the lift propulsors are inactive. Therefore, by default, $\zeta_{\dot{h}\to lp}=\zeta_{\dot{V}\to lp}=0$. FFM operation can be divided into three scenarios depending on whether the cruise propulsor throttle setting $\delta_{t,cp}$ is unsaturated ($0<\delta_{t,cp}<1$) or saturated ($\delta_{t,cp}=0,1$). If unsaturated, acceleration and flightpath commands can be tracked simultaneously. However, if saturated, it is necessary to prioritize tracking of either flightpath (path priority) or speed (speed priority). These scenarios are as follows:

o Throttle unsaturated:

Similar to the classical TECS scheme, the cruise propulsor now controls the specific total energy rate by responding to both acceleration and vertical velocity commands (and feedback), thus $\zeta_{\dot{V}\to cp}=\zeta_{\dot{h}\to cp}=1$. Vertical velocity commands and feedback result in the development of pitch attitude commands, therefore $\zeta_{\dot{h}\to\theta}=1$ and $\zeta_{\dot{h}\to\theta,P}=1$. However, acceleration commands do not directly result

in pitch attitude commands, therefore $\zeta_{\dot{V}\to\theta}=0$. This last setting, $\zeta_{\dot{V}\to\theta}=0$, is consistent with the updated TECS scheme (Lambregts, 2013), where it was found to reduce the flightpath transient while accelerating or decelerating. The original TECS formulation corresponded to $\zeta_{\dot{V}\to\theta}=1$. The removal of acceleration to pitch singal propagation is compensated with the gain K_{TRIM} , which is designed to re-trim the pitch attitude as airspeed changes, providing progressive nose-down pitch as the aircraft accelerates.

Throttle saturated, speed priority:

Speed is prioritized by linearly washing in $\zeta_{\dot{V}\to\theta}=1$ while washing out $\zeta_{\dot{h}\to\theta}=0$ and maintaining the proportional damping channel $\zeta_{\dot{h}\to\theta,P}=1$. Acceleration commands and feedback then contribute to the computation of the pitch attitude command θ_{cmd} , while vertical velocity commands and feedback do not. However, the pitch-damping proportional channel remains active so as to not introduce a sudden pitch transient. The speed priority logic uses θ_{cmd} to track the commanded acceleration, while the resulting vertical velocity (flightpath) becomes an open-loop fallout from the specific energy rate balance. Speed priority is engaged if the throttle saturates in a speed range that requires underspeed or overspeed protection. For this aircraft, underspeed corresponds to an airspeed threshold below which wing-borne flight cannot be sustained without exceeding a threshold angle of attack (AOA) limit.

o Throttle saturated, path priority:

When path is prioritized, there is no closed-loop control of speed, which becomes an open-loop fallout parameter. In this case, $\zeta_{\dot{V}\to\theta}=0$, $\zeta_{\hbar\to\theta}=1$, and $\zeta_{\hbar\to\theta,P}=1$. The path priority logic uses θ_{cmd} to track the commanded flightpath, while the resulting acceleration/deceleration becomes a fallout from the specific energy rate balance. Path priority is engaged if throttle saturation occurs in a speed range where *underspeed* and *overspeed* are not imminent threats.

The variation of these modifiers over the velocity range of the aircraft is depicted in Figure 9. As shown in Figure 9, linear wash-in/wash-out logic is used to effect changes in the values of the ζ_0 variables. These occur in the speed range of 40-45 knots (blend between vertical and transition flight modes) and between 135-140 knots (blend between transition and FFM).

The modified TECS algorithm incorporates a total of three feed-forward gains. The first two $(K_I^{FF} \text{ and } K_P^{FF})$ were proposed by Niedermeier and Lambregts (Niedermeier & Lambregts, 2009) for increased aircraft response in forward flight. The third feed-forward gain was proposed for increasing aircraft responsiveness to acceleration commands during vertical flight mode. For hover or near-hover flight conditions with $\theta \approx 0$, the small angle approximation gives $\cos \theta \approx 1$ and $\sin \theta \approx \theta$. The force balance in the vertical direction yields $\sum T_{lp} \cos \theta = mg \rightarrow \sum T_{lp} = mg/\cos \theta \approx mg$, where $\sum T_{lp}$ is the net thrust of all lift propulsors combined. The equation of motion in the horizontal direction yields $\sum T_{lp} \sin -\theta = m\dot{V} \rightarrow -\theta \approx \sin(-\theta) = m\dot{V}/\sum T_{lp}$. Combining the two results yields $\theta \approx -m\dot{V}/(mg) = \dot{V}/g$. Writing this result in terms of command quantities yields $\theta_{cmd} = -\dot{V}_{cmd}/g = -K_{\dot{V}\rightarrow\theta}^{FF}(\dot{V}_{cmd}/g)$, with $K_{\dot{V}\rightarrow\theta}^{FF} = 1$. This establishes the feed-forward gain $K_{\dot{V}\rightarrow\theta}^{FF}$ that relates commanded acceleration \dot{V}_{cmd}/g to commanded pitch attitude θ_{cmd} and has nominal value of 1 at hover. As speed increases, this gain is given a linear washout as:

$$K_{\dot{V}\to\theta}^{FF} = \max\left(0,1 - \frac{|V|}{40}\right)$$

The purpose of the gain K_{TRIM} is to bring about a change in pitch attitude appropriate for the change in speed without affecting flightpath. As the aircraft accelerates to higher speeds, there must be a simultaneous nose-down pitch rate (i.e., reduction in AOA) to maintain balance of forces in the direction normal to the flightpath. Referring to Figure 8, the pitch rate command generated by the K_{TRIM} channel is given by:

$$-\dot{\theta} = K_{TRIM} K_{I,\theta} \frac{\dot{v}}{g} \tag{6}$$

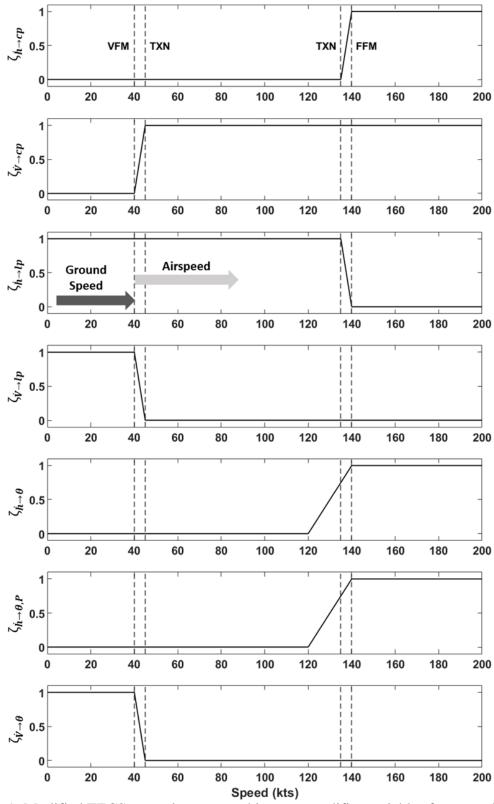


Figure 9. Modified TECS control system architecture modifier variables for normal flight condition

3.1.8 Inner-loop controller architecture

The inner-loop controller comprises a linear quadratic regulator with integral action (LQI) for longitudinal and lateral/directional control. The inner-loop control action is given by:

$$u_{lon} = -K_{lon}^{1x4} [w \ q \ \theta \ \int e_{\theta} dt]^{T}$$
 7

$$[u_{lat} \ u_{dir}]^T = -K_{lat}^{2x5}[p \ r \ \phi \ \int e_{\phi} dt \ \int e_r dt]^T$$
 8

where e_{θ} , e_{ϕ} , and e_r are the tracking errors of the tracked variables (command minus fed back value) which are integrated over time (as part of the integral action).

3.1.9 Control allocation

The full list of control effectors for the LPC-03 is shown in Table 1. The control effectors are grouped into eight key groups: u_{lat} , u_{lon} , u_{dir} , cruise propeller throttle setting, cruise propeller RPM, cruise propeller blade pitch, lift propulsor RPMs, and lift propulsor blade pitches. The first three groups include the lateral, longitudinal, and directional control inputs from the FCS. The cruise propulsor RPMs N_{cp} are scheduled with respect to airspeed while the lift propulsor RPMs N_{1-8} are determined based on a set-point logic. The numbering of the lift propulsors is shown in Figure 5. In vertical flight mode, lift propulsor blade pitch is used for attitude control. The propulsor blade pitch settings are determined based on three blade pitch increments: β_{ϕ} , β_{θ} , and β_{ψ} . These increments are determined based on three corresponding wash-out variables $K_{\beta_{\phi}}$, $K_{\beta_{\theta}}$, and $K_{\beta_{\psi}}$. Lift propeller RPM is determined based on a set-point logic, which slowly varies the lift propeller RPM to restore the common lift propeller blade pitch, $\beta_{0,lp}$ to a pre-set target value. The elements of the matrix shown in the above equation were determined based on the normalized moment arm of each propulsor in the corresponding body-fixed axis.

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \\ \beta_6 \\ \beta_7 \\ \beta_8 \end{bmatrix} = \begin{bmatrix} 1.00 & 1.00 & 0.43 & -0.54 \\ 1.00 & 0.54 & 1.00 & 1.00 \\ 1.00 & -0.54 & 1.00 & -1.00 \\ 1.00 & -1.00 & 0.43 & 0.54 \\ 1.00 & 1.00 & -0.43 & -0.54 \\ 1.00 & 0.54 & -1.00 & 1.00 \\ 1.00 & -0.54 & -1.00 & -1.00 \\ 1.00 & -0.54 & -1.00 & -1.00 \\ 1.00 & -0.54 & -1.00 & -1.00 \\ 1.00 & -0.43 & 0.54 \end{bmatrix} \begin{bmatrix} \beta_{0,lp} \\ \beta_{\phi} \\ \beta_{\theta} \\ \beta_{\psi} \end{bmatrix}, \qquad \begin{cases} \beta_{\phi} = \beta_{\phi}^{max} u_{lat} K_{\beta_{\phi}} \\ \beta_{\theta} = \beta_{\phi}^{max} u_{lon} K_{\beta_{\theta}} \\ \beta_{\psi} \end{bmatrix}$$
 9

The wash-out function K_{β} for the blade pitch variables is linear (as shown in Table 2), washing out the effect of the lift propulsors completely in forward flight for attitude control. Cruise propeller RPM N_{cp} is scheduled with airspeed per the schedule given in Table 2.

Table 2. Schedules (linear variations between data points)

KEAS	0	50	100	110	120	130	140	150	200+
K_{β}	1	1	1	0.75	0.50	0.25	0	0	0
N_{cp}	1200	2172	2200	2200	2200	2200	2200	2200	2200

Three normalized control variables u_{lat} , u_{lon} , and u_{dir} which range from [-1, +1], determine the control action for roll, pitch, and yaw. The control surface deflection commands are subject to the second-order actuator dynamics, deflection limits, and rate limits described in Table 3. The control allocation logic converts u_{lat} , u_{lon} , and u_{dir} to control surface deflections as follows:

$$\delta_{f1}, \delta_{f2}, \delta_{f3} = \delta_f^{max} u_{lat}$$
 10

$$\delta_{f4}, \delta_{f5}, \delta_{f6} = -\delta_f^{max} u_{lat}$$
 11

$$\delta_{e1}, \delta_{e2} = -\delta_e^{max} u_{lon}$$
 12

$$\delta_{r1}, \delta_{r2} = \delta_r^{max} u_{dir}$$
 13

Table 3. Control effector characteristics

Effector	Symbol	Posn. limits	Rate limits	Nat. freq.	Damp. ratio
		[deg]	[deg/s]	ω_n [rad/s]	ζ[-]
Flaperons	$\delta_{f1} - \delta_{f6}$	<u>±</u> 30	<u>±</u> 60	75	0.7
Elevators	δ_{e1} , δ_{e2}	<u>±</u> 30	<u>±</u> 60	75	0.7
Rudders	δ_{r1} , δ_{r2}	<u>±</u> 30	<u>±</u> 60	42	0.7
Lift prop pitch	$\beta_1 - \beta_8$	[-10, +18]	<u>±</u> 30	75	0.7
Cruise prop pitch	β_{cp}	[0,+42]	<u>+</u> 5	30	1.2

3.2 Inceptor designs and inceptor mappings

The inceptors installed in the flight simulators as part of the AC and HC setups are shown in Figure 10.

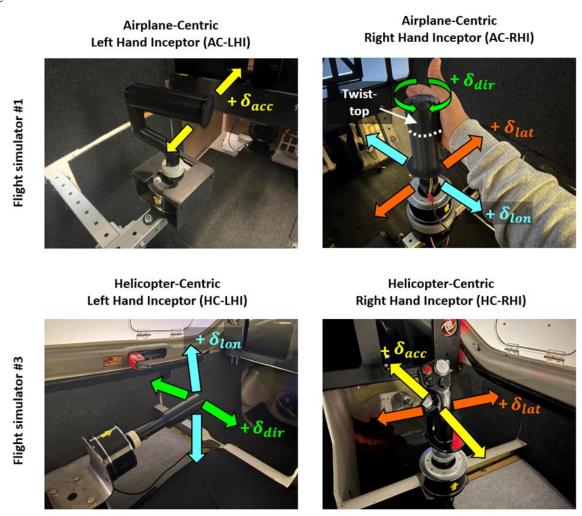


Figure 10. Inceptors for AC and HC setups

In each layout, there is a right-hand inceptor (RHI) and a left-hand inceptor (LHI). All four inceptors use the off-the-shelf Thrustmaster HOTAS WarthogTM Flight Stick as the base. The device has two axes, fore/aft and left/right, which are both spring-loaded to center. It has a detachable grip with multiple buttons, rocker switches, and four-way hat switches. The pilot inputs to the inceptors are captured as normalized signals for lateral input $\delta_{lat} \in [-1, +1]$, longitudinal input $\delta_{lon} \in [-1, +1]$, directional input $\delta_{dir} \in [-1, +1]$, and acceleration input $\delta_{acc} \in [-1, +1]$. The positive sense for each input is indicated in Figure 10 by a "+" sign.

For the AC setup:

- AC-LHI: The left/right degree-of-freedom of the base is blocked and a custom 3D-printed grip is installed onto the base. The fore/aft axis corresponds to the normalized acceleration input δ_{acc} . The inceptor is mounted such that the fore/aft movement is aligned with the cabin longitudinal axis.
- AC-RHI: The inceptor is mounted in a sidestick orientation and a custom grip is installed onto the base. The fore/aft motion of the inceptor corresponds to the normalized longitudinal input δ_{lon} and is aligned with the cabin longitudinal axis. The left-right motion corresponds to the normalized lateral input δ_{lat} and is aligned with the cabin lateral axis. The upper part of the custom grip, above the dotted line shown in Figure 10, incorporates a twisting element (called the "twist-top") whose twisting motion is picked up by a rotary potentiometer and fed into an Arduino microcontroller. The twist input corresponds to the normalized directional input δ_{dir} . When the inceptor is gripped by the right hand, the interface between the fixed lower part of the grip and the twist-top passes approximately through the center of the palm, as seen in Figure 10.

For the HC setup:

- HC-LHI: The inceptor is mounted similar to a helicopter collective control and has a simple 3D-printed cylindrical grip. Pulling vertically upward or pushing vertically downward generates the normalized longitudinal input δ_{lon} . While this motion is similar to that of a helicopter collective lever, the difference is that this axis is spring-loaded to center. Left/right movements of the HC-LHI are also possible (left: away from pilot's body, right: towards pilot's body), which generate the normalized directional input δ_{dir} .
- HC-RHI: The WarthogTM stick in unaltered form serves as this inceptor. The fore/aft motion generates the normalized acceleration input δ_{acc} , while the left/right motion generates the normalized lateral input δ_{lat} .

The inceptor-to-command mappings for AC and HC setups for VFM and FFM are summarized in Table 4. In FFM, centering both inceptors in Red Sim (HC setup) results in the aircraft returning to steady, level, unaccelerated flight. On the other hand, in Blue Sim (AC setup), it is possible to sustain steady climbing/descending and/or turning flight with both inceptors centered. For inceptor-to-command mappings that change between VFM and FFM, wash-in and wash-out functions are used to smoothly blend between VFM and FFM mappings.

3.2.1 Inceptor-to-command mappings

Table 4. VFM and FFM inceptor-to-command mappings for AC and HC setups

Input (symbol)	Mode	Blue Sim (AC Setup)	Red Sim (HC Setup)
Lateral (δ_{lat})		RHI side-to-side	RHI side-to-side
	VFM	Lateral velocity cmd	Bank angle cmd
	FFM	Roll rate cmd / bank hold	Bank angle cmd
Longitudinal (δ_{lon})		RHI fore-aft	RHI fore-aft
	VFM	Altitude rate cmd / Altitude hold	Altitude rate cmd / Altitude hold
	FFM	FPA rate cmd / FPA hold	Altitude rate cmd / Altitude hold
Directional (δ_{dir})		RHI twist	LHI side-to-side
	VFM	Heading rate cmd / Heading hold	Heading rate cmd / Heading hold
	FFM	Steady track sideslip	Steady track sideslip
Acceleration (δ_{acc})		LHI fore-aft	
	VFM	Speed rate cmd / Speed decay /	Speed rate cmd / Speed decay /
		Position hold	Position hold
	FFM	Speed rate cmd / Speed hold	Speed rate cmd / Speed hold

3.2.2 Lateral axis

For Red Sim, the lateral input δ_{lat} generates a bank angle command ϕ_{cmd} directly in both VFM and FFM, with no mode blending. The command is generated as follows:

$$\frac{\phi_{cmd}}{\delta_{lat}}(s) = \frac{\phi_{max}}{\tau_{lat}s + 1}$$
 14

The time constant is fixed at $\tau_{lat} = 0.2$. The maximum bank angle ϕ_{max} is limited to 15° below 40 knots and 55° above 50 knots, with a linear ramp-up between 40 and 50 knots.

For Blue Sim, the lateral input δ_{lat} generates a lateral velocity command in VFM and a roll rate command in FFM. The lateral velocity command v_{cmd} in VFM is generated as follows:

$$\frac{v_{cmd}}{\delta_{lat}}(s) = \frac{v_{cmd,max}}{\tau_{lat}s + 1}$$
 15

The maximum lateral velocity command is limited to 20 knots. PI control on the lateral velocity error is then used to generate a bank angle command $\phi_{cmd,VFM}$. In FFM, the lateral input δ_{lat} generates a roll rate command $\dot{\phi}_{cmd,0}$ as follows:

$$\frac{\dot{\phi}_{cmd,0}}{\delta_{lat}}(s) = \frac{\dot{\phi}_{cmd,max}}{\tau_{lat}s+1}$$

The maximum roll rate command is $\dot{\phi}_{cmd,max} = 40$ deg/s. The net roll rate command is then synthesized as $\dot{\phi}_{cmd} = \dot{\phi}_{cmd,0} + \dot{\phi}_{cmd,dih}$.

The second term, of the form $\dot{\phi}_{cmd,dih} = -K\phi$, represents an artificial dihedral stability effect that is effective (i) at steep bank angles $|\phi| > 45^{\circ}$, (ii) at low bank angles $|\phi| < 10^{\circ}$, and (iii) for all bank angles during transition between VFM and FFM in the speed range 40-140 knots.

The roll rate command is integrated to give a FFM bank angle command $\phi_{cmd,VFM}$. The net bank angle command is then synthesized as

$$\phi_{cmd} = \zeta_{lat}\phi_{cmd,VFM} + (1 - \zeta_{lat})\phi_{cmd,FFM}$$
 17

where ζ_{lat} is a wash-out variable, with $\zeta_{lat} = 1$ below 40 knots, $\zeta_{lat} = 0$ above 50 knots, and with linear wash-out in the 40-50 knot range.

3.2.3 Longitudinal axis

In Red Sim, the longitudinal input δ_{lon} generates a vertical velocity command in both VFM and FFM, as follows

$$\frac{\dot{h}_{cmd}}{\delta_{lon}}(s) = \frac{\dot{h}_{cmd,max}}{\tau_{lon}s+1}$$
 18

with $au_{lon}=0.02$ and a maximum vertical velocity command of $\dot{h}_{cmd,max}=$ 1,500 ft/min.

For Blue Sim, vertical velocity command generation in VFM follows the equation above. In FFM, the longitudinal input δ_{lon} generates a flightpath angle rate command as

$$\frac{\dot{\gamma}_{cmd}}{\delta_{lon}}(s) = \frac{\dot{\gamma}_{cmd,lim}(V)}{\tau_{lon}s+1}$$

where the flightpath angle rate command limit $\dot{\gamma}_{cmd,lim}(V)$ is set with speed to limit steady-state load factor to the range $n \in [0,3.8]$ based on the relationship $\dot{\gamma} = (180/\pi)(g/V)(n-1)$. The flightpath angle rate command is integrated to yield the flightpath command γ_{cmd} . The corresponding vertical velocity command for FFM is synthesized as $\dot{h}_{cmd,FFM} = V \sin \gamma_{cmd}$. The net vertical velocity command is then synthesized as

$$\dot{h}_{cmd} = \zeta_{lon}\dot{h}_{cmd,VFM} + (1 - \zeta_{lon})\dot{h}_{cmd,FFM}$$
 20

where ζ_{lon} is a wash-out variable, with $\zeta_{lon} = 1$ below 140 knots, $\zeta_{lon} = 0$ above 150 knots, with linear wash-out in the 140-150 knot range. For Blue Sim, the derivative of the vertical

velocity command, \ddot{h}_{cmd} is used in a feed-forward path to quicken the TECS algorithm response, see Comer & Chakraborty (2023). It is calculated as $\ddot{h}_{cmd} = V \ddot{h}_{cmd} \cos \gamma_{cmd}$.

