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Chapter 1 Overview of the Completed Research Studies 

Inspection and maintenance play a vital role in ensuring the safety of commercial trucks and trailers 

within a fleet, effectively reducing accidents and mitigating financial losses. Trucks and trailers are subject 

to a patchwork of state and federal safety inspections that manually and periodically check safety 

components like tires, brakes, and lights through planned or unannounced roadside inspections. It’s 

possible that a vehicle drives on the road until the next inspection resulting in a lack of immediate 

inspection and maintenance. Moreover, inspections delay deliveries and increase costs regarding 

commercial fleets. Current inspection programs still need improvement in reducing unnecessary 

inspections, such as vehicle inspections in safe conditions.        

Aiming to improve the safety of trucks and trailers and reduce costs due to inspections, the researchers 

proposed a predictive inspection planning program to predict the risky vehicles and components and only 

target them for inspection (Figure 1). In this way, the risky components can obtain immediate inspection 

and maintenance while the fleet can save unnecessary inspections on safe vehicles. 

The project aims to enable targeted inspection and maintenance of commercial tractors and trailer 

fleets by a vehicle deterioration digital twin that integrates historical inspection records and real-time 

sensor data for predicting high-risk vehicles and components. Such a vehicle deterioration digital twin 

should support prioritizing vehicles and vehicle components for inspection and maintenance to balance 

fleet safety, mobility, and maintenance costs. Specific objectives of this study include: 1) generate process 

digital twins from inspection data and sensor logs of telematics system; 2) generate inspection plans for 

truck and trailer fleets; 3) prioritize potential component violations mostly involved in the crashes and 

approach safety agencies and fleet managers for identifying the potential of telematics. The research 

questions are: 1) what data analytics architecture can effectively organize and visualize vehicle 

information for better fleet management? 2) what inspection planning method can provide reliable 

inspection plans that improve safety while minimizing inspection costs? 3) what types of component 

violations are more likely to cause crashes, and what are the potentials of applying telematics? 



 

Figure 1. Framework for the predictive inspection planning 

Chapter 2 Generating Process Digital Twins from Vehicle Inspection Data 

2.1 Introduction 

The project aims to develop a predictive inspection planning model to generate reliable inspection 

planning that ensures vehicle safety with a few costs. The inputs of the predictive inspection planning 

model include the trucks and trailers’ properties (e.g., vehicle make, age) and inspection data (e.g., brake 

pad thickness, tire tread depth), which are collected from the physical fleet. The predictive inspection 

planning model is in digital space, while the fleet is in the physical world. Therefore, a platform that can 

interact between the physical and virtual spaces is essential. The platform must take in data from the 

physical fleet and store and process the information to generate the optimal inspection plan and guide fleer 

management. Digital twins could be a solution, which is defined as “a virtual representation of a physical 

system (and its associated environment and processes) that is updated through the exchange of information 

between the physical and virtual systems [1].” The digital twin can take in the fleet information from the 

physical fleet, build a virtual one on the computer, and conduct analysis to calculate the optimal inspection 

plan. The virtual trucks can also be updated along with the changes in the real world. Therefore, the project 

aims to propose a framework for building digital twins of the truck fleet to build a virtual space for 

calculating the optimal inspection planning. 

Besides the inspection data collected from the fleet under management, data from other sources can 

also provide valuable information for fleet management. The project obtained heavy-duty trucks and 
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trailers’ inspection data from CompuSpections (renames in 2022 as “Safety Emissions Solutions”) and 

Motor Carrier Management Information System (MCMIS) and create dashboard-like summaries of them 

in order to provide stakeholders with fast access to better information. For example, the dashboard will 

show managers the most failure-prone components of heavy-duty vehicles. In support of this effort, we 

will develop data analytic methods to operate on the large historical data archive to identify features such 

as trends associated with safety component failures (e.g., brakes, tires, or lights). However, the failure-

prone components are different for vehicles with different properties, operation environments, and driving 

behaviors. Suppose we have a list of failure modes that point to component defects or operation problems 

in vehicles and carriers with certain background features and driving behaviors. In that case, inspectors 

can inspect vehicles customized and strategically with a more efficient pipeline. Meanwhile, drivers and 

fleet managers from carriers can also benefit from this failure mode identification because they can pay 

more attention to sensitive and fragile components. Another challenge comes from limited data sources 

information. For example, MCMIS Catalog contains detailed descriptions of the violations found during 

vehicle inspections while having no detailed mileages of vehicles [2]. On the other hand, some commercial 

vehicle inspection companies maintain databases that capture detailed mileage while only mentioning the 

problematic vehicle components without detailed descriptions of the violations [3]. So cross-database 

analysis can overcome information absence problems and embodies failure mode analysis in a more 

complementary and comprehensive way. The researchers aim at a more comprehensive failure mode 

identification from two databases that contain complementary inspection records for capturing different 

information related to the deterioration trends of various commercial vehicles. The research team used 

two historical inspection datasets to summarize violation patterns among various vehicle features or 

components. We introduce K-means clustering and Latent Dirichlet Allocation models to identify failure 

modes based on information integration cross-database. Finally, we used violation counts or probability 

as performance metrics to evaluate failure modes’ effectiveness in identifying groups of vehicles of high 

risk. (KMeans and LDA advantages) 

In this chapter, the researchers aim at developing a platform for building digital twins of fleet, which 

can store and visualize the information of the fleet under management, the historical dataset from other 

sources, and integrate the predictive inspection planning.  

2.2 Related work 

While legislators are trying to simplify and humanize the inspection process of inspections, motor 

carriers should also focus on self-inspection and real-time monitoring to avoid being cited or given a score 



below average on FMCSA Safety Measurement System. Besides the argument of the effectiveness of 

inspection programs, identifying each component’s violation probability and crash risk probability can 

improve carriers’ safety and efficiency performance. Randhawa et al. [4] found the most often cited 

component in incidence reports. They reviewed 3,600 selected police reports from six states, and brakes 

are reported as a major cited mechanical factor with 1.7% of involvements. Then comes components such 

as tires, wheels, coupling, and load securement, all at about 0.4%. Daniel Blower et al. also examined the 

relationship between the mechanical condition of heavy trucks and crash involvement [5]. They used the 

Large Truck Crash Causation Study (LTCCS) to test if trucks with defects and out-of-service (OOS) 

conditions were statistically more likely to be involved than trucks without these conditions. They also 

found that violations in the brake system (36% of all) and the lighting system (19%) were the most 

frequent, and violations related to brake adjustment increased the odds of the truck’s being the striking 

vehicle by 1.8 times. Above all the discussion focusing on mechanical factors, researchers emphasize the 

importance of component healthy conditions with brakes, lights, and tires. But how valuable it is for 

different makes of vehicles and carriers with different operation patterns to schedule self-pre-trip 

inspections or install real-time monitoring devices like telematics remains unknown.  

Failure mode identification can provide a tool for drivers and fleet managers to navigate through 

different combinations of critical vehicle components in various vehicles to avoid high-risk vehicle 

operation scenarios. Researchers used statistical approaches to identify individual high-risk vehicles from 

annual safety inspection records. Zheng et al. [6] tried a gradient boosting data mining model to evaluate 

several factors’ relationship with crash injury severity. They classified the crash severity into four different 

categories. They concluded that wet road surfaces, bad visualization (dark or low light conditions, or 

fog/poor weather conditions), a strong crosswind, heavy gross vehicle weight, and collisions with opposite 

traffic would increase the likelihood of more severe outcomes. Liang et al. [7] tested the effectiveness of 

safety roadside inspections by exploring accidents caused by reduced caution in driving and lack of vehicle 

maintenance. They also applied a classical case in economics by Becker’s research [8] to point out that if 

motor carriers or fleet managers are aware of this regulation, such practices will undermine the 

effectiveness of the regulation by reducing their compliance. Unfortunately, these studies have not yet 

traced how vehicle component defects interact with other features such as age, mileage, and vehicle 

properties, leading to high-risk operation scenarios and crashes. 

The contributions of the paper include: 1) generalizing failure modes from millions of vehicle 

inspection records; 2) revealing distributions of different background features (such as age, mileage, and 



urbanity) in each mode; 3) synthesizing text recording into failure topics that represent a specific failure 

mode found during random roadside inspections. 

2.3 Methodology of Generating Digital Twins of Vehicle Deterioration Processes 

The project proposed a framework of the fleet digital twins as shown in Figure 2. The fleet digital 

twins include three major functions: 1) the visualization and lesson learning of historical dataset, 2) the 

training process of the predictive inspection planning model, and 3) the visualization of the fleet 

information and the generation of the inspection plan. The digital twin will store the historical dataset 

from DOT, inspection stations, and other stakeholders and visualize and analyze them to summarize 

lessons for fleet managers to have a better understanding of how to manage and maintain the vehicles. 

The historical database can also be utilized in training the inspection planning model, in which the lessons 

are feed in the model. Then the model can obtain the fleet information from the physical space to diagnose 

and prognose the vehicles’ condition and finally generate inspection plans. The works can operate 

inspection and maintenance actions in the physical world according to the inspection plan generated from 

the digital space.  

 
Figure 2. Framework of the fleet digital twins 

In this chapter, the researchers focus on interpreting the visualization and lesson learning of historical 

dataset and the visualization of the fleet information and the inspection plan. The models under for 

generating inspection plans will be explained in the following chapters. 



2.3.1 Inspection data from the fleet under management 

The project delivers an interface for uploading fleet information and generating inspection plan, as 

shown in Figure 3. The fleet manager can type in the trucks and trailers’ information one by one or upload 

a formatted CSV file with information of all vehicles in the fleet. Then by clicking on the “Save”, 

“Process”, and “Result” buttons in a row, the manager can save the fleet information, make the model 

start processing the data, and obtain the inspection plan. 

 
Figure 3. Interface for uploading fleet information and generating inspection plan 

The project also developed a dashboard for presenting the inspection plan, as shown in Figure 4. The 

dashboard presents the rank of vehicle components by inspection priority and marks the components need 

inspection with red flags. By clicking on a specific component, the vehicle information like vehicle make, 

age, current condition, etc. will be presented. After presenting the vehicle information, the dashboard also 

presents the reasoning process of how the computer decides whether the component need inspection 



according to the vehicle information. Since vehicles with different properties, driving environments and 

driving behaviors have different deterioration patterns, the dashboard shows the component’s 

deterioration pattern. In addition, the dashboard derives similar vehicles from the historical data of the 

fleet under management and the historical data from other sources to see whether such vehicle needs 

inspection according to the experience in the historical data. If the inspection plan suggests a specific 

component need inspection and most of the similar cases in history need inspection, then the inspection 

plan is highly validated. 

 

Figure 4. Dashboard for presenting the inspection plan 

2.3.2 Historical dataset from other sources 

In this paper, we utilized historical truck inspection data from different sources to explore potential 

failure modes behind historical inspection records. The first sub-section below describes data 

preprocessing pipelines defining reasonable time ranges and validating correct inspection records. The 

second sub-section introduces clustering methods, such as K-means clustering, and latent Dirichlet 

allocation methods applied to different datasets to cluster multiple failure modes based on descriptions 

and topics extracted from inspection records. Figure 5 shows the overall framework of the proposed 

method.  

 



Data Sources and Preparation 
This research uses two vehicle inspection databases. The first is a database maintained by a privately 

owned IT contractor in Pennsylvania. In many states, such as Pennsylvania, inspection data are collected 

by the state government and privately owned IT contractors and inspection companies. CompuSpections, 

LLC (renamed into “Safety Emissions Solutions” in 2022, to keep consistency, still call the dataset 

“CompuSpections dataset” hereafter) is a privately owned IT service company incorporated in 2003. Their 

work includes over 30 years of performing State Inspections and creating record management software 

services for inspection stations. Their software service, SIRPAWeb, is designed for Pennsylvania vehicle 

safety inspection stations for recording and printing accurate and uniform MV-431/480 safety inspection 

forms.  

