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Essential Air Service is a federal government program that provides subsidies to airlines that 

provide commercial service between certain remote communities and larger hubs, which 

proponents argue are justified because driving to larger airports would be prohibitively 

expensive for residents of these communities. I estimate the value of Essential Air Service to 

local communities using a revealed-preferences approach by formulating and estimating a 

discrete-choice model of domestic air travel purchases that incorporates passengers’ 

geographical proximity to alternative airports. I estimate the model using proprietary data 

containing millions of domestic airline passengers’ residential ZIP codes coupled with their 

choice of airline product. Simple data tabulations reveal that most travelers living in regions 

receiving subsidized service have several alternative airports to choose from and generally 

prefer to drive to larger airports. A counterfactual policy simulation using the estimated model 

finds that, in aggregate, community members value subsidized commercial air service from 

their local airport at $16 million per year, compared to an annual cost of over $290 million. 
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I. INTRODUCTION 

For the last half century, the US domestic aviation industry has operated in a largely unregulated market 

environment. The Airline Deregulation Act of 1978 removed federal government control over fares, routes, 

flight frequency, and the entry of new airlines, leading to improvements in service, decreases in fares, and 

increases in the number of flights, passengers, and miles flown. Today, passenger aviation is a major 

component of the modern global economy, contributing about 5 percent to US gross domestic product 

annually (IATA, 2019; FAA, 2020). According to the International Civil Aviation Organization, 4.5 billion 

passengers globally flew on scheduled air service in 2019, and the Federal Aviation Administration (FAA) 

provides air traffic control services for more than 2.9 million airline passengers per day (FAA, 2022). 

According to the Consumer Expenditure Survey, about 13 percent of US households purchased at least one 

airline ticket in 2019 and spent an average of $3,873 on airfare.  

Although the Airline Deregulation Act was largely viewed as a success, there was fear among some at 

the time of its passage that small communities would be left behind in its wake as airlines shifted their 

operations to serve large, profitable markets. To assuage this fear, Congress established Essential Air 

Service (EAS) in 1978, which required carriers to continue providing scheduled air service at pre-
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deregulation levels—typically two round trips per day—to eligible communities using subsidies if 

necessary. Although EAS was originally set to expire after 10 years, under the assumption that air traffic 

would eventually become self-sustaining, Congress reauthorized EAS for another 10 years in 1988 and 

made it permanent in 1996. As of June 2022, costs for the program have ballooned to over $340 million 

per year despite fewer communities being eligible today compared to in 1978. Given that EAS still exists 

nearly a half century after Congress originally intending it to expire, it is reasonable to ask whether EAS 

still achieves its stated purpose of efficiently and effectively connecting remote communities to commercial 

air travel opportunities.1  

Understanding the value of EAS to the communities it serves requires understanding the trade-offs 

faced by travelers. A key trade-off that community members face is whether to fly from their local airport, 

which may be more convenient but offer fewer choices, or to drive to a larger airport, which may be far 

away but offer more choices. To study this trade-off, I analyze proprietary choice data derived from credit 

card transactions that link travelers’ airline product choices with their home ZIP code. The data, which have 

not been used in any previous economic studies, allow me to easily compute travelers’ driving time to 

alternative airports.2 Hence, driving time is an observable product characteristic whose marginal value to 

consumers can be estimated using standard econometric techniques.  

The proprietary choice data reveal several important insights about airline markets previously not 

known to researchers and policymakers. First, since I am able to directly observe which airports are chosen 

by residents of a particular geographical area, it is relatively straightforward to determine which airports 

effectively serve the same region.3 While the presence of multiple airports in a region does not in itself 

imply that the airports provide substitutable services, the growth of air travel demand since the early 1990s 

has attracted entry by airlines at different airports within the same region, suggesting a potentially important 

role for spatial interactions in the airline industry that have been largely overlooked by previous research.4 

 
1 The Airline Deregulation Act (92 Stat. 1733) requires the Department of Transportation to “consider the desirability 

of developing an integrated linear system of air transportation whenever such a system most adequately meets the air 

transportation needs of the communities involved.” 
2 To my knowledge, only two academic papers (Yirgu and Kim, 2021; Yirgu, Kim, and Ryerson, 2021) have used 

these data, and both papers use only a small geographical subset, in contrast to my data sample which covers the entire 

United States from 2013 to 2019. 
3 See Fournier, Hartmann, and Zuehlke (2007). Studies that have considered regions with multiple airports vary widely 

in which airports to include. Berry and Jia (2010, p. 11) consider six regions to have airports that are “geographically 

close.” de Neufville (1995) lists nine regions served by more than one airport. Brueckner, Lee, and Singer (2014) 

attempt to empirically estimate which airports serve the same metropolitan region based on competition spillovers and 

specify 13 regions as having multiple competing airports. Drukker and Winston (forthcoming) consider 22 regions to 

have multiple competing airports. 
4 Studies that consider aspects of spatial competition in non-airline markets include Manuszak and Moul (2009) and 

Dorsey, Langer, and McRae (2022) (gasoline); Smith (2004) and Katz (2007) (supermarkets); Davis (2006) (movie 

theaters); Ho and Ishii (2011) and Hatfield and Wallen (2022) (banking); and Murry (2017) and Murry and Zhou 

(2020) (car dealerships). Studies that consider aspects of spatial competition in airline markets include Fournier, 
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Relatedly, since I am able to observe the home ZIP code of an airport’s users, it is relatively 

straightforward to determine the geographical boundary of an airport’s catchment area (the area from which 

an airport draws its customers). Administrative and survey data from a variety of sources suggest that most 

airports draw customers from a large geographical area, but most previous studies of the airline industry 

have assumed airports have relatively small catchment areas, typically the geographical boundaries of a 

city.5 Proper market definition is of first-order concern for almost any industry analysis because it directly 

influences the scope of available substitutes for consumers and the degree of competition faced by suppliers. 

Excluding certain viable airports from travelers’ choice sets may rule out important substitution patterns, 

and estimates derived from narrowly defined choice sets will tend to overstate airlines’ market power by 

understating travelers’ ability to substitute to alternative products, which in turn could have significant 

implications for merger evaluations and antitrust enforcement.6 

The ability to view travelers’ choice sets is particularly useful for evaluating the costs and benefits of 

EAS, since implicit in much of the debate surrounding the program is the assumption that members of 

communities receiving EAS-subsidized service would have no other viable alternatives for accessing 

commercial air travel apart from subsidized service from their local airport. My choice data allow me to 

see which airports residents of an arbitrary geographical area actually use, allowing me to directly check 

this assumption.7 Simple tabulations of the proprietary choice data reveal a key insight about the nature of 

EAS community members’ choice sets, namely, that despite their ostensible isolation from the rest of the 

national air transportation system, members of most EAS communities rarely choose to fly on EAS-

subsidized flights from their local airport and instead generally prefer to drive to airports of various sizes 

offering more products with better characteristics. From an econometric perspective, failing to consider 

these viable alternatives in travelers’ choices sets will make EAS appear more valuable than it actually is 

because travelers will appear less price sensitive due to having fewer substitutes. From a policy perspective, 

 
Hartmann, and Zuehlke (2007), Hess and Polak (2005, 2006), Ishii, Jun, and Van Dender (2007, 2009), Mahoney and 

Wilson (2014), Brueckner, Lee, and Singer (2014), McWeeny (2019), and Drukker and Winston (forthcoming). 
5 Airlines For America’s 2019 annual survey found that 37 percent of passengers reported flying from an airport that 

was not the closest to their home or office at some point in the previous year. McWeeny (2019) found that a significant 

share of travelers surveyed at San Francisco International Airport drove from as far away as Sacramento (a 2-hour 

drive) and that 57 percent of passengers surveyed at San Francisco International Airport bypassed an airport that was 

closer to their home. Ishii, Jun, and Van Dender (2007) found that travelers located closest to San Francisco 

International Airport most often departed from there, but passengers closest to San Jose International Airport or 

Oakland International Airport often chose to fly from a different airport. Yirgu, Kim, and Ryerson (2021) report 

significant airport leakage for small and medium-sized airports in the Midwest United States. 
6 The US Department of Justice uses a narrow city-pair market definition in cases involving airline mergers. See, for 

example, their complaint against the proposed merger between American Airlines and US Airways (78 Fed. Reg. 

71377) and their complaint against the Northeast Agreement between American Airlines and JetBlue Airways 

(https://fingfx.thomsonreuters.com/gfx/legaldocs/zjpqkrdlmpx/plaintiffs-brief-american-airlines-2022.pdf).  
7 Bao, Wood, and Mundy (2015) and Lowell et al. (2011) compute the cost of subsidizing flights to the cost of 

subsidizing bus service to the same location. They do not consider the costs of subsidizing bus service to alternative 

airports. 
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the revelation that EAS community members frequently choose to drive to alternative airports undermines 

EAS’s raison d’être to provide an essential service to communities that would otherwise have no other 

options to connect to the national air transportation system.8  

An added benefit of the proprietary choice data is that I can see the home location of any airport’s users, 

which allows me to determine the extent to which an EAS-subsidized airport serves residents of the 

community. Knowledge of the home location of EAS-subsidized airport users is policy relevant because 

the purpose of EAS is to connect residents of the community to commercial air travel. Without the ability 

to link purchases to the home location of purchasers, it would not be possible to determine who are the 

primary users of EAS-subsidized service. Tabulations of the data reveal that the majority of EAS-subsidized 

airport users are not residents of the communities in which the airport is located. This finding has important 

fiscal policy implications because all users of EAS airports benefit from subsidized ticket prices, regardless 

of residency status, implying a majority of EAS funds go toward subsidizing nonresidents of EAS 

communities. The problem is further compounded by the fact that nonresidents who use EAS-subsidized 

airports tend to have higher incomes than residents, which raises serious distributional concerns about the 

program. 

To formally estimate the value that EAS community members derive from the program, I formulate 

and estimate a discrete-choice model of air travel demand. I formulate my demand model using a nested 

logit utility specification that closely resembles the canonical models of Berry, Carnall, and Spiller (1996, 

2006) and Berry and Jia (2010). A key component of my model is the inclusion of driving time as a product 

characteristic, which allows me to directly estimate the implicit monetary costs of driving to alternative 

airports. I estimate my model using the generalized method of moments with a combination of macro and 

micro data, as described by Berry, Levinsohn, and Pakes (2004) and Petrin (2002). Macro moments are 

constructed using aggregate data containing information about airline products, their characteristics, and 

the number of travelers who choose each product, and micro moments are constructed using the proprietary 

choice data. Intuitively, the micro moments capture spatial variation between driving time and travelers’ 

choices (and non-choices), which is used to identify travelers’ preferences for driving.9 

A useful feature of the discrete-choice modeling framework is that it allows me to analyze 

counterfactual policy experiments by estimating consumer surplus under two alternative scenarios. In 

particular, I consider a counterfactual policy experiment in which all EAS subsidies are eliminated, which 

 
8 Grubesic and Matisziw (2011) thoroughly studied EAS community members’ access to a variety of alternative 

airports, but their data do not allow them to study the extent of their use. 
9 McWeeny (2019) uses a similar revealed-preferences approach, which, unlike the stated-preferences approach used 

by Landau et al. (2016), Daly, Tsang, and Rohr (2014), Adler, Falzarano, and Spitz (2005), Hess and Polak (2006), 

Merkert and Beck (2017), and Hess, Adler, and Polak (2007), does not rely on self-reported or speculative valuations 

of trip components. 
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would cause commercial service to cease at most airports currently served by EAS-subsidized airlines. The 

difference between consumer surplus computed before and after the elimination of commercial service at 

EAS airports reveals community members’ implicit value of the EAS program, and a simple comparison 

between the costs and benefits of the program can be used to determine whether EAS subsidies are justified.  

I conduct my counterfactual policy experiment using data from 2019 for 107 EAS communities in the 

continental United States. The analysis reveals that the members of these 107 communities collectively 

value subsidized service from their local airport at $16 million annually, a paltry amount compared to EAS’s 

cost in 2019 of over $290 million. Furthermore, this estimate likely overstates the effects of eliminating 

EAS subsidies, since commercial service might not cease at all formerly eligible communities. 

Disaggregating the results by airport reveals that desirable routes tend to be flown by legacy airlines 

operating in a seemingly competitive environment, which is suggestive of rent-seeking behavior to the 

extent EAS subsidies act as entry barriers for competitors.  

The remainder of this paper is organized as follows. In Section II, I provide a brief history and overview 

of Essential Air Service. In Section III, I describe my data and present several novel insights based on 

descriptive statistics. In Section IV, I formulate an empirical model of demand, and in Section V, I describe 

the estimation strategy and sources of identification. In Section VI, I present the estimation results and 

perform post-estimation checks. In Section VII, I present the results of my counterfactual policy analysis 

to compute the consumer surplus that communities derive from EAS and consider distributional 

implications. Section VIII concludes with a summary of the findings, policy recommendations, and 

suggestions for future research. 

II. ESSENTIAL AIR SERVICE 

The EAS program provides subsidies to airlines to provide regular service to eligible communities.10,11 

To be eligible for EAS, a community must be located more than 70 miles from the nearest medium or large 

hub airport, require a per-passenger subsidy rate of $200 or less ($1,000 or less if the community is farther 

than 210 miles from a hub), and have 10 or more enplanements per day.12 EAS typically subsidizes one 

airline to provide two to four round trips per day, six days per week, from an EAS community to a larger 

hub. Although EAS eligibility is based on a community’s distance to the nearest medium or large hub, 

 
10 A handful of communities participate in the Alternate EAS program, which allows communities to forgo traditional 

EAS for a prescribed amount of time in exchange for a flexible grant. In 2019, all communities participating in the 

Alternate EAS used their funds to subsidize charter air service.  
11 EAS contracts do not give an airline the exclusive right to serve a community, and airlines may decide to serve a 

community under an EAS contract without the use of subsidies. 
12 See Appendix C for a summary of the legal statutes and DOT practice regarding eligibility determination. Tang 

(2018) provides an excellent primer on EAS, its history, and eligibility requirements. 
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airlines that receive EAS contracts are not required to fly passengers to the nearest hub nor to a medium or 

large hub.13  

Airlines compete for EAS contracts through a bidding process, and the DOT typically receives 1–3 

proposals per airport every 1–3 years, when EAS contracts typically expire. By law, the DOT must take 

into account the views of the community when deciding which proposal to accept, as well as the carrier’s 

service reliability and any arrangements it has with larger carriers at the hub. Notably, subsidy cost is not 

among the factors the DOT is required by law to consider when evaluating bids, and if more than one carrier 

proposes to offer service then local officials are under no obligation to favor the proposal that entails the 

lowest cost to the federal government.  

EAS has long been a target of critics who have derided the program as wasteful spending and an 

inefficient means of connecting rural communities to commercial air travel, arguing that the statutes 

governing EAS do not encourage cost efficiency and that the market, not government subsidies, should 

decide which airports survive. But community stakeholders argue that EAS provides an essential service to 

communities that would otherwise lose access to commercial air travel, arguing that EAS community 

members value their local airport and without government subsidies the airport would cease to be 

commercially viable. Several papers have argued that ending EAS subsidies would not necessarily reduce 

service at eligible communities.14 But the question of whether and the extent to which EAS community 

members value their local airport has not been studied and is one that I take up in the present paper.  

Figure 1 shows the locations of 107 airports receiving EAS-subsidized service as of September 2021.15 

Following the Eno Center for Transportation’s (2018) convention, red dots represent communities that are 

between 70 and 100 miles from a medium or large hub, orange dots represent communities that are between 

100 and 150 miles from a medium or large hub, light blue dots represent communities that are between 150 

and 210 miles from a medium or large hub, and dark blue dots represent communities that are more than 

210 miles from a medium or large hub (DOT, 2021c). The green dots correspond to medium or large hubs 

that are nearest to EAS communities or which are used by airlines serving EAS communities even if not 

geographically closest (DOT, 2019a, 2022b).  

  

 
13 For example, Cape Air currently serves several EAS communities in Montana through their small hub at Billings 

Logan International Airport. See Appendix C for the FAA’s definition of hub size. 
14 Cunningham and Eckard (1987) suggest that EAS subsidies may have actually reduced flight frequency because 

EAS contracts serve as entry barriers that discourage competition. Morrison and Winston (1986) note that service to 

small communities actually increased following deregulation—suggesting EAS subsidies mask profit opportunities. 

Bao, Wood, and Mundy (2015) note 10 of the 34 EAS communities that have had their EAS subsidies terminated 

since 1993 have experienced a substantial increase in their outbound passenger levels. Furthermore, subsidized airlines 

currently provide commercial service alongside unsubsidized airlines at several EAS airports, most notably Allegiant 

Air, which serves five currently eligible communities and one formerly eligible community. 
15 Appendix Table H3 lists the status of the 51 communities that have lost their EAS eligibility since 1989.  
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Figure 1. The Locations of EAS Airports and Their Nearest Hubs 

 

Source: Federal Aviation Administration. 

Notes: Green dots are medium or large hubs that are geographically closest to EAS communities or are 

used by EAS-subsidized carriers. Red, orange, light blue, and dark blue dots are EAS airports located less 

than 70 miles, 70–100 miles, 100–210 miles, and more than 210 miles, respectively, from the nearest 

medium or large hub. 