3.2.4 Directional axis

The directional inceptor-to-command mapping is identical for both Blue Sim and Red Sim. In VFM, the directional input δ_{dir} generates a yaw rate command as

$$\frac{r_{cmd}}{\delta_{dir}}(s) = \frac{r_{cmd,max}}{\tau_{dir}s + 1}$$
 21

with $\tau_{dir} = 0.02$, and the maximum yaw rate command set to $r_{cmd,max} = 22$ deg/s based on ADS-33E-PRF performance requirements for level 1 moderate agility (United States Army, 2000). For FFM, the directional input δ_{dir} generates a sideslip command as

$$\frac{\beta_{cmd}}{\delta_{dir}}(s) = \frac{\beta_{cmd,max}}{\tau_{dir}s+1}$$
 22

with the maximum sideslip command set to $\beta_{cmd,max} = 15^{\circ}$. The yaw rate command in FFM is generated as

$$r_{cmd,FFM} = \frac{g}{V}\cos\gamma\sin\phi_{cmd} - K_{n_y}n_y, \qquad \delta_{dir} = 0$$
 23

$$r_{cmd,FFM} = \frac{g}{V}\cos\gamma\sin\phi_{cmd} - K_{\beta}(\beta_{cmd} - \beta), \quad \delta_{dir} \neq 0$$
 24

The above logic attempts to coordinate the turn $(n_y = 0)$ if no directional input is applied, i.e., $\delta_{dir} = 0$. However, if directional input is applied, i.e., $\delta_{dir} \neq 0$, a yaw rate proportional to the sideslip error is commanded. In both cases, the yaw rate required for a coordinated turn at the commanded bank angle is also applied. The net yaw rate command is synthesized as

$$r_{cmd} = \zeta_{dir} r_{cmd,VFM} + (1 - \zeta_{dir}) r_{cmd,FFM}$$
 25

where ζ_{dir} is a wash-out variable, with $\zeta_{dir} = 1$ below 40 knots, $\zeta_{dir} = 0$ above 50 knots, with linear wash-out in the 40-50 knot range.

3.2.5 Acceleration inputs

The mapping of the acceleration input δ_{acc} is common for both Blue Sim and Red Sim. In VFM, the acceleration input generates an acceleration command (in g), with a velocity dissipation effect. A basic acceleration command is first generated as

$$\frac{a_{cmd,0}}{\delta_{acc}}(s) = \frac{a_{max}}{\tau_{acc}s+1}$$

with time constant $\tau_{acc} = 0.03$ and maximum acceleration $a_{max} = 0.2g$. The velocity dissipation effect is intended to dissipate velocity to zero (hover) if the input is neutralized $(\delta_{acc} = 0)$. It is modeled as $a_{diss} = -K_{diss}|V|sgn(V)$, with the dissipation gain $K_{diss} = 0.017$. The VFM acceleration command is then synthesized as $a_{cmd,VFM} = a_0 + a_{diss}$. In FFM, the acceleration input generates a dimensional acceleration as

$$\frac{\dot{V}_{cmd}}{\delta_{acc}}(s) = \frac{K_{\dot{V}}g}{\tau_{acc}s+1}$$
 27

with $K_{\dot{V}} = 0.6$. This is integrated to form the velocity command V_{cmd} . The FFM acceleration command is then synthesized as

$$a_{cmd} = \zeta_{acc} a_{cmd,VFM} + (1 - \zeta_{acc}) a_{cmd,FFM}$$
 28

where ζ_{acc} is a wash-out variable, with $\zeta_{acc} = 1$ below 25 knots, $\zeta_{acc} = 0$ above 35 knots, with linear wash-out in the 25-35 knot range.

3.3 Cockpit displays

Both Blue Sim (Figure 1) and Red Sim (Figure 2) have different cockpit dimensions and the make/model of the cockpit display units, but the appearance of displays is standardized through the design of panel facade pieces. The visible screen areas for both simulators are identical, and they have identical display element layouts. Each panel is built up of a left display, a center display, a right display, a Garmin PilotTM based moving map display, and a screen displaying a downward-looking camera view to aid in landing.

3.3.1 Primary flight display (PFD)

At the center of the cockpit display, lies the primary flight display (PFD), shown in Figure 11.

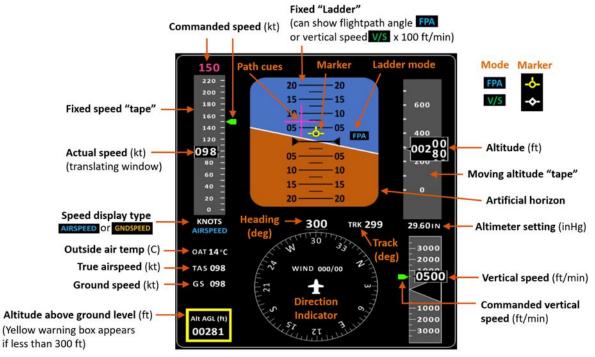


Figure 11. Primary flight display

It represents important information regarding current flight conditions. Airspeed is indicated on the left side using a fixed tape, over which translates a moving bogey with a speed readout. The type of speed is displayed below the tape by a text readout AIRSPEED or GNDSPEED. A translating green marker on the right side of the tape shows the commanded speed with a text readout appearing at the top of the tape.

The right side of the PFD has a fixed textbox and a translating tape behind the textbox which gives the altitude readout. Vertical velocity is shown below the altitude tape by a translating bogey with a vertical speed readout. A green marker shows the commanded vertical velocity (altitude rate). Heading, track, and wind information are presented in the lower part of the PFD.

The artificial horizon is used to provide a general idea of the pitch and bank attitudes to the pilot during flight. Since the pilot control inputs are provided in terms of either vertical velocity or FPA (through FPA rate), a *fixed* ladder is incorporated that indicates FPA (in degrees) as well as vertical velocity (in hundreds of feet per minute). A yellow flightpath marker and a FPA readout appear in FFM to indicate that FPA information is being displayed. The flightpath marker turns to a white diamond shape in the VFM, and a V/S text readout appears to show the vertical speed. If vertical or lateral guidance modes are engaged, a magenta + sign appears on the PFD. The magenta guidance and the flightpath markers can move up/down and left/right. This makes the necessary control action more intuitive for the pilots, as they need to fly the flightpath marker to the location of the magenta guidance symbol

3.3.2 Other display elements

The other cockpit display elements incorporated into the simulators are the following:

• Auto-Flight panel (Figure 12):

Actions such as takeoff, transition to forward flight, transition to vertical flight, hover, and landing can be selected, sequenced, or initiated through individual buttons using the auto-flight panel. The *Flight Director/Navigation* (FD/NAV), generates vertical navigation (VNAV), lateral navigation (LNAV), and speed (SPD) cues on the PFD. These can be tracked manually by the pilot or automatically by the FCS if VNAV, LNAV, and SPD modes are engaged.

• Inceptor position and control law display (Figure 13A):

The inceptor positions and inceptor mappings currently in effect are displayed on this panel. VFM and FFM are represented using white and blue texts respectively. If mode transitions are associated with control law blending, both VFM and FFM mappings are displayed as long as the blend is active.

• **Control effort and saturation indicator** (Figure 13B):

The current control effort is indicated for roll, pitch, and yaw axes as well as forward and vertical thrust. Saturation (or near saturation) of any of the controls is indicated by a SAT flag readout.

Synoptic display:

This shows the states of all control effectors, including positions of control surfaces as well as RPM and blade pitch of cruise and lift propellers as shown in Figure 14.

Operating mode indicator:

This indicates whether the aircraft is in FLIGHT or GROUND mode. Switches between the two modes are possible only when the vehicle is in ground contact, and are triggered by a 5-second-long full deflection of longitudinal inceptor in the direction commanding a descent.

Battery state-of-charge indicator:

This indicates the battery state-of-charge, instantaneous power consumption, and remaining flight time at the current power setting, including the hover power setting.

Landing camera:

This aids the pilot in landing. When descending, the look-down angle of the camera tracks the aircraft FPA, and at lower speeds, the camera points vertically down.

Moving map:

Garmin PilotTM application is used to display the moving map by driving the ownship symbol with the aircraft trajectory after interfacing with X-Plane.

Taxi map and checklist display:

This is used to display a taxi map of the vertiport and also relevant checklists. This display was used to describe each piloting task to study participants in this work.

Figure 12. Auto-flight panel

(A) all automatic modes armed, vertical takeoff confirmation requested (B) vertical takeoff mode active (C) en-route automatic navigation, vertical takeoff, and forward flight transition completed

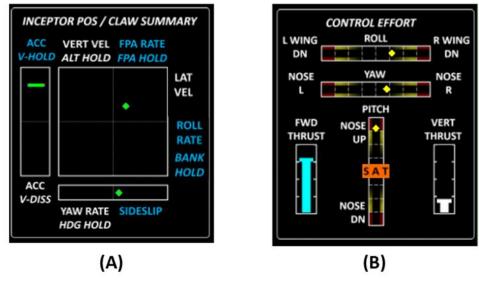


Figure 13. (A) Inceptor positions and control law summaries (B) Control effort and control margin awareness

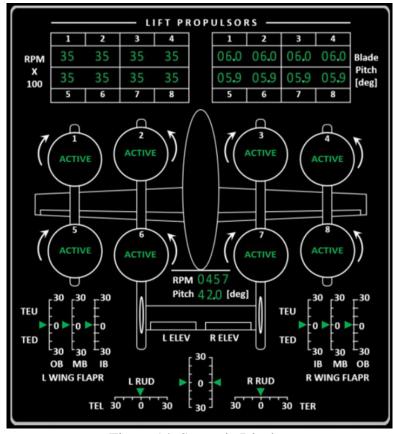


Figure 14. Synoptic Display

4 Design of piloted simulation experiments

4.1 Participant recruitment and flight experience

Participants were recruited through informational flyers about the project that were disseminated through e-mailing lists to the Department of Aerospace Engineering and the School of Aviation at Auburn University. Per the study protocol approved by the Auburn University Institutional Review Board (IRB), individuals who agreed to participate in the study by signing an informed consent form were de-identified by assigning an alphanumeric identifier corresponding to their group (e.g., A1, B5, etc.).

Collected data from participants was linked only to their alphanumeric identifiers. All Group A participants and all but one Group B participant were recruited from the School of Aviation at Auburn University (the remaining Group B participant was recruited from the Department of Aerospace Engineering). They were required to fill out a pilot experience summary form to capture relevant information about their flight experience.

The ratings and certificates of participants include: Certified Flight Instructor (CFI), Certified Flight Instructor - Instrument (CFII), Commercial Pilot License, Multi-Engine Land (CMEL), Commercial Pilot License, Single-Engine Land (CSEL), Instrument rating (IR), Private Pilot License (PPL), Remote Pilot Certificate (RPC), Student Pilot Certificate (SPC). A total of five Group A participants (aviators holding instructor certificates) were recruited. Their flight experience is summarized in Table 5.

Table 5. Group A participant flight experience (* indicates undergoing training)

Identifier	Certificates and Ratings	PIC hours	Aircraft
A4	PPL, IR, CSEL, CMEL, CFI, CFII*	615	C172, AA5B. P28A. C152
A5	PPL, IR, CSEL, CMEL, CFI, CFII	477	C172
A6	PPL, IR, CSEL, CMEL, CFI, CFII*	337	C172, PA44
A7	PPL, IR, CSEL, CMEL, CFI, CFII*	755	C172, BDOG, P28A, PA44, DA40, RV7, C150, PA23
A8	PPL, IR, CSEL, CMEL, CFI, CFII*	269	C172, P28A

They reported between 269 and 755 pilot-in-command (PIC) hours in a variety of fixed-wing aircraft. Four of them were currently undergoing training for a Certified Flight Instructor - Instrument (CFII) certificate, which the fifth already held. None of them reported any rotorcraft experience and none held an Airline Transport Pilot (ATP) certificate or a Multi-Engine Instructor (MEI) rating. A total of nine Group B participants (licensed pilots and/or students undergoing any flight training) were recruited. Their flight experience is summarized in Table 6.

Table 6. Group B participant flight experience (* indicates undergoing training)

Identifier	Certificates and Ratings	PIC hours	Aircraft
B1	PPL, IR, CMEL*, RPC	283	C172, C152, P28A, PA44
В3	SPC, PPL*	3	C172
B4	PPL, IR, CMEL*	214	C172
B5	PPL, IR, CMEL*	240	C172
B6	PPL, IR, CMEL*, RPC	192	C172, PA44
B7	PPL, IR, CMEL*, RPC	138	C172, C150
B8	SPC, PPL*	9	C172
В9	PPL, IR, CSEL, CMEL, RPC	1209	C172, PA46, SR22, 7GCBC, BE58, BE76, P28A, C240
B10	PPL, IR, CSEL*, CMEL*	223	C172, C182, DA40, P28A

Two individuals were undergoing primary training, seven held instrument ratings, six were undergoing training toward a commercial pilot license, and four held remote pilot certificates. Their PIC experience ranged from 3 hours to 1209 hours, logged in a variety of fixed-wing aircraft. A total of seven Group C participants (individuals without pilot licenses or any pilot training) were recruited, all from the Department of Aerospace Engineering. Since they lacked any flight experience, the pilot experience summary form was not applicable to them. Their alphanumeric identifiers were assigned as C1, C4, C5, C6, C7, C8, and C10. In total, twenty-one participants across the three groups took part in the simulation campaign, which occurred between October 17, 2022 and December 2, 2022.

4.2 Preparatory instructional material

Before their arrival, the participants were provided access to instructional videos prepared by the research team for both Blue Sim and Red Sim in the form of unlisted YouTube videos¹.

The videos, customized for each simulator, contained the following elements in order:

- a description of the LPC-03 Phoenix configuration, explaining the roles of the control effectors in VFM and FFM,
- a labeled image showing the cockpit display elements (see Figure 1 for Blue Sim and Figure 2 for Red Sim),
- a more detailed description of the PFD elements,
- a demonstration of the axes of motion of the RHI and LHI of each simulator,
- demonstration of ground taxiing in GROUND mode and switching between GROUND mode and FLIGHT mode,
- demonstration of how to maneuver the aircraft in VFM along the heave, fore/aft, lateral, and directional axes,
- demonstration of how to climb/descend, turn, and accelerate/decelerate in FFM, and
- demonstration of transitioning from VFM to FFM (departure transition) and from FFM to VFM (arrival transition).

In the demonstration video segments, a time-synchronized split screen layout was utilized, showing an "over-the-shoulder" view looking out front, a zoomed-in view of the relevant inceptor(s) being manipulated, an external visualization of the aircraft (in X-Plane), and the PFD. The narration in these videos avoided technical jargon pertaining to flight control laws and inceptor mappings. Instead, the narration provided a general description associating pilot inputs along each inceptor axis with the resulting general response of the aircraft. No comments were made in either video comparing or contrasting the response of Blue Sim and Red Sim to the same pilot inputs. This was left for participants to infer.

Red Sim Video: https://www.youtube.com/watch?v=HHlrVYNM1yg

-

¹ Blue Sim Video: https://www.youtube.com/watch?v=D-M-Zs26Xfs

4.3 Simulation task descriptions

Participants made one visit to Blue Sim and one to Red Sim. These were required to be on different days to avoid fatigue and overload. Of the twenty-one participants, ten experienced Blue Sim on their first visit, while the remaining eleven experienced Red Sim on their first visit. Each visit was scheduled to be three hours long, following the activity schedule shown in Table 7. Participants were compensated for their time at \$50/hour. Upon each participant's arrival for their first visit, the pilot experience summary form was collected, and the alphanumeric identifier was assigned. The participant's seating height in the simulators was adjusted to give a consistent eye-point height across all participants.

Table 7. Activity schedule for Blue Sim and Red Sim simulation sessions

Item	Time allocation (min)	Cumulative time (min)
Data collection & ID assignment	5	5
Eye-point calibration	5	10
"Free flight" for VFM	5	15
"Free flight" for FFM	5	20
Vertical reposition & hold	15	35
Hovering turn & hold	15	50
(Mini-break)	5	55
Lateral reposition & hold	20	75
Pirouette	20	95
Precision hover	20	115
(Mini-break)	5	120
Transition to forward flight	20	140
UAM mission & heliport approach	20	160
(Buffer time)	20	180

While seated in the simulator and before performing each simulation task, participants listened to an audio description of the task. These audio clips familiarized the participants with the HQTE courses by explaining the significance of the hover boards, reference markings, and objects as well as establishing the objectives or targets of each simulation task. The checklist display (see Figure 1 and Figure 2) was used to allow participants to play, stop, and repeat the audio clips.

The free flights for VFM and FFM required the participants to perform single-axis maneuvering tasks to familiarize them with the response of Blue Sim and Red Sim to inputs along each inceptor axis. They were free in the sense that no precision targets were assigned to these introductory tasks. After completing these, the participants progressed sequentially through the following HQTEs, which were arranged in increasing levels of anticipated difficulty:

- 1. Vertical reposition and hold is shown in Figure 15.
- 2. Hovering turn and hold is shown in Figure 18.
- 3. Lateral reposition and hold is shown in Figure 21.
- 4. Pirouette is shown in Figure 24.
- 5. Precision hover is shown in Figure 27.

The HQTEs were modeled based on *Handling Qualities Task Element Draft Version 1.0*, submitted with cover letter to members of the eVTOL Flight Test Council by Klyde et al. (2021). In addition to the above, a flight profile representing a UAM mission (Figure 30) comprising takeoff and transition while clearing an obstacle, en-route navigation, and landing approach over an obstacle, was also simulated. The suggested courses for these HQTEs were modeled and then deployed within the Blue Sim and Red Sim visual environment, as shown in Figure 36.

4.4 Data collection

For each simulation run, the data logged by the MADCASP framework included aircraft motion states, control effector states, inceptor signals, and commands generated within the FCS architecture (Figure 6). Following each simulation task, participants (while still seated in the simulator) filled out a task workload questionnaire electronically. The goal of this questionnaire was to elicit information from each participant that would allow a Cooper-Harper rating (CHR) to be calculated after-the-fact, even if the participants themselves were unfamiliar with the CHR scale. The questions that were asked in the questionnaire and the calculation of CHR are explained in Appendix B. The scale itself is presented in Figure B- 1. The questionnaire also had text-boxes for each question to collect optional descriptive comments from the participants. The pilot experience summary (if applicable), logged simulator data, and task workload questionnaire data for each task constituted the entirety of the data collected from participants for this study.

5 Piloted simulation results

The piloted simulation sessions generated, in addition to aircraft and control system state data logged from MADCASP, participant feedback for each simulated task collected using the task workload questionnaire. The responses and comments of each participant for each simulation task in each simulator are provided in Appendix C. The following sections provide selected results, aggregate statistics, observations, and insights obtained from studying the collected data.

5.1 Vertical reposition and hold

This HQTE starts from a stabilized hover, and requires the initiation of a vertical ascent of 25 ft, stabilization at the new altitude for 5 seconds, followed by a descent back to and stabilization at the original hover altitude. The goal is to check for acceptable heave damping that allows a vertical rate to be started and stopped with precision, check for any pilot-induced oscillation tendencies, and any undesirable coupling between the heave axis inceptor and others. A suggested course for this HQTE is shown in Figure 15. The details of the performance requirements for this HQTE are shown in Table 8.

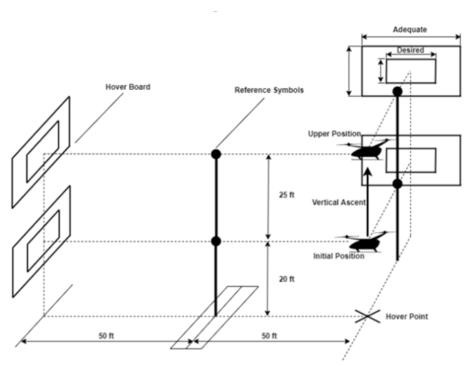


Figure 15. Suggested course for vertical reposition and hold HQTE

Table 8. Performance requirements for vertical reposition and hold HQTE

Task Performance	Desired	Adequate
Requirements		
Maintain longitudinal and lateral	± 3 ft	± 6 ft
position within ±X from the hover		
point		
Maintain start/finish altitude	± 3 ft	± 6 ft
within $\pm X$		
Maintain heading within ± X	$\pm 5 \deg$	± 10 deg
Complete maneuver within X	≤ 20-24 s	≤ 25-29 s
PIO tendencies in the capture and	No undesirable motions	No PIO (out-of-phase
hold	that impact task	oscillations)
	performance	

The derived CHR for the vertical reposition and hold HQTE are shown in Figure 16 and aggregate statistics are provided in Table 9. The mean CHR across all participants was 3.2 for Blue Sim and 2.1 for Red Sim. Based on the computed CHR for this HQTE, 57.1% rated Blue Sim as Level 1 and 80.9% rated Red Sim as Level 1.