 

 
Figure 5. Research Process Designation. 

MCMIS (Motor Carrier Management Information System), maintained by FMCSA. MCMIS is a 

source for FMCSA inspection, crash, compliance review, safety audit, and registration data [9]. From that 

database, multiple tables are used to extract useful information for each inspection with violations. These 

tables include the INSPECTION table, UNIT table, VIOLATION table, and INSP SUPP VIOLATION 

table. 

Because different inspection stations and inspection agencies have their naming and recording 

regulations, dataset checks, transformation, and loading processes are essential for further analysis. 

Checking regulations will be introduced in the validation experiment design section to clean all invalid 

inspection records and filter commercial vehicles that are heavy-duty tractors or trailers. A dataset attribute 

summary is provided in Table 1. 

 



Table 1. Data Summary for Two Different Sources 

 Compuspections MCMIS 

Dataset 

Description 

Inspection records that use 

Compuspections software service in 

Pennsylvania  

Inspection records conducted by state 

personnel under the Motor Carrier Safety 

Assistance Program (MCSAP) 

Data Source 

Collected by Compuspections software 

service, SIRPA Web Captured by FMCSA through SAFETYNET 

Inspection 

Type Annual Periodic Inspection Random Roadside Inspection 

Date Range 2007 - 2021 2021 

Data Type 

Vehicle identification number (VIN), 

make, model, model year, binary 

inspection geographic information, 

inspection overall result and 

component results, vehicle odometer 

reading 

Vehicle identification number (VIN), make, 

model, model year, non-binary inspection 

geographic information, inspection overall 

result and component results, inspection 

defect descriptions 

 

As for urbanity classification for registered vehicles in the Compuspections dataset, this research used 

the Urban-Rural classification scheme provided by The Center for Disease Control’s National Center for 

Health Statistics (NCHS) [10]. This scheme distinguishes urban and rural areas into six categories, from 

Type 1 as most urban to Type 6 as most rural. After that, we used the 2010 Census data to assign the 

NCHS classification to all the counties shown in the dataset [11]. 

 

Inspected Vehicles Failure Mode Identification 
 

Given that historical inspection records are high-dimensional and have unstructured values for some 

attributes (e.g., text descriptions of violations), generalizing thousands of inspection records into failure 

mode clusters is necessary but challenging. According to research by D. Peck et al. [12], the inspection 

failure rate is related to three parameters such as urban/rural county classification, age, and odometer 

reading. M. Beydoun also suggested that mileage, age, weight, and vehicle make such as Chrysler, Ford, 

GM, Hyundai, and Mazda have significantly impacted estimations for testing emission failure on 

passenger vehicles. Based on all the recent research, this research decided to organize different clusters 

based on vehicle information (e.g., mileage, age) and usage contexts (urban/rural county). 

This research considered all component inspection results in the CompuSpections dataset to divide 

datasets into different clusters and considered violation descriptions in the MCMIS database to divide 

datasets into various topics. Perr-Sauer et al.’s research [14] about commercial vehicle time-series data 



analysis with K-means clustering shows three steps of K-means clustering. These steps include 1) 

extracting the overall and each historical component inspection results in the Compuspections dataset; 2) 

applying the elbow method to find the best performance k values for the components inspection dataset. 

The Silhouette coefficient assisted in evaluating the performance of the clustering method; and 3) 

calculating the difference between each cluster’s average violation counts and the whole dataset’s 

violation count, summarizing the failure modes behind them.  

Regarding the fact that the MCMIS database has an individual file that records violation descriptions 

on the roadside, topic modeling is another technique that can help cluster inspection records specifically. 

This research adopted topic modeling techniques demonstrated in Subasish Das et al. [15]for processing 

the FARS database and NHTSA vehicle complaint database to test the effectiveness of state vehicle 

inspection. In the MCMIS database, the steps of establishing topic modeling in this research include 1) 

data prepossessing to clean violations unrelated to vehicle maintenance information. 2) tokenizing each 

paragraph, cleaning stop words, stemming, and lemmatizing words to get a final analyzable dataset about 

violation descriptions; 3) calculating the TF-IDF value to evaluate each word’s frequency and importance; 

4) distinguishing each vehicle’s failure mode by the recorded descriptions and LDA topic modeling. 

Figure 6 shows the proposed method combining the K-means clustering method and the LDA model for 

identifying each vehicle’s specific failure clusters/topics. 

 

 
Figure 6. K-Means Clustering Method and LDA Model Design for Compuspections Annual Inspection 

Dataset and MCMIS Random Roadside Inspection Database 

Since there exist fundamental differences between the recording formats of two data sources, the 

authors developed adaptive methods to identify failure modes. Compuspections count the number of 



defects from vehicles throughout the years, while MCMIS database uses text recording to describe what 

the defects are. Regarding this specialty, K-means clustering is more suitable for Compuspections dataset 

because all results are recorded in a number format. However, the LDA model can not only assigns the 

most probable topic to each vehicle, but also reflect which words are important in each topic. From there, 

inspectors and motor carriers can conclude the characteristics of vehicles once they have the historical 

random roadside inspection reports. 

 

2.4 Experiment Design 

2.4.1 Data Cleaning and Preprocessing 

Cross-analysis of historical inspection data from different inspection types is essential to estimate the 

optimal inspection timing interval for drivers and fleet managers. According to FMCSA (Federal Motor 

Carrier Safety Administration), four types of inspection are daily driver inspections, periodic/annual 

inspections, roadside inspections, and onsite compliance reviews. From all the inspection types above, 

periodic/annual inspections and roadside inspections are required by the federal or state departments of 

transportation and have relatively uniform inspection standards.  

Because different inspection stations and agencies have their naming and recording regulations, 

various checks, transformation, and loading processes are essential for further analysis. For cleaning all 

invalid inspection records and filtering commercial vehicles, heavy-duty tractors, and trailers, a checking 

regulation pipeline is designed, as shown below in Figure 7: 

 

 
Figure 7. Compuspections Dataset Data Preprocessing Flow Chart 

As for vehicle checks, this research first filtered commercial trucks and trailers and then used gross 

vehicle weight and plate number to exclude vehicles that were not heavy-duty tractors and trailers. There 

are also naming regulations for VIN numbers to check, such as total length, security check digit, and 

model year digit. All these naming regulations exclude invalid VIN numbers and corresponding illegal 

inspection records from further analysis. The last step is to exclude inspection records that are not correct. 



The algorithm excludes outliers from further analysis depending on the “passorfailedinspection” column, 

component test columns, odometer reading columns, brake thickness, and tire tread columns. 

The authors also performed a similar data preprocessing flow for the MCMIS database compared to 

CompuSpections data. We use “INSPECTION_ID” as a key to join the inspection table, unit table, and 

violation table, and “INSP_VIOLATION_ID” as a key to join the violation table with the violation 

supplement table so that we can combine each violation record with text descriptions. In addition, a similar 

VIN naming regulation check was manipulated as CompuSpections data to exclude incorrect VIN 

numbers from further analysis. For vehicle types and gross weight, the further investigation also only kept 

heavy-duty trucks and trailers. Only vehicle types related to trucks and trailers are kept according to 

“INSP_UNIT_VEHICLE_ID_NUMBER” column. What differs from the CompuSpections dataset is that 

the MCMIS database also recorded vehicle violations unrelated to component defects. So only 

maintenance violation codes related to components are chosen here. 

 
2.4.2 K-Means Clustering Algorithm 

Clustering algorithms can use various vehicle attributes or vehicles’ background features (e.g., 

mileage, age, and urbanity) to identify similar vehicles in multiple aspects. A good set of vehicle attributes 

or background features can lead to clustering results with clear boundaries and fewer overlaps between 

clusters, where some vehicles fall into both categories and hard to tell the differences between two clusters. 

In this research, the authors established five feature sets based on the annual inspection dataset 

(CompuSpections dataset) that captures vehicle attributes and background information to test the 

clustering algorithms and identify relative feature importance levels. Feature Set 1 includes an “overall 

inspection result” that indicates the final evaluation of the vehicle condition and each component’s 

inspection result, which checks registration documentation, doors, lighting, steering, exhaust, fuel, 

glazing, brakes, road test, tires, and other components. Besides the “basic inspection result” feature set, 

feature sets 2 – 5 include other background features combinations. Based on the inspection records of 

CompuSpections, they also examine the registration zipcode, mileage driven, and model year of inspection 

objects. All this information can be interpreted into mileage, age, and urbanity. Using different feature 

sets in clustering, the authors can infer which features are more critical in helping identify vehicles with 

specific failure modes. Table 2 elaborates on the details of each feature set and their clusterability with 

different metrics. 

Hopkins statistics measure the clustering tendency of a feature set [16]. This metric aims at measuring 

how different the distances are between the data points in a real dataset from their neighbors, comparing 



the distances of a uniformly distributed dataset. A Hopkins Statistic greater than 0.9 indicates a dataset far 

different from the random uniformly distributed dataset, with highly clusterable performance. From the 

results in Table 2, every feature sets are highly clusterable (Hopkins Statistic > 0.9). Another value used 

for measuring the quality of clustering and selecting proper features/attributes is the “Silhouette 

Coefficient” [17]. The Silhouette Coefficient value closer to 1 means that clusters have clear boundaries 

and not too much-overlapped area among them.  

 

Table 2. Summary of the Clusterability Analysis for each Feature Set 

Feature Set Information Included 

Hopkins 

Statistic Silhouette Coefficient 

Feature Set 1 O(1) + EC(2)  inspection results 
0.9907 

k = 4, SC(3) = 0.8765; k = 7, 

SC(3) = 0.8860; 

Feature Set 2 

Mileage + O(1) + EC(2) inspection 

results 
0.9269 0.6305 

Feature Set 3 Age + O(1) + EC(2) inspection results 0.9863 0.5652 

Feature Set 4 

Urbanity + O(1) + EC(2) inspection 

results 
0.9902 0.6279 

Feature Set 5 All Feature Included 0.9219 0.4027 

(1) O = Overall (final inspection results of vehicle condition) 

(2) EC = Each Component (Including items such as checks registration documentation, doors, lighting, 

steering, exhaust, fuel, glazing, brakes, road test, tires and other components) 

(3) SC = Silhouette Coefficient 

 

After checking that each feature set is suitable to proceed with the K-Means clustering method, 

determining K, the number of clusters, is vital to find failure modes. The elbow method [18] is the first 

criterion to identify K and Silhouette coefficient assisted in evaluating if clusters have a clear boundary 

with fewer overlaps. Based on the performance and evaluation by both the elbow method and Silhouette 

coefficient, only feature set 1, with overall inspection result and each component inspection result has two 

selections for K value. Clustering feature set 1 with K equaling 7 has a better Silhouette coefficient 

performance than K equaling 4. However, Data Version 5 has a Silhouette coefficient that is below 0.5, 

which shows uncertain boundaries with clusters and overlapped areas. So, in this case, feature set 5 is not 

considered further for clustering and failure mode analysis. 

 
2.4.3 Topics Modeling for Failure Modes Identification 

MCMIS, a roadside inspection database established by FMCSA, has a different pattern of inspection 

recording compared to Compuspections annual inspection dataset. It has a detailed description of each 



violation on commercial trucks and trailers to illustrate the current conditions of component defects. Based 

on the information provided, the authors used topic modeling, such as latent Dirichlet allocation modeling, 

to explore topics rather than clusters. 

Before measuring word importance by TF-IDF for each document, text cleaning is performed before 

measurement. A full text cleaning step includes: 

Message Clearance: remove numbers and punctuations and transform all letters to lower cases. 