Although it would appear from Figure 1 that many EAS communities face considerable barriers to 

access commercial air travel without the assistance of EAS, the color-coding belies the full picture by 

restricting the notion of viability to medium hubs or larger. Figure 2 presents a fuller picture, augmenting 

Figure 1 by including a host of viable airports that are classified as smaller than medium hubs. For example, 

Figure 1 suggests Butte in southwest Montana is relatively isolated, located 6 hours to Salt Lake City to the 

south and 10 hours to Portland or 9 hours to Seattle to the west. But Figure 2 reveals that there are four 

additional airports within a 3-hour drive from Butte: Great Falls International Airport, Missoula Montana 

Airport, Helena Regional Airport, and Bozeman Yellowstone International Airport, a small hub served by 

8 major airlines flying to more than 20 destinations. The pink dots correspond to small hubs that are or have 
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been used by airlines to serve certain EAS communities, but which are too small to factor into the distance 

calculation for maximum allowable per-passenger subsidies.16 

Figure 2. The Locations of EAS Airports and Viable Nearby Airports 

 

Sources: Federal Aviation Administration; Airlines Reporting Corporation. 

Notes: See the notes to Figure 1. Pink dots are small hubs that are or have been used by EAS-subsidized 

carriers. Purple dots are airports used by a nontrivial share of EAS community members.  

  

 
16 For example, Yellowstone Regional Airport in Cody, Wyoming, is only about 100 miles from Billings Logan 

International Airport, but since Billings is considered a small hub it does not factor into the distance calculation; Salt 

Lake City International Airport is the nearest large hub (about 450 miles away), so a carrier serving Yellowstone 

Regional Airport would be exempt from the $200 per-passenger subsidy limit (DOT, 2019a). 
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III. DATA AND DESCRIPTIVE STATISTICS 

Before describing the model and estimation strategy, I describe the data used to estimate the model and 

present several figures showing the key features of the data. The data come from six primary sources. Table 

1 (presented at the end of this section) provides summary statistics for several key variables. 

A. Market Locator 

The primary data set used for the analysis comes from the Airlines Reporting Corporation’s (ARC’s) 

Market Locator tool. Owned by the airline industry, ARC acts as a clearing system for all travel agencies, 

including online travel agencies such as Booking Holdings, Expedia Group, and their subsidiaries, which 

process about 35 percent of all domestic tickets sold in the United States. According to ARC, the clientele 

is representative of the universe of domestic leisure and unmanaged business travelers.17 About 20 percent 

of all tickets that come through the ARC clearing system are sent to a credit card processing company that 

matches customers’ chosen product to their credit card billing ZIP code.18 The data are associated with the 

point of sale of the airline ticket purchaser, which is likely to be the passenger in most cases.19 Thus, the 

data are a roughly 7 percent representative sample of US domestic leisure passengers.  

The Market Locator data contain monthly passenger counts by ZIP code for 2013–19. Tabulations of 

the Market Locator data reveal which airports travelers drive to without a priori selecting which airports to 

include in a traveler’s choice set. For example, Figure 3 shows the 8 airports most commonly chosen by 

residents of Decatur, Illinois and their respective market shares. In 2019, Cape Air received $3.065 million 

to offer 24 nonstop round trips per week to O’Hare International Airport (ORD) and 12 nonstop round trips 

per week to St. Louis Lambert International Airport (STL) from Decatur Airport (DEC), with fares to 

Chicago starting at $59 one way and fares to St. Louis starting at $29 one way (DOT, 2017, 2019a; Cape 

Air, 2018). According to the DOT (2019a), Decatur Airport had 17,066 passengers (both directions) in 

2019, corresponding to a $180 per-passenger subsidy. Despite Cape Air offering unusually low prices, 

tabulations of the Market Locator data reveal that only 7 percent of travelers flew from Decatur to either 

Chicago or St. Louis, while 21 percent of travelers drove 2 hours and 15 minutes to St. Louis, 27 percent 

of travelers drove 3 hours to Chicago, and 27 percent of travelers drove 1 hour to Central Illinois Regional 

 
17 As noted by Yirgu, Kim, and Ryerson (2021), business travelers are more inclined to purchase tickets directly from 

airlines rather than through third-party agents, meaning they are less likely to show up in the Market Locator data. 
18 The ability to link tickets with billing ZIP codes is only limited by the credit card processing company used for the 

transaction; otherwise, there are no selection criteria for determining which tickets can be linked with billing ZIP 

codes. The credit card processing companies generally do not process American Express cards, so there is a slight bias 

against business travelers to the extent business travelers are more likely to pay with American Express cards. 
19 Although the traveler’s point of origin is typically within proximity to the purchaser’s point of sale, this would not 

be the case if, for example, the purchaser and passenger were in different locations or, more frequently, if the traveler 

purchased one-way tickets individually.  
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Airport (BMI), a non-hub primary commercial service airport served by four major airlines. The remaining 

travelers drove to Springfield’s Abraham Lincoln Capital Airport (SPI), Urbana–Champaign’s Willard 

Airport (CMI), Indianapolis International Airport (IND), or Peoria International Airport (PIA). 

Figure 3. Market Shares for Airports Chosen by Residents of Decatur 

 

Source: Airlines Reporting Corporation. 

Notes: See the notes to Figure 2. DEC is an EAS-subsidized airport in Decatur, Illinois. Market shares 

conditional on flying are shown as percentages after the airport codes. The dotted lines indicate travelers 

drove from Decatur to the indicated airport to take a departing flight. The dashed line indicates travelers 

flew from DEC to the indicated airport en route to a final destination. 

The Market Locator data are also useful for determining who the primary users of an EAS-subsidized 

airport are, namely, residents of the community or nonresident visitors. Knowing the home location of an 

EAS airport’s users is policy relevant because the purpose of EAS is to connect EAS community members 

to commercial air travel. To determine the residency status of EAS airport users, I draw geographical 

boundaries around the communities as shown in Appendix B—typically the Metropolitan or Micropolitan 

Statistical Area(s) encompassing the airport. Residents are then defined as passengers whose ZIP code is 

within the geographical region, and nonresidents are those whose ZIP code is outside the region. Overall, I 

find that nonresidents make up 57 percent of customers on EAS-subsidized flights. As shown in Appendix 
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Figure H1 and Appendix Table H2, several EAS communities are located very close to national parks, and 

airports in these communities likely serve as entry points for visitors; since all customers on EAS-

subsidized flights, regardless of where they live, benefit from lower ticket prices, it is plausible that EAS 

serves to subsidizes tourism for these areas, which is not its statutory purpose. Yellowstone Airport, for 

example, is used almost exclusively by tourists likely visiting Yellowstone National Park, while residents 

of West Yellowstone overwhelmingly prefer to drive 1 hour and 30 minutes north to Bozeman Yellowstone 

International Airport.20 

As will be explained in Section V.A, I use the Market Locator data to construct micromoments to be 

used for generalized method of moments estimation of the parameters of interest. I thus restrict the sample 

of Market Locator data in several ways. First, since several low-cost and ultra-low-cost carriers (including 

Southwest Airlines and Allegiant Air) generally do not have contracts with travel agencies or are not 

members of ARC, I do not observe travelers choosing products from these airlines.21 I therefore restrict the 

set of airlines to the four legacy carriers: American Airlines, Delta Air Lines, United Air Lines, and US 

Airways.  

Second, in order to identify substitution between airports, travelers living in an origin region must face 

a choice set containing at least two airports. I therefore restrict the origin regions under consideration to 

those among the top 40 busiest that contain at least two airports both served by a legacy carrier (see 

Appendix Table H1). These include Boston, Chicago, Cincinnati, Cleveland, Dallas, Detroit, Houston, Los 

Angeles, Miami, New York, Orlando, San Francisco, Tampa, and Washington, from which I drop Orlando 

Sanford International Airport (SFB), Chicago Rockford International Airport (RFD), and St. Pete–

Clearwater International Airport (PIE) because these airports are not served by a legacy carrier.22 

Lastly, I must specify each airport’s catchment area in order to calculate market shares. Market shares 

are defined as a given product’s share of the total potential trips from an origin area to a destination city. 

Appendix A shows airport locations and the constructed catchment areas for the 40 busiest origin regions, 

with darker shading corresponding to areas with higher population density. Appendix Table H1 shows the 

land area of each catchment area and the passenger-weighted average drive time to passengers’ chosen 

 
20 As noted by Grubesic and Wei (2013), Yellowstone Airport has the lowest subsidy rate among all EAS airports and 

a sparse local population base but has a much higher load factor than the national average, likely due to tourism. 

According to the National Park Service, approximately 1.73 million people used the west entrance to Yellowstone 

National Park in 2019. 
21 Southwest Airlines joined ARC in July 2019 and only shares data for corporate bookings made through its corporate-

client wing SWABIZ. 
22 Although Southwest Airlines has nearly 100 percent market share at Chicago Midway International Airport (MDW), 

Dallas Love Field (DAL), and Hobby Airport (HOU), the fact that legacy carriers have some market share at these 

airports implies the micromoments can still identify the parameters under the generalized method of moments 

estimation framework.   
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airport. The market size is assumed to be the total population of the catchment area, or the number of 

potential passengers who consider air travel from an origin region to a destination city.23  

B. OpenStreetMap 

Driving times between ZIP code centroids were extracted from OpenStreetMap using the Open Source 

Routing Machine, a high-performance routing engine for shortest paths in road networks. The 

OpenStreetMap data have an advantage over geodesic distance data (as the crow flies), such as the National 

Bureau of Economic Research’s ZIP Code Distance Database, because they properly account for vehicle 

mode, speed limits, and the nonlinear nature of road networks, although they do not account for delays 

caused by traffic. Travel time is based on speed limits for different road types. 

C. Airline Origin and Destination Survey 

Product characteristics and market shares were constructed using the DOT’s Airline Origin and 

Destination Survey (DB1B), a 10 percent quarterly sample of airline tickets from US carriers that contains 

detailed itinerary information such as fares, layovers, and carrier identity. As noted in Section V.A, the 

DB1B data is used to construct macromoments to be used for generalized method of moments estimation 

of the parameters of interest. I consider flights departing from the 40 busiest origin regions and arriving at 

the 100 busiest destinations for every quarter from 2013 to 2019, excluding origins in Hawaii, Alaska, and 

Puerto Rico. Appendix Table H1 lists the 40 origin regions under consideration and the 76 airports 

contained within them, as well as populations of the constructed catchment areas (see Appendix A). I 

determine which airports belong in which regions largely based on the recommendations of Brueckner, 

Lee, and Singer (2014). 

I clean the DB1B sample following standard sample cleaning procedures from the literature:24 I drop 

all itineraries with more than one connection and collapse all coupons with a layover into a single 

observation, regardless of the layover airport; the prices for such products (indirect flights) are computed 

as the passenger-weighted average price. I drop all itineraries that start and end at different airports (i.e., 

are not round trips), are not economy class for all coupons, and are not flown on the same airline for all 

coupons. I drop all itineraries with a fare of less than $11.20 (the September 11 Security Fee for a round-

 
23 Roughly speaking, market size is “some number of potential passengers who consider air travel” (Berry, Carnall, 

and Spiller, 2006, p. 189). Although somewhat arbitrary, Berry, Carnall, and Spiller (2006, p. 189) note that the use 

of the geometric mean of the origin and destination city populations as a measure of market size has “both empirical 

and (weak) theoretical precedent in the literature on travel demand.” Population of the origin region is a reasonable 

measure of market size in my context because my sample of aggregate data is constructed using round-trip tickets, 

and passengers who desire to fly from an origin to a destination and back are much more likely to be residents of the 

origin region as opposed to residents of the destination city.  
24 My sample cleaning procedure closely follows the cleaning procedure described by Severin Borenstein 

(http://faculty.haas.berkeley.edu/borenste/airdata.html). 
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trip ticket), such as those booked entirely with airline loyalty points, or greater than $2,500. In addition, I 

only consider flights whose ticketing carrier is a reporting carrier, defined as a carrier with more than 0.5 

percent of total domestic scheduled service passenger revenues; these include American Airlines, Delta Air 

Lines, United Air Lines, US Airways, Southwest Airlines, JetBlue Airways, Alaska Airlines, AirTran 

Airways, Virgin America, Allegiant Air, Frontier Airlines, Spirit Airlines, and Sun Country Airlines.25  

D. Airline On-Time Performance 

Additional product characteristics such as flight frequency, extra flight time, and layover times were 

constructed using the DOT’s Airline On-Time Performance data. Layover times are computed by assuming 

passengers choose the itinerary with the shortest possible layover longer than a minimum connection time 

of 30 minutes, which is the industry standard for US domestic flights.  

E. Zip-Codes.com 

Detailed ZIP code demographics were obtained from zip-codes.com’s ZIP Code Database (Business 

edition). Several useful demographics included in the database are population (used to construct market 

size), racial and gender composition, average home value, median household income, median age, and 

congressional district. The data are compiled by zip-codes.com using data from the US Postal Service, US 

Census Bureau, Office of Management and Budget, and various private sources. 

Figure 4 shows the distribution of median household income for EAS communities alongside the 

distribution of median household income for all Core-Based Statistical Areas (CBSAs), where a region’s 

median household income is computed as the weighted average of median household incomes across ZIP 

codes contained in the region. The median of the distribution for EAS communities is $52,500 compared 

to $64,250 for all CBSAs, implying EAS communities generally have lower incomes compared to the 

nation as a whole. Combining the demographic data with Market Locator data, Figure 5 shows the 

distribution of median household income for users of EAS airports broken down by EAS community 

residency status. Residents flying out of an EAS airport tend to have lower incomes than nonresidents flying 

into an EAS airport—medians of the distributions $53,400 and $62,800, respectively. Thus, not only do the 

majority of EAS funds go toward subsidizing nonresidents of the EAS community, but these nonresidents 

also tend to have higher incomes than residents. 

 
25 I exclude Hawaiian Airlines because it primarily serves Hawaii, which I exclude from my set of origin regions. 

AirTran Airways merged with Southwest Airlines in May 2011 but was coded separately until January 2015. US 

Airways merged with American Airlines in December 2013 but was coded separately until October 2015. Virgin 

America merged with Alaska Airlines in April 2016 but was coded separately until April 2018. I classify large regional 

carriers under their corresponding marketing carrier. 
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Figure 4. Distributions of Income for EAS Communities and All CBSAs 

 
Source: zip-codes.com. 

Note: The densities are constructed using an Epanechnikov kernel with a bandwidth of $5,000. 

Figure 5. Distributions of Income for Resident and Nonresident EAS Airport Users 

 
 

Sources: Airlines Reporting Corporation; zip-codes.com. 

Notes: Median household income is based on the ZIP codes of passengers from Market Locator for 2013–

19. The densities are constructed using an Epanechnikov kernel with a bandwidth of $5,000. 
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F. American Community Survey 

The American Community Survey (ACS) was used to construct income distributions at the ZIP code 

level, as explained in Appendix E. The ACS contains information about the number of households living 

in each Census block group with income in each of 16 income buckets ranging from $0 to $200,000 and 

above. These data were used to construct income distributions at the ZIP code level using a block group to 

ZIP code crosswalk obtained from the Missouri Census Data Center. The crosswalk, which provides the 

share of the population of each block group that lives in each ZIP code, was used to allocate the number of 

households in each block group into each ZIP code. Once block group populations were allocated to ZIP 

codes, the total number of households in each ZIP code and income bucket was computed. Finally, the 

number of households in each ZIP code and income bucket were converted to population shares by dividing 

by the total population of the origin region. 

Table 1. Summary Statistics for the Estimation Samples 

Variable Mean 

Standard 

deviation Source 

Fare (dollars) 186.69 66.87 DB1B 

   Direct 184.23 66.22 DB1B 

   Indirect 228.60 63.91 DB1B 

Drive time (minutes) 38.4 21.1 Market Locator 

   Multi-airport region 38.3 21.6 Market Locator 

   Single-airport region 38.6 20.2 Market Locator 

Extra time (minutes) 148 40 DB1B, On-Time 

   Layover time 83 32 DB1B, On-Time 

   Flight time 65 25 DB1B, On-Time 

Number of daily flights 5.5 3.8 DB1B, On-Time 

Direct flight distance (miles) 1,048 632 DB1B 

Products per market 8.6 5.2 DB1B 

   Multi-airport region 11.1 5.6 DB1B 

   Single-airport region 5.3 1.9 DB1B 

Share direct 0.945 
 

DB1B 

Share living in multi-airport region 0.657 
 

Market Locator 

Share of commercial enplanements 0.862   FAA 

Notes: All statistics are passenger-weighted over quarterly data from 2013 to 

2019 and are for one way. Drive time is to passengers’ chosen origin. Extra time 

variables are for indirect flights. Layover time excludes layovers longer than 4 

hours. Share of commercial enplanements is for 2019. See Section IV.A for the 

definition of products and markets. See Section IV.B for a description of several 

of the product characteristics listed. See Section III.A for the list of multi-airport 

regions. 
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IV. MODEL 

In this section, I specify a nested logit model of consumer demand for airline products that closely 

resembles the canonical models of Berry, Carnall, and Spiller (1996, 2006) and Berry and Jia (2010). The 

nested logit model is a workhorse model used in many studies of the airline industry and, as noted by Berry 

and Jia (2010), is a parsimonious way to capture the correlation of tastes for different product attributes that 

can be evaluated analytically. The key innovation that I make to the canonical nested logit model for air 

travel demand is to allow consumers to choose between airports they could fly from and to include driving 

time from one’s home to the airport in the traveler’s utility function.  