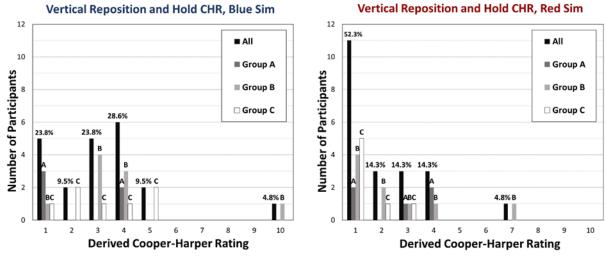


Figure 16. Vertical repositioning Cooper-Harper Rating

Table 9. Derived Cooper-Harper ratings for HQTEs

HQTE	Simulator	Group A	Group B	Group C	Overall
Vertical reposition and	Blue	2.2 (1.5)	3.9 (2.3)	3.1 (1.5)	3.2 (2.0)
hold	Red	2.6 (1.4)	2.4 (1.9)	1.4 (0.7)	2.1 (1.6)
Hovering turn and	Blue	1.6 (1.2)	1.3 (0.7)	1.7 (0.7)	1.5 (0.9)
hold	Red	2.6 (1.6)	1.8 (0.9)	2.4 (1.4)	2.2 (1.3)
Lateral reposition and	Blue	2.4 (1.4)	3.6 (1.2)	3.9 (1.6)	3.4 (1.5)
hold	Red	5.2 (2.1)	4.6 (2.1)	5.1 (3.2)	4.9 (2.5)
Pirouette	Blue	3.0 (1.8)	3.4 (2.4)	3.7 (3.1)	3.4 (2.5)
	Red	3.6 (2.0)	4.4 (3.2)	4.0 (3.4)	4.1 (3.1)
Precision hover	Blue	2.4 (1.4)	3.7 (2.6)	3.3 (2.2)	3.2 (2.3)
	Red	3.4 (2.1)	3.4 (1.1)	3.3 (2.4)	3.4 (1.9)
Takeoff and VFM-	Blue	2.7 (1.5)	2.2 (1.5)	3.0 (1.6)	2.6 (1.3)
FFM transition	Red	1.9 (1.0)	2.2 (1.2)	1.6 (0.7)	2.0 (1.2)
FFM-VFM transition	Blue	3.6 (2.3)	3.0 (0.9)	3.4 (1.9)	4.3 (3.1)
and landing	Red	4.1 (3.4)	3.8 (3.2)	3.9 (2.8)	4.6 (4.1)

The most notable observations identified based on the review of the individual comments for this HQTE (see Appendix C) are as follows:

- Nine participants reported inadvertent cross-coupling of inceptor inputs in Blue Sim for this HQTE. While attempting to control vertical axis motion with fore/aft movements of the RHI, unintended lateral inputs to the RHI caused the aircraft to drift laterally. For Red Sim, where up/down movements of the LHI control vertical axis motion and left/right movements control yaw, no participants reported unintended coupling of yawing motion.
- Several participants noted that this HQTE was "easy" in Red Sim. One participant further commented that it was "easier" in Red Sim than in Blue Sim.
- For both simulators, some participants mentioned excessive control sensitivity, making it easy to over-correct.

A comparison of the performance of one participant (A4) for the vertical reposition and hold HQTE in Blue Sim and Red Sim is shown in Figure 17. The desired and adequate performance for this HQTE are described in Table 8.

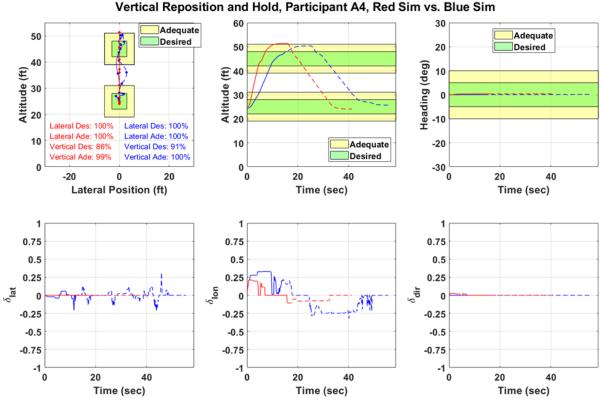


Figure 17. Vertical reposition and hold, Participant A4, Blue Sim vs. Red Sim

However, participants were not given any time targets within which to complete the maneuver. In both simulators, the participant remains within the desired lateral bounds 100% of the time (and thereby, within adequate bounds 100% of the time, as well). When performing the ascent, the participant overshoots the desired altitude band in both Blue Sim and Red Sim and settles into a hover slightly above it. Coupling between longitudinal and lateral RHI inputs in Blue Sim is evident from the lateral trajectory of the aircraft and the time history of lateral control input δ_{lat} . While controlling the vertical axis motion in Blue Sim (δ_{lon} , RHI fore/aft), the participant inadvertently couples this input with lateral input (δ_{lat} , RHI left/right), and subsequently has to correct. In Red Sim, such coupling is not seen, as different hands control vertical axis motion (δ_{lon} , LHI up/down) and lateral axis motion (δ_{lat} , RHI left/right). The Red Sim directional input (δ_{dir} , LHI left/right) shows a very slight initial coupling with the vertical axis input, but the effect on the heading is not significant. The desired heading discipline was achieved 100% of the time for both simulators. The desired and adequate performances in the lateral and vertical directions for this HQTE of all the participants are shown in Table 10.

Table 10. Desired and adequate performance for vertical reposition and hold (all participants)

Participant		Blue	Sim		Red Sim			
ID ID	Performa Lateral (Performa Vertical		Performance Lateral (%)		Performance Vertical (%)	
	Desired	Adequate	Desired	Adequate	Desired	Adequate	Desired	Adequate
A4	100	100	86	99	100	100	91	100
A5	100	100	66	79	100	100	83	100
A6	98	100	76	100	100	100	83	95
A7	100	100	51	100	100	100	53	97
A8	100	100	76	100	100	100	83	100
B1	81	97	58	100	100	100	68	100
В3	91	100	68	100	100	100	85	100
B4	100	100	78	100	98	100	63	75
B5	74	95	72	100	100	100	87	100
B6	86	98	63	81	100	100	73	78
B7	100	100	82	91	100	100	76	100
B8	74	100	85	100	100	100	89	100
B9	98	100	68	84	100	100	88	100
B10	100	100	84	100	100	100	90	100
C1	100	100	71	91	100	100	91	100
C4	82	100	75	86	100	100	86	94
C5	100	100	81	100	100	100	81	100
C6	100	100	65	100	100	100	85	100
C7	100	100	60	75	100	100	84	100
C8	68	93	71	83	100	100	86	93
C10	92	100	79	100	100	100	87	100

5.2 Hovering turn and hold

Starting from a stabilized hover, a 90° turn to one side must first be completed while maintaining a hover position. After holding the new heading for 5 seconds, a 270° turn in the same direction must be performed to return to and stabilize at the original heading. The sequence must then be repeated while turning in the other direction. The goals are to check for undesirable handling qualities or inter-axis coupling and the ability to initiate and dissipate hover turn rates with precision. The suggested course for hovering turn and hold is shown in Figure 18. The details of the performance requirements for this HQTE are shown in Table 11.

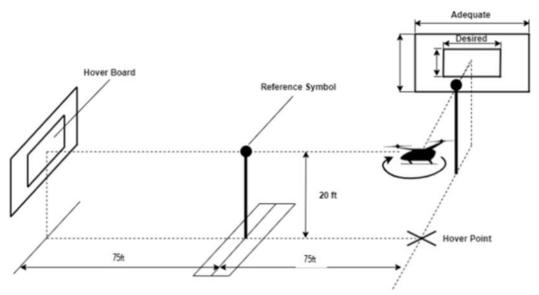


Figure 18. Suggested course for hovering turn and hold HQTE

The derived CHR for the hovering turn and hold HQTE are shown in Figure 19 and aggregate statistics are provided in Table 9. The mean CHR computed for this HQTE was 1.5 for Blue Sim and 2.2 for Red Sim. 95.2 % of participants rated Blue Sim as Level 1 for this HQTE, while 76.2% did so for Red Sim.

The most notable observations identified based on the review of the individual participant comments for this HQTE (see Appendix C) are as follows:

- Eight participants reported inadvertent cross-coupling of inceptor inputs in Red Sim for this HQTE. As they attempted to control the heading/yaw of the aircraft using left/right movements of the LHI, unintentional up/down inputs to the LHI resulted in movement along the vertical axis. No such coupling was reported between the twist axis of the Blue Sim RHI and the fore/aft and left/right axes of that inceptor.
- One participant commented that the ergonomics of the Blue Sim RHI twist-top could be improved. Three participants commented that the Blue Sim aircraft felt different when yawing to the left versus the right. This may have been due to some "stickiness" in the twist-top which differed between left and right directions.
- One participant wished that there was some displayed indication of roll rate and turn rate during the maneuver. Two participants commented that it was easier to perform this HQTE in Red Sim, while one commented that it was easier to do in Blue Sim.

Table 11. Performance requirements for hovering turn and hold HQTE

Task Performance Requirements	Desired	Adequate
Maintain longitudinal and lateral	± 3 ft	± 6 ft
position within ±X from the hover		
point		
Maintain altitude within $\pm X$	± 3 ft	± 6 ft
Stabilize the final rotorcraft	± 5 deg	± 10 deg
heading at the 90° point and 270°		
point within ±X		
Complete maneuver within X	≤ 50 s	≤ 60 s
PIO tendencies in the capture and	No undesirable motions	No PIO (out-of-phase
hold	that impact task	oscillations)
	performance	

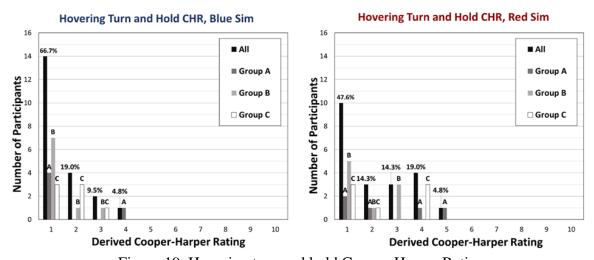


Figure 19. Hovering turn and hold Cooper-Harper Rating

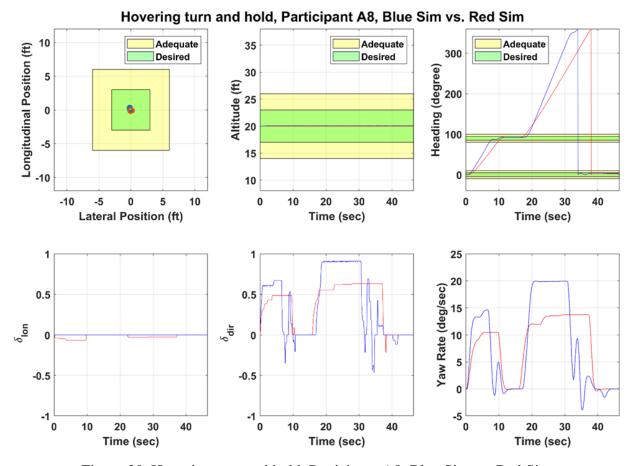


Figure 20. Hovering turn and hold, Participant A8, Blue Sim vs. Red Sim

The performance of one participant (A8) for the hovering turn and hold HQTE in Blue Sim and Red Sim is shown in Figure 20. In both cases, the position hold remains engaged throughout the maneuver, and therefore lateral and longitudinal positions remain within desired bounds at all times. The altitude hold maintains a constant altitude throughout, only briefly disengaged at the start in Red Sim by a slight vertical axis input (δ_{lon} , LHI up/down) that is cross-coupled with the pilot's intended directional input (δ_{dir} , LHI left/right). The completion times for the maneuver were in line with the desired and adequate figures (as seen in Table 11), even though the participant was not given any completion time targets. The participant's directional input δ_{dir} shows that they applied nearly full input in Blue Sim, but only around 60% input for Red Sim, resulting in a higher yaw rate and a shorter completion time in Blue Sim. The altitude, heading of the aircraft at a stabilized hover, and lateral and longitudinal position performances were within the desired requirements for all participants.

5.3 Lateral reposition and hold

Starting from a stabilized hover, this HQTE requires a lateral acceleration to a desired speed followed by deceleration to reposition the aircraft at a 400 ft lateral displacement. Its goal is to check roll and heave axis handling qualities during low-speed lateral maneuvering, the ability to recover from low-speed translational rates precisely, the ability to capture and hold position and height, and detect any undesirable coupling between the lateral inceptor axis and other axes. The suggested course for this task is shown in Figure 21. The performance requirements for this task are shown in Table 12.

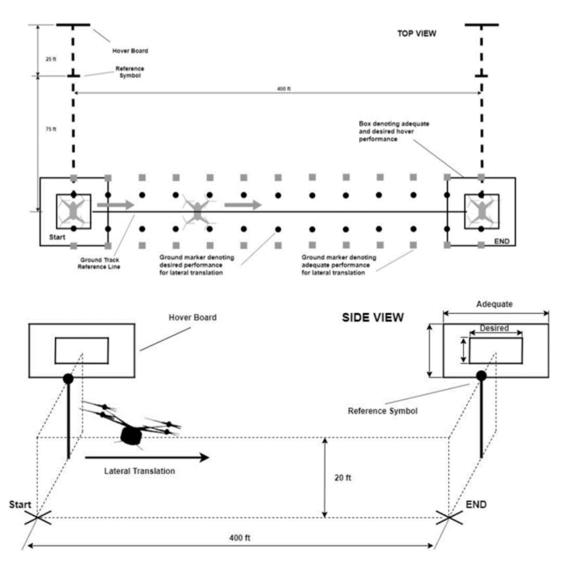


Figure 21. Suggested course for lateral reposition and hold HQTE

Table 12. Performance requirements for lateral reposition and hold HQTE

Task Performance Requirements	Desired	Adequate
Maintain ground track within ±X from the	± 5 ft	± 10 ft
reference line		
Attain target ground speed within $\pm X$	± 2 knots	± 4 knots
Maintain altitude within ±X	± 5 ft	± 10 ft
Maintain heading within ±X	± 10 deg	± 20 deg
At capture, maintain ±X lat/long position	± 3 ft	± 6 ft
PIO tendencies in the capture and hold	No undesirable	No PIO (out-of-
	motions that impact	phase oscillations)
	task performance	

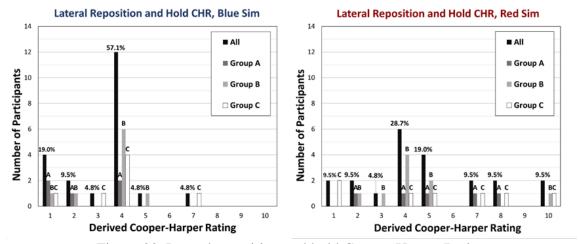


Figure 22. Lateral reposition and hold Cooper-Harper Rating

The derived CHR for the lateral reposition and hold HQTE are shown in Figure 22 and aggregate statistics are provided in Table 9. The mean CHR for this HQTE was 3.4 for Blue Sim and 4.9 for Red Sim. 33.3% of participants rated Blue Sim as Level 1 for this HQTE, compared to 23.8% for Red Sim. 61.9% of participants rated Blue Sim as Level 2, while 47.7% rated Red Sim as Level 2 for this HQTE. 28.5% of participants rated Red Sim at CHR 7 or worse (CHR \geq 7), while only 4.8% of participants did so for Blue Sim.

The most notable observations identified based on the review of the individual participant comments for this HQTE (see Appendix C) are as follows:

- Several participants noted greater difficulty in bringing the aircraft to a stop in Red Sim. This is due to the difference in lateral inceptor (δ_{lat}) mapping between Red Sim and Blue Sim (as seen in Table 4). In Red Sim, where δ_{lat} , (RHI left/right) commands a bank angle, the pilot has to reverse their input and bank in the opposite direction in order to neutralize the lateral velocity. On the contrary, in Blue Sim, where δ_{lat} (also RHI left/right) directly commands lateral velocity in VFM, simply neutralizing the input by centering the inceptor is sufficient, as the control system manipulates the bank angle to achieve zero lateral velocity.
- For both simulators, participants noted that timing the initiation of the deceleration to return to a hover required judgment that improved with practice.
- Four participants reported undesirable coupling between lateral input (δ_{lat} , RHI left/right) and vertical axis input (δ_{lon} , RHI fore/aft) in Blue Sim. This manifested itself as a tendency to increase or decrease altitude while translating laterally.
- Five participants reported undesirable coupling between lateral input (δ_{lat} , RHI left/right) and acceleration input (δ_{acc} , RHI fore/aft) in Red Sim. This manifested itself as a tendency to move forward and backward while translating laterally.
- Two participants reported that the position hold seemed to correct against them. The research team determined that this was due to the engagement logic for the position hold system. One Group C participant reported overcoming the issue by deliberately putting in small alternating inceptor inputs that prevented the position hold logic from engaging.
- One participant (flying Red Sim) noted that not having any lateral velocity indication other than the PFD, while having to look out the side (not at the PFD), was "very frustrating".

The performance of a participant (A8) for the lateral reposition and hold HQTE in Blue Sim and Red Sim is shown in Figure 23. In both simulators, the participant attained a lateral velocity within the 10-15 knots target range that they were briefed on. The lateral control input (δ_{lat} , RHI left/right for both simulators) shows less control activity for Blue Sim than for Red Sim. In Blue Sim, δ_{lat} generates a lateral velocity command directly, which allows the pilot to hold a constant input once the desired lateral velocity has been attained. On the other hand, for Red Sim, δ_{lat} generates a bank angle command, and the pilot has to manipulate the inceptor to close the loop on the bank angle that achieves the desired lateral velocity. When decelerating to a hover in Blue Sim, the pilot simply has to neutralize (center) the lateral control input. However, in Red Sim, they have to apply the opposite inceptor input to bank away from the direction of travel to

neutralize the lateral velocity. Directional input (δ_{dir}) and heading discipline were not a factor for this HQTE. The acceleration inputs (δ_{acc} , Blue Sim LHI fore/aft, Red Sim RHI fore/aft) show the pilot correcting for forward/backward drifts of the aircraft while moving laterally.

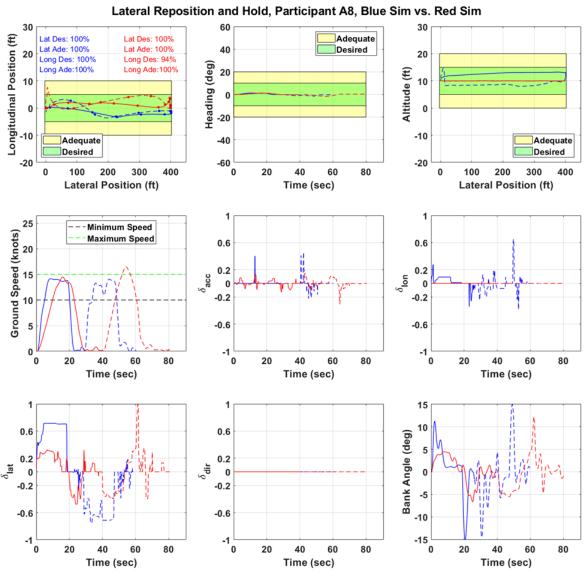


Figure 23. Lateral reposition and hold, Participant A8, Blue Sim vs. Red Sim

For Red Sim, the pilot applies no vertical axis input (δ_{lon}), LHI up/down), as a result of which the aircraft stays in altitude hold the whole time. For Blue Sim, an inadvertent vertical axis input (δ_{lon}) gets coupled with the lateral input. The nature of the coupling is such as to cause a climb while translating to the right and a descent while translating to the left. The participant remains

within desired altitude bounds in both simulators. The desired position bounds are maintained for the Blue Sim case. While, for Red Sim, there is a brief excursion out of the desired band for the longitudinal position while remaining within the adequate band. The desired and adequate performances in the lateral and longitudinal directions of all participants for this HQTE are shown in Table 13.

Table 13. Desired and adequate performance for lateral reposition and hold (all participants)

D		Blue	Sim		Red Sim			
Participant ID	Performance Lateral (%)			Performance Longitudinal (%)		rmance ral (%)	Performance Longitudinal (%)	
	Desired	Adequate	Desired	Adequate	Desired	Adequate	Desired	Adequate
A4	96	97	71	100	100	100	81	94
A5	92	96	100	100	98	100	72	100
A6	93	100	97	100	97	98	86	89
A7	100	100	100	100	87	89	66	91
A8	100	100	100	100	100	100	94	100
B1	92	98	89	100	92	95	60	87
В3	100	100	68	100	100	100	60	84
B4	100	100	100	100	100	100	33	41
B5	100	100	90	100	100	100	88	97
B6	100	100	85	100	100	100	93	100
В7	99	100	94	100	99	100	39	77
B8	89	99	60	100	88	93	76	90
В9	85	94	56	100	100	100	91	100
B10	92	96	100	100	98	100	94	100
C1	97	100	100	100	98	100	100	100
C4	97	99	57	100	92	94	70	85
C5	93	99	14	77	68	75	12	35
C6	92	100	50	100	89	94	70	72
C7	78	81	19	63	100	100	54	88
C8	97	100	100	100	97	97	70	91
C10	85	98	93	100	100	100	100	100

5.4 Pirouette

Starting from a stabilized hover over a point on the circumference of a 100 ft radius circle, the aircraft must be translated laterally over the circumference while keeping the nose pointed at a target object at the center of the circle. The objectives are to demonstrate precise control at low speed during multi-axis maneuvers and check for undesirable coupling between control axes and any PIO tendencies. The suggested course for the pirouette HQTE is shown in Figure 24. The required adequate and desired performances for this task are listed in Table 14.

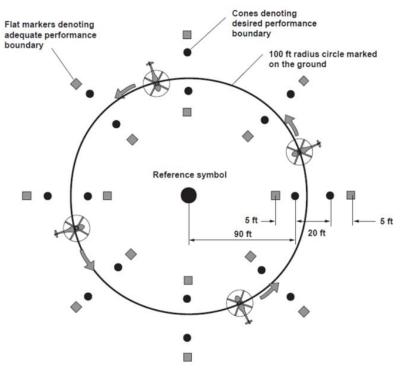


Figure 24. Suggested course for pirouette HQTE

Table 14. Performance requirements for pirouette HQTE

Task Performance Requirements	Desired	Adequate
Maintain a selected reference point on the aircraft	± 10 ft	± 15 ft
within ±X ft of the circumference of the circle		
Maintain altitude within ±X	± 2 ft	± 4 ft
Maintain heading so that the nose of the aircraft	± 5 deg	±15 deg
points at the center of the circle within ±X deg		
Complete first 180° of circle within	≤ 45 secs (4 kts)	≤ 60 secs (2 kts)
Complete second 180° of circle within	\leq 30 secs (6 kts)	≤ 45 secs (4 kts)
Achieve a stabilized hover (within desired hover	5 secs	10 secs
reference point) within X seconds after returning		
to the starting point		
Maintain the stabilized hover for an additional X	5 secs	5 secs
sec		

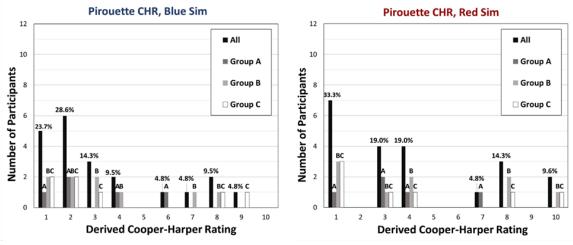


Figure 25. Pirouette HQTE Cooper-Harper ratings

The derived CHR for the pirouette HQTE are shown in Figure 25 and aggregate statistics are provided in Table 9. The mean CHR based on participant responses across all groups was 3.4 for Blue Sim and 4.1 for Red Sim. 66.6% of participants rated this HQTE as Level 1 in Blue Sim, and 52.3% in Red Sim. Conversely, 19.1% of participants gave Level 3 ratings to both Blue Sim and Red Sim for this HQTE.