Message tokenized: splitting a text object into words from whitespaces. 

Stopword removals: remove all words that have no semantic relevance to the document. For example, 

words such as articles, pronouns, and prepositions are stopwords that need to be removed. 

Stemming and Lemmatization: stemming refers to the process of reducing each word to its root or 

base. For example, words such as “warning,” “warned,” and “warner” are all reduced to the stem “warn.” 

However, there are still words such as “good,” “better,” and “best” that cannot be solved by stemming. 

Lemmatization is introduced to operate on a single word with knowledge of the context. Lemmatization 

can discriminate between words with different meanings depending on the part of speech. 

Based on all the text cleaning processes above, a “word list” was generated for each vehicle’s 

inspection documents, and their word importance (TF-IDF) is measured from there on to implement the 

LDA model. LDA model is a popular way to convert an unstructured and complex textual dataset into 

topics [19]. In this method, LDA model assigns each document with different probabilities of topics, and 

also assigns each topic with different probabilities of words. When topics with sets of words are listed, 

LDA model gives a parameter (per-topic-per-word probability) to each word in a certain topic. This 

parameter shows how likely this word can be generated in this topic. All these processes can be done by 

many open-source tools such as NLTK [20]. 

After text cleaning and TF-IDF calculation, we should define the exact number of topics for the LDA 

model. In general, the number of topics, K, can adjust the granularity of the topic model. The more topics 

accepted, the narrower results it will get, or vice versa. According to the nature of the LDA model and 

previous studies, we used a grid search method to assign the best performance value for each parameter 

[21]. Finally, the best number of topics is eight. 

 

2.5 Results 

 



2.5.1 K-Means Clustering Results 

This research interprets clusters into different failure modes by failure rate analysis. The authors set 

up a baseline model that calculates the average violation counts of the overall inspection result and each 

component’s inspection result for the whole dataset. Then for each feature set, the authors calculated the 

average violation counts for each cluster. If some indicators or components’ average number of violation 

counts is significantly different from baseline average violation counts, then we can identify this cluster 

with a specific failure mode. 

Based on this logic, Figure 8 - Figure 12 show how significantly different each cluster’s average 

violation counts are from baseline (the whole dataset average) average violation counts by intensity on the 

heatmap. For example, in Figure 8, failure mode 1 (cluster 1) has lighting, brakes, and other problems 

defects, so the intensities of lighting, brakes, and others are darker than other cells in this figure. Their 

colors also represent how different they are from the baseline average, indicating high average violations 

among the vehicles in this mode. Figure 8 - Figure 12 also show the interpretations of failure modes 

conclusions on the right vertical axis. 

After cluster interpretation analysis, k-means clustering can divide the whole vehicle fleet into four or 

seven clusters based on Figure 8 and Figure 9. From there, it shows that groups of vehicles with lighting, 

brake, and tire problems are significantly above average. This conclusion suggests that lighting, brakes, 

and tires can be key inspection components during annual inspection processes.  

 
Figure 8. Failure Mode Heatmap Summary of Feature Set 1 (k = 4) 



 
Figure 9. Failure Mode Heatmap Summary of Feature Set 1 (k = 7) 

The K-means clustering that uses feature set 2 (overall plus milage) divides all vehicles into four 

groups depending on mileage driven per year. Figure 10 shows the clustering results using feature set 2. 

The clustering result shows that the vehicle group with slightly above average mileage (2988.23 miles) 

has the most significant lighting and brakes problems. It indicates that vehicles with average mileage 

driven per year are the most noticeable cluster if inspected, especially with lighting and brake components. 

Identical results are found by adding age and urbanity features (Figure 11 and Figure 12). Medium age 

generation and vehicles registered at the large fringe and medium metro area also have significant 

problems with lighting and brakes problem, compared to other age groups and urbanity areas. In 

conclusion, brakes, and tire problems are the most common failure mode when annual inspections are 

performed based on different vehicle properties. While talking about background information such as 

mileage, age, and urbanity, vehicles with certain features can be key important features to give extra 

attention to when doing annual inspections, such as vehicles with average mileage driven, medium vehicle 

age and vehicles from large fringe and medium metro area. 

 
Figure 10. Failure Mode Heatmap Summary of Feature Set 2 (with mileage, k = 4) 



 
Figure 11. Failure Mode Heatmap Summary of Feature Set 3 (with age, k = 4) 

 
Figure 12. Failure Mode Heatmap Summary of Feature Set 4 (with urbanity, k = 4) 

2.5.2 LDA Topic Modeling Results 

By training the LDA model and selecting the best parameters, we can obtain the list of topics and 

analyze the meaning of each failure mode. Table 3 shows the list of topics and the top 10 words of each 

topic, ranking words by per-topic-per-word probability. For example, the probability of term “lamp” is 

generated in topic 1 is 0.045. 

Table 3. Top 8 topics with ten keywords by LDA model from the MCMIS Database 

Topic 1 Word: 0.051*"inop" + 0.045*"lamp" + 0.034*"inoper" + 0.031*"rear" + 0.030*"turn" + 

0.029*"signal" + 0.026*"front" + 0.026*"right" + 0.026*"left" + 0.025*"light" 

Topic 2 Word: 0.034*"air" + 0.024*"leak" + 0.024*"axl" + 0.021*"brake" + 0.019*"hose" + 0.016*"x" 

+ 0.015*"l" + 0.014*"chamber" + 0.014*"r" + 0.013*"v"  

Topic 3 Word: 0.051*"tire" + 0.050*"axl" + 0.036*"psi" + 0.035*"right" + 0.031*"left" + 0.027*"side" 

+ 0.026*"insid" + 0.021*"outsid" + 0.021*"inop" + 0.021*"flat"  

Topic 4 Word: 0.027*"display" + 0.026*"number" + 0.025*"name" + 0.024*"usdot" + 0.023*"dot" + 

0.022*"carrier" + 0.022*"lb" + 0.017*"vehicl" + 0.016*"compani" + 0.015*"truck"  

Topic 5 Word: 0.021*"none" + 0.020*"trailer" + 0.019*"secur" + 0.019*"chain" + 0.018*"breakaway" 

+ 0.016*"cabl" + 0.015*"unit" + 0.015*"attach" + 0.013*"strap" + 0.012*"connect"  



Topic 6 Word: 0.016*"oil" + 0.015*"miss" + 0.014*"leak" + 0.014*"rear" + 0.014*"engin" + 

0.012*"right" + 0.012*"side" + 0.011*"left" + 0.010*"inop" + 0.009*"cover"  

Topic 7 Word: 0.049*"expir" + 0.035*"" + 0.034*"registr" + 0.019*"current" + 0.016*"plate" + 

0.016*"inspect" + 0.014*"proof" + 0.014*"insur" + 0.013*"card" + 0.013*"display"  

Topic 8 Word: 0.027*"window" + 0.024*"windshield" + 0.023*"tint" + 0.021*"fluid" + 

0.018*"washer" + 0.017*"measur" + 0.016*"crack" + 0.016*"driver" + 0.014*"side" + 0.013*"adjust"  

 

In Table 3, each topic represents a specific failure mode based on the words selected. For example, 

Topic 1 is related to lighting violation because it includes words such as “lamp,” “rear,” “turn,” “signal,” 

and so on, which represents problems such as signal light problems and inoperable lights detected during 

the roadside inspection. Topic 2 refers to another major violation category, brake problems, because “air,” 

“leak,” and “hose” are all components related to the brake system. Topic 3 can also be interpreted as “tire 

problems” since tire violation terminology such as “tire,” “psi,” and “flat” is included. Topic 4 and Topic 

7 are related topics that both refer to registration and equipment problems. Topic 4, with words such as 

“display” and “usdot,” shows that vague display numbers on vehicle bodies can be a major cause of 

registration violations. Topic 7, with the words “expir” and “insur,” discloses another important insurance 

proof issue for the registration violation. Other topics, such as topics 5, 6, and 8, also have specific 

keywords in their content. Topic 5 implies tractor-trailer connection issue, topic 6 implies engine oil leak 

issue, and topic 8 implies windshield problem. 

Any vehicles from our database can be assigned to the most probable topic based on the LDA model. 

Generally, the LDA model assigns a probability vector to each vehicle. We select the most probable topic 

for each vehicle and categorize it to that failure mode. Figure 13 shows how popular each topic is, and 

how many vehicles are in there. 

 



 
Figure 13. Vehicle Population Counts for Each Topic 

 

Figure 13 reveals that USDOT Number Display Problems are the most popular. The vague and 

incomplete USDOT numbers on the body of vehicles could be a common question for motor carriers. The 

following comes to brake, insurance proof, and windshield problems. That indicates brake and windshield 

problems lead to failure-prone components during roadside inspections. 

 
2.5.3 Combination Comparison Between Two Failure Modes Identifications 

From clustering analysis and topic model analysis based on previous studies, there are some possible 

failure modes that historical inspection data can define. But how much two analysis methods conclude in 

common and make–failure modes relationships remained unknown. This part of the analysis aims to 

compare and correlate the failure modes found from different databases’ records for a potential cross-

database analysis that reveals more comprehensive failure mode information of various vehicles. Though 

annual and random inspection discrepancy exists theoretically, understanding their mutual and different 

inspection focus can help motor carriers with more intelligent maintenance strategies. This analysis can 

also disclose vehicle makes’ failure mode tendency in different inspection occasions. That will help 

inspectors to focus on certain makes of vehicles with critical components and save time on irrelevant 

components to improve inspection efficiency. Here the authors select the most popular vehicle makes that 

exist in both vehicle datasets and analyze their information as a combination comparison. This research 

adopted feature set 1 with k equaling 7 (since its accuracy among other feature sets) compared with 

MCMIS topic modeling results to see if the results are similar. 

 

Table 4. Population Percentage(%) for Each Make and Each Failure Mode from Compuspections 



Dataset 

Make / 

Failure Modes Ppass Plight Pother  Ptires  

Plight&

brake Pfail 

Pbra

kes  

Make 1 51.2 13.0 1.3 0.6 32.9 0.0 0.9 

Make 2 74.1 4.8 6.7 1.1 6.0 4.9 2.3 

Make 3 69.9 10.6 6.1 0.8 6.0 1.5 5.1 

Make 4 84.0 6.0 2.1 0.1 2.3 1.6 3.8 

Make 5 90.4 2.1 2.1 0.2 2.2 1.8 1.2 

Make 6 74.2 4.3 5.4 5.5 5.2 1.7 3.5 

Ppass – Pass overall and each component inspections 

Plight – Passed Overall Inspection, but with Lighting Problems 

Pother – Other Components Problems 

Ptires – Tires Problems 

Plight&brake – Lighting and Brakes Problems 

Pfail – Both Failed Overall and Many Components Inspections 

Pbrakes – Brakes Problems 

From comparison of Table 4 - Table 5, it shows mutual failure modes with light, brake, and tire. 

Though inspectors can easily find light and tire defects by visual observation during random roadside 

inspections, those three failure modes still take a considerable percentage in each makes. This finding 

recommends inspectors and motor carriers check these components more frequently and thoroughly to 

avoid potential risks. The brake component is most noticeable among all three components, because it 

takes a large percentage of vehicles in this failure mode compared with others in both scenarios. Among 

the six makes, make 1 has the significant percentage in brake failure mode, with 33.8% of the vehicles in 

Compusections failure modes and 35.4% of the vehicles in MCMIS database failure modes. The MCMIS 

Database also shows some special failure modes trends that don’t exist in the failure modes identified 

from Compuspections’ dataset. For example, Make 4 has the lowest percentage of brake and tire failure 

modes, but it has the highest engine oil leak problems. MCMIS database failure modes also point out that 

there are more than 10% of vehicles in each make exist windshield failures. Of all six makes, make 6 is 

the highest in windshield failures. To sum up, makes – failure modes analysis discloses some potential 

relevance, providing essential information when inspectors and motor carriers want to perform targeted 

inspections. 