A. Demand Model 

In each time period (quarter) and for each region, I assume all potential travelers living in a particular 

region decide whether to fly to a particular destination and, conditional on choosing to fly, which product 

to purchase. The utility for consumer 𝑖 from choosing product 𝑗 in market 𝑡 is assumed to take the following 

form: 

𝑢𝑖𝑗𝑡 = 𝛼𝑖𝑝𝑗𝑡 + 𝐱𝑗𝑡
′ 𝛃𝑖 + 𝜉𝑗𝑡 + 𝜏𝑑𝑖𝑗𝑡 + 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 

where 𝑝𝑗𝑡 is the price of product 𝑗, 𝐱𝑗𝑡 is a vector of observed product characteristics, 𝜉𝑗𝑡 is the unobserved 

quality of 𝑗, and 𝑑𝑖𝑗𝑡 is the driving time from consumer 𝑖’s home to the departing airport of product 𝑗. The 

coefficient 𝜏 represents the marginal utility from driving to the airport and the coefficients 𝛼𝑖 and 𝛃𝑖 

represent the marginal utilities from airfare and other product characteristics, respectively, where the 

subscripts 𝑖 indicate that the coefficients are allowed to differ by individual.  

The term 휀𝑖𝑗𝑡 represents consumer 𝑖’s idiosyncratic taste for product 𝑗 and is assumed to be 

independently and identically distributed type-I extreme value across consumers and products. The term 

𝜂𝑖𝑡 represents consumer 𝑖’s idiosyncratic taste for airline products and is assumed to be distributed such 

that the composite error term 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 with 𝜆 ∈ (0,1) gives rise to the nested logit model with two nests.26 

The first nest contains all airline products, and the second nest contains only the outside option, which can 

be thought of as not flying to a particular destination during a quarter. To facilitate identification, the utility 

of the outside good is normalized to 𝑢𝑖0𝑡 = 휀𝑖0𝑡. 

Individuals 𝑖 can purchase products 𝑗 that belong to one and only one market 𝑡, which I define as an 

origin–destination pair at a point in time. While most studies of the airline industry define a market to be 

 
26 Cardell (1997) describes the precise distributional assumptions necessary to give rise to such a model. Specifically, 

the distribution of 𝜂𝑖𝑡 is defined to be the unique distribution parameterized by 𝜆 that has the property that 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 

is distributed type-I extreme value when 휀𝑖𝑗𝑡 is also distributed type-I extreme value.  
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either an airport pair (products flying between two specific airports) or a city pair (products flying between 

any of the airports within two cities)—see Brueckner, Lee, and Singer (2014)—I want to consider the 

possibility that travelers might drive to an airport from beyond a city’s boundaries. I thus construct broad 

geographical areas around airports that could reasonably be considered substitutes and refer to such areas 

as origin regions.27 I assume all products departing from airports within the same origin region and flying 

to the same destination airport are within the same market. Formally, I define a market as a directional 

region-to-airport pair at a point in time.28 A product is defined as the airline, origin airport, and service type 

(direct and connecting) that gets passengers from one origin region to a destination airport. All flights from 

one airport to another with at most one layover that are operated by the same airline are thus considered the 

same product.29  

B. Model Specification 

All product characteristics in 𝐱𝑗𝑡 are assumed to be exogenous. These include variations on several 

variables commonly found in the literature.30 I include an indicator for whether a product is a direct flight, 

since utility should increase if there are fewer connections. I include flight frequency, defined as a product’s 

average number of daily departures, since consumers prefer to have flights offered at different times 

throughout the day for more flexibility when booking. I include a variable for origin presence, defined as 

the number of destinations served by an airline out of the origin airport, to capture the fact that consumers 

may be loyal to certain airlines and prefer to depart from airports where it is easier to accumulate frequent 

flier miles.31 Airlines with a larger origin presence at an airport may also offer more convenient flight 

schedules, which benefits consumers. 

I include a variable for direct flight distance, defined as the minimum distance (in miles) for a direct 

flight between the origin region and destination airport, to capture the fact that flights compete with the 

 
27 Appendix A shows the 40 constructed origin regions used in the estimation, and Appendix Table H1 shows their 

land areas. 
28 Markets are directional in the sense that flights between airports are distinguished by their direction of travel. For 

example, flights from New York City to Chicago are a different market than flights from Chicago to New York City. 
29 I do not distinguish connecting flights by the airport at which the layover occurs, and I drop all flights with more 

than one connection. Berry and Jia (2010) consider products with more than one connection. Unlike Berry and Jia 

(2010), I do not consider fares or fare bins in the product definition and instead use the average price weighted by the 

number of passengers as a product characteristic. 
30 This literature includes, among others, Berry (1990), Berry, Carnall, and Spiller (2006), Berry and Jia (2010), 

Ciliberto and Williams (2014), McWeeny (2019), and Ciliberto, Murry, and Tamer (2021). 
31 Borenstein (1989), Berry (1990), Morrison and Winston (1989), Evans and Kessides (1993), Berry, Carnall, and 

Spiller (2006), and Ciliberto, Murry, and Tamer (2021) emphasize that a larger origin presence increases the value of 

frequent flier programs and other airline marketing programs. 
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outside option (including cars, buses, and trains), which become worse substitutes as distance increases; so 

utility should increase with distance when there is an outside option.32  

Following Berry and Jia (2010), I include a dummy that equals 1 if the destination is a popular vacation 

destination (Hawaii, Florida, Puerto Rico, St. Thomas, Las Vegas, or New Orleans), which helps to fit the 

relatively high traffic volume to these destinations that cannot be explained by the other observed product 

characteristics.33 Unobserved factors of demand that affect all markets at a particular point in time, such as 

seasonality, macroeconomic fluctuations, or major world events, are controlled for using year and quarter 

fixed effects, which help to explain the choice between flying and not flying. Unobserved factors that make 

a particular airline more attractive, such as baggage fees, availability of in-flight entertainment, and 

friendliness of the crew, are controlled for using airline fixed effects. Unobserved factors that make a 

particular airport more attractive, such as parking fees, congestion, and the availability of lounges or food 

options, are controlled for using origin airport fixed effects.  

The model incorporates heterogeneity in preferences for certain product characteristics, as indicated by 

the 𝑖 subscripts on 𝛼𝑖 and 𝛃𝑖. Specifically, I allow heterogeneity in preferences by income for price, 

specified as 

𝛼𝑖 = �̅� + 𝛼inc inc𝑖 

and for service type (direct or connecting), specified as 

𝛽𝑖,direct = �̅�direct + 𝛽direct
inc  inc𝑖 

where inc𝑖 is the income of consumer 𝑖 and 𝛽𝑥
inc = 0 for all other characteristics in 𝐱𝑗𝑡 besides the direct 

flight indicator, 𝑥𝑗𝑡,direct.
34 As shown by Berry and Jia (2010) and McWeeny (2019), higher-income 

consumers are less sensitive to price compared to lower-income consumers, so it is reasonable to include a 

heterogeneous coefficient on price by income. It is also plausible that higher-income consumers would have 

different preferences for service type compared to lower-income consumers, and that service type would 

 
32 Previous papers have opted to indirectly incorporate nonlinear preferences for flight time by including a quadratic 

term for flight distance. Berry and Jia (2010, p. 21) argue that air travel demand is inverse U-shaped in distance: “As 

distance increases further, travel becomes less pleasant, and demand starts to decrease.” They hence include both flight 

distance and flight distance squared to capture the curvature of demand. Ciliberto and Williams (2014, p. 770) note 

that “for longer distances air travel becomes relatively more attractive but all forms of travel are less attractive,” so 

they include distance, distance squared, and a “measure of the indirectness of a carrier’s service” in their utility 

function. McWeeny (2019) includes direct flight distance, direct flight distance squared, extra flight distance, and 

extra flight distance squared in his utility function. 
33 Berry, Carnall, and Spiller (2006) capture the attractiveness of a particular destination by including a variable for 

the temperature difference between the origin and destination in January. 
34 Alternatively, let 𝜄direct denote a vector with length equal to the number of exogenous characteristics in 𝐱𝑗𝑡 that 

equals 1 in the position of the direct flight indicator and equals 0 in all other positions. Then 𝛃𝑖 ≡ �̅� + (𝛃inc inc𝑖) ∘
𝜄direct, where ∘ denotes the elementwise Hadamard product.  
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be correlated with price, so it is important to also allow income heterogeneity in preferences for service 

type in order to identify ceteris paribus sensitivity to price. 

V. MOMENTS, ESTIMATION, AND IDENTIFICATION 

I estimate the model using the generalized method of moments (Hansen, 1982), closely following 

Berry, Levinsohn, and Pakes (2004) and Petrin (2002). I use three types of moments to estimate the model 

parameters. First, I set predicted market shares equal to observed market shares, which, as shown by Berry 

(1994), allows me to identify unobserved product quality. Second, I make an orthogonality assumption 

about the relationship between unobserved product quality and a set of instruments, which I use to construct 

macromoments using market-level data. Third, I construct micromoments by interacting driving times with 

observed choices using the individual-level data. Appendix F details how I construct the moments and 

provides other estimation details, including how I compute standard errors. After explaining how the 

moments are constructed, I explain how the moments identify the parameters. 

A. Moments 

The first set of moments equate market shares predicted by the model with observed market shares. As 

shown by Berry (1994) and others, the distributional assumptions of the composite error term give rise to a 

closed-form expression for the model-predicted market share (see Appendix F). Let 𝑠𝑗𝑡 denote the model-

predicted market shares, let 𝑆𝑗𝑡 denote the market shares observed in the data, and let 𝐬 and 𝐒 denote the 

vectors of 𝑠𝑗𝑡 and 𝑆𝑗𝑡, respectively, for all products 𝑗 = 1, … , 𝐽𝑡 and markets 𝑡 = 1, … , 𝑇. The first set of 

moments are constructed by setting 𝐬 = 𝐒. 

The second set of moments are referred to as macromoments because they are constructed using market-

level data, where the unit of observation is product 𝑗. I assume that the unobserved product quality 𝜉𝑗𝑡 is 

uncorrelated with a set of instruments. Since price 𝑝𝑗𝑡 is possibly correlated with unobserved product 

quality—consumers may be willing to pay a higher price for higher quality that is not observed by the 

researcher—I assume the instruments are correlated with price but uncorrelated with a product’s quality. 

Formally, let 𝐳𝑗𝑡 be a set of exogenous instruments. The moment conditions are 𝐸[𝐳𝑗𝑡
′ 𝜉𝑗𝑡] = 𝟎 and the 

macromoments 𝐦1 are defined as the sample analog of 𝐸[𝐳𝑗𝑡
′ 𝜉𝑗𝑡]. 

The third set of moments are referred to as micromoments because they are constructed using 

individual-level data, where the unit of observation is individual 𝑖 purchasing a product 𝑗. Specifically, I 

compute the micromoments using a random sample of 10,000 individuals from the Market Locator data 

living in origin regions with two or more airports each served by legacy carriers (see Section III.A). I form 

the moments by equating model-predicted conditional purchase probabilities with data on whether or not 
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an individual purchased a product. Let 𝑦𝑖𝑗𝑡 = 1 if individual 𝑖 purchased product 𝑗 in market 𝑡 and 𝑦𝑖𝑗𝑡 = 0 

otherwise. Let �̅�𝑖𝑗𝑡 denote the probability that individual 𝑖 purchases product 𝑗 in market 𝑡 conditional on 

purchasing an airline product. The moment condition is 𝐸[(𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡)𝑑𝑖𝑗𝑡] = 0 and the micromoments 

𝐦2 are defined as the sample analog of 𝐸[(𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡)𝑑𝑖𝑗𝑡].  

B. Estimation 

Let 𝛉 denote the parameters to be estimated. To reduce the dimensionality of the generalized method 

of moments nonlinear parameter search, I follow Conlon and Gortmaker (2020) by rewriting the utility 

specification as 

𝑢𝑖𝑗𝑡 = 𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡 + 𝜈𝑖𝑗𝑡 

where  

𝛿𝑗𝑡 = �̅�𝑝𝑗𝑡 + 𝐱𝑗𝑡
′ �̅� + 𝜉𝑗𝑡 

𝜇𝑖𝑗𝑡 = 𝜏𝑑𝑖𝑗𝑡 + 𝛼inc(inc𝑖 × 𝑝𝑗𝑡) + 𝛽direct
inc (inc𝑖 × 𝑥𝑗𝑡,direct) 

𝜈𝑖𝑗𝑡 = 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 

Let 𝛉1 ≡ (�̅�, �̅�), 𝛉2 ≡ (𝜆, 𝜏, 𝛼inc, 𝛽direct
inc ), and 𝛉 ≡ (𝛉1, 𝛉2). Grigolon and Verboven (2014) show how 

𝛿𝑗𝑡 can be recovered for a given value of 𝛉2 using a modified contraction mapping algorithm introduced by 

Berry, Levinsohn, and Pakes (1995) (see Appendix F). By partitioning the utility specification in this way, 

the parameters 𝛉1 can be consistently estimated via two-stage least squares estimator �̂�1 using the 

instruments 𝐳𝑗𝑡, and the generalized method of moments estimator only has to perform a nonlinear search 

over the parameters 𝛉2. 

Following Berry, Levinsohn, and Pakes (2004) and Petrin (2002), I stack the moments 𝐦 ≡ (𝐦1, 𝐦2) 

to form the generalized method of moments objective function 𝐦′ 𝐖 𝐦, where 𝐖 is a matrix that assigns 

weights to the moments. The estimator �̂�2 searches for parameter values that minimize the objective 

function up to some convergence tolerance. Appendix F explains how the matrix 𝐖 is constructed so that 

�̂�2 is an efficient estimator. 

C. Identification 

To identify 𝛉1 ≡ (�̅�, �̅�), recall that 𝛿𝑗𝑡 = �̅�𝑝𝑗𝑡 +  𝐱𝑗
′�̅� + 𝜉𝑗𝑡. The term 𝜉𝑗𝑡 represents desirable 

characteristics of product 𝑗 that are unobserved to the researcher, which, given the limitations of the data, 
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might include ticket restrictions (such as refundability) and departure time, among others.35 Product 𝑗’s 

price 𝑝𝑗𝑡 is singled out from the other (exogenous) product characteristics in 𝐱𝑗𝑡 to emphasize that special 

care must be taken to account for endogeneity: Travelers are willing to pay a higher 𝑝𝑗𝑡 for better 

characteristics 𝜉𝑗𝑡 that are observed by the traveler and the airline but not by the researcher. I allow for 

arbitrary correlation between 𝜉𝑗𝑡 and 𝑝𝑗𝑡 and instrument for 𝑝𝑗𝑡, as explained below. 

There are two unobserved variables in this equation: 𝛿𝑗𝑡 and 𝜉𝑗𝑡. As explained in Appendix F, I use a 

contraction mapping algorithm described by Grigolon and Verboven (2014) to recover 𝛿𝑗𝑡 for any value of 

𝛉2, which allows 𝛉1 to be estimated using two-stage least squares, where 𝜉𝑗𝑡 is treated as the residual. 

Recall that price 𝑝𝑗𝑡 is potentially endogenous because product quality 𝜉𝑗𝑡 may be correlated with price and 

is observed by consumers when making purchases, yet is unobserved by the researcher. Thus, a consistent 

estimator of 𝛉1 requires valid instruments 𝐳𝑗𝑡 that are correlated with a product’s price but uncorrelated 

with a product’s unobserved quality.  

Following Berry, Levinsohn, and Pakes (1995) and the large subsequent literature, I form instruments 

by exploiting rival product attributes and the competitiveness of the market environment, as products with 

closer substitutes should have lower prices, all else equal. The validity of the instruments relies on the 

admittedly strong but standard assumption in the literature that market structure is exogenous with respect 

to product-level unobserved quality.36 As noted by Berry and Jia (2010), this assumption is reasonable in 

the short run, since market entry decisions involve substantial fixed costs, such as acquiring gate access, 

optimizing flight schedules, obtaining aircraft and crew members, and advertising to customers. In addition, 

the fact that capacity reduction is costly and that carriers are generally cautious about serving new markets 

suggests that the number of carriers is likely to be determined by long-term considerations and uncorrelated 

with temporal demand shocks. 