Based on the review of the individual participant comments for this HQTE (as seen in Appendix C), the following observations were identified as the most notable:

- One Group A participant reported a habitual tendency to pull aft on the RHI to control altitude as this is what they were accustomed to in fixed-wing flying, even though they were in Red Sim, where fore/aft RHI movements commanded longitudinal acceleration.
- For Red Sim, two participants reported inadvertently perturbing their altitude through up/down movements of the Red Sim LHI while attempting to control yaw through left/right movements of the inceptor. One of them further noted that turning to the right (which required moving the LHI towards the body) was more difficult and resulted in a tendency to climb (upward movement of the LHI).
- One participant, flying Blue Sim, noted that the twist-top and the lateral axis movements required to perform the pirouette are in the opposite direction (e.g., moving RHI rightward to move right laterally, while twisting left to yaw to the left), creating the need to "think harder" about what control inputs needed to be applied. Another participant felt that twisting and holding the twist-top for longer periods of time could cause discomfort.
- One participant, flying Red Sim, felt that pirouetting while moving laterally to the left was easier as the RHI and LHI both needed to be deflected inward towards the participant's body. Another made the same observation, minus the reasoning.
- One participant flying Blue Sim found it more challenging to pirouette while moving left (yawing right), as this was more conducive to inadvertent fore/aft inputs to the RHI.
- One participant noted that it took a few attempts to get accustomed to tilting the Blue Sim RHI laterally while twisting its top. Another noted successfully settling upon a lateral-to-twist input ratio, at least briefly. This participant noted that an automatic altitude hold would have been beneficial. Such a hold was, in fact, present, but may have been deactivated due to the participant's inadvertent fore/aft RHI inputs.
- Participants reported difficulties in maintaining the target lateral speed of 4 or 6 knots.
 There were also varied comments from participants about the control sensitivities along each axis.
- One participant flying Blue Sim believed that the task would have been easier if the pilot could put in a lateral input to achieve the desired bank angle, which would then be held after neutralizing the input. This would have corresponded to a rate command attitude hold (RCAH) response type in the roll axis, whereas Blue Sim employed a lateral velocity command response type.

The performance of one participant (B3) for the pirouette HQTE in Blue Sim and Red Sim is shown in Figure 26. In this case, the participant translates laterally to the left while yawing to the right. The aircraft ground track stays within the desired band throughout the maneuver for both Blue Sim and Red Sim. Interestingly, this participant did better at achieving and maintaining the target speed (4 knots for the first half of the circle, 6 knots thereafter) in Red Sim (direct bank angle command) than in Blue Sim (direct lateral velocity command). Their strategy seems to have been to put in δ_{lat} inputs to generate bank angles that resulted in lateral velocities slightly above the target. The participant then centered the inceptor until the lateral velocity decayed to the speed target, and then repeated the process.

While translating laterally, the participant was instructed to keep the nose of the aircraft pointed toward an object located at the center of the circle. The bearing error in Figure 26 shows the heading deviation from this target. In both simulators, its time history remains within the desired band for most of the maneuver, with brief excursions into the adequate region. For the Blue Sim run, inadvertent coupling of an undesired vertical axis input (δ_{lon} , RHI fore/aft) with the lateral input (δ_{lat} , RHI left/right) resulted in altitude loss towards the end of the pirouette. This caused an excursion from the desired altitude band to the adequate band. For the Red Sim run, there is very minor coupling between the directional input (δ_{dir} , LHI left/right) and the vertical axis input (δ_{lon} , LHI up/down). As a result, the altitude hold is engaged throughout the maneuver, and the target altitude is held. The performances of all the participants in the adequate and desired ranges of position and bearing angles are shown in Table 15.

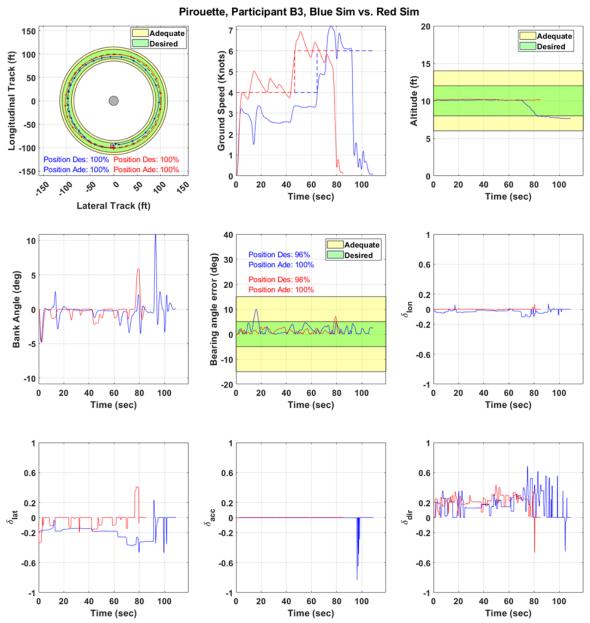


Figure 26. Pirouette, Participant B3, Blue Sim vs. Red Sim

Table 15. Desired and adequate performance for pirouette (all participants)

Dandisin and		Blue	Sim			Red	Sim	
Participant ID		sition nance (%)		ng Angle nance (%)	Position Performance (%)		Bearing Angle Performance (%)	
	Desired	Adequate	Desired	Adequate	Desired	Adequate	Desired	Adequate
A4	100	100	61	100	94	100	85	100
A5	95	100	52	92	92	98	67	97
A6	100	100	62	96	49	85	76	96
A7	80	96	60	97	42	59	54	80
A8	100	100	65	100	100	100	96	100
B1	72	90	54	90	80	98	66	100
В3	100	100	96	100	100	100	98	100
B4	100	100	62	100	100	100	100	100
B5	93	100	43	89	98	100	85	100
B6	100	100	44	75	100	100	73	100
В7	100	100	53	100	100	100	57	95
B8	100	100	69	97	84	91	61	92
В9	100	100	95	100	76	100	90	100
B10	86	100	58	97	93	100	68	100
C1	53	89	59	100	100	100	83	100
C4	100	100	51	93	95	100	83	100
C5	55	68	19	59	71	78	57	100
C6	80	97	57	96	100	100	82	100
C7	100	100	73	100	100	100	83	100
C8	96	100	80	100	100	100	86	100
C10	94	100	91	100	64	90	83	100

5.5 Precision hover

This involves approaching a target hover point at a low speed while maintaining a 45° heading offset to the target ground track, and then smoothly decelerating to and maintaining a hover above the target. The goals include checking for the ability to attain a stabilized hover with precision, maintain precise position, heading, and altitude, inceptor control harmony in all axes, any PIO tendencies, and overall pilot workload. The suggested course for this HQTE is shown in Figure 27. The desired and adequate performance requirements for precision hover are listed in Table 16.

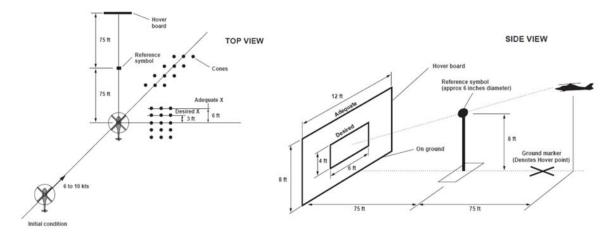


Figure 27. Suggested course for precision hover HQTE

Table 16. Performance requirements for precision hover HQTE

Task Performance Requirements	Desired	Adequate
Capture and track 45° transition within	± 3 ft	± 6 ft
Attain a stabilized hover position from start of	8 secs	12 secs
deceleration within		
Maintain lateral-longitudinal position	± 3 ft	± 6 ft
Maintain altitude within ±X	± 2 ft	± 4 ft
Maintain heading within ±X	± 5 deg	± 10 deg
Maintain a stabilized hover for at least X seconds	30 secs	30 secs

The derived CHR for the precision hover HQTE are shown in Figure 28 and aggregate statistics are provided in Table 9. The mean CHR across all groups was 3.2 for Blue Sim and 3.4 for Red Sim. The Level 1-2-3 rating breakdown was 61.8%-23.8%-14.4% for Blue Sim and 42.8%-47.6%-9.6% for Red Sim.

The most notable observations identified based on the review of the individual participant comments for this HQTE (see Appendix C) are as follows:

• In general, participants felt that this HQTE was more difficult than the preceding ones, requiring constant inputs on both inceptors, and felt that more practice was required to judge when the begin the deceleration to a hover.

- At least one participant noted an undesirable coupling of a vertical axis input (δ_{lon} , RHI fore/aft) with their intended lateral input (δ_{lat} , RHI left/right) in Blue Sim, which caused a change in altitude.
- For Red Sim, five participants noted an increase in the required control effort to neutralize the lateral velocity. Since their lateral control input (δ_{lat} , RHI left/right) commanded bank angle and not lateral velocity, they had to manipulate bank angle to neutralize the lateral velocity themselves.
- The previously described deficiency of the position hold system that interfered with the pilot's attempts to do precise maneuvering was noted again for this HQTE.
- Given the required 45° track, one participant attempted to move the Red Sim RHI forward-and-right at a 45° angle but found that the lateral acceleration exceeded the forward acceleration (this is because of different mappings along these two axes, see Table 4). Other participants noted that having both fore-aft and lateral motions controlled using the RHI was an advantage for Red Sim for this HQTE.

Figure 28. Precision hover HQTE Cooper-Harper ratings

The performance of a participant (A7) on the precision hover HQTE on Blue Sim and Red Sim is shown in Figure 29. A note regarding the setup for this HQTE in Blue Sim is in order. The precision hover HQTE requires the pilot to look and track to the right at a 45° angle, where an "A-pillar" that is part of the Blue Sim cockpit frame limits visibility. Therefore, the aircraft starting position for Blue Sim was moved forward approximately 14.5 feet to allow the pilot a clear view of the 45° path to be tracked as well as the target hover box while looking at the side screen. This is seen in the offset starting position for Blue Sim in Figure 29 and the generally "ahead-of-the-line" trajectory until reaching the vicinity of the hover boards, where the pilot

switches to using the latter for alignment. This offset was accounted for in the calculation of the percentage of time spent in desired and adequate zones. In both simulators, the participant achieved the target 6-10 knot speed range while crabbing to the right. While attempting to decelerate to a hover while aligning with the hover boards in Red Sim, the participant overshot the box. The overshoot was much smaller for Blue Sim. This is due to the difference in the lateral axis mapping (bank command in Red Sim versus lateral velocity command in Blue Sim). The position performance of all participants is summarized in Table 17.

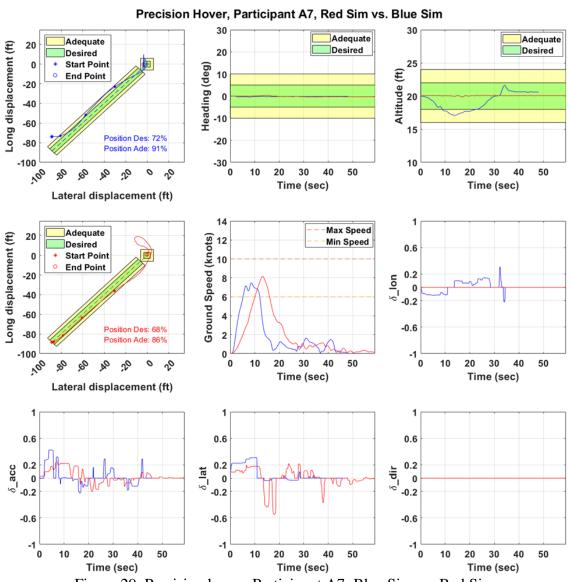
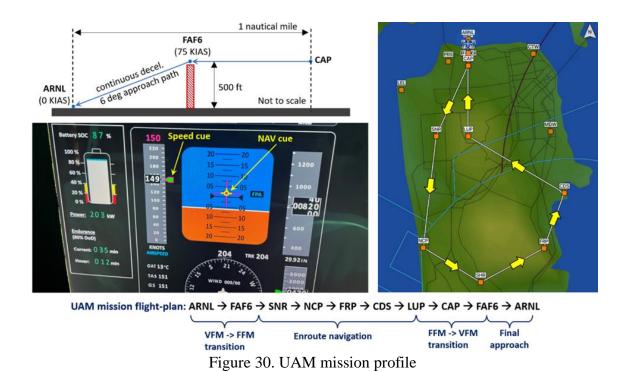


Figure 29. Precision hover, Participant A7, Blue Sim vs. Red Sim


Table 17. Desired and adequate performance for precision hover (all participants)

Participant	Blue Sim		Red Sim	
ID	Performance Position (%)		Performance Position (%)	
	Desired	Adequate	Desired	Adequate
A4	62	77	31	57
A5	59	76	56	74
A6	38	70	56	83
A7	72	91	68	86
A8	48	84	82	100
B1	39	58	28	39
В3	79	93	47	59
B4	71	95	45	54
B5	52	81	64	82
В6	45	58	66	97
В7	37	82	44	72
В8	56	74	59	79
В9	38	69	66	81
B10	33	61	76	100
C1	67	83	100	100
C4	51	69	91	100
C5	42	55	35	47
C6	36	56	71	100
C7	56	70	42	51
C8	51	66	43	81
C10	43	76	74	100

5.6 UAM mission simulation

The representative UAM mission that was simulated is shown in Figure 30. From takeoff to landing, the pilot is provided navigation and speed cues on the PFD as well as overall situational awareness of the flight plan through a moving map displayed using the Garmin PilotTM application. Starting from a hover a few feet above the takeoff/landing pad, the pilot departs southbound and commences the VFM-to-FFM transition on a 6° climbing flightpath to clear an obstacle. Thereafter, the pilot navigates the en-route waypoints, which takes the aircraft on an anti-clockwise circuit in the San Francisco Bay area. The landing approach is made flying

northbound, clearing the same obstacle before commencing a continuously decelerating descent to the takeoff/landing pad along a 6° glideslope. The CHR for the takeoff and VFM-FFM transition are shown in Figure 31. The mean rating was 2.6 for Blue Sim and 2.0 for Red Sim. The breakdown of Level 1-2-3 ratings was 71.4%-28.6%-0% for Blue Sim and 90%-10%-0% for Red Sim.

Takeoff and VFM-FFM Transition CHR, Blue Sim Takeoff and VFM-FFM Transition CHR, Red Sim 12 12 ■ All ■ All 10 10 ■ Group A **■** Group A **Number of Participants Number of Participants** ■ Group B **■** Group B ☐ Group C ☐ Group C 23.8% 10 10 **Derived Cooper-Harper Rating Derived Cooper-Harper Rating**

Figure 31. Takeoff and VFM-FFM transition Cooper-Harper ratings

There is a possibility that participants preferred the absence of any mode blend for vertical path control in Red Sim to the blend present in Blue Sim between height rate command and flightpath angle rate command, flightpath angle hold. This blend occurs as the lift propulsors shut down and the aircraft transitions to fully wing-borne flight but is not currently associated with any aural indications.

The most notable observations identified based on the review of the individual participant comments for this HQTE (see Appendix C) are as follows:

- The general comments regarding transition from VFM to FFM were positive and participants felt that the control of the aircraft was intuitive.
- One astute participant observed that the (TECS) oscillated several times between speed priority and path priority modes, as indicated on the PFD. The reasons for this have been identified by the research team and will be rectified.
- Several participants recommended additional advisories or alerts appearing on the cockpit displays during the transition.
- Some participants commented on pitch transients that they experienced during the transition.

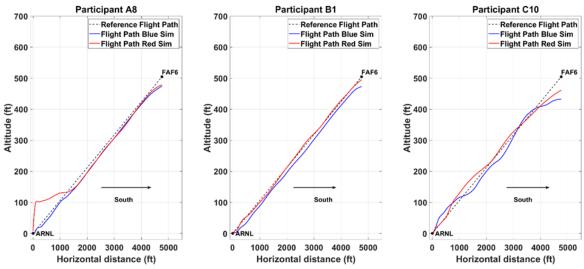
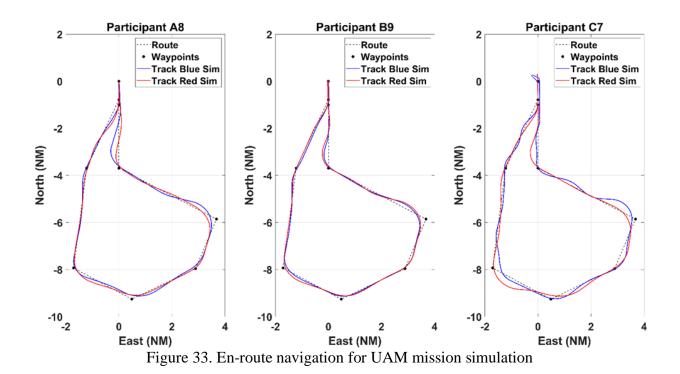



Figure 32. Initial part of VFM to FFM transition in UAM mission simulation

The initial part of the VFM-FFM transition for three participants (A8, B1, and C10) is shown in Figure 32. Starting from the pad (ARNL), the participants were cued by the flight director (see Figure 30) to transition along a 6° flightpath towards waypoint FAF6.

Participants A8 and B1, with flight experience (thus, tracking experience) established both Blue Sim and Red Sim on the desired flightpath. A8, while flying Red Sim, initially climbed almost vertically (for unknown reasons), but thereafter, intercepted the desired flightpath from above. Participant C10, with no flight experience, still managed to track the desired departure path in both Blue Sim and Red Sim, albeit not as precisely. The gentle rounding off of trajectories near FAF6 is due to the flight director advancing to the next waypoint in the mission.

The performance of a Group A, Group B, and Group C participant (A8, B9, and C7) for the enroute navigation portion of the UAM mission profile is shown in Figure 33. The objective is to manipulate the inceptors to place the flightpath marker on top of the guidance cue (as seen in Figure 30). Both these PFD elements can move up/down and left/right. As seen in Figure 33, all three participants tracked the en-route waypoints. For lateral navigation, the participants in Red Sim directly commanded bank angle through δ_{lat} (RHI left/right in both simulators). Therefore, to execute a turn, they had to maintain a lateral inceptor input throughout the turn. Returning to wings-level flight simply required neutralizing the lateral input. In Blue Sim, where δ_{lat} generated a roll rate command with bank angle hold, participants could establish a bank angle and then center the inceptor. However, they were then also responsible for rolling to wings-level. As can be seen from Figure 33, the difference in lateral inceptor mapping had a noticeable effect on lateral path tracking for two of the three participants. It should be noted that participants did not receive prior training regarding tracking flight director cues. Unfortunately, the debriefing questionnaire did not capture whether or not the participants referred to the Garmin PilotTM map while flying the mission, which would have allowed them to anticipate an upcoming turn.

The CHR for the FFM-VFM transition and landing are shown in Figure 34 and aggregate statistics are provided in Table 9. The average CHR across all groups was 4.3 for Blue Sim and 4.6 for Red Sim. The breakdown of Level 1-2-3 ratings was 61.9%-23.8%-9.5% for

Blue Sim and 52.3% - 19.0% - 14.3% for Red Sim.

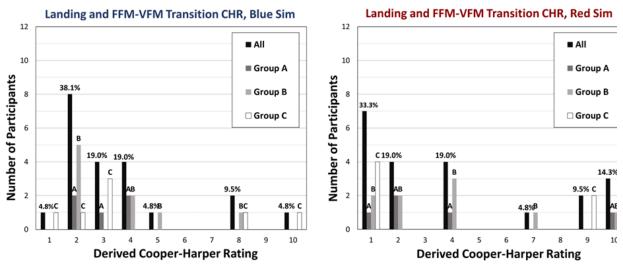


Figure 34. FFM-VFM transition and landing Cooper-Harper ratings

The most notable observations, identified based on a review of individual participant comments (see Appendix C) are:

- Several participants noted difficulty in simultaneously decelerating the aircraft while also descending. Some participants also noticed the beginnings of a pilot-induced roll oscillation if commanding lateral inputs while descending in vertical flight mode.
- For Red Sim, several participants with fixed-wing experience noted confusion regarding the control of speed via fore/aft movement of the RHI, likely as they were used to this controlling pitch/flightpath in fixed-wing aircraft.
- Several participants noted that the flight director that drove the guidance cues on the PFD was deficient when it came to guiding them to a landing. The research team had insufficient time to fine-tune the flight director gains. The gains were set up for en-route navigation and not adjusted for the more precise tracking required for a landing approach. This deficiency will be rectified for subsequent simulations.

The performance of three participants, A7, B3, and C4, during the UAM landing approach in Blue Sim and Red Sim, is shown in Figure 35. The landing approach involves a descent along a 6° glideslope starting at FAF6 and ending at ARNL. The participants received vertical and lateral guidance cues from the flight director (see Figure 30) to help them in tracking the approach path, in addition to speed cues to help them decelerate smoothly along the descent. Participants A7 and B3 (with flight experience) were able to stabilize both Blue Sim and Red Sim on the desired approach path until they got to a low altitude. It is likely that at this point, they began to visually track toward the landing pad. Despite not having pilot training or flight experience, Participant C4 was also successful in establishing the approach path and flying both Blue Sim and Red Sim down to a landing, although their tracking performance was poorer (which is to be expected).