Table 5. Population Percentage (%) for Each Make and Each Failure Mode from MCMIS Database 

Make / 

Failure Modes** 

Plight  Pbrake  Ptires  Pnumber  Pconnection  Poil  Pinsurance  Pwindshield  

Make 1 6.9 35.4 6.1 13.1 5.7 5.7 13.7 13.4 

Make 2 6.0 35.1 5.2 16.6 5.2 6.7 14.0 11.2 

Make 3 6.5 34.3 5.7 10.8 6.3 7.8 16.5 12.2 

Make 4 6.9 5.4 4.8 35.1 7.2 

18.

7 11.3 10.6 

Make 5 7.1 29.4 7.5 11.9 7.6 9.1 14.0 13.5 

Make 6 6.5 38.4 6.9 10.6 4.9 5.0 12.1 15.6 

Plight – Light Problems 

Pbrake – Brake Problems 

Ptires – Tires Problems 

Pnumber – US DOT Number Display Problems 

Pconnection – Tractor-trailer Connection Problems 

Poil – Engine Oil Leak Problems 

Pinsurance – Insurance Proof Expire Problems 

Pwindshield – Windshield Problems 

2.6 Discussion 

Previous research only discussed possible optimization strategies based on individual vehicles on a 

statistical level. This paper proposes a new way to generalize different vehicles operated by carriers into 

groups, showing that potential groups of vehicles need extra attention when inspected. By exploring 

potential failure modes with different formats of inspection recording datasets, the inspection process can 

be optimized by targeting and strategic plans. 

This study considered how to categorize inspection records into groups of failure modes, and if carriers 

own similar conditions vehicles, how to make preventive maintenance ahead to avoid unnecessary risks. 

For annual inspection, we derive failure-prone components from Compuspections Dataset, which 

indicates failure-prone components are brakes, lighting, and tires. When features such as age, mileage, 

and urbanity are involved, groups like middle-age generation, average mileage driven groups, and large 

fringe and medium metro areas are highly attention groups to check if there are any unsafe components. 

These results are consistent with previous research about brake pad and tire tread deterioration because 

all these components are perishable if age and mileage get older and longer. 

When it comes to roadside inspection with the MCMIS database, a topic model indicates that 

mechanical component problems are not only popular topics, but some registration problems such as 

USDOT number display and insurance proof can also be trivial but critical violations that influence 

carriers’ performance in the FMCSA rating system. If motor carriers concentrate on improving their rating 

scores on the FMCSA website, these mistakes should be prevented. Besides that, high probability also 



makes brake, windshield, and engine violations very popular. That result suggests that motor carrier 

workers such as drivers and fleet managers include more precise and detailed pre-trip inspections or install 

real-time monitoring devices such as telematics. 

2.7 Conclusion 

From Compuspections Dataset (annual periodical inspection), this research concludes that there are 

approximately four different failure modes, most of which point to brake and light failures. When 

background information is included, these feature sets also correlate with component inspection results. 

For example, from Figure 10 - Figure 12, vehicle groups with medium mileage driven, middle age, and 

from the large fringe metro and medium metro areas have significant differences compared to the baseline 

overall average model (more than 1.9 violation cases). When inspectors inspect vehicles with these 

features, they should pay extra concern with key components. From MCMIS Database, eight topics are 

not only related to component failures but also to registration and insurance proof problems. That means 

a basic pre-trip check is essential for basic display and paperwork materials to prevent the negative 

influence of tiny mistakes and ignorance, such as a reduction in CSA safety score and ranking. Both results 

indicate that brakes, lights, and tires are failure-prone components that form obvious failure modes. 

Chapter 3 Inspection and Maintenance Planning for Truck and Trailer Fleets 

3.1 Introduction 

An appropriate inspection plan is essential for improving vehicle safety by identifying component 

failures. Vehicle-related problems caused by malfunctions in components such as tires, brakes, steering, 

suspension, transmission, and engine are a critical cause of accidents [22] [23]. To prevent such 

malfunctions, an inspection plan is necessary to provide information on when and what vehicle and 

component to inspect.  

Currently, some states in the U.S. have vehicle inspection procedures that make regulations to enforce 

periodic inspections to check the risky component with a violation that fails to reach the state’s allowable 

condition. The routine inspections might ignore the vehicle component violations between successive 

inspections [24], which might cause an accident due to vehicle malfunction. A vehicle subject to annual 

inspections can drive on the road with component violations for months until the next inspection, with a 

high potential for accidents. Shortening the inspection interval reduces the driving time exposed to the 

component violation. However, shortening the inspection interval induces higher safety assurance of 



vehicles’ operation safety while increasing inspection costs [25], including financial costs for inspection 

and uptime losses due to vehicle outages. Therefore, optimal timing for inspection is vital to achieving a 

safety-cost balance.  

Roadside inspection is another practice, selecting and inspecting vehicles with apparent violations 

visualized roadside to identify violations ignored in routine inspections. Identifying vehicles with high 

risks and focusing on inspecting anomalous vehicles could have high accuracy in finding problematic 

vehicles. However, the roadside inspection can pull over only a small number of vehicles compared to the 

total number of vehicles on the road. Moreover, the roadside inspection can only inspect the vehicles with 

evident violations while ignoring those with unobtrusive violations. Integrating roadside inspection with 

periodic inspections can potentially miss risky vehicles, as shown in Figure 14. Therefore, identifying 

vehicle-related violations with a higher detection rate is essential for ensuring driving safety, improving 

inspection efficiency, and saving fleet operating costs. In addition, selecting risky vehicles relies on the 

inspectors’ experience and subjectivity. Therefore, automatic inspection planning that uses historical and 

real-time vehicle data for instantly selecting high-risk vehicles for targeted inspection is necessary. 

 
Figure 14. The potential of failing to achieve instant inspection in current inspection practice 

 

In order to achieve optimal vehicle safety at the lowest inspection cost, an effective inspection plan 

must accurately identify risky vehicles and components for inspection while saving inspections on those 

that are safe. To accomplish this, the inspection plan typically relies on knowledge of the vehicle 

component deterioration process, which is hidden within historical data on vehicle component condition 

degradation. However, access to such historical data is limited due to its private nature within commercial 

companies. Furthermore, since heavy-duty vehicles only constitute approximately 5% of registered 

vehicles in the United States [41], the availability of historical data for heavy-duty vehicles is further 



restricted. Therefore, the development of an effective inspection plan that balances safety and cost requires 

the development of data augmentation techniques. 

Many inspection planning difficulties arise as data is limited. Inspection planning algorithms cannot 

extract adequate information from the limited historical data, so algorithms would generate inappropriate 

inspection plans that fail to keep safety and save costs. Therefore, the development of an effective 

inspection plan that balances safety and cost requires the development of data augmentation techniques 

that can artificially extend the dataset. Additionally, current inspection planning algorithms select risky 

vehicles according to their degradation in the time dimension. However, the mileage driven is more related 

to the vehicle component degrading at that time [26]. A deterioration model for predicting component 

failure risk after driving a specific mileage can indicate worn-out degradation. Therefore, an inspection 

plan with a mileage-based deterioration model is necessary. However, the inspection practice is to generate 

an inspection plan that specifies the time intervals. So the component failure risk transition from mileage-

based to time-based is needed. 

This paper aims to explore the safety-cost-aware inspection planning for commercial fleets that 

optimizes vehicle and component selection to ensure vehicle fleet safety with fewer inspections with 

limited and noisy inspection records. However, several challenges form barriers to establishing a safety-

cost-aware inspection plan. Specifically, it is hard to achieve reliable inspection planning that identifies 

correct risky vehicles 1) based on limited historical inspection records;2) using a time-based model since 

driving mileage is more related to vehicle component degradation. Therefore, the following research 

questions are essential for tackling these challenges: 1) What data augmentation method can improve the 

reliability of deterioration prediction; 2) What inspection planning algorithm can consider the 

deterioration in the mileage dimension while specifying the inspection plans in the time dimension? 

3.2 Related work 

3.2.1 Vehicle Inspection Planning Methods and Their Limitations 

Current inspection practice of annual inspection and roadside inspection has the potential to ignore 

risky vehicles, as illustrated in the introduction section. To improve vehicle safety researchers improved 

vehicle safety by improving inspection frequency and validated that increasing inspection frequency can 

improve vehicle safety [27]. For example, [27] found that biannual inspection can achieve a significant 

8% reduction in injury crash involvement rate compared to the annual inspection. However, researchers 

found that the cost-benefit ratio of strategies to prevent road crashes based on increasing the frequency of 

inspections may be low [28],[29]. Therefore, a more cost-efficient method for achieving an acceptable 



vehicle safety level with minimal inspection costs is essential. 

Predictive inspection that estimates when the vehicle is likely to fail and determines what vehicles 

need inspections at which time can be a safety-cost-aware inspection planning. The main idea of predictive 

inspection for ensuring safety while minimizing inspection costs is to reduce the excessive inspections 

where it is in good condition that inspection is inessential while never ignoring risky vehicles [30],[31]. 

Automobile sector researchers proposed multiple predictive inspection methods and validated their 

performance in safety improvement and cost reduction. Researchers conclude the general process of 

predictive inspection planning as data collection, data pre-processing, faults diagnosis and prognosis, and 

decision-making on the maintenance strategy [32],[33]. Data collection is to collect condition data of 

equipment in the system. Data pre-processing can involve steps such as data cleaning, missing values 

treatment, outlier detection, feature selection, or imbalance compensation [34]. Fault diagnosis and 

prognosis are to diagnose the equipment’s current condition and predict failure in the future. Such 

information related to future failure risks can support the inspection decision-making, which is to generate 

inspection plans for selecting risky equipment at an appropriate time for inspection. 

There are mainly three types of predictive inspection methods: physics-based [35] [36], knowledge-

based [37], and data-driven [38]. The physics-based model is sensitive to the physical parameters, so 

accurate physical parameters are essential for a high-accuracy model. However, such a high-accuracy 

model is complex and computing expensive. The knowledge-based models are typically rule-based 

systems imitating human decision-making processes. However, such knowledge-based models can only 

implement manually defined rules, which cannot process scenarios that need unknown human rules. The 

data-driven method develops a deterioration model using statistical and machine learning methods based 

on historical data to predict the failure probability in the future. A reliable and accurate data-driven model 

needs sufficient data. However, the available inspection data is limited [32] since the vehicle condition 

data are private to commercial fleets. Moreover, the research is for heavy-duty vehicles which belong to 

a specific vehicle group in a small size, which further limits the available historical inspection data. 

Researchers used simulated methods to generate data for the data-driven model, which caused a limitation 

because it is difficult to develop deterioration models and evaluate the validity of developed methods 

using real data. Since the real data is so important, there is a research gap lacking data augmentation 

methods to handling with limited real data to extend the real dataset. Therefore, developing a method to 

extend the current historical dataset is necessary for a reliable and accurate deterioration model. 

Additionally, most of the current deterioration models are in the time dimension due to the intuition 



that equipment deteriorates as time goes on. However, worn out is one of the main factors of vehicle 

component failure, such as brake and tire failure, which indicates that deterioration is more related to 

usage than time. Therefore, a deterioration model over usage, which also can be mileage, needs 

exploration. Researchers utilized deterioration rates, which is the component condition difference over 

mileage driven during the condition change, to predict the vehicle component’s future condition after 

driving a certain mileage given an original state [26]. However, the inspection planning requires an 

estimate of the future condition and risk in the next scheduled inspection, which is in the time dimension. 

Limited research transfers the future risk estimation from the mileage domain to the time domain. 

Therefore, this research aims to develop a deterioration model over mileage and transfer the risk estimation 

from the mileage dimension to the time dimension. 