In addition to the exogenous product characteristics 𝐱𝑗𝑡, I construct several sets of instruments to aid in 

the identification of 𝑝𝑗𝑡. Following Murry (2017), I include the squared difference of each product’s 

exogenous characteristics (origin presence, extra time, and flight frequency) from the mean of the 

characteristic for competitors in the market. Following Ciliberto, Murry, and Tamer (2021), I include the 

exogenous characteristics (origin presence, extra time, flight frequency) of all competitors in a market, as 

the authors argue these instruments capture greater variation in the competitive environment than 

 
35 As noted by Berry and Jia (2010), in practice not all products are available at every point of time. For example, 

discount fares, which typically require advanced purchase, tend to disappear first. The term 𝜉𝑗𝑡 can therefore include 

a ticket’s availability, where 𝜉𝑗𝑡 is higher for products that are always available or have fewer restrictions and lower 

for products that are less obtainable or with more restrictions. 
36 Ciliberto, Murry, and Tamer (2021) relax the assumption of exogenous market structure. 
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instruments constructed by summing or averaged characteristics of products within a market.37 I also 

include the share of products in a market that are direct flights, since markets with more direct flights may 

be more competitive. I include the number of products in each market, as this instrument will be useful for 

identifying 𝜆 (as explained below). Lastly, following Berry and Jia (2010), I include interactions of each 

product’s exogenous characteristics (origin presence, direct flight distance, extra time, and flight 

frequency).  

To identify 𝛉2 ≡ (𝜆, 𝜏, 𝛼inc, 𝛽direct
inc ), I use the same set of instruments 𝐳𝑗𝑡 described above and interact 

them with the estimated residuals 𝜉𝑗𝑡 = 𝛿𝑗𝑡 − �̂̅�𝑝𝑗𝑡 − 𝐱𝑗𝑡
′ �̂̅�, where �̂�1 ≡ (�̂̅�, �̂̅�) is the two-stage least squares 

estimator. Since the instruments 𝐳𝑗𝑡 are arguably uncorrelated with unobserved product quality 𝜉𝑗𝑡, an 

orthogonality argument implies that the sample analog of 𝐸[𝐳𝑗𝑡
′ 𝜉𝑗𝑡] = 𝟎, which is the basis for forming the 

macromoments. As noted by Berry and Jia (2010), 𝜆 is identified by variation in the market share of the 

airline products relative to the outside option as the number of products varies, and a common choice of 

instrument is the number of products in each market. The income-specific preference parameters 𝛼inc and 

𝛽direct
inc  are identified by covariation between travelers’ incomes and the attributes of purchased products. 

The micromoments, which are constructed using detailed information on travelers’ home ZIP code relative 

to their chosen airport, are particularly useful for identifying 𝜏, the preference parameter for driving.38  

VI. ESTIMATION RESULTS  

In this section, I present the estimation results and post-estimation checks of model fit and 

identification.  

A. Results 

Table 2 presents the estimation results using quarterly data from 2013–19. All estimated coefficients 

are statistically significant and have the expected signs. Travelers dislike higher prices and longer driving 

times, but higher-income travelers are less sensitive to price. Travelers benefit from the ability to travel to 

faraway cities though they prefer to take the most direct route, with higher-income travelers having a 

stronger preference for direct flights. Travelers also prefer airline–airport pairs that make it easier to 

accumulate frequent flier miles and who offer more daily flights. To interpret the estimated coefficients 

from Table 2, it is useful to convert the units into monetary terms, which is done by dividing the coefficient 

 
37 If a carrier does not serve a market, then the value of the instrument enters as a large negative number.  
38 Recall that the micromoments were constructed using data from the legacy carriers American Airlines, Delta Air 

Lines, United Airlines, and US Airways. Notably, Southwest Airlines is excluded. This restriction does not introduce 

bias under the generalized method of moments estimation framework as long as we are willing to assume that 

travelers’ preferences for driving are independent of their choice of airline. 
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of interest by the price coefficient estimate adjusted for income. For example, the implied willingness to 

pay for a direct flight relative to an indirect flight, all else equal, is $50 for households making $50,000 per 

year and $88 for households making $100,000 per year, implying preference for direct flights increases 

with income.  

Table 2. Model Coefficient Estimates 
 (1) 

Driving time (hours) –1.686 

(0.132) 

Price ($100) –2.669 

(0.014) 

Price ($100) × income ($100,000) 0.838 

(0.111) 

Direct flight 0.644 

(0.010) 

Direct flight × income ($100,000) 0.970 

(0.066) 

Direct distance (1,000 miles) 0.696 

(0.008) 

Extra time (hours) –0.183 

(0.003) 

Origin presence (100 destinations) 0.285 

(0.006) 

Number of daily flights 0.125 

(0.001) 

Vacation destination 0.360 

(0.005) 

Nesting parameter 0.658 

(0.003) 

No. of products 346,199 

No. of markets 53,912 

Notes: The coefficients are estimated using 

data from 2013–19 described in the text. 

Standard errors are shown in parentheses. 

Converting the coefficient on driving time to monetary terms yields an estimate of the marginal value 

of travel time savings (VTTS) of $75 per hour for households making $50,000 per year and $92 per hour 

for households making $100,000 per year. The estimate for high-income households ($92 per hour) is 

reasonably close to the VTTS for business travelers computed using the DOT’s (2016) methodology ($88 

per hour), and the estimate for middle-income households ($75) reasonably close to the VTTS for leisure 
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travelers computed using the DOT’s (2016) methodology ($75) (see Appendix D).39 My estimates of VTTS 

are therefore reasonable and consistent with both the recent literature and current DOT (2016) methodology.  

Figure 6 shows the distributions of own-price elasticity (i.e., percentage change in market share from a 

percentage change in own price) and all-price elasticity (i.e., percentage change in market share from a 

percentage change in price of all products). The median of the own-price elasticities is –4.41 and the median 

of the all-price elasticities is –3.12.40 Figure 7 shows average own-price elasticities for each of the 16 

income groups. As expected, own-price elasticity of demand decreases with income, implying higher-

income travelers are less price sensitive.  

Figure 6. Distributions of Own- and All-Price Elasticities of Demand 

 

Notes: Own-price elasticity of demand is the percentage change in market share for a product from a 1 

percent change in a product’s own price. All-price elasticity of demand is the percentage change in market 

share for a product from a 1 percent change in all products’ prices. The densities are constructed using an 

Epanechnikov kernel with a bandwidth of 0.05.  

 
39 The DOT’s (2016) methodology for computing the VTTS for leisure travelers is admittedly arbitrary. Specifically, 

the DOT (2016) assumes the VTTS for leisure travelers is equal to ½ hourly median income. Using high-frequency 

GPS data linking drivers to their choice of gas station, Dorsey, Langer, and McRae (2022) estimate the VTTS as 89 

percent of hourly median income. Using large-scale field experiments for Lyft riders, Goldszmidt et al. (2020) estimate 

the VTTS as 100 percent of hourly median income. Zamparini and Reggiani (2007) report that the mean VTTS from 

a meta-analysis of 90 studies was 83 percent of hourly median earnings.  
40 IATA (2008) estimates an own-price elasticity of demand for short-haul, intra–North America markets as –1.65. 

McWeeny (2019) finds that a model that does not account for driving time to alternative airports understates own-

price elasticities of demand by about 42 percent. Applying McWeeny’s (2019) adjustment to IATA’s (2008) estimate 

would suggest an own-price elasticity of demand for short-haul, intra–North America markets of –2.87. The elasticities 

I estimate are at the product level, which are expected to be larger than estimates at the market level. 
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Figure 7. Own-Price Elasticity of Demand by Income 

 
Note: Own-price elasticity of demand is the average over all products for each of the 16 income groups 

shown on the horizontal axis.  

 

B. Model Fit and Post-Estimation Checks 

Figure 8 shows the empirical distribution of driving times from the Market Locator data alongside the 

model-predicted distribution of driving times. The model does a good job of fitting the data: The 

distributions are similar in shape and the median driving times are very close, 33 minutes (actual) versus 

36 minutes (predicted).  

To assess the role of each set of moments in identifying the parameters, I compute Honoré, Jørgensen, 

and de Paula’s (2020) 휀4 measure of moment informativeness, which measures the relative change in the 

asymptotic variance of the estimator from the removal of a set of moments. A large relative change in the 

asymptotic variance of a parameter’s estimator suggests the removed moments were informative for 

identifying said parameter. I categorize the moments into five groups: (1) six interactions between four 

(continuous) exogenous product characteristics (direct flight distance, extra time, origin presence, number 

of daily flights) interacted with the estimated residual 𝜉𝑗𝑡; (2) squared differences from the average among 

competitors for three (continuous) exogenous product characteristics (extra time, origin presence, number 

of daily flights) interacted with the estimated residual 𝜉𝑗𝑡; (3) three (continuous) exogenous product 

characteristics (extra time, origin presence, number of daily flights) for 11 competitors interacted with the 

0

1

2

3

4

5

6

7

8

9
(–

) 
O

w
n
-P

ri
ce

 E
la

st
ic

it
y

Annual Income



 

26 

estimated residual 𝜉𝑗𝑡; (4) the number of products in each market and share of products that are direct flights 

interacted with the estimated residual 𝜉𝑗𝑡; (5) the sum over all individuals and all products of the difference 

between a purchase indicator 𝑦𝑖𝑗𝑡 and the model-predicted purchase probability conditional on purchase 

�̅�𝑖𝑗𝑡 interacted with driving time 𝑑𝑖𝑗𝑡 (i.e., micromoments). 

Figure 8. Actual and Predicted Distributions of Driving Times to the Airport 

 

Sources: Airlines Reporting Corporation; Open Source Routing Machine. 

Notes: Driving time is computed for a random sample of 10,000 passengers from Market Locator for 

2013–19. Actual driving time comes from the data. Predicted driving time is ∑ [𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡(�̂�2)]𝑑𝑖𝑗𝑡𝑗 . The 

densities are constructed using an Epanechnikov kernel with a bandwidth of 2.5 minutes. 

Table 3 shows Honoré, Jørgensen, and de Paula’s (2020) 휀4 measure of moment informativeness for 

the five groups of moments described above on the estimated parameters for mean price sensitivity (�̅�), the 

nesting parameter (𝜆), drive time sensitivity (𝜏), and income-specific price sensitivity (𝛼inc). The results 

confirm the identification intuition explained in Section V.C. The most informative moments for identifying 

mean and income-specific price sensitivity are those derived from Ciliberto, Murry, and Tamer’s (2021) 

instruments. Identification of drive time sensitivity is driven almost entirely from the micromoments 

calculated using the Market Locator data, while these micromoments have almost influence on identifying 

any other parameters. Identification of the nesting parameter is driven by the moments that include the 

number of products in each market as an instrument, which validates the standard practice in the literature.  
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Table 3. Moment Informativeness 

Moments 

Mean price 

sensitivity 

Nesting 

parameter 

Drive time 

sensitivity 

Income-specific 

price sensitivity 

1 0.595 0.522 0.054 1.537 

2 0.177 0.227 0.012 0.353 

3 9.584 0.629 0.053 2.680 

4 2.544 2.331 0.074 0.136 

5 0.000 0.024 24.630 0.000 

Notes: Moment informativeness is calculated using Honoré, Jørgensen, and de 

Paula’s (2020) 휀4 measure. Moments listed in the first column correspond to the five 

groups explained in the text. The bolded cell in each column indicates the most 

informative moment for identifying the column parameter. 

 

VII. COUNTERFACTUAL ANALYSIS OF ESSENTIAL AIR SERVICE 

In this section, I use my estimated model to perform a counterfactual policy experiment to determine 

the consumer surplus that community members derive from EAS-subsidized commercial service at their 

community airports. To do so, I analyze a policy environment in which all EAS subsidies are ended. As 

noted in Appendix Table H3, most airports that have lost EAS eligibility no longer have commercial service, 

so it is reasonable to assume that ending EAS subsidies would result in an end to commercial service. 

However, it is possible that ending EAS subsidies would not end all commercial service—such as at 

Hagerstown Regional Airport (HGR), which lost EAS eligibility in 2018 but still has commercial service 

offered by Allegiant Air—in which case my counterfactual analysis would overestimate the value of EAS-

subsidized commercial service at an airport. Importantly, my counterfactual analysis does not assume that 

all activity at the airport would be eliminated, only that subsidized commercial service would end; an airport 

may provide benefits beyond commercial service—such as the ability to fly private planes into and out of 

the community—and as shown in Appendix Table H3, all formerly eligible EAS airports still support 

general aviation.  

A. Data Construction 

I use the Market Locator data to link customers’ choice of product with their home ZIP code. Generally, 

when EAS community members are observed flying from an airport that is not their local airport, I assume 

that they drove there. (Appendix G gives more details about the construction of the data used for the 

counterfactual policy experiment.) I use the same notions of products and markets that were used in the 

estimation; namely, a market is an origin region to destination airport pair, where in this case the origin 

region is an EAS community. Appendix B shows constructed catchment areas for the 107 EAS airports 
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under consideration along with an array of alternative nearby airports. To avoid complications arising due 

to airports changing carriers over time, I restrict my counterfactual policy analysis to using data from 2019.  

At least two relevant institutional details are worth mentioning. First, EAS-eligible airports are typically 

only served by one subsidized carrier at a time flying to one or two hubs.41,42 Second, prices on EAS-

subsidized flights generally exhibit little to no variability within a contract period. Thus, rather than using 

DB1B to compute average prices for EAS-originating flights from a sample of itineraries, I extract prices 

directly from the subsidized carriers’ EAS proposals to the DOT (listed in Appendix Table H4), which 

usually include the airlines’ expected average fares.  

EAS community members can be thought of as having two basic choices to access commercial air 

travel: via driving a short distance to their local airport for an indirect flight to their final destination, or via 

driving a (potentially substantially) longer distance to an alternative airport for a direct flight to their final 

destination.43 An EAS community member’s choice set could include several nearby airports within driving 

distance, such as those shown in Appendix B. I restrict the set of alternative airports to those within a 5-

hour drive from the EAS community with non-trivial market shares. Market size is assumed to be the 

population of the catchment areas shown in Appendix B. 

B. Methodology 

The basic idea of the counterfactual policy analysis is to compare the consumer surplus that EAS 

community members derive from two alternative choice sets, one that includes the option to fly on an EAS-

subsidized flight and one that does not. I calculate the change in consumer surplus from the removal of 

EAS-originating products as the compensating variation using the log-sum approach (de Jong et al., 2007; 

Small and Rosen, 1981). As shown by Kling and Thomson (1996), the distributional assumption on the 

composite structural error term implies 

 
41 Starting in May 2021, SkyWest, the largest regional carrier, began offering subsidized service from Yellowstone 

Airport under two different brands, Delta Connection and United Express (DOT, 2021a). Previously, SkyWest only 

offered service from Yellowstone Airport under the Delta Connection brand (DOT, 2019b). 
42 Starting in June 2021, United Airlines offered service from Joplin Regional Airport to three hubs: O’Hare 

International Airport, Denver International Airport, and George Bush Intercontinental Airport (DOT, 2021b; Joplin 

Globe staff, 2021). United dropped its flight to Houston in late 2021 and filed to withdraw service at Joplin completely 

in early 2022, citing pilot shortages, though the DOT ordered United to continue service at Joplin until a replacement 

carrier was found (DOT, 2022a; Joplin Globe staff, 2022; Woodin, 2022).  
43 For computational simplicity, I assume the driving time to the local airport for all members of an EAS community 

is 0. I only consider direct flights from non-EAS airports to ensure consistent comparison of products within the 

modeling framework. For example, the modeling framework does not allow for flights with more than one connection. 

Only about 10 percent of EAS community members make more than one stop en route to their final destination.  
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𝐸(𝐶𝑆𝑖𝑡) = −
1

𝛼𝑖
ln {1 + [∑ exp (

𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡

𝜆
)

𝑗

]

𝜆

} + 𝐶 

where the sum is taken over all products 𝑗 = 1, … , 𝐽𝑡 in market 𝑡, excluding the outside option; and 𝐶 is an 

unrecoverable constant.  

To ascertain the consumer surplus derived from EAS-subsidized commercial service, I compute 

expected consumer surplus under two choice scenarios: The true scenario where consumers have access to 

all products—including those originating from EAS airports—and the counterfactual scenario where 

consumers do not have access to commercial service departing from the EAS airport. Let 𝐶𝑆1𝑖𝑡 denote 

consumer surplus from the true scenario and let 𝐶𝑆2𝑖𝑡 denote consumer surplus from the counterfactual 

scenario. The surplus that consumer 𝑖 places on EAS-subsidized commercial service is the difference 

between the expected value of these two quantities: Δ𝐸(𝐶𝑆𝑖𝑡) = 𝐸(𝐶𝑆1𝑖𝑡) − 𝐸(𝐶𝑆2𝑖𝑡). A community’s 

aggregate consumer surplus from having access to EAS-subsidized commercial service is found by 

aggregating Δ𝐸(𝐶𝑆𝑖𝑡) over all community members 𝑖 and markets 𝑡.  

C. Counterfactual Results 

I compute each EAS community’s aggregate expected consumer surplus from EAS-subsidized 

commercial service using the above equation. As noted previously, it is plausible that removing EAS 

subsidies for many EAS airports would not result in the termination of all commercial service, and might 

actually result in increased service to the extent EAS subsidies act as entry barriers to competitors. Thus, 

the counterfactual analysis likely overestimates the consumer surplus derived from EAS subsidies.  