Figure 35. UAM landing approach simulation

Figure 36. VFM HQTE courses modeled and deployed in X-Plane visual environment

6 Conclusions

An SVO-centric fly-by-wire flight control system (FCS) architecture for a lift-plus-cruise (LPC) aircraft designed around the Total Energy Control System (TECS) was deployed to two VSDDL flight simulators, Blue Sim and Red Sim, with different inceptor layouts and inceptor-to-command mappings. The Blue Sim inceptor scheme was somewhat similar to that found in conventional fixed-wing aircraft, while the Red Sim inceptor scheme was somewhat similar to

that found in rotorcraft. To test the developed FCS architecture, inceptor layouts, and cockpit displays, participants were recruited and categorized into three groups: Group A, comprising certified flight instructors; Group B, comprising pilots and trainee pilots; and Group C, comprising non-pilots. Piloted simulations, in which these participants were asked to fly both simulators through a series of HQTEs, demonstrated that participants in all three categories (even Group C non-pilots) were able to successfully perform the tasks with relatively little instruction, training, or practice.

Some coupling between inceptor axes was observed from analysis of the logged data and also recorded in participant feedback. The coupling occurred for different HQTEs in the two simulators. However, rather than arriving at a conclusion regarding the advantage/disadvantage of either inceptor layout, this warrants a more detailed usability analysis of the inceptor designs and layouts to determine whether the observed coupling can be reduced or eliminated through more ergonomic design and placement of the inceptors or adjustment of the inceptor resistances, combined with updates to the existing inceptor filters and dead zones.

The position hold function worked adequately for maneuvering scenarios where it was never disengaged (e.g., hovering turn). However, for maneuvering scenarios such as lateral reposition and hold and precision hover, where position hold is disengaged by control input at the start of the maneuver and re-engaged at its conclusion, some participants reported that the position hold corrected against them while they attempted fine maneuvering, or engaged prematurely. The research team has determined that this deficiency pertains to the engagement logic for the position hold, which will be refined for subsequent work.

Similar refinements will be pursued for the flight director, for which participant feedback identified some deficiencies and limitations. Most of these have to do with the selection of gains for the flight director, and the adjustment of these gains depending upon the phase of flight (enroute or terminal).

The Group A and Group B participants in this study only had fixed-wing aircraft experience. No participants had rotorcraft, military, or airline experience. Even though five flight instructors participated, none of them had in excess of 800 PIC hours at the time of participation. Future studies will attempt to expand both the size and the demographics of the pilot participant pool to include aviators with more diverse flying backgrounds and experience levels.

With the exception of the UAM mission simulation, the remaining simulation tasks involved HQTEs that pertained to hovering flight, i.e., vertical flight mode. Since most UAM concepts

transition to a wing-borne FFM, HQTEs pertaining to forward flight must also be assessed rigorously. This is an avenue for future work.

The simulations reported in this work were conducted in calm atmospheric conditions without any wind or turbulence, in good visual environment, and with a nominal vehicle state (no failures). Future work will involve piloted simulations with wind, gust, and atmospheric turbulence, in degraded visual environments, and with control effector or system failures in order to stress the pilot-vehicle system and observe the impact on pilot performance on HQTEs.

7 References

- Aerothermodynamics of Gas Turbine and Rocket Propulsion. (1984). In G. C. Oates (Ed.). New York: AIAA.
- Ahuja, V. (2013, August). Aerodynamic Loads over Arbitrary Bodies by Method of Integrated Circulation. Ph.D. dissertation, Auburn University, Auburn.
- Ahuja, V., & Hartfield, R. (2016). Aerodynamic Loads over Arbitrary Bodies by Method of Integrated Circulation. *Journal of Aircraft*, 53, 1719-1730.
- Ahuja, V., Chakraborty, I., & Hartfield, R. (2019). Aero-Propulsive Analysis for Contemporary Conceptual Design. *AIAA AVIATION Forum 2019*. Dallas.
- Airbus A3. (2018). Vahana the next technological breakthrough in urban air mobility. *Vahana* the next technological breakthrough in urban air mobility.
- Amelink, M., Mulder, M., Van Paassen, M., & Flach, J. (2005). Theoretical Foundations for a Total Energy-Based Perspective Flight-Path Display. *The International Journal of Aviation Psychology*, 15, 205-231.
- American Psychological Association. (2009). *Publication manual of the American Psychological Association*. Washington, D.C.: American Psychological Association.
- Archer Aviation. (n.d.). Aero Aircraft. Retrieved April 10, 2023, from https://www.Archer.com/
- Aurora Flight Sciences. (2018). *eVTOL the future of on-demand air transport*. Retrieved April 10, 2023, from https://www.aurora.aero/evtol/
- Bakker, E., Nyborg, L., & Pacejka, H. (1987). Tyre modeling for use in vehicle dynamics studies. *SAE Paper No.* 870421.

- Beringer, D. B. (1999). Performance-controlled systems, fuzzy logic, and fly-by-wire controls: Revisiting applications to General Aviation. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 43, 61-65.
- Beringer, D. B. (2002, May). *Applying Performance-Controlled Systems, Fuzzy Logic, and Fly-By-Wire in General Aviation*. Tech. rep., Civil Aerospace Medical Institute, Federal Aviation Administration.
- Beta Team. (n.d.). BETA. Retrieved April 10, 2023, from https://www.beta.team/
- Bhandari, R., & Chakraborty, I. (2023, January). Genetic Algorithm Optimization of Lift-Plus-Cruise VTOL Aircraft with Electrified Propulsion. *AIAA SCITECH 2023 Forum*. National: AIAA-2023-xxxx.
- Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Clarke, S., Redifer, M. E., . . . Osterkamp, P. G. (13-17 June 2016). Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator. *AIAA AVIATION Forum*. Washington D.C.
- Bruce, K. R., Kelly, J. R., & Person, L. H. (1986, August). NASA B737 Flight Test Results of the Total Energy Control System. *AIAA Guidance, Navigation and Control Conference*. Williamsburg.
- Bruce, R. (1987, January). *NASA B737 Flight Test Results of the Total Energy Control System*. Tech. rep., Boeing Commercial Airplane Company, Seattle, WA.
- Bruce, R. (1989, February). *Integrated Autopilot/Autothrottle for the NASA TSRV B-737 Aircraft: Design and Verification by Nonlinear Simulation*. Tech. rep., Boeing

 Commercial Airplane Company, Seattle, WA.
- Bruzzini, M. A. (1994, August). *Development of a TECS Control Law for the Lateral Directional Axis of the McDonnell Douglas F-15 Eagle*. Master's thesis, University of Washington, Washington.
- Capristan, F. M., & Welstead, J. R. (2018). An Energy-Based Low-Order Approach for Mission Analysis of Air Vehicles in LEAPS. *AIAA SCITECH 2018 Forum*. Kissimmee.
- Chakraborty, I. (2019). Design Overview of the Hexa-Chakra Electric Vertical Takeoff and Landing Personal Air Vehicle. *AIAA SCITECH 2019*. San.

- Chakraborty, I., & Mishra. (2020). A Generalized Energy-Based Flight Vehicle Sizing and Performance Analysis Methodology (accepted for publication, Oct 14, 2020). *AIAA Journal of Aircraft*.
- Chakraborty, I., & Mishra, A. (2022, June). Sizing and Analysis of a Lift-Plus-Cruise VTOL Aircraft with Electrified Propulsion Systems. *AIAA AVIATION 2022 Forum*. Chicago: AIAA-2022-xxxx.
- Chakraborty, I., Ahuja, V., Comer, A., & Mulekar, O. (2019, June). Development of a Modeling, Flight Simulation, and Control Analysis Capability for Novel Vehicle Configurations. *AIAA AVIATION 2019 Conference*. Dallas: AIAA-2019-3112.
- Chakraborty, I., Comer, A. M., & Dewey, J. M. (6-10 January, 2020). A Simulation-Based Aircraft-Centric Assessment of the Circular/Endless Runway Concept. *AIAA SCITECH Forum.* Orlando.
- Chakraborty, I., Leonard, C. B., Comer, A. M., Mishra, A. M., & Dewey, J. M. (14-19 June, 2020). A Reconfigurable Flight Simulation Framework Aimed at Novel Flight Vehicle Concepts. *AIAA AVIATION Forum*. (virtual event).
- Chakraborty, I., Lozano, B., & Mavris, D. (2015). Pilot-Friendliness Considerations for Personal Air Vehicle Flight Control Systems. *AIAA AVIATION 2015 Forum*. Dallas.
- Chakraborty, I., Mishra, A., Comer, A., & Leonard, C. (2021). Total Energy Based Flight Control System Design for a Lift-Plus-Cruise Urban Air Mobility Concept. *AIAA SCITECH 2021 Forum*. (virtual).
- Chandrasekaran, R., Payan,, A., Collins,, K., & Mavris, D. (2019). A Survey of Wire Strike Prevention and Protection Technologies for Helicopters. Technical Report, U.S. Department of Transportation, Federal Aviation Administration. Retrieved from http://actlibrary.tc.faa.gov
- Chen, C., Zhang, J., Zhang, D., & Shen, L. (2017). Control and Flight Test of a Tilt-rotor Unmanned Aerial Vehicle. *International Journal of Advanced Robotic Systems*, 14(1), 1-12.
- Chen, S. W., Chen, P. C., Yang, C. D., & Jeng, Y. F. (2007). Total Energy Control System For Helicopter Flight/Propulsion Integrated Controller Design. *Journal of Guidance, Control, and Dynamics*, 30, 1030-1039.
- Chi, Y. (Ed.). (1993). Fluid Mechanics Proceedings.

- Christou, I., Nelms, A., Cotton, I., & Husband, M. (2011). Choice of Optimal Voltage for More Electric Aircraft Wiring Systems. *IET Electrical Systems in Transportation*, 1, 24-30. doi:https://doi.org/10.1049/iet-est.2010.0021
- Chudy, P., & Rzucidlo, P. (2009a, July). Controller Design for a Digital Flight Control System DFCS. *IMETI 2009, The 2nd International Multi-Conference on Engineering and Technological Innovation*. Orlando: IMETI.
- Chudy, P., & Rzucidlo, P. (2009b, August). TECS/THCS Based Flight Control System For General Aviation. *AIAA Modeling and Simulation Technologies Conference*. Chicago: AIAA-2009-5689.
- Chudy, P., & Rzucidlo, P. (2011a, January). Real-time Simulations of Environmentally Friendly Flight Control System. *SAMI 2011, 9th IEEE International Symposium on Applied Machine Intelligence and Informatics* (pp. 161-164). Smolenice: IEEE 978-1-4244-7430-1/11.
- Chudy, P., & Rzucidlo, P. (2011b). Simulators for Pilot Assisting Module of Advanced Light Aircraft Concept. *The Archive of Mechanical Engineering, LVIII*, 275-289.
- Cinar, G., Cai, Y., Chakraborty, I., & Mavris, D. (2018). Sizing and Optimization of Novel General Aviation Vehicles and Propulsion System Architectures. *AIAA AVIATION 2018 Forum*. Atlanta.
- Comer, A., & Chakraborty, I. (2023, July). Flight Control System Architecture for Urban Air Mobility Simplified Vehicle Operations. *AIAA SCITECH 2023 Forum*. National: AIAA-2023-xxxx.
- Cooper, M. A. (2014, February). *Simulating Actuator Energy Demands of an Aircraft in Flight*. Ph.D. dissertation, Cranfield University, Cranfield.
- Deere, K. A., Viken, J. K., Viken, S. A., Carter, M. B., Cox, D., Wise, M. R., & Farr, N. (2018). Computational Component Build-up for the X-57 Distributed Electric Propulsion Aircraft. *AIAA SCITECH Forum 2018*. Kissimmee.
- Degaspare, T. G., & Kienitz, K. H. (2020). More Integrated Total Energy Control Law for Longitudinal Automatic Flight Control System Design. *AIAA SCITECH Forum 2020*. Orlando.
- Deng, Z., Wu, L., & You, Y. (2021). Modeling and Design of an Aircraft-Mode Controller for a Fixed-Wing VTOL UAV. *Mathematical Problems in Engineering*, 2021, 17.

- Dollinger, D., Reiss, P., Angelov, J., Loebl, D., & Holzapfel, F. (2021, January). Control Inceptor Design for Onboard Piloted Transition VTOL Aircraft Considering Simplified Vehicle Operation. *AIAA SCITECH 2021 Forum*. Virtual event: AIAA-2021-1896.
- Dornheim, M. A. (1996). Planetary Flight Surge Faces Budget Realities. *Aviation Week & Space Technology*, 145, 44–46.
- Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. In *Low Reynolds number aerodynamics* (pp. 1–12). Springer.
- Drela, M. (2005). QMIL user guide. *Propeller Analysis and Design URL: http://web. mit. edu/drela/Public/web/qprop.*
- Drela, M. (2007). QPROP user guide. *Massachusetts Inst. of Technology Aeronautics and Astronautics, Cambridge, MA*.
- Duerksen, N. (2003, July). Advanced Flight Controls and Pilot Displays for General Aviation. AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. Dayton: AIAA-2003-2647.
- EHANG. (2018). EHANG184 Autonomous Aerial Vehicle (AAV). *EHANG184 Autonomous Aerial Vehicle (AAV)*.
- Eladl, M., Eltohamy, K., Hill, B., Horne, T., Krasnovskiy, B., Leiphon, K., & Taylor, S. (2008, June). *Advanced Guidance and Control Operational and Safety Benefits*. Tech. rep., Honeywell International and Gulfstream Aerospace Corporation.
- Electra Aero. (n.d.). *Urban and Regional Air Mobility Reimagined*. Retrieved April 10, 2023, from https://www.electra.aero/
- Electric Vehicle Technology Explained. (2003). In J. Larminine, & J. Lowry (Eds.). West, Sussex, UK: John Wiley and Sons, Ltd.
- FAA. (2020, June). *Urban Air Mobility (UAM) Concept of Operations (ConOps) Version 1.0*. Retrieved April 10, 2023, from https://nari.arc.nasa.gov/sites/default/files/attachments/UAM_ConOps_v1.0.pdf
- Faleiro, L. F., & Lambregts, A. A. (1999). Analysis and tuning of a `Total Energy Control System' control law using eigenstructure assignment. *Aerospace Science and Technology*, 3, 127-140.

- Finger, D. F., Braun, C., & Bil, C. (2018, June). An Initial Sizing Methodology for Hybrid-Electric Light Aircraft. *AIAA AVIATION Forum*. Atlanta.
- Finger, D. F., Braun, C., & Bil, C. (2018). Case Studies in Initial SIzing for Hybrid-Electric General Aviation Aircraft. *AIAA Propulsion and Energy Forum*. Cincinnati.
- GAMA, G. A. (2019, May). A Rational Construct for Simplified Vehicle Operations (SVO). A Rational Construct for Simplified Vehicle Operations (SVO).
- GAMA, G. A. (2020, February). Transitioning to Electric Vertical Takeoff and Landing (EVTOL) and Other Aircraft Equipped for Simplified Vehicle Operations. *Transitioning to Electric Vertical Takeoff and Landing (EVTOL) and Other Aircraft Equipped for Simplified Vehicle Operations*.
- Ganguli, S., & Balas, G. (2001). A TECS Alternative using Robust Multivariable Control. *AIAA Guidance, Navigation, and Control Conference and Exhibit.* Montreal.
- Garmendia, D., Chakraborty, I., & Mavris, D. (2016). A Multidisciplinary Approach to Assessing Actuation Power of a Hybrid Wing Body. *AIAA Journal of Aircraft*, *53*, 900-913.
- Garrow, L. A., German, B. J., & Leonard, C. E. (2021, November). Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. *Transportation Research Part C: Emerging Technologies*, 132, 103377. doi:10.1016/J.TRC.2021.103377
- Goodrich, K., & Theodore, C. R. (2021, January). Description of the NASA Urban Air Mobility Maturity Level (UML) Scale. *AIAA SCITECH 2021 Forum*. Virtual Event: AIAA-2021-1627.
- Goodson, K. W. (1966). Longitudinal Aerodynamic Characteristics of a Flapped Tilt-Wing Four-Propeller V/STOL Transport Model. NASA TN D-3217, NASA Langley Research Center, Langley Station, Hampton, VA.
- Hahn, A. (2010). Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft Design. 48th AIAA Aerospace Sciences Meeting. Orlando.
- Hernandez-Garcia, R. G., & Rodriguez-Cortes, H. R. (2013). A Total Energy Control System Design for the Transition Phase of a Tiltrotor Aerial Vehicle. *2nd IFAC Workshop on Research, Education and Development of Unmanned Aerial Systems*. Compiegne.

- Holden, J., & Goel, N. (2016, October). Fast-Forwarding to a Future of On-Demand Urban Air Transportation. Retrieved April 10, 2023, from https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
- Hwang, J. T., & Ning, A. (2018). Large-Scale Multidisciplinary Optimization of an Electric Aircraft for On-Demand Mobility. *AIAA Structures, Structural Dynamics, and Materials Conference*.
- International Civil Aviation Organization. ((accessed Dec 3, 2022)). Aircraft Type Designators. *Aircraft Type Designators*.
- Jimenez, P., Lichota, P., Agudelo, D., & Rogowski, K. (2020). Experimental Validation of Total Energy Control System for UAVs. *Energies*, *13*(14).
- Joby Aviation. (n.d.). *Electrical Aerial Ridesharing*. Retrieved April 10, 2023, from https://www.jobyaviation.com/
- Johnson, S., Dommelen, D., Ahuja, V., & Hartfield, R. (2018). Investigation of the Static Longitudinal Characteristics of a Full-Scale Light Single-Engine Airplane using a Surface Vorticity Solver. *AIAA SCITECH 2018 Forum*. Kissimmee.
- Kaminer, I., & O'Saughnessy, P. (1991). Integration of Four-Dimensional Guidanec with Total Energy Control System. *Journal of Guidance, Control, and Dynamics, 14*, 564-573.
- Katz, J., & Plotkin, A. (1991). Low-speed Aerodynamics: From Wing Theory to Panel Methods. McGraw-Hill Inc.
- Klyde, D. H., Lampton, A., Mitchell, D. G., Berka, C., & Rhinehart, M. (2021, January). A New Approach to Aircraft Handling Qualities Prediction. *AIAA SCITECH 2021 Forum*. Virtual event: AIAA-2021-0178.
- Klyde, D. H., Schulze, P. C., Mitchell, D. G., Sizoo, D., Schaller, R., & McGuire, R. (2020, June). Mission Task Element Development Process: An Approach to FAA Handling Qualities Certification. AIAA AVIATION 2020 Forum. Virtual event: AIAA-2020-3285.
- Klyde, D., & Mitchell, D. (1997, October). *Handling Qualities Demonstration Maneuvers for Fixed-Wing Aircraft, Volume II: Maneuver Catalog.* WL-TR-97-3100.
- Klyde, D., Aponso, B., & Mitchell, D. (1997, October). *Handling Qualities Demonstration Maneuvers for Fixed-Wing Aircraft, Volume I: Maneuver Development Process.* WL-TR-97-3099.

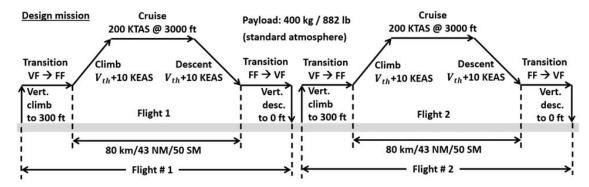
- Klyde, D., Sizoo, D., Feary, M., Webber, D., & Schaller, R. (2021). *Handling Qualities Task Element Draft Version 1.0 [Unpublished]*.
- Kochhar, S., & Friedell, M. (1990). User control in cooperative computer-aided design. *UIST* '90: Proceedings of the 3rd annual ACM SIGGRAPH symposium on user interface software and technology (pp. 143-151). ACM. doi:https://doi.org/110.11445/97924.9794
- Kohlman, L. W., Patterson, M. D., & Raabe, B. E. (2019, February). *Urban Air Mobility*Network and Vehicle Type Modeling and Assessment. Tech. rep., National Aeronautics and Space Administration.
- Lambregts, A. (1983a, October). Functional Integration of Vertical Flight Path and Speed Control Using Energy Principles. *First Annual NASA Aircraft Controls Workshop*. Hampton, VA.
- Lambregts, A. (1983b, October). Integrated System Design for Flight and Propulsion Control Using Total Energy Principles. *AIAA Aircraft Design, Systems and Technology Meeting*. Fort Worth, TX: AIAA-83-2561.
- Lambregts, A. (1983c). Operational Aspects of the Integrated Vertical Flight path and Speed Control System. *SAE Transactions*, *92*, 29-41.
- Lambregts, A. (1983d). Vertical Flight Path and Speed Control Autopilot Design using Total Energy Principles. *AIAA Guidance and Control Conference*. Gatlinburg.
- Lambregts, A. (2006, May). Generalized Automatic and Augmented Manual Flight Control.

 Generalized Automatic and Augmented Manual Flight Control. Retrieved October 27, 2014
- Lambregts, A. (2013). TECS Generalized Airplane Control System Design An Update.

 Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance,
 Navigation and Control. Delft University of Technology, Delft, The Netherlands.
- Lambregts, A. (2013). THCS Generalized Airplane Control System Design. *Proceedings of the EuroGNC 2013*, 2nd CEAS Specialist Conference on Guidance, Navigation and Control. Delft University of Technology, Delft, The Netherlands.
- Lamp, M., & Luckner, R. (2013). The Total Energy Control Concept for a Motor Glider. Proceedings of the EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation and Control. Delft University of Technology, Delft, The Netherlands.