3.2.2 Data Augmentation Methods for Vehicle Inspection Planning with Limited Data 

The data-driven model cannot extract adequate information when historical data is limited. Data 

augmentation artificially generates data while still being realistic for extending the training dataset and 

improving data-driven model performance. Researchers have proposed multiple data augmentation 

methods for image [39], textual [40],[41], audio, time series [42], and tabular data. Normally, researchers 

apply a heuristic transformation to the existing training dataset to generate additional training data [43]. 

For example, to augment image datasets, researchers transform existing images by flipping [44], cropping 

[45],[46], rotating, scaling up [47], color space transformations [48],[49], etc. The transformation 

functions of heuristic data augmentation are rules defined by domain experts, which are interpretable but 

need manual design. Researchers also utilized machine-learning-based data augmentation methods, such 

as Generative Adversarial Networks (GAN) [50]. 

The vehicle component deterioration data in this research is in tabular format. A major data 

augmentation method for tabular data is synthetic sampling, which generates new data points by 

interpolating between existing points in the feature space. In this method, the interpolation is linear. 

However, the vehicle component deterioration is not in a linear way. Therefore, data augmentation method 

that can extend the limited vehicle inspection dataset in a non-linear manner is essential. 

Though multiple data augmentation methods have been proposed in other domains, these methods 

have limitations for handling sparse vehicle inspection recordings. The current major method for 

augmenting tabular data is not suitable to the data with non-linear relationship among features. 

Researchers also found that redundant or overly aggressive augmentation can hurt performance and 

introduce biases into the dataset [36, 37, 40]. Thus, the data augmentation method should extend the 



dataset without bringing in biases. Exploring applicable data augmentation methods for vehicle inspection 

datasets and validating the augmentation performance is essential. 

This paper proposed an inspection planning method to balance safety and costs using components’ 

deterioration patterns learned from limited historical inspection records. The objectives are to 1) identify 

the deterioration modes and establish the deterioration model of heavy-duty trucks and trailers, 2) predict 

the probability of vehicle defects in the future using the deterioration model and select the risky vehicles 

for inspection; 3) validate the feasibility of the proposed inspection planning that can detect vehicle defects 

with little violation time while using relatively low costs and losses of uptime, and 4) augment the dataset 

using the limited historic inspection records to pursue better performance. 

3.3 Method 

This research proposed a risk-based inspection (RBI) planning ensuring vehicle safety with minimal 

inspection costs. The proposed method considers vehicle safety using exposure time with risks, which is 

the time a vehicle is in a condition violating regulations. For example, the exposure time of a vehicle’s 

brake pad would be counted as the thickness is smaller than 2/32 inches until such a violation is discovered 

in the next inspection. The inspection costs include the number of labor costs and losses of uptime 

occurring during the inspection process, which are directly related to the number of inspections. In this 

case, the research utilizes the number of inspections to evaluate the inspection costs. Therefore, the 

research’s objective would be to search for the optimal inspection plan to keep the fleet vehicles’ total 

exposure time at an acceptable level with fewer inspections. The main idea for reducing the number of 

inspections with an acceptable vehicle safety level is to merely focus on vehicles and components with 

high failure risks in periodic inspections. The idea can help save the inspections for vehicles and 

components in safe conditions. The RBI planning can determine what vehicles and components have high 

failure risks in the next periodic inspection and mark them as needing inspection.  

The framework of the inspection method consists of four major parts (Figure 15): data augmentation, 

the Markov deterioration model, the conditional probability formula, and risky vehicle and component 

selection. The data augmentation is to extend the limited historical inspection data to provide sufficient 

historical data for generating a reliable inspection plan. The deterioration model summarizes the vehicle 

components’ deterioration pattern along the mileage dimension based on the augmented historical dataset 

and predicts a certain component’s failure risk after a certain mileage. For example, the deterioration 

pattern along the mileage dimension could be the rules that a component transitions from one state to 

another after operating a certain mileage. And then, the deterioration model can predict a component’s 



future condition and the failure probability after operating a certain mileage based on the summarized 

deterioration pattern. The conditional probability formula is to transfer the component failure probability 

on the mileage dimension to that on the time dimension and achieve the component’s failure probability 

at the time of the next periodic inspection. Finally, the risky vehicle and component selection section select 

risky vehicles and components with failure probabilities larger than a pre-defined threshold at the time of 

the next periodic inspection and marks them for inspection. The subsections below interpret the four major 

parts in detail. 

Data obtained from accident response units indicates that tires and brakes were the main contributors 

to mechanical failures resulting in crashes [51]. Therefore, this research takes the brake as a case to 

examine the proposed inspection planning method at the component level. 

 
Figure 15. The framework of the RBI planning 

 

3.3.1 Data Augmentation 

As shown in Figure 16, when developing a deterioration model for a vehicle, the historical cases with 

similar characteristics, such as the original state and the mileage driven, are acquired to support the 



deterioration modeling. However, current historical vehicle inspection datasets have limited inspection 

recordings and provide limited information for summarizing the vehicle components’ deterioration 

patterns. The deterioration modeling would be unavailable or unreliable when similar cases are 

unavailable or limited in the historical dataset. Such an unreliable deterioration model could potentially 

lead to incorrect prediction of the vehicle’s future state. Therefore, a data augmentation method is 

necessary to extend the historical data when historical cases are limited.  

 

Figure 16. The process of reliable deterioration modeling and future state prediction with data 

augmentation 

The main idea of the data augmentation method is to generate synthetic data based on the cases with 

similar deterioration rates given a certain combination of original state and mileage driven. The 

deterioration rate is defined as the difference between a component’s state over the mileage driven 
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Figure 17. Proposed data augmentation method 

𝑑𝑟 = −
𝑋𝑀+𝑚 − 𝑋𝑀

𝑚
(1)  

𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 − 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 𝑑𝑟𝑖𝑣𝑒𝑛 × 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (2) 

One challenge of the method is to search for cases with similar deterioration rates given the original 

state and mileage driven.  This research utilizes the historical inspection data of brake pad thickness to 

explore what type of cases have similar deterioration rates to those given certain original states and 

mileage driven. The historical inspection records reveal that the original state and the vehicle miles of 

travel after the original state have intense relationships to the deterioration rates of brake pad thickness. 

As shown in Figure 18, the deterioration rates decrease monotonically with the vehicle miles of travel 

increase. Meanwhile, the deterioration rates tend to decrease with relatively good or poor original states, 

as shown in Figure 19. It is because the brake deteriorates slowly when in good condition and starts to 

deteriorate faster as worn out. When the brake is in poor condition, the driver tends to drive more carefully, 

leading to a low deterioration rate. The data augmentation method assumes that cases with the same 

original state and vehicle travel miles would have similar deterioration rates. Thus, the augmentation 

method utilizes the vehicle miles of travel and the original state as two features to calculate the distance 

from each available inspection record to the lacking data.  



 

Figure 18. The relationship between the deterioration rate and the vehicle miles of travel 

 

Figure 19. The relationship between the deterioration rate and the original state 

To implement the KNN searching, the first step is to normalize the features using min-max scaling to 

scale down the data so that the normalized data falls between 0 and 1. Eq.        (1) and Eq.        (2) show 

the process of scaling the two features, respectively. Then the method calculates the distance between the 

two features of each available data 𝑙, represented as {�̂�𝑀𝑙, �̂�𝑙}, and those of the lacking data, represented 

as {�̂�𝑀0, �̂�0}, and select top k nearest as the similar cases from the n available records. With the original 

state and miles driven of the lacking data and the deterioration rates of the top k similar cases, the state 

can be calculated after driving the given mileages. So that the virtual cases with information on the original 

state, miles driven, and the state after driving the given miles is available to fill in the lacking data. 

   �̂� =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (1) 

 



�̂� =
𝑚−𝑚𝑚𝑖𝑛

𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛
       (2) 

 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑙) =  (�̂�𝑀𝑙 − �̂�𝑀0)2 + (�̂�𝑙 − �̂�0)2, 𝑙 = 1,2, … , 𝑛 

(3)  

Where �̂� is the normalized state using the min-max scaling, 

 �̂� is the normalized vehicle miles of travel using the min-max scaling,  

�̂�𝑀𝑙 is the normalized state of each available record, 

�̂�𝑀0 is the normalized state of the lacking data, 

�̂�𝑙 is the normalized vehicle miles of travel of each available record, 

�̂�0 is the normalized vehicle miles of travel of each lacking data. 

3.3.2 Inspection Plan Generation 

Markov Deterioration Model 
This research develops the Markov deterioration model, which derives the deterioration patterns of 

heavy-duty vehicle components from historical inspection data. Given the original state of the vehicle (or 

vehicle components) and the mileage driven, a mapping function can predict the next state and the 

corresponding probability of the vehicle or vehicle components. Previous research developed deterioration 

models along the time dimension, which explored the deterioration process along driving time. But for 

the components like brakes and tires, the future state has a stronger relationship with the mileage driven 

than the time driven because such components deteriorate as usage, not the time. So this research explores 

the deterioration process along the mileage driven.  

The vehicle deterioration follows the assumption of Markov chain theory [52] that the probability of 

transition from the last state to the next depends only on the last state and has no dependence on the states 

before the last. Therefore, the Markov deterioration process only involves states X.M. and XM+m, the 

component state when driving M mileage, and the predicted future state after m mileage. As a result, the 

Markov model can extract transition probabilities from one state to another, given a certain mileage. The 

statistical statement of the conditional probability of transition from state i to state j is shown in Eq. 

 (4). 

Pr(XM+m = j|XM = i)  =  Pr(XM+m = j|XM = i, m) 

 (4)  

These transition probabilities satisfy two conditions: 1) all probabilities are not smaller than 0, which 

is Pr(XM+m=j|XM=i) >=0; and 2) the sum of all transition probabilities transition from the same state should 



be 1, which is ∑ Pr(XM+m = j|XM = i)  = 1𝑗 . 

The proposed method counts the number and the proportion of cases in the component transition from 

state i to j, given the mileage driven, and uses the proportion as the transition probability in the Markov 

model, as stated in Eq.  (5). 

Pr(XM+m = j|XM = i) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑎𝑓𝑡𝑒𝑟 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑚 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑖 𝑤𝑖𝑡ℎ 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑚 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑠
 

 (5)        

Conditional Probability Formula 
The Markov model can predict the probability of transition to risky states given a certain mileage. 

However, the inspection schedules are based on time. So it is necessary to predict the probability of 

transition to risky states given a certain time interval. This research used conditional probability formula 

to convert the probability of transition to risky states on the mileage dimension to the time dimension, as 

stated in Eq. (6). Pr (𝑚|𝑡) is the probability that the vehicle drives m miles in time interval t, which can 

be derived from historical inspection data with information on miles m’ and time t’ between two 

inspections using Eq. (7). 

 Pr(XT+t = j|XT = i) = ∑ 𝑃𝑟𝐴𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑠: 𝑚 (XM+m = j|XM = i) ∗ Pr (𝑚|𝑡) 

(6)  

 Pr(𝑚|𝑡) =
# 𝑐𝑎𝑠𝑒𝑠 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑚 𝑚𝑖𝑙𝑒𝑠 𝑖𝑛 𝑡

# 𝑎𝑙𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
=

# 𝑐𝑎𝑠𝑒𝑠 𝑡ℎ𝑎𝑡 (𝑚′ 𝑡′∗𝑡==𝑚⁄ )

# 𝑎𝑙𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
 

(7)   

Risky Component Selection 
With the probability of transition to any certain state, the failure probability can be calculated by 

summing up the probabilities of transition to each risky state. For example, defining the risky states as the 

group of {𝑗1, 𝑗2, … , 𝑗𝑛}, the transition probability from state i to risky states could be the sum of the 

transition probabilities from state i to each risky state j, as stated in Eq.  (8).  