I find that the aggregate consumer surplus that community members derive from EAS-subsidized 

commercial service at all 107 airports under consideration is about $16 million in 2019, a paltry amount 

compared to EAS’s cost of roughly $290 million in 2019. From an aggregate cost–benefit perspective, it is 

clear that EAS does not provide nearly enough benefits to communities to justify its costs. Figure 9 shows 

the distribution of consumer surplus derived from EAS-subsidized commercial service per EAS community 

member who uses the airport. On average, users of EAS airports who live in the community each derive 

about $24 in consumer surplus from subsidized commercial service at the community airport, compared to 

a median per-passenger subsidy of $141. 

Table 4 summarizes the top 10 and bottom 10 EAS communities in terms of estimated net consumer 

surplus (estimated benefits less the subsidy cost). The top 10 communities have several features in common. 

First, their community airports are all among the busiest EAS airports, with 9 among the top 15 in terms of 

annual enplanements. Second, they all have arguably negligible per-passenger subsidy rates, averaging less 
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than $20 per passenger, which suggests subsidies are likely not needed to sustain commercial service. Third, 

they are all served by legacy carriers. Fourth, several are served by more than one airline or by one airline 

but without the use of subsidies, including Grand Island, Cody, West Yellowstone, Joplin, and Sioux City. 

Figure 9. Distribution of Consumer Surplus per EAS Resident User 

 

Notes: Consumer surplus for each community is calculated using the methodology described in the text. 

Consumer surplus per EAS resident user is calculated by dividing consumer surplus by the share of EAS 

airport users who are deemed residents based on their home ZIP code multiplied by total enplanements at 

the airport in 2019. 

Anecdotal evidence suggests Joplin Regional Airport and Sioux Gateway Airport are two of the most 

competitive EAS-eligible airports. From 2010 to 2018, American Airlines provided subsidized service from 

Joplin to O’Hare International Airport and Dallas/Fort Worth International Airport. But not wanting to be 

undercut by United—which also maintains a hub at O’Hare—American agreed to continue unsubsidized 

service from 2018 to 2020, until the COVID-19 pandemic made maintaining unsubsidized service 

unsustainable. American proceeded to pull out of Joplin in 2020, at which point United secured the vacated 

EAS contract, agreeing to provide subsidized service from Joplin to three of its hubs: Denver International 

Airport, O’Hare International Airport, and Houston George Bush Intercontinental Airport. An almost 

identical story played out at Sioux Gateway Airport: From 2011 to 2016, American provided subsidized 

service from Sioux City to O’Hare and Dallas/Fort Worth, but fearing competition from United, American 

agreed to provide unsubsidized service from 2016 to 2020, when American pulled out due to the COVID-
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19 pandemic and United quickly secured the EAS contract at Sioux Gateway Airport. This anecdotal 

evidence is suggestive of rent-seeking behavior, as American apparently used its EAS contract at Joplin 

and Sioux City to stifle competition, and United now appears to be doing the same. 

Table 4. Top 10 and Bottom 10 EAS Communities Ranked by Net Consumer Surplus 

Community Airline Price 

Per-

passenger 

subsidy 

Total 

consumer 

surplus 

(millions) 

Total 

subsidy 

(millions) 

Miles to 

nearest 

hub 

Miles to 

nearest 

airport 

Top 10 in terms of net consumer surplus 

Joplin, MO American $102 $0.00 $0.727 $0.000 154 66 

Sioux City, IA American $124 $0.00 $0.689 $0.000 189 89 

Grand Island, NE American $135 $2.76 $0.469 $0.389 138 94 

Cody, WY United $101 $10.31 $0.708 $0.850 449 107 

Butte, MT Delta $105 $16.99 $0.336 $0.882 415 78 

Garden City, KS American $110 $17.43 $0.291 $0.874 300 200 

West Yellowstone, MT Delta $115 $36.14 $0.000 $0.650 332 91 

Aberdeen, SD Delta $103 $23.50 $0.400 $1.390 270 175 

Bemidji, MN Delta $99 $21.20 $0.257 $1.310 213 122 

Pellston, MI Delta $96 $23.18 $0.173 $1.347 267 84 
        

Bottom 10 in terms of net consumer surplus 

Macon, GA Contour $89 $137.00 $0.046 $4.688 82 82 

Presque Isle, ME United $143 $180.50 $0.260 $4.781 358 157 

Page, AZ Contour $129 $52.90 $0.014 $4.399 282 134 

Clovis, NM Boutique $97 $401.23 $0.035 $4.281 409 101 

Sidney, MT Cape Air $40 $208.21 $0.052 $4.248 658 172 

Greenbrier, WV United $79 $155.33 $0.102 $3.994 230 79 

Tupelo, MS Contour $49 $128.74 $0.076 $3.932 94 62 

Devils Lake, ND United $120 $284.49 $0.133 $3.935 402 84 

Liberal, KS United $79 $174.44 $0.076 $3.748 356 176 

Watertown, NY American $93 $87.72 $0.360 $3.950 277 66 

Sources: US Department of Transportation; OpenStreetMap. 

Notes: Consumer surplus for each community is calculated using the methodology described in the text. 

Miles to the nearest hub is to the nearest medium or large hub. Miles to the nearest airport is miles to the 

nearest commercial airport, including small hubs and non-hubs. 

 

As additional evidence of a competitive environment, consider that 3 of the top 10 communities in 

terms of net consumer surplus are served by one subsidized airline and one or more unsubsidized airlines. 

Central Nebraska Regional Airport in Grand Island is served by both a subsidized airline (American 

Airlines) and an unsubsidized airline (Allegiant Air), which has been providing unsubsidized service from 

Grand Island to Harry Reid International Airport and Phoenix–Mesa Gateway Airport since 2008. 

Yellowstone Regional Airport, located less than an hour’s drive from the east entrance of Yellowstone 
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National Park in Cody, is an attractive destination during the summer tourism season. In the summer 

months, both United and Delta provide unsubsidized service to and from Yellowstone Regional Airport; 

but during the non-summer months, only United provides (subsidized) service. Similarly, Yellowstone 

Airport is located on the Montana–Wyoming border near the west entrance of Yellowstone National Park 

and is also served by United and Delta (both subsidized), who received a waiver from the usual service 

requirements in order to provide twice the number of weekly round trips during the summer months 

compared to the non-summer months.  

Several of the bottom 10 communities in terms of net consumer surplus (4 of the bottom 5), shown in 

the bottom panel of Table 4, are served by non-legacy carriers that offer scheduled passenger service only 

through EAS contracts. These non-legacy carriers typically offer much lower prices and receive much 

higher per-passenger subsidies compared to the legacy carriers. Overall, prices for the non-legacy carriers 

serving EAS communities average $67 one way, compared to $95 for the legacy carriers, and per-passenger 

subsidies for the non-legacy carriers average $318 compared to $80 for the legacy carriers. The non-legacy 

carriers tend to serve less popular routes using smaller aircraft, but the routes they serve are no more isolated 

in terms of distance to the nearest medium or large hub compared to routes served by the legacy carriers.  

For example, Boutique Air—whose slogan is “fly private for the cost of commercial”—offers 

essentially private, EAS-subsidized flights on 9-seat Pilatus PC-12s from Cavern City Air Terminal in 

Carlsbad, New Mexico, to Dallas/Fort Worth International Airport for a price of $91; yet less than 2 percent 

of travelers from Carlsbad choose this option, while 36 percent choose to drive 1.25 hours to Roswell Air 

Center and 23 percent choose to drive 2.75 hours to El Paso International Airport. These discrepancies 

suggest there are differences in unobserved quality between legacy and non-legacy carriers such that EAS 

community members would much rather drive a considerable distance to a hub than fly on a heavily 

subsidized, essentially private flight from their local airport. 

The bottom 10 airports in terms of net consumer surplus are also characterized by very high subsidy 

rates (all exceeding $3.75 million per year) and low utilization. Prescott Regional Airport, Chippewa Valley 

Regional Airport, and Middle Georgia Regional Airport are particularly egregious examples, as all three 

communities are located about 90 minutes from major international airports—Phoenix Sky Harbor, 

Minneapolis–Saint Paul International Airport, and Hartsfield–Jackson Atlanta International Airport, 

respectively—yet only about 10 percent of travelers from Prescott choose a subsidized flight from Prescott 

Regional Airport compared to 80 percent choosing to drive to Phoenix; 10 percent of travelers from Eau 

Claire choose a subsidized flight from Chippewa Valley Regional Airport compared to 84 percent choosing 

to drive to Minneapolis; and 3 percent of travelers from Macon choose a subsidized flight from Middle 

Georgia Regional Airport compared to 94 percent choosing to drive to Atlanta. Middle Georgia Regional 



 

33 

Airport is also notable for requiring the 2nd-largest subsidy among all EAS communities, at $4.7 million 

in 2019. (Appendix Figure H3 shows the distribution of annual subsidy amounts for 2019.) 

D. Distributional Implications 

From a distributional perspective, policymakers might be interested to know whether EAS serves those 

it intends to and whether the benefits are evenly distributed among recipients. Figure 10 shows the 

distribution of consumer surplus by income compared to the population distribution by income. There are 

no discernable differences in the distributions, suggesting those in the community who benefit from EAS 

are representative of the community as a whole in terms of income. Figure 11 shows the distribution of 

consumer surplus by income for communities that are more than 210 miles from a medium or large hub 

compared to communities that are less than 210 miles from a medium or large hub. Again, the distributions 

are nearly identical, suggesting the distribution of consumer surplus by income is no different for 

community members who live far from a hub compared to those who live close to a hub.  

Figure 10. Distributions of Consumer Surplus and Population in EAS Communities by Income 

 

Source: zip-codes.com. 

Notes: Consumer surplus for each airport is calculated using the methodology described in the text. 

Median household income is for the ZIP code in which the traveler resides. The distributions are smoothed 

by grouping median household incomes into buckets of $5,000. 

Figures 10 and 11 suggest that the benefits received by EAS community members do not differ 

substantially between communities along observable characteristics. Rather, distributional discrepancies 

likely arise because the main beneficiaries of the EAS programs are high-income tourists who visit the EAS 

communities. While it is beyond the scope of this paper to formally estimate the consumer surplus that 
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tourists derive from EAS, back-of-the-envelope calculations can provide a sense of how much tourism is 

potentially generated by an EAS airport and its contribution to the local economy. Although it is not the 

statutory purpose of EAS to promote local tourism, policymakers representing districts with EAS-

subsidized service often brag about the impact that the program has on their local economies.44  

Figure 11. Distributions of Consumer Surplus in EAS Communities by Income and Distance from Hub 

 

Source: zip-codes.com. 

Notes: Consumer surplus for each community is calculated using the methodology described in the text. 

The solid line is for EAS communities located less than 210 miles from a medium or large hub. The dashed 

line is for EAS communities located more than 210 miles from a medium or large hub. Median household 

income is for the ZIP code in which the traveler resides. The distributions are smoothed by grouping median 

household incomes into buckets of $5,000. 

Appendix Table H2 shows 21 EAS airports that serve as gateways to 23 national parks. The table shows 

total annual visitors to the parks along with the total number of nonresidents using the nearby EAS airport. 

In every case, the number of visitors flying into the EAS airport is trivial compared to the parks’ total annual 

visitors, suggesting a vast majority of visitors arrive at the parks by driving. Thus, even if the EAS 

communities nearby national parks were to lose subsidies and lose commercial service, the effect on 

regional tourism would likely be trivial.  

Figure 12 shows the change in the distribution of driving time from the removal of the EAS option, 

shown separately for communities located less than 210 miles from a hub and communities located more 

than 210 miles from a hub. The median of the actual distribution of driving time 116 minutes. The 

 
44 Elise Stefanik, for example, who in 2021 represented five EAS communities in upstate New York, boasts that EAS 

“attracts travelers to our region, while boosting small businesses and tourist areas” (Stefanik, 2021). 
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counterfactual distributions of driving time are constructed by removing products originating at EAS-

subsidized airports from community members’ choice sets.45 The counterfactual distribution of driving time 

is clearly bimodal: The median of the distribution for communities located less than 210 miles from a hub 

is 168 minutes and the median of the distribution for communities located more than 210 miles from a hub 

is 297 minutes. The bimodal nature of the counterfactual distribution suggests that, even though isolated 

communities have alternative options (see Figure 2 and Appendix B), these alternative airports are less 

accessible or less attractive compared to alternative airports nearby less isolated communities.  

Figure 12. Actual and Counterfactual Distributions of Driving Time for EAS Communities 

 

Sources: Federal Aviation Administration; Airlines Reporting Corporation; OpenStreetMap. 

Notes: The distributions are constructed by taking the average driving time weighted by product shares 

for each of the 107 EAS communities. The counterfactual distributions are constructed by removing 

products originating from EAS-subsidized airports. Counterfactual distributions are shown separately for 

EAS communities located less than and more than 210 miles from a medium or large hub. The densities 

are constructed using an Epanechnikov kernel with a bandwidth of 20 minutes. 

 

  

 
45 The distributions are constructed conditional on flying. The model predicts that about 20 percent of passengers 

switched to an alternative product under the counterfactual scenario while about 80 percent switched to the outside 

option. 
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VIII. CONCLUSIONS 

The aviation industry has completely transformed in the almost half century after the great airline 

deregulation experiment. Yet despite the major changes to passenger aviation around the country, Essential 

Air Service, a remnant of the pre-deregulation era designed to be temporary and transitional, has persisted.46 

I have presented evidence in this paper that suggests EAS is a regressive program that provides very little 

value to the communities it is meant to serve.  

Several broad conclusions can be drawn from the counterfactual policy analysis. First, the costs of 

maintaining subsidized service at all EAS-eligible communities are considerably higher than the benefits 

residents derive: In aggregate, the EAS program cost $290 million in 2019 yet EAS community members 

received only $16 million in consumer surplus. Second, there were no discernable differences in the 

distributions of consumer surplus among EAS communities by income or distance to the nearest hub, 

suggesting EAS does not disproportionately benefit high-income people within EAS communities. Third, 

airports that provide the largest benefits to EAS communities are primarily served by legacy airlines with 

per-passenger subsidy rates so low as to be negligible, while airports that provide the lowest benefits to 

EAS communities are served by a mixture of legacy and non-legacy carriers that require high per-passenger 

subsidies. Fourth, EAS airports that provide the most benefit to their communities tend to have features of 

a competitive environment, such as competition between multiple airlines and legacy carriers providing 

unsubsidized service in order to keep competitors out.  

At least two novel insights can be drawn from simple tabulations of the proprietary Market Locator 

data linking airline passenger purchases to their home ZIP code. First, travelers in nearly every EAS 

community not only have other options available to them when it comes to accessing commercial air travel, 

they also prefer those options—with many choosing to drive several hours to a larger airport rather than to 

take a subsidized flight from their local airport—although communities located farther from a medium or 

large hub face greater barriers to accessing commercial air travel. Second, EAS community members are 

not the primary users of EAS airports nor the main beneficiaries of EAS subsidies, as tourists and other 

visitors make up 57 percent EAS airport users and have about 18 percent higher incomes than residents on 

average. Thus, EAS does a poor job of targeting its intended beneficiaries (i.e., members of the community), 

and instead serves to subsidize well-off outsiders to visit national parks and other points of interest where 

EAS communities happen to be located.  

 
46 EAS is a classic example of a government program with concentrated benefits and diffuse costs, which may explain 

why EAS has continued to persist. Hall, Ross, and Yencha (2015) find that higher EAS subsidies are associated with 

airports located in districts with congressional representatives on the Transportation Committee, which handle renewal 

of the EAS program, and the Ways and Means Committee, which has jurisdiction over the Airport and Airway Trust 

Fund from which EAS is funded. Appendix Figure H2 shows the political leanings of EAS communities based on the 

Cook Political Report’s Partisan Voting Index. 
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While this paper provides novel insights into the airline industry, it is not without its limitations. First, 

I only considered the implications of airport substitution on demand. Jointly estimating a model of supply 

could provide a fuller picture of the implications of rent-seeking and airport substitution, particularly as it 

relates to antitrust and merger analyses. Future work should investigate the implications of airport 

substitution and market definition for merger analyses. Second, I assumed airlines’ network structures were 

exogenous with respect to product-level unobserved quality, though recent work by Ciliberto, Murry, and 

Tamer (2021) has attempted to relax this assumption. Third, I only considered the benefit of EAS to 

members of EAS-eligible communities and did not formally model the choice behavior or quantify the 

benefit of EAS to travelers living outside of EAS communities.  

Policymakers should consider whether Essential Air Service is still essential in the 21st century. The 

airline industry has dramatically changed since deregulation in 1978, and the EAS program has not evolved 

with the times. Congress could continue to limit the scope of the program by enacting more stringent 

eligibility requirements. Two simple reforms Congress could enact would be to include distance to small 

hubs in addition to medium and large hubs when determining EAS eligibility, and to increase the minimum 

allowable distance to a hub beyond 70 miles. Such reforms would do a better job of targeting communities 

that actually face significant barriers to commercial air travel. Eliminating EAS entirely has the potential 

to benefit the communities it is meant to serve and would move the US closer to realizing the full societal 

benefits of airline deregulation.  
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Appendix A. Catchment Areas and Population Densities for Estimation Regions 
 

Appendix Figure A1. Estimation Regions and Airports on One Map 

 
Source: zip-codes.com. 