- Lilium. (2018). *The Lilium Jet The world's first electric vertical take-off and landing jet*. Retrieved April 10, 2023, from https://lilium.com
- Lombaerts, T., Kaneshige, J., & Feary, M. (2020, June). Control Concepts for Simplified Vehicle Operations of a Quadrotor eVTOL Vehicle. *AIAA AVIATION 2020 Forum*. Virtual event: AIAA-2020-3189.
- Maclosky, M., Mathisen, E., & Leiphon, K. (2012, October). *Advanced Guidance and Control Task 2: Operational and Safety Benefits*. Tech. rep., Honewell International.
- McDonald, R. A. (07-10 January, 2013). Electric Motor Modeling for Conceptual Aircraft Design. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine.
- McMullers, L. (2011). Flight Optimization System, FLOPS. User's Guide, Release 8.23. Hampton.
- Mitchell, D. G., Klyde, D. H., Shubert, M. W., Sizoo, D., & Schaller, R. (2022, January). Testing for Certification of Urban Air Mobility Vehicles. *AIAA SCITECH 2022 Forum*. San Diego, CA and virtual: AIAA-2022-0889.
- Mutluay, T. ((accessed May 30, 2021)). The Development of an Inertia Estimation Method to Support Handling Quality Assessment. *The Development of an Inertia Estimation Method to Support Handling Quality Assessment*.
- Nam, T. (2007). A Generalized Sizing Method for Revolutionary Concepts Under Probabilistic Design Constraints. Ph.D. dissertation, School of Aerospace Engineering, Georgia Institute of Technology.
- NASA. (2018). Modular Generalized Framework for Assessing Aircraft Aero-Propulsive, Stability, and Control Characteristics. Transformational Tools and Technologies (TTT) Project, NASA Aeronautics Research Mission Directorate (ARMD), NASA Langley Research Center.
- National Aeronautics and Space Administration. (2018). NASA Armstrong Fact Sheet: NASA X-57 Maxwell. NASA Armstrong Fact Sheet: NASA X-57 Maxwell.
- Nicolai, L. M., & Carichner, G. (2010, May 1). Fundamentals of Aircraft and Airship Design: Volume I–Aircraft Design. AIAA.
- Niedermeier, D., & Lambregts, A. (2009). Design of an Intuitive Flight Control System. *CEAS* 2009 European Air and Space Conference. Manchester, U.K.

- Niedermeier, D., & Lambregts, A. (2012). Fly-By-Wire Augmented Manual Control Basic Design Considerations. 28th International Congress of the Aeronautical Sciences (ICAS 2012).
- Nuriwati, R., & Sasongko, R. A. (2018, October). Application of Total Energy Control on Vertical Take-off and Landing UAV. *IOP Conference Series: Materials Science and Engineering*. Bandung.
- Peters, D. A. (2009). How Dynamic Inflow Survives in the Competitive World of Rotorcraft Aerodynamics The Alexander Nikolsky Honorary Lecture. *Journal of the American Helicopter Society*, 54.
- Peyret, R., & Taylor, T. D. (1983). Computational Methods for Fluid Flow. New York: Springer-Verlag.
- Pitt, D. M., & Peters, D. A. (1981). Theoretical Prediction of Dynamic Inflow Derivatives. *Vertica*, *5*(1), 21-34.
- Pixelwix/Pixelwarp Evo Visual Aid Software. (2019). Retrieved from Pixelwix/Pixelwarp Evo Visual Aid Software.
- Prandtl, L. (1923). *Applications of Modern Hydrodyamics to Aeronautics*. NACA Report 116, Gottingen University.
- Raymer, D. (2006). *Aircraft Design: A Conceptual Approach* (3rd ed.). American Institute of Aeronautics and Astronautics.
- Research in Flight, LLC. (2018). Research in Flight, LLC.
- Roskam, J. (2003). Airplane Design Parts I through VIII (2 ed.). DARcorporation.
- Rutowski, E. S. (1954). Energy Approach to the General Aircraft Performance Problem. *Journal of the Aeronautical Sciences*, 21, 187-195.
- Rysdyk, R., & Agarwal, R. K. (5-8 August, 2002). Nonlinear Adaptive Flight Path and Speed Control using Energy Principles. *AIAA Guidance, Navigation, and Control Conference and Exhibit.* Monterey.
- Sandoz, B., Ahuja, V., & Hartfield, R. (2018). Longitudinal Aerodynamic Characteristics of a V/STOL Tilt-wing Four-Propeller Transport Model using a Surface Vorticity Flow Solver. *AIAA SCITECH 2018 Forum.* Kissimmee.

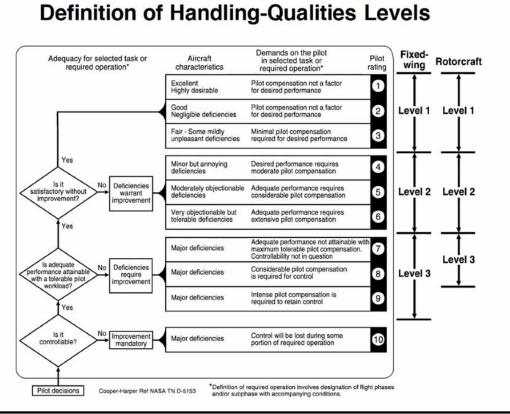

- Sarojini, D., Duca, R., Chakraborty, I., Briceno, S., & Mavris, D. (2018). Assessment of Structural Flexibility and Dynamic Loads Developed in Maneuvering Aircraft. *AIAA AVIATION 2018 Forum*. Atlanta.
- Scholz, D. (2007). Fuel Costs due to Aircraft Systems Calculated from Small Time Intervals., Aircraft Design and Systems Group, Hamburg University of Applied Sciences.
- Scruton, R. (n.d.). The eclipse of listening. *The New Criterion*, 15(3), 5-13.
- Simplified Vehicle Operations. (2020). Retrieved from Simplified Vehicle Operations.
- Strunk, W., & White, E. B. (1979). *The Elements of Style* (Third ed.). New York, New York, USA: Macmillan Publishing Co., Inc.
- Terster, W. (1997). NASA Considers Switch to Delta 2. Space News, 8, 13-19.
- Thompson, C. M. (1989). Spacecraft Thermal Control, Design, and Operation. *AIAA Guidance, Navigation, and Control Conference. 1*, pp. 103–115. Washington: AIAA.
- Thorsen, A. T., & Horn, J. F. (13-17 June, 2016). Development and Evaluation of a Unified Control Architecture for a Compound Rotorcraft in Maneuvering Flight. *AIAA AVIATION 2016 Forum*. Washington, D.C., USA.
- Torenbeek, E. (2013, June 29). Synthesis of Subsonic Airplane Design. Springer Netherlands.
- Uber Elevate. (2018). Closer Than You Think... eVTOL Common Reference Models. *Closer Than You Think... eVTOL Common Reference Models*.
- United States Army. (2000, March). Aeronautical Design Standard Performance Specification for Handling Qualities Requirements for Military Rotorcraft. Retrieved April 10, 2023, from United States Army Aviation And Missile Command Aviation Engineering Directorate Redstone Arsenal: https://apps.dtic.mil/sti/pdfs/ADA515904.pdf
- Vasquez-Beltran, M. A., & Rodriguez-Cortes, H. (2015, June). A Total Energy Control System Strategy for the Quadrotor Helicopter. 2015 International Conference on Unmanned AIrcraft Systems (ICUAS). Denver.
- Vatistas, G. H., Lin, S., & Kwok, C. K. (1986). Reverse Flow Radius in Vortex Chambers. *AIAA Journal*, 24, 1872, 1873. doi:10.2514/3.13046
- Volocopter. (2018). *Volocopter Reinventing Urban Mobility*. Retrieved April 10, 2023, from https://www.volocopter.com/en/

- Volpe, R. (1994). Techniques for Collision Prevention, Impact Stability, and Force Control by Space Manipulators. In S. B. Skaar, & C. F. Ruoff (Eds.), *Teleoperation and Robotics in Space* (pp. 175–212). Washington, DC: AIAA.
- Voth, C., & Ly, U. (1991). Design of a Total Energy Control Autopilot Using Constrained Parameter Optimization. *Journal of Guidance, Control, and Dynamics, 14*, 927-935.
- Walters, R. A., McCandless, J., & Feigh, K. M. (6-10 January, 2020). Pilot Cueing for Rotorcraft Shipboard Landings. *AIAA SCITECH Forum*. Orlando.
- Weibel, D., & Lawrence, D. (2013). Evaluation of Longitudinal Control Algorithms for Small Unmanned Aerial Systems for Robustness to Throttle Saturation and Wind Disturbances. AIAA Guidance, Navigation, and Control (GNC) Conference. Boston.
- Welstead, J. R., Caldwell, D., Condotta, R., & Monroe, N. (2018). An Overview of the Layered and Extensible Aircraft Performance System (LEAPS) Development. *AIAA SCITECH Forum 2018*. Kissimmee.
- Wisk Aero. (n.d.). *Wisk | We've Arrived*. Retrieved April 10, 2023, from Online: https://wisk.aero/
- Zhang, J., Zhiming, G., Wang, R., & Wu, L. (2019, October). Application of Total Energy Control on Vertical Take-off and Landing UAV. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC 2019). Chongqing.
- Zhao, J. (2005, March). *Dynamic Wake Distortion Model for Helicopter Maneuvering Flight.*Ph.D. dissertation, Georgia Institute of Technology, Atlanta.

A LPC-03 aircraft characteristics

Table A- 1. LPC-03 sizing summary (for all-electric propulsion architecture)

Parameter	Metric Units	English Units
Maximum takeoff mass (MTOM)	1822 kg	4018 <i>lb</i>
Empty mass	978 kg	2156 lb
Battery mass	445 <i>kg</i>	981 <i>lb</i>
Payload mass	400~kg	882 <i>lb</i>
Moment of inertia, roll (I_{xx})	$3859 \ kg. m^2$	91575 <i>lb</i> . ft^2
Moment of inertia, pitch (I_{yy})	$3231 \ kg.m^2$	76673 lb. ft ²
Moment of inertia, yaw (I_{zz})	$6586 \ kg.m^2$	156288 lb.ft ²
Main wing area	$7.47 m^2$	$80.4 ft^2$
Main wing span	9.47 m	$31.1 ft^2$
Horizontal tail area	$1.30 \ m^2$	$14.0 ft^2$
Horizontal tail span	3.90 m	12.8 ft
Fuselage length	4.83 m	15.8 ft
Lift propeller diameter	1.54 m	5.05 ft
Motor rated power (each)	8 x 92 kW	8 x 123 hp
Cruise propeller diameter	1.96 m	6.43 ft
Cruise motor rated power	254 <i>kW</i>	341 hp
Wing loading (MTOM)	$244 kg/m^2$	50 lb/ ft ²
Disc loading (MTOM, hover)	$122 kg/m^2$	25 lb/ ft ²
Power-to-weight ratio (MTOM, hover)	0.28 kW/kg	0.17 hp/lb



Notes:

- 1. No distance credit for transitions between vertical flight (VF) and forward flight (FF) modes
- 2. Battery state at conclusion of Flight # 2: 20% SOC (80% DOD)
- 3. Fuel state at conclusion of Flight #2: 5% of trip fuel

Figure A-1. UAM mission profile used to size LPC-03 configuration

B Procedure for Derived Cooper-Harper Ratings (CHR)

Level 1: Satisfactory without improvement ("desired performance", "satisfactory") Level 2: Deficiencies warrant improvement ("adequate performance", "acceptable")

Figure B- 1. Cooper-Harper handling qualities rating scale

Task Workload Questionnaire

Q1. Did you find the aircraft to be controllable? Answer YES or NO below.

- Yes
- No (Earns CHR = 10)

If you answered "YES" to Q1, please answer the following:

- Q2. Were you able to perform the task adequately with tolerable pilot workload (defined as how hard you had to work to perform the task)?
- Yes
- No. I had to work intensely in order to maintain control of the aircraft. (CHR = 9)
- No. I had to work considerably hard in order to maintain control of the aircraft. (CHR = 8)
- No. The aircraft was controllable, but my workload was still too high to perform the task adequately. (CHR = 7)

If you answered "YES" to Q2, please answer the following:

- Q3. In your opinion, are the aircraft characteristics that you experienced satisfactory, without any further improvement?
- Yes
- No. There were very objectionable but tolerable deficiencies. Extensive control corrections were required to perform the task adequately. (CHR = 6)
- No. There were moderately objectionable deficiencies. Considerable control corrections were required to perform the task adequately. (CHR = 5)
- No. There were some minor but annoying deficiencies. Moderate control corrections were required to perform the task adequately. (CHR = 4)

If you answered "YES" to Q3, please answer the following:

- Q4. How would you rate the aircraft flight characteristics that you experienced on this task?
- Fair. The task could be performed adequately with minimal control corrections. (CHR = 3)
- Good (CHR = 2)
- Excellent (CHR = 1)

C Derived CHR & Participant Comments

Table C- 1. Vertical reposition and hold CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 3
	Comments:	Comments:
	Constant control pressures required vs	VERY SIMPLE and easy.
	a rate system used on airbus. Tried to	
	only use pitch control on stick, yet	
	caught roll axis in the control inputs,	
	may want to consider changing stick.	
	Overall though, very, very minor	
	item, but could become problematic	
	in high workload environment.	
A5	CHR: 1	CHR: 4
	Comments:	Comments:
	Much more controllable compared to	The controls perform as requested but
	the red sim. Position hold feature	the feedback feels wrong. The
	remains elusive to figure out but	sensitivity comes far too late in the
	overall task was very simple.	travel and it makes fine work difficult.
		When fine tuning my alignment with
		the hoover boards, I had to constantly
		put in very jerky inputs to accomplish
		my task. Made worse by the location of
		the VSI in order to verify how much of
		an input I was applying.
A6	CHR: 4	CHR: 1
	Comments:	Comments:
	The second run was fine. On the third	Flight controls felt easy to manipulate.
	run the aircraft seemed to trend right	Aircraft control felt good. The position
	which made it slightly difficult to stay	hold seemed to have less affect which
	on target.	was nice. This sim felt better.

Participant	Blue Sim	Red Sim
A7	CHR: 1	CHR: 4
	Comments:	Comments:
	It is relatively easy to position the	The controls seem very sensitive. I
	aircraft vertically, except for the	have extensive experience in flight
	minor lateral deviations that seems to	simulators, so I appreciate the fact that
	be inadvertent. With practice and	sims are significantly more sensitive
	getting used to the right inceptor, the	than the actual aircraft. To maintain the
	maneuver can be done very easily	ball within the specified point, it
	with minimal inadvertent deviations.	required minor, but relatively consistent
		corrections.
A8	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
B1	CHR: 3	CHR: 4
	Comments:	Comments:
	I was trying to only go vertical,	The aircraft seemed a little sensitive,
	however, sometimes the controls were	but I believe with little practice it
	a bit sensitive and moved me	would be easy to fix.
	horizontal not allowing me to center	
	the dot as easy as I would like.	
	However, I believe with practice this	
	shouldn't be a problem.	
В3	CHR: 4	CHR: 1
	Comments:	Comments:
	I would change the "throttle" or	(None)
	increase/decrease altitude function to	
	the left controller, and keep the right	
	stick or controller as pitch, bank, and	
	yaw like in forward flight.	
B4	CHR: 4	CHR: 7
	Comments:	Comments:
	Control inputs with the right-hand	Aircraft had a late response to control
	interceptor were very responsive. In	inputs on the 3rd try. Therefore,
	some cases, overcorrection may	

Participant	Blue Sim	Red Sim
	happen, but I believe it is just a task	corrections had to be constantly being
	that would require practice.	made to keep alignment.
B5	CHR: 3	CHR: 1
	Comments:	Comments:
	The sensitivity of the controls in two	The aircraft is easy to control in the
	dimensions makes it a little bit	vertical axis with the control lever that
	difficult to maneuver the drone; if the	is provided and intuitive which also
	resistance of the controls were a little	helps in its ease to maintain control.
	greater it would help to minimize the	
	motion in an undesired direction.	
B6	CHR: 3	CHR: 2
	Comments:	Comments:
	Could be a little less sensitive to	Seems to work well and be pretty easily
	control inputs but overall, it was	controllable.
	really good!	
B7	CHR: 3	CHR: 1
	Comments:	Comments:
	When pushed directly forward, the	The aircraft was extremely controllable
	right yoke tends to move the aircraft	and maneuverable along this axis.
	to the right in addition to moving the	
	aircraft down.	
B8	CHR: 10	CHR: 1
	Comments:	Comments:
	Climbing and descending was	(None)
	controllable but there was a tendency	
	to veer off course laterally and	
	difficulty obtaining desired lateral	
	proximity to focal points.	
B9	CHR: 4	CHR: 2
	Comments:	Comments:
	It is easy to command roll to move	The aircraft seemed to drift a couple
	side to side while also attempting to	feet even though the vertical speed
	move vertically up and down. I had to	indicator read 0 fpm.

Participant	Blue Sim	Red Sim
	keep adjusting for the minor roll	
	commands during the task.	
B10	CHR: 1	CHR: 3
	Comments:	Comments:
	(None)	(None)
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	(None)	All good, haven't noticed anything bad yet.
C4	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
C5	CHR: 5	CHR: 3
	Comments:	Comments:
	I believe, sometimes the controls	(None)
	were lagging the sensitivity to my	
	command, especially regarding	
	stability. I believe more work can be	
	done to make the control more stable.	
C6	CHR: 2	CHR: 1
	Comments:	Comments:
	Up and down controls were	Vertical reposition and hold do not
	unintuitive at first but got better with	have considerable difficulty.
	time.	
C6	CHR: 2	CHR: 1
	Comments:	Comments:
	Up and down controls were	Vertical reposition and hold do not
	unintuitive at first but got better with	have considerable difficulty.
	time.	
C7	CHR: 4	CHR: 2
	Comments:	Comments:
	The airspeed control is very intuitive	The left inceptor sometimes got stuck
	and it's nice to be able to set a desired	in the ascending position even after
	airspeed instead of manually	letting go of it.

Participant	Blue Sim	Red Sim
	maintaining it. The right inceptor will	
	occasionally pick up a slight left or	
	right roll while pulling straight back	
	or pushing straight forward.	
C8	CHR: 5	CHR: 1
	Comments:	Comments:
	Roll instability when descending,	Aircraft performed as expected and
	easy to overshoot repeatedly.	held its hover location well.
C10	CHR: 2	CHR: 1
	Comments:	Comments:
	The only issue for me was while	I thought this was easier to complete
	descending the aircraft would tend to	compared to the blue sim.
	deviate to my left. I believe this is	
	from me not pulling the stick back	
	perfectly. It was fairly easy to correct.	
	I think most of the issues I had could	
	be attributed to myself getting more	
	familiar with flight controls.	

Table C- 2. Hovering Turn and Hold CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 4
	Comments:	Comments:
	I found it very easy to over control	I found that I had to somewhat
	the yaw axis. I frequently found	concentrate on keeping my yaw input
	myself trying not to overshoot the	constant without altering the
	point. It may be helpful to establish a	climb/decent profile on the aircraft.
	standard rate turn or something of	
	that nature to simplify turns using the	
	yaw control.	
A5	CHR: 1	CHR: 5
	Comments:	Comments:
	(None)	If attempting to apply a full yaw input
		the aircraft can't maintain a level flight
		attitude properly which necessitates a
		vertical input from me.
		When using $1/4t h$ or less yaw input I
		had zero controllability issues.
A6	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	Flight control was easy. This sims flight
		controls seem easier to manipulate.
A7	CHR: 1	CHR: 2
	Comments:	Comments:
	Directional controllability about the	(None)
	vertical axis is very easy with this	
	aircraft. It takes minimal effort or	
	skill to complete the maneuver and	
	align the aircraft with the boards.	
	Once you develop the ability to judge	
	the rate of turn, you can determine	
	when to release the pressure on the	
	inceptor or determine whether or not	

Participant	Blue Sim	Red Sim
	you need to provide	
	further control pressures.	
A8	CHR: 1	CHR: 2
	Comments:	Comments:
	(None)	(None)
B1	CHR: 1	CHR: 3
	Comments:	Comments:
	(None)	I think it was user error but I found it
		harder to move the aircraft to the left
		without gaining altitude than towards
		the right.
В3	CHR: 1	CHR: 1
	Comments:	Comments:
	I like the yaw input in this simulator	(None)
	(blue) much more than the yaw input	
	on the red simulator.	
B4	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	Aircraft movement along the vertical
		axis was very stable, making it easy to
		keep the alignment while turning along
		the vertical axis.
B5	CHR: 1	CHR: 1
	Comments:	Comments:
	This flight maneuver with the control	I like the control for the lateral
	was easy because it was a one-	movement on the left with this control
	dimensional control.	because it is not too sensitive to
		movement but has enough resistance to
		be effective.
B6	CHR: 1	CHR: 3
	Comments:	Comments:
	Sure, a little training and practice can	Felt easy to control, it is easy to
	make anyone better, but this was very	accidentally climb or descend a little
	intuitive and easy and the aircraft was	unintentionally.

Participant	Blue Sim	Red Sim
	very controllable with the perfect	
	sensitivity.	
В7	CHR: 1	CHR: 1
	Comments:	Comments:
	In terms of yaw, the aircraft responds	The aircraft was both maneuverable and
	great.	controllable along this axis. I wish that
		there was some form of turn coordinator
		that gave information about rate of roll
		and rate of turn.
B8	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
B9	CHR: 2	CHR: 2
	Comments:	Comments:
	(None)	(None)
B10	CHR: 3	CHR: 3
	Comments:	Comments:
	(None)	(None)
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	Left and right heading change	I think this is a common issue of most
	commands felt differently (very	control sticks which is usually fixed by
	minor difference). It can be just my	simply having more flight experience.
	hand and how I gripped the stick.	However, it would be nice to have some
	The twisting nob definitely needs	mechanical difference (perhaps in
	better ergonomics: try making it	resistance or have non-uniform tilt or
	taller/higher and covering with some	else) between thrust control and heading
	non-slippery material.	to make heading control with altitude
		hold easier. Otherwise, everything is
		excellent.
C4	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	Compared to the last version of the red
		sim, the aircraft feels much more

Participant	Blue Sim	Red Sim
		controllable. For the hover and turn
		assessment, it feels much easier to turn
		left and right without accidentally
		moving in the vertical direction.
C5	CHR: 2	CHR: 2
	Comments:	Comments:
	(None)	(None)
Participant	CHR: 2	CHR: 4
C6	Comments:	Comments:
	Turning to left was a bit different	With turn and ascend/descend on the
	experience. I had to make minor	same control, it was sometimes
	corrections to decrease the overshoot.	annoying to have to correct the altitude
		while turning.
Participant	CHR: 2	CHR: 4
C7	Comments:	Comments:
	The only comment I have is that I	There needs to be some kind of
	noticed yawing left and then settling	deadzone when turning left and right, so
	decelerates the yaw rate noticeably	that even when it feels like you are
	faster than yawing to the right.	pulling straight to the left or right, it
		doesn't ascend/descend unintentionally.
Participant	CHR: 1	CHR: 4
C8	Comments:	Comments:
	Excellent control with only yaw	Commanding pure yaw motion without
	inputs, not translation of aircraft to	accidentally commanding altitude
	correct.	changes is difficult.
Participant	CHR: 1	CHR: 1
C10	Comments:	Comments:
	(None)	I thought this was easier to complete
		here than in the blue sim.