Pr(XT+t = risky states|XT = i) =  ∑ Pr(XT+t = j|XT = i)𝑟𝑖𝑠𝑘𝑦 𝑠𝑡𝑎𝑡𝑒𝑠∶{𝑗1,𝑗2,…,𝑗𝑛}   

 (8) 

In vehicle inspections, the vehicle inspection regulation defines the violation states of vehicle 

components, which is less than or equal to 2/32 inch for brake pad thickness. The regulated violation states 

could be risky for vehicles with higher accident risks. So using the violation state threshold (2/32 inch) as 

a risky state threshold is one reasonable option. However, the inspection results vary around the ground 

truth due to measuring variations in manual inspections. For example, when a brake pad’s actual thickness 



is 4/32 inch, it might be inspected and recorded as 5/32in, which is an acceptable measuring variation; 

however, when calculating the next state, the results of using 4/32 or 5/32 inch as the original state would 

be different and might affect the inspection plan. It is possible that brakes with a 5/32-inch original state 

do not need inspection, while that with 4/32-inch original state need an inspection. So a more flexible 

risky threshold might ensure all risky components are included in the inspection plan. The proposed 

method considers the inspection measuring variations by examining different settings of risky state 

threshold (such as 2/32inch, 3/32inch, and 4/32inch) and exploring the optimal setting.  

With the future failure probability at the time of the next periodic inspection, the proposed method 

selects the risky components for the next inspection. The method defines a probability threshold as a line 

for risky component selection. If a component’s future failure probability is over the threshold, the 

component will need attention in the next inspection. Otherwise, if a component’s future failure 

probability is under the threshold, the component will not need attention in the next inspection. Therefore, 

the inspection plan for the next inspection practice would mark the components with future failure 

probability higher than the threshold as needing inspection. 

Defining the risky state threshold and the probability threshold is one major issue. The main idea is to 

find the optimal probability threshold that maximize the inspection planning’s performance. This research 

utilized the true positive rate (TPR) and false positive rate (FPR) to evaluate the performance of the 

inspection planning. TPR is a synonym for recall (Eq.  (9)), which reveals the percent of cases 

inspected in the group of violation cases. The inspection method would detect more violation cases as the 

TPR is higher. FPR reveals the percent of cases inspected in the group of cases without violations (Eq. 

 (10)). More resource wastes like inspection costs and losses of uptime while FPR is high. So the 

optimal probability threshold leads to a high TPR and a low FPR, in which case the safety-cost balance is 

achievable. The objective function could be minimizing FPR with an acceptable TPR, as shown in Eq. 

 (11). 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 (9)  

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 (10) 

Where T.P. is true positive, which is the number of violation cases correctly inspected; 

F.N. is false negative, which is the number of violation cases incorrectly not inspected; 

F.P. is false positive, which is the number of safe cases incorrectly inspected; 



T.N. is true genitive, which is the number of safe cases correctly not inspected. 

 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐹𝑃𝑅), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇𝑃𝑅 ≥ 𝑇𝑃𝑅𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 

 (11)  

 

3.4 Experiment Design 

This section introduces experiment design, including data pre-processing, the performance metrics for 

evaluating the deterioration model, the performance metrics for the inspection planning, and 

hyperparameter tuning. 

3.4.1 Data Pre-processing 

This research used the CompuSpections dataset to build, tune and test the RBI model. 

CompuSpections is a private company that sells record management software services to inspection 

stations. The dataset contains annual inspection recordings using Compuspections software service in 

Pennsylvania, with vehicle property information (such as vehicle make and model) and component 

conditions required for inspection in regulations (such as brake pad thickness and tire tread depth). This 

research uses the brake pad thickness to examine the proposed method. The CompuSpections dataset 

would provide essential inspection recordings for the RBI model development, including the heavy-duty 

vehicle’s successive inspection dates, odometers in two successive inspections, and the brake pad 

thickness in two successive inspections. As shown in Figure 20, each row indicates a brake’s deterioration 

process of transition from a last state to another state after a certain time and mileage driven. Sufficient 

deterioration process recordings can support the development of the RBI model.  

 
Figure 20. Screenshot of essential attributes from the Compuspections dataset 

The data pre-processing has two major tasks: filtering the heavy-duty vehicles and cleaning the 

essential data. When filtering the heavy-duty vehicles, only the inspection recordings of vehicles with 

Gross vehicle weight rating (GVWR) over 26,000 lbs remained. In data cleaning, the data pre-processing 

cleaned cases with invalid values shown below: 

Inspection dates, miles driven between inspections, or brake pad thicknesses with empty values 

Inspection date not in a time format 



Odometer readings with non-numeric characters 

Brake pad thickness is either below 2/32 inch or above 18/32 inch (which is infrequent in real 

operations) 

Duplicate records 

3.4.2 Cross-validation of the Deterioration Model 

After data pre-processing, the dataset contains 10,700 historical inspection recordings. To evaluate the 

performance of the deterioration model, this research implemented 5-fold cross-validation where 80% of 

the recordings are retained for training, and the remaining 20% are for testing. The cross-validation was 

repeated five times by selecting the different groups of testing data. 

The Markov model validated the predicted states after a certain mileage. The inputs of the deterioration 

model are the original state and mileage driven from the inspection to the next inspection. The outputs are 

the probability of transition to any state at the time of the next inspection and the state prediction based 

on the transition probabilities. This research utilized mean squared error (MSE) to quantify the accuracy 

of the predicted transition probabilities, as shown in Eq.(12). The predicted transition probabilities are 

calculated based on the training dataset. The true transition probabilities are calculated based on the testing 

dataset, where underlying the assumption that the transition probabilities derived from the testing dataset 

are the ground truth. 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  
∑ ∑ (𝑃𝑟𝑜𝑏𝑝𝑟𝑒𝑑 − 𝑃𝑟𝑜𝑏𝑡𝑟𝑢𝑒)2𝑗=17

𝑗=2𝑁 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

16 ∗ 𝑁
 

(12) 

The MSE can evaluate the deterioration model directly by comparing the predicted transition 

probabilities with the ground truth. In addition, this research utilizes the future state prediction accuracy 

to evaluate the deterioration model indirectly. The inputs of the deterioration model are still the original 

state and mileage driven from the inspection to the next inspection. The outputs are the state prediction 

based on the transition probabilities from the deterioration model. The state prediction is to select a 

deterministic state according to the transition probabilities. The predicted states after a certain mileage are 

proportionally sampled according to the probabilities of transition from a given last state to all possible 

states after a given driven mileage, which is calculated using Eq.(5). 

This research used the exact accuracy and soft accuracy to evaluate the performance of the 

deterioration model on the brake pad thickness prediction, as stated in Eq.  (13) and Eq.  (14). The soft 

accuracy allows the fuzzy prediction caused by the measure variation of the original state.  



 𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦 =
# (𝑦𝑝𝑟𝑒𝑑==𝑦𝑡𝑟𝑢𝑒)

# 𝑦𝑝𝑟𝑒𝑑
 

 (13)   

 𝑠𝑜𝑓𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# (𝑦𝑝𝑟𝑒𝑑==(𝑦𝑡𝑟𝑢𝑒±1))

# 𝑦𝑝𝑟𝑒𝑑
 

 (14)   

Where 𝑦𝑝𝑟𝑒𝑑 is the predicted next brake pad thickness (/32in) using the deterioration model, and 𝑦𝑡𝑟𝑢𝑒 

is the ground truth of the next brake pad thickness (/32in). 

3.4.3 Cross-validation of the Inspection Plan 

Validation on TPR and FPR 
This research evaluated the inspection planning using 5-fold cross-validation, which is the same as 

that in deterioration model evaluation. In the cross-validation, TPR and FPR are two metrics to evaluate 

the performance of the inspection planning. TPR is a synonym for recall (Eq. (9)), which reveals the 

percent of cases inspected in the group of violation cases. Therefore, the inspection method would detect 

more violation cases as the TRP is higher. FPR reveals the percent of cases inspected in cases without 

violations (Eq. (13)). High FPR indicates more inspections on safe vehicles, which leads to resource waste. 

Therefore, the inspection planning with a lower FPR and an acceptable TPR, which indicates using fewer 

inspections while achieving an acceptable safety level, performs best.  

Validation on Quantitative Safety and Costs of a Simulated Fleet 

In addition to the cross-validation, this research tested the inspection planning in a simulated fleet with 

250 vehicles and quantified its safety and cost levels in practice. This research utilized the number of 

inspections and the exposure time with violations in one year period to quantify the cost and safety level, 

respectively. The number of inspections is to sum up the number of vehicles that need an inspection in 

each periodic inspection in one year. The exposure time with violations is to sum up the time exposed to 

violation once a violation occurs in one year. 

3.4.4 Hyperparameter Tuning 

There are two hyperparameter tunning tasks. One task is to tune the hyperparameters of the data 

augmentation to improve the deterioration model without inducing errors from the synthetic data. Another 

task is to tune the hyperparameters of the inspection planning model for optimal inspection decision 

makings. 

In the first task of fine-tuning the data augmentation model, the hyperparameters are the threshold of 

determining whether to implement data augmentation and the number of synthetic samples to be 



generated. The optimal values minimize the MSE of transition probabilities, whose calculation function 

is stated in Eq.(12). This research utilizes the grid search to explore the optimal hyperparameter values. 

In the second task for fine-tuning the inspection planning model, the risky state and probability 

threshold are two hyperparameters that need fine-tuning. The method tunes the two hyperparameters by 

searching the optimal values that optimize the objective function stated in Eq.  (11). The potential 

risky state threshold of brake pad thickness could be 2/32, 3/32, or 4/32 inch, and the probability threshold 

could be in the range from 0 to 1. This research utilized the grid search to explore the optimal 

hyperparameter values in such ranges. 

 

3.5 Results  

3.5.1 Data Augmentation Process 

The data augmentation method filled in the lacking data using the cases generated based on the 

deterioration rates of similar cases. Identifying similar cases used the original state and the mileage driven. 

Figure 21 shows that the data augmentation method can fill in the lacking data without mitigating 

information from the available data. 

In addition, this research dug into a specific historical data lacking scenario to explain the data 

augmentation process. Considering the scenario where the original state is 4/32inch and the mileage is 

398 miles, there is no samples in the historical dataset with the exact same original state and mileage. 

Hence, data augmentation is essential in this scenario. The data augmentation method can search similar 

cases with the similar original state and the similar mileage in the historical dataset. When relaxing exact 

constraint of the original state (4/32inch) to neighborhoods, there are 2 samples with the similar original 

state and the same mileage, whose deterioration rates guide the brakes stay in 4/32inch. When relaxing 

the exact constraint of mileage (398miles), there are 10 samples with the same original state and the same 

mileage, whose deterioration rates guide 30% brakes transitioning to 3/32inch from 4/32inch. When 

relaxing both the original state and the mileage, there are 8 samples guiding 25% brakes transitioning to 

3/32inch from 4/32inch. Finally, the transition probability of transitioning from 4/32inch to 3/32inch after 

applying data augmentation considers the samples relaxing the original state and mileage, through 

transition distributions guided by their deterioration rates. 



 

 
Figure 21. An example: data augmentation process  

3.5.2 Cross-validation of the Deterioration Model 

This research calibrated the deterioration model by searching for the optimal hyper-parameters of data 

augmentation. The optimal hyperparameters are: the threshold of determining whether to implement data 

augmentation is 1; the number of nearest samples for augmentation is 20. In addition, this research 

validated the deterioration model using the mean squared error of the transition probabilities. As shown 

in Table 6, the deterioration model with data augmentation obtained a reduced mean squared error, which 

means the predicted transition probabilities are closer to the ground truths than those without data 

augmentation. 