Notes: Each colored area represents an origin region, each geographical unit within the regions represents 

a ZIP code, and darker shading represents higher population density. The dots represent airports that serve 

residents of the regions.  
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Appendix Figure A2. Estimation Regions and Airports Separated by Region 
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Source: zip-codes.com. 

Notes: Each panel represents an origin region, each geographical unit within the regions represents a ZIP code, and darker shading represents higher population 

density. The dots represent airports that serve residents of the regions.  
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Appendix B. Catchment Areas, Population Densities, and Nearby Airports for EAS Regions 
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Sources: Airlines Reporting Corporation; zip-codes.com. 

Notes: Each panel shows a cluster of EAS communities, which are made up of ZIP codes, where darker shading 

corresponds to higher population density. The yellow dots are airports receiving EAS-subsidized service. The orange dots 

are a sampling of airports used by residents of the EAS communities shown in each panel. 
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Appendix C. Legal Statutes Governing EAS Eligibility 

See Tang (2018) for a primer on the EAS program, its legal history, and eligibility rules. EAS typically 

subsidizes one airline to provide two to four round trips per day, six days per week, from an EAS community 

to a larger hub, as codified by 49 U.S.C. § 41732. Since the passage of the FAA Modernization and Reform 

Act in 2012, except for Alaska and Hawaii, communities are only eligible for EAS if they received subsidies 

in fiscal year 2011, and no new communities can enter the program even if they were formerly eligible.  

The Related Agencies Appropriations Act of 2000 prohibits subsidies to carriers for service provided 

to communities located fewer than 70 miles from the nearest medium or large hub airport. A large hub 

receives more than 1 percent of annual commercial enplanements (approximately 10 million or more 

passenger boardings per year), a medium hub receives between 0.25 and 1 percent of total enplanements 

(approximately 3 million or more passenger boardings per year), a small hub receives between 0.05 and 

0.25 percent of total commercial enplanements (approximately 500,000 or more passenger boardings per 

year), and a non-hub primary airport receives between 10,000 passengers and 0.05 percent of total 

commercial enplanements. The Consolidated Appropriations Act of 2014, Continued Appropriations 

Resolution of 2015, and Consolidated Appropriations Act of 2018 require EAS airports located less than 

40 miles from a small hub to have a cost-sharing agreement with the DOT. Hub classification can change 

each year based on changing passenger volumes; see DOT (2021). Although EAS eligibility is based on a 

community’s distance to the nearest medium or large hub, airlines that receive EAS contracts are not 

required to fly passengers to the nearest hub nor to a medium or large hub. 

According to the DOT (2014), its longstanding practice is to measure distance to a hub as the shortest 

driving distance from the “center of the EAS community” to the “entrance of the nearest large or medium 

hub airport” as determined by the Federal Highway Administration. More precisely, according to Grubesic 

and Matisziw (2011), based on phone conversations with the DOT, distance to a hub is typically measured 

from the location of a community’s city hall to the property boundary of an airport using the shortest 

network path. The Vision 100—Century of Aviation Reauthorization Act of 2003 directs the DOT to 

consult with state governors to determine the “most commonly used route” between the community and the 

nearest large or medium hub to establish eligibility. 

The Related Agencies Appropriations Act of 2000 prohibits EAS for communities that require a per-

passenger subsidy rate in excess of $200, unless the community is located more than 210 miles from the 

nearest large or medium hub; and the Airport and Airway Extension Act of 2011 prohibits EAS for 

communities that require per-passenger subsidy rates in excess of $1,000, regardless of distance from the 

nearest hub. Subsidy cutoffs are calculated by dividing the annual subsidy by the annual passengers 

generated (outbound plus inbound), and compliance is evaluated at the end of each fiscal year; see DOT 

(2019). The FAA Modernization and Reform Act of 2012 requires carriers serving EAS communities to 
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maintain an average of 10 or more enplanements per day, but also gives the DOT discretion to grant 

temporary waivers to communities that do not meet the per-passenger subsidy or daily enplanements rules; 

see DOT (2014). 

Airlines compete for EAS contracts through a bidding process, and the DOT typically receives 1–3 

proposals per airport every 1–3 years, when EAS contracts typically expire. By law, the DOT must take 

into account the views of the community when deciding which proposal to accept, as well as the carrier’s 

service reliability and any arrangements it has with larger carriers at the hub. Notably, subsidy cost is not 

among the factors the DOT is required by law to consider when evaluating bids, and if more than one carrier 

proposes to offer service then local officials are under no obligation to favor the proposal that entails the 

lowest cost to the federal government. 49 U.S.C. 41733(c)(1) states that the DOT shall consider the 

following five factors when making a carrier selection: (1) demonstrated reliability of the carrier in 

providing scheduled air service, (2) contractual and marketing arrangements the carrier has with a larger 

carrier at the hub, (3) interline agreements that the carrier has with a larger carrier at the hub, (4) preferences 

of the community, and (5) how the carrier proposes to market the service to members of the community. 

49 U.S.C. 41733(c)(1)(D) instructs the DOT to give “substantial weight” to the views of the community. 

The Consolidated and Further Continuing Appropriations Act of 2015 (Pub. L. 113-235, 128 Stat. 2699) 

and subsequent Consolidated Appropriations Acts (Pub. L. 114-113, 129 Stat. 2837; Pub. L. 116-260, 134 

Stat. 1827) state that the DOT may consider the relative subsidy requirements of the carriers when making 

a carrier selection, and the DOT has on occasion exercised this prerogative. 

 

  



 

59 

Appendix D. Value of Travel Time Savings Using Official DOT (2016) Methodology 

Business Travelers 

The calculation of the value of travel time savings (VTTS) for business travelers using the DOT’s 

(2016) methodology with data from 2019 is as follows: The DOT (2016, p. 8) notes that “there is wide 

agreement that the VTTS for business travel should equal the gross hourly cost of employment, including 

payroll taxes and fringe benefits.” According to the US Bureau of Labor Statistics’ quarterly reports on 

employer costs for employee compensation (www.bls.gov/ect), average employee compensation was 

roughly $35 per hour in 2019. To adjust for the higher incomes of business air travelers compared to the 

median household, this value is multiplied by 2.5, which is the ratio of median household income for 

business air travelers from the National Household Travel Survey to the median household income from 

the US Census Bureau. So the VTTS for business air travelers is $87.50 (= $35 × 2.5) per hour. 

Leisure Travelers 

The calculation of VTTS for leisure travelers using the DOT’s (2016) methodology with data from 

2019 is as follows: The DOT (2016, p. 5) notes that “leisure time is seen … as an object of consumption 

that can be substituted for other desirable objects according to individual preferences,” hence “VTTS is 

estimated to be lower for personal than for business travel” (Mackie, Jara-Díaz, and Fowkes, 2001). Noting 

“the absence of a theoretically compelling hypothesis” (DOT, 2016, p. 8), for local personal travel, “VTTS 

is estimated at 50 percent of hourly median household income” (p. 11), following Small (1992); however, 

since “research has found evidence of a moderate rise in VTTS with trip distance” (p. 7), the DOT (2016) 

applies “a ratio of VTTS to hourly income of 70 percent” (p. 11), or a 20 percent premium. According to 

the US Census Bureau, median household income in 2019 was $68,700. Dividing by 2,080 (= 40 × 52) 

annual working hours yields income of $33 per hour. To adjust for the higher incomes of air travelers 

compared to the median household, this value is multiplied by 1.9, which is the ratio of median household 

income for leisure air travelers from the National Household Travel Survey to the median household income 

from the US Census Bureau. So the VTTS for leisure travelers is $44 (= $33 × 1.9 × [0.5 + 0.2]) per hour. 

Assuming VTTS is 100 percent of hourly median earnings, following Goldszmidt et al. (2020), the VTTS 

for leisure travelers is $75 (= $33 × 1.9 × [1 + 0.2]). 
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Appendix E. Construction of Income Distributions at the ZIP Code Level 

Income distributions at the ZIP code level were constructed by building up from smaller geographic 

entities, specifically, Census block groups, following a procedure similar to Langer and Lemoine (2022). 

Appendix Figure E1 shows the US Census Bureau’s standard hierarchy of Census geographic entities. The 

smallest geographic entity at which the Census Bureau publicly releases income information is the block 

group level. I am interested in constructing income distributions at the ZIP code level—or ZIP Code 

Tabulation Area (ZCTA), the Census Bureau’s equivalent to the US Postal Service concept—which do not 

perfectly nest with block groups. In other words, ZCTAs can overlap multiple block groups and vice versa. 

Appendix Figure E1. Standard Hierarchy of Census Geographic Entities 

          

Source: US Census Bureau. 

Note: Lines connect entities that perfectly nest.  

The American Community Survey (ACS) contains information about the number of households living 

in each Census block group with income in each of 16 income buckets ranging from $0 to $200,000 and 

above. The 16 income buckets are: $0–$10,000; $10,000–$15,000; $15,000–$20,000; $20,000–$25,000; 

$25,000–$30,000; $30,000–$35,000; $35,000–$40,000; $40,000–$45,000; $45,000–$50,000; $50,000–
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$60,000; $60,000–$75,000; $75,000–$100,000; $100,000–$125,000; $125,000–$150,000; $150,000–

$200,000; $200,000 and above.  

A block group to ZCTA crosswalk was obtained from the Missouri Census Data Center. The crosswalk, 

which provides the share of the population of each block group that lives in each ZCTA, was used to allocate 

the number of households in each block group into each ZCTA. (This allocation implicitly assumes a 

uniform distribution of households by income within block groups.) Once block group populations are 

allocated to ZCTAs, the total number of households in each ZCTA and income bucket are computed. These 

ZCTA and income bucket pairs are known as “cells” and are denoted by the 𝑖 subscript in the model 

exposition. Finally, the number of households in each ZCTA and income bucket are converted to population 

shares by dividing by the total population of the origin region (see Appendix Table H1). These shares are 

referred to as “population weights” 𝑤𝑖 in Appendix F. For each region (see Appendix A), the total number 

of cells is equal to 16 times the number of ZCTAs in the region. Purchase probabilities for each product 𝑗 

are computed for each cell 𝑖, and market shares for product 𝑗 are computed by aggregating over cells 𝑖 in a 

region using population weights 𝑤𝑖 (see Appendix F). 
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Appendix F. Estimation and Computational Details 

Market Shares 

Utility for individual 𝑖 from purchasing product 𝑗 from market 𝑡 is 

𝑢𝑖𝑗𝑡 = 𝛿𝑗𝑡 +  𝜇𝑖𝑗𝑡 + 𝜈𝑖𝑗𝑡 

where  

𝛿𝑗𝑡 = �̅�𝑝𝑗𝑡 + 𝐱𝑗𝑡
′ �̅� + 𝜉𝑗𝑡 

𝜇𝑖𝑗𝑡 = 𝜏𝑑𝑖𝑗𝑡 + 𝛼inc(inc𝑖 × 𝑝𝑗𝑡) + 𝛽direct
inc (inc𝑖 × 𝑥𝑗𝑡,direct) 

𝜈𝑖𝑗𝑡 = 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 

The composite error term 𝜈𝑖𝑗𝑡 = 𝜂𝑖𝑡 + 𝜆휀𝑖𝑗𝑡 follows the necessary distribution to generate the nested 

logit model (Cardell, 1997). As shown by Berry (1994) and others, the probability that individual 𝑖 

purchases product 𝑗 from market 𝑡 can be written 

𝑠𝑖𝑗𝑡 =
exp[(𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡) 𝜆⁄ ]

𝐷𝑖𝑡
⋅

𝐷𝑖𝑡
𝜆

1 + 𝐷𝑖𝑡
𝜆

 

where 

𝐷𝑖𝑡 = ∑ exp[(𝛿𝑗′𝑡 + 𝜇𝑖𝑗′𝑡) 𝜆⁄ ]

𝑗′

 

is the inclusive value of the airline product nest, with the summation taken over all airline products 𝑗′ in 

market 𝑡. 

Market shares for product 𝑗 are found by aggregating purchase probabilities over all the individuals in 

a market: 

𝑠𝑗𝑡 = ∑ 𝑠𝑖𝑗𝑡 ⋅ 𝑤𝑖

𝑖

 

where 𝑤𝑖 is the population weight of each individual. For each origin region, 𝑤𝑖 is equal to the number of 

households in an income bucket living in a ZIP code as a share of the total origin region population (see 

Appendix E), so  the weights 𝑤𝑖 sum to 1 for each region. 

Contraction Mapping 

Equate the model-predicted market shares 𝑠𝑗𝑡 to the observed market shares 𝑆𝑗𝑡, 𝐒 = 𝐬(𝛅, 𝛉2), where 

𝐒 ≡ (𝑆1,1  ⋯ 𝑆𝐽,𝑇), 𝛅 ≡ (𝛿1,1  ⋯ 𝛿𝐽,𝑇), and 𝛉2 ≡ (𝜆, 𝜏, 𝛼inc, 𝛽direct
inc ). As shown by Berry, Gandhi, and 
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Haile (2013), if 𝑆𝑗𝑡 > 0 for all 𝑗 = 0, 1, … , 𝐽𝑡 and for all 𝑡 = 1, … , 𝑇 then there is at most one 𝛅 that satisfies 

the above equation, which is found by inverting the equation such that 𝛅 = 𝐬−1(𝐒, 𝛉2). To compute 𝛅 for a 

given value of the parameters 𝛉2, Grigolon and Verboven (2014) show that the modified mapping of Berry, 

Levinsohn, and Pakes (1995), 

𝑓 ∶ 𝛅 ↤ 𝛅 + 𝜆[ln 𝐒 − ln 𝐬(𝛅, 𝛉2)] 

is a contraction for the nested logit model, so by the contraction mapping theorem there exists a unique 

fixed point 𝛅∗ such that 𝑓(𝛅∗) = 𝛅∗. As shown by Berry and Haile (2014), normalizing 𝐸[𝜉𝑗𝑡
] = 0 implies 

𝜉𝑗𝑡 is identified for all products and for all markets.  

A consistent estimator of 𝜉𝑗𝑡 is obtained by estimating the mean utility equation 𝛿𝑗𝑡 = �̅�𝑝𝑗𝑡 +  𝐱𝑗𝑡
′ �̅� +

𝜉𝑗𝑡 via two-stage least squares, where 𝛿𝑗𝑡 is an element of the fixed point described above. The residual 

𝜉𝑗𝑡 = 𝛿𝑗𝑡 −  �̂̅�𝑝𝑗𝑡 − 𝑥𝑗𝑡
′ �̂̅� is a consistent estimator of 𝜉𝑗𝑡, where �̂�1 ≡ (�̂̅�, �̂̅�) is the two-stage least squares 

estimator.  

Macromoments 

Let 𝐳𝑗𝑡 be the set of 𝐾 exogenous instruments. The moment conditions are 𝐸[𝐳𝑗𝑡
′ 𝜉𝑗𝑡] = 𝟎. Since 

𝜉𝑗𝑡

𝑝
→ 𝜉𝑗𝑡 then by the law of large numbers 

1

𝐽
∑ 𝐳𝑗𝑡

′ 𝜉𝑗𝑡

𝑗

𝑝
→ 𝐸[𝐳𝑗𝑡

′ 𝜉𝑗𝑡] 

where the summation is taken over all products and markets. Define 𝐠1𝑗𝑡(𝛉2) ≡ 𝐳𝑗𝑡
′ 𝜉𝑗𝑡 and the moment 

𝐦1(𝛉) ≡
1

𝐽
∑ 𝐠1𝑗𝑡(𝛉2)

𝑗

 

where the summation is taken over all products and all markets. Note that the dimension of 𝐦1(𝛉2) is 

𝐾 × 1. The moment condition is satisfied because 𝐦1(𝛉2)
𝑝
→ 𝟎.  

Micromoments 

Let 𝑦𝑖𝑗𝑡 = 1 if individual 𝑖 purchased product 𝑗 in market 𝑡 and 𝑦𝑖𝑗𝑡 = 0 otherwise. Let �̅�𝑖𝑗𝑡 denote the 

probability that individual 𝑖 purchases product 𝑗 in market 𝑡 conditional on purchasing an airline product: 

�̅�𝑖𝑗𝑡 =
𝑠𝑖𝑗𝑡

∑ 𝑠𝑖𝑗′𝑡𝑗′
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where 𝑗′ refers to all products in market 𝑡, including product 𝑗, but excluding the outside option. The 

moment conditions are 𝐸[(𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡)𝑑𝑖𝑗𝑡] = 0, where the expectation is taken over individuals and 

products within a market. Define 𝐠2𝑖𝑗𝑡(𝛉2) ≡ (𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡)𝑑𝑖𝑗𝑡 and the moment 

𝐦2(𝛉2) ≡
1

𝐼
∑

1

𝐽
∑ 𝐠2𝑖𝑗𝑡(𝛉2)

𝑗𝑖

 

where the summation is taken over all individuals, products, and markets. Note that the dimension of 

𝐦2(𝛉2) is 1 × 1.  The moment condition is satisfied because 𝐦2(𝛉2)
𝑝
→ 𝟎. 