Table C- 3. Lateral Reposition and Hold CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 8
	Comments:	Comments:
	I found it easy to over control the	Anticipating the stoppage of side stick
	aircraft with the stick. Even when	input was quite difficult in my
	letting go, there was a need to	experience, I found that I often overshot
	anticipate the hover and I feel that	the yellow board and had to fight to
	this will come with time, but it was	keep the nose of the aircraft aligned
	jerky in my experience. It responds	with the board on roll out.
	best to slow, methodical inputs	
A5	CHR: 1	CHR: 5
	Comments:	Comments:
	(None)	Decelerating from the 10kt velocity was
		difficult to time, and if you over did it, it
		was then very difficult to properly line
		up with the target. Not having any form
		of speed indication outside your center
		console when you're staring 90 degrees
		left was very frustrating.
A6	CHR: 2	CHR: 4
	Comments:	Comments:
	The controls were adequate;	The right inceptor was slightly difficult
	however, the position hold throws me	to control with forward and lateral
	off. It feels as though it corrects	flight. It was also slightly difficult to
	against me.	determine when to stop pushing the
		right inceptor in order to cease lateral
		flight. Furthermore, the position hold
		was difficult to adjust to on this task.
A7	CHR: 4	CHR: 7
	Comments:	Comments:
	It was relatively difficult to maintain	While the aircraft is controllable, it is
	course guidance along the white line,	significantly more difficult to control is

Participant	Blue Sim	Red Sim
	but small corrections using the left inceptor allowed me to get back "on course" and it was easy to maintain control. The only other minor deficiency appears to be with the sensitivity of the right inceptor. Even the slightest control inputs to translate the aircraft laterally results in a momentary change (loss or gain) in altitude. Fortunately, it is easy to correct.	laterally than vertically, or along the vertical axis. The main issue is that it continues the lateral displacement even after the control pressures are relaxed, and it is very difficult to judge when you should add opposite control inputs to cease the lateral displacement.
A8	CHR: 1 Comments: (None)	CHR: 2 Comments: I prefer the old setting for this task where the aircraft stabilized itself and slowed down for you. This task was still not too difficult, but I think it was a little easier before.
B1	CHR: 4 Comments: I'm not sure if it is user error or the way the aircraft is built but when I returned to the left the alignment with the center line seemed to be off from where I initially started.	CHR: 4 Comments: The aircraft was very sensitive when approaching the hover. This made it hard to pin point the dot on the ""X"".
B3	CHR: 4 Comments: Like mentioned previously, I would change the throttle function to the left controller, and keep only pitch, bank, and yaw on right controller like in forward flight.	CHR: 4 Comments: At very low groundspeed (approx. 1-2 knots), it is difficult to be precise in both forward/backward and left/right movement.

Participant	Blue Sim	Red Sim
B4	CHR: 4	CHR: 4
	Comments:	Comments:
	Similar to the Red sim, the timing of	This is a timing issue. The more tries I
	the release to be level with the	gave it the closer I was able to time a
	hoverboard is very specific. Also, the	correct release of control forces., this is
	aircraft has a large rocking tendency	something that I think would be
	upon release of the interceptor which	perfected with practice. The timing of
	may prompt overcorrection.	the release would also depend on the
		airspeed moving laterally.
B5	CHR: 4	CHR: 5
	Comments:	Comments:
	During this task there was a need to	Lateral movement is one of the more
	pay more attention than just one	difficult challenges that is presented
	dimensional horizontally because of	with this set of flight controls. I think
	the need to also maintain a lateral	the resistance on it is too great so there
	presence. Although not considerably	is more room to overcompensate how
	difficult in maintaining control, there	much speed in the horizontal direction
	is a precision that is difficult to	is needed. And because it is tied to the
	maintain (either from the single stick	lateral as well, it is easy to get off track
	controlling pitch and lateral	if not perfectly going left or right.
	movement or the stiffness	
	of the stick and fine tuning to get the	
	right amount of input in).	
B6	CHR: 1	CHR: 3
	Comments:	Comments:
	Very good aircraft controllability. I	Okay so I thought the first time was a
	was confused on the first one, but	little rough but then after I figured out
	that is just a simple training	how to do it better than it was very
	adjustment. The aircraft was very	controllable. Interestingly I think my
	good.	answers on this form compared to last
		time will show that I believe this sim is
		much more controllable, less sensitive
		(in a good way), and overall, a better

Participant	Blue Sim	Red Sim
		aircraft to fly. Pilot workload is
		significantly decreased
B7	CHR: 5	CHR: 5
27	Comments:	Comments:
	There were two problems with this	The aircraft was both maneuverable and
	task:	controllable along this axis. I wish that
	When the right controls were	there was some form of turn coordinator
	pushed to the left, it would make the	that gave information about rate of roll
	aircraft change both in terms of	and rate of turn.
	altitude and position.	
	• It is somewhat difficult, although	
	doable with skill, to exactly estimate	
	the aircraft position within the	
	hoverboard and the time it takes the	
	aircraft to stop.	
B8	CHR: 4	CHR: 10
	Comments:	Comments:
	Altitude fluctuations when banking	Difficult to move about one axis
	and movement aft of centerline.	without moving about the other, and
		difficult to determine when to stop.
B9	CHR: 4	CHR: 4
	Comments:	Comments:
	There seems to be drift backward	There seems to be more drift in the
	during both directions but appeared	lateral movement compared to yaw and
	to be more during the left movement	vertical directions, which I had to
	(even though no forward or aft	correct after attempting to come to a
	movement was given). I had to	hover. It was also easy to give forward
	correct to get back within limits.	or backward movement while trying to
	Additionally, there seems to be drift	do a lateral reposition.
	left or right after the control has been	These controls seem better for this kind
	centered even after a couple seconds.	of movement compared to the blue sim
		in case you do give a forward or
		backward movement to the controls. In

Participant	Blue Sim	Red Sim
		the case of the blue sim, it could put the
		aircraft in the ground instead of just
		forward or backward movement.
B10	CHR: 2	CHR: 2
	Comments:	Comments:
	Being so close to the ground made	(None)
	re-positioning a little harder to	
	accomplish just because you must	
	worry about contacting the ground.	
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	Again, I think roll control have some	• "Red sim" is far easier and more
	minor overshoot, but it only matters	intuitive than "Blue sim" for me to fly
	if one is trying to align with the	(so far).
	target "exactly".	• I did not notice that "position hold"
		gets anchored a lot sooner than I would
		think it should, so it was giving me
		some confusion at first, but then I just
		tried to keep it disengaged (with non-
		zero input) as long as possible. I
		would prefer it to get active much later
		(for example, when speed is much
		closer to zero, so I have already done
		most of the work and it only keeps
		aircraft from flying away if there is
		some wind or else).
C4	CHR: 4	CHR: 4
	Comments:	Comments:
	When moving laterally to the right,	The aircraft continued to move in the
	forward and reverse corrections were	direction after right control stick
	needed.	returned to neutral. It was slightly
		difficult to predict and stop the aircraft
		without overcorrecting. There was also
		a slight drift backward from the white

Participant	Blue Sim	Red Sim
		line - which was likely user error -
		which was slightly difficult to avoid.
C5	CHR: 7	CHR: 7
	Comments:	Comments:
	I was able to control, but maintaining	The controls were slow to respond to
	the speed and direction was kind of	my instructions.
	difficult, for sideways movement.	
C6	CHR: 4	CHR: 10
	Comments:	Comments:
	Lateral translations towards left had	With the lateral displacement, the
	to be accompanied with altitude	joystick seem difficult to control as it
	adjustment.	was combined with forward/reverse
		displacement as well. the aircraft
		overshoot at multiple occasions. It
		might have been easier with control of
		lateral and forward/reverse on two
		separate joysticks.
C7	CHR: 4	CHR: 8
	Comments:	Comments:
	The only comment I have is that I	The last time I did this task, the
	noticed yawing left and then settling	horizontal strafing speed was
	decelerates the yaw rate noticeably	determined by continually holding
	faster than yawing to the right.	down the right inceptor, to the left or
		right. This time it seemed to set a speed
		and then keep going and required pretty
		intense "braking" to slow down enough
		to stay in desired spot. Again, a dead
		zone for moving the right inceptor left
		or right
		would make this far easier.
C8	CHR: 1	CHR: 5
	Comments:	Comments:
	Hover mode is highly reliable and	Countering the hover overshoot is an art
	stable in this context. controlling the	form that I am not very good at.

Participant	Blue Sim	Red Sim
	aircraft in lateral motion was intuitive	
	and was considerably easier after	
	only 2-3 practice runs.	
C10	CHR: 4	CHR: 1
	Comments:	Comments:
	When banking to the left/right, the	(None)
	aircraft tended to drift backwards	
	during the initial maneuver. This	
	would stop after 1/4 of the track.	

Table C- 4. Pirouette CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 7
	Comments:	Comments:
	Controls were robotic in the sense	I had a very strong habit of pulling back
	that there was little gradient of input.	on the R stick when I wanted to increase
	This made it difficult to execute a	my altitude and this concept came
	perfect maneuver. This could also be	natural to me, yet the left stick was in
	attributed to user error and lack of	control of alt. The process of stabilizing
	experience in these operations.	the aircraft seems very wobbly to me
		still, if there was a glass of water on
		board, I would regularly spill it when
		transitioning to stand still hover flight
		simply because the controls are very
		touchy and difficult to anticipate
		outcomes with.
A5	CHR: 1	CHR: 3
	Comments:	Comments:
	(None)	(None)
A6	CHR: 2	CHR: 4
	Comments:	Comments:
	The first run was better than the	The turns to the left were done with
	second. On the second run I struggled	minor difficulty. The turns to the right
	to maintain 6 knots through the last	were done with greater difficulty due to
	half of the turn. Maintaining heading	having a tendency to climb when
	with yaw (right inceptor) was slightly	pushing on the left inceptor.
	difficult.	
A7	CHR: 6	CHR: 2
	Comments:	Comments:
	(None)	It is relatively hard to determine the
		required control inputs to make to
		maintain the desired radius, but once
		you determine how to manage the
		speed, and how to appropriately manage
		the heading to maintain the position of

Participant	Blue Sim	Red Sim
		the ball in relation to the nose of the
		aircraft, it is not nearly as difficult.
A8	CHR: 2	CHR: 1
	Comments:	Comments:
	Tough to regulate speed while	I think the new settings made this task a
	moving sideways and yawing.	little easier especially when it came to
		maintaining speed and slowing down at
		the end.
B1	CHR: 8	CHR: 8
	Comments:	Comments:
	I could not adequately maintain	I got the hang of making the circle
	airspeed, altitude, and within the	around the point. However, I found it
	circle especially when I sped up to 6	very hard to pick up when I should less
	knots.	the controls to complete the circle on
		time.
В3	CHR: 1	CHR: 1
	Comments:	Comments:
	Like mentioned previously, change	(None)
	the throttle function to the left	
	controller, and keep the right	
	controller as pitch, yaw, and bank	
	like in forward flight.	
B4	CHR: 2	CHR: 1
	Comments:	Comments:
	(None)	(None)
B5	CHR: 7	CHR: 8
	Comments:	Comments:
	The aircraft is controllable, but the	The left pirouette was easier than the
	pilot has to constantly think about	right for me because of the way that you
	what to do next because of the minor	move the two controls (coming in
	corrections that need to take place in	together vs the right going away from
	order for the aircraft to complete the	each other). The main struggle that I
	turn. The one thing about these	experienced was keeping coordinated
	controls is you have to move both the	but also coming to a stop with the speed

Participant	Blue Sim	Red Sim
	top section and bottom section in	control stick. I like that it holds relative
	opposite directions in order to get the	speed but slowing down and stopping
	desired turn, which makes you have	requires an opposing direction which
	to think a little bit harder about how	leads to overcompensation and can
	it is supposed to move.	prevent the aircraft from actually
		stopping.
B6	CHR: 3	CHR: 3
	Comments:	Comments:
	I believe the aircraft is designed well	I think the aircraft is controllable, but
	for this maneuver, but the maneuver	this is an advanced maneuver.
	is very difficult and takes training.	Additionally, I was sitting here thinking
	Over time I figured out how to	wow if this was a real aircraft with
	properly complete a nice circle	passengers, they would all be sick,
	maintaining altitude and alignment,	because it is too sensitive to climbs and
	but like I said it takes practice and	descents when you are just trying to
	training. The aircraft is designed well	maintain directional control. It needs to
	for it though in my opinion.	be less quick to climb and descend
		when all you're trying to do is turn.
		Neither side was easier than the other
		the aircraft is controllable, but just too
		quick to climb and descend when all
		you're trying to do is turn.
В7	CHR: 4	CHR: 4
	Comments:	Comments:
	The only thing that was difficult to	Initially, the aircraft was easy to control
	control was the lateral speed. I think	(especially to when pirouetting to the
	it would feel more intuitive if the	left). Pirouetting to the right, however,
	pilot was to put in, say 4 kts, return	was more difficult. The left side control
	the controls to neutral, and for the	stick is very easy to move up and down,
	aircraft to maintain the 4kts in the	therefore making the aircraft
	lateral direction. This feels more	ascend/descend) I also wish that the
	natural (specifically for fixed wing	aircraft had improved static and
	pilots) than having to maintain a set	dynamic stability with regards to pitch
	lateral speed.	and roll. Yaw, however, is fine.

Participant	Blue Sim	Red Sim
B8	CHR: 2	CHR: 10
	Comments:	Comments:
	(None)	Several varying factors conflicting with
		each other at once, due to inconsistent
		results of inputs.
B9	CHR: 3	CHR: 4
	Comments:	Comments:
	I had to adjust height a couple times	It was difficult to the lateral movement
	even though I only wanted to move	at 4 and 6 knots. At 4 knots, it felt like I
	laterally and yaw. The twisting	had the controls neutral, but it would
	motion of the knob could cause a	slow down gradually so I would need to
	little discomfort if held for a longer	input a small bit of control and then
	period of time.	back to neutral to hold 4 knots. This was
		similar for 6 knots. Controlling this
		movement with both hands help lower
		some of the workload for each hand
		individually compared to the Blue Sim.
		Though the twist of the hand seems
		intuitive.
B10	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	Again, I think roll control have some	• Still way better than Blue sim but has
	minor overshoot, but it only matters	a similar issue of keeping altitude when
	if one is trying to align with the	trying to fly the maneuver.
	target "exactly".	Position control is strange, would
		prefer it to be inactive. Some drift to a
		random location is present where I don't
		actually have an idea of where is the
		point the position hold is trying to bring
		me to (especially since the anchor

Participant	Blue Sim	Red Sim
		point can be dropped a lot earlier than I
		expect it).
		Regarding the altitude/throttle input:
		perhaps it can help to have a wide/wider
		dead-zone on the alt. channel for
		the stick input (but not for the heading
		input) of at least 7-10 degrees.
C4	CHR: 1	CHR: 3
	Comments:	Comments:
	I found it slightly difficult to keep a	I found it more difficult to maintain
	steady turn speed with the right	4knots than 6 knots. When coming to a
	controller - as if the twisting	stop it was easy to over-correct and not
	mechanism is too resistive.	end up in the desired location angle.
C5	CHR: 9	CHR: 4
	Comments:	Comments:
	This task involved three different	Some controls were slightly slower to
	controls simultaneously. It was	respond. Else it was fine.
	intensely difficult to control all three	
	directions simultaneously.	
C6	CHR: 8	CHR: 10
	Comments:	Comments:
	Yawing while moving to left or right	Control for altitude and turn were
	was hard. I had to constantly make	together so it was extremely hard to
	sure I was inside the markers and	keep it level. Felt like I flew being
	make sure my heading and altitude	drunk the whole time trying to control
	were correct.	it.
C7	CHR: 1	CHR: 8
	Comments:	Comments:
	The controls were tuned very well	The right inceptor setting a speed
	IMO, except for a minor complaint, it	doesn't seem to be consistent. I set a
	was my own human error that took	speed, and it holds that speed for a few
	some adjustments. Pirouetting to the	seconds, then it starts decelerating, so i
	left was significantly more	try and correct it, but if I move the stick
	challenging than pirouetting to the	more than a minute amount it

Participant	Blue Sim	Red Sim
	right. When pirouetting to the left I	accelerates like crazy, either to the left
	found it more challenging to maintain	or right.
	altitude, the right inceptor seemed	
	less stable when rolling to the left, in	
	the sense it would be much easier to	
	accidentally push it forward or	
	backwards slightly, changing my	
	altitude, than when rolling right. To	
	the right it seemed much more stable.	
C8	CHR: 2	CHR: 1
	Comments:	Comments:
	There is an ideal lateral movement to	Lateral speed required very little input
	yaw rate ratio in there, and I believe I	to maintain at a constant speed, once
	reached this at least briefly. That was	moving this task was almost completely
	a stable flight condition that I felt in	rudder input.
	control of. Flying by looking at	
	references instead of staring at the	
	red tape significantly improved my	
	control. Automated altitude hold	
	would have been a helpful tool.	
C10	CHR: 2	CHR: 1
	Comments:	Comments:
	It took me a few attempts to get use	(None)
	to tilting the control stick while	
	turning the top for yaw control. After	
	a couple runs, it felt much easier to	
	do.	
	CHR: 1	
	Comments:	
	(None)	

Table C- 5. Precision Hover CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 1
	Comments:	Comments:
	Something that just crossed my	(None)
	mind is "Why are the controls not	
	setup similar to that of a DJI drone. I	
	would think that in hover mode that	
	would be the most user-friendly	
	option. That said, I have zero	
	rotorcraft/helicopter experience, but	
	it was on my mind.	
A5	CHR: 4	CHR: 3
	Comments:	Comments:
	Without changing the heading this	(None)
	task is exceedingly frustrating due	
	mostly to inexperience on my end	
	managing the throttle with no real	
	"brakes" so you had to gauge the	
	momentum properly to get over the	
	target box in the X/Y correctly. This	
	required consistent throttle inputs to	
	arrest my momentum during all	
	three attempts.	
A6	CHR: 1	CHR: 2
	Comments:	Comments:
	Both runs were adequate, however,	This task was able to be performed with
	the second was done in better time.	slight difficulty. The two factors that
	Controls felt good. Position hold did	made it difficult was the continued
	not seem to interfere. I did have to	lateral movement after releasing on the
	correct for altitude each run.	right inceptor and the position hold
		throwing me off.