Table 6. Evaluation of deterioration models with or without augmentation 

 MSE-with augmentation MSE-without augmentation 

Transition probability 0.0188 0.0447 

 

This research also validated the predicted states after a particular mileage of several deterioration 

No Data 



models by comparing the developed deterioration model with or without data augmentation. Table 7 

shows the comparison result. The Markov model without data augmentation has an accuracy of 44.5% 

and a soft accuracy of 62.9%. In comparison, the Markov model with data augmentation has a higher 

accuracy of 82.1% and a higher soft accuracy of 89.3%. 

Table 7. Accuracy and soft accuracy of the deterioration model with or without data augmentation 

Deterioration Model 

Prediction states after a certain mileage 

Accuracy Soft accuracy 

Deterioration model 
-with data augmentation 

82.1% 89.3% 

Deterioration model 
-without data augmentation 

44.5% 62.9% 

 

3.5.3 Cross-validation of the Inspection Plan 

Validation based on TPR and FPR 
Fine-tuning the hyperparameters of the risky state threshold and the probability threshold is to search 

for the optimal values with minimizing FPR and an acceptable TPR. For example, typically the 

commercial fleet has a strict restriction on vehicle safety that does not allow the vehicle to operate with 

any component failure, then the acceptable TPR should be 1. Meanwhile, the commercial fleet hopes to 

minimize the cost on inspections, then the FPR should be the minimum. Thus, for the inspection model 

with augmentation, the optimal risky state threshold is 3/32inch and the probability threshold is 0.003. 

And the corresponding TPR is 1 and the FPR is 0.37. Table 8 shows the TPRs and FPRs of inspection 

plans with and without using data augmentation under different thresholds.  

Table 8. Hyperparameter tuning of the risky state and probability thresholds 

Hyperparameters -thresholds With augmentation Without augmentation 

Risky state 
(/32in) 

Probability  TPR FPR TPR FPR 

2 0 0.88 0.41 0.2857 0.2693 

2 0.005 0.88 0.12 0.2857 0.0244 

3 0.002 1.00 0.46 0.7500 0.3107 

3 0.003 1.00 0.37 0.813 0.2495 

3 0.004 0.88 0.31 0.7500 0.2231 

3 0.005 0.88 0.28 0.6875 0.2151 

4 0 1.00 0.68 1 0.8986 

 

The inspection plan with data augmentation can obtain a higher TPR, which indicates higher vehicle 



safety. In addition, the FPR of inspection plan with data augmentation is only a little bit higher than that 

without data augmentation. The result indicates that the data augmentation can improve vehicle safety 

with spending a little bit more inspections. 

 

Validation of Quantitative Safety and Costs of a Simulated Fleet 
This research tested the method on a virtual fleet with 1,000 vehicles randomly sampled from the 

CompuSpections dataset. The validation used the annual inspection method and monthly inspection 

method as baselines. Three metrics include the number of inspections, the percentage of detected 

violations, and the time vehicles drive with accident risks. The number of inspections indicates the costs 

and losses of uptime caused by vehicle inspections. The percentage of detected violations and the time 

vehicles drive with accident risks reflect the vehicle’s driving safety. 

As shown in Table 9, the proposed method spent fewer inspection numbers than the monthly 

inspection while ensuring the minimum time exposed to violation risks. Meanwhile, the proposed method 

caused less time exposed to violation risks while only costing a few inspections. The results show that the 

proposed method can minimize the costs and losses of uptime while minimizing the safety risks and 

performs better than annual and monthly inspection strategies.  

Table 9. Results of inspection method validation on a fleet with 1,000 vehicles (risky states: [2,3]/32in; 

probability threshold: 0.003) 

Evaluation metrics Baseline methods Proposed method 

Annual inspection Monthly inspection Risk-based monthly 
inspection 

Number of 
inspections 

1,000 12,000 4,839 

Time exposure to 
risks (month) 

7.2   1.2   1.2   

 

3.6 Discussion 

The comparison between the inspection planning without data augmentation and that without data 

augmentation shows that the data augmentation could effectively extend the dataset and improve the 

inspection plan by improving the safety level with minimizing costs. The comparison between the 

deterioration models with and without data augmentation shows that the proposed data augmentation 

method significantly reduced MSE by 60% and improved the future state prediction accuracy by almost 

40%. The proposed deterioration model with data augmentation has a better performance than the 



deterioration-rate-based model, which improves the future state prediction accuracy by over 60%. 

The result also shows that data augmentation improves the deterioration model’s performance. The 

future state prediction accuracy is improved by almost 40% after data augmentation. When evaluating the 

TPR and FPR of using different inspection strategies with or without data augmentation, the result shows 

that data augmentation can improve TPR while also improving FPR.  

This research also evaluated the proposed inspection method in simulated fleets. The results show that 

the proposed method can improve operation safety with relatively fewer costs than traditional periodic 

inspections. The proposed method can constantly achieve the same accuracy of problematic vehicle 

detection with a 59.7% reduction in the number of inspections compared with the monthly inspection. In 

addition, the new method can achieve an 83.3% reduction in the time of having certain vehicles operate 

under brake violations compared with the annual inspection plan. 

This research assumes that all heavy-duty vehicles deteriorate following the same deterioration 

pattern, which is different from vehicles in other weight levels. However, heavy-duty vehicles could have 

different deterioration patterns. For example, under the same original state (10/32 inch) and a similar 

mileage driven (2,000 miles), some vehicles deteriorate slowly and might remain in the original state, 

while some deteriorate fast and might reduce to 5/32 inch. Such variation in deterioration rates implies 

that heavy-duty vehicles have different deterioration patterns. In the future, revealing the deterioration 

patterns is important for designing a more customized deterioration model for each vehicle and achieving 

a more reliable inspection plan. 

3.7 Conclusion 

This paper proposed an inspection planning approach that inspects risky components periodically for 

safety-cost balance. The inspection planning includes four parts: (1) data augmentation for limited 

historical inspection records, (2) the Markov deterioration model for predicting the risk of component 

failure on the mileage dimension, (3) conditional probability formula for predicting the risk of component 

failure on the time dimension, and (4) vehicle and component selection for inspection. This paper 

compared the inspection planning with data augmentation to that without data augmentation. The results 

show that the data augmentation method improved the model performance by reducing the mean squared 

error of transition probabilities. This paper also tested the deterioration model’s performance in predicting 

vehicles’ future states. The proposed data augmentation method can improve the accuracy of state 

prediction by 37.6%.  

This paper also evaluated the overall inspection planning approach using cross-validation and a 



simulated virtual fleet. In cross-validation, the inspection planning can achieve a one hundred percent 

detectable rate of vehicle violations with a relatively low false inspection rate. In the test on a simulated 

commercial fleet, the proposed inspection planning is validated to detect all vehicle violations with 

relatively few inspections. The method can achieve an optimal balance between vehicle safety, financial 

costs, and uptime losses compared with current practices of periodic inspections. 

The predicted transition probabilities to potential states can indicate the importance of the components 

in inspections. Such characteristics could contribute to telematics, a future trend in vehicle condition 

monitoring. The transition probability can help answer the questions: which vehicle and component need 

continuous monitoring, and what is the optimal data collection frequency. In this way, it is applicable in 

enhancing periodic inspections to improve vehicle safety with fewer costs by only selecting the important 

components for inspection and the optimal inspection frequency. In addition, it is also applicable in saving 

the transfer bandwidth and storage space of data collected from telematics by only monitoring the 

important components at important timing. In the future, integrating the proposed method into vehicle 

monitoring could contribute to finding the optimal data collection strategy for telematics data. 

Chapter 4 Investigation of Component Violations likely to Cause Crashes 

4.1 Introduction 

 
Commercial heavy-duty trucks and trailers play a crucial role in the efficient movement of goods and 

services across various industries. However, despite their importance, they are often susceptible to crashes 

and inspection violations, posing significant challenges to fleet management and operational efficiency. 

According to National Highway Traffic Safety Administration, in 2021, there were 5,788 people killed in 

traffic crashes involving large trucks, which was a 17-percent increase from 4,945 in 2020. Seventy-two 

percent of people killed in large-truck traffic crashes in 2021, were occupants of other vehicles. In 

addition, the percentage of large trucks involved in fatal traffic crashes was 10 percent or higher in 21 

States. 

As the demand for timely deliveries and reliable logistics continues to grow, fleet operators face 

increasing pressure to maintain high safety standards and comply with rigorous regulations. The 

occurrences of crashes and inspection violations not only result in substantial financial losses but also 

pose risks to road safety and public well-being. 

By identifying patterns and common risky vehicle components in crashes, fleet managers can take 



proactive measures to prevent potential accidents and minimize downtime due to inspection failures. This, 

in turn, leads to significant cost savings and contributes to the overall efficiency of fleet operations. 

Understanding the factors contributing to crashes and inspection violations is vital for fleet operators and 

managers seeking to optimize their operational processes and achieve better safety records although it is 

very difficult to consider all of them. In this chapter, we have explored the relationship between crashes 

and inspection violations in the commercial heavy-duty truck and trailer industry.    

4.2 Related work 

Many researchers have studied crashes and the safety of heavy-duty vehicles from different aspects. 

[53] studied accident risk of road and weather conditions on different road types. [54] analyzed the time 

of day affecting injury severities in large truck crashes. In another study, [55] investigated the effects of 

vehicle types and driver behavior in crashes. However, there are limited studies focusing on the 

relationship between crashes and vehicle-related inspection violations of trucks to identify the risky 

components to get more attention while planning for inspection and maintenance.  

4.3 Method 

4.3.1 Data cleaning and merging the datasets 

We conducted the investigation using the MCMIS (Motor Carriers Management Information System) 

crash and inspection violation datasets to identify the most frequent inspection violations associated with 

vehicles involved in crashes. Our primary focus was on heavy-duty vehicles, requiring the extraction of 

vehicles with gross weights above 26,000 lbs. from classes 7 and 8. To achieve this, we decoded the VINs 

(Vehicle Identification Numbers) from the crash dataset, which provided some information such as gross 

weight, make, model, model year, and body type of the vehicles contributing to crashes. Subsequently, 

we utilized Excel to filter the dataset, resulting in 62,000 remaining heavy-duty vehicles out of the initial 

104,000 in the crash dataset. Also, we checked all VINs to exclude the incorrect ones from further analysis. 

To further enhance our analysis, we merged the inspection report and inspection violation report using 

"INSPECTION ID" as a key, employing data frames in Python. Next, we merged this combined dataset 

with the previously filtered crash dataset based on "VINs" shared between both datasets. This step allowed 

us to connect the information from all three datasets effectively. Figure 22 demonstrates these connections.  

Upon completing these data merges, our analysis revealed that only 8,194 vehicles remained in the 

dataset. This means that a total of 8,194 vehicles, which had inspection violations, also contributed to 

crashes in 2021.  

 



 
   

Figure 22. Merging the three datasets 

 

4.3.2 Visualizing the results by Power BI 

After preparing the final dataset, we imported it into Power BI to get the percentage of each inspection 

violation in crashes and to visualize it by a pie chart. Power BI is a user-friendly and powerful tool 

developed by Microsoft that helps us turn our data into interactive reports and dashboards. We will discuss 

the results in the following section. 

4.4 Experiment 

The results show that the most frequent inspection violations that showed up in crashes were “lighting” 

(15.11%) and “Brake all others than out of adjustment” (11.39%). The percentage of each inspection 

violation is indicated in Figure 23, and each inspection violation ID is reported in Appendix 1:.Based on 

these findings, the inspection plan prioritizes potential component violations frequently involved in 

inspections. This approach ensures that the inspection planning focuses on the critical component 

violations that have the highest impact on crash prevention and overall road safety.  