Efficient GMM Estimation and Standard Errors 

To estimate the parameters 𝛉2 = (𝜆, 𝜏, 𝛼inc, 𝛽direct
inc ), stack the moments 𝐦1(𝛉2) and 𝐦2(𝛉2) to form  

𝐦(𝛉2) = [
𝐦1(𝛉2)

𝐦2(𝛉2)
] 

Note that the dimension of 𝐦(𝛉2) is (𝐾 + 1) × 1 and that 𝐦(𝛉2)
𝑝
→ 𝟎, satisfying the moment condition. 

Form the objective function as 

𝐺(𝛉2) = 𝐦(𝛉2)′ 𝐖 𝐦(𝛉2) 

where 𝐖 is a (𝐾 + 1) × (𝐾 + 1) matrix that assigns weights to the moments. The estimator �̂�2 searches 

for parameter values that minimize the objective function up to some convergence tolerance: 

�̂�2 = argmin
𝛉2

𝐦(𝛉2)′ 𝐖 𝐦(𝛉2) 

An efficient estimator of the parameters is found by using the optimal weight matrix 𝐖 = 𝛀−1, where 

𝛀 = Var[𝐠𝑖𝑗𝑡(𝛉2)] = 𝐸[𝐠𝑖𝑗𝑡(𝛉2)𝐠𝑖𝑗𝑡(𝛉2)′] and 

𝐠𝑖𝑗𝑡(𝛉2) = [
𝐠1𝑗𝑡(𝛉2)

𝐠2𝑖𝑗𝑡(𝛉2)
] 

The weight matrix 𝐖 = 𝛀−1 is optimal because it assigns more weight to more precisely estimated 

moments. Since 𝛉2 is unknown, it is infeasible to compute 𝛀, so I employ the two-step procedure described 

by Hansen (1982) to construct a consistent estimator of 𝛀−1 to use as the weight matrix. As noted by Petrin 

(2002), since the two sources of variance in 𝐠𝑖𝑗𝑡 come from independent sampling processes, the optimal 

weight matrix is block-diagonal, with an upper block of dimension 𝐾 × 𝐾 corresponding to 𝐠1𝑗𝑡 and a 

lower block of dimension 1 × 1 corresponding to 𝐠2𝑖𝑗𝑡. In the first step, a consistent estimator �̃�2 is found 

by setting the upper block equal to (𝐳′𝐳)−1, where 𝐳 ≡ (𝐳1,1
′ , … , 𝐳𝐽,𝑇

′ ), and the lower block equal to the 



 

65 

identity matrix. In the second step, I obtain an efficient estimator �̂�2 using the following weight matrix in 

the second step: 

�̂� = [
�̂�1 0

0 �̂�2

]

−1

 

where �̂�1 = Vâr[𝐠1𝑗𝑡(�̃�2)] and �̂�2 = Vâr[𝐠2𝑖𝑗𝑡(�̃�2)]. I estimate the upper block as 

�̂�1 = �̂� {[�̂�1𝑗𝑡(𝛉2)]
2

} =
1

𝐽
∑[𝐳𝑗𝑡

′ 𝜉𝑗𝑡(�̃�2)][𝐳𝑗𝑡
′ 𝜉𝑗𝑡(�̃�2)]

′

𝑗

= 𝐳′𝛀�̂� 𝐳 

where the summation is taken over all products and markets and 𝛀�̂� is a 𝐽 × 𝐽 diagonal matrix with squared 

residuals 𝜉𝑗𝑡
2  on the diagonal. I estimate the lower block as: 

�̂�2 = �̂� {[�̂�2𝑖𝑗𝑡(𝛉2)]
2

} =
1

𝐼
∑

1

𝐽
∑{[𝑦𝑖𝑗𝑡 − �̅�𝑖𝑗𝑡(�̃�2)]𝑑𝑖𝑗𝑡}

2

𝑗𝑖

 

where the summation is taken over all individuals, products, and markets. Note that �̂�
𝑝
→ 𝛀−1 so �̂� is a 

consistent estimator of the optimal weight matrix. 

Standard errors are computed numerically using the expressions for asymptotic variance from Hansen 

(1982), Berry, Levinsohn, and Pakes (1995), and Petrin (2002): 

SE(�̂�2) = √diag(�̂�) 

where �̂� = (�̂�′�̂��̂�)
−1

 and 

�̂� =
𝜕𝐦(�̂�2)

𝜕�̂�2

 

Computational Details 

The estimation procedure was coded in R following the recommendations of Conlon and Gortmaker 

(2020) and performed using the University of Arizona’s High Performance Computing resources. I 

minimized the objective function using the gradient-based L-BFGS-B method and checked for consistency 

of results using different starting values and the simplex-based Nelder–Mead method. Following the 

recommendations of Raynaerts, Varadhan, and Nash (2012), I used Varadhan and Roland’s (2008) squared 

polynomial extrapolation method for fixed point acceleration (SQUAREM) to accelerate the fixed point 

computation. Following the recommendations of Dubé, Fox, and Su (2012) and Conlon and Gortmaker 

(2020), the inner loop convergence tolerance was set to 10–13 so that the algorithm terminated when the 

norm between predicted and actual shares was as close to machine epsilon as possible without entering an 

infinite loop. 



 

66 

Appendix G. Data Construction for Counterfactuals 

Market Shares 

I use the Market Locator data to determine EAS community members’ choice sets and products’ market 

shares. Generally, when EAS community members are observed flying from an airport that is not their local 

airport, I assume that they drove there. However, a key feature of the Market Locator data requires special 

attention to ensure accurate construction of market shares. Specifically, the Market Locator data contain 

one record per transaction, which means that if a passenger books a round-trip ticket they would be counted 

once but if they book two one-way tickets they would be counted twice. (The Market Locator data pool 

one-way and round-trip flights.) This feature of the data is especially important for passengers whose local 

airport is served by a non-legacy carrier that does not have a codeshare agreement with a legacy carrier at 

the hub, since any passenger continuing through the hub would be counted twice, once at the EAS origin 

and once at the hub. (The legacy carriers are American Airlines, Delta Air Lines, and United Airlines, and 

a non-legacy carrier is any other airline with an EAS contract; see Appendix Table H4.)  

To help ensure against double counting, I make the following assumption about passenger behavior: 

Passengers whose local EAS airport is served by a legacy carrier and who continue through the hub stay on 

the same carrier for the whole journey. This assumption is reasonable because, by design, legacy carriers 

fly to their own hubs to facilitate convenient connections on that same carrier to a final destination. 

Furthermore, flying on the same airline for the whole journey is convenient for passengers because they 

only need to purchase one ticket on one airline, rather than two tickets on two airlines. Convenient 

connections through the hub are an important consideration when selecting carriers to serve a community, 

as 49 U.S.C. 41733(c)(1)(B) instructs the DOT to consider contractual agreements that the applicant carrier 

has with a larger carrier at the hub in order to “ensure service beyond the hub.” By assuming passengers 

flying on legacy carriers stay on the same carrier for the whole journey and do not book two one-way 

tickets, I can infer what share of passengers end their journey at the hub and what share of passengers 

continue through the hub. I find that, on average, ⅓ of passengers end their journey at the hub and ⅔ of 

passengers continue through the hub.  

I then assume that passengers’ pass-through behavior on legacy carriers is the same as passengers’ pass-

through behavior on non-legacy carriers. For example, suppose 𝑋 passengers are observed flying on a non-

legacy carrier to a hub airport and 𝑌 passengers are observed flying on any carrier from a hub airport to a 

final destination. Even though 𝑌 passengers living in an EAS region are observed at the hub airport, it 

would be wrong to assume all 𝑌 of them drove to the hub, since some share of the 𝑋 passenger flying from 

the EAS airport continued on through the hub but purchased two one-way tickets. If 𝑌 passengers living in 

an EAS region are observed at the hub, I assume 𝑌 – ⅔𝑋 drove to the hub.  
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If a passenger lives in a region whose airport is served by a legacy carrier is observed at the carrier’s 

hub, I assume all passengers observed at the hub drove there, which follows from the assumption that 

passengers flying on legacy carriers do not book two one-way tickets on the same carrier. If a passenger 

living in an EAS region is observed at an airport that is not the designated hub for the carrier, I assume all 

passengers observed at said airport drove there.  

I must also make an assumption about which airports are reasonably close to the EAS community such 

that a passenger might feasibly drive to said airports instead of taking a flight from their local airport. To 

that end, I exclude origins that are more than a 5-hour drive from the EAS community. These cases could 

correspond to EAS community members who are returning home from a trip or are traveling between 

airports far from home, perhaps on business or vacation—for example, EAS community members island-

hopping in Hawaii.  

Prices 

Given the low coverage in DB1B for EAS-originating flights and the institutional detail that EAS-

originating flights tend to exhibit low price variability, I extract the average price for EAS-originating 

flights from carriers’ EAS service proposals submitted to the DOT, sources for which are listed in Appendix 

Table H4. I use DB1B to construct average prices for the second leg of a journey departing a hub.  
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Appendix H. Supplemental Figures and Tables 

Appendix Figure H1. Share of EAS Airport Users Who Are Nonresidents and Proximity to National Parks 

 

Source: Airlines Reporting Corporation. 

Notes: Dark green, light green, yellow, orange, and red dots are EAS airports with nonresident passenger 

shares of less than 50 percent, 50–60 percent, 60–70 percent, 70–80 percent, and more than 80 percent, 

respectively. National Parks are encircled with dashed lines. 
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Appendix Figure H2. Political Leanings of EAS Communities 

 
Sources: zip-codes.com; Cook Political Report. 

Notes: Political leaning is calculated using the 2019 Cook Political Report’s Partisan Voter Index. Red 

dots correspond to EAS communities with a Republican lean, blue dots correspond to EAS communities 

with a Democratic lean, and purple dots correspond to EAS communities considered swing districts. 
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Appendix Figure H3. Distribution of Annual Subsidy Amounts in 2019 

 
 

Source: Federal Aviation Administration. 

Note: American Airlines operated subsidy-free at Joplin and Sioux City in 2019, and these communities 

are excluded from this figure.  
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Appendix Table H1. Characteristics of Origin Regions Used in Estimation 

Region Airport codes 

Population 

(thousands) 

Income 

(dollars) 

Land area 

(miles2) 

Drive time 

(minutes) 

Atlanta ATL 5,280 67,966 8,772 47 

Austin AUS 1,725 76,445 4,355 35 

Boston BOS*, MHT*, PVD* 7,608 83,386 8,812 39 

Charlotte CLT, JQF 2,413 62,053 6,669 31 

Chicago ORD*, MDW*, RFD 10,200 71,376 9,650 38 

Cincinnati CVG*, DAY* 2,935 62,024 5,862 44 

Cleveland CLE*, CAK* 3,429 57,919 5,462 37 

Columbus CMH 1,889 66,466 4,587 27 

Dallas DFW*, DAL* 6,372 71,408 8,808 34 

Denver DEN 4,036 75,992 17,734 50 

Detroit DTW*, FNT* 5,968 61,376 8,106 49 

Fort Myers RSW, PGD 778 54,460 1,442 44 

Hartford BDL 1,904 71,354 3,356 37 

Houston IAH*, HOU* 5,929 69,675 8,243 50 

Indianapolis IND 1,887 63,007 4,276 39 

Jacksonville JAX 1,395 60,928 3,290 41 

Kansas City MCI 2,203 67,085 9,967 48 

Las Vegas LAS 1,851 57,208 581 22 

Los Angeles LAX*, BUR*, LGB*, SNA*, ONT* 13,500 69,274 4,436 34 

Miami MIA*, FLL*, PBI* 5,496 58,162 1,652 29 

Milwaukee MKE 1,768 63,012 1,968 31 

Minneapolis MSP 3,342 79,901 7,294 34 

Nashville BNA 1,651 66,093 5,859 31 

New Orleans MSY 1,270 53,169 2,199 36 

New York LGA*, EWR*, JFK*, HPN*, ISP*, SWF* 20,500 82,651 8,848 39 

Orlando MCO*, SFB, MLB* 4,018 54,652 7,923 49 

Philadelphia PHL, TTN, ACY 7,020 73,662 6,465 44 

Phoenix PHX, AZA 4,023 63,926 4,689 34 

Pittsburgh PIT, LBE 2,537 59,743 6,464 41 

Portland PDX 2,327 71,720 5,482 34 

Raleigh/Durham RDU 1,920 68,084 5,221 26 

Sacramento SMF 2,417 70,656 6,099 42 

Salt Lake City SLC 2,253 74,060 6,074 39 

San Antonio SAT 2,135 60,798 6,857 27 

San Diego SAN 2,894 78,226 1,260 28 

San Francisco SFO*, OAK*, SJC*, STS* 7,425 102,982 7,054 39 

Seattle SEA 4,068 82,714 7,588 43 

St. Louis STL, BLV 2,783 65,365 7,708 32 

Tampa TPA*, PIE, SRQ* 3,556 56,300 3,626 40 

Washington DCA*, IAD*, BWI* 8,354 97,489 8,947 37 

Sources: zip-codes.com; Airlines Reporting Corporation; OpenStreetMap. 

Notes: Income is the population-weighted average of median household income by ZIP code. Drive time is the 

passenger-weighted average of drive time to passengers’ chosen airport. Airports marked with * were used to 

construct the micromoments described in Section V.A. 
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Appendix Table H2. Proximity of EAS Communities to National Parks and Approximate Contributions to Total Park Visitors 

Community 

Airport 

code Nearby national parks (driving time in minutes) 

Total visitors 

in 2019 

(millions) 

Visitors 

arriving 

at EAS 

airport 

EAS airport 

visitors as a 

share of total 

visitors 

Cody, WY COD Yellowstone (30) 4.02 17,677 0.004 

West Yellowstone, MT WYS Yellowstone (10) 4.02 8,961 0.002 

Cedar City, UT CDC Zion (70), Bryce Canyon (90) 7.08 15,505 0.002 

Merced, CA MCE Yosemite (90) 4.42 4,925 0.001 

Bar Harbor, ME BHB Acadia (20) 3.40 10,088 0.003 

El Centro, CA IPL Joshua Tree (105) 2.99 1,907 0.001 

Moab, UT CNY Arches (20), Canyonlands (30) 2.39 12,271 0.005 

Page, AZ PGA Horseshoe Bend (15) 2.20 36,765 0.011 

Beckley, WV BKW New River Gorge (40) 1.70 885 0.001 

Greenbrier, WV LWB New River Gorge (75) 1.70 8,723 0.005 

Chadron, NE CDR Badlands (90), Wind Cave (70) 1.59 3,770 0.002 

Hot Springs, AR HOT Hot Springs (10) 1.47 3,181 0.002 

Staunton, VA SHD Shenandoah (30) 1.43 13,234 0.009 

Dickinson, ND DIK Theodore Roosevelt (45) 0.69 15,990 0.023 

Show Low, AZ SOW Petrified Forest (60) 0.64 3,331 0.005 

Carlsbad, NM CNM Carlsbad Caverns (15), Guadalupe Mountains (40) 0.63 3,073 0.005 

Cortez, CO CEZ Mesa Verde (20) 0.56 6,160 0.011 

Owensboro, KY OWB Mammoth Cave (80) 0.55 12,524 0.023 

Alamosa, CO ALS Great Sand Dunes (40) 0.53 7,213 0.014 

Crescent City, CA CEC Redwood (15) 0.51 6,492 0.013 

International Falls, MN INL Voyageurs (25) 0.23 11,504 0.050 

Sources: Airlines Reporting Corporation; Federal Aviation Administration; National Park Service. 