Participant	Blue Sim	Red Sim
A7	CHR: 2	CHR: 7
	Comments:	Comments:
	This maneuver is very difficult	It was very difficult to maintain aircraft
	because of the constant manipulation	control when attempting to recover from
	of both inceptors. Even if you have	the "crab" into the hover. While it was
	them set in the same position, it does	easy to initiate the maneuver, it was
	not seem possible to complete the	hard to place the aircraft directly over
	maneuver within the specified	the target area initially.
	parameters because it requires	
	constant manipulation. In my	
	opinion, it would take extensive	
	practice to be able to adequately	
	complete the maneuver.	
A8	CHR: 1	CHR: 4
	Comments:	Comments:
	(None)	For this task, I prefer the old settings
		because they made it easier to stop and
		align with both hoverboards
		simultaneously. It was somewhat
		difficult to stop precisely aligned with
		the boards with the new settings.
B1	CHR: 9	CHR: 4
	Comments:	Comments:
	I struggled with maintaining altitude	At first, I had problems over shooting
	at points and often over then	the hover spot but it got better with each
	undershooting the aiming point.	attempt.
B3	CHR: 7	CHR: 4
	Comments:	Comments:
	I had the same problem with the red	Same as before, it was quite annoying
	simulator. When below about 2	trying to make small adjustments for
	knots ground speed, the aircraft is	both forward/backward and left/right
	programmed to auto center, instead	movement.
	of keep moving in the same	
	direction. This can get very	

Participant	Blue Sim	Red Sim
	frustrating when you are trying to be	
	very precise with your movements	
	and controller inputs.	
B4	CHR: 4	CHR: 4
	Comments:	Comments:
	Adding a small amount of forward	This is a timing issue again. The release
	thrust resulted in an immediate	for the controls needs to come at an
	forward motion that was somewhat	exact moment to make sure the pilot
	excessive.	does not blow through the course. I got
		better at it each time and was able to
		align it quick during the last trial.
B5	CHR: 2	CHR: 4
	Comments:	Comments:
	When performing this maneuver, it	I am not sure exactly what could be
	seems easier on the pilot task load	improved. I think a mechanism to help
	because they are different controls	with stopping the aircraft so that there
	for each of the dimensions that are	was less of the back and forth to get it in
	used.	the squares and just let it come to a rest
		would be easier because then it would
		be anticipated rather than just hoping it
		comes to a rest after meddling back and
		forth so much.
B6	CHR: 2	CHR: 2
	Comments:	Comments:
	Good controllability. Training will	Easy task and easily controllable. No
	always make it better, but overall,	issues here. Maybe could be slightly less
	pretty easy with this aircraft to fly	sensitive when coming to a stop or
	this maneuver.	making small corrections, but overall
		good and much better than last time.
B7	CHR: 3	CHR: 4
	Comments:	Comments:
	In most other ways, this sim feels	When the yoke was pushed at a 45-
	more intuitive as a pilot than the last.	degree angle, I felt as though the aircraft
	However, along a diagonal line it is	

Participant	Blue Sim	Red Sim
	difficult to mentally divide the task	moved faster laterally than it did
	of having to apply longitudinal	forward and aft.
	controls in the left hand and lateral	
	controls in the right.	
B8	CHR: 1	CHR: 4
	Comments:	Comments:
	(None)	Difficult to determine when to stop and
		correct for further movement
		horizontally.
B9	CHR: 4	CHR: 4
	Comments:	Comments:
	The aircraft takes time to slow down	It was difficult to hold exactly a 45-
	from 6-10 knots in the forward	degree angle at 6 to 10 knots and come
	direction, so it would take practice	to a stop without having to correct for
	to know when to let off the throttle	overshooting the target in both
	control to have it stop at the right	directions. The forward and sideways
	spot. I had to keep correcting	movement on a single control stick
	backward to the right position. This	seems more intuitive compared to the
	is a consequence of having the	Blue Sim with the two separate control
	controls on separate handles also.	sticks. The previous version of the Red
		Sim seemed to come to a stop when the
		right control stick was set to neutral. I
		seemed to better control the aircraft with
		that instead of having to put a good
		amount of opposite direction input to
		stop the movement.
B10	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	Position hold needs some minor	(None)
	tweaking to get rid of the saddle-like	
	motion there is some minor	

Participant	Blue Sim	Red Sim
	overshoot for roll and forward	
	commands.	
C4	CHR: 1	CHR: 5
	Comments:	Comments:
	I found that I did not need to move	The precision hover is easier in the red
	the left controller forward very	sim than the blue sim. Although it was
	much compared to the right on this	still very difficult to come to a complete
	task. It took a few tries to learn the	stop without need for corrections.
	correct proportions for each stick to	Starting off in the correct direction was
	move in 45 degree forward.	seemed also difficult to get consistent.
		In my opinion, adding a grid on the
		"INCEPTOR POS/ CLAW
		SUMMARY" graph screen and the
		ability for the indicator to move along
		with the forward and backward
		movement of the controller would make
		this task much easier.
C5	CHR: 8	CHR: 4
	Comments:	Comments:
	The world load was quite a lot as the	Again, slow to respond to controls. The
	diagonal direction required multiple	side wise movement is little weird to
	movements. Some automatic	control.
	stability control would be better.	
C6	CHR: 2	CHR: 3
	Comments:	Comments:
	Had to make sure my throttle,	It wasn't as disorienting as the ones
	altitude and heading was correct.	before. But still a bit harder to control.
	Rest was good.	Any maneuver that does not require
		control of both joysticks feel easier.
C7	CHR: 5	CHR: 8
	Comments:	Comments:
	The crab maneuver was very	The cruise control setting on forward
	challenging because the airspeed	and horizontal speed is really
	acceleration with the left inceptor	challenging to figure out and isn't very

Participant	Blue Sim	Red Sim
	was not very intuitive and seemed	intuitive. Had to make a ton of
	exponential instead of linear. I	corrections just to get the plane to stay
	started to figure out somewhat of a	in the desired spot.
	balance on my last attempt.	
C8	CHR: 2	CHR: 1
	Comments:	Comments:
	Crabbing without requiring yaw	Very simple to command diagonal
	input is amazing but strange. This	motion since the directions are on the
	situation makes me with forward/aft	same joystick.
	was on the y axis of the joystick	
	instead of the left hand, it would	
	make it easier to coordinate lateral	
	and forward motion in this context.	
C10	CHR: 2	CHR: 1
	Comments:	Comments:
	Forward control felt very sensitive	It takes a little getting used to
	initially, but after adjusting to that,	maneuvering to cancel out horizontal
	the task was much easier to	velocity, but I think I prefer this
	complete.	compared
		to blue sim.
	CHR: 1	
	Comments:	
	(None)	

Table C- 6. UAM Mission TransToFwd CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 4
	Comments:	Comments:
	I found it difficult to implement	As previously stated, the controls are
	rudder usage into my turns based on	quite touchy, and I found it difficult to
	the sensitivity of the yaw control. It	anticipate control movements especially
	seemed as if any time I would make	close to the ground when it becomes
	a rudder input, it would make things	important for precise inputs.
	considerably more difficult.	
A5	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
A6	CHR: 1	CHR: 3
	Comments:	Comments:
	Transition felt stable. Flight	Initially learning what inceptor input
	characteristics felt stable and easy to	related to each flight control was
	manipulate.	slightly difficult and resulted in slight
		oscillations of a vertical speed and
		lateral movement of the aircraft. Once I
		understood the controls it overall was
		not too difficult. Transition to forward
		flight in this sim seemed slightly harder
		to control.
A7	CHR: 1	CHR: 1
	Comments:	Comments:
	The transition from a hover to	overall, the real-world application
	forward flight is very smooth and	during the last task was significantly
	easy to complete. The only	easier to complete as opposed to
	deficiency I noticed was when the	relatively static maneuvers/tasks.
	lift propulsors stopped, and the	
	propeller in the rear of the aircraft	
	began operating, the transition in	
	terms of flight control authority did	
	not seem quite as smooth as it could	

Participant	Blue Sim	Red Sim
	be. However, overall, it is very easy	
	to transition to forward flight – the	
	minor deficiency did not prevent me	
	from maintaining positive control of	
	the aircraft.	
A8	CHR: 4	CHR: 2
	Comments:	Comments:
	When speeding up, path priority and	At one point during the transition and
	speed priority kept switching back	climb, I saw the speed priority thing pop
	and forth which threw me off a bit.	up and it caused the aircraft to pitch
		down aggressively, that is the only
		minor deficiency I noticed.
B1	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
В3	CHR: 2	CHR: 1
	Comments:	Comments:
	Very well put together. The	I would change the throttle input to
	transitions between hover and	something else and keep the bank and
	forward flight can be a bit weird,	pitch on the control stick like every
	however that just takes getting used	other aircraft in the world. Otherwise,
	to.	very well done, aircraft flies very well.
B4	CHR: 3	CHR: 1
	Comments:	Comments:
	When transitioning to forward flight,	(None)
	there may need to be more	
	notifications and advisories to allow	
	the pilot to prepare for better control	
	inputs ex) audible alerts. A	
	systematic approach such as a	
	checklist for the steps to transition	
	into forward flight can help greatly.	
	Also, the pink airspeed arrow was	
	not showing an adequate airspeed to	

Participant	Blue Sim	Red Sim
	continue in a forward climb,	
	therefore I added more airspeed than	
	recommended.	
B5	CHR: 2	CHR: 2
	Comments:	Comments:
	(None)	Overall controlling the aircraft from
		hover to forward flight was well. Just
		have to remember that the right control
		stick is for speed while the left is for
		altitude (which I would sometimes try to
		use one for the other, but it was not an
		unsafe action). Most of the transition is
		straightforward; there is good movement
		without precision but enough to get to
		the flight plan accurately.
B6	CHR: 1	CHR: 1
	Comments:	Comments:
	Very controllable - but not too	Takeoff and transition to forward flight
	sensitive. Also, very intuitive.	was great. Easy, intuitive, controllable,
		and I wouldn't change anything or have
		any recommendations.
B7	CHR: 6	CHR: 1
	Comments:	Comments:
	The aircraft was controllable, and	The aircraft smoothly transitioned from
	the mission was accomplished with	vertical flight mode to forward flight
	minor control corrections, however,	mode. Really no additional comments
	the aircraft had multiple oscillations	other than I wish the ""FLIGHT""
	in terms of vertical speed (1,500ft+	operating mode indicator was broken
	within a matter of milliseconds). In	down into both forward and vertical
	real life, this is not survivable for	flight for easier indications. Think that
	passengers, and all occupants would	this would increase pilot awareness of
	endure significant g-loading.	operating mode.
	Second, there was an annunciator	
	that got stuck during the transition	

Participant	Blue Sim	Red Sim
	(speed priority + path priority) it	
	seemed to be some sort of a	
	glitch/oscillation between modes.	
B8	CHR: 4	CHR: 2
	Comments:	Comments:
	Lag between pitch input and output.	(None)
B9	CHR: 5	CHR: 3
	Comments:	Comments:
	When transitioning between vertical	The takeoff controls seem intuitive, and
	to forward flight, there is a point	it is very easy transition from vertical to
	around 120 kts forward speed that	forward flight. The controls of airspeed
	requests a pitch up. However, during	on the right stick seems counter intuitive
	that phase, a pull up was not	once it is in forward flight mode as I
	possible or it would oscillate from	found myself wanting to pull back to
	an exaggerated pitch up to no pitch	increase vertical speed which resulted in
	even though I had little input	a decrease in forward speed.
	change. This could be caused by the	
	controls changing from continuous	
	input to hold a speed or pitch to	
	using input to set a pitch or speed.	
B10	CHR: 3	CHR: 2
	Comments:	Comments:
	(None)	(None)
C1	CHR: 1	CHR: 1
	Comments:	Comments:
	I think the guidance computer was	All great!
	trying to guide me right into the wall	
	the very first time. Otherwise, great.	
C4	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	(None)
C5	CHR: 3	CHR: 4
	Comments:	Comments:
	(None)	

Participant	Blue Sim	Red Sim
		The aircraft rate of ascent was not as
		fast as i intent to give as input.
C6	CHR: 3	CHR: 3
	Comments:	Comments:
	(None)	Transition to forward flight was easy for
		me. It does not require too much effort
		from my side.
C7	CHR: 3	CHR: 3
	Comments:	Comments:
	"Transitioning to forward flight was	The cruise control is not intuitive.
	relatively intuitive and easy. It was	
	definitely an adjustment from direct	
	upwards and downwards with the	
	right inceptor to affecting the pitch	
	angle with the right inceptor. "	
C8	CHR: 5	CHR: 1
	Comments:	Comments:
	At the 150 knots section, there is a	Transition was almost unnoticeable:
	runaway increase in vertical speed if	incredibly smooth and in-control
	the nose is pushed slightly too high,	feeling.
	requiring a correction and then	
	safeguarding to not pass that point	
	again. This occurred twice one after	
	another in my run.	
C10	CHR: 2	CHR: 1
	Comments:	Comments:
	I believe the issues I had on	(None)
	departure were all user related. The	
	aircraft responded well to inputs and	
	felt easy to control.	

Table C- 7. Heli Approach CHR and participant comments

Participant	Blue Sim	Red Sim
A4	CHR: 4	CHR: 4
	Comments:	Comments:
	Transition from airplane to hover	The handing of the aircraft in cruise
	mode was difficult to control. I often	mode was rough. The concept of the left
	found myself chasing the control	stick controlling altitude was quite
	bars on the approach to land and	foreign and I often caught myself using
	found it better to ignore them and	the R stick to try and change altitude,
	look outside.	the heli landing made sense in terms of
		control inputs.
A5	CHR: 2	CHR: 10
	Comments:	Comments:
	The speed transition from forward	Aircraft entirely over speed with no real
	flight back to the hover is not very	way of slowing on the descent profile
	intuitive as the auto throttle in FWD	request by the avionics. Had no real way
	flight holds the commanded speed,	of slowing even with following its speed
	but then when you transition into the	prompting and it just would not stop nor
	vertical that system disengages, and	transition into a hover to enable a
	you have to manually do it. Overall	landing. Having the throttle be the same
	excellent control setup for the task.	inceptor controlling my course made
		speed management very difficult.
		Combined with my inexperience in rotor
		wing aircraft this was not a good set up
		for me personally.
A6	CHR: 3	CHR: 2
	Comments:	Comments:
	While transitioning to a lower speed	Maneuvering with the right inceptor was
	the flight control command became	slightly difficult to control and keep
	sensitive. I got into an oscillation of	track of due to the adjustment of speed
	side to side; however, it was	and movement in the same control.
	recoverable with smaller control	Landing, however, was not that difficult
	inputs. Once hover mode activated	and could be done fairly easily. Landing
	the control command felt more	in this sim seemed easier than the other.
	stable.	

Participant	Blue Sim	Red Sim
A7	CHR: 2	CHR: 2
	Comments:	Comments:
	On my first approach and landing,	The transition from en-route to approach
	for some reason I was unable to	was slightly more difficult. It was harder
	maintain positive control of the	to reestablish control after the aircraft
	aircraft and shot right past the	transitioned from forward flight to
	designated yellow square. After the	vertical.
	sim was reset for an approach and	
	landing, and even during the second	
	circuit, I was definitely able to	
	maintain positive control of the	
	aircraft and maintain the designated	
	speeds, and altitudes prescribed by	
	the flight path manager, allowing me	
	to land on the designated box. One	
	of the main	
	recommendations/comments I have	
	for this system would be to include	
	some form or fashion of a	
	Horizontal situation indicator (HSI)	
	or include a course deviation	
	indicator (CDI) on the existing	
	heading indicator. That will give the	
	pilot an accurate representation of	
	left or right deviations off of the	
	course, as opposed to just the flight	
	director on the PFD.	
A8	CHR: 4	CHR: 1
	Comments:	Comments:
	Roll was somewhat unstable when	(None)
	slowing down in hover mode. Small	
	roll inputs would cause a lot of	
	oscillation.	

Participant	Blue Sim	Red Sim
B1	CHR: 2	CHR: 4
	Comments:	Comments:
	Slowing down the aircraft was a bit	On the first approach, I struggled with
	hard as both times I overshot the	landing the aircraft. I did not realize that
	approach area. However, I improved	I needed to use the left and right stick.
	greatly from the first approach to the	The left to enter ground mode and right
	second.	to reduce the speed to zero.
В3	CHR: 2	CHR: 1
	Comments:	Comments:
	Like said previously, very well put	Same thing I mentioned previously. I
	together. The transitions are a bit	would make pitch and bank on the
	weird at first, but with practice they	control stick and put throttle on a
	become more manageable and	different controller. Otherwise, very
	predictable. I just had to keep in	well made and the aircraft flies very
	mind small bank movements or else	well.
	you'll get out of control.	
B4	CHR: 5	CHR: 7
	Comments:	Comments:
	I do not know if the simulation	The directions for transitioning from
	airspeed is taking into account	forward to hover mode may have been
	forward, or real airspeed regardless	unclear.
	of movement on any axis. The	
	transition was somewhat difficult to	
	vertical mode because of the	
	excessive descent rate required.	
	Additionally, the airspeed was not	
	slowing down quick enough to	
	figure out a good sight picture for an	
	optimal landing point.	
B5	CHR: 2	CHR: 2
	Comments:	Comments:
	On the arrival phase, the only	Besides crashing the first time because I
	portion that was not as simple was	got a little bit off the airspeed at the end,
	coming in on the final approach	the approach was stable (especially the

Participant	Blue Sim	Red Sim
	sequence after the barrier. Going	second time). The flight director guiding
	from airspeed to altitude increased	is helpful to know how much input to
	the workload because you are	use to transition to the approach phase.
	focusing more on both to make it to	It is a little difficult to know how much
	the touchdown spot without wanting	airspeed input is needed because it
	to be short or go over.	would hold the airspeed but at the end, I
		had to put constant pressure to maintain
		10-15 knots (whereas before I could be
		at it and it would hold on its own).
		Maybe because it was slow and
		continuing it would not hold but I'm not
		sure. Altitude was not a problem during
		the approach stage, and it was helpful to
		have that flight director as well.
		Controls for the altitude are well (I like
		the setup of the left side controls over
		the configuration of those on the right).
B6	CHR: 2	CHR: 4
	Comments:	Comments:
	Very controllable, BUT I found that	I think it was so much better and way
	the flight director does not really set	more controllable than last time on
	you up to land at the correct time at	landing. It seems recommendations
	the approach area, so after crossing	really were applied because I have
	the obstacle I had to plan on my own	noticed today that all my major issues
	how to hit the point. The first time I	from last time have been resolved or
	overshot because I was following	significantly improved. The last aircraft
	the flight director, but the second	is one I would never set foot on in real
	time I figured it out. Maybe the	life. This one I would with training, and
	flight director can be adjusted I do	I think that says a lot. I still think the
	not know, but the controllability was	controls could be a little less sensitive
	really good.	(especially in slow phases of flight such
		as landing) but honestly this is solid. I
		don't have many recommendations. It's
		intuitive and controllable. Just a little

Participant	Blue Sim	Red Sim
		less sensitive maybe on the directional
		controls and vertical controls.
В7	CHR: 2	CHR: 10
	Comments:	Comments:
	AC was controllable, and mission	On the approach to landing phase, there
	accomplished. Only issue was in	were multiple problems: 1. The aircraft
	terms of vertical and horizontal	stalled multiple times during the
	guidance. Guidance took the aircraft	transition. To avoid this, an angle of
	about 40-50ft left of the ""landing	attack indicator should be installed in
	pad"". Other than that, this phase	the aircraft. There also needs to be better
	had no issues and was quite easy to	indication as to which mode the aircraft
	fly.	is flying in (vertical/forward flight). 2.
		The aircraft is extremely difficult to
		control PRECISELY. This is due to the
		inherent instability of the aircraft. If this
		aircraft is to be used for
		transportation/training purposes, the
		maneuverability of the plane should be
		replaced with stability- both dynamic
		and static.
B8	CHR: 4	CHR: 2
	Comments:	Comments:
	Minor disconnect between input and	(None)
	output, necessary to anticipate	
	corrections	
B9	CHR: 4	CHR: 4
	Comments:	Comments:
	Q3- Again during the transition	It was difficult to reduce forward speed,
	when the lift motors turn on, there is	turn, and descend all at the same time.
	an instance where pitch down (or	The approach procedure requires zero
	descend) input does not produce a	vertical speed after clearing the wall to
	descent. Once it slows down	enter the hover mode. It seems that it
	enough, it is controllable as	should still reduce forward speed until 0
	expected. Q4- During the forward	even while descending. Once I was able

Participant	Blue Sim	Red Sim
	flight, I think it would be better to	to figure that out, it was a fairly easy
	keep the controls continuous input to	transition from forward to vertical flight
	hold a bank or pitch. This seems	to land.
	more appropriate. Also holding a	
	turn or bank for a while can make a	
	person seem like they aren't turning	
	anymore without external	
	references. Therefore, a continuous	
	input to hold bank seems safer.	
B10	CHR: 8	CHR: 1
	Comments:	Comments:
	I struggled to follow the flight	There was some difficulty in the descent
	director on the final approach. I also	portion of flight while trying to use the
	struggled to pitch up when it began	right-hand inceptor to slow down as
	to sink.	well as turn. It was manageable but it
		provided a little extra difficulty. The
		Red sim using the 2 different control
		sticks to pitch, and bank made
		controlling the aircraft a little more
		complicated than just the one in the
		Blue sim. Having the thrust controlled
		on the same stick as the bank control
		makes controlling the aircraft near the
		ground a little easier but when
		descending and trying to set up for
		landing it can be challenging.
C1	CHR: 3	CHR: 1
	Comments:	Comments:
	When airspeed is around 50-	1. when I was flying the blue sim, I had
	60knots, and I give about 5-10	an issue when aircraft was getting
	degrees pitch down, any small	slightly unstable in roll during approach
	lateral/roll command causes seem a	(at certain airspeed, don't remember).
	little unstable and you have to fight	With the red sim, I have not yet
		encountered this issue, but the approach

Participant	Blue Sim	Red Sim
	the control system a bit to maintain	is also different now 2. Nav. is still
	roll/heading.	trying to kill me, or I just did not
		understand how it works: apparently, I
		should not try to match the commanded
		airspeed with the one it wants me to
		follow, but command whatever it takes
		to bring the real airspeed to the one
		suggested by the Nav. Otherwise, this
		version is a lot easier to fly than the blue
		sim.
C4	CHR: 1	CHR: 1
	Comments:	Comments:
	(None)	This task was much easier to complete
		than last time I did the red sim. Overall,
		I prefer the controls of the red sim over
		the blue sim. After transitioning to
		hover, the control instructions for speed
		were insufficient to get to the landing
		pad. I had to go over the recommended
		speed to approach properly and land.
C5	CHR: 8	CHR: 9
	Comments:	Comments:
	Controlling speed with altitude is	Doing multiple inputs to control the
	slightly tricky without lot of	landing was intensely difficult as both
	practice. Some automatic	speed and direction needed to be
	controllability over at least one	controlled.
	parameter would make it easier.	
C6	CHR: 10	CHR: 10
	Comments:	Comments:
	Approach to land was difficult. Felt	It was difficult. I had to control all three
	dizzy. Had to constantly make sure I	areas of joystick power, altitude,
	was within the magenta marker; it	turning. It was a lot harder than the ones
	was the most difficult task.	before. I would take Blue sim over red
		sim if I had to do it again. It seems more

Participant	Blue Sim	Red Sim
		intuitive and less cumbersome for me.
		Overall, it was an okay experience with
		the red sim.
C7	CHR: 3	CHR: 9
	Comments:	Comments:
	The landing was significantly more	The braking seemed to be nonexistent. I
	challenging, IMO because the bars	set the green arrow to the same speed as
	and purple flight speed marker were	the magenta one, but the plane
	not very intuitive. I tried to follow	decelerated extremely slowly, and on
	the speed and bars exactly and	first approach I went clear past the
	overshot the landing every single	landing zone. On the second try I
	time. It was only when I intuited an	ignored the magenta arrow and started
	airspeed and descent angle was I	braking way in advance and was able to
	able to land perfectly with very little	land adequately.
	adjustments.	
C8	CHR: 3	CHR: 1
	Comments:	Comments:
	downward view is limited, making	Less descent instability in flight mode
	the landing target difficult to see	than in hover mode.
	during final stages of landing, and	
	difficult to reacquire if passed over.	
	I experienced a guidance error	
	where the magenta cross instructed	
	me to circle waypoint CDS three	
	times. I had to disobey the guidance	
	and reapproach the waypoint to	
	proceed to the next. The moment of	
	initiation of the wing propellers is a	
	little awkward/shaky but did not	
	require significant input control to	
	correct.	
C10	CHR: 2	CHR: 1
	Comments:	Comments:

Participant	Blue Sim	Red Sim
	Like departure, I felt like most of my	It would have been better to have some
	issues were user related and not with	type of map markers to fly around.
	the aircraft. Aircraft was easy to	Following the magenta cross made it a
	control after being familiar with the	little difficult to recover after getting off
	maneuver.	profile and I lacked the awareness of
		exactly where I was in relation to the
		landing area after my error in getting off
		profile. The aircraft felt great to fly after
		getting use to altitude controls.