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 



Figure 23. Percentage of each inspection violation in crashes (2021) 

The dataset we used contained other attributes related to crashes, such as weather conditions, road 

surface conditions, and light conditions, which all are subsets of environmental conditions. The results 

show that 77% of accidents happened when there was no adverse condition, and 10.14% when it was 

rainy. In addition, in 75% of accidents, the road surface was dry and in 14.85%, it was wet. Also, 

69.34% of accidents happened in daylight. However, from these percentages we cannot conclude that 

environmental conditions have negative correlations with the crash rates, because we do not have data 

about the vehicle’s exposure to accidents in these environments, the total mileage driven in rainy 

weather for instance. The percentage of each weather, road surface, and light condition in crashes are 

illustrated in  

Figure 24,  

 

Figure 25, and  

Figure 26, respectively, and their related ID descriptions are provided in Appendix 1:. 

 

Figure 24. The percentage of different weather conditions in crashes (2021) 

 

 



Figure 25. The percentage of different road surface conditions in crashes (2021) 

 

 
 

Figure 26. The percentage of different light conditions in crashes (2021) 

 

We also did some critical analysis on motor carriers that contribute to crashes and inspection violations 

more frequently. First, we derived the total mileage of each motor carrier. Then divided the total number 

of crashes by the total mileage to obtain the crash rate for each motor carrier. We did the same to obtain 

the inspection violation rate as well. The results demonstrate that two of the motor carriers that had high 

crash rates are not authorized to operate anymore. However, there are still some limitations in this study; 

because some motor carriers have not updated their total mileage in the FMCSA (Federal Motor Carrier 

Safety Administration) database. In addition, we are suspicious about some of the total mileages 

reported as they do not correspond to the number of power units or the number of drivers.  

Figure 27, and Figure 28 depict the motor carriers that have the highest crash rates and violation rates, 

respectively.  

 

 

 

 

 



 
 

Figure 27. Motor carriers with high crash rates in 2021 

 
 

 
 

Figure 28. Motor carriers with high inspection violation rates in 2021 

 

4.5 Conclusion and Future work 

In this chapter, we examined what inspection violations are more frequent in crashes so that we can 

consider them with high priority in the inspection and maintenance plans. Lighting and brake inspection 



violations had the highest percentage among all components. In future, we will study what operation, 

inspection and maintenance strategies can proactively manage the fleets considering safety, efficiency, 

and cost-effectiveness.    

 

Chapter 5 Discussion and Conclusion 

5.1 Discussion 

The project studies data of manual inspection, which is the most common way in fleets. As the 

development of telematics, more and more trucks and trailers start to install telematics, which can 

automatically gather real-time data from vehicles. This project discusses the benefits and limitations of 

telematics on trucks and trailers. 

By leveraging advanced telecommunications and informatics, telematics enables fleet managers to 

gather real-time data from various sensors, monitoring vehicle conditions and driver behavior, ultimately 

leading to enhanced vehicle safety and a reduced likelihood of inspection violations. Additionally, 

telematics can provide predictive analytics to inform and guide decision-making processes. However, 

despite its numerous potentials, there are limitations to the implementation of telematics, such as cost 

considerations for mid-size and small-size fleets that need cost justification, concerns about privacy 

violation, especially when Dash Cam is also installed inside the truck and the challenge of managing data 

overload and effectively using raw telematics data. Overall, telematics represents a powerful tool for 

optimizing fleet management operations, by improving efficiency, safety, and cost-effectiveness. 

However, fleet managers must carefully consider the technology's limitations mentioned above. 

 

5.2 Conclusion 

This project delivered an effective solution of the fleet inspection planning, which ensures the vehicles 

in safe conditions with minimum costs. Key achievements of the project team include 1) the development 

of the dashboard for visualizing historical inspection data and exploring valuable experiences for fleet 

managers; 2) the development of an interface for fleet management, which can upload fleet information, 

visualize fleet information, and generate inspection plans; 3) the development and validation of a 

predictive inspection planning model; 4) the development and validation of a data augmentation method 

for generating synthetic data to provide sufficient information for a more reliable predictive inspection 

planning model; and 5) identification of component violations most related to crashes. These 



accomplishments form an inspection planning solution that improves vehicle safety while minimizing 

delivery delays and costs due to inspections. 
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Appendix 1: Meta data of the coded vehicle attributes and inspection records 

Table 10: Inspection Violation IDs Description 

Inspection Violation ID Description 

1 Medical Certificate 

2 False Log Book 

3 No Log Book, Log Not Current, General Log Violations 

4 10/15 Hours 

5 15/20 Hours 

6 60/70/80 Hours 

7 All Other Hours-Of-Service 

8 Disqualified Drivers 

9 Drugs 

10 Alcohol 

11 Seat Belt 

12 Traffic Enforcement 

13 Radar Detectors 

14 All Other Driver Violations 

15 Brakes, Out of Adjustment 

16 Brakes, All Other Violations 

17 Coupling Devices 

18 Fuel Systems 

19 Frames 

20 Lighting 

21 Steering Mechanism 

22 Suspension 

23 Tires 

24 Wheels, Studs, Clamps, Etc. 

25 Load Securement 

26 Windshield 

27 Exhaust Discharge 

28 Emergency Equipment 

29 Periodic Inspection 

30 All Other Vehicle Defects 

31 Shipping Papers 

32 Improper Placarding 

33 Accepting Shipment Improperly Marked 

34 Improper Blocking and Bracing 

35 No Retest and Inspection (Cargo Tank) 

36 No Remote Shutoff Control 

37 Use of Non-specification Container 

38 Emergency Response 

39 All Other HM Violations 



40 Failure to Obey Traffic Control Device 

41 Following Too Close 

42 Improper Lane Change 

43 Improper Passing 

44 Reckless Driving 

45 Speeding 

46 Improper Turns 

47 Size and Weight 

48 Failure to yield right of way 

49 State/Local Hours of Service 

99 Unknown 

 

Table 11. Weather Condition ID Description 

 
 
 
 
 
 
 
 
 
 
 

Table 12. Road Surface Condition ID Description 

 

 

 
 

 

 

 

 

 

 

 

 

 

Weather Condition ID Explanation 

1 No Adverse Condition 

2 Rain 

3 Sleet, Hail 

4 Snow 

5 Fog 

6 Blowing Sand, Soil, Dirt, or Snow 

7 Severe Crosswinds 

8 Other 

9 Unknown 

Road Surface Condition ID Explanation 

1 Dry 

2 Wet 

3 Water (standing, moving) 

4 Snow 

5 Slush 

6 Ice 

7 Sand, Mud, Dirt, Oil or Gravel 

8 Other 

9 Unknown 



Table 13. Light Condition ID Description 

 
 
 
 
 
 
 

 
 
 

 
  

Light Condition ID Explanation 

1 Daylight 

2 Dark-Not Lighted 

3 Dark-Lighted 

4 Dark-Unknown Roadway Lighting 

5 Dawn 

6 Dusk 

8 Other 

9 Unknown 



Appendix 2. Publications and Other Products 

Chenyu Yuan, Ying Shi, Ruoxin Xiong, Pingbo Tang*. “Identifying Safety-Critical Heavy-duty Vehicles in 

Fleets with Complementary Vehicle Inspection Datasets through Cross-Database Clustering Analysis.” The 

Transportation Record Board 2023. Microsoft Word - TRB Paper Final Version - 
Chenyu_ying_ruoxinx_ptang.docx (cmu.edu) 
 
TrSafety - Towards Data-Driven and Continuous Safety Inspection of Commercial Trucks and Trailers: 

https://sites.google.com/andrew.cmu.edu/trsafety/home  

Appendix 3. Final datasets from the research project 

The two industry collaborators (Compuspections and Clarience Technologies) provided more truck/tractor 

inspection data and helped the project team clean and organize their data for supporting integrated analysis of 

historical inspection reports and real-time data. https://github.com/yingshixzz/Commercial-Fleet-

Management/blob/main/data/Heavy%20duty%20vehicle%20brake%20data_sample.xlsx 

 

The project utilized the MCMIS (Motor Carrier Management Information System) dataset from FMCSA (Federal 

Motor Carrier Safety Administration), which contains vehicle inspection recordings with the vehicle properties. 

The researchers extract text annotations in vehicle inspection recordings and cluster the vehicles based on vehicle 

failure modes. The final dataset contains the cleaned text annotations and clustering results. 

https://github.com/yingshixzz/Commercial-Fleet-

Management/blob/main/data/NLP%20with%20topic_sample.xlsx 

Appendix 4. ORCIDs for all project investigators, contributors, and publication 

author(s) 

Pingbo Tang - https://orcid.org/0000-0002-4910-1326  
Ava Jahan Biglari - https://orcid.org/0000-0002-9713-0543  
Ruoxin Xiong - https://orcid.org/0000-0001-8273-8276  
Chenyu Yuan - https://orcid.org/0000-0002-3821-3314  
Ying Shi - https://orcid.org/0000-0001-7968-7770  

Appendix 5. Other documented projects or outcomes resulting from the research 

project 

Presentations  

 

Ying Shi presented the research work on “Safety-Cost Aware Inspection Strategy for Commercial Vehicle Fleets” 

at Mobility21 Deployment Partner Consortium Symposium on October 31, 2022 

 

Ying Shi presented the research work on “Identifying Safety-Critical Heavy-Duty Vehicles in Fleets with 

Complementary Vehicle Inspection Datasets Through Cross-Database Clustering Analysis” at TRB 102nd Annual 

Meeting in Washington, DC on January 10, 2023 

https://ppms.cit.cmu.edu/media/project_files/TRB_Paper_Final_Version_-_Chenyu_ying_ruoxinx_ptang_spps6Ao.pdf
https://ppms.cit.cmu.edu/media/project_files/TRB_Paper_Final_Version_-_Chenyu_ying_ruoxinx_ptang_spps6Ao.pdf
https://sites.google.com/andrew.cmu.edu/trsafety/home
https://github.com/yingshixzz/Commercial-Fleet-Management/blob/main/data/Heavy%20duty%20vehicle%20brake%20data_sample.xlsx
https://github.com/yingshixzz/Commercial-Fleet-Management/blob/main/data/Heavy%20duty%20vehicle%20brake%20data_sample.xlsx
https://github.com/yingshixzz/Commercial-Fleet-Management/blob/main/data/NLP%20with%20topic_sample.xlsx
https://github.com/yingshixzz/Commercial-Fleet-Management/blob/main/data/NLP%20with%20topic_sample.xlsx
https://orcid.org/0000-0002-4910-1326
https://orcid.org/0000-0002-9713-0543
https://orcid.org/0000-0001-8273-8276
https://orcid.org/0000-0002-3821-3314
https://orcid.org/0000-0001-7968-7770


Algorithms 

Algorithms for 1) predicting vehicle conditions and identifying risky vehicles periodically to ensure the operation 

safety with the minimizing number of inspections; 2) clustering similar vehicles with similar brake deterioration 

patterns; 3) augmenting limited historical data for obtaining more reliable deterioration models; 4) explaining the 

clustering results by quantifying the influences of vehicle characteristics, driving behaviors, and driving 

environments on deterioration patterns given a certain component; 5) explaining the reasons for the variant 

deterioration rates of variant vehicles. 

 

Models 

(1) Deterioration models of commercial trucks and tractors for supporting the simulation of different inspection 

and maintenance policies for managing commercial vehicle fleets; (2) explainable models for interpreting the 

reasons for variant deterioration patterns for variant vehicles. 

 

Educational aids or curricula 

Education and outreach materials for training industrial professionals in the effective use of historical inspection 

records of commercial vehicles for preventive commercial vehicle fleet inspection and maintenance planning 

 

Software or NetWare 

Two interfaces for fleet management (one is for visualizing historical data and the other is for presenting 

inspection suggestions) 
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