Notes: Driving time is from the EAS airport to the nearest national park entrance. For EAS airports located near more than one 

national park, total visitors is the sum of visitors to both parks. Visitors arriving at EAS airport is calculated by taking the share of 

EAS airport users who are deemed nonresidents based on their home ZIP code multiplied by total enplanements at the airport in 2019. 
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Appendix Table H3. Status of EAS Communities Terminated since 1989 

Community 

Airport 

code 

Date EAS 

eligibility 

ended Reason for losing eligibility Airport classification Status of commercial service 

Franklin, PA FKL 10/18/2019 Fewer than 10 daily enplanements General aviation No commercial service 

Hagerstown, MD HGR 10/18/2019 Fewer than 10 daily enplanements Primary commercial Allegiant Air provides scheduled air 

service to 3 destinations 

Jamestown, NY JHW 1/16/2018 Fewer than 10 daily enplanements General aviation No commercial service 

Huron, SD HON 9/30/2016 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Worland, WY WRL 9/30/2016 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Great Bend, KS GBD 5/20/2016 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Kingman, AZ IGM 5/1/2015 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Athens, GA AHN 9/30/2014 Fewer than 10 daily enplanements General aviation Received a $750,000 grant from the 

Small Community Air Service 

Development Program to attract 

commercial service 

Lewistown, MT LWT 7/16/2013 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Miles City, MT MLS 7/16/2013 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Ely, NV ELY 4/1/2013 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Alamogordo, NM ALM 4/1/2012 Exceeded $1,000 per passenger subsidy General aviation No commercial service 

Brookings, SD BKX 10/1/2009 Exceeded $200 per passenger subsidy General aviation No commercial service 

Enid, OK WDG 9/1/2006 Exceeded $200 per passenger subsidy General aviation No commercial service 

Ephrata, WA EPH 9/1/2006 Exceeded $200 per passenger subsidy General aviation No commercial service 

Ponca City, OK PNC 9/1/2006 Exceeded $200 per passenger subsidy General aviation No commercial service 

Bluefield, WV BLF 8/1/2006 Exceeded $200 per passenger subsidy General aviation No commercial service 

Brownwood, TX BWD 3/13/2005 Exceeded $200 per passenger subsidy General aviation No commercial service 

Norfolk, NE OFK 5/25/2004 Exceeded $200 per passenger subsidy General aviation No commercial service 

Topeka, KS FOE 5/1/2003 Exceeded $200 per passenger subsidy General aviation No commercial service 

Oshkosh, WI OSH 3/1/2003 Exceeded $200 per passenger subsidy General aviation No commercial service 

Gallup, NM GUP 7/29/2002 Exceeded $200 per passenger subsidy General aviation Received a $3.5 million grant from 

the state of New Mexico’s Rural Air 

Service Enhancement Grant Program 

to attract commercial service 
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Utica, NY UCA 6/30/2002 Exceeded $200 per passenger subsidy General aviation Airport closed in January 2007 and 

general aviation was transferred to 

Griffiss International Airport (RME) 

Ottumwa, IA OTM 10/1/2001 Exceeded $200 per passenger subsidy General aviation No commercial service 

Yankton, SD YKN 4/30/2001 Exceeded $200 per passenger subsidy General aviation No commercial service 

Mattoon, IL MTO 2/13/2001 Exceeded $200 per passenger subsidy General aviation No commercial service 

Goodland, KS GLD 4/1/2000 Exceeded $200 per passenger subsidy General aviation No commercial service 

Lamar, CO LAA 4/1/2000 Exceeded $200 per passenger subsidy General aviation No commercial service 

Fairmont, MN FRM 1/6/2000 Exceeded $200 per passenger subsidy General aviation No commercial service 

Mt. Vernon, IL MVN 10/30/1999 Exceeded $200 per passenger subsidy General aviation No commercial service 

Sterling, IL SQI 4/12/1999 Exceeded $200 per passenger subsidy General aviation No commercial service 

Anniston, AL ANB 6/1/1996 Exceeded $200 per passenger subsidy General aviation No commercial service 

Worthington, MN OTG 11/27/1995 Exceeded $200 per passenger subsidy General aviation No commercial service 

Danville, IL DNV 11/30/1994 Exceeded $200 per passenger subsidy General aviation No commercial service 

Elkins, WV EKN 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Gadsden, AL GAD 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Galesburg, IL GBG 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Hot Springs, VA HSP 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Laconia, NH LCI 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Paris, TX PRX 12/1/1993 Exceeded $200 per passenger subsidy General aviation No commercial service 

Blythe, CA BLH 1/1/1990 Exceeded $200 per passenger subsidy General aviation No commercial service 

Columbus, NE OLU 1/1/1990 Exceeded $200 per passenger subsidy General aviation No commercial service 

McAlester, OK MLC 1/1/1990 Exceeded $200 per passenger subsidy General aviation No commercial service 

Sidney, NE SNY 1/1/1990 Exceeded $200 per passenger subsidy General aviation No commercial service 

Winslow, AZ INW 1/1/1990 Exceeded $200 per passenger subsidy General aviation No commercial service 

Coffeyville, KS CFV 10/1/1989 Exceeded $200 per passenger subsidy General aviation No commercial service 

Hutchinson, KS HUT 10/1/1989 Exceeded $200 per passenger subsidy General aviation No commercial service 

Janesville, WI JVL 10/1/1989 Exceeded $200 per passenger subsidy General aviation No commercial service 

Kokomo, IN OKK 10/1/1989 Exceeded $200 per passenger subsidy General aviation No commercial service 

Lewiston, ME LEW 10/1/1989 Exceeded $200 per passenger subsidy Reliever No commercial service 

Moultrie, GA MGR 10/1/1989 Exceeded $200 per passenger subsidy General aviation No commercial service 

Source: Federal Aviation Administration. 

Notes: Airport classification is based on the 2023–27 National Plan of Integrated Airport Systems. Status of commercial service is as of October 2022. 
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Appendix Table H4. Price Data for Subsidized Carriers in 2019 

EAS 

airport 

code 

Hub airport 

code(s) Carrier (code) 

Average 

fare ($) Docket(s) Notes 

ABR MSP Delta Air Lines (DL) 103 DOT-OST-2011-0134-0037 
 

AIA DEN Boutique Air (4B) 

Key Lime Air (KG) 

67 DOT-OST-2000-8322-0099 

DOT-OST-2000-8322-0126 

Boutique Air service to DEN ended May 31, 2019 and was replaced 

with Key Lime Air service to DEN. 

ALO ORD American Airlines (AA) 88 DOT-OST-2011-0132-0043 
 

ALS DEN Boutique Air (4B) 89 DOT-OST-1997-2960-0179 
 

AOO BWI/PIT Southern Airways (9X) 45 DOT-OST-2002-11446-0184 

DOT-OST-2002-11446-0171 

 

APN DTW Delta Air Lines (DL) 80 DOT-OST-2009-0300-0133 
 

ART PHL American Airlines (AA) 93 DOT-OST-2013-0188-0021 
 

ATY DEN/ORD United Airlines (UA) 95 DOT-OST-2001-10644-0170 

DOT-OST-2001-10644-0173 

Service to ORD was added September 1, 2019. 

AUG BOS Cape Air (9K) 75 DOT-OST-1997-2784-0200 
 

BFD PIT Southern Airways (9X) 49 DOT-OST-1997-2523-0249 

DOT-OST-2003-14528-0160 

 

BFF DEN United Airlines (UA) 69 DOT-OST-1999-5173-0108 
 

BHB BOS Cape Air (9K) 79 DOT-OST-2003-14783-0207 
 

BJI MSP Delta Air Lines (DL) 99 DOT-OST-2011-0134-0037 
 

BKW CLT Contour Airlines (LF) 68* DOT-OST-2004-18715-0030 
 

BRD MSP Delta Air Lines (DL) 75 DOT-OST-2009-0304-0079 
 

BRL STL/ORD Air Choice One (3E) 54 DOT-OST-2006-23929-0075 
 

BTM SLC Delta Air Lines (DL) 105 DOT-OST-2011-0136-0037 
 

CDC SLC Delta Air Lines (DL) 69 DOT-OST-2003-16395-0087 
 

CDR DEN Boutique Air (4B) 70 DOT-OST-2000-8322-0099 

DOT-OST-2000-8322-0126 

 

CEC OAK Contour Airlines (LF) 137* DOT-OST-1997-2649-0087 
 

CEZ DEN/PHX Boutique Air (4B) 99 DOT-OST-1998-3508-0062 
 

CGI ORD United Airlines (UA) 87 DOT-OST-1996-1559-0088 
 

CIU DTW/MSP Delta Air Lines (DL) 103 DOT-OST-2009-0304-0079 
 

CKB ORD/IAD United Airlines (UA) 80 DOT-OST-2005-20736-0149 
 

CMX ORD United Airlines (UA) 108 DOT-OST-2009-0301-0037 
 

CNM ABQ/DFW Boutique Air (4B) 91 DOT-OST-2002-12802-0115 

DOT-OST-2002-12802-0142 

 

CNY DEN United Airlines (UA) 82 DOT-OST-1997-2706-0160 
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COD DEN United Airlines (UA) 101 DOT-OST-2011-0121-0068 United Airlines provides subsidized service during the off-peak 

season for visiting Yellowstone National Park, from October to 

May, and provides unsubsidized service during the peak season. 

CVN DFW Boutique Air (4B) 97 DOT-OST-1996-1902-0113 
 

DDC DEN Boutique Air (4B) 59 DOT-OST-1998-3502-0100 
 

DEC ORD/STL Cape Air (9K) 77 DOT-OST-2006-23929-0075 
 

DIK DEN United Airlines (UA) 178 DOT-OST-1995-697-0118 
 

DUJ PIT/BWI Southern Airways (9X) 45 DOT-OST-2004-17617-0172 
 

DVL DEN United Airlines (UA) 120 DOT-OST-1997-2785-0215 
 

EAR DEN United Airlines (UA) 74 DOT-OST-1996-1715-0144 
 

EAU ORD United Airlines (UA) 93 DOT-OST-2009-0301-0037 
 

ELD DFW/MEM Southern Airways (9X) 56 DOT-OST-1997-2935-0345 

DOT-OST-1997-2935-0388 

 

ESC DTW Delta Air Lines (DL) 95 DOT-OST-2003-15128-0143 
 

FOD MSP/STL Air Choice One (3E) 64 DOT-OST-2001-10684-0135 
 

GCK DFW American Airlines (AA) 110 DOT-OST-1998-3497-0092 
 

GDV BIL Cape Air (9K) 40 DOT-OST-1997-2605-0237 
 

GGW BIL Cape Air (9K) 40 DOT-OST-1997-2605-0237 
 

GLH ATL/DFW Boutique Air (4B) 99 DOT-OST-2008-0209-0137 

DOT-OST-2008-0209-0140 

Hub at BNA was changed to ATL on April 1, 2019. 

GRI DFW American Airlines (AA) 135 DOT-OST-2002-13983-0135 

DOT-OST-2002-13983-0139 

 

HIB MSP Delta Air Lines (DL) 79 DOT-OST-2003-15796-0075 
 

HOT DFW Southern Airways (9X) 57 DOT-OST-1997-2935-0345 

DOT-OST-1997-2935-0388 

 

HRO DFW/MEM Southern Airways (9X) 63 DOT-OST-1997-2935-0345 

DOT-OST-1997-2935-0388 

 

HVR BIL Cape Air (9K) 40 DOT-OST-1997-2605-0237 
 

HYS DEN United Airlines (UA) 99 DOT-OST-1998-3497-0092 
 

IMT DTW/MSP Delta Air Lines (DL) 93 DOT-OST-2009-0304-0079 
 

INL MSP Delta Air Lines (DL) 95 DOT-OST-2009-0304-0079 
 

IPL LAX Southern Airways (9X) 60* DOT-OST-2008-0299-0118 

DOT-OST-2008-0299-0113 

Southern Airways acquired Mokulele Airlines in February 2019. 

IRK STL Cape Air (9K) 41 DOT-OST-1997-2515-0087 
 

IWD ORD/MSP Air Choice One (3E) 69 DOT-OST-1996-1266-0185 
 

JBR STL Air Choice One (3E) 54 DOT-OST-1997-2935-0363 
 

JLN DFW American Airlines (AA) 102 DOT-OST-2006-23932-0078 

DOT-OST-2006-23932-0091 

 

JMS DEN United Airlines (UA) 105 DOT-OST-1997-2785-0215 
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JST PIT/BWI Boutique Air (4B) 48 DOT-OST-2002-11451-0163 
 

LAR DEN United Airlines (UA) 68 DOT-OST-1997-2958-0094 
 

LBF DEN United Airlines (UA) 69 DOT-OST-1999-5173-0108 
 

LBL DEN United Airlines (UA) 79 DOT-OST-1998-3502-0100 
 

LEB BOS Cape Air (9K) 54 DOT-OST-2003-14822-0072 
 

LNS PIT/BWI Southern Airways (9X) 63 DOT-OST-2002-11450-0145 
 

LWB ORD/IAD United Airlines (UA) 79 DOT-OST-2003-15553-0155 
 

MBL MDW Regional Sky (4P) 59 DOT-OST-1996-1711-0144 

DOT-OST-1996-1711-0172 

Fare estimate for Regional Sky flights is not available. Fare shown 

is from Cape Air proposal for flights beginning October 1, 2020. 

MCE LAX/OAK Boutique Air (4B) 83 DOT-OST-1998-3521-0210 
 

MCK DEN Boutique Air (4B) 47 DOT-OST-1997-3005-0100 
 

MCN BWI Contour Airlines (LF) 89 DOT-OST-2004-18715-0032 

DOT-OST-2007-28671-0111 

 

MCW MSP/ORD Air Choice One (3E) 64 DOT-OST-2001-10684-0135 
 

MEI DFW/ORD American Airlines (AA) 116 DOT-OST-2008-0112-0049 
 

MGW PIT/BWI Southern Airways (9X) 46 DOT-OST-2004-17617-0172 
 

MKG ORD United Airlines (UA) 73 DOT-OST-2009-0301-0037 
 

MKL STL Air Choice One (3E) 59 DOT-OST-2000-7857-0264 
 

MSL ATL Boutique Air (4B) 75 DOT-OST-2000-7856-0216 
 

MSS BOS Boutique Air (4B) 72 DOT-OST-1997-2842-0423 
 

MWA STL Cape Air (9K) 39 DOT-OST-2003-14492-0061 
 

OGS BOS 

ORD/IAD 

Cape Air (9K) 

United Airlines (UA) 

49 

101 

DOT-OST-1997-2842-0220 

DOT-OST-1997-2842-0423 

Cape Air service to BOS via ALB ended March 30, 2019 and was 

replaced with United Airlines service to ORD/IAD. 

OLF BIL Cape Air (9K) 40 DOT-OST-1997-2605-0237 
 

OWB STL Cape Air (9K) 41 DOT-OST-2000-7855-0141 
 

PAH ORD United Airlines (UA) 94 DOT-OST-2009-0301-0037 
 

PBG IAD United Airlines (UA) 105 DOT-OST-2000-8012-0149 
 

PDT PDX Boutique Air (4B) 86 DOT-OST-2004-19934-0109 
 

PGA PHX/LAS Contour Airlines (LF) 129* DOT-OST-1997-2694-0231 
 

PIB DFW/ORD American Airlines (AA) 116 DOT-OST-2008-0112-0050 
 

PIR DEN United Airlines (UA) 90 DOT-OST-2001-10644-0170 
 

PKB CLT Contour Airlines (LF) 68* DOT-OST-2004-18715-0030 
 

PLN DTW Delta Air Lines (DL) 96 DOT-OST-2011-0133-0041 
 

PQI EWR United Airlines (UA) 143 DOT-OST-2003-14783-0236 
 

PRC DEN/LAX United Airlines (UA) 87 DOT-OST-1996-1899-0266 
 

PUB DEN United Airlines (UA) 60 DOT-OST-1999-6589-0123 
 

RHI MSP Delta Air Lines (DL) 85 DOT-OST-2009-0304-0079 
 

RKD BOS Cape Air (9K) 83 DOT-OST-1997-2784-0200 
 

RUT BOS Cape Air (9K) 78 DOT-OST-2005-21681-0043 
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SDY BIL Cape Air (9K) 40 DOT-OST-1997-2605-0237 
 

SHD ORD/IAD United Airlines (UA) 69 DOT-OST-2003-15553-0155 
 

SLK BOS Cape Air (9K) 95 DOT-OST-2000-8025-0152 
 

SLN DEN/ORD United Airlines (UA) 88 DOT-OST-2002-11376-0196 
 

SOW PHX Boutique Air (4B) 75 DOT-OST-1998-4409-0134 
 

SUX ORD American Airlines (AA) 124 DOT-OST-2011-0131-0109 

DOT-OST-2011-0131-0115 

 

SVC ABQ/PHX Advanced Air (AN) 95 DOT-OST-1996-1903-0404 
 

TBN STL Contour Airlines (LF) 56 DOT-OST-1996-1167-0119 

DOT-OST-1996-1167-0131 

DOT-OST-1996-1167-0157 

DOT-OST-1996-1167-0170 

Served by: Cape Air under basic EAS until January 31, 2019; 

Contour Airlines under Alternate EAS until September 30, 2021; 

United Airlines under basic EAS until September 30, 2022; and 

Contour Airlines under basic EAS since October 1, 2022. Fare 

shown is from Contour Airlines proposal for service starting 

October 1, 2022, adjusted for inflation. 

TUP BNA Contour Airlines (LF) 49 DOT-OST-2009-0305-0148 

DOT-OST-2000-7856-0211 

 

TVF MSP Boutique Air (4B) 69 DOT-OST-2001-10642-0132 
 

UIN ORD United Airlines (UA) 75 DOT-OST-1996-1559-0088 
 

VCT IAH/DFW Boutique Air (4B) 63 DOT-OST-2005-20454-0100 
 

VEL DEN United Airlines (UA) 99 DOT-OST-1997-2706-0160 
 

WYS SLC Delta Air Lines (DL) 115 DOT-OST-2003-14626-0069 Delta Air Lines only provides subsidized service during the peak 

season for visiting Yellowstone National Park, from May to 

October. No service is provided during the non-summer months. 

Source: Regulations.gov. 

Notes: Contour Airlines provides public charter service under the Alternate Essential Air Service (49 U.S.C. 41745). Fares marked with * were not provided in 

the DOT proposal documentation and are from an Internet search in early September 2022 for a flight departing 2 weeks later, adjusted for inflation. 
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